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Dynamics of DNA knots and links

Abby Pekoske Fulton, PhD

University of Pittsburgh, 2021

The goal of this work is to describe the dynamics of DNA knots and links in an ionized

fluid. To do so, we employ three models: 1. The Generalized Immersed Boundary (GIB)

method, which is a deterministic method that accounts for the fluid, structure interaction

of an immersed DNA molecule in an ionized fluid; 2. The Stochastic Generalized Boundary

(SGIB) Method, which is an extension of the GIB method that also takes into account the

random thermal fluctuations within the fluid; 3. The Sequence Dependent SGIB method,

which is a new extension of the SGIB method that accounts for the elastic properties of a

specified DNA sequence. Using the GIB and SGIB methods, we explore the energy landscape

of a closed DNA segment in a trefoil knot configuration. We first analyze the symmetry of

stable knotted equilibrium configurations, approximate saddle configurations, and examine

elastic energy throughout the deterministic process. We then use the SGIB method to model

DNA knot dynamics as a continuous time Markov chain. We classify and find boundaries

within the energy landscape using Procrustes distance. Finally, we obtain a steady state

distribution for the Markov process given a fixed linking number and compare this to the

Gibb’s distribution from energy estimates obtained from the GIB method. Lastly, using the

SD-SGIB method, we also explore the effects of sequence dependence in the formation of

kinetoplast DNA (kDNA), which has a chainmail-like linked DNA structure. We do so by

finding the distribution of centroid distances of two kDNA minicircles.

This research was supported in part by the University of Pittsburgh Center for Research Computing
through the resources provided.
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1.0 Introduction

Since the discovery of DNA, mathematical models have played a key role in understanding

its molecular structure, genomic function, and the cellular processes involving this macro-

molecule. This discovery has led to advances in the medical field and biology as a whole, and

it sparked development of the fields of genetic engineering, genomics, and molecular biology.

While a lot of progress has been made in understanding DNA as a whole, there is still much

to learn about its function in complex cellular processes.

The modeling process itself gave rise to mathematical frameworks created to better un-

derstand the role of DNA at the molecular and cellular level. Our work focuses on connecting

several of these modeling frameworks to the broader discipline of mathematics. We study

DNA topology by specifically considering DNA knots and links. We consider two types of

models: a continuum model, in which DNA is thought of as an electrostatically charged

Cosserat rod in fluid, and a discrete model, in which DNA is considered to be a sequence of

base pairs interacting with a fluid. We then use these models to study the energy landscape

of DNA elastic knots with excess twist and the dynamics of a network of linked kinetoplast

DNA minicircles.

Chapter 2 studies the space of DNA knot equilibria with excess twist, their symmetries,

transition configurations, and the elastic energies of the DNA knot configurations. Here we

use the Generalized Immersed Boundary (GIB) Method [41] to model the dynamics of DNA

immersed in a fluid. In the GIB method, we idealize DNA as a charged Cosserat rod and use

Navier-Stokes equations to describe the motion of the fluid. This chapter provides an idea of

the state space of knot equilibria, but gives an incomplete characterization of the dynamics

of DNA. Using a deterministic model does not account for thermal fluctuations within the

fluid and only gives equilibrium states within the complete energy landscape.

Chapter 3 characterizes the dynamics of DNA knots as a continuous time Markov chain.

Here, we use the Stochastic Generalized Immersed Boundary (SGIB) Method [73] to model

the interaction of DNA, idealized as a charged Cosserat rod, within a fluid using Stokes

equations to model fluid flow. This method gives a more realistic account of the dynamics of
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DNA in a fluid by accounting for thermal fluctuations within the fluid. Using Kendall shape

space analysis and a Procrustes distance [40] classifier, we find equivalence classes of knot

equilibria and the barriers between the deterministic states obtained in chapter 2. We then

use the SGIB knot traces as a continuous time Markov chain within this state space, and

obtain transition rates, and mean holding times for each of these random walks. Finally, we

use the transition rates to obtain a stationary Gibb’s distribution for knot configurations for

a fixed linking number and compare this to the distribution estimated from only the elastic

energy of the system.

Chapter 4 considers the dynamics of DNA links. Here, we use a novel method, the

Sequence Dependent Stochastic Generalized Immersed Boundary (SD-SGIB) Method, to

dynamically model the interaction of two kinetoplast DNA minicircles. In the SD-SGIB

method, we idealize DNA as a sequence of base pairs immersed in a fluid. This method

accounts for the differing elastic properties of the exact base pair sequence of a DNA molecule,

as opposed to the GIB and SGIB methods, which idealize DNA as a homogeneous, isotropic

elastic rod. We then analyze the method, and use the SD-SGIB method to find a distribution

of the center of masses of two Hopf-linked kDNA minicircles for two kinetoplastida: T. brucei

and C. fasciculata.

1.1 Background

A DNA duplex is a double-helical polymer with two polynucleotide strands. Each of the

two strands has a sugar-phosphate backbone and nucleotide base pairs. The two strands are

joined in a Watson-Crick double-helix [77], with complementary base pairs, A to T or G to

C, joined by hydrogen bonds. There is a single charge along the backbone at each base pair.

This structure of DNA lends the polymer to have bending and torsional stiffness, and be

nearly inextensible.

One of the forms of DNA we are interested in studying is a DNA plasmid, or closed

ring. Due to processes of replication, transcription, recombination and DNA compaction

the topological structure of DNA changes, and the DNA plasmid becomes supercoiled and
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knotted. In vivo, supercoiling is the natural state of a plasmid in the cell. DNA is either

naturally plectonemic for bacterial DNA plasmids or solenoidal, meaning spooled around

histones in eukaryotic cell nuclei.

The linking number of DNA is a topological invariant and is defined by the Gauss link-

ing number of two closed curves. Topoisomerases and Recombinases are enzymes that are

responsible for changing this DNA topology. Topoisomerases specifically maintain the plec-

tonemic or solenoidal structure of DNA in a cell. They do so by either cutting and ligating

a single strand or two strands of DNA. Topoisomerase I cuts a single strand of DNA and

changes the linking number of DNA by 1. Similarly, Topoisomerase II cuts both strands of

DNA and changes the linking number by 2. [76]. The occurrence of DNA knots has been

verified experimentally by Rybenkov et al., who found a distribution of DNA knots in the

presence of Topoisomerase II [67].

DNA knots arise in several cellular processes, and the presence of DNA knots has also

been found experimentally [74, 67]. In the case of bacteriophage packaging, a linear strand of

DNA is packed into the bacteriophage capsid, and becomes knotted. This knotting process

and the probability of knotting has been modeled by [1, 5, 4, 3]. Similarly, the role of Topoi-

somerase II in the process of unknotting has been modeled in [37], but not as a dynamical

process.

Linked DNA plasmids also are formed through the process of cellular replication. The

linking structure of entangled DNA loops is studied in [30], and others have studied the

unlinking process of DNA [71, 69]. Linked segments are particularly pronounced in the

structure of mitochondrial DNA of Kinetoplastid protozoa. Kinetoplastids are parasitic or-

ganisms with a unique mitochondrial DNA structure. Two examples of harmful Kinetoplasts

that are Trypanosoma brucei which causes African sleeping sickness, and Trypanosoma cruzi,

which causes Chagas disease.

This kinetoplast DNA, or kDNA, consists of a collection of around 5000 DNA minicircles

and 20 to 30 maxicircles linked in a sparse chainmail-like structure [68]. The formation of

this structure is not completely understood. Arsuaga et al. have proposed that the formation

of the kDNA network is a product of confinement [2, 25, 24, 26], in which they prove that

the probability of network formation increases to one with the density of rigid minicircles

3



[24]. Another model by Ogbadoyi et al. proposes that with no linking, minicircles would

be lost due to segregation [58]. The role of histone-like proteins or structure preserving

enzymes has been investigated in [39, 82]. Similarly, topological models have been used to

better understand the network topology of kDNA [2, 25, 15, 26, 24, 51, 48, 47, 28]. We are

interested in modeling a small network of kDNA minicircles dynamically.

Jun O’Hara defined the energy of a knot based upon the electrostatic energy of a thin rod

[60]. This O’Hara energy is a functional on the space of knot conformations that preserves

prime knot types under gradient descent. Freedman, He, and Wang later proved the existence

of energy minimizers for knots of a particular class [31]. The knot energy minimizers give a

notion of an ideal knot shape. Since proving the existence of these knot energy minimizers,

many researchers have sought to characterize properties of energy minimizers for various

knot energies including Möbius energies [10, 11, 9, 12].

The energy minimizing knot configurations are typically found by minimizing a knot en-

ergy with a gradient decent algorithm. Ideal extensible knot configurations have been studied

by minimizing bending energies both numerically [8] and analytically [34]; however, we are

particularly interested in the dynamical process of finding energy minimizing configurations.

Simplifying knot cascades ending an unlinking process similar to the action of Recombinase

has been studied analytically in [49, 50]. Similarly, the energy spectrum of links was studied

in [55, 66].

Because of the bending and torsional stiffness properties of DNA, it is natural to model

the double helical structure as a charged elastic rod. We are interested in studying the

dynamics of DNA knots, by modeling DNA as an electrostatically charged elastic rod. Since

O’Hara knot energies are similar to electrostatic energies, this should give an idea of the

energy landscape of extensible knots with twist, and the dynamics of these configurations.

Using the theory of Kirchoff rods, supercoiling of elastic rings and knots as well as

applications to DNA have been studied, in [18, 21, 20, 17, 19]. These works model DNA

as an inextensible Kirchoff rod with bending and twisting energy, but electrostatic energy

is not accounted for. Lim et al. studied the effects of a closed rod with twist and bend in

fluid numerically [46] using an extension to Peskin’s Immersed Boundary method [70]. This

model was extended to include electrostatics and a hardcore potential to model the dynamics
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of DNA plasmids immersed in fluid in the Generalized Immersed Boundary method [41].

Stochastic DNA plasmid models [73] based upon the Stochastic Immersed boundary method

[6]. As a result, we seek to model the dynamics of DNA trefoil knots with excess twist using

both the GIB and SGIB methods.

1.2 DNA modeling assumptions

Throughout this work, we make three main sets of modeling assumptions about the struc-

ture of DNA and its surrounding fluid. In chapters 2 and 3, we make the same simplifying

assumptions about the structure of a DNA segment, which coincide with the assumptions

made in the GIB [46, 41] and SGIB [73] methods. We think of the double-helical structure of

DNA as an elastic rod immersed in fluid. Figure 1 illustrates the correspondence between a

DNA segment and Cosserat rod. Instead of emphasizing the mechanical properties between

base pairs, we assume that the DNA segment has uniform twist, bend and shear constants

along the entire segment of DNA. This translates into assuming the Cosserat rod is homoge-

neous and isotropic. We also assume that the charges positioned along the sugar-phosphate

backbone of a DNA molecule are moved to the central axis of the rod. In figure 2 we see

that the charges are moved from the backbone to the central axis of the Cosserat rod in the

GIB and SGIB methods.

To drive dynamics of a knotted DNA segment, we will impose an initial excess twist in

the rod. However, this is not to be confused with the initial pitch of the helical structure. A

double-helical segment of DNA at equilibrium has no excess twist in the rod segment. Thus

imposing excess twist induces strain in the helical structure and as we have observed, drives

the dynamics of a knotted DNA segment.

Throughout chapters 2 and 3, as in the GIB method, [41, 46], and SGIB [73] method,

we assume the DNA is immersed in an incompressible fluid, with a low Reynolds number.

We also make the assumption that the fluid contains a dissolved monovalent salt. Thus we

would expect electrostatic energy to affect the overall dynamics of the system. However, in

the GIB method [41, 46], an throughout chapter 2, the rod is immersed in an incompressible
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fluid, with no thermal fluctuations, and fluid dynamics are given by Navier-Stokes flow.

Throughout chapter 3, we assume the fluid has random thermal fluctuations, and we use a

corresponding stochastic model. We also model fluid dynamics using Stokes flow throughout

this chapter.

Throughout chapter 4, our assumptions about the idealized structure of DNA and its

surrounding fluid differ from chapters 2 and 3. First, we assume that the DNA segment is

immersed in a ionized fluid, but we no longer model the DNA by an elastic rod. Instead, we

follow the theory of sequence-dependent DNA elasticity [16], and consider a DNA segment

as a series of stacked base pairs, each with their own orientation and kinematic properties

between adjacent base pairs. As a result, the specific DNA sequence affects the mechanical

properties along the segment of DNA, and the segment no longer has homogeneous and

transversely isotropic properties. The right panel of figure 1 illustrates the discrete, sequence-

dependent base pair model. We do however still assume that the electrostatic charges along

the DNA segment are located along the central axis of the rod. In figure 2, the charges from

the sugar-phosphate backbone are moved to the center of each base-pair slab.

The fluid is still assumed to be incompressible with low Reynolds number, and the

dynamics of the fluid is given by Stokes flow. We assume that the fluid contains a dissolved,

monovalent salt, as done previously, but for computational simplicity, instead of treating the

electrostatic interaction using a Debye-Hückel screening term [78], we treat the electrostatic

interaction as in [67], in which the effect of electrostatic repulsion gives DNA a larger effective

diameter.

1.3 DNA topology

We can begin to define concepts in DNA topology by thinking of a strand of DNA as

two oriented curves. The first curve, C1, lies along the central axis, through the hydrogen

bonds of the two helical strands, while the second curve, C2, lies along the DNA backbone

of one of the strands. We choose the axial curve as the first curve, as opposed to using both

backbones as our two curves, because in the continuous representation of DNA, we think of

6



Figure 1: Left: DNA [80] Center: Cosserat rod with central axis, C1, exterior axis, C2, and

frame {D1,D2,D3} Right: Sequence-dependent discrete base pair model.

Figure 2: Electrostatic charges along the phosphate backbone are moved to the central axis

of the DNA rod (Center) and discrete base pair sequence (Right) [80].
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the central axis as the axis of our Cosserat rod. Since a DNA plasmid is a closed knotted

or unknotted ring, let C1 and C2 be two oriented, closed curves in R3. Given C1 and C2,

the linking number describes how woven the two curves are. We can think of this is as half

the number of signed crossings of two closed curves in any planar projection. Formally, for

two differentiable curves, we define the linking number of C1 and C2 by taking the Gauss

integral [22], [72]:

Lk(C1, C2) =
1

4π

∮
C1

∮
C2

t1(s1)× t2(s2) · (x1(s1)− x2(s2))

|x1 − x2|3
ds1ds2, (1.1)

where Ci is parametrized by xi(s) as a function of arc length, s, and ti = dxi(s)
ds

. An example

of two oriented curves with linking number of 6 can be found in figure 3. The two curves C1

and C2 are given by the central axis, and the red winding curve respectively.

We can similarly define the writhe and twist for a strand of DNA. Given a single oriented,

closed curve, C1, the writhe represents the amount of chiral deformation in a curve. This is

then either the average number of signed crossings over all planar projections, or formally

for a closed, differentiable curve C1, the writhe is defined as [22], [72]:

Wr(C1) =
1

4π

∮
C1

∮
C1

t1(s1)× t2(s2) · (x1(s1)− x2(s2))

|x1 − x2|3
ds1ds2. (1.2)

An example of a planar curve with writhe of 1 and -2 is shown in figure 4. The signed

crossing convention follows the standard signed crossing convention [22].

We can similarly define the twist of a DNA segment. Given C1 and C2, the twist measures

the amount the amount one curves winds about another. For two differentiable curves, C1

and C2, in which t1(s) is the unit tangent to C1, and d(s) = x2(σ(s))−x2(s) is perpendicular

to t1(s), the twist is defined as [72], [22]:

Tw(C2, C1) =
1

2π

∮
C1

(t1(s)× d(s)) · d′(s)ds. (1.3)

An example of twist of 0, 1
2
, and 1 is shown in figure 5.

Two curves with a nonzero linking number are said to be topologically linked. Two

oriented curves with linking number of 1 is known as a Hopf link. For a given knot type, the

linking number is topologically invariant. While neither the twist nor writhe is invariant,
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Figure 3: Linking number Lk(C1, C2) = 6, Wr(C1) = 0, Tw(C1, C2) = 6 for two curves, the

central axis, C1 and the winding curve C2 in red.

a result by Calugareanu [14] and White [79] is that the linking number is the sum of the

writhe and twist:

Lk(C1, C2) = Wr(C1) + Tw(C2, C1) (1.4)

With regards to DNA, various enzymes change the topology of DNA during processes

of cellular replication. Topoisomerase I and Topoisomerase II change the linking number

of DNA by ±1 or ±2 respectively by strand passage. These enzymes typically simplify the

topology of knotted DNA during cellular replication. Recombinase also similarly simplifies

DNA topology by reducing crossings, but at a slower rate than the Topoisomerases.

Typically, a DNA plasmid with high writhe exhibits supercoiling. These supercoiled

structures are known as plectonemes. We are interested in exploring the dynamics of DNA

knots by increasing the initial twist in the DNA segment to see how this affects the end

structure or the stable configuration of the knotted structure. Because the linking number

remains invariant for a given knot type, we would expect that an initial increase in twist

could lead to an increase in writhe, when the twist relaxes.
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Figure 4: Writhe of 1 and 2 for an oriented curve, with signed crossing convention.

Figure 5: Twist of 0, 1
2
, and 1 for two oriented curves, C1 and C2.
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2.0 Equilibrium configurations of DNA knots

2.1 Introduction

DNA is a double-helical polymer consisting of two polynucleotide strands connected by

nucleotide base pairs bound by hydrogen bonds. The charged sugar-phosphate backbone

has residues located every 0.34 nm, each with a single electronic charge. These charges

and the sugar-phosphate backbone itself cause DNA to have bending and torsional stiffness.

The residues along the backbone also cause a self-repulsive force that reduces the chance of

self-contact of a strand of DNA.

The mechanical properties of DNA are particularly important during processes of cellular

transcription and replication, when DNA becomes knotted and forms supercoiled structures,

or plectonemes. Both Topoisomerase enzymes and Recombinase enzymes change the topol-

ogy of DNA throughout these cellular processes. We are interested in modeling the dynamics

of these supercoiled DNA knot configurations.

Both knot and plectoneme structures have been observed in vivo and in vitro. Vino-

grad and Lebowitz observed supercoiled closed DNA rings, or plasmids [75]. Using gel

electrophoresis, Rybenkov et al. found a distribution of knot types, for low-crossing num-

ber torus knots [67], and among the closed DNA segments, the most common knot type

observed, apart from the unknot, was the trefoil knot. As a result, we focus our studies on

modeling the dynamics of the trefoil knot type.

Due to its mechanical structure, we model DNA as in the Generalized Immersed Bound-

ary (GIB) method [41, 46]. DNA’s charged sugar-phosphate backbone causes bending and

torsional stiffness. It also greatly reduces the chance of a strand coming into self-contact,

meaning that until the DNA is in the presence of enzymes, no strand passage naturally oc-

curs. We thus model DNA by an intrinsically straight, homogeneous, isotropic, elastic rod.

For simplicity, we assume that the charges from the phosphate backbone are distributed uni-

formly along the central axis. Self-contact forces are included as (i) a long-range electrostatic

repulsive force, and (ii) a hard-core potential that prevents strand passage of two segments
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of the DNA.

In vivo, DNA is immersed in a solution with dissolved counterions. The effect of elec-

trostatic repulsion is dampened by the concentration of monovalent and divalent salt ions

in the solvent. The GIB method models the fluid-structure interaction of DNA idealized as

a rod immersed in a solvent, and the electrostatic dampening effect is modeled as in the

theory of counterion condensation, due to Manning [53].

In 2004, Coleman and Swigon found equilibrium structures of closed, knotted and un-

knotted rods [19]. However, electrostatic energy was not accounted for in their model. Lim

et al. [46] generalized the Immersed Boundary method to closed circular, elastic rods, and

numerically obtained equilibrium structures of a closed, twisted rod in a fluid. Using an

extension of the GIB method, Lim et al. modeled the dynamics of closed, unknotted electro-

statically charged rods immersed in a fluid with various dissolved molar salt concentrations

in [41]. They found equilibrium structures of these unknotted, closed rods using an extension

of the GIB method, but no other knot types were considered.

Our goal is to find equilibrium and saddle configurations of the DNA elastic rod model,

which includes electrostatic and contact energies. We then describe the main features of such

configurations and divide them into classes according to their symmetries. We also describe

main features of the dynamics of a knot configuration during the process of equilibration.

2.2 Generalized Immersed Boundary Method

The Generalized Immersed Boundary (GIB) Method [46], and its extension to DNA

specifically [41], describes the dynamics of a closed, electrostatically charged, elastic rod

immersed in fluid. The GIB method builds upon Peskin’s Immersed Boundary Method [70],

and is a generalization of the method in [46], which applied the immersed boundary method

to closed, rods with intrinsic twist immersed in a fluid.

The Immersed Boundary Method was first used to study the dynamics of heart valves and

their interaction with surrounding fluid [61, 62, 63]. The classical IB method is applied to

two or three-dimensional structures immersed in a three-dimensional fluid. The GIB method
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[46] extended this to include a thin Cosserat rod, or one-dimensional structure in fluid. This

method incorporates the fluid-structure interaction using a smooth approximation of a delta

function to distribute forces and torque from the rod onto the fluid. This technique both

gives the Cosserat rod an effective diameter and avoids the issue of a singularity with a

standard delta function as a kernel.

In the extension of the GIB method [41], DNA is modeled by a closed, intrinsically

straight, electrostatically charged, elastic rod. For simplicity, the elastic rod is also assumed

to be homogeneous and isotropic. Thus, we assume that the kinematic properties are uniform

throughout the segment of DNA, as opposed to depending on the specific sequence of the

DNA plasmid, and that the DNA has no propensity to twist or bend in any particular

direction.

The closed rod is assumed to be immersed in a fluid whose dynamics is described by an

incompressible, Navier-Stokes flow with no-slip conditions. This follows the convention of

the Immersed Boundary Method [70]. The motion of the fluid is described using the Eulerian

coordinates, and the motion of the rod is described using the Lagrangian coordinates. The

GIB accounts for the fluid-structure interaction of a one-dimensional rod in a fluid. This

accounts for the forces and moments from the rod acting on the fluid and as well as the forces

from the fluid onto the rod. The velocity of rod is the same as the fluid, meaning we impose

the no-slip conditions. The interaction between the Eulerian and Lagrangian variables is

accounted for using a smooth approximation of the three-dimensional Dirac delta function,

which we refer to as a generalized delta function, as in the GIB method [41, 46].

Because of its kinematic properties, we model the double-helical structure of DNA as a

closed, elastic rod whose mechanics are governed by the Cosserat rod theory. The rod is

described by the position of the central axis, X(s, t) at time t, and the frame at each point

along the rod, d = (D1,D2,D3), at time t. This frame tracks the stretch and torque within

the rod itself. As opposed to an inextensible, Kirchoff rod, the GIB method [46] allows for

no single vector of the frame to lie tangent to the rod, meaning the material parameter s is

not necessarily the arc length. These modifications allow the rod to be slightly extensible.

The Cosserat rod theory accounts for bending, twisting, stretching and shearing of the

rod. It naturally takes into account the internal moments and forces of the rod. The force,
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Figure 6: Rod mechanics

F(s, t), and the moment, M(s, t), transmitted across the rod at position s are defined as in

the GIB method [41].

In what follows, a1, and a2 represent the bending moduli of the rod about D1 and D2

respectively; a3 is the twisting modulus of the rod; b1, and b2 are the shear force constants;

b3 is the stretch-force constant. The elastic energy intrinsic to the Cosserat rod is described

by shear, bending, twist, and stretch energies:

E =
1

2

∫ [
a1

(
∂D2

∂s
·D3

)2

+ a2

(
∂D3

∂s
·D1

)2

+ a3

(
∂D1

∂s
·D2

)2

+ b1

(
D1 · ∂X

∂s

)2

+ b2

(
D2 · ∂X

∂s

)2

+ b1

(
D3 · ∂X

∂s
− 1

)2]
ds.

(2.1)

Note that the total energy, however, also includes electrostatic energies, which is discussed

in detail later.

In our case, for simplicity, the rod has transversely isotropic material properties, meaning

a1 = a2 = a, and b1 = b2 = b. This is a minor assumption meaning the DNA does not have

a propensity to twist or bend in either direction.

The dynamics of the fluid is governed by incompressible Navier-Stokes equations, where

u(x, t) is the fluid velocity, p(x, t) the fluid pressure, ρ the fluid density, and µ the viscosity
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of the fluid:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µδu + f b, (2.2)

∇ · u = 0, (2.3)

The force density f b(x, t) represents the external body force from the rod to the fluid resulting

from the mechanical imbalance of the immersed DNA. This takes into account the force

and torque from the rod applied to the fluid, as well as the total self-contact forces and

electrostatic repulsion from the rod applied to the fluid.

The full system of equations describing the rod and fluid dynamics is as in [41] and is as

follows:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µδu + f b, (2.4)

∇ · u = 0, (2.5)

0 = f +
∂F

∂s
, (2.6)

0 = m +
∂M

∂s
+
∂X

∂s
× F, (2.7)

F = F1D
1 + F2D

2 + F3D
3, (2.8)

M = M1D
1 +M2D

2 +M3D
3, (2.9)

F1 = b1D
1 · ∂X

∂s
F2 = b2D

2 · ∂X

∂s
F3 = b3

(
D3 · ∂X

∂s
− 1

)
(2.10)

M1 = a1
∂D2

∂s
·D3 M2 = a2

∂D3

∂s
·D1 M3 = a3

∂D1

∂s
·D2 (2.11)

f b(x, t) =

∫
(−f(s, t))δc(x−X(s, t))ds +

1

2
∇×

∫
(−m(s, t))δ(x−X(s, t))ds

+

∫
(−f c(s, t))δc(x−X(s, t))ds +

n∑
i=1

(−f ei (t))δc(X−Xi(t)),
(2.12)
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∂X(s, t)

∂t
= U(s, t) =

∫
u(s, t)δc(x−X(s, t))dx, (2.13)

W(s, t) =
1

2

∫
(∇× u)δc(x−X(s, t))dx, (2.14)

∂Di(s, t)

∂t
= W(s, t)×Di(s, t), i = 1, 2, 3. (2.15)

Here −f and −m are the force and torque densities from the rod applied to the fluid. The

terms f c(s, t) and f ei (t) represent the steric repulsion and electrostatic forces defined below.

The locally averaged fluid velocity and angular fluid velocity are given by U(s, t) and W(s, t),

and equation (2.15) updates the frame in the fluid.

The GIB method accounts for the fluid-structure interaction with a smooth approxima-

tion of a three-dimensional delta function, effectively giving the rod thickness within the

fluid, and applying the force and torque generated by the rod onto the fluid. This is ac-

counted for by a convolution of the function, δc(x) = δc(x1)δc(x2)δc(x3), with each of the

forces and moments from the rod applied to the fluid, including the total self-contact force

and electrostatic forces. Here, δc(x) is defined as follows [63]:

δc(x) =
1

c3
φ
(x1

c

)
φ
(x2

c

)
φ
(x3

c

)
, (2.16)

where the function φ is defined by:

φ(r) =



3−2|r|+
√

1+4|r|−4r2

8
, if |r| ≤ 1,

5−2|r|−
√
−7+12|r|−4r2

8
, if 1 ≤ |r| ≤ 2,

0, if |r| ≥ 2.

(2.17)

To ensure the force and torque of the rod are applied to the fluid only at neighboring

grid points to the position of the rod, the following, with c being an integer multiple of the

fluid mesh spacing h, must hold for all X:
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∑
j

δc(j−X)h3 = 1, (2.18)

∑
j

(jh−X)δc(jh−X)h3 = 0. (2.19)

The index j is any vector with integer components.

In the extended GIB method [41], the self-contact force f c(s, t) at position s along the

rod and time t follows a Hooke’s law. Each local self-contact force is proportional to the

amount of compression within the rod. The total self-contact force then is the sum over all

local points of self-contact. The amount of compression is relative to the diameter of DNA,

D = 20Å, and the proportionality constant, g, is chosen sufficiently large so that there is no

strand crossing during a self-contact.

That is, the self-contact force at position s given by the sum of contact points, s′, with

s:

f c(s, t) =
∑
s′

f̂ c(s, s′, t), (2.20)

where

f̂ c(s, s′, t) = g(D − |X(s, t)−X(s′, t)|) X(s, t)−X(s′, t)

|X(s, t)−X(s′, t)|
(2.21)

for any two material points s and s′ satisfying |s − s′| > 2D, |X(s, t) −X(s′, t)| ≤ D, and

(X(s, t)−X(s′, t)) ·T(s, t) = (X(s, t)−X(s′, t)) ·T(s′, t) = 0 [41].

To model the electrostatic interaction of DNA, along the central axis of the rod, a single

charge is located at each base pair, or every 0.34nm. The total electrostatic force is similarly

a sum of all electrostatic repulsive forces at each charge along the rod. Each local repulsive

charge force is a screened Coulombic force following the counterion condensation theory.

That is, each local repulsive charge is a repulsive force with a Debye-Hückel screening [78].

More precisely, the Coulombic force f ei is defined by

f ei (t) =
n∑
j 6=i

Fe
ij(t), (2.22)
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where

Fe
ij(t) =

qiqj expκdij(t)

4πε0εWdij(t)

(
1

dij(t)
+ κ

)
(Xi(t)−Xj(t))

dij(t)
, (2.23)

and n is the number of base pairs; the position and net charge of the ith base pair is given

by Xi and qi respectively; and dij = |Xi(t)−Xj(t))| is the distance between charges qi and

qj. Also, the constants ε0, and εW represent the permittivity of free space and the dielectric

constant of water at 300K, and qi is 0.48e, where e is the elementary charge of an electron

[52, 81]. For a molar salt concentration of Cs moles per litre, the Debye screening parameter

is κ = 0.329
√
CsÅ

−1
.

The electrostatic potential is given by the sum:

Eelectro =
∑
i<j

qiqje
−κdij

4πε0εWdij
. (2.24)

2.3 Methods

The numerical method we used is as in the GIB method and implemented in MATLAB

on a cluster. The rod and fluid each have their own mesh, with the fluid expressed in

the Eulerian coordinates, and the DNA rod expressed in the Lagrangian coordinates. For

simulations, we discretize the rod at each base pair, and consider closed DNA segments with

600 base pairs. Thus, the DNA is a closed segment, with periodic boundary conditions for the

position of the rod at time t, X(s, t) and each of the vectors in the frame, {D1, D2, D3} at

time t. The initial position of the rod is described by a standard trefoil knot parametrization:

X(s, 0) = (X1(s, 0), X2(s, 0), X3(s, 0)), (2.25)

X1(s, 0) =
1

p
cos

(
ps

r0

)(
1 +

D

r0

cos

(
qs

r0

))
, (2.26)

X2(s, 0) =
1

p
sin

(
ps

r0

)(
1 +

D

r0

∗ cos

(
qs

r0

))
, (2.27)

X3(s, 0) =
D

r0

sin (qs/r0), (2.28)
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where D is as defined above, the diameter of the rod, r0 is the radius of a circle with

circumference equal to a 600 base pair plasmid. Figure 7 illustrates the starting configuration

of the DNA trefoil knot. The charges are located at every base pair, with a spacing of 0.34

nm. The parameters p and q represent the number of times the central axis wraps around

the rotational axis of symmetry of a torus and the central circle of the torus respectively.

This holds for general (p, q)-torus knots, and in the case of a right-handed trefoil, p = 2 and

q = 3.

The rod is given an initial excess twist, Lkrel, with uniform twist density, Lkrel/(2πr0).

This is achieved by arranging the initial orientation of the material frame, {D1,D2,D3}.

Note that for a circular configuration, the excess twist parameter is the same as the change

in linking number, ∆Lk. For the right-handed trefoil knot, the linking number is −3, so

Lkrel = ∆Lk + 3. The frame is parametrized by material parameter s, and z is the unit

tangent to the z-axis:

D3(s) =
r0∣∣|r0
dX(s,0)
ds

∣∣| dX(s, 0)

ds
, (2.29)

R(s) =
D3 × z

||D3 × z||
, (2.30)

E(s) =
R×D3

||R×D3||
, (2.31)

and

D1(s) = cos
(
Lkrel

s

r0

)
E(s) + sin

(
Lkrel

s

r0

)
R(s), (2.32)

D2(s) = − sin
(
Lkrel

s

r0

)
E(s) + cos

(
Lkrel

s

r0

)
R(s), (2.33)

where

0 ≤ s ≤ 2πr0. (2.34)

Initially, D3 lies tangent to the initial axial curve X(s, 0). The unit vectors R(s) and E(s)

are useful vectors perpendicular to D3. The frame vectors D1 and D2 are expanded in this

normal frame and describe the number of initial twists the axial curve is given, Lkrel. Note

that as opposed to a starting circular configuration, because the starting trefoil configuration
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is not an equilibrium solution for the system, a uniform twist density is sufficient to drive

the dynamics of the immersed DNA and surrounding fluid.

The fluid starts at rest and is given periodic boundary conditions with a space grid of

10Å. This means the system is driven by the initial excess twist in the rod. We make the

assumption, as in [41], that the fluid contains monovalent salt ions with a concentration of

either Cs = 0.1M or Cs = 0.01 M to examine the effects of electrostatics on the dynamics

of the system.

Given an initial knot configuration and twist density, the algorithm is as follows [41]: 1.

Compute the external force, f , and moment, m, densities from the rod onto the fluid. These

are computed using the position X of the rod at time t and the frame at every position along

the rod, {D1,D2,D3} using the discretized balance equations. 2. Spread f , and m from

the rod to the fluid using the discrete delta function. 3. Update fluid velocity u by solving

the Navier-Stokes equations using an FFT. 4. Interpolate u at the rod discretization points

5. Interpolate the rod through the fluid 6. Check the CFL condition to ensure convergence

[46].

To find knotted equilibrium configurations, we had two simulation phases. In the first

phase, for each fixed Cs = 0.1M with Cs = 0.01M and Lkrel ranging from -10 to 10, we found

a single stable configuration by starting with the standard parametrization of the (3,2)-torus

knot, and imposing a uniform twist density by an integer number of twists, of Lkrel. This

means that both the rod and the frames have a periodic boundary condition, i.e. X1 = X601,

and Di,1 = Di,601, for i = 1, 2, 3.

In the second phase of simulations, we wanted to further explore the space of equilibrium

configurations. To do so, from each of the initial stable configurations from phase 1, for a

fixed Cs = 0.1M, we perturb the initial equilibrium configuration by imposing a new excess

link with uniform twist density. For each excess linking number, Lkrel, this gave an entire

family of stable equilibria.

The uniform twist density is imposed through the initial position of the {D1,D2,D3}

frame. For each linking number the system is driven by twisting energy and runs until

reaching a steady state. Each equilibrium configuration is parametrized by a molar ionic

strength of the surrounding fluid, and excess linking number, Lkrel.
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For a knot configuration, we are interested in the dynamics of the coiling process, so we

need to compute energy values, linking number, writhe, and twist. To do so, the total energy

is a sum of the elastic energy, defined in the GIB section, with the steric and electrostatic

energies. Thus, the total elastic energy includes bending, stretching, shearing, twisting,

steric, and electrostatic energies. We also find the kinetic energy of the fluid and the rod

and keep track of the fluid and rod velocities throughout a dynamic simulation. The energy

of the rod is given by:

Etot = E + Eelectro, (2.35)

and the kinetic energy of the fluid is

1

2
ρ

∫
|u|2 dt. (2.36)

The linking number for a given knot configuration remains invariant throughout dynamic

simulations, assuming there is no strand passage. This follows from the theorem by Calu-

gareanu and White [14], [79]. Since we fix the linking number in the beginning, we can use

it to compute either the writhe or twist. Linking number, writhe, and twist are defined in

equations 1.1, 1.2, and 1.3 of chapter 1 respectively, where C1 = X(s, ·) for a fixed time, and

C2 is the curve on the exterior of the rod traced by the D1(s, ·) vector for a fixed time.

2.4 Results

We used two simulations phases to find equilibrium configurations and the dynamics

between stable equilibria. In the first phase of simulations, we start with the standard

parametrization of a trefoil, as in figure 7. In the second phase, we start with one of the

established stable equilibria from phase one. Starting with the standard trefoil parametriza-

tion, for a fixed Cs = 0.1M or Cs = 0.01M, we impose a uniform twist density, by an integer

number of excess link in the rod. The stable solutions can be found in figure 8. Similarly,

the stable solutions starting from these phase one equilibria can be found in figures 12 and

13.
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parameters symbol value

grid size N ×N ×N 643

domain size L× L× L L = 487.014 Å

time step ∆t 3× 10−11

fluid density ρ 1 g cm3

fluid viscosity µ 0.01 g (cm s)−1

permittivity of free space ε0 3.45× 10−7e2/(gÅ
3
s−2)

dielectric constant of water εW 77.7

electric charge q 0.24× 2e

molar salt concentration Cs 0.01, 0.1M

Debye screening parameter κ 0.329
√
CsÅ

−1

bending modulus a1 = a2 = a 1.3× 10−19g cm3s−2

twist modulus a3 1.82× 10−19g cm3s−2

shear modulus b1 = b2 = b 5× 10−5g cm3s−2

stretch modulus b3 = b 5× 10−5g cm3s−2

number of base pairs n 600

radius r 324.676Å

diameter D 20 Å

Table 1: GIB computational parameters

Figure 7: DNA starting configuration
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Starting with an initial configuration of a standard trefoil knot with initial excess link,

Lkrel, regardless of Lkrel and Cs, the system passes through typical stages of progression.

A sample trajectory is seen in figure 9 for a 600 Bp DNA segment, with Lkrel = −9 and

Cs = 0.1M.

The system is driven by excess twist energy resulting in a slight collapse of the axial

curve. Following this is a rapid equilibration of the twist density until the knotted DNA

reaches one or more points of self contact. This equilibration of the twist density is what

results in the formation of plectonemes, or regions of high writhe, with terminal or central

loops. The equilibration of initial excess twist is followed by a slower folding process, driven

by the electrostatic repulsion and bending energy. Finally, we observe a slithering motion of

the nearly equilibrated configuration, where two segments of the rod slide past one-another

in a position of near contact.

We have also observed other equilibrium structures without any plectonemes present,

where there is still a rapid equilibration of the initial excess twist density until one or more

points of self-contact occurs. Often, if no plectonemes are present, this initial pretzel-like

configuration is quite compact. This process is still typically followed by a slower bending

process and possibly slight slithering. A canonical example of this compact configuration is

the ∆Lk = −5, Cs = 0.1M knot shown in figure 8.

2.4.1 Effects of Lkrel and Cs on final configurations

Figure 8 illustrates the effects of linking number and ionic strength on the limiting knot

configurations. An increase in the ionic strength of the fluid neutralizes the electrostatic

repulsion effects of the counterions within the fluid. Thus, as Cs increases, the axial curve

comes closer to self contact. This appears as a ballooning effect for lower values of Cs.

This property in consistent across all values of Lkrel. Similarly, as the absolute value of

Lkrel increases, we see longer plectonemes, or regions of supercoiling, and more compact

knotted structures, also leading to more regions of near self-contact of the axial curve. This

phenomenon is seen for values of |Lkrel| greater than or equal to 4 at Cs = 0.1M, but is

only noticeable for Lkrel = −9,−10, 10, for Cs = 0.01M. Note however that because of both
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Figure 8: Phase one stable equilibrium configurations parametrized by Lkrel = ±1,±2, . . .±

10 for Cs = 0.1M and Cs = 0.01M.
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electrostatics and the hardcore potential, the DNA rod does not actually make contact with

itself in the equilibrium configurations. If self-contact occurs, the hardcore potential acts as

a spring force to repel the DNA rod at each point of contact, while the electrostatic force is

a screened repulsive force at each base pair.

2.4.2 Dynamics of transitions

Throughout the process of equilibration, the system follows gradient flow-like dynamics.

This process occurs on the time scale of 10−200µs. For a DNA knot configuration, the total

energy in, kT , is a sum of twist, bending, shear, stretch, and electrostatic energies. The

system is largely driven by the initial excess twist energy. As the twist energy equilibrates,

the rod reaches one or more points of self-contact, resulting in a large increase in electro-

static energy. This effect is demonstrated by the simultaneous increase in excess bend and

electrostatic energy as twist energy rapidly decreases until near equilibration. The elastic

energies, fluid kinetic energy, and fluid and DNA velocities are displayed in figure 10.

The main contributors to the total energy of the elastic rod are the twist, and electrostatic

energies followed, by the bending energy. The initial increase in the bending energy is a result

of the equilibration of excess twist density. Then, as the slower bending process unfolds the

knotted DNA, bending energy values decrease until reaching equilibration. Shear and stretch

contribute little to the total elastic energy of the rod, and shearing requires relatively the

same amount of time to equilibrate as bending, twist, and electrostatic energies. However,

stretch equilibration is roughly one hundred times faster than all other mechanical processes

and equilibration of the twist energy is reached on the order of 0.1µs, meaning the DNA is

very nearly inextensible.

The fluid flow also follows gradient flow-like dynamics. Both the fluid kinetic energy

and fluid velocity follow a near exponential decay with possible local minima until reaching

equilibration. The fluid velocity tracks with the velocity of the DNA immersed in the fluid.

In this case, the dynamics of the fluid is solely driven by the dynamics of the twisted DNA

configuration.

While the final configuration obtained is a stable steady state, we can also approximate

25



Figure 9: Dynamic progression of knot configuration starting from the standard trefoil

parametrization for Lkrel = -9, Cs = 0.1M. Timestamps: from left to right and top to bottom

frames: 0.0003µs, 0.4203µs, 0.6903µs, 1.2003µs, 2.7303µs, 5.0403µs, 6.9603µs, 8.5803µs,

20.4303µs.
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Figure 10: Elastic energies throughout dynamic simulation for Lkrel = −7 and Cs = 0.1M

Energy values are in units of kT, and velocities in µm/s. From the top left to bottom right

panels: 1. bending energy, 2. twist energy, 3. shear energy, 4. stretch energy, 5. electrostatic

energy, 6. excess twist, 7. fluid kinetic energy, 8. maximum velocity of the DNA and fluid,

9. minimum distance between points along the DNA.
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saddle-like equilibrium structures. When the fluid and rod velocities decelerate, the system

passes near a saddle-node. This frequently occurs after the rapid equilibration of the twist

density, and before the slower bending process occurs. Example of saddle nodes are shown

in figure 11. These were obtained by finding the knot configurations where the DNA velocity

slows before accelerating again.

2.4.3 Phase two equilibria configurations

The stable equilibrium knot configurations in figures 12 and 13 were obtained through the

second phase of exploring the Lkrel, Cs parameter space. The configurations on the diagonal

are those obtained in the first phase of simulations, and are identical to those shown in figure

8 for positive and negative Lkrel. From these initial stable configurations, we perturbed the

linking number by a uniform twist density, through changing ∆Lk by integer values. This

corresponds to moving vertically throughout the table starting from the diagonal.

Each of these configurations contains a 600 Bp DNA sequence for Cs = 0.1M and integer

Lkrel ranging from -10 to 10. Note that Lkrel = 0 is not displayed, but this is the linking

number for the unperturbed standard trefoil. We considered only the Cs = 0.1M parameter

space, because at Cs = 0.01M, the initial limiting configurations were much less diverse

across all linking numbers than for Cs = 0.1M.

Throughout simulations, because there is no strand passage of the DNA segment, the

linking number remains invariant. Moving across a row of figures 12 and 13 illustrates the

variety of equilibria found while preserving linking number.

Notice that we have discovered entire new families which persist through various linking

numbers. We observe some common features as before: plectonemes or regions of supercoiling

occur with larger values of |Lkrel|. The families of configurations with plectonemes and

either terminal loops or central loops are more likely to bifurcate and change symmetry as

Lkrel changes, compared to the more compact stable structures. Consider for example the

Lkrel = −3 column. As we move vertically throughout the column, by perturbing Lkrel, the

configuration passes through the standard trefoil knot, Lkrel = −1,−2, an opened version

of that in Lkrel = −3, a configuration with two loops and a plectoneme at Lkrel = −4,−5,

28



Figure 11: Saddle configuration for various linking numbers, with Cs = 0.1M . From

left to right and top to bottom, displayed are saddle node configurations for Lkrel =

−4,−7,−8,−9,−10, 5, 8, 9, 10.
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Figure 12: Phase two stable equilibrium configurations for Lkrel = −1,−2, . . . ,−10 with

corresponding energy values in kT. Configurations inside the black boxes have D3 symmetry,

those inside green boxes have C2 symmetry, while the rest are asymmetric.
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Figure 13: Phase two stable equilibrium configurations for Lkrel = 1, 2, . . . , 10 with cor-

responding energy values in kT. Configurations inside the black boxes have D3 symmetry,

those inside green boxes have C2 symmetry, while the rest are asymmetric.
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a central loop with two plectonemes at Lkrel = −6, and three plectonemes with 3 terminal

loops at Lkrel = −7,−8,−9,−10.

If we compare this the Lkrel = −5 column, we see that the more compact, pretzel-like

configurations are more robust when the linking number is perturbed. They do not develop

long plectonemes by perturbing the linking number, and the configuration remains compact.

This is consistent for positive and negative Lkrel values.

Note that we also discovered new asymmetric knot configurations. We have found two

types of symmetries for the trefoil knot with excess twist. Those that have a three fold rota-

tional and reflection symmetry, or D3 symmetry, and those that have one axis of rotational

symmetry, or belong to the C2 symmetry group. Figures 12 and 13 partition the space of

stable equilibria by their respective symmetry groups. It is interesting that as we perturb

the value of Lkrel, we see a process of both symmetry breaking and formation. Starting from

Lkrel = −3, the knot configuration jumps branches between structures with D3 symmetry

to asymmetry, to C2, and back to D3 symmetries.

The dynamics of the phase two steady states are similar to the phase one steady states.

For Lkrel in the range of -1 to -10, perturbing the phase one equilibrium solution by a

negative value of Lkrel further drives the system by an excess in twist energy. The dynamics

appear to be a continuation of the process observed in phase one. Perturbing these phase

one equilibria by a positive Lkrel has an uncoiling effect on the equilibrium configuration.

The system is still driven by excess twist, just in the opposite direction.

2.5 Conclusion

Using the GIB method, we were able to determine stable equilibria of an elastic trefoil

knot for various linking numbers, approximate saddle configurations, and observe the elastic

energy values throughout the dynamic process. The equilibrium configurations were con-

sistent with the results found by Coleman and Swigon [19] for torus knots. We observed

similar stable knot configurations for the trefoil knot, with the exception of those that have

significant self-contact. Given that the GIB method additionally incorporates electrostatic
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energy, we would not expect to find configurations which come into close contact for large

portions of the DNA segment to be stable.

Given this additional constraint, we found stable equilibria to share similar features of

plectonemic structures with high ∆Lk and similar symmetries. Additionally, we found many

new families of stable equilibria at lower excess linking numbers, and we explored a wider

range of values for excess linking number.

The benefit of finding knot energy minimizers through a dynamical process as opposed

to a gradient descent algorithm is that we can find transient states and observe energy values

throughout the process. From this deterministic dynamical system, we gain a broader view

of the knot energy landscape as a whole.
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3.0 Stochastic dynamics of DNA knots

3.1 Introduction

While exploring the dynamics of DNA knots using the GIB method gave many insights

into the way in which knotted DNA behaves immersed in a fluid, we still only have a

glimpse of biologically realistic dynamics using a deterministic model. At the length scale of

a DNA plasmid, thermal fluctuations play a large part in the overall dynamics. To further

study these dynamics, we will incorporate thermal forcing using the Stochastic Generalized

Immersed Boundary (SGIB) Method [73].

The SGIB method takes into account the random thermal forcing within the fluid, and

also accounts for interaction of an elastic rod immersed in fluid as it builds upon the GIB

method [46, 41]. So, we will model the structure of a DNA plasmid as in the GIB and SGIB

methods. As in the GIB method, we assume that a closed DNA plasmid is immersed in an

ionized fluid. The double-helical structure of DNA is assumed to be a closed, homogeneous,

isotropic, intrinsically straight elastic rod. Thus, the DNA has uniform elastic properties

throughout the entire segment. We also assume that the charges, which lie along the sugar-

phosphate backbone of DNA are moved to the central axis of the Cosserat rod.

While the immersed DNA molecule is modeled as in Chapter 1, the numerical method

describing the dynamics of the fluid change for the SGIB method. Since the ratio of inertial

force to viscous force, or the Reynolds number, of the fluid is low, the nonlinear advection

term in the Navier-Stokes equations can be ignored. Thus the SGIB method models the

fluid dynamics using incompressible Stokes flow. Additionally, there is a term added to the

force density acting on the fluid which accounts for a uniformly random thermal forcing.

Building upon our results from Chapter 2, we seek to gain insights into the dynamics

and energy landscape of DNA trefoil knots with excess twist. To do so, we classify the

equilibrium structures found in Chapter 2 using an equivalence relation from a Kendall

shape space. We then use the SGIB method to simulate knotted configurations with a given

excess linking number. Viewing this as a continuous time Markov process, our goal is to
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determine the mean holding time that the stochastic knot configurations spend within each

basin of attraction of a stable equilibrium, find the transition rates for the CTMC, obtain the

transition probabilities between these equilibria, and compare these to the energy estimates

obtained in chapter 2.

3.2 Stochastic Generalized Immersed Boundary Method

The Stochastic Generalized Immersed Boundary (SGIB) Method, developed by Swigon

et. al. [73] is a stochastic extension of the GIB method [46] and the GIB method extended

to DNA plasmids [41]. This stochastic extension takes into account the random thermal

fluctuations within a fluid at the scale of macromolecules and cellular structures, and it

accounts for torsional drag of an immersed structure in fluid. The stochastic extension

used is in the style of the Stochastic IB method by Atzberger et al. [6], in which random

thermal forcing is added to the fluid equations. This method is different from a Brownian

dynamics approach [13, 29, 64, 65], in which the fluid has a significantly lower density than

the immersed structure, known as Dissipative Particle dynamics, [7, 27, 29, 38, 35, 43, 54, 56],

which works well at larger length scales.

Because the SGIB method builds upon the GIB method, the Cosserat rod equations,

balancing the forces and moments of the rod remain the same. We define electrostatic and

steric forces, f e and f c, in equations 2.22, and 2.21 in chapter 1 and as in the GIB method.

Similarly, the force density f b(x, t) is defined in equation 2.12 in chapter 2 and represents

the external body force from the rod to the fluid resulting from the mechanical imbalance

of the immersed DNA [46, 41]. However, for the equations of fluid motion, because the

system has a low Reynolds number, the non-linear advection term is neglected, resulting in

a time-dependent, incompressible, Stokes flow. Thus, the fluid flow for the SGIB method is

as follows, where u(x, t) is the fluid velocity and p(x, t) is the fluid pressure [73]:

ρut = −∆p+ µ∇u + f tot, (3.1)

∆ · u = 0. (3.2)
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Now, the force density f tot(x, t) acting on the fluid is a sum of the the external body force

from the rod onto the fluid, and the thermal force: f tot = f b(x, t) + f thm. The thermal force

is assumed to be uniform across the domain of the fluid, and is represented in Fourier space

as Gaussian white noise, where Bk(t) is standard 3-dimensional Brownian motion, and Dk

is a mode-dependent forcing term [6]:

f̂ thmdt = ρ
√

2Dk dBk(t). (3.3)

Following the method from [6], to derive the numerical method, we use a finite difference

scheme for the fluid equations:

ρ
dum

dt
=

µ

∆x2
(um− − 2um + um+)− 1

2∆x
(pm+ − pm−) + f total(xm, t), (3.4)

where the fluid variables are on a periodic grid with length L in each direction, with N

discretization points and spacing ∆x = L/N . Similarly, m = (m1,m2,m3) has integer

values and lies along the integer lattice, and xm is the position of the grid point with index

m. Similarly, um, and pm, represent the discretized velocity and pressure at position xm, as

in [6].

If we apply a discrete Fourier transform, the system decouples into a system of ordinary

differential equations:

dûk

dt
= −αkûk − iρ−1p̂kĝk + ρ−1f̂ totalk , ûk =

1

N3

∑
m

um exp(−i2πk ·m)/N, (3.5)

ûk · ĝk = 0, um =
∑
k

ûk exp(i2πk ·m)/N, (3.6)

where ûk is the discrete Fourier transform of um. Here,

αk =
2µ

ρ∆x2

3∑
j=1

(
1− cos(2πk(j)/N)

)
(3.7)

represents a mode-dependent decay coefficient, and the discrete transform of the second

order finite difference operator is given by

ĝ
(j)
k =

sin (2πk(j)/N)

∆x
. (3.8)
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We impose an additional constraint, ûN−k = ûk, to ensure we have a system of real differ-

ential equations.

Due to the incompressibility, since ĝk is orthogonal to both ûk and dûk

dt
, taking the dot

product of ĝk with equation (3.5) yields:

p̂k =
−iĝk · f̂ totalk

|ĝk|2
. (3.9)

Thus we can use a projector to control the incompressibility:

P⊥k =

(
I − ĝkĝ

T
k

||ĝk||2

)
. (3.10)

Finally, we get the resulting stochastic differential equation for fluid velocity and pressure in

Fourier space:

dûk = −αkûdt+ ρ−1P⊥k f̂ bkdt+
√

2DkP⊥k dBk(t). (3.11)

At this step, we see that using a Stokes flow as opposed to a Navier-Stokes flow is

advantageous, because if we assume the force field f̂k remains constant within one time step,

the equation 3.11 is explicitly integrable over one time step using standard techniques from

Itô calculus. Thus, we get a discrete update formula for ûk:

ûk((n+ 1)∆t) = e−αk∆tûk(n∆t) +
1

ραk

(1− e−αk∆t)P⊥k f̂ bk(n∆t) + P⊥k σkηnk, (3.12)

where ηnk is a 3D standard normal Gaussian random variable [6].

We can similarly derive an update formula for the position of the DNA within one time

step:

Xj((n+ 1)∆t)−Xj(n∆t) =
∑
m

δc(xm −Xj(n∆t))

∫ (n+1)∆t

n∆t

um(s)ds∆x3, (3.13)

where Xj(n∆t) is the jth component of the position vector X at time n∆t. That is, the

updated position of DNA is given by averaging integrated fluid velocities over a spatial

neighborhood centered at the old position of DNA [6].

The full numerical algorithm is as follows: 1. Evaluate the balance equations of the DNA

and compute the resultant forces and moments at each discretization point along the DNA;

2. Convert forces and moments external to the DNA to forces and moments acting on the

fluid using the discrete delta function; 3. Update the fluid velocity using the Stokes flow in

Fourier space; 4. Update the velocity of the DNA 5. Propagate the DNA through the fluid.
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3.3 Methods

For the stochastic process, our goal was to obtain mean holding times spent near each

equilibrium configuration and determine transition rates between these stable equilibria. We

simulated stochastic knot dynamics using the SGIB method, classified these configurations

using a Kendall shape space and Procrustes distance [40], and then estimated the mean

holding times and transition probabilities for the invariant distribution.

3.3.1 Kendall shape space and Procrustes analysis

From the family of equilibrium configurations obtained in chapter 2, we first partitioned

the set of stable equilibria by the linking number and an equivalence relation obtained using

similarity in a Kendall shape space. Two shapes, S1 and S2, defined by a discrete set of

points Si = {si1, si2, ... sik} ∈ Rn, are equivalent if they are the same up to dilation and rigid

isometry. Thus, the Kendall shape space is the quotient space (Sn(k−1)−1/SO(n), || · ||p) with

the Frobenius norm, and the metric dp(Ŝ
1, Ŝ2) = ||Ŝ1 − Ŝ2||p for equivalence classes Ŝ1, Ŝ2

known as the Procrustes distance [40].

Since each of the configurations has 600 Bp, in R3, the knot equivalence classes live in

the space (S3(599)−1/SO(3), || · ||p). We neglect the extra base pair in the Procrustes analysis,

because repeated points make the distance dp not well-defined.

We also wanted our distance in the quotient space to be invariant under cyclic permuta-

tion relabelings of the choice of DNA discretization points. Thus, we defined a new distance

of configurations Cα,a = {xα,a1 , xα,a2 , . . . , xα,ak } and Cβ,b = {xβ,b1 , xβ,b2 , . . . , xβ,bk } to be

dmin(Cα,a, Cβ,b) = min
σ
dp(C

σ
α,a, Cβ,b), (3.14)

where σ is a cyclic permutation of indices {1, 2, . . . , k}, and Cσ
α,a = {xα,aσ(1), x

α,a
σ(2), . . . , x

α,a
σ(k)}.

Using this quotient space with the new distance dmin, we classified our family of equilib-

rium configurations by the change in the linking number, Lkrel, and chose the equivalence

class representative to be the configuration with the lowest energy value for a fixed linking

number. This is because our stable configurations are obtained dynamically and thus con-

stitute approximations to the true energy minimizers. For a dynamical process, the natural
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choice of equivalence class representative is the knot configuration with the lowest elastic

energy.

For a fixed linking number Lkrel corresponding to a single row of figures 12 and 13, to

obtain the equivalence classes and equivalence class representatives, we classified the knot

configurations using a tolerance of εp = 0.071. Thus, for a fixed relative linking num-

ber, Lkrel = α, two configurations Cα,a and Cα,b belong to the same equivalence class if

dmin(Cα,a, Cα,b) ≤ εp.

3.3.2 Classification of stochastic configurations

Next, we ran stochastic simulations of these knot types using the SGIB method. Sim-

ulations were run using MATLAB on a cluster. For both the deterministic and stochastic

configurations, we consider a closed, knotted segment of DNA, with 600 base pairs but

discretize by every fourth base pair. The initial position is given by the equivalence class

representatives from the classification in Kendall shape space, with a specified Lkrel value.

The fluid, as before, is given periodic boundary conditions, with a mesh discretization of 643.

A complete table of parameter values can be found in table 2 for the SGIB method. Note

that we only considered simulations with molar salt concentration of Cs = 0.1M, because

the family of configurations for Cs = 0.01M was too limited.

Our goal was to classify these stochastic configurations using Procrustes analysis and find

the equilibrium configuration that the stochastic knot most closely resembled as a function

of time. To do so, we classified the stochastic knot configurations, Xα(t), by taking the

minimum Procrustes distance from each of the stable equilibria equivalence classes for a

given Lkrel = α. For the Procrustes analysis, k = 150, as the segment of DNA has 151

discretization points. We compared the stochastic configurations to the equivalence class

representatives for a fixed linking number using dmin. Then, as a function of time, we classified

Xα(t) by finding the stable equilibrium equivalence class representative, Cα,a, that minimized

dmin(Xα(t), Cα,a). We denote this minimizing path by χα(t). This allows us to think of the

stochastic simulation as a one-dimensional random walk throughout the state space of stable

knot configurations.
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parameters symbol value

grid size N ×N ×N 643

domain size L× L× L L = 1136.366 Å

time step ∆t 7× 10−11

fluid density ρ 1 g cm3

fluid viscosity µ 0.01 g (cm s)−1

permittivity of free space ε0 3.45× 10−7e2/(gÅ
3
s−2)

dielectric constant of water εW 77.7

electric charge q 0.24× 2e

molar salt concentration Cs 0.01, 0.1M

Debye screening parameter κ 0.329
√
CsÅ

−1

bending modulus a1 = a2 = a 1.3× 10−19g cm3s−2

twist modulus a3 1.82× 10−19g cm3s−2

shear modulus b1 = b2 = b 5× 10−5g cm3s−2

stretch modulus b3 = b 5× 10−5g cm3s−2

number of base pairs n 150

radius r 324.676 Å

diameter D 20 Å

Table 2: SGIB computational parameters

40



3.3.3 Stochastic knots as a Markov process

Recall that throughout a deterministic or stochastic simulation, the linking number of

the transient knot configuration remains invariant, without strand passage of the DNA. For

a fixed linking number Lkrel, we think of the path through the stochastic transient states

as a one-dimensional random walk throughout the stable knot configuration state space

using the minimum Procrustes distance classifier. We model the stochastic process as a

homogeneous, continuous time Markov process. For each fixed Lkrel, our goal is to find

the transition rates and mean holding times for the CTMC. We then use these to find the

stationary distribution for the stochastic process, and compare this to an estimate of the

Gibb’s distribution determined from the deterministic elastic energy values.

For a fixed α, and for a continuous time Markov process χα(t) over the space of equilib-

rium configurations, {Cα,a}, the probability of transitioning from state b at time 0 to state

a at time t is given by the matrix P (t) and satisfies P ′(t) = P (t)Q [32]. Here, P (t) has

entries pa,b = Prob({χ(t) = a|χ(0) = b}). The matrix Q is the transition rate matrix, and

gives the transition rates of the underlying discrete time Markov chain. We ultimately want

to find the steady state distribution π that satisfies Pπ = π and compare this to the Gibb’s

distribution, π̂ obtained solely from the elastic energy.

To find these, we ran the stochastic simulations for negative Lkrel, and Cs = 0.1M, track-

ing every 20th time step until reaching an equilibrium distribution. For a fixed Lkrel = α,

we estimate the occupancy times near each equilibrium configuration, Cα,a, as the total time

spent near Cα,a, according to the dmin classification. We also find the transition probabilities

of the underlying discrete time Markov process.

For a fixed linking number Lkrel = α, we seek the mean time spent at state a, Ta, the

transition rates, Q, and the stationary distribution π. We found the mean time Ta as the

sum of the occupancy times across every initial starting configuration. For a continuous time

Markov process, the transition time from one state to another follows a Poisson process. The

transition rates given by matrix Q, and the mean time spent in state a satisfy [32]:

Ta = −1/qaa. (3.15)
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We then estimated the total transition probabilities Pa,b for the underlying discrete time

Markov process across every initial starting configuration, and we used the occupancy time

to obtain the remaining transition rates using the relation [32]:

Pab = −qab
qbb
. (3.16)

Note that the stationary distribution π also satisfies Qπ = 0. After estimating the transition

rate matrix Q, we solved for the stationary distribution π. Finally, we were able to estimate

the Gibb’s distribution from the deterministic system, π̂, solely from the elastic energy of a

given state, φi [32]:

π̂i =
exp(−φi)∑
j exp(−φj)

. (3.17)

3.4 Results

3.4.1 Procrustes analysis

Using the equivalence relation from the Kendall shape space, we classified the stable

knot equilibria for Lkrel = ±1, ±2, . . . ,±10, and Cs = 0.1M. Figures 14 and 16 show the

collection of equilibrium configurations for the negative and positive Lkrel parameter range

respectively. These graphs show the 3-dimensional projection of knots in the Kendall shape

space, with axes representing a closest fit projection of the Procrustes distance between the

configurations.

We see that knot types which appear to be similar under rigid isometry and rotations

are clustered together under the classical multidimensional scaling 3-dimensional projection.

In particular, the projection captures key characteristics that are unique to each knot type.

The families of knotted configurations which resemble the standard trefoil parametrization

are clustered together. The family of compact, pretzel-like configurations are clustered as ex-

pected, and those with long plectonemes with either midpoint or terminal loops are similarly

grouped. This is consistent for positive and negative values of Lkrel.

One disadvantage of looking at the 3-dimensional projection is that some key information

from the minimum Procrustes distance clustering is lost. Some knot types appear farther
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apart under the projection. See for example the knots labeled 44, 54, and 64. Visually, we

would like to classify these as belonging to the same family, but they appear far apart after

the projection.

To compensate for this, we also used a dendrogram to illustrate the clustering by Pro-

crustes distance. Within the energy landscape of knot configurations, the minimum Pro-

crustes distance classification provides barriers between energy wells. Figures 15 and 17

show the dendrogram for negative and positive values of Lkrel respectively. These dendro-

grams are trees constructed from the minimum Procrustes distance between configurations.

Each is constructed by finding the distance between clusters of objects. So the distance

between two configurations is given by the lowest shared node in the graph. The x-axis

of the dendrogram represents the configurations labeled both as ordered pairs, and as an

integer from 1 to 80 as a reference for the 3-dimensional projected knots. In the ordered pair

labeling, Cα,a = (α, a), α represents the final Lkrel and a represents the starting Lkrel = a

configuration. From the dendrogram, we see that the minimum Procrustes distance closely

corresponds to similarity of configurations as defined by the Kendall shape space. For exam-

ple, in figure 15, the entire collection of knots with final Lkrel = −1, −2 all share a common

node with dmin < 0.02, which aligns with our intuition. Because all of these very closely

resemble the starting trefoil parametrization (and one another), we would expect them to

be similar in the Kendall shape space.
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44

Figure 14: 3-Dimensional projection of knot configurations in Kendall shape space for negative Lkrel.



45

Figure 15: Dendrogram for negative Lkrel knot configurations representing the minimum Procrustes distance between equilibria.
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Figure 16: 3-Dimensional projection of knot configurations in Kendall shape space for positive Lkrel.
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Figure 17: Dendrogram for positive Lkrel knot configurations representing the minimum Procrustes distance between equilibria.



Using the minimum Procrustes distance, we classified the stable equilibrium configura-

tions by equivalence classes for each fixed Lkrel. While the Procrustes analysis can classify 

configurations across linking number, we chose to first partition by linking number, because 

the linking number remains invariant in a dynamic simulation without DNA strand pas-sage. 

Using the dendrograms and based on the minimum Procrustes distance, we classified 

configurations with a tolerance of εp = 0.071. This gives equivalence classes for positive and 

negative Lkrel. The equivalence class representatives are listed in table 3 for each fixed Lkrel.

From the minimum Procrustes distance classification and the knot tables in figures 12 and 

13, we see that the representatives of each equivalence class have the lowest energy values. 

This corresponds to these configurations being the closest approximation to the stable 

equilibria when compared to other knots. For negative Lkrel, generally we see more diversity of 

knot types for higher values of |Lkrel|, with Lkrel = −1, −2 only having one equivalence class, 

and Lk = −8 having 7 distinct classes. To illustrate the similarity of equivalence classes, for 

Lkrel = −3, the equivalence classes contain the following knot types: [C−3,−3] = {C−3,−3, C−3,

−5, C−3,−6} and [C−3,−9] = {C−3,−4, C−3,−7, C−3,−8, C−3,−9, C−3,−10}. Notice that for the class 

[C−3,−9] all of the equilibria are nearly identical in the Kendall shape space, while the other 

two equilibria in [C−3,−3] are asymmetric, compared to C−3,−3 which has D3 symmetry. We 

chose to classify these as the same knot type class, because they have a small pairwise dmin 

distance, and C−3,−5 and C−3,−6 likely only differ from C−3,−3, because they are farther from 

convergence to the true equilibrium configuration.

After classifying the deterministic knot configurations, we similarly classified the stochas-

tic knot configurations using the minimum Procrustes distance and the equivalence classes for 

each fixed Lkrel. Figure 18 gives an example of stochastic knot configurations for Lkrel = −8, 

and their corresponding classification. The time traces show the dmin value for each of the 

stable equilibrium configurations when compared to the stochastic simulation. We also dis-

play the classified state underneath the traces, represented as the minimizing state in the 

legend.
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Lkrel Knot Types Lkrel Knot Types

-1 C−1,−5 1 C1,8, C1,10

-2 C−2,−5 2 C2,6, C2,8

-3 C−3,−3, C−3,−9 3 C3,6, C3,8, C3,9

-4 C−4,−6, C−4,−7, C−4,−10 4 C4,3, C4,5, C4,10

-5 C−5,−6, C−5,−7, C−5,−8 5 C5,6, C5,8

-6 C−6,−5, C−6,−7, C−6,−8 6 C6,5, C6,8

-7 C−7,−3, C−7,−4, C−7,−6, C−7,−8, C−7,−9 7 C7,5, C7,8, C7,9

-8 C−8,−3, C−8,−4, C−8,−6, C−8,−7, C−8,−8, C−8,−9, C−8,−10 8 C8,5, C8,8

-9 C−9,−3, C−9,−4, C−9,−5, C−9,−7, C−9,−8, C−9,−10 9 C9,3, C9,10

-10 C−10,−3, C−10,−4, C−10,−6, C−10,−7, C−10,−8, C−10,−9, 10 C10,3, C10,5, C10,8

Table 3: Knot configuration equivalence class representatives for positive and negative Lkrel.

3.4.2 Markov process of stochastic knots

After classifying the stochastic knot configurations, we are able to frame the overall

stochastic process as a continuous time Markov chain through the space of knot configura-

tions. The minimum Procrustes distance classification gives an indication of energy barriers

between the stable equilibria for a fixed Lkrel.

For fixed Lkrel = −3,−4, . . . ,−10, we first calculated the mean holding times, Ti, and

used this and the transition probabilities to find the transition rate matrix, Q for the CTMC.

Lastly, from Q, we were able to obtain the stationary distribution π and compare this to the

Gibb’s distribution, π̂ generated from the elastic energies found in chapter 2.

For each Lkrel, our final results are as follows.

Lkrel = −3, with states [C−3,−3, C−3,−9]:

Q = 1 · 108 ·

−1.0037 0.0505

1.0037 −0.0505

 , π =

0.0479

0.9521

 , π̂ =

0.3820

0.6180

 . (3.18)
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Figure 18: Top: Lkrel = −8 stochastic knot configurations with corresponding dmin equilib-

rium configuration classifications. Bottom: traces of 10 × dmin to each knot class represen-

tative with state classification denoted by minimizing state.
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Lkrel = −4, with states [C−4,−10, C−4,−6, C−4,−8]:

Q = 1 · 107 ·


−5.4058 1.5106 0.1601

0.5045 −3.6685 0.0215

4.9013 2.1580 −0.1816

 , π =


0.0312

0.0099

0.9589

 , π̂ =


0.0275

0.0368

0.9357

 . (3.19)

Lkrel = −5, with states [C−5,−6, C−5,−8, C−5,−7]:

Q = 1 · 107 ·


−1.8279 0.0425 0.3055

0.5156 −0.7357 2.6396

1.3123 0.6932 −2.9451

 , π =


0.0507

0.7501

0.1992

 , π̂ =


0.0008

0.9767

0.0225

 . (3.20)

Lkrel = −6, with states [C−6,−5, C−6,−7, C−6,−8]:

Q = 1 · 107 ·


−2.6333 0.9537 0.1001

1.7555 −3.2813 0.3838

0.8778 2.3276 −0.4839

 , π =


0.0785

0.1341

0.7874

 , π̂ =


0.0000

0.0225

0.9775

 . (3.21)

Lkrel = −7, with states [C−7,−3, C−7,−4, C−7,−6, C−7,−8, C−7,−9]:

Q = 1 · 107 ·



−4.7778 0.0533 0.2397 1.5110 0.6492

1.4333 −0.6177 0 2.8159 4.5898

0.1433 0 −1.9175 0.7555 0.0151

1.0989 0.0749 1.4382 −8.5165 0.6492

2.1022 0.4895 0.2397 3.4341 −5.9033


,

π =



0.0289

0.8475

0.0108

0.0201

0.0927


, π̂ =



0.0000

0.9930

0.0000

0.0000

0.0069


. (3.22)
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Lkrel = −8, with states [C−8,−8, C−8,−10, C−8,−4, C−8,−6, C−8,−9, C−8,−3, C−8,−7]:

Q = 1 · 108 ·



−1.1103 0.0009 0.0025 0.0650 0.1163 0.0280 0.0397

0.0123 −0.3132 0.0098 0.0150 0.5584 0.4629 0.4777

0.1727 0.0281 −0.0449 0 0.0349 0.1305 0.1913

0.1850 0.0017 0 −0.2849 0.2210 0.0559 0

0.1604 0.0199 0.0003 0.0950 −1.1284 0.0497 0

0.0987 0.0645 0.0056 0.1100 0.1978 −0.9849 0.0857

0.4811 0.1981 0.0266 0 0 0.2579 −0.7943


,

π =



0.0074

0.2144

0.6338

0.0180

0.0078

0.0297

0.0888


, π̂ =



0.0000

0.0024

0.9931

0.0000

0.0000

0.0000

0.0045


. (3.23)

Lkrel = −9, with states [C−9,−10, C−9,−4, C−9,−5, C−9,−7, C−9,−8, C−9,−3]:

Q = 1 · 107 ·



−5.9362 0.0073 0.3695 0.3415 2.1408 1.3660

0.0487 −0.5476 0 0.7358 0.4773 0.1102

0.1622 0 −4.0025 0 0.1880 0.4517

1.3624 0.4405 0.0616 −2.2521 0.6943 2.6549

2.3680 0.0827 0.9852 0.1992 −5.4533 1.4541

1.9949 0.0170 2.5862 0.9756 1.9528 −6.0368


,

π =



0.0683

0.4621

0.0177

0.2745

0.0767

0.1007


, π̂ =



0.0000

0.9986

0.0000

0.0014

0.0000

0.0000


. (3.24)
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Lkrel = −10, with states [C−10,−4, C−10,−6, C−10,−7, C−10,−8, C−10,−9, C−10,−3]:

Q = 1 · 107 ·



−8.3453 1.8765 0.7743 5.0731 1.8614 2.1494

0.4576 −2.5553 0.0018 0.0290 0 0.1019

3.8855 0.1996 −1.0254 1.9423 1.8930 0.1834

1.5345 0.0399 0.1184 −8.4937 0.9465 0.2343

0.5474 0.0399 0.0955 0.7827 −6.2784 0.5603

1.9203 0.3993 0.0354 0.6667 1.5775 −3.2292


,

π =



0.1284

0.0284

0.6543

0.0396

0.0363

0.1129


, π̂ =



0.0005

0.0000

0.9993

0.0000

0.0000

0.0001


. (3.25)

The transition rate diagram for Lkrel = −3 is shown in figure 19. The time traces, mean

holding times, stationary distribution from the CTMC, π, and Gibb’s distribution from the

elastic energies are displayed in figure 20. The time traces at the top display the minimum

Procrustes distance from the two stable equilibria C−3,−3, and C−3,−9, with a graph of the

corresponding minimizing state as determined by the Procrustes analysis. The time trace

plot on the left was started from the state C−3,−3, and the right was started from the state

C−3,−9. One can see that regardless of the starting state, the system quickly transitions to

the C−3,−9 state, and spends the majority of the time in this state.

The bottom panel displays the mean holding times and stationary distributions. We

see that the mean holding times closely correspond with both the time traces, and the

stationary distribution π. The jump process from one state into another for a CTMC is a

Poisson process. This gives information about the transition rates, and specifically the values

of qi,i for states i. According to the transition rates, we expect the system to transition more

frequently from state C−3,−3 than from C−3,−9. Thus the barrier from C−3,−9 to C−3,−3 is

much lower than the barrier from C−3,−3 to C−3,−9.
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The two distributions give us information about the system as a whole compared to the

deterministic system. The Gibb’s distribution generated from the energies of the two stable

equilibria, π̂ only accounts for the local minimum value of an energy well. According to π̂,

we would expect the CTMC to spend roughly 61% of the time near state C−3,−9 and 39%

of the time near state C−3,−3. However, from the traces, and the mean holding times, we

see that this is not the case. One possible explanation would be that the traces observed

are transient, and not representative of the steady state; however these very closely align

with the stationary distribution π. Thus, the distribution π is capturing properties about

the dynamics of the system that the energy values of stable knot configurations alone do not

account for.

By generating π from the CTMC, π more accurately captures properties of the energy

landscape. While this distribution accounts for the energy values, it also accounts for the

free energy of the system. Comparing π to π̂, we see that the state C−3,−9 has a much

higher probability of occurring, and C−3,−3 has a much lower probability of occurring in

the stochastic process than the deterministic system. Thus C−3,−9 has a relatively high

entropy, and a lower free energy. Entropy gives a measure of disorder of the equilibrium

state, meaning C−3,−3 has a narrow energy well. One possible explanation for this is C−3,−3

has D3 symmetry. To transition to C−3,−9 with C2 symmetry means breaking the symmetry

with respect to any axis of symmetry. Symmetry breaking is an example of higher disorder,

so this state appears with higher probability, and there are more ways for the system to

break symmetry than to add symmetry to a knot configuration.

We have discussed the stochastic process for Lkrel = −3 in full detail. The transition

rates and mean holding times for each Lkrel can be found in appendix A. Figure 21 details

the stationary distribution for all eight linking numbers, Lkrel = −3,−4, · · · − 10. For

Lk = −4, the two distributions agree fairly well. Both π and π̂ predict a high probability

of the configuration with two loops and one plectoneme as the most likely configuration,

C−4,−8, and the two other stable configurations have a low probability of occurring. This

indicates that the depth of the energy wells alone is a good indication of the overall behavior

of the stochastic process.

Consistently, we observe that the knot configuration family with two loops and one
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Figure 19: Transition rates for Lkrel = −3.
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Figure 20: Top panels: Traces of 10×dmin with minimizing state starting at the state C−3,−3

on the left and C−3,−9 on the right. Bottom left panel: mean holding times in seconds for

states C−3,−3 and C−3,−9. Bottom right panel: Comparison of stationary distributions π

(blue) and π̂ (orange) for Lkrel = −3.
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Figure 21: Stationary distribution π (blue) and Gibb’s distribution π̂ (orange) for Lkrel =

−3,−4,−5,−6,−7, 8,−9,−10 from top the top left panel to the bottom right panel.
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plectoneme occur with high probability across all linking numbers. This family is the Cα,−4

for α ≥ −9 branch, and Cα,−8 for α ∈ {−3,−4,−5,−6} configurations. Along this branch,

as the excess twist increases, so does the elastic energy. As the elastic energy increases, the

Gibb’s distribution π̂ overestimates the probability of encountering this configuration in the

CTMC.

The pretzel family of configurations has highest energy values across linking numbers.

These are the Cα,−5 and Cα,−6 for α ≤ −4 configurations. This has a very low probabil-

ity for both π and π̂, however the distribution π̂ consistently underestimates the entropic

contribution of the system, as π is slightly, but consistently higher for these configurations.

The next likely configuration across all Lkrel is the family with a central loop and two

plectonemes. These are the configurations Cα,−10 for α ∈ {−4,−5,−6,−7,−8} and Cα,−9

for α ∈ {−5,−6,−7}. Notice that the deterministic system vastly underestimates the prob-

ability of observing this state in the CTMC.

The other asymmetric states with either a central pretzel and two plectonemes, or states

with 3 plectonemes having either C2 orD3 symmetry occur with low probability in the CTMC

across all Lkrel. The probability of observing these states is also consistently underestimated

by the distribution π.

3.5 Conclusion

Using the stochastic generalized immersed boundary method, we modeled the dynamics

of DNA knots with excess twist. Using a stochastic model gives more biologically accurate

framework. This also allows us to model the dynamics of DNA knots using a continuous

time Markov chain.

Using the stable equilibrium configurations obtained in chapter 2, we partitioned the

space of configuration using Kendall shape space and a minimum Procrustes distance equiva-

lence relation. These equilibria are the states for the CTMC. We then classified the stochastic

knots using the minimum Procrustes distance. This classification provides boundaries within

the energy landscape of elastic knots with excess twist. After finding the dmin classification,
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we found transition rates, mean holding times, and stationary distributions for stochastic

knots with a fixed linking number. Finally, we compared the stationary distribution π to

the distribution π̂.

Overall, we found the stochastic process to more accurately represent the dynamics of

the DNA knots, as it accounts for the entropy of the system. Thus, using the framework of

a continuous time Markov process gives us a better understanding of the energy landscape

of DNA knots than the deterministic system alone.
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4.0 Dynamics of DNA links

4.1 Introduction

Kinetoplastids are parasitic organisms with a unique mitochondrial DNA structure,

known as a kinetoplast. This kinetoplast DNA, or kDNA, consists of a collection of ap-

proximately 5000 DNA minicircles and 20 to 30 maxicircles linked in a sparse chainmail-like

structure [68]. The formation of this structure is not completely understood. The role of

histone link proteins or structure preserving enzymes has been investigated in [39, 82]. Simi-

larly, topological models have been used to better understand the network topology of kDNA

[2, 25, 15, 26, 24, 51, 48, 47, 28]. We seek to model a small network of kDNA minicircles

dynamically in order to obtain a distribution of the distance between centroids of two such

minicircles.

Studying the dynamics of molecular structures often requires making simplifying as-

sumptions in order to gain insights into the behavior of the system as a whole, while keeping

the model computationally feasible. While this approach often captures key features of the

molecular system, these simplifying assumptions may omit critical details about the system

as a whole. In the case of dynamics of DNA segments, plasmids, knots, and links, the

particular DNA sequence changes the kinematic properties of the molecule. The Immersed

Boundary method [70] and Generalized Immersed Boundary Method [46] provide a model

and numerical method that accounts for the fluid-structure interaction of a molecule im-

mersed in fluid. In [41], Lim et al. applied this to DNA plasmids, while accounting for the

electrostatic repulsion and hardcore potential of a DNA molecule.

In chapter 2, we studied the dynamics of DNA trefoil knots using this extension of

the GIB method. To do so, we had to assume that the double-helical structure of DNA

behaved like a homogeneous, isotropic, intrinsically straight elastic rod. While Cosserat rod

theory provides a nice framework for the dynamics of DNA, these assumptions neglect the

kinematics of a particular DNA sequence and also do not account for thermal forcing of the

fluid.
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The Stochastic Immersed Boundary Method [6] provides a way of incorporating uniform

thermal forcing throughout the fluid to study the fluid-structure interaction at a microscopic

scale. Swigon et al. created the Stochastic Generalized Immersed Boundary Method [73]

to incorporate the effects of uniform thermal forcing while studying the dynamics of DNA

plasmids. In chapter 3, we applied the SGIB method to model the dynamics of DNA knots

immersed in a fluid under the assumption that DNA behaves like a homogeneous, isotropic

elastic rod.

The exact sequence of DNA has been shown to affect the elastic properties of the DNA

molecule [59, 44, 33]. Coleman et al. created a sequence dependent model of DNA elasticity

[16] and found equilibrium configurations of 150 Bp DNA o-rings. While this theory incor-

porates sequence dependence of DNA, it is does so by minimizing the total elastic energy of

the DNA.

Our goal is to incorporate the kinematics of sequence dependence into the SGIB method

to dynamically study the effects of a specified DNA sequence. We introduce the sequence

dependent SGIB method as a way of incorporating the effects of a specific DNA sequence

on the dynamics of DNA immersed in a fluid. We then apply this method to kDNA mini-

circles, and find the centroid distance distribution for two Hopf-linked minicircles for two

Kinetoplastids: Trypanosoma brucei and Crithidia fasciculata.

4.2 Sequence Dependent Stochastic Generalized Immersed Boundary Method

The Sequence Dependent SGIB method is an adaptation of the SGIB method [73] in

which DNA is modeled as a sequence of base pairs immersed in a fluid. This method, along

with other immersed boundary methods [70, 46, 41, 73], dynamically accounts for the fluid-

structure interaction of an immersed elastic structure in fluid. In contrast to these continuum,

Cosserat rod models, each base pair is represented discretely as in the sequence-dependent

DNA elasticity model [16].

In the Sequence Dependent SGIB method, we represent DNA as a sequence of N+1 base

pairs with N spaces between base pairs. Each base pair is represented as a rectangular slab
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with position Xn(t) through the axial curve of DNA and orientation given by the orthonormal

triad {Dn
1 , Dn

2 , Dn
3} centered at the center of mass of each slab, for each n. This is analogous

to discretizing the axial curve X(s, t) and material frame {D1(s, t), D2(s, t), D3(s, t)} from

the GIB method and SGIB methods [46, 41, 73].

We introduce relative position vectors rn = Xn+1−Xn, which defines a polygonal curve

along the central axis of the DNA. The vector Dn
2 lies in the plane of the slab, runs along

the longer axis of the slab, and is directed towards the DNA backbone. The vector Dn
1 lies

in the plane of the rectangular slab, and runs along the shorter axis of the slab. Similarly,

the Dn
3 vector is perpendicular to both Dn

1 and Dn
2 , and is normal to the plane of the slab.

The conformation of two neighboring base-pairs, represented by two slabs, is parametrized

using the Cambridge University Engineering Department Helix Computation Scheme as fol-

lows [36]: The relative orientation of the slabs is determined by three angles: tilt, roll and

twist, denoted by θn1 , θ
n
2 and θn3 and the relative positions are given by shift, slide and rise

and denoted by ρn1 , ρ
n
2 and ρn3 . The elastic energy of two consecutive base pairs {n, n+ 1} is

given by the quadratic function

ψn(θn1 , θ
n
2 , θ

n
3 , ρ

n
1 , ρ

n
2 , ρ

n
3 ) =

∑3
i=1 fij(θ

n
i − θ̄ni )(θnj − θ̄nj ) (4.1)

+
∑3

i=1 gij(θ
n
i − θ̄ni )(ρnj − ρ̄nj ) (4.2)

+
∑3

i=1 hij(ρ
n
i − ρ̄ni )(ρnj − ρ̄nj ) (4.3)

where θ̄ni and ρ̄i (i = 1, 2, 3) are relaxed DNA parameters, and the coefficients fij and gij are

the stiffness constants [16].

For the homogeneous, isotropic elastic rod model used in chapters 2 and 3, DNA is an

idealized B-DNA structure, meaning the relaxed parameter values and stiffness constants

are independent of the DNA sequence. They are defined by taking θ1 = θ2 = ρ1 = ρ2 =

0, θ3 = 34.3◦, ρ3 = 0.34nm, the bending is assumed to be isotropic with the persistence

length of 50nm, which corresponds to f11 = f22 = kT
4.842deg2

, twisting modulus is assumed

to be f33
f22

= 1.4, and translational deformations are assumed to be negligible by making

f44 = f55 = f66 = 5000kT
(nm)2

.

For the sequence dependent SGIB method, we study the effects of the DNA sequence;

thus here we utilize sequence dependent values of the parameters and coefficients that are
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consistent with physical measurements of the deformations of DNA molecule as observed in

X-ray crystal structures of DNA fragments [59]. Alternative values can be estimated from

molecular dynamics simulations [44]. A complete table of these parameters is given in table

5.

The total energy of each minicircle is given by the sum of ψn for all consecutive base

pairs, where ψn is the sum of the interaction of between the nth and (n + 1)st base pair,

ψ =
∑N

n=1 ψ
n.

For each n, the balance equations, describing the balance of the DNA’s internal and

external forces and moments is given by

fn − fn−1 = φn, mn −mn−1 = fn × rn + µn (2 ≤ n ≤ N) (4.4)

For each n, the force and moment that the (n + 1)st exerts on nth base pair is given by fn

and mn respectively, and the external force and moment of nth base pair acting on the fluid

is given by φn and µn [16].

As in the SGIB method [6, 73], the motion of the fluid is modeled using a time-dependent,

incompressible, Stokes flow with velocity, u(x, t), pressure p(x, t), density ρ, and viscosity µ:

ρut = −∇p+ µ∆u + f tot, ∇ · u = 0. (4.5)

The fluid is assumed to have a no slip condition, meaning the DNA moves with the velocity

of the fluid. The force density f tot(x, t) acting on the fluid accounts for two forces: the force

resulting from the DNA acting on the fluid, and the thermal forcing. The SGIB method

assumes a uniform random thermal forcing throughout the fluid, as in [6].

The full system of equations describing the rod and fluid dynamics is as follows:

ρ
∂u

∂t
= −∇p+ µ∆u + f tot, (4.6)

∇ · u = 0, (4.7)

fn − fn−1 = φn, (2 ≤ n ≤ N) (4.8)

mn −mn−1 = fn × rn + µn (2 ≤ n ≤ N) (4.9)
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fn = fn1 Dn
1 + f 2

nD
n
2 + fn3 Dn

3 , (4.10)

mn = mn
1Dn

1 +mn
2Dn

2 +mn
3Dn

3 , (4.11)

fni =
∂ψn

∂ρnj

(
Zjk(−γn)Ykl

(
− 1

2
κn
)
Zli(−ζn)

)
, mn

i = Γnij

(∂ψn
∂θnj

+
∂ψn

ρnk
jΛ

n
klρ

n
l

)
, (4.12)

f(x, t) =
N∑
n=1

(−φn(t))δc(x−Xn(t)) +
1

2
∇×

N∑
n=1

(−µn(t))δ(x−Xn(t))

+
N∑
n=1

(−f c,n(t))δc(x−Xn(t)) +
n∑
i=1

(−f e,n(t))δc(X−Xn(t)),

(4.13)

∂X(s, t)

∂t
= U(s, t) =

∫
u(s, t)δc(x−X(s, t))dx, (4.14)

W(s, t) =
1

2

∫
(∇× u)δc(x−X(s, t)dx, (4.15)

∂Di(s, t)

∂t
= W(s, t)×Di(s, t), i = 1, 2, 3. (4.16)

Here Dn
ij = Dn

1 · Dn+1
j = Zij(ζ

n)Ykl(κ
n)Zlj(η

n). We define ρni in terms of rni and θni by

ρni = Zij(−γn)Yjk(−1
2
κn)Zkl(−ζn)rnl , and the orthonormal mid-basis D̄n

i by Dn
i · D̄n

j =

Zjk(ζ
n)Ykl(

1
2
κn)Zlj(γ

n). The angles ζn, κn, ηn follow the Euler-angle system, and the ma-

trices Yij(α), Zij(α), the quadratic form Γnij, and the skew-symmetric matrices jΛ
n
kl are

defined in Appendix B.

We define δc(x), the smooth approximation of the 3-dimensional delta function, in equa-

tion 2.16 in chapter 2 [46, 41]. The steric and electrostatic forces, f c,n(t) and f e,n are defined

in equations 2.21 and 2.22 respectively in chapter 1 [41]. Here the total self-contact force,

f c(t) =
∑N

n=1 f c,n(t), is the sum of every local contact force at each point of contact at

position Xn(t).

The force density f tot(x, t) acting on the fluid is a sum of the the external body force

from the rod onto the fluid, and the thermal force: f = f(x, t) + f thm. The thermal force is

assumed to be uniform across the domain of the fluid, and is represented in Fourier space as
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Gaussian white noise. This is defined in equation 3.3 in chapter 2 [6, 73], and the procedure

of solving for the fluid velocity and position of DNA in one time step follows the method

from [6]. Using discretized balance equations of the Stokes flow decouples the system into a

system of ordinary differential equations in Fourier space. Representing the thermal force as

Gaussian white noise in Fourier space with Stokes flow means that the resultant stochastic

differential equation is solvable in one time step using Itô integration, and the position of

the DNA is updated accordingly.

The full numerical algorithm of the Sequence Dependent SGIB method is as follows: 1.

Evaluate the balance equations of the DNA, and compute the resultant forces and moments

at each discretization point along the DNA using the sequence dependent kinematic variables,

θn1 , θ
n
2 , θ

n
3 , ρ

n
1 , ρ

n
2 ρ

n
3 ; 2. Convert forces and moments external to the DNA to forces and

moments acting on the fluid using the discrete delta function; 3. Update the fluid velocity

using Stokes flow in Fourier space; 4. Update the velocity of the DNA 5. Propagate the

DNA through the fluid.

4.2.1 Dynamical sampling of minicircle centroid distances

To determine the effects of sequence dependence on the dynamics of kNDA, we wanted

to find the distribution of centroid distances of two Hopf-linked minicircles for two particular

kinetoplast DNA sequences: T. brucei and C. fasciculata. To do so, we used the SD-SGIB

method to dynamically simulate the interaction of two minicircles. Simulations were run

using MATLAB on a cluster.

For each minicircle, the segment of DNA was given periodic boundary conditions, mean-

ing X1(0) = XN+1(0), and D1
i (0) = DN+1

i (0) for i = 1, 2, 3. The kinematic parameters

θn1 , θ
n
2 , θ

n
3 , ρ

n
1 , ρ

n
2 , ρ

n
3 were defined for the DNA sequences of T. brucei and C.fasciculata ac-

cording to [59, 44] and are listed in table 5. The minicircle sequences for T. brucei and C.

fasciculata with N = 1014 and N = 2515 base pairs respectively are listed in appendix C

and were taken from [57]. The fluid is also assumed to have periodic boundary conditions

with N̂ = 643.

The starting configuration for each minicircle was generated using the Gaussian sampling

65



method from [23] with subsegment pairing and closure detection. The procedure takes

advantage of the quadratic nature of the elastic energy of the DNA, which implies that the

probability of any particular deformation (represented by parameters θi, ρi) is given by a

multivariate normal density that can easily be sampled to obtain a collection of deformed

configurations of the segment. To enforce a closure of the segment, we sampled independently

two halves of the sequence and then identified those halves for which the ends came into

proximity. We chose the most likely starting configuration with the linking number of 95 for

T. brucei and linking number of 239 for C. fasciculata. Each minicircle was discretized by

every base pair, and our time step of ∆t = 2 · 10−10 for T. brucei and ∆t = 1 · 10−9 for C.

fasciculata.

For modeling kDNA minicircles, the Debye-Hückel electrostatic screening effects of the

SGIB method were neglected. Instead, we chose an effective diameter of DNA of 65 Angstroms,

corresponding to solvent ionic strength of 0.1M . This was given to be the effective diameter

of a segment of DNA according to [67], as a function of ionic strength of the solvent. We

treat the electrostatic interaction as a hardcore potential, rather than using the electrostatic

Debye-screening method [52, 81] as in [73, 41]. A full set of parameters is listed in table

4. Note that here, we list the constants for electrostatics for the general SD-SGIB method.

We had to adjust the stiffness parameter g, from the GIB methods and SGIB methods for

stability of the method.

The probability density was obtained by simulating 20 configurations of T. brucei and

C. fasciculata Hopf-linked minicircles, and running simulations until we observed sufficient

mixing of the centroid distance trajectory paths. We consider two minicircles topologically

linked if the linking number as defined in equation 1.1 in chapter 1 is nonzero. The linking

number for these minicircles was computed from the algorithm as in [42, 45]. Here, we start

with two DNA minicircle segments (generated by the Gaussian sampling method) joined by

a Hopf-link. The 20 starting configurations were initialized with centroid distances spaced

uniformly from a distance of 0 Angstroms to the diameter of the starting configurations of

1131 Å for T. brucei and 3232 Å for C.fasciculata. Each pair of minicircles was also given a

random rotation to start, under the condition that the minicircles had to remain linked. We

then obtained the probability density of R, the distance between two centroids, finding the
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total time spent at distance R, and dividing by a the surface area of a sphere with radius R,

so that we obtain a rotationally invariant probability density.

4.3 Kinetoplast DNA sequence dependent effects

From the 20 simulations for both T. brucei and C. fasciculata, we computed the distance

between the centroids of the two minicircles. The traces of these distances along with a

histogram of the centroid distances is displayed in figures 22 and 23 respectively. These were

generated by adding an initial burn-in period to exclude the dependence on the starting

distribution.

For T. brucei, we see that there is sufficient mixing for the time traces, so we would

expect the distribution to estimate the steady state distribution for the stochastic process.

From the centroid distribution, we see a peak in the radial distance around 0.035µm, and a

sharp decay in the tail of the distribution.

The result for T. brucei is consistent with results from [48]. Using a Gaussian sampling

method [23] to generate T. brucei and C. fasciculata minicircle configurations, Liu et al.

found the linking probabilities for two minicircles for sequences with effective diameter of

D = 65Å. They determined the linking probability for a fixed centroid distance, but this was

not obtained dynamically. Because kDNA minicircles naturally fluctuate in fluid, we sought

to obtain the distribution dynamically and were interested in the distribution of centroid

distances given that two minicircles must stay linked.

It is worth noting that the probability of a small centroid distance decays near zero as

well. Diao et al. find the linking probability of two Hopf-linked minicircles modeled as rigid

circles [26]. With rigid circles and no volume exclusion effects, the linking probability is

linear, and increases to a probability of one as the centroid distance decreases to zero. Our

results are consistent with [25, 26] that show the linking probability for two minicircles near

zero decreases for freely-jointed chains and rigid circles with volume exclusion.

If we compare this with the traces and centroid distance distribution, we see that the

distribution for C. fasciculata is very different, and there is little mixing of the traces. This
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parameters symbol value

grid size N̂ × N̂ × N̂ 643

domain size L× L× L T.b: L = 274.351 Å, C.f: L = 680.467 Å

time step ∆t T.b: 2× 10−10, C.f:1× 10−9

fluid density ρ 1 g cm3

fluid viscosity µ 0.01 g (cm s)−1

permittivity of free space ε0 3.45× 10−7e2/(gÅ
3
s−2)

dielectric constant of water εW 77.7

electric charge q 0.24× 2e

molar salt concentration Cs 0.01, 0.05, 0.1M

Debye screening parameter κ 0.329
√
CsÅ

−1

number of base pairs N T.b:1014, C.f:2515

radius r T.b: 54.870 Å, C.f: 136.093 Å

diameter D 65 Å

Table 4: kDNA computational parameters

parameters CG CA TA AG GG AA GA AT AC GC

tilt (θ1) 0.00◦ -0.02◦ 0.00◦ -1.31◦ -0.04◦ -1.30◦ -1.51◦ 0.00◦ 0.46◦ 0.00◦

roll (θ2) 4.32◦ 4.98◦ 2.93◦ 3.79◦ 5.04◦ 0.43◦ 1.83◦ 1.01◦ 1.79◦ 0.70◦

twist (θ3) 34.73◦ 34.98◦ 37.08◦ 32.65◦ 33.06◦ 35.18◦ 35.49◦ 29.86◦ 31.36◦ 33.58◦

shift (ρ1) 0.00Å -0.05 Å 0.00Å 0.09 Å -0.04 Å 0.02Å -0.29Å 0.00Å 0.26Å 0.00Å

slide (ρ2) 0.3 Å 0.3Å 0.1Å -0.3 Å -0.4Å -0.2 Å -0.1Å -0.7Å -0.6Å 0.2Å

rise (ρ3) 3.4Å 3.4Å 3.3Å 3.3Å 3.4Å 3.3Å 3.3Å 3.2Å 3.3Å 3.4Å

Table 5: Sequence dependent elasticity parameters
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is because for many of these simulations, we observed sticking for the SD-SGIB method.

Thus, we sought to quantify the sticking behavior, and to find solutions to prevent this from

happening in the numerical method.

4.3.1 Sequence Dependent SGIB Method

The SD-SGIB method is a novel method for modeling dynamics of sequence dependent

DNA immersed in a fluid. Using our new method, we were able to model sequence dependent

effects of kDNA minicircles. In the case of T. brucei, Sequence Dependent SGIB method

worked effectively; however this method has computational limitations. We will describe the

advantages of the new method, and discuss its limitations, including defining the main issue

of sticking.

There are two main limitations of the SD-SGIB method. The first is that the numerical

method scales with the length of the segment of the DNA. This is a general property of

IB methods, [41, 73], and is one reason we chose to model two Hopf-linked minicircles, as

opposed to a large network of minicircles.

The second is the issue of sticking. We say that a simulation is sticking, if two strands

of DNA move together as one for an extended period of time. This occurs as an artifact

of the immersed boundary method. The forces and moments from the DNA acting on the

fluid are spread to neighboring fluid mesh points through the smooth approximation of the

3-dimensional delta function δc. If points along the DNA occupy the same mesh space,

without a large force from electrostatic repulsion, these will move together throughout the

fluid, as opposed to having natural fluctuations due to the thermal forcing in the fluid.

We are able to identify sticking by finding the pairwise distance between DNA base pairs.

If the distance for a significant portion of the DNA remains below a minimum threshold,

we identify this as sticking. We considered finding the covariance matrix of the position of

base pairs as a function of time. As the DNA strands move together, their positions should

be positively correlated, but because of no-slip conditions, all of the DNA positions are

positively correlated throughout a dynamic simulation, and it is too difficult to determine

the effects from sticking alone.
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Figure 22: T. brucei centroid distance (microns) distribution and centroid distance time

traces for 20 Hopf-linked minicircles.
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Figure 23: C. fasciculata centroid distance (microns) distribution and centroid distance time

traces for 20 Hopf-linked minicircles.
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We generated distance plots throughout the sequence dependent simulations for both

T.brucei and C.fasciculata. We used a threshold of 1.3 ·D and 1.2 ·D to determine if two

strands of DNA were sicking throughout a simulation. As an example of sticking, figure

24 displays a dynamic progression of two C. fasciculata minicircles, and the corresponding

distance plots. The distance plot shows a color map of the pairwise distance between each

base pair. Between any two base pairs, a distance less than a tolerance of 1.2 ·D is displayed

in yellow, and distances above this threshold are displayed in blue. The first minicircle has

labels 1 through 2515, and the second is labeled as 2516 through 5030. The yellow band along

the diagonal represents the distance from one base pair to itself, so we look for persistent

yellow bands off of this diagonal.

With an effective diameter of D = 65Å, we see that the simulation of C. fasciculata shows

signs of the SD-SGIB method sticking. In the left panel, at two different locations along

both minicircles, there is a growing segment of DNA that begins to move as one strand,

until roughly one third of the minicircle strands move as a single strand of DNA. In the

panel on the right, we see that this corresponds to the appearance of yellow bands in the

distance plot that persists and grow in size throughout the dynamic progression. In contrast,

the simulations for T. brucei with effective diameter of D = 65Å never exhibited sticking.

Sometimes, it is possible to see a yellow band appear and even fluctuate momentarily, but

for T. brucei, these bands disappear eventually. The close proximity of the DNA strands is

due to natural drift and diffusion of the stochastic process.

Another method of identifying sticking, is to compute the diffusion coefficient for the

centroid distances as a function of time. For a one-dimensional random walk X(t), the

diffusion coefficient is approximated by DDiff = (∆x)2

2∆t
. Thus we calculated the diffusion

coefficient for the traces for centroid distances. A simulation exhibits sticking if the diffusion

coefficient is small. This is because there are fewer degrees of freedom for the center of mass

of two minicircles to fluctuate when one or several portions of the DNA segments are moving

as a single strand. Note that a large diffusion coefficient does not necessarily mean that there

is no sticking present. Take for example two minicircles that start far apart and stick near

the location of the Hopf link. These DNA segments are allowed to fluctuate like flapping

wings, despite sticking.
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Figure 24: C. fasciculata dynamic progression illustrating sticking with corresponding dis-

tance plot.
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We estimated the diffusion coefficient for two C. fasciculata minicircle centroid distances.

In figure 25, we see that for C. fasciculata the diffusion coefficient for the sticking simulation

is much lower than the simulation with no sticking. This gives a procedure for checking for

sticking in real time as well, although a large diffusion coefficient does not necessarily mean

that there is not sticking for the SD-SGIB method.

We tried several ways to prevent the sticking phenomenon for the sequence dependent

minicircles. Depending on the chosen parameter values for the SD-SGIB method, we ob-

served sticking for both kDNA sequences. The first method was to increase the 20Å diameter

of DNA to an effective diameter of 65Å. This was effective for preventing sticking for T.

brucei, but not for C. fasciculata. For N̂ = 64, the fluid domain length to grid sizes gives

a mesh width of 4.287Å and 10.632Å for T. brucei and C. fasciculata respectively. The

second method we tried for C. fasciculata was to change the fluid mesh. When we increased

the mesh to 1283, computations were no longer feasible. For N̂ = 64 and dt = 1 · 10−9,

it took 51927.66 seconds to run 12000 iterations of a C. fasciculata minicircle simulation.

Comparatively, for N̂ = 128, and dt = 3 · 10−10, this would require a runtime of roughly

26257546.6 seconds to run obtain a simulation of the same length of time. That is roughly

500 times longer because of the refined fluid mesh and significantly smaller value of dt. When

we discretize by every base pair, even with only a mesh of 643, the dynamical simulations

already take three weeks running continuously on a cluster, thus for N̂ = 128 the current

method is not computationally feasible. We thought to reduce the number of base pairs, but

that would neglect the sequence dependent effects.

The only method we found to be effective for C. fasciculata, was to include electrostatic

repulsion. We observed sticking for Cs = 0.1, 0.05M and neither of these solved the sticking

phenomenon. The problem is that with Cs = 0.01M, there was no sticking throughout the

simulation. With such high electrostatic repulsion, corresponding to an effective diameter of

150Å [67], this would no longer be biologically accurate.
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Figure 25: Diffusion coefficient for C. fasciculata minicircles. Initial centroid distance of 0

microns (blue) and 0.1616 microns (orange)
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4.4 Conclusion

We created a novel method for modeling the effect of sequence dependent in DNA dy-

namics. This SD-SGIB method incorporates base pair specific elastic properties of DNA

while still dynamically modeling the DNA interaction with fluid.

Using the SD-SGIB method, we modeled the dynamics of two kDNA Hopf-linked minicir-

cles. For T. brucei, we found a distribution for the center of masses of two linked minicircles

dynamically. In the case of modeling C. fasciculata, because of the length of the DNA se-

quence, the SD-SGIB method encounters the phenomenon of sticking. We examined possible

solutions to this issue, and found including electrostatic repulsion to be effective.

The average minicircle centroid distance could indicate when the network is in a stress-

free state. This is because we would expect that in a stress free configuration, the pairwise

minicircle centroid distance to be within a small error of the mean. So at large scales this

gives a measure of the stress-free or strained network configurations based on the diameter

of the network.

By incorporating sequence dependence with the fluid-structure interaction method, the

SD-SGIB method more accurately models the dynamics of DNA. This was effective in model-

ing the dynamic of DNA links for small networks of DNA sequences with length constraints.
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5.0 Conclusion

Mathematical modeling has played a key role in understanding the structure and function

of DNA since its very discovery. This has sparked advances across several fields of biology

and medicine, and it inspired new mathematical frameworks aimed at explaining the function

of DNA. We studied the topology of DNA by modeling dynamics of DNA knots and links.

Using a continuum rod model, we found knotted equilibrium structures for various excess

linking numbers and a distribution for the various knot types. Because DNA knots and knot

topology change throughout the process of cellular replication, this may give insights into the

enzymes and mechanisms responsible for maintaining the topology of DNA. Using a discrete

base pair model, we dynamically modeled a pair of kDNA minicircles. This could give an

indication of the topology of a stress free kinetoplast DNA network and in turn shed light

on the cellular processes involved in maintaining this network structure.

To model the topology of DNA dynamically, we considered three numerical methods.

The first was the Generalized Immersed Boundary Method, which considers DNA to be a

thin elastic rod immersed in fluid. Using this method we found the symmetries of knot

equilibrium structures for various excess linking numbers, and deterministically described

the dynamics of transitions between these states. The second method we used was the

Stochastic Generalized Immersed Boundary Method. Because this method accounts for

thermal fluctuation of the surrounding fluid, the SGIB method gives a more biologically

realistic model of DNA dynamics. Using the SGIB method, we estimated the probability

of DNA knot configurations with excess twist. The SGIB method assumes DNA to be

homogeneous and transversely isotropic, and neglects the elastic effects of specific base pairs.

Thus, we created a novel method, the Sequence Dependent Stochastic Generalized Immersed

Boundary Method to account for sequence dependence. Using the SD-SGIB method, we

studied the effects of sequence dependence on kinetoplast DNA by dynamically simulating

two Hopf linked minicircles. We also found the method to be effective at modeling sequence

dependent DNA for small networks of DNA minicircles with length constraints.

By modeling DNA knots and links, we dynamically explored the energy landscape of
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elastic knots with excess twist. Using the deterministic model, we found stable equilibrium

knot configurations and saddle configurations. We also determined how the elastic energy of

these knot configurations changed throughout the equilibration process. This deterministic

method provides an idea of the overall dynamics but gives an incomplete picture based on

elastic energy values alone.

Thus, we consider a stochastic model over the space of knot configurations. Thinking of

this process as a continuous time Markov chain gives more realistic dynamics by accounting

for the entropy of the system. The deterministic system provided a state space of knots

given a fixed linking number for the CTMC. Using the Kendall shape space and a minimum

Procrustes distance equivalence relation, we found energy barriers between these states. We

then obtained transition rates between knot states and the mean holding times for each

of the equilibrium configurations. Finally, we used the mean holding times and transition

rates to find a steady state distribution of the stochastic process. By comparing this to a

distribution estimated from the elastic energies alone, we found that the stochastic system

gives a more accurate representation of the knot energy landscape.

DNA topology is important in understanding the function of DNA and the cellular mech-

anisms involved in maintaining its structure. Modeling DNA knots and links, provides a rich

mathematical framework to dynamically explore this topology, and through this modeling

process, we gain insights into the behavior of DNA as a whole.
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Appendix A Mean holding times and transition rates

The following are the mean holding times and transition rates for

Lk = −4,−5,−6,−7,−8,−9, 10.
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Figure 26: Mean holding times and transition rates for Lkrel = −4.
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Figure 27: Mean holding times and transition rates for Lkrel = −5.
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Figure 28: Mean holding times and transition rates for Lkrel = −6.
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Figure 29: Mean holding times and transition rates for Lkrel = −7.
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Figure 30: Mean holding times and transition rates for Lkrel = −8.
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Figure 31: Mean holding times and transition rates for Lkrel = −9.
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Figure 32: Mean holding times and transition rates for Lkrel = −10.
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Figure 33: Mean holding times and transition rates for Lkrel = −4.
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Appendix B SD-SGIB parameters

From the SD-SGIB method, the Matrix Γnij is defined as

[Γnij] =


− θn1
κn

sin ζn +
θn2 cos ζn

2 tan 1
2
κn
− θn2
κn

sin ζn − θn1 cos ζn

2 tan 1
2
κn

tan 1
2
κn cos ζn

θn1
κn

cos ζn +
θn2 sin ζn

2 tan 1
2
κn

θn2
κn

cos ζn − θn1 sin ζn

2 tan 1
2
κn

tan 1
2
κn sin ζn

− θn2
2

θn1
2

1

 (B.1)

and

[Zij(α)] =


cosα − sinα 0

sinα cosα 0

0 0 1

 , (B.2)

[Yij(α)] =


cosα 0 sinα

0 1 0

− sinα 0 cosα

 , (B.3)

which defines θn1 , θ
n
2 , θ

n
3 by the relations: ζn = 1

2
θn3−γn, κn =

√
(θn1 )2 + (θn2 )n, ηn = 1

2
θn3 +γn,

and tan γn =
θn1
θn2

from the Euler-angle system [18].

For each j, we define the components of the skew matrix [jΛ
n
kl] as follows [16]: For j = 1:

1Λn
12 =

θn2

(
1− cos

(
1
2
κn
))

(κn)2
, (B.4)

1Λn
13 =

θn1 θ
n
2

(
2 sin

(
1
2
κn
)
− κn

)
2(κn)3

, (B.5)

1Λn
23 =

1

2
+

(
θn2
κn

)2 2 sin
(

1
2
κn
)
− κn

2κn
. (B.6)

For j = 2:

2Λn
12 =

θn1

(
cos
(

1
2
κn
)
− 1

)
(κn)2

, (B.7)
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2Λn
13 =

(
θn1
κn

)2κn − 2 sin
(

1
2
κn
)

2κn
− 1

2
, (B.8)

2Λn
23 =

θn1 θ
n
2

(
κn − 2 sin

(
1
2
κn
))

2(κn)3
. (B.9)

For j = 3:

2Λn
12 =

1

2
cos
(1

2
κn
)
, (B.10)

3Λn
13 = − θn1

2κn
sin
(1

2
κn
)
, (B.11)

3Λn
23 = − θn2

2κn
sin
(1

2
κn
)
. (B.12)

The coefficients of matrices fij, gij, and hij as in the method [16] are from [59, 44].

For each successive pair of bases, the coefficients of these matrices in the index order

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) listed vertically are listed in tables

6, 7 and 8.
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CG CA TA AG GG AA GA AT AC GC

0.107 0.121 0.135 0.197 0.157 0.149 0.133 0.190 0.130 0.120

0.000 -0.004 0.000 0.014 0.010 0.007 -0.003 0.000 0.011 0.000

0.000 -0.003 0.000 0.034 0.003 0.002 0.019 0.000 0.011 0.000

0.000 -0.004 0.000 0.014 0.010 0.007 -0.003 0.000 0.011 0.000

0.038 0.061 0.053 0.067 0.068 0.064 0.044 0.068 0.077 0.095

0.018 0.020 0.031 0.024 0.014 0.034 0.024 0.024 0.021 0.012

0.000 -0.003 0.000 0.034 0.003 0.002 0.019 0.000 0.011 0.000

0.018 0.020 0.031 0.024 0.014 0.034 0.024 0.024 0.021 0.012

0.103 0.066 0.056 0.080 0.086 0.101 0.086 0.091 0.099 0.069

Table 6: Elastic coefficients for fij representing twisting and bending moduli in units kT/deg2

CG CA TA AG GG AA GA AT AC GC

-0.352 -0.316 -0.164 -0.282 -0.330 -0.263 -0.369 -0.162 -0.113 -0.248

0.000 0.028 0.000 0.038 0.063 0.017 0.028 0.000 0.065 0.000

0.000 -0.029 0.000 0.137 0.125 0.168 -0.038 0.000 0.018 0.000

0.000 -0.038 0.000 -0.080 0.009 0.086 0.021 0.000 0.175 0.000

0.038 0.029 -0.014 -0.088 0.116 -0.211 -0.071 0.047 -0.051 0.355

-0.117 -0.127 -0.088 -0.068 -0.104 -0.254 -0.237 -0.122 -0.118 -0.227

0.000 0.019 0.000 -1.411 -0.867 -0.673 -0.679 0.000 0.057 0.000

0.003 -0.008 -0.163 -0.403 -0.026 -0.120 0.141 0.229 0.240 0.724

-0.357 -0.310 -0.514 -0.803 -0.587 -0.254 -0.383 -0.350 -0.566 -0.635

Table 7: Elastic coefficients for gij representing the coupling between bending, shearing, and

slide in units kT/deg/Å
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CG CA TA AG GG AA GA AT AC GC

2.510 3.167 3.459 2.963 3.106 7.161 5.158 4.063 4.077 2.449

0.000 0.725 0.000 0.128 0.081 0.783 1.840 0.000 1.476 0.000

0.000 0.074 0.000 0.656 1.177 2.772 3.285 0.000 -0.047 0.000

0.000 0.725 0.000 0.128 0.081 0.783 1.840 0.000 1.476 0.000

3.521 2.262 2.007 4.498 3.841 8.107 4.162 8.886 11.452 5.582

3.214 2.362 2.330 3.732 4.365 1.777 2.124 5.428 6.243 6.349

0.000 0.074 0.000 0.656 1.177 2.772 3.285 0.000 -0.047 0.000

3.214 2.362 2.330 3.732 4.365 1.777 2.124 5.428 6.243 6.349

22.628 20.875 37.210 34.532 33.325 37.297 24.466 38.484 32.711 31.530

Table 8: Elastic coefficients for hij representing shift, slide and rise energies in units kT/Å
2
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Appendix C Kinetoplast DNA sequences

The exact DNA sequences for T. brucei and C. fasciculata from [57] are as follows:

T. brucei :

GAAAAAACCCAAAATCTTATGGGCGTGCAAAAATACACATACACAAATCC

CGTGCTATTTTGGGCTGTTTTTTAGGTCCGAGGTACTTCGAAAGGGGTTG

GTGTAATACACACATGGTTTTTCCTCGAGATTTCAGGGTTTTGGGGTGAT

ATCTAGTGTAATTAATATTGTGTTTTTATAGTCTACTTAAGGAATAAAAT

ATAGTAATAGATAAATATATAAGTTAGATATATAGCAATTATAATTAAAC

TGAAGAGGTTATAATACCTCGAAACTCGCGGTGATGATTTTATATTTATT

TCTTATATTACTATTTATTAATTTATTCTCATTCTCGGGATTACCTAGTG

GGAAAGAAATGAGATAATAGATATGTATTGTAGTATTATAATGATATATA

TAGATATAAGATCAACAAAACTGCCATTTTCTATAGTGAGTGATGATATA

TTATAATTAAATGATATTATTATTAAAATCTATTTATTATTTTATTTATT

TATGGAGGATGAAATTAATGGGATTATTCGGTGGTAGAGTGGGATTAATG

TGATAAATACTGCTTCATATCTGCGTCTAGAAAGGTAAAATAATTTAATA

GATAAGTAGTAGTAATATATTAAGTTAAATATGATATATATAATGACTAA

CTAAACTGATAAAGCAGTAGAAGAGACGATGTAATATATATAATTATTAA

TTACTGTTAATATATCTATTATTTTATTTTATTACTAAGGGAAAGAGAAG

ATATTAATAGATAGAACAATGAATAGATAATAAAGTGAAGAATTATATAA

ATCCAATAAAAGTGAAATAGAATCTGAGAGACTGTGATTTATACCTGTAA

AATGAGATTTATATTTATACTGTATCTATTATTTTATTTATGATTGGAGT

GGTGAGATAATGGAGGGAATCAGAAGTGAAGCACAGAGTTATTAATTGAA

AGAGATTAGTAGTGGATGTAAGAAAATTATGGAAAATCGGGTAAAAATCG

AAGAAAAATGGCTTG

C. fasciculata:

CCTCCTGGCAGGGGGTTTGGCGGGGTTCTAGCCCGATTTCGGGGCGTTCT

GCGGGGGTTTTTTTCTGGTCTGGGCGCGGGTTTGGGCTGGTTTGGGCTGG
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GTTTGGACTGTTTGTGCTAGTTGGGCGCTACGGACTGCTTTGCGATGGTG

CGCGGGGGGGTGGTTTCACCACTATTCTGATTGTTGTTTTCGCTCCTTGG

TGGGGTTTATATGCGCTCCGTTCGGTCGTATTCTGGAATTTTGGGGTTTG

CCAAAAGTGAACTTCCGACATTTCTCGCGGGGTTAATATATAGACTAGAC

GCGTCGTTGTTAATTTTGCCATGGGTGTGTTTGTGTTGTTCTGGTGCCCG

GAGGCTGATTTCCGGGGTCCCGCGAAAAATCAGAAACGGTCTCGGGTAGG

GGCGTTCTGCGAAAATCGACTTTTGATACAGGAAATCCCGTTCAAAAATC

GTGATTTTTTCAATTTTGGAGGCAAACTGGGGATTTCCGGGGTTGGTGTA

GTATTTCTGGGTCCGGGGGTCCTGAGGGGTTCCAATACCTTCTGATAGAT

TCGCCTTTTATAGGCGTTCTGCTCGTTACTTTTATAACTTTAGTTGCTCT

TATGTTTGCTATAAATATATAGCTTTGATTTCTAGACTTGCTTGCGTTTA

AAGTTGTTTGCGCGGGCTTCCTGTGGGTTTTGTTTTGGTGTGGCTTGTTA

TTTGTGATTTTGCTAGTTTCTTTGCGGTTTTGTCTATTTTTAGTTGTTTT

GTGTATTTGTACTTTACGTTTTTTGGTTGTTGTGGCTTTGCGTTTTTATA

CTGCTTTGCTGGCTTGGTTGGTTATGTTGGCTTGTGGTTTGTTTTTTATT

TTGTGTGTTCGTGGGTGTTGATGTTTTTGTGTTTTTTGGTTGCTTTTGTA

GCTTTAGGGTGGTTACTATTAGTTTTCCTTTTGTTTTCGCTTTTGTTCTG

GGGTTTGTGATTAGCTTTGGGGGTTTCGTGGTTGTTGTGCCTGTGTTATT

TAGTTGTGTCCCACGGTGGGTTCGGCTGCTGGTTGGGTGTGCTTACTGTT

TCTTGTTATGTTGGTATGTATGCTATGTTGCTGCTAGTTGTTTTTATGGT

TTTGCGCTTGTCTGTTGCGTGTGTATGTGTTTATTTATTTGATTGTTTAG

ATTGTTTTAATAACTTTGTGTTGCATTTGTTTTAGATTTAAAAGGCTTGT

TGTTGTGTTGTTGTGTTGTTGCTATTGTTTTGATTTGTCTTTGCTGCTCA

CTGCGTGGTACACATTGATTGCTCGAGTGCGATGTTGTGTTGATAGCTTC

TTGTAGTTTTTCGTTGTTTGTTAATGTTGGTGTTGGTGTTGGTGTTCTCG

GTTGCCACCTGTGGTTTCTTTAAGTGTTTGTTGCTGTTTATTTTGTTGTT

TGTTGGTTATTGGTTTATTGTTTGCATTAGCCTTCTGTGGGTTTGAAACT

GTTGTATTCTTGTTTACTTGGGTGGTTTATCTTGATTTGGCTTTATTGTT

GGGTACTTGTTGTTGTTTGTTGTGTTTTATGCTCTTTCTTTGTTGCTGGT

GCTTGCTGAACTGTTTGTGGTTGTTGGGGCGTGTGGGTTTGAGGGTGTTT
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TTTGGGGTGGTTTGGGGTGCCCGCGAAATATCAGAAATGGTCTCGGGTAG

GGGCGTTCTGCGAAAATCGACTTTTGATACAGGAAATCCCGTTCAAAAAT

GGCAGTTTTCTCGATTTTGGAGGCTCGGCTGGGATTTCCGGGGTTGGTGT

AGTCATTCCTGGGTCCGGGCGGGTCTGGCGGGGGTTCTGTTAAACGCGGG

GGTTGCTTCAGTGCTGTTATTCATCCGCTTCGAAGTTAATTTTCGTTGTT

TAGCTTGTAGTTTGCTCTGTGGGGTTCTGAAATTGCCCATTTTGGCGCTT

TTTATCGTTGGGTGTGTACGATTGCGCGGCGTCGCTTTCGACGACGGGGC

CGAGTGTTCTTGCACGAGGTCGGGAGCGCTAGCCCGTCGTTGAATGCAAG

TGCAACATACGTGAGGCCGCGGACGAGCCCCGTCCCTGAAAGGGGAGGAG

GCTAGTTGACGCTAGGCCGGAGCCACGAATGGCGAGCAAAGCTAGCCCGA

GCCATGAACGCGAACGGCCGGGGAGACTTGCCGGGGAAAGGGGAGGGTCA

AGTACCAGGCTCGAACAGTATACAACGACAAGACGCCGCTGCATCGCCAT

ACTTTTATCTTTCGCACATTCATGTGTGAACTAGTTTGCTTTAACACGGT

GCCTCGTTTAACCTCTTGCGGGTTGGTAGACAGACTCTAAAGCAGATGCG

TAGACGTTCAGATTTTGATTTTTGAGTGCGTTTTTGGCCATTTTTTGCCC

ATTTTTCCCTTAAAATTCAATAAAATTGCGGGATTTTTTACCATTTTTGT

CGATTTTTGGGGTATTTTCGCTGTTTTTTGGCATTTTTTGGCCATTTTTC

CTTGATTTTGGGCACTTTTCGGGCTCCAAAAAAGTAACCTCGCGATTTTC

GCCTGGAATTTTAGGC
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