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Abstract 

Using high-dimensional pharmacogenomics data to predict effective antidepressant 

treatment response and symptom remission in major depressive disorder patients 

 

 

Lauren Michelle Rost, PhD  

 

University of Pittsburgh, 2021 

 

 

 

 

Background: Major depressive disorder (MDD) is a highly prevalent, chronic and disabling 

condition. Antidepressants are the mainstay of treatment with selective serotonin reuptake 

inhibitors (SSRIs) recommended as first-line treatment. However, antidepressant response rates 

are dismal with only 35-45% of patients achieving remission after initial agent. Patients with MDD 

are often exposed to a series of antidepressants in a trial-and-error process in effort to achieve 

symptom remission or treatment response. We hypothesize that utilization of patients’ electronic 

health record (EHR) and machine learning methods can improve MDD treatment outcome 

prediction. 

Methods: Clinical and pharmacy data were extracted from the UPMC EHR and utilized to 

examine MDD electronic phenotyping in addition to characterizing antidepressant treatment 

outcomes including dose changes, treatment sequences, and combinations. In addition, EHR 

features associated with predicting MDD treatment outcomes were explored. A reproducible 

pipeline was constructed to yield reproducible results with other data sources, including the 

addition of PGx data. 

Results: SSRIs were the most common initial antidepressant class prescribed for MDD patients, 

followed by SNRIs and NDRIs. The most common initial antidepressant prescribed for patients 

were SSRIs: sertraline, citalopram, and escitalopram, respectively. Early depression patients, those 

responding to initial antidepressants, comprised 39.69% of the analysis cohort, while 60.31% of 
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patients required a medication switch or augmentation. The most commonly prescribed two-drug 

sequence was citalopram then bupropion. When examining the probabilities of transitioning 

between antidepressant classes, transition probabilities to SSRIs were the highest. The highest 

performing machine learning model for predicting treatment response was a random forest using 

the top 25 clinical features (accuracy: 77.21%, F1-score: 87.07%), while the best model for 

predicting symptom remission was a generalized linear model using the top 25 features (accuracy: 

68.16%, F1-score: 33.33%).  

Discussion: SSRIs are commonly prescribed to patients with MDD, not only as first-line 

treatment, but are just as likely to be revisited throughout the treatment course. Future directions 

include assessing the value-add of PGx data in predicting antidepressant treatment response, 

validating results using EHR data from other health systems with more diverse patient populations, 

and implementing the prediction model in clinical practice to inform antidepressant treatment 

selection.   
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1.0 Background 

1.1 Major Depressive Disorder 

Major depressive disorder (MDD) is a complex, heterogenous disorder with multiple risk 

factors and underlying biological mechanisms [1,2]. The Diagnostic and Statistical Manual of 

Mental Disorders (DSM) has been systematic in symptom-based classification and diagnosis of 

MDD patients since 1952. An MDD diagnosis often entails a change of mood, sadness, or 

irritability with a myriad of psychophysiological aspects like aberrations in sleep, appetite, sexual 

desire, loss of pleasure in work, psychomotor slowing, and suicidal thoughts [1]. Risk factors 

associated with MDD include gender, traumatic life experiences, disruptive childhood events, 

particular personality traits, and substance misuse [3,4]. Seeing as many individuals harbor these 

risk factors, it is not surprising the wide scale to which depression affects so many individuals. 

Symptom presentation, course of disease, and treatment response are all additional 

components of this disorder that can be characterized as heterogenous. Genome-wide association 

studies (GWAS) and candidate gene studies have found few robust and consistent genetic risk 

factors for MDD. The heterogeneity of MDD, and lack of evidence to guide personalized treatment 

strategies, makes MDD one of the most challenging chronic conditions to treat in addition to 

creating a quandary for biomedical researchers [5].  
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1.1.1 Epidemiology 

Worldwide, depression affects more than 264 million people [6]. In the United States, the 

lifetime incidence of depression is 20% in women and 12% in men [7,8]. The larger impact on 

women is consistent when looking at prevalence as well. MDD affects women at a prevalence ratio 

of 5:2 [9]. The overall prevalence of MDD is only increasing as well [10]. Over a span of ten years 

from 2005 to 2015, prevalence has increased by 18.4% [11]. This increase is particularly 

concerning given that this disorder already causes significant disability, morbidity, and mortality 

worldwide. Specifically, MDD is the principal factor leading to suicide and disability from chronic 

illness in the world [6,12]. 

1.1.2 Genetics 

Genetics have proven to be vital in working towards a greater understanding of multiple 

disorders. However, as mentioned previously, this avenue has not proven to be as fruitful in the 

case of MDD. The presence of many common genetic variants with small effect sizes being linked 

to MDD has been reported in numerous studies, namely the multitude of GWAS studies published 

before 2018 with zero likely variants uncovered [13]. Out of eight MDD GWAS studies conducted 

before 2018, only one locus was identified to have possible GWAS significance [14–21]. The 

validity of the locus 12q21.31, next to gene SLC6A15, being linked to MDD has been questioned 

due to the failure of subsequent replication studies [13,20]. Notably, the locus was not replicated 

in the 2018 GWAS that identified 44 independent and significant risk loci for MDD [22].  

Despite the nascent and contradicting results of GWAS studies towards uncovering the 

molecular underpinnings of MDD, there have been some loci given special attention due to 
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purported associations. For example, rs2242446 is within a norepinephrine transporter gene and 

has been shown to be associated with 1.67-fold greater odds of symptom remission and a two week 

shorter time to remission in adults older than 60 years [23]. 

Another common polymorphic variant for MDD is 5-HTTLPR, which is in the proximal 

5’ regulatory region of 5-HTT and the promoter region of serotonin-transporter-linked gene 

SLC6A4. 5-HTTLPR modifies the promoter activity of the 5-HTT gene. Copy number variation 

of 5-HTT has been linked to depression symptoms, diagnosis, and suicide risk, where a short allele 

has lower transcription efficiency as compared to a long allele. Lower transcriptional activity 

results in less uptake of serotonin in the presynaptic neurons in the brain. Therefore, the short allele 

in 5-HTTLPR has been associated with more depressive symptoms [24,25]. Brain imaging studies 

have also shown functional differences in areas of the brain associated with 5-HTTLPR 

polymorphisms, which may be more broadly associated with complex traits and behavior, like 

depression [26,27]. 

In summary, a substantial majority of published literature surrounding this disorder have 

yielded negative findings [14–21]. Nonetheless, these negative findings are illuminating and 

contribute to the greater understanding of the underlying biology of MDD. While research on 

biological mechanisms and genetic underpinnings of MDD have shown variable results, treatment-

centered studies have proved to be more informative. 

1.1.3 Treatment 

The main approaches to treating this common disorder can vary depending on disease 

severity and patient and provide preference; however, treatment strategies typically encompass 

lifestyle changes (exercise, nutrition, social support, sleep, stress reduction, etc.), psychotherapy 
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(cognitive behavioral, interpersonal, psychodynamic), electroconvulsive treatment, and/or 

medication. In patients with mild to moderate depression, psychotherapy options have been shown 

to have similar symptom remission rates to medication [28]. However, patients with moderate to 

severe depression often require treatment with antidepressants which may be lifelong. The current 

study will focus on medication as the primary MDD treatment modality of interest. 

Pharmacologic treatment of MDD involves the prescription of antidepressants to 

ameliorate chemical imbalances in the brain through interactions with neurotransmitters. 

Neurotransmitters are held in vesicles within nerve cells or neurons. Serotonin, dopamine, and 

norepinephrine are all monoamine neurotransmitters that have been implicated in the 

pathophysiology of depression. These neurotransmitters are released by the presynaptic neuron 

into the synapse where they are able to interact with the postsynaptic neuron. Antidepressants can 

increase neurotransmission by increasing the release of neurotransmitters or by inhibiting the 

reuptake or degradation of neurotransmitters, thereby increasing the presence of neurotransmitters 

available in the synapse.  

Antidepressants are often classified by their functional impact on neuronal synapses [3]. 

Selective serotonin reuptake inhibitors (SSRIs) are an antidepressant class that increase serotonin 

(5-HT) levels and activity in the brain by decreasing serotonin reuptake at synapses. Common 

SSRIs are citalopram (Celexa), escitalopram (Lexapro), fluoxetine (Prozac), paroxetine (Paxil, 

Pexeva), and sertraline (Zoloft). SSRIs are first-line treatments for depression, as supported by 

national and international clinical guidelines [29,30]. Therefore, SSRIs are the most commonly 

prescribed antidepressant. However, despite being supported as first-line treatment and prescribed 

frequently, SSRIs still exhibit relatively low success rates for patients. Only 35-45% of individuals 

experience symptom remission (a significant decrease in symptoms) with first-line treatment [31]. 



 

 5 

One study focusing on SSRI prescribing found symptom remission rates of 28% and response rates 

of 47% [32]. These relatively low frequencies may result in several weeks to months of 

troubleshooting antidepressant treatment options in a trial-and-error fashion before a successful 

drug trial is identified [32,33]. 

Other classes of antidepressants in the available drug arsenal for treating MDD include 

monoamine oxidase inhibitors (MAOIs), serotonin norepinephrine reuptake inhibitors (SNRIs), 5-

HT2 receptor antagonists, dopamine reuptake inhibitors, and tricyclic antidepressants (TCAs). The 

first antidepressant class was MAOIs developed in 1952. MAOIs inhibit the breakdown of 

serotonin, dopamine, and norepinephrine into their metabolites, allowing more of these 

neurotransmitters to be available in the brain. Similarly to SSRIs, SNRIs also allow for more 

neurotransmitters to be available in the brain by inhibiting reuptake of serotonin as well as 

norepinephrine. SNRIs are typically recommended when patients do not respond to SSRIs [29,30]. 

Another antidepressant class is 5-HT2 receptor antagonists, which block serotonin reuptake 

through antagonizing 5-HT2 receptors. Dopamine reuptake inhibitors like bupropion inhibit 

dopamine and norepinephrine reuptake, and therefore represent a novel treatment option as they 

do not act directly on serotonin [34]. The last antidepressant class is an exception to antidepressant 

nomenclature where the name describes the functional neuronal synapse interaction. Tricyclic 

antidepressants (TCAs) are named for their characteristic chemical structure. TCAs like 

amitriptyline block reuptake of serotonin and norepinephrine. In comparison to other 

antidepressant classes, TCAs have lower 5-HT reuptake inhibiting effects, higher norepinephrine 

reuptake inhibition, and block several additional neurotransmitter receptors like those of alpha1 

adrenergic and histamine resulting in a less favorable side effect profile [3,34].  
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Among the myriad of these aforementioned antidepressant treatment options, the 

prescribing possibilities are expanded further as antidepressants are prescribed in combination 

when a partial response in achieved. Response to antidepressant therapy is highly variable. This 

diversity in response to antidepressants has even been exhibited at the level of biological sex [35–

39]. Despite this knowledge, no particular clinical variable or modality has been shown to be a 

consistent predictor for antidepressant therapeutic outcomes. In working towards informing 

antidepressant prescribing and advancing the current trial-and-error approach to treatment 

selection, there needs to be a method of determining which antidepressant a patient is more likely 

to respond to as well as systematic and standardized measurement-based symptom scoring to 

monitor treatment success, or lack thereof.  

1.1.4 Methods of Measurement 

There are many scoring metrics for MDD screening and assessing symptom severity. 

Currently on the fifth edition, the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 

is a reference book that includes a classification system for MDD screening. The manual was 

developed by mental health professionals and organizations, including the American Psychiatric 

Association and the World Health Organization through comprehensive and systematic reviews of 

published literature, in addition to dataset and field trial analyses. DSM-5 builds on its previous 

versions and has a strong foundation in empiricism with consensus support from the mental health 

field consensus. The DSM-5 scoring criteria was used in the development of the International 

Statistical Classification of Diseases and Related Health Problems (ICD-10), and thus is directly 

related and historically tied to the foundation of MDD diagnosis [40].  



 

 7 

After the publication of the first DSM in 1952 for detecting and diagnosing depression, the 

Hamilton Depression Rating Scale, HAMD, was created to assess patients already diagnosed with 

MDD. This rating scale is one of the most commonly implemented instruments for quantifying 

symptoms and gauging symptom severity during a patient encounter [41,42]. The rating scale 

includes measurements for 17 variables (low mood; guilty feelings; suicidal thoughts; insomnia; 

decreased engagement in work and interests; retardation; increased agitation; psychic and somatic 

anxiety; general, gastrointestinal, and genital somatic symptoms; hypochondriasis; deeper insight; 

and loss of weight) and has been demonstrated to be reliable and consistent [41,42]. 

Another depression scoring metric is the Patient Health Questionnaire (PHQ), which is a 

self-administered survey that is commonly used to assess depressive symptoms in clinical practice. 

The PHQ-9 includes nine criteria from DSM-5 and has been shown to be a reliable and valid 

depression scale that can be administered in one to five minutes, whereas other scoring metrics 

can take up to 20 to 30 minutes to complete [43]. Shorter versions of the PHQ are also available 

including the two-item PHQ-2 and four-item PHQ-4. 

Another depression scoring metric is the Inventory of Depressive Symptomatology (IDS), 

along with the Quick Inventory of Depressive Symptomatology (QIDS). These metrics are 30- and 

16-items, respectively, used to quantify depression symptom severity. Both scoring metrics have 

been shown to be sensitive and acceptable measurements of MDD symptom severity [44]. These 

two scoring metrics use a 4-point Likert scale focused on behaviors and moods from the previous 

week. Additionally, there are variants of the QIDS metric that allow for adaptability in terms of 

the survey administer. The QIDS-C16 is a clinician-rated version, as specified by the “C”. The 

numeric value stands for how many items are on the survey. The patient-rated version of QIDS is 

QIDS-SR, as denoted by the “SR” for self-rated. QIDS-SR has been demonstrated to be as 
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sensitive to symptom changes as the IDS-SR30 and HAMD24 metrics, and thus is a sufficient 

symptom scoring tool [45].  

Like the number of antidepressant options, there are a multitude of depression scoring 

metrics with different strengths and limitations. Selection of the optimal scoring metric for a given 

scenario depends on its flexibility to administer, length of time needed, and survey structure. 

Scoring metrics are one piece of a broader puzzle working to better understand MDD presentation 

and treatment response.  

1.1.5 Randomized Clinical Trials 

Randomized clinical trials (RCTs) using depression scoring metrics to quantify clinical 

endpoints of treatment response or symptom remission have demonstrated efficacy of individual 

antidepressants [46–48]. However, the findings of these RCTs have been cited to not be 

generalizable to clinical practice due to RCTs exclusion of psychiatric comorbidities [49]. In 

addition, RCTs typically only compare only a few antidepressants per study for effectiveness [48]. 

In response to the lack of generalizability to a real-world clinical population and in an effort to 

compare effectiveness of many antidepressants in a study that follows a clinical workflow 

prescribing, the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial was 

designed [49]. 

The STAR*D trial was a large multi-center trial funded by the National Institutes of Health 

(NIH) that sought to address antidepressant treatment effectiveness in MDD patients [50]. This 

study has the largest sample population and the longest study duration to assess depression 

treatment outcomes. The goal was to assess depression treatment effectiveness and tolerability for 

MDD patients [51]. Given that two thirds of patients do not experience symptom remission after 
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first-line treatment, researchers wanted to identify alternative treatment strategies to help this 

majority of MDD patients. There were 4,041 patients enrolled, and almost half of study 

participants (N=1,948) were sequenced. 

The study was designed to reflect clinical practice, with patients started on the baseline 

MDD treatment of citalopram (Celexa) and given the choice between a list of antidepressants that 

they would be open to trying to treat their depression. If patients continued to experience MDD 

symptoms after 12 to 14 weeks, they proceeded to the next level of the trial where patients were 

given the choice to add to their current treatment, switch to an antidepressant at random from the 

list of antidepressants, and/or add cognitive psychotherapy as part of their treatment. There were 

four levels total in the study. Patients were classified to have highly treatment-resistant depression 

at level four. 

The STAR*D trial lasted for seven years and enrolled adults from age 18 to 75 years old 

at 41 clinical locations across the U.S. Overall, STAR*D found that 33% of patients achieved 

symptom remission, and 10-15% more experienced symptom response (symptoms decreased by 

at least half), but were not symptom-free [50]. On average, it took patients six weeks to achieve 

symptom response, and seven weeks to achieve symptom remission. About half of the patients 

achieved symptom remission after level two. Over all four levels, almost 70% of study participants 

achieved symptom remission, however drop-out was meaningful across the four levels. Overall, 

STAR*D was a well-designed study that led to 124 publications, as reported by clinicaltrials.gov 

(Accessed 6/20/20). Most notably of these publications, studies identified multiple genes of 

interest associated with treatment response: HTR2A, GRIK4, SLC6A4, FKBP5, and TREK1 

[25,51–53]. These uncovered associations between gene variants and response to antidepressant 

treatment were valuable pharmacogenomics findings.  



 

 10 

1.2 Pharmacogenomics 

Pharmacogenomics (PGx) is the study of how genomic variation impacts an individual’s 

response to medication. It is the application of genomic data to inform drug and dose selection. 

Therefore, PGx is a combination of pharmacology and genomics. It is important to know the 

implications of gene-drug pairs because some combinations can cause patients to experience 

varying effectiveness or, can even be life-threatening.  

Pharmacogenetics, the study of individual gene interactions with drugs, was first 

introduced in 1959 by Friedrich Vogel. With new developments in sequencing technology and the 

greater capacity to understand many genes at once, genomics came to the forefront. With it, came 

the study of multiple gene-drug interactions or, PGx. PGx as a field aims to inform prescribing to 

maintain drug efficacy and minimize adverse drug reactions.  

The largest research network in this space is the Pharmacogenomics Research Network 

(PGRN). The network is comprised of three research centers and two public PGx resources 

(Pharmacogenetic Knowledge Base and PGRN Hub) and states that its mission is to fuel precision 

medicine by supporting discovery and translation of genomics that informs therapy and adverse 

drug reactions [54,55]. The network works to empower this mission through promoting PGx 

research and advising the clinical sphere on the importance of PGx. 

PharmGKB is the Pharmacogenetic Knowledge Base which hosts genomic, phenotypic, 

and clinical data from pharmacogenomic studies that can be browsed and queried [56]. Created 

out of PharmGKB is the Clinical Pharmacogenetics Implementation Consortium (CPIC), an 

international academic consortium of individual researchers and staff members established in 2009 

under a commitment to guide the use of pharmacogenetic test results to inform patient care [57]. 

CPIC publishes clinical practice guidelines that are peer-reviewed and evidence-based in effort to 



 

 11 

improve implementation of PGx tests in clinical practice. CPIC hosts 84 practice guidelines 

(Accessed 6/15/2020) [58]. Two of these guidelines are dedicated to recommendations for genes 

that play a role in antidepressant metabolism, specifically SSRIs and TCAs [59,60]. The Food and 

Drug Administration also lists PGx biomarkers on approved drug labels, and recognizes PGx 

associations along with CPIC [61,62]. 

1.2.1 Research Studies in Pharmacogenomics  

There are 127 unique genes and 240 unique drugs for which CPIC lists gene-drug 

associations. In total, there are currently 377 gene-drug pairs noted by CPIC, however there is 

variable evidence assigned to each pair. A few of the most prominently known PGx genes are 

CYP2D6, G6PD, CYP2C9, CYP2C19, ABCB1, and HLA-B (Table 1). The number of drugs 

reported to have any associations with these genes are noted in the second column of Table 1, 

however CPIC specifies that only gene-drug pairs that have published recommendation guidelines 

have undergone an appropriate evidence review to provide definitive CPIC recommendations for 

prescribing. CPIC rates the degree of evidence in support of gene-drug pairs from levels A to D. 

Likewise, PharmGKB rates evidence as 1A, 1B, 2A, 2B, or 3. While many gene-drug associations 

have been reported in the literature, a smaller number of gene-drug combinations have shown high 

levels of evidence. 
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Table 1 Prominent PGx genes, the number of genes they are reported to be associated with, and the level of 

evidence found in support of the gene-drug pair. 

Most 

prominent 

PGx genes 

Number of drugs 

listed by CPIC as 

having a genetic 

variation-drug 

response association 

Number of drugs reported 

to have variable 

effectiveness based on 

genotype, with Level A 

CPIC evidence 

Number of drugs reported 

to have variable 

effectiveness based on 

genotype, with Level 1A 

PharmGKB evidence 

CYP2D6 60 12 23 

G6PD 36 2 2 

CYP2C9 22 10 10 

CYP2C19 21 5 13 

ABCB1 12 0 0 

HLA-B 11 5 11 

 

1.2.2 Implementation in Clinical Care 

Gene-drug pairs and PGx variants are vitally important to clinical knowledge because over 

50% of all primary care patients are at some point exposed to PGx relevant medications [63]. More 

so, 18% of the total prescriptions written in the U.S. per year are affected by actionable PGx 

variants [64–67]. In addition, common genetic variation attributes to 42% of antidepressant 

response variation [68]. Therefore, response to antidepressant treatment is complex and related to 

many common genetic variants with small effect sizes [69]. There has been significant work 

dedicated to making PGx knowledge more accessible to clinicians through clinical decision 
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support (CDS) tools and educational programs. Many institutions, including the University of 

Pittsburgh Medical Center, are working to roll out PGx CDS alerts to prescribers when appropriate 

[70,71]. In addition, significant work has been dedicated to rigorously funded and researched 

Continuing Medical Education programs that increase clinical knowledge surrounding PGx [72].  

Not only do clinicians need to be aware of PGx variants and associated drugs because the 

variants and drugs are so prevalent, but also because informing care based on PGx has been cited 

for its potential to decrease healthcare costs through reducing adverse drug reactions, failed clinical 

trials, time to drug approval, length of medication durations, number of medications prescribed, 

and the effects of disease on patients [73].  

Despite these advantages to incorporating PGx knowledge into clinical decision making, 

there are major undeniable barriers to clinical implementation. In the information technology 

sphere, there are challenges associated with gathering and storing data, ensuring data security, 

developing an efficient CDS infrastructure, optimizing user interface principles, minimizing alert 

fatigue, and working with currently unstandardized terminologies and language surrounding PGx 

[73,74]. These challenges have not been prohibitive to researchers implementing PGx into the 

clinical space, as exemplified by the eMERGE-PGx project rolling out PGx data in electronic 

health records (EHRs) [75]. However, clinical implementation of PGx in practice has had slow 

buy-in from clinicians due to a lack of evidence supporting routine PGx testing, a dearth of 

randomized controlled trials (RCTs) supporting gene-drug associations, a myriad of genotyping 

tools with variable, uninteroperable outputs, as well as a lack of an established presence in the 

current clinical workflow. Also, as alluded to previously, there is a general lack of PGx knowledge 

or appreciation among clinicians regarding utility of PGx in clinical decision making. To further 

complicate PGx implementation, insurance reimbursement for PGx testing is variable, leaving 
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many patients paying high out-of-pocket costs [73]. Despite these hurdles, PGx research has 

managed to demonstrate clinical utility in specific areas of practice.  

One such important PGx implementation in clinical settings is CYP2C19 genotyping. 

CYP2C19 variants predict clopidogrel response and therefore inform antiplatelet treatment after a 

percutaneous intervention (PCI) [76]. The CYP2C19 gene is crucial in transforming clopidogrel 

to becoming pharmacologically active. A nonfunctional variant can be lethal due to fewer active 

clopidogrel, which can lead to increased risk for major adverse cardiovascular complications 

following a PCI. Sixty five percent of Asians and 30% of whites have nonfunctional CYP2C19. 

University of Florida initiated CYP2C19-guided prescribing in 2012, and has led the way in 

informing CYC2C19-guided therapy [77,78]. Other clinical implementations of important PGx 

variants in care are CYP2D6 with codeine, tramadol, opioids, SSRIs, aripiprazole, and 

atomoxetine; TPMT with thiopurines; CYP2D6 and CYP2C19 with SRRIs and TCAs; CYP2C19 

with PPIs, voriconazole, and citalopram; SLCO1B1 with simvastatin, among many others [76]. 

1.3 PGx and MDD 

PGx-guided therapy has been shown to be important for symptom remission and response, 

and therefore, informative for improving patient outcomes. Hall-Flavin et al. (2012) found that the 

implementation of a PGx algorithm to guide depression treatment resulted in a statistically 

significant reduction in depression symptoms, quantified by QIDS-C16 and HAM-D17 scores, 

compared to patients treated without the PGx algorithm [79]. Bradley et al. (2018) also found that 

drug response and symptom remission rates were higher at 12 weeks among patients treated under 

a PGx-guided group compared to those that were not [80]. Multiple systematic reviews have also 
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replicated these findings of improved symptom remission in PGx-guided patients. Bousman et al. 

(2019) looked at 1,737 subjects from five RCTs, and found that patients in the PGx-guided group 

were 1.71 times more likely to achieve symptom remission [81]. The researchers went on to 

recommend that PGx-guided therapy be implemented in the clinic. Additionally, Rosenblat et al. 

(2017) also found from a systematic review of clinical trials that PGx testing could improve 

symptom remission [82]. In addition to symptom remission findings, studies have also shown that 

PGx data is vital in identifying poor metabolizers of antidepressants due to their adverse effects 

[83,84]. 

Stemming from these results highlighting the importance of PGx-informed therapy for 

MDD, there are two CPIC guidelines published with moderate to high quality of evidence 

surrounding SSRI recommendations for CYP2D6 and CYP2C19 genotypes, and high quality 

evidence in most cases for TCA recommendations based on CYP2D6 and CYP2C19 genotypic 

variations [59,60]. It is also meaningful to consider that the results of studies demonstrating 

symptom remission and response have been criticized for their study design, sample size, and 

funding sources. Namely, funding sources for prominent antidepressant studies have been sourced 

from pharmaceutical companies that have reported conflict of interest [80,85,86]. There still is a 

limited evidence base for using PGx to inform antidepressant prescribing, and therefore a need to 

support the clinical utility of PGx-guided therapy reliably and robustly for MDD outcomes.  

In effort to work past this limited evidence base, and in consideration of the magnitude and 

expense of conducting RCTs, there needs to be other approaches to gathering evidence on PGx 

testing outcomes besides an RCT for every PGx relevant gene-drug pair [76]. One avenue that has 

been pursued is whether real-world evidence from EHRs can be used to evaluate and replicate 

RCTs using their interventions, inclusion/exclusion criteria, and primary endpoints [87]. This real-
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world data affords a more cost-effective solution and would facilitate more discovery from already 

existing EHR data. Although, there are notable limitations here as well in that the observational 

and incomplete nature of EHR data is problematic in terms of establishing causal effects. 

1.4 PGx and EHRs 

The EHR is a valuable real-world data resource, and amid the implementation of PGx data 

into clinical care through the EHR, we can additionally make use of both EHR and PGx data to 

inform models. The Electronic Medical Records and Genomics (eMERGE) network is particularly 

valuable to this endeavor, in that it is an NIH-organized and funded institution that supports and 

encourages the combination of biorepositories with EHR systems in order to allow for research 

surrounding genomic discovery and genomic medicine.  

The eMERGE network and PGRN partnered together in a leadership effort to burgeon the 

field of genomic discovery and medicine using PGx and EHR data. The eMERGE-PGRN project 

has demonstrated the implementation of genetic sequence data (84 PGx candidate genes from 

9,000 participants) into clinical practice to inform prescribing through CDS [75,88]. Despite this 

leadership effort, it is no surprise that based on the nascence of evidence for the clinical utility of 

PGx, the lack of PGx knowledge within the prescribing community, and PGx testing not being 

established yet in routine clinical care, that having PGx data within EHRs is not standard. 

However, progress is being made in many health systems, and we are on the cutting edge of using 

PGx data to inform clinical care. 
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1.5 PGx and Machine Learning 

Machine learning is a favorable approach to uncover relationships in data without explicitly 

specifying the model equation. ML models are useful to sort through large datasets where there 

are unknown relationships between feature inputs, and so the algorithm can uncover variables that 

are informative to predicting outcomes. 

In the case of using high-dimensional PGx data along with high-dimensional EHR data, 

machine learning (ML) is an ostensibly favorable approach due to its’ ability to uncover underlying 

patterns and relationships in large datasets that are unknown or difficult for humans to discern 

[89]. There have been many publications outlining the promise and value of this work uncovering 

relevant features to improve antidepressant treatment response prediction in MDD patients [90–

92]. However, there is still significant contributions necessary to turn the promise of this work into 

a reality, and to ultimately translate predictive models into clinical care.  

One of the earliest and most notable publications that used ML methods focused on 

predicting antidepressant treatment outcome was by Chekroud et al. (2016) [93]. Researchers used 

STAR*D trial level 1 data consisting of around 4,000 patients to predict symptom remission to 

citalopram after 12 weeks. From 164 clinical variables, they found 25 relevant features for 

prediction that surrounded somatic complaints, insomnia, and traumatic life experiences. Their 

model was able to predict symptom remission at an accuracy of 65%. 

Another application of ML methods to early depression was from Kautzky et al. (2015), 

which investigated 225 patients, 98.7% of which were Caucasian, from the European Group for 

the Study of Resistant Depression [94]. Kautzky et al. ran random forests to perform feature 

selection and performed k-means clustering to determine features that were associated with 

treatment outcomes. They looked at 12 SNPs in five genes, eight clinical variables, and used HAM-
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D to measure symptom progression. Researchers ultimately identified 3 SNPs and one clinical 

variable that was significantly associated with treatment response. However, their reported 

sensitivity for identifying patients with treatment response within 74 patients was low at 25%. 

Their use of random forests for variable selection, limited features in their dataset, small, 

homogenous study population, and extremely low sensitivity left room for improvement. 

Athreya et al. (2018) demonstrated much better performance in predicting antidepressant 

treatment outcomes with an accuracy of 80% [95]. To achieve this, Athreya et al. used physician 

assessments along with metabolomic, genetic, and sociodemographic data from 603 patients to 

predict antidepressant response. Patients were treated with citalopram for 8 weeks, over which 

researchers assessed symptom severity at zero, four, and eight weeks after initial treatment through 

QIDS-C. This trial achieved sufficient prediction accuracy and demonstrated a strong study design, 

however the model included physician assessments, which limited generalizability.  

In 2019, Athreya et al. addressed the issue of including physician assessments, and 

expanded upon previous work to focus on using PGx data specifically for treatment outcome 

prediction [96]. The study population was 1,030 white outpatients that were genotyped for four 

genes and two metabolite concentrations, serotonin and kynurenine. Researchers subset their 

models based on sex due to demonstrated differential responses to antidepressants. The supervised 

ML model trained on SNPs and baseline depression scores was able to predict symptom remission 

and treatment response at 8 weeks with an area under the receiver operating characteristic curve 

(AUC) of 0.7 and an accuracy of 0.69. Performance notably decreased when researchers did not 

include physician assessments, however performance was still impressive. 

Moving forward with more high-dimensional PGx data and clinical biomarkers, Lin et al. 

(2018) implemented a deep learning method using demographic information, SNP data, baseline 
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HAMD scores, depressive episodes, and suicide attempt status from 455 patients to classify 

antidepressant responders [97]. They used a multilayer feedforward neural network with two 

hidden layers to achieve an AUC of 0.83 in predicting antidepressant response. For predicting 

symptom remission, they had an AUC of 0.81 with three hidden layers. This study demonstrated 

the feasibility of implementing deep learning frameworks to predict both treatment response and 

remission.  

With a number of successful prediction studies, Perlman et al. (2019) sought to characterize 

the feature space of ML studies predicting antidepressant treatment outcomes [98]. They noted 

around 200 features that were important inputs for depression models. Also taking a 

comprehensive approach to understanding the scope of depression ML studies, Lee et al. (2018) 

conducted a meta-analysis and systematic review and found that classification algorithms 

performed better with multiple high-dimensional data types, and that models classifying treatment 

outcomes had an average accuracy of 0.82 overall [99]. There are many research groups looking 

to improve treatment outcome prediction for antidepressants, but this is in no way a solved issue. 

Prediction stands to be improved, methods stand to be more robust, reproducible, and 

generalizable, and study populations stand to be larger and more diverse. 

We seek to address these limitations of previous studies through the use of the Pitt + Me 

Discovery cohort. This cohort will ultimately enroll 150,000 patients with PGx testing for 4,627 

markers within 1,191 genes, and their EHR data, including clinical notes. We plan to make use of 

established electronic phenotypes in order to proxy depression scoring metrics and enhance MDD 

phenotyping past ICD-10 classification. Structured EHR data will also greatly improve our 

methods over previous ML depression studies as well. Few studies have optimized on the juncture 

between using EHR and PGx data in order to improve antidepressant treatment response 
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prediction. With the mission to improve on previous models’ limitations, we remember George 

Box’s famous quotation: 

“All models are wrong, but some are useful” – George Box  

With this quotation in mind, we proceed with caution, but also inspiration into the space 

we have carved out to improve antidepressant treatment response prediction for MDD patients. 
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2.0 Research Design 

2.1 Overall Design 

This study is a secondary analysis of existing electronic health record (EHR) cohort data 

on patients with major depressive disorder. EHR data was pulled through the Health Record 

Research Request (R3) team from University of Pittsburgh Medical Center data. Inclusion and 

exclusion criteria were established for the original cohort pull based on specified ICD-9 and -10 

codes from eMERGE’s PheKB database for depression. In addition, patients had to be 18 years of 

age or older at the time of the data pull. Earliest records pulled were from 2004, being that data 

quality significantly decreased before 2004. Exclusion criteria surrounded ICD-9 and -10 codes 

for disorders that may also be prescribed antidepressants though may contribute confounding, for 

example bipolar disorder, anxiety disorder, post-traumatic stress disorder, autism, etc. For this 

study, we only looked at outpatient data for the intended capture of low severity major depressive 

disorder cases, as opposed to inpatient psychiatric data that may be complicated by additional 

comorbidities.  

In addition, the reproducible data analysis and machine learning pipeline was designed for 

the eventual incorporation of PGx data from Pitt + Me Discovery.  Pitt + Me Discovery is a 

biorepository within the Pitt + Me clinical trial enrollment system that seeks to collect PGx data 

from 150,000 patients of 18 years of age and older. Pitt + Me Discovery was initialized under the 

objective of learning from patients’ genetic data to further understanding of health, disease 

outcomes, and patient response to medication and treatment. Another objective of Pitt + Me 

Discovery is to communicate information gleaned from using PGx data to inform prescribing. PGx 



 

 22 

on MDD patients from within the Pitt + Me Discovery cohort may be useful to improve 

antidepressant prescribing. Data from R3 included patient demographics, diagnoses, encounters, 

medication orders and fills, psychiatric questionnaires, and vitals for all UPMC patients that fell 

within the inclusion criteria for MDD.  

2.2 Specific Aims 

In effort to predict antidepressant treatment response and symptom remission for MDD 

patients, we developed a comprehensive and systematic data analysis pipeline accomplished 

through the following aims:  

Aim 1. Extract and process electronic health record (EHR) and implement established 

approaches for electronic phenotyping of depression status. 

Aim 1a. Extract, process, and perform data quality checks on UPMC EHR data. 

Rationale: Missing, incomplete, and messy data are inherent to electronic health record data. 

Therefore, data processing and quality checks are vital to minimizing bias and improving accuracy 

measures in downstream analyses.  

Hypothesis: Data processing and quality checks ensure a complete analysis and improve 

specificity in examining a cohort of MDD patients.  

Approach: Summary statistics were reported, data was assessed for level of missingness, and 

imputation was determined to be unnecessary due to a low degree of missingness.  

 

Aim 1b. Implement established electronic phenotyping for identifying patients with 

depression. 
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Rationale: eMERGE has an established and validated electronic phenotype for depression, 

which allows for increased specificity in identifying a cohort containing patients with depression.  

Hypothesis: The implementation of the eMERGE phenotype generates greater specificity for 

depression patients, which improves downstream model performance, as measured through F1 

scores and accuracy. 

Approach: In order to address this aim, the inclusion and exclusion criteria of ICD-9/10 codes 

from eMERGE were applied. Additionally, the “2/30/180 rule” of evidence of depression present 

on two different calendar days, at least 30 days apart, and no greater than 180 days apart, was 

implemented.  

Aim 2. Characterize antidepressant prescribing sequences and formulate (and evaluate the 

accuracy of) a baseline clinical model.  

Aim 2a. Describe antidepressant prescribing sequences and model associated transition 

probabilities with Markov Models. 

Rationale: Markov Models were applied to the dataset in order to illustrate patients’ 

progression through antidepressant treatment sequences.  

Hypothesis: Markov Models convey the large proportion of patients that are prescribed SSRIs 

initially, and then disperse to a number of antidepressant treatment sequences.  

Approach: Markov Models were created for medication fills using the “markovchain” package 

in R [100]. Graphics were constructed to illustrate progressions through medication states and 

transition probabilities.  

Aim 2b. Use antidepressant prescribing sequences and patient characteristics from the EHR to 

formulate and evaluate the accuracy of baseline models (logistic regression models, classification 

trees) for predicting treatment response and symptom remission.  
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Rationale: Statistical and machine learning models were constructed to ascertain features 

associated with depression patients’ symptom remission and treatment response to antidepressants, 

and predict remission and response to antidepressants. 

Hypothesis: Statistical and machine learning models are able to model and predict treatment 

response and symptom remission to antidepressants with greater accuracy than what is currently 

observed clinically (about 50%). 

Approach: Traditional statistical models (e.g., logistic regression models) and machine 

learning models (e.g., random forest) were fit to examine treatment response and symptom 

remission.  

 

Aim 3. Design models for the eventual incorporation of PGx data to the baseline clinical 

models to eventually evaluate the value-added of PGx data to statistical models, and develop, 

implement, and evaluate accuracy of a reproducible machine learning pipeline to predict treatment 

response and symptom remission. 

Aim 3a. Incorporate PGx data in the theoretical clinical model architecture as a part of the 

reproducible pipeline to be eventually run when there is sufficient PGx data, and subsequently 

evaluate predictive accuracy changes.  

Rationale: PGx data is an eventual added feature to the baseline clinical model. The statistical 

and machine learning models are run and analyzed again to compare resulting model performance, 

in terms of accuracy and F1 score.  

Hypothesis: PGx data provide additional features in the training set that eventually enhance 

symptom remission and treatment response prediction.  
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Approach: PGx data can be included in the statistical and machine learning model architectures 

to be run in the future to allow for the downstream evaluation of accuracy and F1 score compared 

to the baseline clinical models naïve to PGx data.  

Aim 3b. Develop, implement, and evaluate accuracy of a reproducible analysis pipeline 

(logistic regression, random forests, and ensemble machine learning methods) to predict treatment 

response and symptom remission.  

Rationale: A reproducible analysis pipeline was constructed to allow for analyses to be 

reproduced and expanded as additional patients are enrolled in the Pitt + Me Discovery cohort. 

More so, a reproducible pipeline allows for a favorable opportunity to generalize findings to 

similar clinical datasets.  

Hypothesis: A reproducible pipeline allows for reuse, modifications, tuning, further testing, 

and transport to adjacent datasets and hospital settings. 

Approach: Methods were automated so that inputs and outputs of steps follow seamlessly in 

an automated and generalizable fashion. Future directions could involve mobilizing this pipeline 

into a Docker container for ultimate reproducibility, transportability, and generalizability.  

 

We hypothesize that our novel analysis pipeline and patients’ clinical care features from the 

EHR demonstrates enhanced prediction of treatment response and symptom remission to 

antidepressant treatments.   
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3.0 Data Acquisition and Manipulation 

3.1 Introduction 

3.1.1 Data source 

University of Pittsburgh Medical Center (UPMC) is a $21 billion health care provider and 

insurer in Pittsburgh, Pennsylvania. There are 40 academic, community, and specialty hospitals, 

and 700 doctors’ offices and outpatient sites in the UPMC system that are located across 

Pennsylvania, New York, and Maryland. UPMC medical sites host specializations in 

transplantation, cancer, psychiatry, neurosurgery, geriatrics, rehabilitation, and women’s health.  

In this study, we harnessed outpatient data in the UPMC EHR in order to capture depression 

and its treatment in ambulatory patients as opposed to inpatient data which may be populated by 

more complicated and less generalizable cases. Outpatient data included EHR data from numerous 

outpatient sites in the UPMC hospital system.  

3.1.2 UPMC Electronic Health Record Data 

UPMC uses two electronic health record (EHR) providers: Cerner for inpatient service and 

Epic for outpatient. In this study, only Epic data was accessed. To allow for use of this EHR data 

for research purposes, the University of Pittsburgh constructed Neptune, a data warehousing 

resource (Figure 1). Neptune pulls EHR data from Cerner and Epic periodically to provide 

researchers with de-identified data. The data is delivered through a consult and honest broker 
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service called the Health Record Research Request (R3), within the Department of Biomedical 

Informatics (DBMI) at the University of Pittsburgh.  

The data for this study was acquired through these mechanisms, after being approved 

through the University of Pittsburgh’s Institutional Review Board under an Exempt criteria for 

secondary research on data or specimens (STUDY20020047).  

3.1.3 Future Data Collection from the Pitt + Me Discovery Data 

The Pitt + Me Discovery is a biorepository that seeks to enroll 250,000 patients that are 18 

years of age and older. The Pitt + Me Discovery cohort was created to learn from patients’ genetic 

data in order to gain a better understanding of health, disease outcomes, and patient response to 

medications and treatment. Insights from this genetic data are expected to improve prediction, 

diagnosis, treatment, and prevention of diseases.  

The Pharmacogenomics Center of Excellence, a joint venture of PittPharmacy and Thermo 

Fisher Scientific, seeks to use the pharmacogenomics panel conducted on patients within Pitt + 

Me Discovery to demonstrate the value of pharmacogenomics implementation in clinical care. The 

pharmacogenomic panel is tested on patients’ blood or saliva samples and consists of 4,627 

markers within 1,191 genes.  

A future application of this work will be to demonstrate the information gain associated 

with the addition of pharmacogenomics data when making prescribing decisions. Data from the 

Pitt + Me Discovery cohort will ultimately be included in constructed models to test the value 

added of pharmacogenomics data. However, enrollment was slowed during the COVID-19 global 

pandemic and therefore, there was not sufficient PGx data to be included in this study.   
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Figure 1 Data warehouse infrastructure. 

3.1.4 Study Dataset 

The study dataset consisted of patients within the UPMC system that satisfied the inclusion 

criteria. The inclusion criteria were based on the PheKB depression definition, which involves 

ICD-9/10 codes for major depressive disorder and/or the prescription of an antidepressant. Patients 

were also included if they were 18 years of age or older at the time of the data pull. Exclusion 

criteria consists of a list of ICD-9/-10 codes for concomitant disorders that may also be prescribed 

antidepressants though may contribute confounding, for example bipolar disorder, anxiety 

disorder, post-traumatic stress disorder, autism, etc. (Appendix Table 1).  

For UPMC patients that fell within the inclusion criteria, EHR fields consisted of patient 

demographics (gender, date of birth, race, patient status, death date), encounters with clinical care 
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facilities (admission date, discharge date, encounter type, facility/department, admit source, 

admitting diagnosis, primary diagnosis, Diagnosis-related group code), medication orders 

(medication, RxNorm code, order date, quantity, refills, start date, end date, instructions, pharmacy 

class, simple generic code), medication dispense information (medication, drug name, National 

Drug Code, dispense date, amount, quantity, frequency), diagnosis (diagnosis code, diagnosis 

name, diagnosis from date, diagnosis to date, primary diagnosis indicator), vitals (weight, height, 

contact date), and clinical notes (Table 4). Earliest records in the dataset are from 2004.  

3.2 Methods 

3.2.1 Data Processing and Missingness Assessment 

Data was analyzed for each features’ degree of missingness. Missingness is inherent to 

electronic health record data, and the proper handling of missingness is vital to minimizing bias in 

clinical dataset analyses. However, decisions surrounding how to handle missing data vary 

according to context. A common approach to handling missing data is to omit features and 

observations with missingness, which is called “complete case analysis”. Alternatively, data 

handlers may decide to conduct imputation in order to insert values that were missing.  

Mean, median, or mode-based imputations tend to result in the same estimate as the 

complete case analysis, but can also increase bias and underestimate variance [101]. In single 

imputation, a single rule replaces missing values for a particular feature. In multiple imputation, 

many possible datasets for missing values are created based on the selected imputation rule, an 

estimation step is conducted, and results are pooled to create one complete dataset resulting from 
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the multiple imputation [102–104]. Multiple imputation using chained equations (MICE) is a 

popular imputation method that regresses on all features to estimate imputed features’ posterior 

distributions [105].  

Given many features with imbalanced data, Synthetic Minority Oversampling Technique 

(SMOTE) is another imputation technique [106]. Other possible imputation methods are 

implementing clustering techniques to determine whether patients cluster according to certain 

features allowing the missing value to be deduced. Another method to deal with missingness might 

be to treat values as a separate category. Single (mean, median, or mode) imputation can also be 

performed within a feature across patients, or multiple imputation across many features. Features 

can have values that are missing at random (MAR), missing not at random (MNAR), or missing 

completely at random (MCAR). MNAR and MAR mechanisms are impossible to uncover based 

on observed data, though MAR is unlikely in the clinical setting [107,108]. Missing data can be 

classified to be MCAR if there missing values are independent of both observed and missing values 

[107,108].  

3.2.2 Defining Analysis Cohort for Depression 

Once a complete case analysis dataset was established, the dataset was analyzed to ensure 

the examination of patients with early depression. The electronic medical records and genomics 

(eMERGE) network rule-based electronic phenotype for MDD was additionally implemented. 

eMERGE established a “2/30/180” rule, which states that evidence of depression must be 

present on two different calendar days, at least 30 days apart, and no greater than 180 days apart. 

This rule is important in order to rule out administrative artifacts and errors, and also allows one 
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to assume that medications that are ordered or dispensed within 30 days of an MDD electronic 

phenotype ICD-9/10 code are likely for treating MDD.  

3.2.3 Description of EHR fields 

For each UPMC patient that fulfills the establish inclusion and exclusion criteria for 

depression, EHR fields were extracted into a database (Table 2). The demographic table held 

patients’ gender, date of birth, race, patient status, and death date (if applicable). The encounter 

table held information surrounding each of the patients’ outpatient encounters, namely, the 

admission date, discharge date, encounter type, admitting diagnosis, primary diagnosis, diagnosis 

related group (DRG), and the PHQ score. The medication order table included the medication, 

RxNorm code, order date, number of refills, start and end date of the prescription, instructions, 

pharmacy class, and simple generic code. The medication dispense table will hold similar 

information: medication, drug name, national drug code (NDC), dispense date, amount, quantity, 

and frequency. There was also a table for diagnoses containing the diagnosis code, diagnosis name, 

diagnosis start and end date, and primary diagnosis indicator. Another table held vitals 

information, with height, weight, and contact date.  
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Table 2 Clinical Variables in the EHR database 

Type Fields 

Demographics Study ID 

Birth Date 

Death Date 

Gender 

Race 

Ethnicity 

Adult Consent Status 

Encounter Admission date 

Discharge date 

Encounter type 

Admitting diagnosis 

Primary diagnosis 

Diagnosis related group (DRG) 

Patient health questionnaire (PHQ) score 

Medication order Medication 

RxNorm 

Order date 

Refills  

Start date 

End date 

Instructions 

Pharmacy class 

Simple generic code 

Medication dispense Medication 

Drug name 

National drug code (NDC) 

Dispense date 

Amount 

Quantity 

Frequency 

Diagnosis Diagnosis code 

Diagnosis name  

Diagnosis from date 

Diagnosis to date 

Primary diagnosis indicator 
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Table 2 (Continued) 

Type Fields 

Depression Questionnaire  Study ID 

Contact Date 

Form ID 

Form Name 

Questionnaire ID 

Questionnaire Name  

Question 

Answer ID 

Answer 

Vitals Weight 

Height 

Contact date 

 

3.2.4 PHQ score analysis 

PHQ scores were captured from the Questionnaire table in the EHR dataset. Multiple 

versions of the PHQ exist and are utilized at UPMC. The PHQ-2 is a two-item measure that is 

often utilized as the initial clinical screen for depression and is coded when a patient does not 

screen positive for depression. The PHQ-4 is a four-item measure that is used to screen for both 

depression and anxiety. The PHQ 2-8 is coded when a patient screens positive for depression, and 

therefore is subsequently asked questions three through eight. In some cases, a patient may be 

given the full nine-item PHQ questionnaire at their appointment; however, the PHQ-9 only 

administered in person due to the fact that the final question asks about suicidality. The PHQ-8 

does not ask about suicidality and is therefore better suited to be administered remotely in the case 

that suicidality is missed and not responded to in real time.  

PHQ-8 scores for patients over time were captured from the EHR and summary statistics 

were calculated. For patients with greater than one PHQ-8 score within the EHR, slopes of PHQ-
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8 scores were calculated between patients’ first and last PHQ-8 score. PHQ-8 scores for patients 

over time and PHQ-8 score slopes were plotted in boxplots to compare distributions of PHQ-8 

scores and slopes according to subsets of patients’ race and gender. One-way analysis of variance 

(ANOVA) tests were computed for group means of PHQ-8 scores and PHQ-8 score slopes 

between race, gender, and both gender and race together for patients. A Tukey’s Honest Significant 

Difference (HSD) test was used to compare group means of PHQ-8 scores between races, and 

gender and race together. PHQ-8 score distributions for gender and race patient subsets were tested 

for normality using the Shapiro-Wilks test. 

3.3 Results 

3.3.1 Data Description, Summary Statistics, and Missingness Analysis 

3.3.1.1 Demographics 

Table 3 shows demographic data of each cohort. The gender identity distribution of this 

dataset parallels that observed in the general population, with most major depressive disorder 

patients identifying as female. This dataset is made up of 74.2% females, and 25.8% males (Table 

3). Less than 3% are under 20, and less than 6% were over 84. Almost half (49.8%) of individuals 

are less than 55 years old. Most (93.2%) patients are presumed alive today. Additionally, most 

(92.3%) patients in the dataset are Caucasian. Only 5.3% of individuals are Black and 0.86% are 

Asian. While 0.9% of individuals in the dataset identify as Hispanic or Latino, most (94.2%) 

identify as “Not Hispanic or Latino”.  
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Table 3 Demographics of cohort breakdowns, including demographics of patients excluded based on the 

2/30/180 rule and/or not being prescribed an antidepressant. 

Patient demographics Analysis 

cohort 

Received 

therapy1  

PHQ-

measured2  

PGx data 

collected3 

Excluded 

population 

Age* Mean ± SD  

(IQR range) 

53.8 ± 19.5 

(39, 70)  

57.1 ± 18.8 

(43, 71) 

46.7 ± 22.5 

(24, 67) 

53.7 ± 19.7 

(40, 69) 

54.9 ± 16.9 

(37, 68) 

Gender Male 14,007 

(25.8%) 

3,021 

(24.1%) 

1,072 

(29.8%) 

181 

(21.6%) 

35,665 

(27.9%) 

Female 40,250 

(74.2%) 

9,517 

(75.9%) 

2,654 

(71.2%) 

656 

(78.4%) 

91,998 

(72.1%) 

Unknown/ 

Unspecified 

2  

(~0.0%) 

1  

(0.0%) 

0  

(0.0%) 

0  

(0.0%) 

9  

(~0.0%) 

Race White 50,084 

(92.3%) 

11,119 

(88.7%) 

3,123 

(83.8%) 

736 

(87.9%) 

116,252 

(91.1%) 

Black 2,815  

(5.2%) 

974  

(7.8%) 

437 

(11.7%) 

68  

(8.1%) 

6,913 

(5.4%) 

Asian Pacific Islander 527  

(1.0%) 

213  

(1.7%) 

63  

(1.7%) 

11  

(1.3%) 

1,047 

(0.8%) 

American Indian 64 (0.1%) 26 (0.2%) 6 (0.2%) 1 (0.1%) 152 (0.1%) 

Alaskan Native 4 (0.0%) 1 (0.0%) 0 (0.0%) 0 (0.0%) 14 (0.0%) 

Unknown/Unspecified/ 

Missing/Declined 

755  

(1.4%) 

206  

(1.6%) 

97  

(2.6%) 

21  

(2.5%) 

3,294 

(2.6%) 

Ethnicity Not Hispanic or Latino 51,412 

(94.8%) 

11,809 

(94.2%) 

3,501 

(94%) 

786 

(93.9%) 

119,924 

(93.9%) 

Hispanic or Latino 493  

(0.9%) 

146  

(1.2%) 

50  

(1.3%) 

6  

(0.7%) 

1,156 

(0.9%) 

Unspecified/Declined 2,354  

(4.3%) 

584  

(4.7%) 

175  

(4.7%) 

45  

(5.4%) 

6,592 

(5.2%) 

Vital 

status 

Presumed Alive 52,701 

(97.1%) 

12,241 

(97.6%) 

3,618 

(97.1%) 

833 

(99.5%) 

116,821 

(91.5%) 

Known Deceased 1,558  

(2.9%) 

298  

(2.4%) 

108  

(2.9%) 

4  

(0.5%) 

10,851 

(8.5%) 

Total 54,259 

(100%) 

12,539 

(23.1%) 

3,726 

(6.9%) 

837  

(1.5%) 

126,663 

1:Patients that have received psychotherapy 
2:Patients that have PHQ scores within their EHR 
3:Patients that have PGx data recorded. 

 

Within the 4,049 (2.22%) patients that do not have a race associated with their EHR data, 

there are 1,128 (0.62%) subjects with an omission for race (Table 3). 1,189 (0.65%) subjects 

“Declined” to specify their race. 1,714 (0.94%) subjects were “Not Specified”. Eighteen 
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(0.0099%) of individuals were of “Unknown” race. A total of 4,049 (2.22%) subjects have missing 

race. Within the 8,946 (4.94%) patients that do not have an ethnicity associated with their EHR 

data, there are 2,961 (1.62%) subjects with an omission for ethnicity. 2,773 (1.52%) subjects 

“Declined” to specify their ethnicity. 3,212 (1.77%) subjects were “Not Specified” for ethnicity. 

There were 2,060 individuals that had both missing ethnicity and race. 836 patients were “Not 

Specified” for both ethnicity and race. 

3.3.1.2 Diagnoses 

Of the diagnosis codes, most (64.2%) are ICD-10 codes, while 35.8% are ICD-9 codes. 

Most (n = 6) fields in the diagnoses table did not have any missing values, except for the 

“Diagnosis to date” field, which was entirely missing and therefore does not seem to be used by 

clinicians in the EHR. There were 31,558 unique diagnosis codes. The most frequent diagnoses 

were need for prophylactic vaccination and inoculation against influenza, anxiety, depressive 

disorder not elsewhere classified, and depression (Table 4).  
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Table 4 Top 20 Most Frequent Diagnoses. 

Diagnosis name Number of patients (%) 

Need for prophylactic vaccination and 

inoculation against influenza  

81,860 (45.00%) 

Anxiety 53,173 (29.23%) 

Depressive disorder, not elsewhere classified 53,078 (29.17%) 

Depression 49,472 (27.19%) 

Essential hypertension 49,250 (27.07%) 

Vitamin D deficiency 38,406 (21.11%) 

Other and unspecified hyperlipidemia 34,536 (18.98%) 

Unspecified essential hypertension 30,148 (16.57%) 

Mixed hyperlipidemia 28,529 (15.68%) 

Anxiety and depression 25,901 (14.24%) 

Gastroesophageal reflux disease without 

esophagitis 

25,330 (13.92%) 

Anxiety state, unspecified 25,149 (13.82%) 

Pure hypercholesterolemia 15,417 (8.47%) 

Unspecified hypothyroidism 15,097 (8.30%) 

Type II or unspecified type diabetes mellitus 

without mention of complication, not stated 

as uncontrolled  

13,682 (7.52%) 

Acquired hypothyroidism 13,150 (7.23%) 

Essential hypertension, benign 12,430 (6.83%) 

Atrial fibrillation (HCC) 4,892 (2.69%)  

Long term (current) use of anticoagulants 4,667 (2.57%) 

Long term current use of anticoagulant therapy 3,322 (1.83%) 

 

3.3.1.3 Encounters 

There were 176 types of encounters. The most prevalent encounter types were 

“Appointment” (N=5,777,297; 15.41%), Telephone (N=5,103,610; 13.61%), History 

(N=4,203,443; 11.21%), Office Visit (N=4,124,605; 11.0%), Refill (N=3486344; 9.3%), and 

Scan (3277836; 8.74%) (Table 5). Patients were treated at a total of 5,202 locations. Most 

encounters (N=5,399,311; 14.4%) occurred at an “External Department” (Table 6). 
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Table 5 Top 14 Most Frequent Encounter Types. 

Encounter type Number of encounters (%) 

Appointment 5,777,297 (15.41%) 

Telephone   5,103,610 (13.61%) 

History   4,203,443 (11.21%) 

Office visit   4,124,605 (11%) 

Refill   3,486,344 (9.3%) 

Scan  3,277,836 (8.74%) 

Lab results   1,699,872 (4.53%) 

Patient email   1,282,627 (3.42%) 

Imaging  1,058,141 (2.82%) 

Hospital encounter   550,954 (1.47%) 

ER report  445,220 (1.19%) 

Letter (Out)   401,157 (1.07%) 

Nurse visit   364,585 (0.97%) 

Informational   360,354 (0.96%) 

 

There were 9,616 encounters with no encounter type. There were 155 encounters that were 

of “0” encounter type, and 19,336 encounters that were of “79” encounter type. Therefore, there 

were 29,107 (0.08%) missing encounter types. Department facility ID and location had relatively 

low missingness at both 0.42%. Appointment status had 69.88% missingness. 

 

Table 6 Top 20 Encounter Locations 

Location Number of Encounters at 

Location (%) 

External department 5,399,311 (14.4%) 

UPMC General Internal Medicine, Oakland (Pittsburgh, PA)  450,285 (1.2%) 

Mainline Medical Associates (Altoona, PA)   306,489 (0.82%) 

Primary Care Partners (Fairview, PA)  225,491 (0.6%) 

Summit Family Practice (Erie, PA)  224,422 (0.6%) 

Northern Medical Associates (Wexford, PA)  208,928 (0.56%) 

Renaissance Family Practice (Verona, PA)  208,289 (0.56%) 

 Healthy Families Primary Care (Erie, PA)  202,959 (0.54%) 

West Erie Medical Group (Erie, PA)   199,817 (0.53%) 

John Chantz and Associates (Pittsburgh, PA)  195,107 (0.52%) 

Health Center Associates (Pittsburgh, PA)   189,762 (0.51%) 
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3.3.1.4 Medication Prescription Events 

There were 181,483 (99.7%) individuals with medication prescription events, and 

12,779,542 medication prescription events in total. Of the 12,779,542 prescription events, 7.25% 

of prescriptions were for SSRIs, 2.11% were for SNRIs and 0.62% were for TCAs. There were 

27,947 unique medications prescribed, which was represented by 5,671 generic medication names. 

The top generic medications ordered were levothyroxine, sertraline, and 

hydrocodone/acetaminophen (Table 7).  

 

Table 7 Top 20 generic medications ordered. 

Generic medication name Number of orders (%) 

Levothyroxine  330,617 (2.59%) 

Sertraline  287,060 (2.25%) 

Hydrocodone/acetaminophen 273,745 (2.14%) 

Citalopram  230,748 (1.81%) 

Lisinopril 215,027 (1.68%) 

Omeprazole 208,676 (1.63%) 

Atorvastatin  206,119 (1.61%) 

Lorazepam 186,034 (1.46%) 

Bupropion  180,070 (1.41%) 

Fluoxetine 175,151 (1.37%) 

Alprazolam 173,854 (1.36%) 

Metformin 170,273 (1.33%) 

Escitalopram 168,416 (1.32%) 

Gabapentin 165,813 (1.30%) 

Prednisone 159,430 (1.25%) 

Venlafaxine 154,318 (1.21%) 

Simvastatin 148,815 (1.16%) 

Amlodipine 144,266 (1.13%) 

Fluticasone 136,884 (1.07%) 

Albuterol 130,701 (1.02%) 

 

The medication order table had low missingness for order date, medication order ID, and 

medication name (Figure 2). However, there were 123,979 medications (722 types of medications) 

prescribed that did not have an associated generic medication name. Almost half (48.39%) of 
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medications prescribed did not have an associated dose or medication unit. About one fifth 

(21.24% and 20.25%, respectively) of medications prescribed did not have a quantity specified, or 

a refill specified.  

There were 2,713,680 (21.23%) orders with no quantity of medication specified (Figure 

2). In addition, there were 4 orders with a quantity of “0”, 5 with “0 capsule”, 3 with “0 g”, 58 

with “0 Tab”, 256 with “0 tablet”. The data field for “Instructions” had too much variation to 

include in the analysis.  Namely, there were 1,178,139 unique instructions out of 12,263,894 total 

instructions, with 515,644 orders having no instructions, and 4 orders having the instruction “0”. 
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Figure 2 Medication Order Variable Missingness 

3.3.1.5 Medication Fills 

 

There were 166,395 (91.5%) patients that filled prescriptions, leaving nine percent of 

patients that did not fill their prescriptions. In examining medication fills, there were 2,930 unique 

generic medications filled within the EHR database. For individuals that filled prescriptions, 

patients filled an average of 348.7 prescriptions. 
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Medication fills had relatively low missingness for fill date, drug name, simple generic 

drug name, drug code, and amount (Figure 3). However, almost half (47.67%) of medication fills 

were missing an associated medication unit. In addition, almost half (46.46%) of medication fills 

were missing a medication unit strength.  

 

Figure 3 Medication Fill Variable Missingness 

 

The analysis of medication fills and orders revealed the necessity of using regular 

expressions to standardize the drug name field, given that many medications start with symbols 
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(e.g., “-” and “^”) in the EHR. Other inconsistencies were revealed in the drug code field, where 

5,134 fills had a drug code of zero and 200,353 had no drug code, for a total of 205,487 missing 

drug codes. There were 43,715 fills of zero amount, and none of the instances of fills were missing 

for the “Amount” field.  

For “Med_Unit”, there were 5,533 orders with missing data, and 27,653,091 that were “Not 

Specified”. For “Med_Unit_Strength” there were 623,599 fills with a strength of zero, and 

26,335,344 fills with no specified strength. There were 43,715 fills of zero quantity. There were 

88 fills that had zero days of supply. 

3.3.1.6 Depression Questionnaire Data 

Five percent (N=10,226) of patients had depression severity questionnaire data on file. Of 

patients that had questionnaire data within the EHR, the average number of questionnaires taken 

for each patient was 25.8 questionnaires. The median number of questionnaires taken for each 

patient was 18. There were 264,120 total patient questionnaires within the EHR database. Forty 

two percent of patients (N=4,362) had one day of questionnaire data (Table 8). Most patients with 

depression severity questionnaire data have responses to the PHQ-4 questionnaire (Table 9). There 

were 14 instances where a patient had multiple questionnaires taken on the same day.  
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Table 8 Distribution of number of days of questionnaire data. 

Days of Questionnaire Data Frequency 

1 4,362 (42.6%) 

2 2,818 (27.6%) 

3 1,350 (13.2%) 

4 697 (6.8%) 

5 420 (4.1%) 

6 247 (2.4%) 

7 139 (1.6%) 

8 75 (0.7%) 

>8 118 (1.1%) 

Sum 10,226 

 

Table 9 Distribution of depression questionnaire data for patients within dataset. 

Form ID Form Name N 

16000494 PHQ-4 188,770 

1400005303 PHQ 2-8 42,547 

16000600 PHQ-2 30,823 

16000587 PHQ-8 (FULL QUESTIONNAIRE) 1,800 

1400005300 UPMC HEALTHTRAK PHQ9 

QUESTIONNAIRE 

178 

1400005304 UPMC HEALTHTRAK PHQ-8 

QUESTIONNAIRE 2 

8 

16000490 BRANCH FROM PHQ-4 TO PHQ-8 8 

Sum 264,134 

 

For patients that had questionnaire data, the fields were highly populated with no 

missingness besides the “Answer” field, which had 19.63% missingness. PHQ-8 scores were 

mapped over time for individual patients (Figure 4). According to group means and median PHQ 

scores, the majority of patients were classified to have moderate to moderately severe depression 

(Table 10). A one-way ANOVA revealed a statistically significant difference in PHQ scores for 

gender (P = 0.011) and for gender and race together (P = 0.013), but not for race alone (P = 0.306). 

A Tukey HSD for multiple comparison of means for gender and race found White women had 

significantly higher PHQ scores than White men (P = 0.024), however no other gender and race 
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combinations were significantly different (P > 0.050) (Figure 5). Shapiro-Wilks test for normality 

of PHQ score distributions for White men (P = 0.0005), White women (P < 0.0001), and Black 

women (P = 0.0001) failed to reject the null hypothesis that the distributions were normal, while 

the Shapiro-Wilks test on PHQ score distributions for Black men (P = 0.06), Asian women (P = 

0.21), and Asian men (P = 0.29) rejected the null hypothesis (Figure 6). 

 

 

Figure 4 PHQ scores over time for MDD patients, where each color and line variation represents an individual 

patient within their reported race and gender subgroup. 
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Table 10 Summary statistics of PHQ scores subset by patients’ race and gender. 

Race Gender Number of 

patients with 

at least one 

PHQ score  

Number of 

patients with > 

1 PHQ scores  

Mean PHQ 

score 

(Mode) 

Median PHQ 

score (Range) 

White Female 627 216 14 (13) 14 (1, 24) 

Male 272 98 13 (12) 13 (2, 24) 

Black Female 184 96 14 (16) 14 (2, 24) 

Male 36 17 15 (13) 15 (2, 24) 

Asian Pacific 

Islander 

Female  24 9 14 (15) 15 (4, 22) 

Male 8 4 13 (15) 14 (7, 20) 

 

 

Figure 5 Boxplots of PHQ scores for patients subset by race and gender. 
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Figure 6 Histograms of patients’ PHQ score distributions subset by race and gender. 

 

Mean PHQ score slopes were lowest for Asian Pacific Islander women, and highest for 

white women (Table 11). The average PHQ score slopes across all patients was 0.016. A negative 

slope reflected a decrease in depression severity, while a positive slope reflected an increase in 

depression severity. One-way ANOVA comparing PHQ score slope means revealed no 

statistically significant difference when comparing race (P = 0.382), gender (P = 0.586), or race 

and gender together (P = 0.586) (Figure 7).  
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Table 11 Summary statistics of PHQ scores slopes subset by patients’ race and gender. 

Race Gender Mean PHQ 

score slope  

Median PHQ 

score slope  

Minimum PHQ 

score slope 

Maximum PHQ 

score slope 

White Female 0.016 0.002 -0.229 1.000 

Male 0.005 0.000 -0.143 0.126 

Black Female 0.005 0.001 -0.375 0.220 

Male 0.006 0.000 -0.022 0.067 

Asian 

Pacific 

Islander 

Female  -0.027 0.013 -0.387 0.048 

Male 0.012 0.006 0.000 0.036 

 

 

Figure 7 Boxplots of PHQ score slopes for patients subset by race and gender. 
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3.3.1.7 Vitals 

Most patients (97.8%) had vitals data on file. Height had a missingness of 22.94%. Both 

the average and median height was 5’4”. There were 712,563 (15.48%) vital assessments with no 

weight taken, and 5 assessments with a zero for weight. The average weight of individuals in the 

EHR database was 190.1 pounds, and the median was 183.05 pounds. BMI had 16.22% 

missingness. The average BMI was 32.19, which is considered obese. The median BMI was 30, 

which is also considered obese. Underweight individuals made up 1.1% (N=602) of the EHR 

dataset. Healthy individuals made up 20.8% (N=11,346) of the EHR dataset, while overweight 

individuals and obese individuals made up 27.7% (N=15,115) and 49.6% (N=27,050), 

respectively.  

There were 60 assessments with a systolic blood pressure of 0, and 755,449 assessments 

with “NA” for systolic blood pressure, for a total of 16.4% missingness. There were 986 

assessments with a diastolic blood pressure of 0, and 755,447 with NA for diastolic blood pressure, 

for a total of 16.4% missingness. There was 29.29% missingness for blood pressure position. For 

pulse, there were 1,563,326 assessments with an NA or zero for pulse, contributing to a total 

missingness of 33.97%. Temperature had 60.16% missingness. There were 26 assessments with a 

respiratory rate of zero, and 3,384,311 assessments had an NA for respiratory rate, for a total of 

73.53% missingness. 

3.3.1.8 Missingness Summary 

 

Due to the fact that missingness was low for variables necessary to model creation 

(demographic data, diagnosis codes, medication orders, vitals data) (Table 3), imputation was 

determined to be unnecessary because imputation with 5% missingness has been shown to have 
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negligible benefit [102,109]. Most of the missingness came from the medication fills and orders 

tables, specifically from the dose information, start date and end date, quantity, instructions, etc. 

which were not used in our models. Dose information was captured in the medication name for 

orders. Therefore, a complete case analysis was determined as most appropriate for the study. 

3.4 Discussion 

Perhaps atypical for EHR data, missingness was low for the clinical variables of interest to 

construct models. The demographic distributions of the cohorts were expected, in that the majority 

of the depression analysis cohort were females. Also, the demographic breakdown of the cohorts 

in terms of race and ethnicity were also typical of western Pennsylvania. However, in order for 

this pipeline to be generalizable to a diverse set of patients, samples from a wider range of race 

and ethnicities must be sought out in order for a more equitable and fair pipeline [110,111]. The 

lack of diversity in study populations is a common misfortune of clinical research today, and steps 

must be taken to overcome this major limitation [112]. Future directions could involve running 

this analysis pipeline on a hospital’s EHR that cares for a more diverse patient population.  

Depression severity score data is a rich quantitative measure of patients’ symptoms. PHQ 

scores over time were mapped, however future directions could involve subsetting these PHQ 

scores to uncover patterns based on clinical features like diagnosis codes or treatment response. In 

addition, as EHR data analyses expand, and in turn, PHQ data for patients are examined more 

routinely, it might prove to be beneficial to expand the collection of this quantitative data 

describing patients’ symptoms as opposed to relying on whether there was a dose change or drug 

switch to proxy treatment response.    
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Most patients for which there were PHQ scores within the EHR were classified as having 

moderate to moderately severe depression according to PHQ score thresholds. This could reflect 

a bias that most patients had PHQ scores documented when cases were more severe as opposed to 

more mild cases that did not appear to be captured often. Future directions could involve 

investigating whether these PHQ score distributions are an accurate reflection of patients’ 

depression severities, or whether there are more mild depression cases that are not captured or 

documented in the EHR. 

There was no statistically significant difference in mean PHQ score slopes when comparing 

subsets of patients based on race, gender, or race and gender together. The average PHQ score 

slope was almost zero (0.016), which reflects a lack of change in depression severity for patients 

over time documenting PHQ scores in the EHR. There was also no statistically significant 

difference in PHQ score means when comparing subsets of patients based on race, however there 

was a significant difference when comparing mean PHQ scores for patients according to subsets 

of gender and both gender and race together. When comparing gender and race together, only 

White men and White women had a statistically significant difference in PHQ score means. 

However, there were more PHQ scores documented within the EHR for White women, White 

men, and Black women. This was reflected in the results of the Shapiro-Wilks tests for normality 

failing to reject the null hypothesis of normal distribution of scores for White women, White men, 

and Black women, and rejecting the null hypothesis for race and gender subsets for which there 

were lower sample sizes: Black men (N=36), Asian women (N=24), and Asian men (N=8). Future 

directions could be dedicated towards collecting PHQ scores from populations that are not White 

in order to re-run these analyses with enough samples to reflect a normal distribution of PHQ 
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scores. Future directions should also uncover the factors contributing to the racial disparities in 

PHQ score documentation in the EHR.  
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4.0 Pharmacogenomics Variant Translation 

4.1 Introduction 

Pharmacogenomics variant translation can be performed through software tools, such as 

PharmCAT [113]. PharmCAT takes variant call format (VCF) data from sequencing and 

genotyping technologies and assigns diplotypes (one haplotypes for each chromosome) using 

established translation tables [114]. These diplotypes can also be the star-allele definition, which 

are haplotypes that are agreed upon in the field of PGx and drive prediction of a phenotype. From 

the assigned diplotypes, the associated the diplotype or star allele can be associated with a CPIC 

guideline recommendation for prescribing, if the diplotype has an associated guideline.  

There has been work done to establish reproducible pharmacogenomic pipelines due to the 

necessity of standardization in translation PGx to clinical care systematically, robustly, and 

flexibly [115]. We will build off of other software PGx translation tools and reproducible pipelines 

to implement our own PGx pipeline, built off of the workflow established in the Empey Lab.  
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4.2 Methods 

4.2.1 Pharmacogenomic Variant Translation 

A pipeline was constructed to annotate pharmacogenomics data for patients within the Pitt 

+ Me Discovery cohort based on an established workflow of variant calling in the Empey Lab. 

PGx data were standardized and normalized. PGx haplotype variant data was annotated according 

to standardized phenotypes from CPIC definitions. Standardization took place using translation 

tables that label star alleles.  

An example variant call format (VCF) file in 4.2 format was used to demonstrate proof of 

concept as additional patients are enrolled in the Pitt + Me Discovery cohort and therefore 

additional data is contributed to the analysis pipeline. There are two genes of particular interest to 

MDD based on CPIC guidelines: CYP2C19 and CYP2D6. Using a translation table for CYP2C19 

and a table for CYP2D6, patients were annotated according to the appropriate star allele based on 

their haplotype. For example, a patient that has a thymine allele at rs12248560, a guanine at 

rs3758581would be classified as CYP2C19*17. Whereas the patient would be a CYP2C19*18 if 

they had an adenine at rs138142612. The alleles are conveyed through a genotype column 

containing “0” for the reference allele, a “1” for the first allele noted as the alternate allele, or a 

“2” for the second allele noted as the alternate allele. Diploid calls are connoted through a “|”  

separating the two values in the genotype column. Haploid calls are expressed through only one 

allele value. Patients would be annotated based on a finite number of well-established phenotype 

definitions (ultra-rapid metabolizer, extensive/normal metabolizer, intermediate metabolizer, or 

poor metabolizer) that would serve as input features into the statistical models.   
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4.3 Results 

Patients are still being enrolled in the Pitt + Me Discovery cohort, and pharmacogenomics 

data is still being collected. Currently, there are 42 samples collected, which is too low of a sample 

size to be included for these statistical models.  

An example patient, “REI70A170” was annotated to have a CYP2C19*1/*1 genotype 

because no variants were found to be different from the reference sequence among alleles tested. 

Another example patient was translated to be a CYP2C19*2/*2, which has a splicing defect that 

results in a truncated protein and therefore has no function. The first patient was an extensive 

(normal) metabolizer, while the second patient was a poor metabolizer.  

4.4 Discussion 

The CYP2C19*2/*2 patient that was a poor metabolizer would likely not experience 

treatment response or symptom remission because of the splicing defect leading to a protein with 

no function, and therefore the inability to metabolize SSRIs. For these cases of patients PGx data 

would be instrumental to understanding ahead of the therapeutic wait time of eight to twelve weeks 

that first-line therapeutics will not be metabolized by this patient and therefore the patient will not 

experience a treatment response or symptom remission. Studies have examined the prevalence of 

patients that are poor metabolizers not responding to first-line therapies due to a poor metabolizer 

phenotype [116–118].  

Future directions include expanding the pharmacogenomic variant translation and 

incorporating labeled pharmacogenomics phenotype information from Pitt + Me Discovery cohort 
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patients diagnosed with MDD in downstream models to aid in treatment response and symptom 

remission prediction. As additional patients are enrolled and pharmacogenomics panel data is 

collected, the reproducible pipeline will be re-run, metabolizer phenotypes will be called, and the 

phenotypes will be used as additional variables to inform statistical models.  
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5.0 Electronic Phenotyping 

5.1 Introduction 

Phenotyping, the identification of patients with similar outcomes or conditions, is 

important to consistently perform cohort analyses that can ascertain valuable information about 

accurately grouped individuals. Phenotyping is paramount to clinical research, especially as it 

relates to translating research to the clinic, comparing drugs/treatments, and clinical decision 

support [119]. However, phenotyping in the EHR, or electronic phenotyping, is no simple task due 

to the incomplete, biased, heterogenous, and dynamic nature of EHRs [120]. It also should be 

emphasized contents of the EHR can be incorrect or recorded in error [121]. 

The Electronic Medical Records and Genomics (eMERGE) consortium of nine academic 

medical centers have worked to establish EHR-generated phenotyping algorithms to conduct 

repeatable and accurate cohort studies [122–124]. Hripcsak and Albers (2013) note the challenges 

of using EHRs to represent the patient’s true state, and how the recording process of data into the 

EHR creates a deportation from the patient’s true state [125].  

However, there have been major advances in electronic phenotyping that allow researchers 

to traverse the challenges presented by EHRs in the heterogeneity between patient EHR data, 

multivariate data types, and missingness present in the EHR. Namely, researchers implement rule-

based methods, natural language processing (NLP), machine learning frameworks, and 

combinatorial approaches to conduct electronic phenotyping. The review by Banda et al. (2018) 

found that 19 papers used rule-based methods, 35 papers used NLP, 25 used machine learning, 

and 10 used combinatorial approaches to conduct electronic phenotyping [119]. 
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Rule-based methods are a traditional methodology for conducting electronic phenotyping, 

and use structured data fields like diagnosis codes, medications, procedures, and lab codes to 

define the inclusion and exclusion criteria for cohorts. Rule-based methods work well for outcomes 

or conditions that are defined in the EHR with clear structured data elements. Rule-based methods 

that implement multiple structured data elements, for example both diagnosis codes and 

medications, demonstrate increased performance [126,127]. eMERGE has published rule-based 

phenotypes that can be accessed on phekb.org [128]. 

Other methods for electronic phenotyping include text mining from unstructured data like 

clinical notes and using NLP to ascertain meaning and phenotypic information. In addition, studies 

also implement machine learning to conduct electronic phenotyping. In this study, we will use the 

eMERGE rule-based electronic phenotype definition for depression.  

5.2 Methods 

5.2.1 eMERGE Electronic Phenotype Implementation 

The PheKB electronic phenotype for MDD was applied to the original cohort of 181,930 

patients. This electronic phenotype is made up of inclusion ICD-9/10 codes and exclusion ICD-

9/10 codes, along with a temporal qualification that patients must have evidence of depression on 

2 calendar days, at least 30 days apart, and no greater than 180 days apart. 
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5.2.2 Medication List Construction 

In collaboration with Dr. Tanya Fabian (Associate Professor of Pharmacy and Therapeutic 

and Psychiatry) an antidepressant list was constructed and edited to accurately reflect clinical 

practice. The antidepressant list was then labelled according to drug class and function as 

independent therapeutic agents or as augmenting agents prescribed in combination with 

independent therapeutic agents.  

5.2.3 Electronic Phenotyping for Outcome Classification 

Once the electronic phenotype for MDD was applied to allow for a final dataset of patients, 

additional electronic phenotypes were implemented to allow for greater granularity in describing 

patients’ experience with depression. Patients prescribed zero or one antidepressant were 

characterized as having “early depression”, whereas patients that failed two or more adequate 

antidepressant trials are considered to experience “treatment-resistant depression”. Patients’ first 

PHQ scores within the EHR database were also classified for whether they had mild, moderate, 

moderately severe, or severe depression (Table 12). Further, depression severity was classified as 

patients progressed through their antidepressant treatment sequence. Subsequent encounters from 

the original diagnosis encounter were labeled based on PHQ score thresholds to judge symptom 

remission and changes in PHQ scores were used to ascertain treatment response (Table 13). Initial 

antidepressant therapies were used in the statistical models so initial antidepressants were treated 

as separate, independent exposures. Initial and subsequent antidepressant therapies were included 

in the Markov chain models also took the previous antidepressant therapy into consideration when 
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calculating transition probabilities between antidepressants. Therefore, the Markov chain models 

did not treat antidepressants as separate, independent exposures. 
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Table 12 PHQ scores and descriptions 

PHQ-9 Score Depression severity Proposed treatment actions 

0-4 None-minimal None 

5-9 Mild Watchful waiting; repeat 

PHQ-9 at follow-up 

10-14 Moderate  Treatment plan, consider 

counseling, follow-up and/or 

pharmacotherapy 

15-19 Moderately severe Active treatment with 

pharmacotherapy and/or 

psychotherapy 

20-27 Severe Immediate initiation of 

pharmacotherapy and, if 

severe impairment or poor 

response to therapy, expedited 

referral to a mental health 

specialist for psychotherapy 

and/or collaborative 

management 
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Table 13 Outcome definitions parallel to STAR*D outcome definitions (PHQ instead of QIDS-C16 scores) 

Outcome  Outcome definition PHQ score 

Remission Remitter <=4  

Probable remitter 5-9 

Non-remitter >=10 

Response Responder >=50% reduction 

compared to baseline 

Probable responder 40-50% reduction 

compared to baseline 

Non-responder < 40% reduction compared 

to baseline 

 

Once patient encounters were labelled for both remission and response based on PHQ 

scores, individual antidepressant treatments will be labeled for whether the treatment was 

successful or not. A “successful antidepressant” is one for which the patient experiences symptom 

remission or treatment response (Table 13) at the subsequent encounter as demonstrated by the 

PHQ score. In addition, to ensure an adequate medication trial, the antidepressant must continue 

to be prescribed for at least eight weeks at subsequent encounters. This electronic phenotype 

description will likely be specific enough to generate high-quality and high-fidelity data for 

successful antidepressants based on similar studies like STAR*D. However, in the case that these 

definitions are unable to confirm successful antidepressants for patients, we can employ 

unsupervised or supervised learning to generate additional features associated with successful 

antidepressants.  
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An “unsuccessful antidepressant” was defined as one for which there is a change in 

antidepressant in the subsequent encounter, and/or the PHQ score deems no symptom remission 

or treatment response. Similar to an “unsuccessful antidepressant”, an outcome of “toxicity” was 

labelled for when there was a discontinuation or dose decrease of an antidepressant in the 

subsequent encounter.  

5.3 Results 

5.3.1 eMERGE Electronic Phenotype Implementation 

As expected, zero patients in the original patient cohort of 181,931 had an ICD-9 or ICD-

10 code from the exclusion criteria. There were 23 ICD-9/-10 codes for MDD present in the total 

EHR database, where the majority of patients in both the total EHR database and the analysis 

cohort had the F32 ICD-10 code (51.86% and 76.56%, respectively) (Table 14). MDD patients in 

the total EHR database had an average of nine MDD ICD-9/-10 codes over the course of their 

EHR data. The number of MDD ICD-9/-10 codes over the course of patients’ EHR data ranged 

from two to 1,366 MDD ICD-9/-10 codes, where the median was five codes (3.91%, N=7,127 

patients) and the mode was two codes (11.35%, N=20,651 patients).  

Within the analysis cohort, the average number of MDD ICD-9/-10 codes was 12 codes, 

with the range being from three to 1,366 codes. The median number of MDD ICD-9/-10 codes 

was seven (7.29%, N=3,956 patients), and the mode was three (12.07%, N=6,549 patients). 
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Table 14 Distribution of MDD ICD-9/-10 codes across patients. 

ICD-9  

or  

ICD-10 

Code Description Number of 

patients with 

code in total 

EHR database 

(N=181,931) 

Number of 

patients with 

code in 

analysis cohort 

(N=54,259) 

ICD-10 F32. Major depressive disorder, single 

episode 

94,349 

(51.86%) 

41,543 

(76.56%) 

F33. Major depressive disorder, recurrent 36,334 

(19.97%) 

22,314 

(41.12%) 

F34. Persistent mood [affective] 

disorders 

6,983 

(3.84%) 

4,046 

(7.46%) 

F39. unspecified mood [affective] mixed 5,914 

(3.25%) 

2,494 

(4.60%) 

F43.21 Adjustment disorder with depressed 

mood 

6,942 

(3.82%) 

3,198 

(5.89%) 

ICD-9 296.20 Major depressive affective disorder, 

single episode, unspecified 

6,813  

(3.74%) 

4,805  

(8.86%) 

296.21 Major depressive affective disorder, 

single episode, mild 

6,813  

(3.74%) 

4,805  

(8.86%) 

296.22 Major depressive affective disorder, 

single episode, moderate 

6,813  

(3.74%) 

4,805  

(8.86%) 

296.23 Major depressive affective disorder, 

single episode, severe 

6,813  

(3.74%) 

4,805  

(8.86%) 

296.25 Major depressive affective disorder, 

single episode, in partial or 

unspecified remission 

6,813  

(3.74%) 

4,805  

(8.86%) 

296.26 Major depressive affective disorder, 

single episode, in full remission 

6,813  

(3.74%) 

4,805  

(8.86%) 

296.30 Major depressive affective disorder, 

recurrent episode, unspecified 

3,128  

(1.72%) 

2,156  

(3.97%) 

296.31 Major depressive affective disorder, 

recurrent episode, mild 

3,128  

(1.72%) 

2,156  

(3.97%) 

296.32 Major depressive affective disorder, 

recurrent episode, moderate 

3,128  

(1.72%) 

2,156  

(3.97%) 

296.33 Major depressive affective disorder, 

recurrent episode, severe, without 

mention of psychotic behavior 

3,128  

(1.72%) 

2,156  

(3.97%) 

296.35 Major depressive affective disorder, 

recurrent episode, in partial or 

unspecified remission 

3,128  

(1.72%) 

2,156  

(3.97%) 

296.36 Major depressive affective disorder, 

recurrent episode, in full remission 

3,128  

(1.72%) 

2,156  

(3.97%) 
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Table 14 (Continued) 

ICD-9  

or  

ICD-10 

Code Description Number of 

patients with 

code in total 

EHR database 

(N=181,931) 

Number of 

patients with 

code in 

analysis cohort 

(N=54,259) 

ICD-9 296.34 Major depressive affective disorder, 

recurrent episode, severe, specified 

as with psychotic behavior 

3,128  

(1.72%) 

2,156  

(3.97%) 

298.00 Depressive type psychosis 6  

(0.0%) 

2  

(0.0%) 

300.40 Dysthymic disorder 8,642  

(4.75%) 

3,873  

(7.14%) 

309.10 Prolonged depressive reaction 229  

(0.13%) 

94  

(0.17%) 

296.00 Episodic mood disorders 182  

(0.1%) 

76  

(0.14%) 

296.90 Other and unspecified episodic 

mood disorder 

1,929  

(1.06%) 

1,136  

(2.09%) 

 

The eMERGE’s 2/30/180 rule excluded 19.33% (N=35,173) of patients, leaving 146,758 

patients. After filtering patients based on whether they were prescribed a drug from the inclusion 

medication list (Table 15), there were 54,259 patients in the final analysis cohort (Figure 8). We 

examined subsets of the analysis cohort to determine the proportion of patients who received 

behavioral therapy, underwent PGx testing, and had PHQ scores recorded (Figure 8). 
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Figure 8 Modified CONSORT Diagram 

5.3.2 Medication List Construction 

There were 31 antidepressants included in the antidepressant therapeutic agent list (Table 

15). Twenty medications were determined to be augmenting agents. Brand name drugs were 

converted into their generic drug equivalent. Drugs were converted to their antidepressant class 

for downstream analysis as well.  
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Table 15 Inclusion antidepressant list. 

Type of agent Class Drug (Generic name) 

Therapeutic agent (n=31) SSRI Sertraline 

Escitalopram 

Citalopram 

Fluoxetine 

Paroxetine 

Fluvoxamine 

SNRI Desvenlafaxine 

Duloxetine 

Levomilnacipran 

Milnacipran    

Venlafaxine 

TCA Amitriptyline 

Amoxapine 

Clomipramine 

Desipramine 

Doxepin 

Imipramine 

Nortriptyline 

Protriptyline 

Trimipramine 

MOA Isocarboxazid   

Phenelzine 

Selegiline 

Tranylcypromine 

NDRI Bupropion 

PHEN Nefazodone 

Trazodone 

TET Mirtazapine 

Maprotiline   

Miscellaneous Vilazodone 

Vortioxetine 

Augmenting agents and 

combinations 

SNRI Milnacipran 

Atypical agents Aripiprazole  

Brexpiprazole 

Olanzapine 

Paliperidone 

Quetiapine 

Risperidone 

CNS stimulant Armodafinil 

Atomoxetine 

Lisdexamfetamine 
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Table 15 (Continued)  

Type of agent Class Drug (Generic name) 

Augmenting agents and 

combinations 

CNS stimulant Methylphenidate 

Modafinil 

Anti-manic agent Lithium 

Common combinations Amitriptyline/chlordiazepoxide      

Amitriptyline/perphenazine 

Fluoxetine + olanzapine 

Miscellaneous Esketamine 

L-methylfolate 

Niacin 

Thyroid desiccated 

 

5.3.3 Electronic Phenotyping for Outcome Classification 

There were 114,035 (77.70%) patients that were prescribed zero to one antidepressant, and 

therefore were considered to have “early depression” (Table 16). There were 32,723 (22.30%) 

patients that were considered to have “treatment-resistant depression” in having been prescribed 

two or more antidepressants.  
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Table 16 Number of unique antidepressants patients were prescribed. 

Number of unique antidepressants prescribed Number of patients (%) 

0 92,499 (63.03%) 

1 21,536 (14.67%) 

2 17,400 (11.86%) 

3 8,988 (6.12%) 

4 3,932 (2.68%) 

5 1,531 (1.04%) 

6 575 (0.39%) 

7 198 (0.13%) 

8 74 (0.05%) 

9 19 (0.01%) 

>= 10 6 (~0.0%) 

Total 146,758 (100%) 

 

Of patients that had PHQ-9 scores documented within the EHR, most patients (N=460, 

38.49%) were classified to have moderate depression upon their first encounter where a PHQ-9 

score was documented (Table 17). Very few patients (N=27, 2.26%) were classified to have a 

severity level of none to minimal depression upon their first PHQ-9 score documentation 

encounter.  

Among patients that had at least two PHQ-9 scores documented in the EHR (N=458 

patients), the distribution of patients’ last PHQ-9 score on record was similar to that of the 

distribution of initial PHQ-9 scores within the EHR. However, even fewer patients (N=4, 0.87%) 
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were classified to have none to minimal depression severity. When comparing patients’ first PHQ-

9 score to their last PHQ-9 score on record, the average score change was 0.76, which means that 

over the course of patients’ treatment, scores increased slightly. The range of score changes was a 

decrease in 14 points and an increase in 14 points. The median score change was an increase by 

one point.  

 

Table 17 Number of patients with varying levels of depression severity based on PHQ-9 score at their first 

and last PHQ-9 score encounter. 

PHQ-9 score  Depression level 

severity 

Number of patients 

with severity level at 

their first PHQ score 

collection encounter 

(N=1,195 patients) 

Number of patients 

with severity level at 

their last PHQ score 

collection encounter 

(N=458 patients)  

0-4 None to minimal 27 (2.26%) 4 (0.87%) 

5-9 Mild 234 (19.58%) 98 (21.4%) 

10-14 Moderate  460 (38.49%) 172 (37.55%) 

15-19 Moderately severe 323 (27.03%) 139 (30.35%) 

20-27 Severe 148 (12.38%) 45 (9.83%) 
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5.4 Discussion 

Electronic phenotype construction is paramount to transportability and reproducibility. 

Studies using EHR data require electronic phenotypes in order to conduct reproducible 

translational research, comparative effectiveness studies, CDS work, and public health studies 

[119].   In this study, the electronic phenotype for MDD from PheKB was implemented, along 

with the 2/30/180 rule to minimize the potential for MDD ICD-9/-10 codes being present in the 

EHR as a result of administrative errors. A majority of patients in the cohort had ICD-10 codes for 

MDD within their EHR, over MDD ICD-9 codes.  

Electronic phenotypes for outcome classifications of treatment response and symptom 

remission were also implemented for patients that had PHQ scores documented within their EHR. 

The majority of patients were classified to have moderate depression at the onset of their first PHQ 

score documentation encounter. The distribution of depression severity was similar at patients’ last 

documented PHQ score encounter. Future directions include mapping out the trajectories at a more 

granular level between the first and last documented PHQ scores for patients.  
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6.0 Characterizing Antidepressant Prescribing Sequences 

6.1 Introduction 

The Observational Health Data Science and Informatics (OHDSI) collaboration has looked 

at the sequence of drugs prescribed for patients in order to look at treatment care pathways for 

diabetes, hypertension, and depression [129]. Namely, 11% of depression patients had a unique 

treatment pathway.  

The sequence of disease progression pathways is also of interest in examining clinical care 

data. Kwon et al. (2020) used Hidden Markov Models (HMMs) in order to map disease progression 

pathways [130]. HMMs are useful due to their ability to ascertain latent states and transition states 

between ascertained states using time variable, incomplete, missing, and irregular multivariate 

data. The longitudinal nature of treatment pathways makes HMMs an ideal method for modeling 

the longitudinal data. In addition, HMMs are able to incorporate the uncertainties inherent to 

clinical data.  

Sukkar et al. (2012) used HMMs to model disease progression as opposed to clinical stages 

of disease, and were able to elicit greater granularity in disease stages from their HMM model as 

opposed to conventional clinical stages of disease [131]. Sampathkumar et al. (2014) used a HMM 

to extract adverse drug reactions from text [132]. Chen et al. (2019) implemented an HMM-based 

method to improve prediction of a disease state that signals disease progression towards AIDS 

[133]. 

Liu et al. (2015) developed a continuous-time HMM to model disease progression with 

temporal data consisting of irregularly sampled time points [134]. Sun et al. (2019) implemented 



 

 73 

a continuous-time HMM to model observational data to represent Huntington’s disease 

progression in patients [135]. Kwon et al. (2020) used HMMs with interactive visualizations in 

order to display disease progression for type 1 diabetes, Huntington’s disease, Parkinson’s disease, 

and chronic obstructive pulmonary disease [130]. 

For this study, due to the fact that the majority of patients did not have a large number of 

depression severity score data to determine depression severity phenotypes for patients over the 

course of their treatment, a Markov chain model was implemented to examine the transition 

probabilities between antidepressants that patients were prescribed. A Markov chain is a 

probabilistic model that operates under the dependence that the future does not depend on the past 

[136]. Given a sequence of random variables in the state space (or antidepressant state space), a 

Markov chain model is conveyed through the conditional probabilities. 

6.2 Methods 

6.2.1 Characterize patient experience with antidepressants 

For all MDD patients that were prescribed an antidepressant, the time between the first 

MDD ICD-9/-10 code and the first antidepressant prescribed was calculated and plotted. The time 

intervals between first MDD ICD-9/-10 code and first antidepressant prescribed were also 

analyzed according to gender and race, and a one-way ANOVA and a Tukey’s Honest Significant 

Difference (HSD) test was used to compare group means between races.  
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6.2.2 Display Sequence of Antidepressants Prescribed 

Patients’ antidepressant treatment sequences, in terms of medication prescription events, 

were extracted from the EHR database. Antidepressants were then further annotated according to 

the antidepressant class and the drug’s generic name equivalent. Unique antidepressant treatment 

sequences, according to individual antidepressant and antidepressant class, were then tallied 

according to how many patients followed the same treatment path. The number of unique 

antidepressants prescribed was recorded. The number of antidepressants prescribed over each 

patient’s EHR history was normalized according to age and time since initial diagnosis. Patients 

with a diagnosis code for depression that were never prescribed an antidepressant will also be 

tallied and excluded from model construction.  

6.2.3 Sequence of Antidepressants 

The inclusion criteria included a list of antidepressant medications (Table 15) and was used 

to search through the EHR database for patients’ antidepressant prescription history with 

antidepressants. Antidepressant prescription events were then put in consecutive order for each 

patient according to the prescription event date. Brand name antidepressants were converted to 

their generic name to allow for parallel comparison between drugs. Antidepressants were also 

converted to their class name to examine antidepressant prescribing sequences at the class level.  

When examining the sequence of antidepressants that patients were prescribed, repeated 

prescription events of the initial antidepressant were not recorded, only the additional 

antidepressant was captured when looking at the antidepressant sequence level. However, when 

looking at antidepressant prescription events for whether there was a medication switch, 
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continuation, dose change, or addition of augmentative therapy, antidepressants prescribed were 

unaltered and patients’ subsequent antidepressant prescription events were captured.  

Patients were prescribed their second antidepressant at variable time frames. Second 

antidepressant prescription events were characterized in relation to the initial antidepressant 

prescription event. Second antidepressant prescription events were either a drug switch or 

continuation of the drug. Continuations were further classified according to whether there was a 

dose change or continuation, and whether an augmenting agent was prescribed in addition.  

6.2.4 Markov Model of transition probabilities between antidepressants 

With all of the antidepressant treatment sequences for each patient, Markov chain models were 

constructed for generic antidepressant medication orders and antidepressant classes using the 

package ‘markovchain’ in R. Markov Models were deemed appropriate in order to examine the 

transition probabilities between being prescribed certain antidepressants due to the fact that 

prescribing for depression is currently a trial-and-error process. A figure conveying transition 

probabilities was constructed. The transition probability matrix (P) was a square matrix that took 

the following form: 

𝑃 = [

𝜌11 𝜌.. 𝜌1𝑠

𝜌.. . . . . . .
𝜌𝑠1 . . . 𝜌𝑠𝑠

] 

where s was the total number of antidepressants, and p was the probability of a patient going 

from being prescribed one antidepressant (rows) to another antidepressant (columns). Therefore, 

all rows of P summed to one. 
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6.3 Results 

6.3.1 Characterization of patients’ experience with antidepressants 

The time intervals between the first MDD ICD-9/-10 code within a patient’s EHR and the 

first antidepressant prescribed ranged from -1,058 days to 2,783 days, with an average time interval 

of 438 days (Figure 9). When patients’ time intervals were compared according to gender, males 

had a longer average time interval at 553 days compared to females at 397 days (Figure 10). A 

two-sample z-test revealed that the mean difference in time intervals between males and females. 

was statistically significant (P < 0.0001). In addition, patients’ median time intervals according to 

race were compared, which revealed that the median time interval was lowest for individuals that 

identified as White at 553 days (1.51 years), and the median time interval was greatest for patients 

that identified as Asian Pacific Islander at 1,477 days (4.04 years) (Figure 11). A one-way ANOVA 

determined that there was a statistically significant difference between the time intervals for race 

(P < 0.0001), and a Tukey HSD test comparing means revealed that there was a statistically 

significant difference between Black and Asian Pacific Islander patients (P < 0.0001), White and 

Asian Pacific Islander patients (P < 0.0001), Unknown race and Black patients (P < 0.0001), White 

and Black patients (P < 0.0001), and Unknown race and White patients (P < 0.0001). 
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Figure 9 Histogram of time between patients' first MDD ICD-9/-10 code and first antidepressant prescribed. 
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Figure 10 Boxplots of time between ICD-9/-10 codes and first antidepressant prescribed stratified according to 

gender. 
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Figure 11 Boxplots of time between ICD-9/-10 codes and first antidepressant prescribed stratified according to 

race. 
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were SSRIs sertraline (20.32%), citalopram (17.32%), and escitalopram (12.55%) (Figure 13). Of 

patients that were prescribed at least two antidepressants (N=34,894, 64.31%), the most frequent 

antidepressant prescribing sequence was citalopram then bupropion (3.48%), followed by 

sertraline then bupropion (3.38%), and citalopram then sertraline (3.10%) (Figure 14). There were 

425 unique two-drug prescribing sequences of generic drugs. For patients that were prescribed at 

least three antidepressants (N= 27,156, 50.05%), there were 6,274 unique prescribing sequences. 

For these patients that were prescribed at least three drug antidepressants, the most prevalent 

prescribing sequence was escitalopram, duloxetine, then escitalopram (1.52%), followed by 

bupropion, citalopram, then escitalopram (1.28%), and bupropion, escitalopram, then duloxetine 

(1.00%) (Figure 15).  

 

Figure 12 Initial antidepressant class prescription probabilitiy for UPMC depression patients.  
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Figure 13 Top 15 initial antidepressants prescription probabilities for UPMC depression patients. 

 

 

Figure 14 Top 15 two-drug antidepressant sequences for UPMC depression patients. 
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CITALOPRAM-BUPROPION
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Figure 15 Top 50 three-drug antidepressant sequences for UPMC depression cohort patients. 

 

When examining polypharmacy, there were 78,519 instances of antidepressant 

combinations prescribed for patients in the analysis cohort across their history of antidepressant 

prescription events. The most prevalent antidepressant combination for an antidepressant 

prescription event was bupropion and sertraline prescribed together (n=3,051, 3.89%), followed 

by bupropion and escitalopram (n=3,032, 3.86%), and bupropion and fluoxetine (n=2,981, 3.80%) 

(Table 18). 
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Table 18 Top 15 most prevalent polypharmacy prescriptions. 

Drug combination Number of instances (%) 

Bupropion + sertraline 3,051 (3.89%) 

Bupropion + escitalopram 3,032 (3.86%) 

Bupropion + fluoxetine 2,981 (3.80%) 

Bupropion + citalopram 2,917 (3.72%) 

Trazodone + sertraline 2,417 (3.08%) 

Bupropion + venlafaxine  1,957 (2.49%) 

Bupropion + trazodone 1,770 (2.25%) 

Trazodone + citalopram 1,752 (2.23%) 

Venlafaxine + trazodone 1,534 (1.95%) 

Fluoxetine + trazodone 1,382 (1.76%) 

Bupropion + duloxetine 1,444 (1.84%) 

Escitalopram + trazodone 1,295 (1.65%) 

Duloxetine + trazodone 930 (1.18%) 

Bupropion + paroxetine 584 (0.74%) 

Mirtazapine + sertraline 569 (0.72%) 

 

Most (52.29%, N=28,31) second antidepressants were prescribed within six weeks after 

the initial antidepressant prescription event (Table 19). Across all time frames for the second 

antidepressant prescribed, most (65.63%, N=35,687) patients continued their initial antidepressant 

drug and dose at the second prescription event. Very few (0.65%, N=351) patients were prescribed 

an additional augmenting agent along with the initial antidepressant prescribed at the second 
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antidepressant prescription event. When the second antidepressant prescription event involved a 

dose change, the second prescription event was more often a dose increase (83.41%) over a 

decrease (16.59%). A prescription for a dose increase or additional augmenting agent might have 

signified incomplete activity, while a dose decrease might have signified toxicity. Intolerance 

might be gleaned from patients that switched drugs upon the second antidepressant prescribed or 

decreased dose, which occurred less frequently in the first two weeks (10.08%, N=2,087 and 

0.44%, N=91, respectively) and as might be expected, increased in frequency as the time to the 

second antidepressant prescription event increased. In total, 2,178 (10.5%) patients that had a 

second prescription encounter in the first two weeks could have been intolerant of the drug based 

on the medication switch or decrease in dose. 
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Table 19 Characterization of the subsequent prescription event after the initial antidepressant prescription 

event for patients. 

Time to second 

antidepressant 

prescribed 

Switch 

drug 

Continue drug Total 

Continue 

dose 

Change dose Add 

augmenting 

agent 
Increase 

dose 

Decrease 

dose 

[0 weeks, 2 

weeks) 

8,989 

(43.43%) 

11,072 

(53.49%) 

466 

(2.25%) 

95 

(0.46%) 

76 

(0.37%) 

20,698 

(38.07%) 

[2 weeks, 4 

weeks) 

697 

(20.42%) 

1,640 

(48.04%) 

864 

(25.31%) 

71 

(2.08%) 

142 

(4.16%) 

3,414 

(6.28%) 

[4 weeks, 6 

weeks) 

769 

(17.81%) 

2,239 

(51.84%) 

1,055 

(24.43%) 

91 

(2.11%) 

165  

(3.82%) 

4,319 

(7.94%) 

[6 weeks, 8 

weeks) 

542 

(22.71%) 

1,237 

(51.82%) 

478 

(20.03%) 

50 

(2.09%) 

80 

(3.35%) 

2,387 

(4.39%) 

[8 weeks, 3 

months) 

710 

(21.83%) 

1,932 

(59.41%) 

443 

(13.62%) 

82 

(2.52%) 

85  

(2.61%) 

3,252 

(5.98%) 

[3 months, 6 

months) 

1,345 

(21.56%) 

3,996 

(64.06%) 

611 

(9.79%) 

152 

(2.44%) 

134 

(2.15%) 

6,238 

(11.47%) 

[6 months, 12 

months) 

1,517 

(26.86%) 

3,415 

(60.46%) 

413 

(7.31%) 

170 

(3.01%) 

133 

(2.35%) 

5,648 

(10.39%) 

[12 months, ) 4,162 

(49.44%) 

3,096 

(36.78%) 

610 

(7.25%) 

374 

(4.44%) 

176 

(2.09%) 

8,418 

(15.48%) 

 Total 18,731 

(34.45%) 

28,627 

(52.65%) 

4,940 

(9.08%) 

1,085 

(2.00%) 

991 

(1.82%) 

54,374 

(100%) 

 

6.3.3 Markov Model Results 

Markov chain models revealed that transition probabilities from any class of antidepressant 

to SSRIs were highest (x̄ = 0.83, median = 0.83). Transition probabilities from any class of 

antidepressant to SNRIs (x̄ = 0.11, median = 0.11) and to NDRIs were low (x̄  = 0.03, median = 
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0.03) (Figure 16, Figure 17). When examining transition probabilities between individual 

antidepressants, antidepressant class transition probability findings were replicated in that 

transition probabilities were highest for transitioning to SSRIs. The highest transition probabilities 

were switching from another antidepressant to sertraline (x̄ = 0.17, median = 0.17), fluoxetine (x̄ 

= 0.14, median = 0.14), escitalopram (x̄ = 0.16, median = 0.14), and citalopram (x̄ = 0.14, median 

= 0.14) (Figure 18). These SSRIs were also the antidepressants that had the highest probability of 

being prescribed as initial therapies. Transition probabilities between individual SSRI 

antidepressants were not higher than transitioning from an SSRI to another antidepressant (Figure 

18). A few transition probabilities were artificially high due to low N, namely transitioning from 

isocarboxazid to paroxetine (N = 4, 66%) and amoxapine to sertraline (N = 3, 60%).  Overall, 

transition probabilities were highest from any class to SSRIs, and from any individual 

antidepressant to the SSRIs sertraline, fluoxetine, escitalopram, and citalopram. Therefore, SSRIs 

were not only found to be used as initial therapy options, but are also revisited as therapy options. 
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Figure 16 Markov Model of antidepressant classes prescribed for UPMC depression patients. 
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Figure 17 Transition probabilities between antidepressants classes  

phenylpiperazine / 5-HT2 receptor antagonists (PHEN/5HT2A), monoamine oxidase inhibitors (MOA), 

miscellaneous (MISC), serotonin and norepinephrine reuptake inhibitors (SNRI), tricyclic antidepressants 

(TCA), selective serotonin reuptake inhibitors (SSRI), norepinephrine-dopamine reuptake inhibitors (NDRI), 

and tetracyclic antidepressants (TET) prescribed for UPMC depression patients. 
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Figure 18 Transition probabilities between individual antidepressant drugs prescribed, annotated by 

antidperessant class 

selective serotonin reuptake inhibitors (SSRI), norepinephrine-dopamine reuptake inhibitors (NDRI), 

miscellaneous (MISC), serotonin and norepinephrine reuptake inhibitors (SNRI), tricyclic antidepressants 

(TCA), tetracyclic antidepressants (TET), phenylpiperazine / 5-HT2 receptor antagonists (PHEN/5HT2A), and 

monoamine oxidase inhibitors (MOA), where the y-axis represents transitioning from an antidepressant, and 

the x-axis represents transitioning to an antidepressant.  

 

Figure 18 did not convey that patients were more likely to be prescribed a different SSRI 

subsequently after another SSRI. Transition from one SSRI to another SSRI was not significantly 

higher than switching from another antidepressant class to an SSRI. However, when a clinician 

switches the prescription order within SSRIs, sertraline (the most frequently prescribed initial 

antidepressant) had the highest transition probability (x̄ = 0.28, median = 0.28), and therefore was 

the most likely SSRI to be prescribed after prescribing another SSRI (Figure 19, Figure 20). 
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Escitalopram had the next greatest mean transition probability (x̄ = 0.25, median = 0.25). The 

lowest transition probability for intra-SSRI transitions was for fluvoxamine (x̄ = 1.58 x 10-3, 

median = 1.86 x 10-3), followed by paroxetine (x̄ = 6.52 x 10-2, median = 6.04 x 10-2).  

 

 

Figure 19 Markov Model of intra-SSRI transition probabilities for UPMC depression patients. 
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Figure 20 Transition probabilities for intra-SSRI prescribing for UPMC depression patients. 

6.4 Discussion 

The time intervals between patients’ first MDD ICD-9/-10 code and patients’ first 

prescribed antidepressant disparities according to gender and race were significant and therefore 

are potential points for clinical care improvement. There are many factors that could impact the 

time between patients’ first MDD ICD-9/-10 code and when the patient might be prescribed an 

antidepressant, however this is an area that could be investigated further. Especially as it relates to 

the role that culture and gender play in how depression is treated. There were no studies identified 

concerning the time between initial MDD diagnosis and first antidepressant prescription, and how 

it relates to patients’ demographic factors. 

Milea et al. (2010) [137] used a U.S. claims database to convey initial antidepressants 

prescribed for patients, and found very similar results, with most patients being prescribed 
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sertraline as initial therapy, followed by escitalopram, bupropion, paroxetine, and fluoxetine. In 

addition, Olekhnovitch et al. (2020) [138] examined efficacy and tolerability of  antidepressants 

through looking at medications fills data to inform first-line medications.  This study found that 

the ratio of medication continuations over changes was highest for escitalopram, followed by 

sertraline, venlafaxine, citalopram, fluoxetine, and paroxetine. Future directions for this work 

could also subset medication switches and continuations based on the initial antidepressant 

prescribed for each patient.  

Sawada et al. (2009) [139] found in a chart review of Japanese patients prescribed 

antidepressants, only 44.3% of patients continued antidepressant treatment for 6 months, and found 

that sertraline was continued at the highest rate at 6 months over other antidepressants. In the 

UPMC EHR database, 72.4% of patients continue their antidepressant treatment within the clinical 

time frame of 6 months, which is an interesting finding concerning patients’ compliance and 

adherence. 

There were 10.5% of patients that could have been intolerant of their initial antidepressant 

prescribed based on a medication switch or dose decrease within the first two weeks of their 

original prescription. These patients represent a potential utility for PGx data in order to uncover 

poor or ultra-rapid metabolizers before the initial antidepressant prescription. This could allow for 

a shorter time to identify a successful antidepressant for the patient.  

There were no studies identified that constructed a Markov Chain model for 

antidepressants prescribed, and therefore these results were unable to be compared to the literature 

base. However, this may connote a novel scholarly contribution to enhance the understanding of 

antidepressant prescribing patterns, especially in terms of the high transition probabilities to 

prescribing SSRIs outside of just initial first-line therapy prescriptions. When a patient does not 
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respond or partially responds to the initial antidepressant, clinicians have the option of increasing 

the dose, augmenting with another agent, or switching to another antidepressant. Therefore, high 

transition probabilities to SSRIs is particularly interesting. Transition probabilities were not higher 

within SSRIs, so patients were not more likely to switch to yet another SSRI after being prescribed 

a different SSRI. Future directions of this work could look at Markov Chain models that include 

augmentation and dose changes in addition to drug switches and continuations.   



 

 94 

7.0 Modeling Treatment Response and Symptom Remission 

7.1 Methods 

7.1.1 Feature characterization and feature selection 

Features from the demographics, diagnoses, encounters, medication fills, medication 

orders, vitals, and questionnaire data were used to create the training and test set for the machine 

learning models. The individual antidepressants that patients were prescribed within the first 

twelve weeks were not included in the model, however the majority of patients (62.45%) were 

prescribed one SSRI as first-line therapy. Mutual information, a measurement of the relationship 

between two random variables, was calculated between each feature and the outcome variable. 

Mutual information is calculated between two random variables, X and Y as follows [140]: 

𝐼 (𝑋; 𝑌) =  ∑ ∑ 𝑃(𝑥, 𝑦) log
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)
𝑦∈𝑌𝑥∈𝑋

 

where P(x) and P(y) are the marginal distributions of X and Y.  

Therefore, mutual information conveys how close the joint distribution of two variables is 

to the independent joint distribution. If X and Y are independent, then P(x,y) = P(x)P(y) and the 

mutual information score would be zero. Mutual information is also a useful metric for this dataset 

because it can be calculated on multiple univariate data types, for example, continuous, binary, 

and categorical data.  

A priori models were created to predict both treatment response and symptom remission 

based on sociodemographic features implemented in MDD published literature, namely age, 
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gender, race, ethnicity, and BMI. A priori models for treatment response and symptom remission 

were then compared to prediction models using K-best features, where K=5, 10, 25, and 50, based 

on mutual information scores. Pearson correlation coefficients were calculated between each of 

the top features in each feature set. A threshold of 0.85 was established so as to not allow two 

features that were too highly correlated. When features had a Pearson correlation coefficient 

greater than 0.85, the feature with the greater mutual information score was kept in the feature 

space, and the feature with the lower mutual information score was dropped. In order to maintain 

a consistent number of features in the space, the feature with the next highest mutual information 

score was then added to the model feature space.  

7.1.2 Machine Learning Models to Predict Successful Antidepressants 

An a priori models using features from published literature were run using logistic 

regression. Once K-best feature selection based on mutual information scores was run, separate 

models for the binary predictions of symptom remission and treatment response for patients 

between zero and twelve weeks were constructed using logistic regression, random forest, and 

stacked ensemble models to determine the model with the greatest performance. Performance was 

assessed through common performance metrics calculated from confusion matrices including, 

sensitivity, specificity, positive predictive value, negative predictive value, and F-score.  
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7.1.2.1 Logistic regression 

𝑦𝑖 = log (𝑝
𝑝

1 − 𝑝
)

= 𝛽0 + 𝛽(𝐴𝑔𝑒) + 𝛽(𝐺𝑒𝑛𝑑𝑒𝑟) + 𝛽(𝑅𝑎𝑐𝑒) + 𝛽(𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦)

+ 𝛽(𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 𝑇ℎ𝑒𝑟𝑎𝑝𝑦) + ⋯ +  𝛽(𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑁) 

 

Logistic regression models were formed using the top 5, 10, 15, and 25 features for 

predicting treatment response, and the top features for predicting symptom remission. The logistic 

regression model computes the log odds of predicting whether a patient experienced treatment 

response or symptom remission. Each coefficient in the model corresponds to the relative increase 

in log odds of a particular predicted outcome, where one unit increase in a feature Xi for a particular 

patient leads to a 𝛽 increase in the log odds of a patient experiencing treatment response (yi = 1, 

for a patient having treatment response), for example. The maximum likelihood estimation 

computes the coefficients through an optimization of the likelihood function, which consists of the 

probability of observing the patient data given the logistic regression model coefficients. The 

probability of the likelihood function is maximized when the coefficients compute predicted 

outcomes that are closest to the actual outcomes for patients. Odds ratio, standard error, and P-

value for each feature were reported.  

7.1.2.2 Random forest 

Random forests are an ensemble of classifiers ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝐾(𝑥), where each 

classifier is a decision tree. A decision tree uncovers features with the greatest discrimination in 

classifying samples according to samples’ labels. A decision tree splits samples at each node 

according to the feature that maximizes the split in samples. Random forests are an ensemble of 
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decision trees that use training data {{(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  drawn randomly with replacement from X and 

Y to create an ensemble of trees where the larger the margin in feature classification is selected 

for splitting at each node. Random forests construct trees on subsamples of the data and in addition, 

randomize the feature set available at each node to select the feature with the best split. Then the 

ensemble of decision trees in the random forest is tested on the hold-out set to determine model 

performance [141].  

Random forest models were constructed on the datasets containing the top 5, 10, 25, and 

50 features subset randomly with replacement to create an ensemble of 500 trees. Hyperparameter 

tuning was conducted to optimize the number of trees in the forest, the maximum number of 

terminal nodes in the forest, and the number of candidates to draw from to run the algorithm. Five-

fold cross-validation was conducted as well, to improve generalizability across models.  

7.1.2.3 Auto ML 

The H2O Automatic Machine Learning (AutoML) package [142] was used to train 

machine learning algorithms contained within the package like generalized linear modeling 

(including logistic regression), decision trees (including gradient boosting machine, XGBoost, 

random forest), and deep learning frameworks. Generalized linear models iteratively weight 

coefficients in calculating maximum likelihood estimates and perform transformation to coerce a 

linear relationship [143].  

Gradient boosting machine trains decision trees successively one at a time and weights 

trees based on a loss function that measures the difference between patients’ predicted outcomes 

and patients’ actual outcomes [144]. Trees are added to the ensemble that ultimately minimize the 

loss function. A benefit of gradient boosting machine is that the loss function can be specified, and 

it is typically high performing in its combination of many decision trees. However, drawbacks to 
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gradient boosting machine are that resulting models can be very complex and difficult to interpret, 

it can be difficult to perform hyperparameter tuning, and individual trees can lead to overfitting 

and therefore a lack of generalization to unseen data. Overfitting can be overcome through 

hyperparameter tuning like adjusting the number of trees, tree depth, number of split nodes, and 

the number of samples per split. A type of gradient boosting machine is XGBoost, or eXtreme 

Gradient Boosting, and was designed to optimize performance and speed [145]. XGBoost also 

implements the mechanism called boosting where new decision trees are trained in succession to 

minimize the loss function between predictions and actual outcomes. A strength of XGBoost is its 

ability to handle missing data, in addition to implementing parallel and distributed computing to 

improve speed. However, XGBoost has the same limitations as a gradient boosting machine in that 

it can overfit data, be challenging to tune, and result in highly complex trees that are difficult to 

interpret.  

Another ensemble tree method used by the H2O package is the distributed random forest 

that trains multiple decision trees on random subsets of patients and features in the dataset and 

computes the average of decision trees [141]. Random forest does not implement boosting to adjust 

the weights of trees, instead subsets of patients and features are used to train multiple trees in 

parallel that are combined in an ensemble in a process called bagging. Random forests are typically 

high performing, are robust to outliers and missing data, however they are also difficult to interpret, 

can overfit, and are computationally expensive.  

Deep learning models use non-linear transformations on input data in a series of specified 

layers in order to best fit outcomes [146]. The benefits of deep learning models are that perform 

well on highly complex and high-dimensional datasets and the presence of hidden layers reduce 

the need for feature selection. However, deep learning models require large datasets to perform 
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well, can have lower performance than ensemble tree models, are computationally expensive, and 

are challenging for non-experts to tune.  

The Stacked Ensemble method within H2O uncovers the best combination of machine 

learning frameworks that feed into one another. Namely, the Stacked Ensemble pulls from 

generalized linear models, distributed random forest, gradient boosting machine, deep learning, 

XGBoost, and Naïve Bayes in order to uncover the optimal combination of prediction models. 

Five-fold cross validation was conducted to allow for greater generalizability. Models were tested 

on the top 5, 10, 25, and 50 features for predicting both treatment response and symptom remission. 

7.2 Results 

7.2.1 Feature selection 

Mutual information was calculated between each feature and the outcome variable. Table 

20 holds the top 20 features according to greatest mutual information score and after filtering based 

on a Pearson’s correlation coefficient threshold less than 0.85. “Myalgia” and “Myalgia and 

myositis, unspecified” were found to have a Pearson’s correlation coefficient of 0.99. In addition, 

“Long term current use of anticoagulant” and “Long term current use of anticoagulant therapy” 

were found to be highly correlated with a Pearson’s correlation coefficient of 0.97. “Spinal 

stenosis” and “Spinal stenosis, lumbar” also had a correlation coefficient above the 0.85 threshold 

at 0.86, along with “Spinal stenosis lumbar region without neurogenic claudication” which had a 

correlation coefficient with “Spinal stenosis” of 0.86. Correlation coefficients between the final 

top 5, 10, and 25 features for predicting treatment response (Figure 21) and predicting symptom 
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remission (Figure 22) were less than 0.85. Figures 21 and 22 are square matrices conveying 

Pearson correlation coefficients between the top 25 features for predicting treatment response and 

symptom remission, respectively.  
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Table 20 Mutual information scores for top 25 features associated with both treatment response and 

symptom remission outcome variables. 

Feature Mutual information score 

(Treatment response) 

Mutual information score 

(Symptom remission) 

Time between first MDD ICD-9/-10 

 code and first antidepressant 

1.20 x 10-1 N/A 

Weight 1.16 x 10-2 1.43 x 10-1 

Insomnia 1.08 x 10-2 N/A 

Age 1.08 x 10-2 4.26 x 10-2 

Routine infant or child health check 6.40 x 10-3 N/A 

Insomnia, unspecified 6.03 x 10-3 N/A 

Fibromyalgia 5.99 x 10-3 3.47 x 10-2 

Encounter for routine child health 

 exam without abnormal findings 

5.81 x 10-3 N/A 

BMI 5.74 x 10-3 3.23 x 10-2 

Chronic pain 5.35 x 10-3 N/A 

Myalgia and myositis, unspecified 5.33 x 10-3 2.94 x 10-2 

Need for other specified prophylactic 

 vaccination against single bacterial 

disease 

5.27 x 10-3 N/A 

Systolic blood pressure 4.84 x 10-3 3.43 x 10-2 

Long term current use of anticoagulant 4.83 x 10-3 6.07 x 10-2 

Encounter for general adult medical  

exam without abnormal findings 

4.48 x 10-3 N/A 

Myalgia 4.40 x 10-3 N/A 

Primary insomnia 4.19 x 10-3 N/A 

Migraine 4.18 x 10-3 N/A 

Encounter for immunization 4.01 x 10-3 N/A 

Insomnia, unspecified type 3.82 x 10-3 N/A 

Diastolic blood pressure 3.80 x 10-3 N/A 

Pain 3.76 x 10-3 2.72 x 10-2 

Dietary counseling and surveillance 3.69 x 10-3 N/A 

Anxiety 3.65 x 10-3 3.30 x 10-2 

Essential hypertension 3.59 x 10-3 3.98 x 10-2 

Chronic atrial fibrillation N/A 3.88 x 10-2 

Hyperlipidemia N/A 3.61 x 10-2 

Spinal stenosis N/A 3.41 x 10-2 

Pure hypercholesterolemia N/A 3.31 x 10-2 

Hypothyroidism N/A 3.29 x 10-2 

Other unspecified hyperlipidemia N/A 2.97 x 10-2 

Hypertension N/A 2.97 x 10-2 

Unspecified essential hypertension N/A 2.90 x 10-2 

Mixed hyperlipidemia N/A 2.89 x 10-2 

Depression N/A 2.84 x 10-2 
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Table 20 (Continued) 

Feature Mutual information score 

(Treatment response) 

Mutual information score 

(Symptom remission) 

B12 deficiency N/A 2.76 x 10-2 

Benign essential hypertension N/A 2.65 x 10-2 

Coronary artery disease involving 

native coronary artery of native heart 

without angina pectoris 

N/A 2.47 x 10-2 

Depressive disorder N/A 2.44 x 10-2 

Unspecified hypothyroidism N/A 2.43 x 10-2 
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Figure 21 Pearson correlation coefficients between the top 25 features for predicting treatment response. 

 

 

Figure 22 Pearson correlation coefficients between the top 25 features for predicting symptom remission. 
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7.2.2 Logistic regression 

The logistic regression models for the a priori model for treatment response (Table 21) had 

an Akaike information criterion (AIC) of 19,520. The logistic regression models created on the 

top five features for predicting treatment response had an AIC of 17,314 (Table 22). Logistic 

regression models created using the top 10 features for predicting treatment response had an AIC 

of 17,268 (Table 23), while the models created using the top 25 features (Table 24) and top 50 

features for predicting treatment response both had an AIC of 17,226. In order to minimize the 

probability of information loss, the treatment response model with the lowest AIC and the fewest 

number of features was deemed the best model, which is the model created using 25 features. The 

highest performing logistic regression model for predicting treatment response was the model 

using the top 50 features, which had an accuracy of 77.94% and an F1 score of 87.56%. 
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Table 21 Odds ratios of coefficients in the a priori model for treatment response prediction. 

Features Estimate  Standard Error P-value 

Intercept 0.16 6.13 x 10-2 < 0.0001 

Age  0.50 9.0 x 10-4 < 0.0001 

Gender Male 0.47 4.06 x 10-2 0.00206 

Race American Indian 0.48 5.05 x 10-1 0.90 

Race Asian Pacific Islander  0.54 1.79 x 10-1 0.41 

Race Black 0.50 8.19 x 10-2 0.83 

Race Unknown 0.49 1.52 x 10-1 0.83 

Ethnicity Hispanic 0.54 1.75 x 10-1 0.30 

Ethnicity Unknown 0.54 8.85 x 10-2 0.10 

BMI 0.50 1.02 x 10-3 0.04 
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Table 22 Odds ratios for coefficients in the logistic regression model for treatment response prediction using 

top five features. 

Features Estimate  Standard Error P-value 

Intercept 0.23 0.10 < 0.0001 

Age  0.50  1.12 x 10-3 0.11 

Insomnia 0.51 5.30 x 10-3 < 0.0001 

Routine infant or child health check 0.43 3.35 x 10-2 < 0.0001 

Weight  0.50 3.77 x 10-4 0.27 

Time between first MDD ICD-9/-10 code 

and first antidepressant 

0.50 2.17 x 10-5 < 0.0001 
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Table 23 Odds ratios of coefficients in logistic regression model for treatment response prediction using top 

ten features. 

Features Estimate  Standard Error P-value 

Intercept 0.24  0.10 < 0.0001 

Age  0.50  1.13 x 10-3 0.34 

Fibromyalgia 0.51 3.98 x 10-3 < 0.0001 

Insomnia 0.51 8.96 x 10-3 < 0.0001 

Insomnia, unspecified 0.49  1.25 x 10-2 0.01 

Routine infant or child health check 0.45  4.06 x 10-2 < 0.0001 

Routine infant or child health check 

without abnormal findings 

0.43 7.20 x 10-2 2.10 x 10-4 

Chronic pain 0.50 2.42 x 10-3 0.03 

Weight  0.50 4.15 x 10-4 0.04 

BMI 0.50 1.23 x 10-3 0.16 

Time between first MDD ICD-9/-10 code 

and first antidepressant 

0.50 2.17 x 10-5 < 0.0001 
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Table 24 Odds ratios of coefficients in logistic regression model for treatment response prediction using top 

25 features. 

Features Estimate  Standard Error P-value 

Intercept 0.21  0.28  < 0.0001 

Age  0.50 1.42 x 10-3 0.06 

Long term current use of anticoagulant 

therapy 

0.49 3.40 x 10-2 0.12 

Fibromyalgia 0.50 4.22 x 10-3 2.0 x 10-3 

Myalgia and myositis 0.49 5.59 x 10-2 0.67 

Encounter for immunization 0.48 3.63 x 10-2 0.04 

Primary insomnia 0.50 7.61 x 10-3 0.05 

Insomnia 0.51  9.02 x 10-3 < 0.0001 

Myalgia 0.50 2.21 x 10-2 0.43 

Insomnia, unspecified type 0.51 1.76 x 10-2 0.02 

Insomnia, unspecified 0.49 1.47 x 10-2 < 0.0001 

Routine infant or child health check 0.49  5.35 x 10-2 0.33 

Dietary counseling and surveillance 0.50 2.12 x 10-2 0.93 

Pain 0.50 3.70 x 10-3 0.19 

Migraine 0.50 4.35 x 10-3 < 0.0001 

Routine infant or child health check without 

abnormal findings 

0.46 7.50 x 10-2 0.03 

General adult medical exam without 

abnormal findings 

0.47 8.32 x 10-2 0.13 
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Table 24 (Continued) 

Features Estimate  Standard Error P-value 

Need for prophylactic vaccination against 

single bacterial disease 

0.43 1.39 x 10-1 0.04 

Chronic pain 0.50 2.52 x 10-3 0.2 

Long term current use of anticoagulant 0.51 3.38 x 10-2 0.11 

Myalgia and myositis 0.51 5.69 x 10-2 0.42 

Weight  0.50 4.56 x 10-4 0.03 

BMI 0.50 1.24 x 10-3 0.13 

Systolic blood pressure 0.50 3.20 x 10-3 0.05 

Diastolic blood pressure 0.50 4.78 x 10-3 0.02 

Time between first MDD ICD-9/-10 code 

and first antidepressant 

0.50 2.21 x 10-5 < 0.0001 

 

The logistic regression models for the a priori model for symptom remission (Table 25) 

had an Akaike information criterion (AIC) of 1,102. The logistic regression model created on the 

top five features for predicting symptom remission had an AIC value of 1,371.4 (Table 26). 

Logistic regression model using the top 10 features for predicting symptom remission had an AIC 

of 1,363.3 (Table 27), while the model created using the top 25 features (Table 28) had an AIC of 

1,339.3. The minimum AIC came from the logistic regression model using the top 25 features to 

predict symptom remission. The prediction accuracy for the logistic regression models for 

symptom remission using the top five features was 55.22%, top ten features was 62.19%, top 25 

features was 64.67%, and top 50 features was 56.72% (Table 29). Therefore, the prediction 
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accuracy was highest for the logistic regression model using the top 25 features for predicting 

symptom remission. The highest performing logistic regression model for predicting symptom 

remission was the model using the top 50 features, which had an accuracy of 55.22% and an F1 

score of 39.19%. 

 

Table 25 Odds ratios of coefficients in the a priori model for symptom remission prediction. 

Features Estimate  Standard Error P-value 

Intercept 0.39 4.24 x 10-1 0.29 

Age  0.50 5.0 x 10-3 5.13 x 10-3 

Gender Male 0.60 1.60 x 10-1 1.04 x 10-2 

Race American Indian 0.45 1.42 0.88 

Race Asian Pacific Islander  0.38 1.02 0.68 

Race Black 0.35 2.81 x 10-1 0.03 

Race Unknown 0.47 1.05 0.89 

Ethnicity Hispanic 0.66 1.24 0.59 

Ethnicity Unknown 0.52 3.72 x 10-1 0.85 

BMI 0.50 6.16 x 10-3 0.15 
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Table 26 Odds ratios of coefficients in logistic regression model for symptom remission prediction using top 

five features. 

Features Estimate  Standard Error P-value 

Intercept 0.30 0.46 0.07 

Age  0.50 4.78 x 10-3 2.11 x 10-3 

Essential hypertension 0.50 4.68 x 10-3 0.22 

Chronic atrial fibrillation 0.50 3.91 x 10-3 0.47 

Long term current use of anticoagulant 0.50 2.50 x 10-3 0.84 

Weight 0.50 1.30 x 10-3 0.96 
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Table 27 Odds ratios of coefficients in logistic regression model for symptom remission prediction using top 

ten features. 

Features Estimate  Standard Error P-value 

Intercept 0.48 9.28 x 10-1 0.94 

Age  0.50  5.15 x 10-3 4.41 x 10-3 

Essential hypertension 0.50 5.02 x 10-3 0.34 

Pure hypercholesterolemia 0.50 1.11 x 10-2 6.75 x 10-2 

Hyperlipidemia 0.50 9.32 x 10-3 0.07 

Fibromyalgia 0.49  1.20 x 10-2 1.97 x 10-2 

Chronic atrial fibrillation 0.50 3.90 x 10-3 0.43 

Spinal stenosis 0.50 6.87 x 10-3 0.08 

Long term current use of anticoagulant 0.50 2.55 x 10-3 0.98 

Weight 0.50 1.37 x 10-3 0.89 

Systolic blood pressure 0.50 7.74 x 10-3 0.41 
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Table 28 Odds ratios of coefficients in logistic regression model for symptom remission prediction using top 

25 features. 

Features Estimate  Standard Error P-value 

Intercept 0.67  0.99 0.46 

Age  0.50 5.47 x 10-3 0.16 

Essential hypertension 0.50 7.78 x 10-3 0.49 

Unspecified essential hypertension 0.50 9.09 x 10-3 0.89 

Anxiety 0.50 6.86 x 10-3 0.05 

Other and unspecified hyperlipidemia 0.51 9.67 x 10-3 0.01 

Mixed hyperlipidemia 0.51 9.68 x 10-3 7.60 x 10-3 

Benign essential hypertension 0.50 9.30 x 10-3 0.64 

Depression 0.50 1.27 x 10-2 0.39 

Unspecified hypothyroidism 0.50 1.36 x 10-2 0.91 

Pure hypercholesterolemia 0.51 1.17 x 10-2 0.01 

Hyperlipidemia 0.50  1.05 x 10-2 0.08 

Fibromyalgia 0.50 1.24 x 10-2 0.40 

B12 deficiency 0.50 1.13 x 10-2 0.93 

Hypertension 0.50 6.37 x 10-3 0.26 

Coronary artery disease involving native 

coronary artery of native heart without 

angina pectoris 

0.51 1.55 x 10-2 0.03 

Chronic atrial fibrillation 0.50 4.04 x 10-3 0.67 

Unspecified myalgia and myositis  0.49 1.70 x 10-2 0.03 
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Table 28 (Continued) 

Features Estimate  Standard Error P-value 

Depressive disorder 0.49 1.63 x 10-2 7.64 x 10-3 

Hypothyroidism 0.50 1.32 x 10-2 0.42 

Pain 0.49 1.11 x 10-2 0.04 

Spinal stenosis  0.50 7.22 x 10-3 0.31 

Long term current use of anticoagulant 0.50 2.67 x 10-3 0.79 

Weight 0.50 1.87 x 10-3 0.21 

BMI 0.49 9.56 x 10-3 0.03 

Systolic blood pressure 0.50 8.17 x 10-3 0.46 
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Table 29 Logistic regression model performance 
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Treatment 

response 

16,482 3,746 

(22.72%) 

Top 5 features 77.84 25.00 99.42 0.68 75.00 0.58 22.16 87.31 77.52 

Top 10 features 77.37 35.29 99.57 0.80 64.71 0.43 22.63 87.08 77.15 

Top 25 features 78.33 34.21 99.03 1.81 65.79 0.97 21.67 87.47 77.82 

Top 50 features 78.35 33.33 99.22 1.39 66.67 0.78 21.65 87.56 77.94 

Symptom 

remission 

1,008 576 

(57.14%) 

Top 5 features 63.16 55.49 12.90 93.52 44.51 87.10 36.84 21.43 56.22 

Top 10 features 55.26 55.83 22.58 84.26 44.17 77.42 44.74 32.06 55.72 

Top 25 features 52.83 56.08 30.11 76.85 43.92 69.89 47.17 38.36 55.22 

Top 50 features 42.65 61.65 36.25 67.77 38.35 63.75 57.35 39.19 55.22 
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7.2.3 Random forest 

A random forest model was constructed using the top 5, 10, 25, and 50 features for 

predicting both treatment response and symptom remission (Table 30). Five-fold cross validation 

was conducted for each model. The top performing model for predicting treatment response used 

the top 25 features and had an accuracy of 77.21% and an F1 score of 87.07%. The greatest F1 

score for predicting symptom remission was 47.85% using the top 50 features, however the 

greatest accuracy of 59.20% came from using the top 25 features. 
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Table 30 Random forest model performance 
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Treatment 

response 

16,482 3,746 

(22.72%) 

Top 5 features 500 2 77.33 24.51 96.98 3.34 75.49 3.02 22.67 86.05 75.70 

Top 10 features 500 3 77.33 26.39 97.92 2.53 73.61 2.08 22.67 86.41 76.21 

Top 25 features 500 5 77.40 56.67 99.49 2.25 43.33 0.51 22.60 87.07 77.21 

Top 50 features 500 7 76.96 42.86 99.37 1.57 57.14 0.63 23.04 86.74 76.67 

Symptom 

remission 

1,008 576 

(57.14%) 

Top 5 features 500 2 46.43 57.93 29.89 73.68 42.07 70.11 53.57 36.36 54.73 

Top 10 features 500 3 51.67 53.90 32.29 72.38 46.10 67.71 48.33 39.74 53.23 

Top 25 features 500 5 50.00 62.43 31.71 78.15 37.58 68.29 50.00 38.81 59.20 

Top 50 features 500 7 55.71 58.78 41.94 71.30 41.22 58.06 44.29 47.85 57.71 
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7.2.4 Auto ML 

The best performing prediction model for treatment response within the analysis cohort 

used the top 50 features for predicting treatment response and consisted of a stacked ensemble 

incorporating 1 deep learning frameworks, 1 distributed random forest, 1 gradient boosting 

machines, 1 generalized linear model, and 1 XGBoost (Table 31). The accuracy was 60.38%, and 

the F1 score was 70.36%. Given that the outcome variables were imbalanced, the F1 score provides 

the best prediction metric to be evaluated. The best performing prediction model for predicting 

symptom remission used the top 25 features for predicting symptom remission and was a 

generalized linear model. The accuracy for this model was 68.16% and the F1 score was 33.33%. 
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Table 31 Auto ML model performance 
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Treatment 

response 

3,746  

/ 

16,482 

(22.72) 

Top 5 

features 

Stacked 

ensemble 

1 deep learning, 2 

drf, 1 gbm, 1 glm,  

1 xgboost 

62.61 33.39 83.95 29.66 47.09 71.25 70.34 52.91 16.05 60.34 52.85 

Top 10 

features 

Stacked 

ensemble 

1 deep learning, 2 

drf, 7 gbm, 1 glm,  

5 xgboost 

61.09 29.60 85.21 25.88 34.26 79.43 74.12 65.74 14.79 48.87 44.39 

Top 25 

features 

Stacked 

ensemble 

1 deep learning, 2 

drf, 1 gbm,  

1 glm, 1 xgboost 

61.83 30.28 84.96 26.34 41.34 74.14 73.66 58.66 15.04 55.62 48.57 

Top 50 

features 

Stacked 

ensemble 

1 deep learning, 1 

drf, 1 gbm, 1 glm, 

1 xgboost 

63.17 31.44 84.28 30.20 60.38 60.36 69.80 39.62 15.72 70.36 60.38 

Symptom 

remission 

576 

/ 

1,008 

(57.14) 

Top 5 

features 

gbm N/A 49.48 49.26 85.71 52.58 6.12 99.03 47.42 93.88 14.29 11.43 53.73 

Top 10 

features 

glm N/A 62.35 71.59 100 60.50 1.25 100 39.50 98.75 0.00 2.47 60.70 

Top 25 

features 

glm N/A 64.96 70.73 84.21 66.48 20.78 97.58 33.52 79.22 15.79 33.33 68.16 

Top 50 

features 

Stacked 

ensemble 

1 deep learning, 2 

drf, 1 gbm, 1 glm, 

1 xgboost 

62.15 64.41 75.00 61.33 17.65 95.69 38.67 82.35 25.00 28.57 62.69 

drf: distributed random forest, gbm: gradient boosting machine, glm: generalized linear model, xgboost: eXtreme gradient boosting. 
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7.3 Discussion 

Many of the top features were related to pain, namely, “fibromyalgia”, “chronic pain”, 

“myalgia and myositis”, “pain”, and “migraine”. In addition, many features were related to lack of 

sleep: “insomnia”, “insomnia, unspecified”, “primary insomnia”, and “insomnia unspecified 

type”. Another observed pattern within the top 25 features were physiological, with “weight”, 

“age”, “BMI”, “systolic blood pressure”, and “diastolic blood pressure”. The relationship between 

pain and depression has been reported in depth on previously, in addition to psychological 

symptoms like disturbed sleep [147]. The presence of fibromyalgia and pain as significant 

diagnoses associated with depression have also been replicated in other studies as well [137]. 

Investigators have sought to parse a causal relationship between pain and depression with mixed 

conclusions [148].  

Another feature of depression that is widely reported in literature is the contributions of 

structural risk factors from gender and race in connection to MDD for patients [149–154]. 

However, gender and race were not within the top 50 features by mutual information score for 

patients within the analysis cohort, and therefore were not strongly related to treatment response 

and symptom remission prediction. The mutual information score for gender and treatment 

response was 4.55 x 10-4, while the mutual information score for race and treatment response was 

8.12 x 10-5. These mutual information scores were one and two orders of magnitude less than the 

50th greatest mutual information score for treatment response (2.41 x 10-3). For symptom 

remission, the mutual information score for gender and symptom remission was 4.31 x 10-3, and 

the mutual information score for race and symptom remission was 4.95 x 10-3. These mutual 
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information scores were one order of magnitude less than the 50th greatest mutual information 

score for symptom remission (1.93 x 10-2). The literature supporting gender and race influencing 

MDD for patients interestingly did not replicate in our study.  

Despite this lack of replication, a strength of our study was the high performing logistic 

regression models. Logistic regression models are beneficial for model interpretability, and 

therefore have a greater likelihood of being adopted in clinical practice based on the intuitive 

equation. Model interpretability is paramount to physician trust in models and therefore in model 

adoption in clinical practice [155]. However, interpretability notwithstanding, logistic regression 

models had similar performance to the random forest and ensemble methods. The highest 

performing logistic regression model for predicting treatment response had an accuracy of 77.94%, 

while the highest performing random forest for predicting treatment response had an accuracy of 

77.21%, and the highest performing ensemble method had an accuracy of 60.38%. These metrics 

for predicting treatment response are greater than those in previously published literature by 

Chekroud et al. (2017) [93], though these models did not perform as well as deep learning models 

published by Lin et al. (2018) that had a sensitivity of 75.46% and specificity of 69.22% [97].  

For predicting symptom remission, the highest performing logistic regression model 

accuracy was of 55.22%, while the highest performing random forest had an accuracy of 59.20%. 

Likewise, the highest performing ensemble method had an accuracy of 68.16% in predicting 

symptom remission. These performance metrics are not as high as models from Iniesta et al. (2018) 

[156] using an elastic net logistic model or Lin et al. (2018) [97] using a multilayer feedforward 

neural network with 3 hidden layers to predict symptom remission.  

Despite the room for improvement in these models’ performance metrics, due to the fact 

that models in this study performed similarly, a logistic regression model might be the most 
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preferable to aid clinicians in prescribing decisions about which patients are likely to respond to 

first-line therapies due to factors concerning model interpretability.  

In order to improve on these performance metrics, future directions might concern 

improving upon feature selection methods. While correlation  between features was taken into 

consideration,  and feature ranking was considered beneficial for its reduced computational 

requirements, future directions could include using methods that incorporate the classification task 

in narrowing down the feature set as opposed to feature ranking methods that might not select the 

optimal feature subset [157]. In addition to feature selection methods, future directions might 

concern expanding the feature space to include the individual antidepressant or antidepressant 

class that a patient was prescribed as first-line therapy, or models could be created specifically to 

predict treatment response or symptom remission to a particular antidepressant drug or drug class. 

In addition, the incorporation of PGx data might also help to improve performance metrics. 

The other models cited predicting treatment response and symptom remission used genetic variant 

data as part of the feature space. Pharmacogenomic data to characterize patients’ metabolizer status 

along with the clinical EHR data might help to explain variability in treatment response and 

resolution of depression symptoms and therefore improve MDD treatment outcome prediction.
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8.0 Development of a Reproducible Machine Learning Pipeline 

8.1 Methods  

The EHR database was provided in CSV format. All programming was conducted in the R 

Statistical Programming language (version 4.0.4) [158]. All code was written by Lauren Rost, 

using packages lubridate [159], dplyr [160], RColorBrewer [161], pheatmap [162], randomForest 

[163], markovchain [100], and h2o [142]. All algorithms were run on the laptop environment 

MacBook Pro with a 2.5 GHz Quad-Core Intel Core i7 processor and 16 GB of RAM, running the 

64-bit macOS Big Sur operating system. Algorithmic methods were based on literature review of 

analyses for major depressive disorder clinical analyses.  

A reproducible data analysis and machine learning pipeline was created in order to allow 

for the study to be re-run as additional patients are enrolled in the Pitt + Me Discovery cohort. The 

pipeline is made up of 14 R code files, where each script feeds into one another (Table 32). The 

input file for the first file is used to create an output file, which becomes the next input file for the 

next script. This pipeline could be used for other diagnoses as well in order to map out the sequence 

of medications that patients were prescribed and to draw conclusions about prescribing patterns.  

The first R script, 1_InclusionCodes.R checks for the presence of the ICD-9/-10 codes for 

MDD. This script accepts the table in the database containing diagnosis information and outputs a 

file containing ICD-9/-10 inclusion codes for MDD as the column names and has patient 

STUDY_IDs as the row names. The matrix is populated by the number of ICD-9/-10 codes present 

for each patient. The subsequent script in the pipeline 2_ExclusionCodes.R operates similarly, 
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except that it checks for ICD-9/-10 codes that should be excluded based on associated treatment 

patterns, as exhibited in schizophrenia, bipolar disorder, autism, etc.  

The next R script in the pipeline 3_PullDepressionCodeDates.R accepts the output of 

1_InclusionCodes.R and performs a more directed search for the ICD-9/-10 code based on whether 

the code is present for that patient. This directed search allows for greater computational efficiency 

in not searching through all patients for all codes.  

After, the 4_TwoThirty180.R script checks for whether patients pass the 2/30/180 rule 

from eMERGE. Therefore, this script checks when an ICD-9/-10 code for MDD appears in a 

patient’s record, and determines whether there are at least two ICD-9/-10 codes present in the 

EHR, and whether there are at least two ICD-9/-10 codes that are at least 30 days apart and no 

greater than 180 days apart. With this information, the 5_PullAntidepressants.R script then has a 

refined list of STUDY_IDs that pass the 2/30/180 rule, and the script can capture the 

antidepressants that patients were prescribed. 6_PullAntidepressantDates.R works very similarly 

to 5_PullAntidepressants.R in that the script pulls the date for which the antidepressant was 

prescribed for each patient. Both scripts output a file that has each patients’ STUDY_ID as row 

names, with antidepressants or dates going across the columns. Afterwards, 

7_OrderedCodesandDates.R uses the matrices of antidepressants and antidepressant prescribing 

dates to put the antidepressants prescribed in chronological order for each patient.  

From there, 8_OutcomeLabelling.R uses the ordered antidepressants for each patient and 

the antidepressant prescription dates to determine whether the patient switched or continued the 

drug after at least eight weeks. Additional scripts then created additional features for the machine 

learning models, like 9_FeatureEngineer_DateCorrespondence_AntidepressantsandCodes.R 

which calculates the time between when an antidepressant was prescribed and when the first MDD 
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ICD-9/-10 code was present in the electronic health record. The 

9_FeatureEngineer_Questionnaire.v4 script uses the depression severity score data to plot PHQ 

scores over time, and to label symptom remission and treatment response based on score thresholds 

and relative score changes for patients at each of the PHQ scores on file. 

Then, 10_MarkovModel.R creates a Markov Chain Model using the sequence of 

antidepressants prescribed for each patient to examine transition probabilities between 

antidepressants. This script also creates Markov Chain Model figures within this study. The 13th 

R script calculates antidepressant sequence pattern statistics and plots sequence patterns. Finally, 

the 14th script runs machine learning models on subsets of patients; all patients prescribed 

antidepressants and surviving the 2/30/180 rule, patients receiving behavioral therapy, patients 

with PGx data, and patients with PHQ scores on file.  
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Table 32 Reproducible data analysis and machine learning pipeline 

Step Code name Function 

1 1_InclusionCodes.R Checks for presence of inclusion ICD-9/10 

codes 

2 2_ExclusionCodes.R  Checks for presence of exclusion ICD-9/10 

codes 

3 3_PullDepressionCodeDates.R  Finds the dates associated with ICD codes 

4 4_TwoThirty180.R Checks whether patients pass the 2/30/180 

rule  

5 5_PullAntidepressants.R  Pulls antidepressant sequences 

6 5_PullDiagnoses.R Pulls diagnoses associated with patients’ EHR 

6 6_PullAntidepressantDates.R  Pulls dates of antidepressants 

7 7_OrderedICDCodesandDates.R Orders ICD codes according to when they 

were documented in the EHR 

8 7_OrderedAntidepressantsandDates.R  Puts antidepressants in sequential order 

according to when they were documented 

9 8_OutcomeLabelling.R  Labels whether the patients’ prescribed 

antidepressant was continued within 12 weeks 

10 9_FeatureSelection.R  Calculates mutual information scores 

between each feature and the outcome 

variable 

8.2 Results 

The reproducible pipeline can be accessed at 

https://github.com/laurenrost/ReproduciblePipeline. The pipeline consisted of 10 steps, where the 

output of each step in the pipeline fed into the following step of the pipeline. The code was 

designed to be amenable to applications outside of MDD diagnosis and an antidepressant 

medication list. Any diagnosis or medication list of interest could be input and one could examine 

the sequential nature of drugs prescribed or diagnosis codes assigned. This sequential order could 

https://github.com/laurenrost/ReproduciblePipeline
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then be annotated to reflect treatment response definitions or modelled to uncover the probabilities 

of switching between drugs.  

8.3 Discussion 

This reproducible pipeline can be applied to additional diagnosis lists outside of MDD and 

medication lists besides antidepressants. The code is thoroughly annotated to allow for greater 

understanding and generalizability to novel applications. This pipeline will ideally contribute to 

greater reproducibility and extend findings from EHR data. It has been noted that many EHR 

studies are not reproducible due to the fact that preprocessing, cleaning, phenotyping and analysis 

methods are not shared [164]. Denaxas et al. (2017) recommended producing generic functions 

that conduct data cleaning and preprocessing, creating adaptable functions for defining outcomes, 

exposures, and covariates, constructing modules for study population definitions and subsets, 

hosting annotated machine-readable EHR phenotyping algorithms, and using both logical 

operators and programming commands for literate programming, which this pipeline can be found 

in adherence. Future directions could involve migrating this pipeline onto a virtual machine or a 

Docker container to allow for potentially more user-friendly reproducibility.  

In addition, this pipeline was made reproducible not only for outside applications, but also 

for it to be re-run on its original application, for MDD and antidepressants, with the addition of 

PGx data. PGx data will add additional features to inform prediction models.  
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9.0 Conclusions and Future Directions 

We created a reproducible data analysis and machine learning pipeline that intakes EHR 

data and a medication list, to document the history of medications that patients were prescribed. 

These sequences of prescriptions are then ordered according to their prescription date and 

subsequently, transition probabilities between antidepressant prescriptions are calculated and 

conveyed in Markov chain models. The most frequently ordered initial antidepressants are 

conveyed, along with the most frequent two-drug medication order sequences and three-drug 

medication order sequences. Once the medication order results are conveyed, subsets of the total 

analysis cohort are analyzed to predict treatment response and symptom remission using logistic 

regression models, random forest models, and an automated machine learning package that 

uncovers optimal ensemble prediction models. It is important to note that the models created 

through this pipeline, both the Markov chain models and statistical models, are not causal. 

Treatment patterns are not entirely random, and therefore, randomized control trials are necessary 

to address causality and treatment effectiveness. 

However, this reproducible data analysis and machine learning pipeline does offer a way 

for modeling prescribing patterns and pharmacologic treatment response prediction. This pipeline 

especially allows biomedical informatics data science to be more accessible to individuals with 

less programming experience. Individuals with motivations to analyze other diagnoses and 

medications sequences for patients within EHR data can also use this pipeline. In addition, the 

machine learning portion of this pipeline also allows individuals with less expertise in machine 

learning to run prediction analyses.  
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Performance of the treatment response and symptom remission prediction models were not 

ostensibly favorable enough to be adopted into a clinical workflow to assist with prescribing. 

However, the models could be used to aid in prescribing decisions of whether first-line therapies 

should be reconsidered. In order to demonstrate the generalizability and portability of this model, 

the pipeline should be run on data from another hospital. The importance of EHR machine learning 

models generalizing across hospitals has been emphasized heavily [165,166].  

Another interesting finding of this real-world EHR analysis was the duration of time to 

follow-up appointment after original antidepressant prescription for some patients. Given the 

importance of early assessment of treatment response in terms of both efficacy and tolerability 

when initiating antidepressant therapy, opportunities to improve the timeliness of follow-up could 

lead to improved medication adherence and better treatment outcomes for patients with MDD.  

Future directions include the implementation of state-of-the-art machine learning models 

using EHR data, namely a stacked denoising autoencoder to predict symptom remission and 

treatment response as binary outcomes. Other neural network architectures that could be 

implemented or adapted from similar work are a variational autoencoder (AE) model [167], long-

short term memory, convolutional neural network, recurrent neural network, transformer (with 

attention between encoder and decoder), ELMO (based on LSTM neurons), BERT (feed-forward 

architecture built off of transformer units for sequence representation) [168], BEHRT (transformer 

for EHR) [169], RETAIN (attention-based recurrent neural network, or two RNNs in parallel) 

[170].  

This work is novel in examining electronic health record data from major depressive 

disorder patients and seeks to join PGx data in order to inform symptom remission and treatment 

response prediction. The PGx data is high-dimensional be it from a panel of 4,626 markers within 
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1,191 genes. In addition, the data analysis pipeline structure allows the data analysis to be re-run 

as additional patients are enrolled.  

This work also adds to the field in that there is a large patient population examined. This 

study included many antidepressant classes unlike many studies that only observe SSRIs. This 

work is also novel in contributing to clinical outcomes metrics including adhering to best practices 

and following clinical recommendations and guidelines. In addition, this work contributes to 

research for new genotype-phenotype discovery and validation. The value, interest, and 

infrastructure for this pipeline and return of results exists; and the reproducible machine learning 

pipeline is robust to be run again and again as more PGx data become available to eventually draw 

exciting conclusions and predictions for treatment of MDD at UPMC.  

Despite the exciting potential, this study has many drawbacks and limitations. Namely, 

there are assumptions made surrounding the labels of whether patients experienced antidepressant 

treatment response or symptom remission from an antidepressant or not. Treatment response is 

proxied by whether a subsequent prescription was continued within a twelve week time period. 

There are many clinical factors that affect patient experience with MDD and its treatment that are 

not captured in our models. Namely, social determinants of health and other patient-level factors 

including stressful life events, cultural and religious beliefs, perceptions, socioeconomic status, 

degree of family support, and access to care which are not captured in the EHR database. To temper 

this, a future direction might be to extract additional information about the patient experience from 

the clinical note in order to better inform the treatment prediction task. Another future direction to 

incorporate additional data types to inform prediction models could be the inclusion of personal 

monitoring data, especially due to the significant features concerning physiological factors like 

BMI, blood pressure, and an ICD-9/-10 code for dietary  counseling and surveillance.  
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For patients that we do have additional information about their experience with the 

antidepressant in the form of depression severity rating scale data, there are still limitations in the 

quality of this data because depression severity rating scales are psychometric, and therefore are 

not a gold standard quantitative measure for patients’ experience with depression including level 

of functioning and quality of life.  

This study also has inherent limitations due to its observational nature. This observational 

retrospective cohort will likely not generalize well to other cohorts for temporal and recruitment 

factors. The fact that this data came from only one health system also limits the generalizability of 

the model and findings to other clinical care settings as well. In addition, due to the fact that this 

was not a prospective study or randomized control trial, prescription insurance coverage might 

play a role in the medications that were prescribed, and therefore might have led to gaps and biases 

that could undermine results. There also might be gaps and biases in the data due to 

discontinuations in patient records, for example if patients switched from UPMC medical 

providers resulting in a gap in patient data. This limitation could be ameliorated by analyzing 

health insurance claims data which more comprehensively capture patients’ encounters with 

medical providers.    

In this study, a reproducible analysis pipeline was created to model antidepressant 

treatment sequences and inform prediction models for MDD treatment outcomes. This pipeline 

was designed to be re-run using PGx data to demonstrate whether models experience improved 

prediction performance using PGx metabolizer phenotype features. In addition, this reproducible 

pipeline was designed to be re-used on other diagnoses and medication lists, and will hopefully 

serve to facilitate and contribute to future EHR research. 
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Appendix Supplementary Information 

Appendix Table 1 Exclusion Criteria 

ICD-9 or ICD-10 Code Description 

ICD-10 F31.*    bipolar disorder 

F20.* schizophrenia 

F23.* brief psychotic disorder 

F25.* schizoaffective disorder 

F32.3 mood [affective] disorders with psychotic symptoms 

F33.3 mood [affective] disorders with psychotic symptoms 

F10.15* schizophrenic reaction in alcoholism 

F10.25* schizophrenic reaction in alcoholism 

F10.95* schizophrenic reaction in alcoholism 

F06.2 schizophrenic reaction in brain disease 

F11-F19 psychoactive drug use 

F21 schizotypal disorder 

F03.* dementia 

F42.* OCD 

R46.81 Obsessive-compulsive behavior 

F60.5 Obsessive-compulsive personality disorder 

F43.1 PTSD 

F84.* autistic disorder 

F30 Manic episode 

F30.1 Manic episode without psychotic symptoms 

F30.10 Manic episode without psychotic symptoms, unspecified 

F30.11 Manic episode without psychotic symptoms, mild 

F30.12 Manic episode without psychotic symptoms, moderate 

F30.13 Manic episode, severe, without psychotic symptoms 

F30.2 Manic episode, severe with psychotic symptoms 

F30.3 Manic episode in partial remission 

F30.4 Manic episode in full remission 

F30.8 Other manic episodes 

F30.9 Manic episode, unspecified 

F22* Delusional disorders 

F24* Shared psychotic disorder 

F28* Other psychotic disorder not due to a substance or known 

physiological condition  

F29* Unspecified psychosis not due to a substance or known 

physiological condition  
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Appendix Table 1 (Continued) 

ICD-9 or ICD-10 Code Description 

ICD-9 296.0 Manic disorder, single episode 

296.00 Bipolar I disorder, single manic episode 

296.01 Manic disorder, single episode, mild degree 

296.02 Manic disorder, single episode, moderate degree 

296.03 Severe bipolar I disorder, single manic episode without 

psychotic features 

296.04 Severe bipolar I disorder, single manic episode with 

psychotic features 

296.05 Manic disorder, single episode, in partial or unspecified 

remission 

296.06 Bipolar I disorder, single manic episode, in remission 

296.1 Manic disorder, recurrent episode 

296.10 Manic disorder, recurrent episode, unspecified degree 

296.11 Manic disorder, recurrent episode, mild degree 

296.12 Manic disorder, recurrent episode, moderate degree 

296.13 Manic disorder, recurrent episode, severe degree, without 

mention of psychotic behavior 

296.14 Manic disorder, recurrent episode, severe degree, specified 

as with psychotic behavior 

296.15 Manic disorder, recurrent episode, in partial or unspecified 

remission 

296.16 Manic disorder, recurrent episode, in full remission 

296.4 Bipolar affective disorder, manic 

296.40 Bipolar I disorder, most recent episode manic 

296.41 Mild bipolar I disorder, most recent episode manic 

296.42 Moderate bipolar I disorder, most recent episode manic 

296.43 Severe manic bipolar I disorder without psychotic features 

296.44 Bipolar affective disorder, manic, severe degree, specified 

as with psychotic behavior 

296.45 Bipolar affective disorder, manic, in partial or unspecified 

remission 

296.46 Bipolar affective disorder, manic, in full remission 

296.5 Bipolar affective disorder, depressed 

296.50 Bipolar affective disorder, depressed, unspecified degree 

296.51 Bipolar affective disorder, depressed, mild degree 

296.52 Bipolar affective disorder, depressed, moderate degree 

296.53 Bipolar affective disorder, depressed, severe degree, 

without mention of psychotic behavior 

296.54 Bipolar affective disorder, depressed, severe degree, 

specified as with psychotic behavior 

296.55 Bipolar affective disorder, depressed, in partial or 

unspecified remission 

296.56 Bipolar affective disorder, depressed, in full remission 



 

 134 

Appendix Table 1 (Continued) 

ICD-9 or ICD-10 Code Description 

ICD-9 296.6 Bipolar affective disorder, mixed 

296.60 Bipolar affective disorder, mixed, unspecified degree 

296.61 Bipolar affective disorder, mixed, mild degree 

296.62 Bipolar affective disorder, mixed, moderate degree 

296.63 Bipolar affective disorder, mixed, severe degree, without 

mention of psychotic behavior 

296.64 Bipolar affective disorder, mixed, severe degree, specified 

as with psychotic behavior 

296.65 Bipolar affective disorder, mixed, in partial or unspecified 

remission 

296.66 Bipolar affective disorder, mixed, in full remission 

296.7 Bipolar affective disorder, unspecified 

296.8 Manic-depressive psychosis, other and unspecified 

296.80 Manic-depressive psychosis, unspecified 

296.81 Atypical manic disorder 

296.89 Other manic-depressive psychosis 
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