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Andreev quantum dot chains in indium antimonide nanowires

Hao Wu, PhD

University of Pittsburgh, 2021

Kitaev chain is a theoretical model of a one-dimensional topological superconductor with 

Majorana zero modes at the two ends of the chain. Intending to emulate Kitaev chain, we 

build a tight-binding model of a 3-site quantum dot chain. Simulations of the energy spec-

trum and transport suggest partial-separated Majorana zero modes localize at two end sites 

within a narrow parameter window. Theory indicates that the triple-dot states acquire 

Majorana polarization in the fine-tuned regime (Kitaev regime) when Andreev states in all 

three dots reach zero-energy in a narrow range of magnetic field. A zero-bias peak extends 

in magnetic field would appear. We build a chain of three Andreev quantum dots in a 

semiconductor InSb nanowire. We observe Andreev bound states in each of the three dots, 

study their magnetic field and gate voltage dependence, and observe dot-dependent zero-

bias conductance peaks in magneto-transport spectroscopy. We interpret zero-bias peaks as 

Andreev states along the triple-dot chain crossing zero-energy at finite magnetic fields. In 

our device, transport is dominated by one of the quantum dots in the chain, which has a 

zero-bias crossing at lower magnetic field than the other two dots, placing the Kitaev regime 

with Majorana end modes out of reach. The device geometry is suitable for studying the 

correlation of two end states with non-local measurements. A hard induced superconduct-

ing gap surviving to higher magnetic fields is desired. Devices with greater uniformity or 

independent control over superconductor-semiconductor coupling should realize the Kitaev 

chain with a high yield.

We characterize hybrid InSb nanowire/Sn shell devices fabricated with in-situ shadow 

technique and observe a hard induced superconducting gap that persists up to 4 T in mag-

netic field. The two-electron charging effect, a hallmark of charge parity stability, is ob-

served in a small island of Sn/InSb. We also study a double quantum dot in a hybrid InAs 

nanowire/Al shell device and demonstrate Andreev blockade.

Due to its overall tunability and design flexibility, the quantum dot system remains

iv



promising for quantum simulation of interesting models and particularly for modular topo-

logical quantum devices.
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1.0 Introduction

1.1 Quantum computation and quantum simulation with quantum dots

In classical computers, the basic unit of information is a binary digit (bit). In quantum

computing, the basic unit of information is called a quantum bit (qubit). A qubit is a

controllable 2-level quantum mechanical system. There are various choices to physically

implement qubits: charges and spins in semiconductor quantum dots [1], photons, trapped

ions in optical lattices, nitrogen-vacancy centers in diamond, and superconducting circuits [2].

Quantum dot systems are versatile platforms for quantum information processing. In

quantum dot-based spin qubits, initialization, manipulation, logic gate control and readout

of spin states, and qubit entanglement have been demonstrated [3, 4, 5, 6, 7]. With high

measurement and control fidelity [8], quantum dot-based qubit becomes a great candidate

for scaling up quantum computation above the fault-tolerance threshold [9, 10].

The idea of quantum simulation is to solve complex many-body quantum problems by

encoding quantum properties into the hardware.

Quantum simulation can provide valuable insights into complex and significant quantum

problems with strong interactions that cannot be numerically calculated with classical com-

puters. We can build a quantum system that is simple, controllable, easy to manipulate to

simulate and study a more complex quantum system. If both systems can be described by

the same Hamiltonian and the same equations, they will have the same solutions and be-

have similarly. One actively studied problem is quantum simulation of the Fermi-Hubbard

model in ultracold atoms trapped by laser beams in optical lattices. It is motivated by

the strong connection of the doped antiferromagnetic Fermi-Hubbard model and high Tc

(critical temperature) superconductivity in cuprates.

Since electrons confined to artificial atom lattice sites (quantum dots) are governed by

the same physics as those in crystalline lattices, semiconductor quantum dots in a chain or

array are suitable for simulating 1D or 2D Hamiltonians of complex many-body states. Many

properties of quantum dots can be engineered, including size, shape, confinement strength,

1



and energy spectra. By designing a semiconductor quantum dot array with desired charging

energy and gate-tunable inter-dot tunnel coupling, it can mimic the quantum behavior of

electrons in materials with exotic electronic and magnetic properties and provide insights into

the underlying physics. Several models have been simulated by semiconductor quantum dots,

including the strongly correlated Fermi-Hubbard model [11], Nagaoka ferromagnetism [12],

and antiferromagnetic Heisenberg chain [13]. Furthermore, quantum dots can be constructed

in semiconducting materials with intrinsic properties such as strong spin-orbit interaction,

and large g-factor. Magnetism or superconductivity can also be induced into the quantum

dots through the proximity effect [14], which expands the variety of problems that quantum

dot systems can simulate.

1.2 Majorana fermions and topological quantum computing

Issues of decoherence and scalability obstruct the realization of practical quantum com-

putation. To accomplish error correction in quantum computing, many physical qubits are

needed to create one logical qubit [15, 16]. Topological quantum computing is an approach

to circumvent the harsh requirements for logical qubits and scale up to realize fault-tolerant

quantum computation [17, 18, 19]. Topological quantum computation is carried out by

performing braiding operations on non-Abelian anyons, which are stable and resilient to

decoherence [20, 21].

According to the spin-statistics theorem, in 3+1 space-time dimensions, elementary par-

ticles can be categorized into two kinds depending on their spin being half-integer or integer.

Fermions, such as electrons, have half-integer spin. When we swap two fermions, the wave-

function of the system changes sign. On the other hand, bosons, such as photons, have

integer spin. The wavefunction remains the same under the exchange of bosons.

In 2+1 space-time dimensions, anyons are quasiparticles which are neither fermions nor

bosons. When we exchange two anyons, wavefunction has a phase shift other than 0 or π (0 is

for bosons, π is for fermions). For example, in the fractional quantum Hall effect, fractionally

charged quasiparticle excitations of Laughlin states are anyons [22]. Non-Abelian anyon is
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one kind of anyons that exhibit non-Abelian exchange statistics. Majorana fermions are an

example of non-Abelian anyons. Exchanging Majorana fermions, a process called braiding,

can lead to changes in the system’s state while keeping the same energy as the initial state.

Changing the exchange order in a sequence of braiding operations will change the final state,

which is one unique property of non-Abelian anyons.

Majorana fermions are predicted to exist in a type of exotic phase of matter, topological

superconductor. Several platforms are considered to host Majorana fermions, including

unconventional p-wave superconductors [23] and topological insulator in proximity to s-wave

superconductor [24]. When a semiconductor nanowire with strong spin-orbit interaction, is

coupled to an s-wave superconductor, in the presence of magnetic field, Majorana fermions

can emerge as quasiparticle excitations (Majorana zero modes) at endpoints of the wire [25,

26]. Although its non-Abelian exchange statistics has not been confirmed in experiments yet,

Majorana zero modes in hybrid superconductor-semiconductor nanowires have become one

of the most promising candidates for topological qubits [27, 28, 29]. Semiconductor nanowire

system has the advantage in performing braiding operations and demonstrating non-Abelian

statistics in the future [30]. Experimentally demonstrating non-Abelian exchange statistics

of Majorana zero modes would be a milestone towards the application of topological quantum

computing.

1.3 Layout of the thesis

The content of this thesis is as follow:

Chapter 2 introduces the theory and background of the Kitaev chain model and Majorana

zero modes in hybrid semiconductor/superconductor nanowire devices.

Chapter 3 describes the materials, device fabrication techniques, and measurement setups

used in the thesis.

Chapter 4 shows a theoretical model of a three-site Andreev quantum dot chain.

Chapter 5 studies triple Andreev quantum dot chains in Indium Antimonide nanowires.

Chapter 6 presents a characterization study of Indium Antimonide nanowires with tin

3



shells.

Chapter 7 demonstrates the Andreev blockade phenomenon of double quantum dot chains

in Indium Arsenide nanowires.

Chapter 8 concludes the thesis with a summary and outlook.
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2.0 Theory

2.1 The Kitaev model

The Kitaev model is a tight-binding chain of N fermionic sites [31]. It describes one-

dimensional spinless p-wave superconductor, where unpaired Majorana fermions are expected

to emerge at the chain’s ends. All proposals to realize Majorana fermions in a 1D quantum

wire are based on this model [25, 26].

The Kitaev chain has the following Hamiltonian:

Hchain = −µ
N∑
i=1

(c†ici −
1

2
)− t

N−1∑
i=1

(c†i+1ci + h.c.) + ∆
N−1∑
i=1

(cici+1 + h.c.) (2.1)

in which µ is onsite chemical potential, t is the hopping amplitude between two neighboring

sites, ∆ is the superconducting gap. c†i and ci are the fermionic creation and annihilation

operators on site i. Note that the above Hamiltonian does not contain spin indices, so the

electrons are effectively spinless. Due to the Pauli exclusion principle, each fermionic site can

only be occupied by one of such spinless electrons. P-wave superconductivity pairs electrons

with the same spin from two neighboring sites.

We introduce Majorana operators γ1 and γ2 by splitting fermionic creation and annihi-

lation operators c† and c into their real and imaginary parts:

c =
1

2
(γ1 + iγ2)

c† =
1

2
(γ1 − iγ2)

(2.2)

By inverting the above transformations, we can write Majorana operators in the following

way:

γ1 = c† + c

γ2 = i(c† − c)
(2.3)

It is simple to verify that γ1 = γ†1 and γ2 = γ†2: Majorana creation and annihilation

operators are equal to themselves. Such quasiparticle γ is its own anti-particle, fits the
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definition of a Majorana fermion. Similar to fermionic operators, Majorana operators anti-

commute:

{γi, γj} = 2δij (2.4)

A fermionic operator can always be expressed as a pair of Majorana operators. We sub-

stitute Majorana operators for fermionic operators and apply the anticommutation relation

Eq. 2.4. We have the Kitaev chain Hamiltonian in the following form:

Hchain =
i

2

N∑
i=1

(−µγi,1γi,2) +
i

2

N−1∑
i=1

[(t+ ∆)γi,2γi+1,1 + (−t+ ∆)γi,1γi+1,2] (2.5)

To fully solve this Hamiltonian is complicated. However, two special cases represent two

different phases and capture the essence of the model.

(a)

(b)

Figure 2.1: Schematic of a 5-site Kitaev chain in (a) topological trivial phase and (b) topo-

logical non-trivial phase. Each fermionic site is indicated by an orange circle enclosing two

Majorana operators (grey dots). (a) shows the chain in the trivial case where Majorana

operators from the same site pair up (blue line). (b) shows the chain in the topological

non-trivial phase where Majorana operators from neighboring sites pair up (red line) and

leave an unpaired Majorana operator at each end of the chain.

1. ∆ = t = 0 and µ < 0.

The Hamiltonian becomes:

Hchain = − i
2
µ

N∑
i=1

γi,1γi,2 = −µ
N∑
i=1

(c†ici −
1

2
) (2.6)

In this case, two Majorana operators from the same site are paired, equivalent to a

fermionic operator. Each site is occupied by one spinless electron. Fig. 2.1 (a) depicts

this trivial case.
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2. ∆ = t and µ = 0.

The Hamiltonian becomes:

Hchain = it
N−1∑
i=1

γi,2γi+1,1 (2.7)

It describes the case where paired Majorana operators γi,2 and γi+1,1 are from neighboring

sites. In this situation, two Majorana operators γ1,1 and γN,2 at the chain’s two ends

are left unpaired, shown in Fig. 2.1(b). Majorana operators γ1,1 and γN,2 do not show

up in the Hamiltonian Eq. 2.7, indicates the two Majoranas at the ends must be of zero

energy.

We can define the paired Majorana operators in Eq. 2.7 as a new set of fermionic oper-

ators:

c̃i =
1

2
(γi+1,1 + iγi,2)

c̃†i =
1

2
(γi+1,1 − iγi,2)

(2.8)

Obviously, they satisfy the anti-commutation rule as fermionic operators. The Hamiltonian

now becomes:

Hchain = 2t
N−1∑
i=1

(c̃†i c̃i −
1

2
) (2.9)

In this expression, N − 1 fermionic sites each contribute 2t to the energy. The two non-

local Majorana operators γ1,1 and γN,2, which are absent from Eq. 2.7 can be combined as a

non-local fermionic operator:

c̃M =
1

2
(γ1,1 + iγN,2)

c̃†M =
1

2
(γ1,1 − iγN,2)

(2.10)

c̃M or c̃†M does not show up in Eq. 2.10, means that add or remove this non-local fermion

M costs zero energy. c̃†M c̃M can be either 0 or 1. It implies two degenerate ground states

with different parity. The ground state degeneracy is a key property of non-Abelian anyons.

An energy gap well separates the ground states from other excitations such that the ground
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state degeneracy is robust against local perturbations. Note that this kind of pairing and

existence of unpaired Majorana end modes occurs for a larger parameter space of µ.

As edge excitations, the existence of unpaired Majorana end modes can be derived

through the bulk-edge correspondence. In momentum space, fermionic operators are:

ci =
1√
N

N∑
n=1

e−iknck

c†i =
1√
N

N∑
n=1

eiknc†k

(2.11)

Kitaev chain (Eq. 2.1) can be written in a canonical form through Bogoliubov-de Gennes

transformation:

H =
1

2

∑
k

ψ†kHBdGψk (2.12)

in which, ψk is the Nambu spinor of particle-hole space:

ψk =

 ck

c†−k

 (2.13)

and HBdG is the Bogoliubov-de Gennes Hamiltonian:

HBdG = (−µ− 2t cos k)τz + 2∆ sin kτy =

−µ− 2t cos k −2i∆ sin k

2i∆ sin k µ+ 2t cos k

 (2.14)

For very large N (infinite chain), k is continuous within Brillouin zone [−π, π]. The

excitation spectrum is given by:

E(k) = ±
√

(µ+ 2t cos k)2 + 4∆2 sin2 k (2.15)
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(a) (b) (c)

E
/t

E
/t

(d) (e) (f)

k k k

k k k

Figure 2.2: Band structures given by Eq. 2.15 at different µ. (a) µ = −2.5t, energy spectrum

is gapped at all k. (b) µ = −2t, band gap closing at k = 0. (c) µ = −t, band gap is inverted

and topological phase with Majorana modes are expected. (d) µ = t, band gap is inverted

and topological phase with Majoranas are expected. (e) µ = 2t, band gap closing at k = ±π.

(f) µ = 2.5t, trivial phase without Majorana modes.

Fig. 2.2 shows the energy spectrum of an infinite Kitaev chain at different µ. For ∆ 6= 0,

the spectrum remains gapped for most of the cases. The energy gap closes at k = 0, µ = −2t

and k = ±π, µ = 2t. These are the boundaries separating two different phases corresponding

to the above two special cases in Eq. 2.6 and Eq. 2.7. For 2|t| < |µ|, the phase is topologically

trivial. For 2|t| > |µ|, the phase is topologically non-trivial with unpaired Majorana modes

localized at the chain’s ends. The special point (∆ = t and µ = 0) is within the topologically

non-trivial phase.

The solution of the energy spectrum in Eq. 2.15 is exact for an infinitely long chain. For a

chain with finite length L, Majorana modes will not perfectly localize at the two end sites due
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to weak interactions between the two boundary modes. The two Majorana wavefunctions

exponentially decay into the bulk of the chain and have a non-zero overlap. This overlap

of two Majorana wavefunctions can result in an energy splitting and lift the 2-fold ground

state degeneracy.

(a) (b) (c) (d)

(e) (f) (g) (h)

E
/t

μ/t μ/t μ/t μ/t

|u
|2
+
|v
|2

site site site site

Figure 2.3: Topological protection of the Majorana end modes in a Kitaev chain of 25 sites.

(a)-(d) Energy spectrum as a function of µ. Two states at zero energy start to split near

µ = 2t. ∆ = t. Red dotted lines show different µ values in (e)-(f). (e)-(f) Wavefunctions

of the states correspond to Majorana modes along the chain. Blue lines show the ground

state, and red lines show the first excited state. In (e), the energy gap between zero energy

states and the first excited state is large, and the wavefunctions of Majorana modes localize

at two ends of the chain. In (f) and (g), as the energy gap between zero energy states and

the first excited state shrinks, the wavefunctions of Majorana modes are less well localized

at two ends. In (h), the ground states split from zero energy, the gap between ground states

and excited states are no longer present, the wavefunctions of Majorana modes overlap. (e)

µ = 0.2, (f) µ = 1, (g) µ = 1.6, (h) µ = 3.

Fig. 2.1 shows the topological protection of the Majorana end modes at different µ
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and the spatial distribution of the Majorana wavefunctions along the chain. At µ = 0,

two zero energy states corresponding to two Majorana modes localize at two ends. The

Majorana modes are spatially separated by a gapped bulk. No other states are close to

zero energy. Moving a single quasi-particle excitation (Majorana zero mode) away from zero

energy is impossible because, with particle-hole symmetry, the excitation spectrum has to

be symmetric about zero energy. The zero-energy Majorana states can lose their degeneracy

when higher energy excitations in the bulk spectrum come close to zero energy to interact

with them (closing of the bulk gap makes the boundary conditions for hosting unpaired

Majorana modes no longer valid), shown in Fig. 2.1 as µ increases. As long as the bulk

energy gap exists, the two Majorana states are protected.

Spectrum simulations of Kitaev model are generated by source code in [32].

2.2 Majorana bound states in 1D nanowires

The Kitaev chain model is simple in concept but difficult to realize. As a critical in-

gredient of the model, the existence of p-wave superconductivity is still controversial. For-

tunately, theory suggests p-wave pairing can be effectively engineered by conventional ma-

terials [25, 26]. We combine one-dimensional semiconductor nanowire with strong Rashba

spin-orbit interaction, proximity induced s-wave superconductivity, and Zeeman effect, under

certain circumstances, it is similar to a 1D p-wave superconductor with triplet pairing.

We write the Kitaev chain Hamiltonian (Eq. 2.1) in a continuum limit:

H =

∫
dx[Ψ†x(

p2
x

2m
− µ)Ψx + Ψx∆e

iφpxΨx + h.c.] (2.16)

in which Ψ†x and Ψx are the fermionic creation and annihilation field operators, the spin in-

dices are omitted since this model describes spinless electrons. px is the momentum operator

in the x direction (assuming the chain is along the x direction). m is effective mass. µ is the

chemical potential. ∆ is the superconducting gap, and φ is the phase.
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We modify the Hamiltonian to describe a one-dimensional semiconductor nanowire with

Rashba spin-orbit interaction, in proximity with an s-wave superconductor, and in the pres-

ence of magnetic field:

H =

∫
dx[Ψ†x(

h̄2k2
x

2m
− µ− αSOkxσy +

1

2
gµBBσz)Ψx + Ψx∆e

iφΨx + h.c.] (2.17)

The nanowire is along the x direction. (−αSOkxσy) is the Rashba spin-orbit interaction term,

assuming effective electric field is along the z direction and perpendicular to the direction of

motion, x. αSO is the spin-orbit strength. (1
2
gµBBσz) is the Zeeman energy term. Applied

external magnetic field B is aligned with the x direction. g is the Landé g-factor. µB is Bohr

magneton.

To understand the physics of such a complex model, we will take a gradual approach. We

will start with a simple quantum wire, solve the Hamiltonian and plot the energy spectrum.

We will then add these components (spin-orbit interaction, magnetic field, and supercon-

ductivity) into the model one by one and see how the spectrum changes.

For a single subband quantum wire along the x direction, αSO = B = ∆ = 0,

H1D =
h̄2k2

x

2m
− µ (2.18)

The corresponding energy spectrum is a parabola given by:

E =
h̄2k2

x

2m
− µ (2.19)

Fig. 2.4 shows the energy spectrum of a 1D wire.

Figure 2.4: Energy spectrum of a single subband quantum wire given by Eq. 2.19 is a

parabola. µ = −0.2t.
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We add spin-orbit term, the Hamiltonian is:

H1D+SO =
h̄2k2

x

2m
− µ− αSOkxσy (2.20)

Spin-orbit interaction lifts the spin degeneracy. In energy spectrum, the parabola of spin

degenerate states are shifted to the left and right by kSO = mαSO

h̄2
along the momentum axis

and down in energy by 2ESO, where ESO = E(k = kSO) = mα2

2h̄2
is the spin-orbit energy. The

energy of dispersion is given by:

E± =
h̄2k2

x

2m
− µ± αSOkx (2.21)

Now spin and momentum are correlated. Spins at opposite momentum have opposite

signs. Fig. 2.5 shows the energy spectrum of a 1D wire with spin-orbit interaction.

Figure 2.5: Energy spectrum of a quantum wire with spin-orbit interaction is given by

Eq. 2.21. α = 0.5. µ = −0.2t. Spin-orbit term αSOkxσy results in a shift of ±kSO of two

parabolas with opposite spins and a shift of 2ESO in energy.

Next, we add Zeeman term, and the external magnetic field is applied along the x direc-

tion:

H1D+SO+Zeeman =
h̄2k2

x

2m
− µ− αSOkxσy +

1

2
gµBBσz (2.22)

The energy spectrum is given by:

E± =
h̄2k2

x

2m
− µ±

√
(αSOkx)2 + (

gµBB

2
)2 (2.23)
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Figure 2.6: Energy spectrum of a quantum wire with spin-orbit interaction in a parallel

magnetic field is given by Eq. 2.23. B = 0.05. µ = −0.2t.

Fig. 2.6 shows the energy spectrum of a 1D wire with spin-orbit interaction in parallel

magnetic field. Spin-orbit term −αSOkxσy can be written as − h̄
2
BSOσy, where BSO = 2αSO

h̄
kx

is effective B field along the y direction caused by spin-orbit interaction. Because BSO is

along the y direction and the applied external Zeeman field B is along the x direction, mixture

between spin polarization along σx and σy occurs. At k=0, the spin-orbit term is zero. Spins

are polarized along σx, a gap of 2EZ = gµBB is opened. When chemical potential µ is within

the Zeeman gap, the spectrum is non-degenerate, only states at large positive and negative

momentum contribute to transport. Spin degree of freedom is locked to momentum: only

one possible spin direction for states propagating along one certain direction.

Finally, we add s-wave superconductivity and get the Majorana wire Hamiltonian:

H1D+SO+Zeeman+SC =

∫
dx[Ψ†x(

h̄2k2
x

2m
−µ−αSOkxσy+

1

2
gµBBσz)Ψx+Ψx∆e

iφΨx+h.c.] (2.24)

In Bogoliubov-de Gennes formalism, the Hamiltonian is given by:

HBdG =

H0 ∆

∆∗ −T H0T −1

 (2.25)

where

H0 =

 h̄2k2x
2m
− µ 1

2
gµBB + iαSOkx

1
2
gµBB − iαSOkx h̄2k2x

2m
− µ

 (2.26)
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and

∆ =

 0 eiφ∆

−eiφ∆ 0

 (2.27)

T is time reversal operator:

−T H0T −1 =

 − h̄2k2x
2m

+ µ −1
2
gµBB − iαSOkx

−1
2
gµBB + iαSOkx − h̄2k2x

2m
+ µ

 (2.28)

After introducing superconductivity into the system, near the Fermi level, states with

opposite momentum +kx and −kx are paired up as Cooper pairs. At B=0, pairing is purely s-

wave since states of opposite momentum have opposite spins and form a singlet. As increasing

applied B field, a triplet component starts to emerge in the pair of states at +kx and −kx,

and resulting in a p-wave contribution to the superconductivity. The p-wave component

increases as increasing B field. When B is above a critical field, the superconducting state

becomes more p-wave like than s-wave like, and the state transitions from a topological

trivial to non-trivial phase. Since the pairing originates from an s-wave superconductor,

we can never have a pure p-wave superconducting phase where all spins are fully polarized

and form triplet states, because spin-orbit interaction is present in the system and full spin

polarization would suppress superconductivity.

When a significant fraction of the pairing becomes p-wave like, we can think of the system

as an effectively p-wave superconductor in 1D. µ = 0 is at the middle of the Zeeman gap.

When B is large (EZ � ESO), only the lowermost band needs to be considered. In this limit,

the fermionic operators (Ψ↑x and Ψ↓x) can be approximated as:

Ψ↑x ≈
αSOkx
2EZ

Ψx

Ψ↓x ≈ Ψx

(2.29)

Furthermore, the effective Hamiltonian for the lower band is given by:

Heff =

∫
dx[Ψ†x(

h̄2k2
x

2m
− µeff )Ψx + eiφ∆eff h̄kxΨxΨx + h.c.] (2.30)

µeff = µ + EZ is the effective chemical potential, and ∆eff = αSO∆
2EZ

is the effective super-

conducting pairing strength. Note that this Hamiltonian is the same as the Kitaev chain of

a 1d spinless p-wave superconductor in Eq. 2.16.
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(a) (b) (c)

(d) (e)

Figure 2.7: Energy spectrum of a Majorana wire given by Eq. 2.24 at different B. µ = 0,

∆ = 0.1, α = 0.5. (a) B = 0, Ez = 0, trivial phase. Gap E1 at kx = 0 and gap E2 at

finite k are of the same energy. The spectrum is degenerate at kx = 0. (b) B = 0.05,

Ez <
√

∆2 + µ2, trivial phase. Gap E1 at kx = 0 is closing linearly, while gap E2 at finite

k closes slowly in B. (c) B = 0.1, Ez =
√

∆2 + µ2, topological phase transition occurs at

critical field. (d) B = 0.15, Ez >
√

∆2 + µ2, non-trivial phase. Gap E1 reopens at kx = 0.

(e) B = 0.2, Ez >
√

∆2 + µ2, non-trivial phase.

In the spectrum of Majorana wire (Fig. 2.7), two energy gaps are present. E1 at kx = 0

and E2 at finite kx = 2kSO.

At kx = 0,

E1 =
√

∆2 + µ2 − EZ (2.31)
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Increase B from 0, the gap at kx = 0 closes at EZ =
√

∆2 + µ2, when the topological

phase transition happens and non-degenerate Majorana quasi-particles are about to emerge.

Further increase B beyond this point, the gap E1 =
√

∆2 + µ2 − EZ becomes negative and

band inversion occurs, indicates transition into a topologically non-trivial phase.

For the gap at larger k, the solution can be simplified when µ = 0, as:

E2 =
2∆ESO√

ESO(2ESO +
√
E2
Z + 4E2

SO)
(2.32)

For EZ � ESO, E2 = ∆, the gap at finite k remains open. For EZ � ESO, E2 = 2∆
√

ESO

EZ
,

the gap closes when system is no longer superconducting. For µ 6= 0, spectrum can be

more complex. The theory can be extended to multi-subband, one can also introduce dis-

order and consider finite length and width to better describe a real hybrid superconductor-

semiconductor nanowire device.

Spectrum simulations of Majorana wire are generated by source code in [32].

2.3 Quantum dot coupled to superconducting leads

2.3.1 Quantum dot

A quantum dot is a system that can be filled with electrons or holes [33]. Two ma-

jor effects influence the electronic properties of quantum dots. First, because of Coulomb

repulsion between the electrons on the dots, an energy cost is required for adding an ex-

tra electron to the dot. Due to this charging energy, electron tunneling to the dot can be

significantly suppressed at low temperatures. This phenomenon is known as the Coulomb

blockade. Second, quantum confinement leads to a discrete energy spectrum.
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source dot drain
e
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gate

Figure 2.8: Schematic of a quantum dot. A quantum dot is connected to the source and the

drain through tunnel barriers. Apply a bias voltage VSD across the device, current I flow

through the dot can be measured. A gate voltage VG tunes the electrochemical potential of

the dot.

Fig. 2.8 shows a quantum dot connected to the source and drain reservoirs through

tunneling. To consider the above two effects, the minimal model to describe this system

has two assumptions. First, it assumes the Coulomb interactions between electrons in the

dot, and electrons between the dot and the environment can be characterized by a single,

constant capacitance, C. C is the sum of capacitances between the dot and the source, CS,

the drain, CD, and the gate, CG: C = CS + CD + CG. Second, the single-particle energy

spectrum is independent of these interactions. The total energy U(N) of a quantum dot

with N electrons in the ground state is given by:

U(N) =
[−|e|(N −N0) + CSVS + CDVD + CGVG]2

2C
+

N∑
n=1

En (2.33)

where −|e| is the electron charge, N0 is the background charge, En is the single energy level

of the n-th electron, VS, VD, and VG are the voltages applied on the source, drain, and gate,

respectively.

The electrochemical potential µ(N) of the dot is defined as:

µ(N) = U(N)− U(N − 1) = (N −N0 −
1

2
)EC −

EC
|e|

(CSVS + CDVD + CGVG) +EN (2.34)
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where EC = e2

C
is the charging energy. µ(N) represents the transition between the N -electron

ground state and the N − 1-electron ground state.

The electrochemical potential of the transitions between consecutive ground states are

separated by the addition energy defined as:

Eadd(N) = µ(N + 1)− µ(N) = EC + ∆E (2.35)

The addition energy contains an electrostatic part, the charging energy EC , and energy

spacing between two discrete levels, ∆E.

N N+1N-1 N+2

!(#)

!(# − 1)

!!
!"

!(#)

!(# − 1)

!!
!"

Γ! Γ"

(a)

(b)

(c)

(d)

Figure 2.9: Electron transport through a quantum dot in an InSb nanowire. (a) Current

through a quantum dot as a function of bias voltage and gate voltage. (b) Zoom-in of

the scan in (a) shows Coulomb diamonds with electron numbers labeled. (c) Schematic of

Coulomb blockade. No levels are within the bias window, and no electrons can flow through

the dot. (d) Coulomb blockade is lifted when a more positive gate voltage is applied, as an

energy level tuned into the bias window.

Fig. 2.9 shows electron transport through a quantum dot. Electron tunneling through

the dot depends on the alignment of the electrochemical potential in the dot with respect to
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the electrochemical potentials in the source, µS, and the drain, µD. In electrical transport

measurements, a bias voltage, VSD = VS − VD can be applied across the source and drain

reservoirs to open up an energy window (bias window), µS − µD = −|e|VSD. For a quantum

dot system in equilibrium, electron transport is only possible when a level corresponding to

transport between ground states lies in the bias window, µS ≥ µ(N) ≥ µD. If this condition

is not met, Coulomb blockade will appear, as shown in Fig. 2.9(c). The number of electrons

in the dot is fixed, no electron hops onto or out of the dot, and no current flows. Coulomb

blockade can be lifted by changing gate voltage until the electrochemical potential µ(N) is

tuned to be within the bias window, shown in Fig. 2.9(d). One electron can tunnel to the dot

from the source electrode, increase the number of electrons from N−1 to N , and then tunnel

to the drain. This transport cycle repeats, and current through the dot can be detected.

Fig. 2.9(a-b) shows current as a function of the bias voltage and gate voltage. Within the

diamond shape (enclosed by green dotted lines in Fig. 2.9(b)), the electron number is fixed,

and the current is zero. These Coulomb blockaded regimes are known as the Coulomb

diamonds. At low bias, by increasing the gate voltage VG, the electrochemical potential

µ(N) decreases, the ladder of the electrochemical potentials moves down in energy while

the spacing between the levels remains the same. When µ(N) is within the bias window,

electrons can flow outside the Coulomb diamond. Upon further increase of VG, Coulomb

blockade will appear again with N + 1 electrons in the dot.

2.3.2 Andreev reflection

Andreev reflection is a charge transferring process that occurs at the interface between

a normal state material (N) and a superconductor (S). At the N-S interface, single-particle

transmission is not allowed within the superconducting energy gap. Charge transfer occurs

through the following process: at N-S interface, incident electron near Fermi level reflected

as a hole with the same momentum returned to N, a charge of 2e transferred into supercon-

ducting condensate as a Cooper pair.

At low voltage bias, Andreev reflection is the only process responsible for electrical

current at the N-S interface. The process transforms dissipative current in the normal

20



scattering region into supercurrent in the superconducting region.

e

h

Normal Superconductor
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e
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Figure 2.10: Schematic of (a) Andreev reflection at N-S interface, (b) normal reflection at

N-I interface.

Fig. 2.10 (a) shows Andreev reflection at a N-S interface. Fig. 2.10 (b) depicts a nor-

mal reflection process at an interface of a normal state material (N) and an insulator (I).

Compared to normal reflections, Andreev reflection has the following characteristics:

1. Andreev reflection converts an electron into a hole (with opposite charge). The disap-

pearing 2e are absorbed by the superconductor as a Cooper pair.

2. Incident electron and reflected hole have opposite velocities.

3. The incident electron is of an excitation of energy ε above Fermi level, and the reflected

hole is at energy ε below Fermi level. Andreev reflection is an elastic scattering process.

4. The reflected hole has a opposite spin as the incident electron.

5. Andreev reflection is a phase coherent process.
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2.3.3 Anderson impurity model with superconducting leads

The Anderson impurity model is a Hamiltonian that is used to describe magnetic impu-

rities embedded in metals. It can be applied to the description of a quantum dot coupled

to superconducting leads. The effective Hamiltonian of the Anderson impurity model of a

quantum dot coupled to superconducting leads is given by [34]:

Heff =
∑
σ

(εd +
U

2
)d†σdσ +

U

2
(
∑
σ

d†σdσ − 1)2 − Γ(φ)(d†↑d
†
↓ + h.c.) (2.36)

where εd is the quantum dot energy level (orbital energy), U is the charging energy, dσ is

annihilation operator for an electron with spin σ, and Γ is the hybridization between the dot

and the superconducting leads. The first two terms of Eq. 2.36 describe an isolated normal

quantum dot with Coulomb interaction. The third term of Eq. 2.36 couples the quantum

dot to the superconducting leads.

The effective Hamiltonian in Eq. 2.36 has four eigenstates:

|↑〉

|↓〉

|+〉 = u |↑↓〉+ v∗ |0〉

|−〉 = −v∗ |↑↓〉+ |0〉

(2.37)

The |↑〉 and |↓〉 are the spin 1/2 states. They are degenerate when the magnetic field is absent

and referred to as the magnetic doublet. The singlet |+〉 and |−〉 states are superpositions

of the doubly occupied (|↑↓〉) and empty (|0〉) states. The coefficients are given by:

u =
1

2
[1 +

εd + U/2√
(εd + U/2)2 + Γ(φ)2

]1/2

v =
1

2
[1− εd + U/2√

(εd + U/2)2 + Γ(φ)2
]1/2

(2.38)
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The four eigenstates are the Andreev bound states of a single-level quantum dot with

the following eigenenergies:

E↑,↓ = εd + U/2

E± = εd + U ±
√

(εd + U/2)2 + Γ(φ)2

(2.39)

The ground state of the quantum dot is either the magnetic doublet state (|↑〉 or |↓〉)

or the lower energy singlet state |−〉. The parity of the ground state is determined by the

competition between U , which favors an odd parity ground state (doublet state), and Γ,

which prefers an even parity ground state (singlet state). The quantum phase transition

between the singlet and doublet ground states occurs at a phase boundary described by:

(εd + U/2)2 + Γ(φ)2 = U2/4, (2.40)

The phase diagram of the singlet and doublet ground states with a phase boundary given

by Eq. 2.40 is shown in Fig. 2.11 (a).

In the large charging energy limit (strongly interacting quantum dot), where U > ∆, the

quantum dot favors odd parity with magnetic doublet ground state. The magnetic doublet

ground state of the quantum dot correlates with quasiparticles in the superconducting leads

and forms a singlet state. This state is sometimes referred to as Yu-Shiba-Rusinov (YSR)

singlet as the single spin in the quantum dot screened by quasiparticles from the supercon-

ducting leads resembles a magnetic impurity embedded in a superconductor [35, 36, 37].

However, in the large gap limit (weakly interacting quantum dot), where ∆ > U , i.e., the

coupling between the quantum dot and superconducting leads is strong. The quantum dot

energetically favors singlet ground state with even parity. Only the condensate of Cooper

pairs are involved but not the continuous quasiparitcle spectrum. This regime can be con-

firmed in transport experiments with features including the lack of the Coulomb diamond

resonances (negligible charging energy) and the absence of odd parity Andreev bound states

(strong coupling to superconductor).

More detailed studies of the interplay between the quantum dot, the superconducting

leads, and the Kondo effect can be found in [38, 39, 40, 34, 41, 42].
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2.3.4 Sub-gap excitations: Andreev bound states

Figure 2.11: (a) Schematic of Andreev bound states in an N-QD-S system. (b) Low energy

excitations and their magnetic field evolution. Figure adapted from [43].

Andreev bound states appear at normal scattering region of an S-N-S junction. The

formation of Andreev bound states can be explained by Andreev reflections at both N-

S interfaces. Consider an electron in the normal region, it Andreev reflects off the N-S

interface on the right as a hole, and then Andreev reflects off the S-N interface on the left
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again as an electron. Since an electron’s momentum, energy, and spin are conserved during

Andreev reflection, a standing wave can form as electrons Andreev reflect on both ends of

the normal region. Andreev bound states were first studied in Josephson junctions, where

the normal region does not have interactions. For a quantum dot coupled to superconductors

(S-QD-S device), as long as the charging energy U is small compared to the superconducting

gap ∆, the Andreev bound state picture should still be valid. Andreev bound states appear

naturally when solving the Anderson impurity model with superconducting lead as discussed

in section 2.3.3.

Fig. 2.11 (a) shows the schematic of Andreev bound states in an N-QD-S system. ΓN and

ΓS are the tunneling couplings of the quantum dot to the normal lead and superconducting

lead, respectively. ∆ is the superconducting gap. U is the charging energy. ε0 is the quantum

dot energy level. µN and µS are the chemical potentials of the normal and superconducting

lead. The sub-gap peaks located at ±ζ represent transitions between ground and excited

Andreev states with energy differences ±ζ. A bias voltage V is applied across the system.

In tunneling measurements, when µN is aligned with ζ, an incident electron from the N lead

Andreev reflects as a hole at the QD-S interface, and a Cooper pair is transported into the S

lead. Resonances of transitions between Andreev ground state and excited state ( 2.11(b))

are observed as peaks in differential conductance. The phase diagram shows the stability

of the doublet and the singlet ground states as a function of QD energy and the coupling

to superconductor [34]. Fig. 2.11 (b) shows low-energy excitations and their magnetic field

evolution. The left panel has the doublet state as the ground state at zero magnetic field. As

applying a magnetic field, the degenerate doublet state Zeeman splits. The doublet |↑〉 state

becomes the ground state. Resonances correspond to the transitions between the doublet

|↑〉 ground state and the singlet excited state move up in energy. The right panel shows the

magnetic field evolution of the singlet ground state. The excited doublet state Zeeman splits

in a magnetic field. At quantum phase transition (QPT), the singlet state and the doublet

|↑〉 state are degenerate in energy. Further increasing magnetic field, the doublet |↑〉 moves

down in energy and becomes the ground state.
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Figure 2.12: Andreev bound states with different couplings of the quantum dot to supercon-

ductor tuned by a gate voltage. (a) Singlet GS. (b) Quantum phase transition. (c) Doublet

GS. Figure adapted from [44].

Fig. 2.12 shows the phase transition of the Andreev bound states from the singlet ground

states with even parity to the doublet ground states with odd parity. Anti-crossing resonances

in Fig. 2.12 (a) correspond to the transitions between the singlet Andreev ground state and

the doublet Andreev excited state. When the magnetic field is applied, the doublet excited

states Zeeman split, while the singlet ground state is not affected. The doublet |↑〉 state

moves down in energy. In Fig. 2.12 (b), Quantum phase transition occurs when the singlet

state and the doublet |↑〉 state are degenerate. A resonant peak at zero bias is observed

(ζ = 0). In higher magnetic fields, the doublet |↑〉 state moves further down in energy

and becomes the ground state. Fig. 2.12 (c) shows loop resonances that correspond to the

transitions between the doublet |↑〉 ground state and the singlet excited state.

Note that in a single-level QD, the zero-energy transitions only occur at the QPT. In

tunneling spectroscopy, it should appear as a zero-energy crossing in magnetic fields. How-

ever, for a QD with multiple energy levels within the superconducting gap (that is, the large

gap limit of the Anderson impurity model), level repulsion from higher energy states could

result in an extended zero-bias peak in magnetic fields [43], which was previously considered

as a Majorana signature.

Andreev dot is a quantum dot coupled to a superconductor with Andreev bound states.
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It is the building block of the quantum dot chain experiments discussed in Chapter 5.

2.4 Implementation of the Kitaev model with quantum dot chain

Implementation of Kitaev model [31] in hybrid superconductor/semiconductor nanowire

systems [25, 26] is by far the most promising approach to realize Majorana zero modes,

which can be used as building blocks for topological quantum computation. However, the

suppression of topological superconductivity by disorder and the inability to tune the chem-

ical potential of a semiconductor nanowire in contact with a superconductor (the tunability

of semiconductor reduced remarkably due to the screening effect) are the most significant

challenges in the experimental realization of Majorana wire model. The tolerance for disor-

der in the continuous Majorana wire model [25, 26] is too low [45, 46]. The requirements

for clean semiconductor nanowires and high spin-orbit coupling create difficulties in material

synthesis and device fabrication.

Instead of extraordinary efforts to eliminate quantum dot states caused by disorder,

quantum dots can be used in Majorana search. Theory suggests a robust topological su-

perconducting phase can exist in a chain of quantum dots coupled to superconductors, as a

discrete version of the Kitaev model [47, 48, 49].

Take the model from [47] as an example. A one-dimensional system is assembled with

multiple dots coupled to superconductors, each with an Andreev bound state. Because sites

are independently tunable, it helps to suppress and overcome the effect of disorder. As

long as the electron can hop between neighboring quantum dots, the topological state can

form in the chain. Quantum dots or superconductors can have local disorder and are not

necessarily phase coherent. It is much easier to satisfy than to achieve ballistic transport in

a nanowire. The quantum dot chain proposal provides a practical experimental system to

realize Majorana zero modes.

Disorder in quantum dots and superconductors only affects and causes fluctuations in

the spacing of dot levels δEn. Chemical potential can be tuned by gate voltage such that

a single level in each dot participates in transport through the chain. As long as there is
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a single occupied spin-polarized level in each dot at zero chemical potential, the quantum

dot/superconductor chain can be considered as equivalent to a 1D lattice model with a

spin-polarized state per site.

A disordered Kitaev chain can be described by an effective Hamiltonian

Heff =
∑
n

−µnΨ̂†nΨ̂n + tn(Ψ̂†n+1Ψ̂n + h.c.) + ∆n(Ψ̂†n+1Ψ̂†n + h.c.) (2.41)

where Ψ̂†n is the creation operator in each dot, µn is the chemical potential in each dot, tn is

the normal tunneling amplitude between the dots, and ∆n is the effective proximity-induced

superconducting pairing amplitude. In a disordered chain, tn and ∆n can vary along the

chain at each site, while µn can be tuned to near zero by gates. Time-reversal symmetry is

broken by the Zeeman field. At µn = 0, a single spin-polarized level in each dot participates

in transport. Spin-orbit coupling allows a rotation of spin-polarization inside each dot, and

the induced superconductivity pairs electrons from neighboring dots.

As simulation results demonstrated in [47], the spectrum of a disordered chain with only

a few sites described by 2.41 shows zero modes protected by a robust gap.

In Ch. 4, we propose a model of Andreev quantum dot chain to realize the Kitaev model.

In our model, superconductivity pairs electrons in the same dot. Andreev states in each

dot has a singlet ground state at zero magnetic field. At finite magnetic fields, the Andreev

ground states become spin-up doublet and pair along the chain.
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3.0 Experimental methods

3.1 Nanowire growth

Figure 3.1: (a) SEM image of an array of InSb nanowires vertically grown on (111)B InP

substrate. Scale bar corresponds to 1µm. (b) Zoom-in image on a single InSb nanowire.

The thin growth stem of InAs is where the nanowire easily breaks off from the growth chip

when picking up and transferring to a device chip. Scale bar corresponds to 200nm. Figure

adapted from [50].

Bulk Indium Antimonide (InSb) has a small effective mass (0.015me), a small bandgap

(0.17eV ), and high electron mobility (77000cm2/V s). The growth of InSb nanowire is well

established and can be optimized since a large set of temperatures, and III/V ratios are

achievable [51].

InSb nanowires exhibit properties ideal for spin-based quantum dot devices and hy-

brid semiconductor-superconductor Majorana wire devices, including high electron mobility,

which allows ballistic transport in the nanowire [52, 53], strong spin-orbit interaction [54, 55]
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and large Landé g-factor [56, 57, 58]. Although due to details of confinement in the quasi

one-dimensional nanowire, spin-orbit strength and g-factor may vary from device to device.

(a) (b) (c)

Figure 3.2: Stemless InSb nanowire growth via VLS mechanism on InSb(111)B substrate.

Scale bars in (b) and (c) correspond to 1µm. Figure adapted from [59].

InSb nanowires are grown by metal-organic vapor phase epitaxy (MOVPE) through

vapor-liquid-solid (VLS) mechanism [60, 50]. The growth of InSb nanowires usually requires

a stem of different materials for nucleation. In Fig. 3.1(b), InP stem is grown to facilitate

uniform nucleation, and InAs stem is used to reduce the lattice mismatch with InSb. As

arsenic evaporates during the growth of InSb, the InAs stem gets thinner and eventually

breaks, which leaves the InSb nanowires to fall onto the substrate and they cannot be picked

up. Such an InAs stem not only limits the length of the InSb nanowire (1 − 3µm), but its

material mixes into the InSb segment and creates disorder in the nanowire. Using a selective-

area mask, stemless InSb nanowires of a few to tens of microns long with high chemical purity

and high electron mobility can grow directly from the substrate [59]. Fig. 3.2 (a) shows

the stemless InSb nanowire growth process. Gold (Au) catalyst droplets are positioned

within nano-openings of a selective-area mask of Silicon Nitride (SixNy) on an InSb (111)B

substrate. The presence of a selective-area mask prevents the spreading of the Au catalyst

droplets and suppresses layer growth of InSb on the substrate, such that the growth of a stem

is no longer needed. The InSb nanowires are grown with trimethyl-antimony (TMSb) and

trimethyl-indium (TMIn). Stemless nanowires with high chemical purity and high electron

mobility have less disorder. Longer nanowires are preferred for creating a robust topological
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superconducting phase and establishing well separated Majorana zero modes.

Stemless nanowires are used in devices presented in Chapter 5. InSb nanowire growth

is performed by S.R. Plissard, D. Car, S. Gazibegovic, G. Badawy in the research group of

E.P.A.M Bakkers at Eindhoven University of Technology.

3.2 Device fabrication

substrate

gate
dielectric

nanowire

contact

Figure 3.3: Schematic sideview of a two-terminal nanowire device on local electrostatic gates.

Different types of devices have been made for different projects and different purposes

throughout our study. Here, we introduce the general steps of device fabrication. The sim-

plest two terminal devices (illustrated in Fig. 3.3) are usually used to characterize the quality

of nanowires and contacts at the stage of testing nanowire growth or improving fabrication

recipes. More advanced devices with local electrostatic gates and multiple contacts (both

superconducting and normal metal leads) follow this basic fabrication sequences while extra

steps for defining and depositing local gates and contacts are required.

A general fabrication sequence includes the following steps:

1. Fabrication of alignment markers, local gates, and bonding pads. Alignment

markers establish a coordinate system on a bare substrate. Local gates can control carrier

density in a semiconductor nanowire. Details on alignment markers and gates are dis-

cussed in Sec. 3.2.2. Bonding pads are used to connect devices to electrical measurement

circuits.
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2. Nanowire transferring and imaging. Nanowires need to be transferred from a growth

chip onto a device chip with pre-fabricated alignment markers, local gates, and bonding

pads. Images of nanowires and nearby makers can precisely locate the nanowires on the

device chip. More details on nanowire transferring are discussed in Sec. 3.2.3.

3. Design and define contact patterns. Based on each wire’s location and orientation,

desired patterns such as contacts and gate electrodes are designed and defined through a

standard electron beam lithography (EBL) process. Details on lithography are discussed

in Sec. 3.2.1.

4. Oxide removal and surface cleaning. Insulating native oxide layer on nanowire

surface need to be removed and cleaned in order to reduce surface scattering processes

and achieve Ohmic contacts. Both physical and chemical methods of surface cleaning

are discussed in Sec. 3.2.4.

5. Metal deposition and lift-off. Materials of normal metals or superconductors are

deposited. Resist is removed by lift-off process together with the deposited material

covering it. More details in Sec. 3.2.5.

6. Imaging and testing. SEM images of devices and room temperature resistance mea-

surements help to decide whether the devices are worth a cooldown or new devices need

to be made.

A detailed fabrication recipe is included in the appendix.

3.2.1 Lithography

Standard optical lithography techniques are used to define large patterns (above 1µm),

such as bonding pads, which do not require the highest definition or great alignment accu-

racy. Traditional deep ultraviolet (DUV) optical lithography uses a pre-defined photomask

with fixed patterns. It requires physical contact of the photomask and the wafer covered

by the photoresist. A more advanced maskless aligner uses a spatial light modulator as a

programmable mask, providing better pattern design flexibility. However, due to the wave-

length of the DUV light, it is difficult to define submicron features with optical lithography.

Electron beam lithography (EBL) is ideal for defining highly precise patterns, such as align-
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ment markers and fine local gates, as narrow as tens of nanometer. Owing to its versatility,

EBL is suitable for defining contacts of nanowire devices since the orientation and location

of each nanowire transferred onto the gate chip are different.

substrate

resist

substrate

resist

substrate substrate

resist

electron beam development deposition lift-off(d) (c) (b) (a) 

Figure 3.4: Schematic of lithography and metal deposition. (a) Exposure of electron beam.

(b) Development. (c) Metal deposition. (d) Lift off.

Fig. 3.4 shows a schematic of a typical e-beam lithography process. (a) A substrate is

coated with a thin layer of electron-sensitive resist. Polymethyl methacrylate (PMMA) is the

most commonly used resist in our study. Exposure to electrons breaks the chemical bonds of

the polymer and changes its solubility in developer, a solvent made of methyl isobutyl ketone

(MIBK) and isopropanol (IPA). (b) During the development, the area of resist exposed to

electron beam will be dissolved in the developer and removed, leaving the area uncovered.

Resist in Fig. 3.4 (b) exhibits an undercut profile after development. An undercut profile is

preferred since it is easy to lift off after material deposition. An undercut can be achieved by

adjusting exposure electron dosage, developing time, e-beam energy (acceleration voltage), or

using bi-layer resist. We found that even with enough dosage, there can still be resist residual

in the exposed area after development which will reduce contact transparency. Before the

deposition, a gentle oxygen plasma surface cleaning was added to the process to remove

resist residual but not over-etch the finely patterned resist mask. (c) The patterned resist

acts as a mask. Materials then can be deposit on the entire chip, covering both the resist

mask and the exposed area where resist was removed in development. Thin films of normal

metal, superconductor, or dielectric materials can be deposit through this process. (d) The

rest of the resist and materials deposited on top will be removed by placing the sample in a

solvent, usually acetone.
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3.2.2 Alignment markers and gates

1 mm

Figure 3.5: The layout of the device chip design. Pink patterns represent bonding pads.

Yellow patterns are global alignment markers. Purple patterns are devices’ source, drain,

and gate electrodes.

Fig. 3.5 shows the layout of a chip design. Pink patterns of bonding pads are defined by

optical lithography. Yellow patterns of global alignment markers at each corner of the chip

and purple patterns of devices are defined by EBL. Global alignment markers are used to

establish a coordinate system for the entire chip and reference the approximate locations of

nanowires. Manually picking up a single nanowire from a growth chip and placing it onto a

device chip is of high yield with practice. However, the location and orientation of nanowire

landed onto the device chip are different for each transfer. Local alignment markers are
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needed to reference the exact location and orientation of each wire.

For devices that do not require local control of chemical potentials, a global back gate

is used. The global back gate consists of a p-doped Si substrate that voltage can be applied

directly onto the back of the chip and a layer of 285nm thermally grown SiOx as the dielectric.

1	µm

nanowiredielectric

wide gate

fine gate

Figure 3.6: A nanowire on an array of local gates. The alternating narrow and wide gates

are covered by dielectric.

For devices that require gate-controlled tunnel barriers, such as quantum dot devices,

local gates are necessary. The design of local gates can be flexible to have desired width

and pitch. Fig. 3.6 shows a nanowire on top of an array of alternating fine and wide local

gates. Fine narrow gates are used to create sharp tunnel barriers to perform tunneling

experiments or define quantum dots in the nanowire. Wide gates are used to control the

chemical potentials of the wire segments uniformly. Above local gates, a thin dielectric

layer is used to electrically separate gates and the nanowire. Patterning of the fine gates is

performed by Jun Chen with a 100kV Elionix EBL system at Carnegie Mellon University.

Even though InSb has a small bandgap, it is difficult to tune the chemical potential of

the InSb semiconductor nanowire segments covered by superconducting contacts due to the

screening effect. A thin dielectric layer with a high dielectric constant κ can create a high
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electric field and help control chemical potential with a relatively small voltage applied. A

layer of 10nm HfOx is deposit by the atomic layer deposition (ALD) at 120C. HfO2 has a

dielectric constant of 25, which is six times higher than that of SiO2. We measured the

breakdown voltage of our HfOx layer as ± 9V.

3.2.3 Nanowire transferring and designing

InSb nanowires are transferred from a growth chip onto a sample substrate using a

micromanipulator under an optical microscope. We built the nanowire deposition setup

following [61]. A sharp tip (Indium or tungsten) is attached to the micromanipulator. Van

der Waals forces can pick up a single nanowire when sweeping the tip gently against the end

of the wire. By rotating the tip and tilting the arm of the manipulator, one can adjust the

angle for the nanowire to land on the substrate. By moving the sample substrate under an

optical microscope while lowering the tip and the nanowire, one can achieve precise alignment

within 5 degrees. Wires are placed onto the substrate slowly and gently to avoid damage to

the nanowire and the dielectric layer on top of local gates. Frequently adjusting the focus

slightly with an optical microscope, it is obvious to notice when the end of the 5µm nanowire

touches the sample substrate. At this moment, avoid moving the tip up and down, slowly

move the stage towards the direction for desired wire orientation, the sample substrate will

‘drag’ the nanowire onto the substrate. Once the wire is deposited onto the substrate, despite

its orientation, try not to move it with the tip if it scratches the dielectric layer.

After wire transfer but before imaging, we dip the chip into acetone and rinse, then rinse

in isopropanol and blow-dry. This is necessary for the following purposes: 1, clean sample

surface and remove organic debris. 2, remove nanowires that are not well attached to the

substrate. Imaging and designing without removing these wires may result in misalignment

of exposure since these wires may change positions and orientations while spin-coating e-

beam resist.

A long nanowire (10nm) is easily bent and damaged when transferred onto pre-patterned

gate chips. From our experiences, narrow wires (≤ 100nm) are unlikely to conduct at low

temperatures. On the other hand, thick wires (≥ 150nm) are difficult to pinch off (tune to
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tunneling regime with low carrier density). A typical stemless nanowire is 3−5µm in length

with a diameter of 100− 150nm. We only design and fabricate devices with nanowires that

look undamaged and of desired dimensions.

Scanning electron microscope (SEM) images of nanowires and nearby cross-shaped mark-

ers are inserted into computer-aided design (CAD) file, scaled, rotated, and distorted to

match the layout of the alignment markers in the digital design. With fine alignment mark-

ers and high-quality SEM images, we know precisely where the nanowires are located and

how they are oriented. Patterns of contacts and gate electrodes are drawn in the design file

and defined by e-beam lithography.

3.2.4 Oxide removal and surface cleaning

The superconductor-semiconductor interface is the most crucial to the quality of a de-

vice. Defect-free InSb nanowires with minimum disorder and high electron mobility have

an insulating layer of native oxide, containing compounds such as In2O3 and Sb2O5. This

native oxide layer needs to be removed to make electrical contact with normal metal or

superconductor. A transparent contact to a superconductor is important for the proximity

effect to induce superconductivity into the nanowire. Complete removal of the native ox-

ide is required. However, over-etch may damage the crystalline structure of the nanowire

and create disorder. Disorder-induced Andreev bound states are commonly seen in hybrid

nanowire devices, and they can mimic Majorana signatures in many aspects. So effective

removal of the native oxide and gentle surface cleaning before the metal deposition is key to

making transparent contact. Several methods of surface cleaning are used throughout our

study.

3.2.4.1 Ar plasma etching

Argon RF plasma etching is a commonly used method to get rid of the oxide physically.

Ar ions bombard the nanowire surface and kick out the atoms on the top layers. Ar plasma

etching is efficient in removing the oxide, and it can be done in-situ before superconductor

deposition without breaking the vacuum and avoid re-oxidation while transferring the sam-
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ple. However, this method tends to etch the oxide non-uniformly. After Ar plasma cleaning,

the nanowire exhibits a rough surface, which indicates the nanowire crystal lattice is dam-

aged and disorder is created. The nanowire devices fabricated using this method show low

mobility and a soft induced superconducting gap [62]. A soft gap refers to a weak suppression

of the subgap density of states. A soft gap is undesirable in Majorana experiments since it

limits the prominence of the subgap Majorana signatures in magnetic fields.

3.2.4.2 Sulfur passivation

Sulfur passivation is an ex-situ chemical wet etching process [63]. Sulfur passivation can

etch the oxide uniformly and leave the nanowire surface smooth. This method is chemically

selective. It etches the oxide while leaving the semiconductor nanowire crystal lattice intact.

It is also a self-terminating process, leaving a thin layer of sulfur atoms on the nanowire

surface, protecting the nanowire from re-oxidation while transferring the sample into the

deposition chamber. The thin layer of sulfur may dope the nanowire surface. It is removed

by a short and gentle in-situ Ar plasma cleaning before contact deposition. A detailed recipe

for sulfur passivation is attached in the appendix.

As suggested in [64], before superconductor deposition, one can grow a thin layer of

high-quality oxide or high bandgap semiconductor as a barrier in a controllable manner.

This technique is developed to control the strength of the induced superconductivity, which

provides another tunable parameter in engineering the topological phase.

3.2.5 Contact deposition

After oxide removal and surface cleaning, contact material (metallic, superconducting,

or ferromagnetic) will be deposited. Normal contacts of gold (Au) or palladium (Pd) on

top of a thin adhesion layer of titanium (Ti) are deposit by electron beam evaporation. The

deposited film thickness should be larger than the nanowire thickness to cover fully and clamp

down the nanowire to avoid disconnects in contacts due to stress. A thicker resist mask of

slowly spin-coated PMMA, or a double layer PMMA, or a bi-layer of 495k PMMA/950k

PMMA can be used to achieve an undercut for an easier lift off. Overheating may melt and
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deform the resist mask and result in failed lift-off. During evaporation in deposition system

without sample cooling, the electron beam current is monitored to ensure no overheating in

the sample.

Sputtering can deposit materials with high melting points and alloys of different mate-

rials. NbTiN has a high critical temperature (13K measured in our lab) and high critical

magnetic field (15T reported). NbTiN is easy to make contact with InSb and InAs nanowires,

and it is stable against oxidation. Superconducting contacts of NbTiN are deposited in the

AJA deposition system via DC sputtering from a target of NbTi alloy (Nb 70 wt% and Ti

30 wt% ) with RF Ar plasma and nitrogen flow. Parameters including DC power, pressure,

Ar/N2 flow, and distance between the target to the sample are optimized such that NbTiN

thin film has the highest critical temperature. A wetting layer of NbTi is used to achieve a

better induced superconducting gap [62]. In our recipe, Ar plasma was created in the vacuum

chamber at a background pressure of a few mTorr. The energetic Ar ions from the plasma

bombard the surface of the NbTi target. Rather than having ballistic trajectories, sputtered

atoms ejected from the target have diffusive motion due to collisions with Ar ions in the

plasma. Higher pressure results in more isotropic flow and conformal coating. Consequently,

NbTiN deposited on the sidewall of the PMMA resist mask connects with the film deposited

on top of the resist, causing difficulties in the lift-off process. Reducing film thickness could

help with the lift-off issue. Sputter deposited NbTiN films have stress that may break the

nanowire. To reduce the damage to the nanowire from the stressful NbTiN film, one can

reduce the film thickness or reduce the contact area. However, thinner and smaller supercon-

ducting contact leads to a weaker proximity effect and a soft induced superconducting gap.

Adjusting the nitrogen and argon flow to control the plasma pressure may help with solving

the stress issue. However, it is a trade-off between high critical temperature and less stress.

Further optimization and tests are needed to improve the fabrication recipe and achieve a

hard induced superconducting gap in nanowires.

Evaporated superconducting vanadium (V) and aluminum (Al) have been tested. How-

ever, we failed to establish a hard induced superconducting gap in nanowires with V or Al

at a high parallel magnetic field that may host topological phase.
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3.2.6 Lift-off and imaging

1	µm

Figure 3.7: SEM image of a typical two-terminal InSb nanowire/Sn shell device with a

shadow defined junction on a back gate.

1	µm

Figure 3.8: SEM image of a typical quantum dot chain device with two fully-covered normal

contacts and three half-covered superconducting contacts on an array of local gates.
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After contact deposition, the device chip is left in acetone to lift off. SEM images of

devices are taken. Fig. 3.7 shows a typical two-terminal InSb nanowire device on a back

gate. Fig. 3.8 shows a typical quantum dot chain device with multiple contacts on an array

of fine local gates. Devices are tested at room temperature with a probe station. Selected

devices will be loaded into a dilution refrigerator for low-temperature measurements.

3.3 Advances in nanowire growth and device fabrication

3.3.1 Epitaxial semiconductor/superconductor nanowire

As mentioned in Sec. 3.2.4, the semiconductor/superconductor interface quality is key

to the induced superconducting gap and potential topological superconducting phase. The

ex-situ methods of superconductor deposition discussed in Sec. 3.2.5 require removal of the

oxidation layer grown on the nanowire surface due to exposure to air. With either physical

dry etching (plasma etching) or chemical wet etching (sulfur passivation), damage to semi-

conductor nanowire is inevitable. Although with the optimization of the etching processes,

the damage can be minimized. The disorder introduced to the interface by ex-situ etching

results in the soft gap issue. Disorder-induced low-energy states complicate the interpreta-

tion of the experimental data and obscure the existence of Majorana zero modes in hybrid

nanowire devices [65, 66].

In-situ growth of Indium Arsenide (InAs) semiconductor nanowires and Aluminum (Al)

superconducting shell by molecular beam epitaxy (MBE) provides a new approach to elec-

trical contacting nanowires and fabricating semiconductor/superconductor hybrid nanowire

devices [64]. Fig. 3.9 shows a highly ordered epitaxial interface between the InAs nanowire

and the Al shell, where both materials maintain crystallinity.
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Figure 3.9: (a) SEM of an array of epitaxial InAs/Al nanowires grown on an InAs (111)B sub-

strate. (b) Transmission electron microscope (TEM) image of an epitaxial InAs/Al nanowire.

The 10nm Al shell covers two facets of the nanowire, highlighted in blue. (c) High-resolution

TEM image of the InAs/Al interface. Figure adapted from [64].

With uniform InAs/Al interface and thin Al shell, a hard induced gap has been observed

[67]. The hybrid InAs/Al epitaxial nanowires have strong spin-orbit coupling, high critical

parallel magnetic fields, and gate tunable carrier density. Therefore, InAs/Al nanowires are

suitable for Majorana study [28, 68, 69]. However, a reduced effective g factor suggests

the superconducting density of states is distributed largely in the Al shell rather than in the

semiconductor InAs nanowire [70]. The properties of large g factor and spin-orbit interaction

of the InAs nanowire may be reduced in the hybrid InAs/Al epitaxial nanowire, which may

lead to the topological phase being inaccessible beyond the critical parallel magnetic field of

the Al thin shell.

Due to the screening effect, to perform tunneling experiments, segments of the Al shell

need to be removed by chemical wet etching so that the exposed InAs nanowire segments

can be gate tuned. The ex-situ etching can introduce disorder to the interface. To prevent
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further oxidation and degradation of the interface quality, a capping layer can be deposited

after the device is made.

Such InAs/Al core/shell nanowires are used in Andreev blockade experiments presented

in Chapter 7. InAs/Al core/shell nanowire growth is performed by S. Khan in the research

group of P. Krogstrup at Niels Bohr Institute, University of Copenhagen.

To avoid ex-situ etching, various shadow lithography techniques have been used [71, 72,

73]. Fig. 3.10 (a) shows the growth of hybrid InSb nanowire/Al superconducting islands

with nanowires as shadow masks. The InSb nanowires are grown from accurately positioned

Au particles (as a catalyst) via VLS mechanism on the inclined (111)B facets of the etched

trenches on an InP (100) substrate. The nanowires on the two trenches grow towards each

other. By adjusting the position and spacing of the Au particles, nanowires from two sides

could grow into each other and form networks or close to each other but not merge. In

MBE, apply Al flux parallel to the trenches. The front wire casts a shadow on the wire

behind. Fig. 3.10 (b) shows InSb nanowires with shadow defined Al islands. EDX chemical

composition of the nanowire shows an abrupt shadowed region separating two Al islands in

Fig. 3.10 (c). Fig. 3.10 (d) shows the Al is covering two facets of the hexagonal nanowire,

which allows gate tuning of the chemical potential. InSb nanowires are grown by MOVPE,

and then nanowires are transferred ex-situ to an MBE chamber. Oxidation is removed by

atomic hydrogen cleaning [74] before the deposition of superconducting Al. Fig. 3.10 (d)

shows the oxidation is effectively removed, and no oxygen is observed at the interface.
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1	µm

200	nm 200	nm

10	nm

Figure 3.10: (a) SEM image of an array of InSb/Al nanowires. The green arrow indicates the

direction of Al deposition. Each nanowire is shadowed by a wire in the front, leaving two Al

islands separated by a shadowed region on the wire. (b) SEM images of InSb nanowires with

two and four Al islands (false-colored green). (c) Scanning transmission electron microscopy

(STEM) energy-dispersive X-ray spectroscopy (EDX) chemical composition of InSb nanowire

(red) with Al islands (green) separated by an abrupt shadowed region free of Al. (d) EDX

chemical composition of the hexagonal nanowire cross-section. Al covers two facets of the

InSb nanowire. No oxidation layer formed at the interface. (e) High-resolution TEM image

of the InSb/Al interface. A capping layer of AlOx is grown in-situ. Figure adapted from [71].
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Al is deposited by MBE at a low temperature about 120K realized by active liquid

nitrogen cooling. Growth of Al at a low temperature is crucial to realize a smooth thin film

on the nanowire surface and to have a high critical parallel magnetic field. A capping layer

of AlOx is grown in-situ in MBE to prevent oxidation of the Al islands and the shadowed

junction. The capping layer also prevents the Al film from diffusion, resulting in uniformity of

the film and a low critical parallel magnetic field. Fig. 3.10 (e) shows an epitaxial interface is

established between InSb nanowire and Al. Note that the selectivity of chemical wet etching

of Al on InSb is not very good. The method provided above is less invasive than defining

the junction by etching.

The shadowed wire and the mask wire need to be close enough in order to realize an

abrupt shadow. Using nanowire as a shadow mask limits the shadowed region’s width to

be similar to the nanowire diameter (100nm). It limits the variety of devices that can be

made from these wires without further etching to extend the shadowed region. For example,

the nanowire segment without superconductor needs to be 300nm wide such that a double

quantum dot can be defined with fine local gates as in Fig. 7.1.

InSb nanowires with Sn islands using such nanowire shadow technique [71] are used in

Chapter 6. InSb nanowire growth is performed by S. Gazibegovic, and G. Badawy in the

research group of E.P.A.M Bakkers at Eindhoven University of Technology. Superconductor

deposition of Sn is performed by M. Pendharkar in the research group of C.J. Palmstrom at

University of California, Santa Barbara.

3.3.2 Seletive-area grown indium arsenide nanowires with shadow walls

In-plane selective-area growth (SAG) of semiconductors by chemical beam epitaxy (CBE)

or molecular beam epitaxy (MBE) offers a scalable platform to realize complex devices

and networks that are prerequisites for braiding Majorana modes and topological quantum

computing [75, 76, 77].
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Figure 3.11: Schematic of the shadow wall structure. (a) Fabrication of the SiOx shadow wall

mask, selective area growth of the nanowire, and superconductor deposition on SAG NW

with the shadow wall structure. (b) In-situ angle deposition of superconductor. (c) A side

view shows that the nanowire close to the shadow wall is not covered by a superconductor.

Figure adapted from unpublished work of Joon Sue Lee.

Shadow technique combined with in-situ superconductor deposition is a novel approach

to realize selective superconductor/semiconductor hybrids without the need of etching[78].

Therefore, the superconductor/semiconductor interface, crucial to the induced superconduc-

tivity, is intact throughout the device fabrication. Fig. 3.11 shows the schematic of how the

shadow wall works.

By carefully controlling the SAG nanowire growth and incorporating different shapes

of shadow walls, various semiconductor/superconductor hybrid geometries can be directly

grown without breaking the vacuum.
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Figure 3.12: Different types of devices can be achieved by SAG NW with shadow wall

structures. Figure adapted from unpublished work of Joon Sue Lee.

Figs. 3.12 (a,e) show that SAG nanowires with different crystallographic directions have

different shapes of the cross-section. With angled deposition, the superconductor can fully

cover or half cover the nanowire providing different strengths of proximity effect and tunabil-

ity of the carrier density. Figs. 3.12 (b,f) show superconducting island geometry for Andreev

quantum dot. Figs. 3.12 (c,g) show the Josephson junction geometry for supercurrent study.

Figs. 3.12 (d,h) show the extended superconducting contact geometry suitable for Majorana

wires.

We started the study of SAG InAs nanowires with shadow wall structures and (Al or

Sn) superconducting islands. We have some initial results confirming hard induced super-

conductivity. SAG InAs/Al and SAG InAs/Sn nanowire growth are performed by J.S. Lee,

A. Goswami, and M. Pendharkar in the research group of C.J. Palmstrom at University of

California, Santa Barbara.
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3.4 Measurement setup
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Figure 3.13: (a) Inside of a dilution refrigerator. (b) The measurement probe and the cold

finger.

The subject of the thesis is Andreev quantum dots in nanowires, which consist of

two main ingredients: semiconductor quantum dot and superconductivity. To observe the

Coulomb blockade effect of quantum dots confined in nanowires, temperature below 1 Kelvin

is mandatory. For studying the Josephson effect and proximity-induced superconductivity, a

temperature well below the critical temperature is needed to suppress thermal excitation and

quasiparticles in the superconductor. To suppress the thermal broadening of the states and

resolve the tunneling spectroscopy of the sub-gap Andreev resonances, even lower tempera-
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tures are preferred. Lower temperature results in a hard induced superconducting gap and

sharp sub-gap resonances with prominence. Both are crucial to study low energy excitation

states and further identify potential Majorana zero modes.

All transport measurements in this thesis are performed in a 3He/4He dilution refrig-

erator at a base temperature of 20-50 mK. We have two dilution refrigerators from Leiden

cryogenics. They have top-loading measurement probes that enable quick cool-down from

room temperature to base temperature less than 8 hours. One fridge has a solenoid magnet

that goes up to 9T. The other has a vector magnet with a 6T/4T configuration. Fig. 3.13(a)

shows the inside of the dilution refrigerator. There are multiple plates and cooling stages to

isolate the sample from higher temperatures. The sample is wire bonded to a chip carrier

and mounted on the cold finger of the probe, and is thermally connected to the mixing cham-

ber plate at base temperature (Fig. 3.13(b)). The 3He/4He mixture undergoes spontaneous

phase separation in the mixing chamber to form a 3He concentrated phase in equilibrium with

a 3He diluted phase. Heat is absorbed when 3He is diluted as it flows from the concentrated

phase through the phase boundary into the diluted phase. Heat is carried away by pumping

3He. Through circulating 3He in a closed cycle by pumping and compressing, continuous

cooling is provided, and the base temperature is reached and maintained. Detailed discussion

on the cooling mechanism and operation principles of 3He/4He dilution refrigerators can be

found in [79]. The base temperature refers to the lattice temperature, or the temperature

of the phonon bath, which could be as low as 10mK without the probe inserted. However,

the wiring connecting the sample at low temperature and measurement instruments at room

temperature is necessary to perform electrical measurements. Inevitably, extra heat load

was introduced and resulting in a higher base temperature of around 40mK.
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Figure 3.14: (a) IVVI-DAC rack. (b) Schematic of the measurement circuit. The voltage

bias, current measurement, and voltage measurement is shown. Series resistance is the

resistance of wires, filters, and amplifiers, which is in series with the sample. If the series

resistance is comparable to the sample resistance, it can lead to a significant correction to

the voltage bias across the sample.

The measurement setup and schematic of the measurement circuit are shown in Fig. 3.14

The IVVI-DAC rack contains voltage/current sources and current/voltage amplifiers, and 16

digital-to-analog converters (DACs) controlled by a computer through an optical fiber. DACs

are used to apply voltage as control signals accurately. Current and voltage sources convert

DAC signals to input measurement signals with amplification. The output signals from the

device are amplified and converted into voltages and then measured with a standard digital

multimeter and lockin amplifier. The voltage/current sources, current/voltage amplifiers,

and DACs are designed and manufactured by TU Delft. More details on the IVVI source

and measurement modules can be found in [80]. The measurement commands and data

acquisition are performed by python scripts with QTlab [81].
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Since the electrical current in the device is generated from and then detected by instru-

ments at room temperature, the electron temperature in the device could be much higher

than the lattice temperature. Multiple stages of filtering are used to reduce the electron

thermal noises and enhance the electrical signals. At room temperature, the IVVI rack is

powered by batteries, and the DACs are controlled by a computer via an optical fiber. It

isolates the measurement setup from the power grid, where electrical interference could cre-

ate considerable noise. With a π filter in each DC line, noise from 10MHz to 100MHz can

be effectively filtered. Thermal anchoring of the wires is used at every plate on the mea-

surement probe. Each plate on the probe is in thermal connection with a temperature stage

of the refrigerator. Staged cooling of the wires reduces the thermal energy of electrons in

the DC lines and the heat load on the mixing chamber. At low temperature, on the probe

near the sample, each DC line passes through a copper powder filter in order to get rid of

high-frequency noise in the GHz range. Next, each DC line passes through a low-pass RC

filter with a cutoff frequency of 10kHz. The RC filters and the sample are mounted on the

cold finger and shielded by a copper can acting as a Faraday cage.
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4.0 Simulation of Andreev quantum dot chain

4.1 Introduction

Kitaev chain is a theoretical model of a one-dimensional topological superconductor

with p-wave pairing, where unpaired Majorana zero modes exist at the two ends of the

chain [31]. P-wave pairing, which is not readily available, can be effectively engineered, for

instance, by combining one-dimensional semiconductor nanowires that have strong spin-orbit

interaction, proximity-induced s-wave superconductivity, and Zeeman effect [25, 26]. This

continuous Majorana wire model motivates the study of Majorana zero modes in hybrid

superconductor/semiconductor heterostructures.

Following theory proposals of the continuous Majorana wire model [25, 26], zero-bias

conductance peak, a signature of Majorana zero modes, has been observed in tunneling

experiments of hybrid superconductor/semiconductor nanowire devices [27, 28, 82]. Zero-

bias peaks are necessary but not sufficient to conclude Majorana.

Andreev bound states in quantum dots also produce zero-bias peaks and mimic signatures

of Majorana zero modes, including quantized zero-bias peak, in the same devices [83, 84, 85].

Due to disorder or device geometry, Andreev bound states appear generically in supercon-

ductor/semiconductor nanowire systems [43, 86, 44, 87]. They have also been studied inten-

tionally in semiconductor quantum dots coupled to superconductors [43, 88, 89, 90, 91, 92].

As an alternative interpretation to Majorana signatures, Andreev bound states have been

considered as disturbing to unambiguous identification of Majorana zero modes [83, 85]. Fu-

ture experiments will clearly distinguish the two phenomena by consistently demonstrating

multiple Majorana signatures within the same nanowire.

Recent progress in studying Majorana zero modes in nanowires is mostly in material

development and understanding other origins of the zero-bias peaks. Many fabrication tech-

niques have been developed to improve device qualities to avoid quantum dots and Andreev

bound states, such as the epitaxial growth of superconductors [64, 93], in-plane selective

area nanowire growth [76, 77], and shadow lithography [71, 72, 73]. However, it is very
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challenging to reach the disorder level required for the realization of Majorana zero modes

and topological qubit in hybrid superconductor/semiconductor nanowire platforms [45, 46].

With the concern of the omnipresent Andreev bound states in hybrid superconduc-

tor/semiconductor nanowire devices, we take an alternative approach to implement the Ki-

taev chain other than the continuous Majorana wire model [25, 26]. Rather than trying to

eliminate Andreev states, we take advantage of them in our Majorana search. Theory sug-

gests a robust topological superconducting phase in chains of Andreev quantum dots [47, 48].

A one-dimensional system is assembled with multiple dots coupled to superconductors, each

with an Andreev bound state. Because sites are independently tunable, it helps to suppress

and overcome the effect of disorder. To study the discrete version of the Kitaev chain, we

build a tight-binding model of a quantum dot chain containing three sites. We simulate

the energy spectrum and transport of the triple-dot chain. For such a short chain, within a

narrow parameter window, the probability distribution of Majorana wavefunctions indicates

a partial separation of two Majorana zero modes localized at two end sites. For a longer

quantum dot chain, the parameter space for the Kitaev regime should be larger, although it

will be much harder to realize in experiments.
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4.2 Model description
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Figure 4.1: Schematic of the model containing three quantum dots, three superconducting

leads, and two normal leads.

Fig. 4.1 shows the system described by a spinful Hamiltonian with nearest dot coupling

ti, dot potentials εi, an external magnetic field B, spin-orbit coupling αi, induced supercon-

ductivity ∆i, and electron interactions Ui.

H =
∑
i,σ

εi

(
d†i,σdi,σ − di,σd

†
i,σ

)
+
∑
i,σ

ti

(
d†i+1,σdi,σ + h.c

)
+B

∑
i

(
d†i,↑di,↓ + h.c.

)
+
∑
i

αi

(
d†i,↑di+1,↓ − d†i,↓di+1,↑ + h.c.

)
+
∑
i

∆i(d
†
i,↓d
†
i↑ + h.c.)

+
∑
i

Uid
†
i,↑di,↑d

†
i,↓di,↓

(4.1)

where i ∈ {1, 2, 3} runs over the dots, σ ∈ {↑, ↓} runs over the spin and d†i,σ (di,σ) creates

(destroys) an electron on dot i with spin σ. Let En and |n〉 denote the eigenvalues and

eigenvectors of the Hamiltonian.
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Majorana operators can be defined by

d†i,σ =
1

2
(γx,i,σ − iγy,i,σ)

di,σ =
1

2
(γx,i,σ + iγy,i,σ)

(4.2)

To calculate the current, we allow electrons to tunnel through the ends of the devices

(i.e., to and from the leftmost and rightmost dots). We assume that the electron distribution

in either lead is in equilibrium described by the Fermi-distribution f(E) with a potential

bias of eV on the left and −eV on the right. We take the transition rates to be

ΓL,Rgain,nm = f(En − Em ∓ eV )
∑
σ

t2L,R| 〈n| d
†
1,σ |m〉 |2

ΓL,Rloss,nm = (1− f(En − Em ∓ eV ))
∑
σ

t2L,R| 〈n| d1,σ |m〉 |2
(4.3)

where tL is the coupling to the left lead, tR is the coupling to the right lead, and ΓL,Rgain,nm is

the rate at which an electron comes into the system from the right lead R or left lead L and

excites the system from the state |m〉 to the state |n〉, while ΓL,Rloss,nm is the rate at which an

electron leaves the system going into the right R or left L lead causing decaying the system

from |m〉 to |n〉. Notice that we have made no assumption about which state (|m〉 or |n〉)

has more electrons. The total transition rate from |m〉 to |n〉 is then given by

Γnm = ΓLgain,nm + ΓLloss,nm + ΓRgain,nm + ΓRloss,nm (4.4)

We assume the system is in a steady state so that the probabilities in each state is

unchanging in time

0 =
dPn
dt

=
∑
m

MnmPm (4.5)

where

Mnm = Γnm −
∑
l

δnmΓln (4.6)

Solving the set of linear equations in Eq. 4.5 and using the fact that
∑

n Pn = 1 allows

us to solve for the probabilities. From here, we can calculate the current

I =
∑
n

Pn
∑
m

(
ΓLgain,mn + ΓRloss,mn − ΓLloss,mn − ΓRgain,mn

)
(4.7)
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4.3 Simulations results

We plot simulations of the three-site quantum dot chain model, including the energy

spectrum, differential conductance of the electron transport, and Majorana wavefunctions

distribution, with various tunable parameters.
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Figure 4.2: Simulation results for a chain of 3 identical dots at different dot potentials,

ε = 0, 0.1, 0.2. (a-c) Many-body spectra versus the magnetic field. The orange line is the

first excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of

Majorana components (probability amplitudes) in different sites in magnetic fields. Other

parameters used: U = 0, ∆ = 0.2, α = 0.05, t = 0.05, T = 0.01.

Fig. 4.2 shows simulation results for a chain of 3 identical dots at different dot potentials,
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ε = 0, 0.1, 0.2. (a-c) Many-body spectra versus the magnetic field. The orange line is the first

excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of Majorana

components (probability amplitudes) in different sites in magnetic fields. The color denotes

| 〈E| γx,s,↑ |G〉 |2+| 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2+| 〈E| γy,s,↓ |G〉 |2 in (j-l), where

s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first excited state. In Figs. 4.2 (g,j),

at ε = 0, the system develops edge states, but there are no separated Majorana zero modes

around the gap closing point. They are trivial bulk fermion states. In Figs. 4.2 (h,k) and

Figs. 4.2 (i,l), as ε increases, two separated Majorana modes at site 1 and 3 appear near the

gap closing point.
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Figure 4.3: Simulation results for a chain of 3 identical dots with the Coulomb interaction,

U = 0, 0.5, 1. (a-c) Many-body spectra versus the magnetic field. The orange line is the first

excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of Majorana

components (probability amplitudes) in different sites in magnetic fields. Other parameters

used: ∆ = 0.2, α = 0.05, t = 0.05, ε = 0.1, T = 0.01.

Fig. 4.3 shows simulation results for a chain of 3 identical dots with the Coulomb inter-

action, U = 0, 0.5, 1. (a-c) Many-body spectra versus the magnetic field. The orange line

is the first excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation

of Majorana components (probability amplitudes) in different sites in magnetic fields. The

color denotes | 〈E| γx,s,↑ |G〉 |2 + | 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2 + | 〈E| γy,s,↓ |G〉 |2

in (j-l), where s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first excited state. As
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U increases, the extended zero-bias peak (in Fig. 4.3 (d)) develops into three crossings (in

Fig. 4.3 (f)) and Majorana modes are no longer separated.
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Figure 4.4: Simulation results for a chain of 3 identical dots with different inter-dot couplings,

t = 0, 0.05, 0.1. (a-c) Many-body spectra versus the magnetic field. The orange line is the

first excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of

Majorana components (probability amplitudes) in different sites in magnetic fields. Other

parameters used: U = 0, ∆ = 0.2, α = 0.05, ε = 0.1, T = 0.01.

Fig. 4.4 shows simulation results for a chain of 3 identical dots with different inter-dot

couplings, t = 0, 0.05, 0.1. (a-c) Many-body spectra versus the magnetic field. The orange

line is the first excited state. (d-f) Differential conductance in magnetic field. (g-l) Evaluation

of Majorana components (probability amplitudes) in different sites in magnetic field. The
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color denotes | 〈E| γx,s,↑ |G〉 |2 + | 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2 + | 〈E| γy,s,↓ |G〉 |2

in (j-l), where s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first excited state.

In Figs. 4.4 (g,j), at t = 0, the system develops edge states in magnetic fields, but there

are no separated Majorana zero modes around the gap closing point. In Figs. 4.4 (h,k), at

t = 0.05, two separated Majorana modes at site 1 and 3 appear near the gap closing point.

In Figs. 4.4 (i,l), at t = 0.1, although there are partial overlapping, two Majorana modes are

still mostly localized at two end sites. In general, decrease the hopping term t equals having

a longer chain, and more isolated Majorana modes should appear.
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Figure 4.5: Simulation results for a chain of 3 identical dots with different spin-orbit cou-

plings, α = 0, 0.05, 0.1. (a-c) Many-body spectra versus the magnetic field. The orange line

is the first excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation

of Majorana components (probability amplitudes) in different sites in magnetic fields. Other

parameters used: U = 0, ∆ = 0.2, t = 0.05, ε = 0.1, T = 0.01.

Fig. 4.5 shows simulation results for a chain of 3 identical dots with different spin-

orbit couplings, α = 0, 0.05, 0.1. (a-c) Many-body spectra versus the magnetic field. The

orange line is the first excited state. (d-f) Differential conductance in magnetic fields. (g-l)

Evaluation of Majorana components (probability amplitudes) in different sites in magnetic

fields. The color denotes | 〈E| γx,s,↑ |G〉 |2 + | 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2 +

| 〈E| γy,s,↓ |G〉 |2 in (j-l), where s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first
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excited state. In Figs. 4.5 (g,j), at α = 0, no separated Majorana zero modes around the gap

closing point. They are trivial bulk fermion states. As α increases, two separated Majorana

modes at site 1 and 3 appear near the gap closing point in Figs. 4.5(h,k,i,l).
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Figure 4.6: Simulation results for a chain of 3 identical dots at different dot potentials,

ε = 0, 0.1, 0.2. Inter-dot coupling t = 0.2 for a strongly coupled chain. (a-c) Many-body

spectra versus the magnetic field. The orange line is the first excited state. (d-f) Differen-

tial conductance in magnetic fields. (g-l) Evaluation of Majorana components (probability

amplitudes) in different sites in magnetic fields. Other parameters used: U = 0, ∆ = 0.2,

α = 0.05, t = 0.2, T = 0.01.

Fig. 4.6 shows simulation results for a chain of 3 identical dots at different dot potentials,

ε = 0, 0.1, 0.2. Inter-dot coupling t = 0.2 for a strongly coupled chain. (a-c) Many-body
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spectra versus the magnetic field. The orange line is the first excited state. (d-f) Differ-

ential conductance in magnetic fields. (g-l) Evaluation of Majorana components (probabil-

ity amplitudes) in different sites in magnetic fields. The color denotes | 〈E| γx,s,↑ |G〉 |2 +

| 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2 + | 〈E| γy,s,↓ |G〉 |2 in (j-l), where s = 1, 2, 3 is

the site, |G〉 is the ground state, |E〉 is the first excited state. In Fig. 4.6, as parameters

increase, in energy spectrum (a-c) and transport (d-f), the region of zero energy crossings ex-

tends in a larger range of magnetic fields, which means in experiments, it is easier to observe

a long zero-bias peak. However, the oscillations of low energy excitations near zero-energy

(i.e., three zero energy crossings instead of a peak pinned to zero bias) result in partial

overlapping of Majorana modes (g-l). Zero-bias peak oscillations are due to the finite size

of the chain. Obviously, as the number of sites increase, in a longer chain, the number of

zero energy crossings would increase, and the amplitude of the oscillations in energy would

decrease. A long peak extending in a larger range of magnetic fields will be pinned to zero

energy, and well-separated Majorana modes appear at two ends. Note that there can still

be Majorana separation even for no crossing in differential conductance (e,f) (h,k,i,l).
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Figure 4.7: Simulation results for a chain of 3 identical dots with different α and t. (a-c)

Many-body spectra versus the magnetic field. The orange line is the first excited state.

(d-f) Differential conductance in magnetic fields. (g-l) Evaluation of Majorana components

(probability amplitudes) in different sites in magnetic fields. Other parameters used: U = 0,

∆ = 0.2, ε = 0.1, T = 0.01.

Fig. 4.7 shows simulation results for a chain of 3 identical dots with different α and

t. (a-c) Many-body spectra versus the magnetic field. The orange line is the first ex-

cited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of Majorana

components (probability amplitudes) in different sites in magnetic fields. The color denotes

| 〈E| γx,s,↑ |G〉 |2+| 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2+| 〈E| γy,s,↓ |G〉 |2 in (j-l), where

s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first excited state. In Figs. 4.7 (a,d),
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when both α and t are zero, it means the dots are decoupled. There is no tunneling between

the dots. Such a chain of isolated dots is equivalent to a single dot. (g,j) show the unstable

distribution of probabilities over the sites due to this reason. We need at least one param-

eter (α or t) to be non-zero to establish the chain of 3 dots. Both spin-orbit coupling and

inter-dot couplings are crucial to the model. With only one parameter present (h,k and i,l),

there is no Majorana separation.

0.00

0.25

0.50

E

(a) (b) (c)

−0.5

0.0

0.5

E

(d) (e) (f)

1

2

3

S
ite

(g) (h) (i)

0.0 0.5

1

2

3

S
ite

(j)

0.0 0.5
B

(k)

0.0 0.5

(l)

0.0

0.1

0.2

0.3

dI
/d
V
0.0

0.5

1.0

α=t=0.01 α=t=0.05 α=t=0.1

Figure 4.8: Simulation results for a chain of 3 identical dots with different α and t. (a-c)

Many-body spectra versus the magnetic field. The orange line is the first excited state.

(d-f) Differential conductance in magnetic fields. (g-l) Evaluation of Majorana components

(probability amplitudes) in different sites in magnetic fields. Other parameters used: U = 0,

∆ = 0.2, ε = 0.1, T = 0.01.

65



Fig. 4.8 shows simulation results for a chain of 3 identical dots with different α and

t. (a-c) Many-body spectra versus the magnetic field. The orange line is the first ex-

cited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of Majorana

components (probability amplitudes) in different sites in magnetic fields. The color denotes

| 〈E| γx,s,↑ |G〉 |2+| 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2+| 〈E| γy,s,↓ |G〉 |2 in (j-l), where

s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first excited state. In Figs. 4.8 (g,j),

at α = t = 0.01, even though the parameters are of small values, two separated Majorana

modes at site 1 and 3 appear at the gap closing point. In Figs. 4.8 (h,k) and (i,l), as param-

eters α and t increase, the magnetic field range in which Majorana modes are separated at

two ends is expanding. Note that in Figs. 4.8 (c,f,i,l), there are separated Majorana modes

at magnetic fields when resonances are not crossing zero energy. This means that when there

are no long zero-bias peaks or even just a crossing, separated Majorana modes can still exist

in a magnetic field range if the states are near zero-energy.

66



0.00

0.25

0.50

E

(a) (b) (c)

−0.5

0.0

0.5

E

(d) (e) (f)

1

2

3

S
ite

(g) (h) (i)

0.0 0.5

1

2

3

S
ite

(j)

0.0 0.5
B

(k)

0.0 0.5

(l)

0.0

0.1

0.2

0.3

dI
/d
V

0.0

0.5

1.0

0 0.1 0.2
ϵ1

Figure 4.9: Simulation results for a chain of 3 dots with different dot1 potentials, ε1 =

0, 0.1, 0.2. (a-c) Many-body spectra versus the magnetic field. The orange line is the first

excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of Majorana

components (probability amplitudes) in different sites in magnetic fields. Other parameters

used: U = 0, ∆ = 0.2, α = 0.05, t = 0.05, ε2 = ε3 = 0.1, T = 0.01.

Fig. 4.9 shows simulation results for a chain of 3 dots with different dot1 potentials,

ε1 = 0, 0.1, 0.2. (a-c) Many-body spectra versus the magnetic field. The orange line is

the first excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation

of Majorana components (probability amplitudes) in different sites in magnetic fields. The

color denotes | 〈E| γx,s,↑ |G〉 |2 + | 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2 + | 〈E| γy,s,↓ |G〉 |2

in (j-l), where s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first excited state.
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Since dot1 and dot3 are equivalent (they both have only one inter-dot coupling term), the

study of varying dot1 potentials is the same as dot3. However, dot2 couples to both dot1

and dot3, vary dot2 potentials will be different. We will study the dependence on dot2 next.

In Figs. 4.9 (g,j), at low magnetic fields before the zero energy crossing, two Majorana modes

are highly overlapped and localized at site 1. No separated Majorana modes except for when

dots are identical (h,k).
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Figure 4.10: Simulation results for a chain of 3 dots with different dot2 potentials, ε2 =

0, 0.1, 0.2. (a-c) Many-body spectra versus the magnetic field. The orange line is the first

excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of Majorana

components (probability amplitudes) in different sites in magnetic fields. Other parameters

used: U = 0, ∆ = 0.2, α = 0.05, t = 0.05, ε1 = ε3 = 0.1, T = 0.01.
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Fig. 4.10 shows simulation results for a chain of 3 dots with different dot2 potentials,

ε2 = 0, 0.1, 0.2. (a-c) Many-body spectra versus the magnetic field. The orange line is

the first excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation

of Majorana components (probability amplitudes) in different sites in magnetic fields. The

color denotes | 〈E| γx,s,↑ |G〉 |2 + | 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2 + | 〈E| γy,s,↓ |G〉 |2

in (j-l), where s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first excited state.

Dot2 has less effect on Majorana separation. In Fig. 4.10, when tune dot2 potentials away

from the identical dot chain (h,k), the separated Majorana modes at the gap closing remain

in Figs. 4.10 (g,j,i,l). While near the zero energy crossing originates from dot2, two Majorana

modes are overlapped and localized at site 2 in Figs. 4.10 (g,j,i,l).
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Figure 4.11: Simulation results for a chain of 3 dots with different dot1-dot2 couplings,

t12 = 0.05, 0.1, 0.2. (a-c) Many-body spectra versus the magnetic field. The orange line is

the first excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation of

Majorana components (probability amplitudes) in different sites in magnetic fields. Other

parameters used: U = 0, ∆ = 0.2, α = 0.05, t23 = 0.05, ε = 0.1, T = 0.01.

Fig. 4.11 shows simulation results for a chain of 3 dots with different dot1-dot2 couplings,

t12 = 0.05, 0.1, 0.2. (a-c) Many-body spectra versus the magnetic field. The orange line is

the first excited state. (d-f) Differential conductance in magnetic fields. (g-l) Evaluation

of Majorana components (probability amplitudes) in different sites in magnetic fields. The

color denotes | 〈E| γx,s,↑ |G〉 |2 + | 〈E| γx,s,↓ |G〉 |2 in (g-i) and | 〈E| γy,s,↑ |G〉 |2 + | 〈E| γy,s,↓ |G〉 |2

in (j-l), where s = 1, 2, 3 is the site, |G〉 is the ground state, |E〉 is the first excited state.
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In Fig. 4.11, different inter-dot coupling strengths t12 and t23 are studied. When couplings

t12 and t12 are the same, two Majorana wavefunctions are symmetric and localized at each

end site at the gap closing (g,j). When increasing coupling of dot1 and dot2, t12 differs from

t23, Majorana modes are less well-separated. In (h,k), t12 = 0.1, Majorana modes are still

mostly separated. While in (i,l), with even larger t12 = 0.2, near the zero energy crossings,

Majorana modes are mostly overlapped and localized at site 3. Figs. 4.11 (f,i,l) show that at

near zero-energy crossings or even seemingly extended zero-bias peaks, separated Majorana

modes can still be absent. Since dot1 and dot3 are equivalent in this model, changing t23

will have similar effects on Majorana separation.
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Figure 4.12: Simulation results for a chain of 3 dots with different induced superconducting

gap in dot1, ∆1 = 0.1, 0.15, 0.2, 0.25. (a-d) Many-body spectra versus the magnetic field. The

orange line is the first excited state. (e-h) Differential conductance in magnetic fields. (i-p)

Evaluation of Majorana components (probability amplitudes) in different sites in magnetic

fields. Other parameters used: U = 0, ∆2 = ∆3 = 0.2, α = 0.05, t = 0.05, ε = 0.1, T = 0.01.
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Fig. 4.12 shows simulation results for a chain of 3 dots with different induced supercon-

ducting gap in dot1, ∆1 = 0.1, 0.15, 0.2, 0.25. (a-d) Many-body spectra versus the magnetic

field. The orange line is the first excited state. (e-h) Differential conductance in mag-

netic fields. (i-p) Evaluation of Majorana components (probability amplitudes) in different

sites in magnetic fields. The color denotes | 〈E| γx,s,↑ |G〉 |2 + | 〈E| γx,s,↓ |G〉 |2 in (i-l) and

| 〈E| γy,s,↑ |G〉 |2 + | 〈E| γy,s,↓ |G〉 |2 in (m-p), where s = 1, 2, 3 is the site, |G〉 is the ground

state, |E〉 is the first excited state. In Fig. 4.12, different induced superconducting gap

strengths in dot1 are studied. When ∆1 is similar to ∆2 and ∆3, ∆1 = 0.15, 0.2, 0.25 and

∆2 = ∆3 = 0.2, separated Majorana modes are still present in Figs. 4.12 (j,n,k,o,l,p). How-

ever, when ∆1 = 0.1 and ∆2 = ∆3 = 0.2, separated Majorana modes no longer exist.
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Figure 4.13: Simulation results for a chain of 3 dots with different induced superconducting

gap in dot2, ∆2 = 0.1, 0.15, 0.2, 0.25. (a-d) Many-body spectra versus the magnetic field. The

orange line is the first excited state. (e-h) Differential conductance in magnetic fields. (i-p)

Evaluation of Majorana components (probability amplitudes) in different sites in magnetic

fields. Other parameters used: U = 0, ∆1 = ∆3 = 0.2, α = 0.05, t = 0.05, ε = 0.1, T = 0.01.

Fig. 4.13 shows simulation results for a chain of 3 dots with different induced supercon-

ducting gap in dot2, ∆2 = 0.1, 0.15, 0.2, 0.25. (a-d) Many-body spectra versus the magnetic

field. The orange line is the first excited state. (e-h) Differential conductance in mag-

netic fields. (i-p) Evaluation of Majorana components (probability amplitudes) in different

sites in magnetic fields. The color denotes | 〈E| γx,s,↑ |G〉 |2 + | 〈E| γx,s,↓ |G〉 |2 in (i-l) and

| 〈E| γy,s,↑ |G〉 |2 + | 〈E| γy,s,↓ |G〉 |2 in (m-p), where s = 1, 2, 3 is the site, |G〉 is the ground

state, |E〉 is the first excited state. In Fig. 4.13, different induced superconducting gap

strengths in dot2 are studied. ∆2 has little effect on the distribution of Majorana wavefunc-

tions. When ∆2 = 0.1, 0.15, 0.2, 0.25 and ∆1 = ∆3 = 0.2, separated Majorana modes are
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still present.

Simulation data and code are available on Zenodo [94].

4.4 Conclusions

We build a tight-binding model of a quantum dot chain containing three sites. We study

the model with all tunable parameters. We simulate the energy spectrum and transport of

the triple-dot chain. Well-separated Majorana zero modes are not expected for the 3-site

chain outside of fine-tuned regimes, i.e., when Andreev states from all three dots reach zero

bias at the same magnetic field and a zero-bias peak extends in magnetic fields would appear.

For a short chain (3-site), within a narrow parameter window (fine-tuned regimes), the

probability distribution of Majorana wavefunctions indicates a partial separation of two

Majorana zero modes localized at two end sites. Shown in Figs. 4.9, 4.11, and 4.12, it

is possible to have separated Majorana modes at the ends of the 3-site chain only when

parameters of each dot are similar. It implies that in experiments, all three dots need to be

uniform, or the device has to be extremely tunable, such that the requirements are satisfied

for all parameters to be inside of the narrow window to host topological phases, i.e., the

Kitaev regime.

A longer chain should have a larger window in parameter space to achieve the Kitaev

regime and be more robust against disorder and nonuniformity in parameters, although the

experimental realization will be much more challenging.

After showing the experimental results of the triple-dot device in Chapter 5, we discuss

the relevance of our model and our device, together with other theoretical models in Sec. 5.6.

74



5.0 Triple Andreev dot chains in semiconductor nanowires

5.1 Introduction

In Sec. 4.1, we addressed our concern of the omnipresent Andreev bound states in hybrid

superconductor/semiconductor nanowire devices. In this chapter, we take an alternative

approach to implement the Kitaev chain other than the continuous Majorana wire model [25,

26]. Rather than trying to eliminate Andreev states, we take advantage of them in our

Majorana search. Theory suggests a robust topological superconducting phase in chains of

Andreev quantum dots, a discrete version of the Kitaev mode [47, 48].

Intending to emulate the discrete Kitaev chain, we build a device of three quantum

dots in a chain in an InSb nanowire. At zero magnetic field, we observe Andreev bound

states in each of the three dots. No other unwanted or uncontrollable dots are found in

the main wire segment. We study their magnetic field and gate voltage dependence and

observe dot-dependent zero-bias conductance peaks in magneto-transport spectroscopy. We

interpret zero-bias peaks as Andreev states along the triple-dot chain crossing zero energy at

finite magnetic fields. In section 4.3, our simulation indicates that triple-dot states acquire

Majorana polarization when Andreev states in all three dots reach zero energy in a narrow

range of magnetic field. In our device, transport is dominated by one of the quantum dots

in the chain, D3, which has a zero-bias crossing at lower magnetic fields than the other

two dots. Thus the parameters lie outside of the simulated non-trivial topological phase.

The device geometry is suitable for studying the correlation of two end states with non-

local measurements. Even though the desired regime is not accessible, this device with new

geometry has overcome many nanofabrication challenges and is one step further towards

an unambiguous identification of Majorana zero modes. Devices with greater uniformity or

independent control over superconductor-semiconductor coupling should realize the Kitaev

chain with a high yield. Due to its overall tunability and design flexibility, the quantum dot

system remains promising for quantum simulation of interesting models and particularly for

modular topological quantum devices.
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Our study of triple Andreev dot chains is published on [95].

5.2 Device description

N1 N2

S1 S2 S3Ti/Au

200nm
NbTiN

B
ia
s

A

Vd1 Vd2 Vd3

InSb

Figure 5.1: Scanning electron micrograph (SEM) of the triple-dot device. Orange circles

indicate positions of quantum dots within the InSb semiconductor nanowire underneath three

NbTiN superconducting leads (S1, S2, S3), electrostatic gates that separate and tune dots

are marked with inverted T’s. The circuit shown is the primary measurement configuration

where non-superconducting leads N1 and N2 are the source and drain.

Fig. 5.1 shows the scanning electron micrograph (SEM) of the triple-dot device. Three

separate superconductors (S1, S2, S3, NbTiN) contact an indium antimonide (InSb) semi-

conductor nanowire to create three Andreev quantum dots (D1, D2, D3) in a chain. The

hybrid nanowire device has two non-superconducting leads (N1, N2) at wire ends for prob-

ing the chain. Three quantum dots are separated along the nanowire by tunnel barriers

controlled by narrower unlabeled electrostatic gates located in between contacts. Quantum

dots are tuned by wide gates (d1, d2, d3). Magnetic fields parallel to the nanowire axis can

be applied. Fig. 5.1 shows the measurement configuration used for most data acquired: we
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apply a voltage bias through N1 and measure current and differential conductance from N2

while floating S1, S2, and S3. In this configuration, current flows through all three Andreev

dots. Thus resonances and their positions are influenced by quantum states in the entire

chain. The measurements can be configured differently utilizing other terminals if a specific

section of the device is of particular interest (Fig. 5.5).

5.3 Experimental results

In our five-terminal, seven-gate device, we test the routine of setting up quantum dots

within the chain. We understand where the dots are located, their individual states, and how

to control them and their couplings. Fig. 5.2 shows representative differential conductance

spectra of the dot chain while tuning each dot over several occupation values. Current

passes through all three dots between N1 and N2. Conductance resonances are pinned to

finite bias and exhibit varying degrees of wiggling but never cross zero bias at zero magnetic

field (Figs. 5.2(a)-(c)).

In a single quantum dot, these resonances are transitions from ground to excited Andreev

states: the dot is in the ground state at the start of the charge transfer cycle, and the addi-

tional electron passing through the dot enters the excited state [43, 91]. Because the dots are

directly underneath the leads, they are expected to be strongly coupled to superconductors,

with the ground state always a singlet while the excited state a doublet, at zero magnetic

field. In a triple-dot chain where current passes through all three dots, these resonances are

a convolution of ground-excited state transitions in all dots. Thus we cannot unambiguously

extract energy scales in each dot from these data. However, we can evaluate the effect of

each dot’s gate on the resonances. In Figs. 5.2(a,b), Andreev bound states appear flatter.

We interpret this as D1 and D2 being stronger coupled to leads S1 and S2. In Fig. 5.2(c),

Andreev states appear wavier, suggesting a weaker coupling of D3 to S3.
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Figure 5.2: Bias spectroscopy of Andreev bound states in each dot at different magnetic fields.

(a)-(c): B=0, (d)-(f): B=0.11T, (g)-(i): B=0.18T. Gate settings in (a,d,g): Vd2=576.5mV,

Vd3=395mV. (b,e,h): Vd1=322.5mV, Vd3=395mV. (c,f,i): Vd1=322.5mV, Vd2=576.5mV. Mea-

sured from N1 to N2.

We note that the differential conductance is relatively low, less than a percent of a

quantum of conductance. This is because the current has to pass through four tunneling

barriers. For measurements in all figures, we set the barrier between S3 and N2 to be the

least transmitting. This is a compromise tuning strategy: raising more barriers leads to

sharper resonances, but the signal decreases further.
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We observe doubling the number of resonances when a parallel magnetic field is applied in

Figs. 5.2(d)-(f), at B=0.11T. This is because the excited Andreev states (doublets) Zeeman

split, while the ground state remains a singlet and does not split with an applied magnetic

field. One branch of resonances moves to lower voltage bias. The resonances reach zero

voltage bias for the first time at B=0.18T (Figs. 5.2(g)-(i)).

A softened induced gap allows us to observe the resonance in D3 at zero voltage bias

even when states in D1 and D2 are not near zero-energy. For quantum dot chain with a

hard induced gap, zero-bias peak only occurs when states of all dots cross zero voltage bias

simultaneously at a fixed magnetic field. When sweeping the gates of dots D1 and D2, we

observe zero-bias conductance peaks across the entire gate voltage range of these figures

(Figs. 5.2(g,h)). In dot D3, we observe zero-bias peaks at three narrow intervals of gate

voltage Vd3. If we set Vd3=365mV, we have zero-bias peaks on both ends of the nanowire.

This is not the situation we expect when delocalized Majorana zero modes are present.

We can tell this from the fact that these zero-bias peaks are sensitive to Vd3 and not to the

gates (Vd1, Vd2) controlling the other dots (D1, D2). In the Kitaev chain regime, we expect

zero-bias peaks to depend on the tuning of all dots. In Figs. 5.2(g,h), Vd3 is set to 395mV,

where one of the zero-energy crossings occurs. The ‘long’ zero-bias peaks in Figs. 5.2(g,h)

indicate dot gate d1 and d2 are not coupled to the state that crosses zero voltage bias at

B=0.18T, which is localized at D3. The states localized at D1 and D2 likely cross zero

voltage bias at higher magnetic fields since those Andreev states are coupled stronger to

leads S1 and S2.
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Figure 5.3: Stability diagrams between (a) D1 and D2, Vd3=366.25mV. (b) D1 and D3,

Vd2=537.5mV. (c)D2 andD3, Vd1=315mV. Measured fromN1 toN2. Bias voltage V=0.2mV.

B=0.

To characterize the chain of dots, we provide current maps in which pairs of dot gates

are tuned, with three possible combinations (D1-D2, D1-D3, D2-D3), in Fig. 5.3. These

data are at zero magnetic field and a fixed bias voltage (V=0.2mV). Note that these plots

show current rather than conductance, signaled using a different colormap than other figures.

High current here is where Andreev resonances dip to lower bias because as Fig. 5.2 shows,

resonances never cross zero bias at zero field. Lines of high current regions form rectangular

grid patterns, which indicate that capacitive couplings between the dots are weak. This is

because the dot gates are screened by leads S1, S2, S3. We only observe current maxima

related to the three dots and no extra states within the central nanowire segment. Resonances

related to D3 dominate over resonances from D1 and D2, further confirming that D3 is the

bottleneck of transport in this device.
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Figure 5.4: Zero-bias tunneling conductance as a function of magnetic fields in (a) D1,

Vd2=576.5mV, Vd3=392.5mV. (b) D2, Vd1=322.5mV, Vd3=360mV. (c) D3, Vd1=185mV,

Vd2=472.5mV. Measured from N1 to N2. Magnetic field evolution of the triple-dot Andreev

bound states at different Vd3 values indicated by yellow short lines in (c) are in supplementary

materials.

Fig. 5.4 shows the extracted zero-bias tunneling conductance as a function of dot gate

voltages and parallel magnetic fields. Figs. 5.4(a)-(c) are effective phase diagrams of zero-

bias peaks for all three dots: red regions correspond to zero-bias peaks, and blue regions

correspond to no peak at zero bias. In Figs. 5.4(a,b), the zero-bias peaks are mostly gate

independent, which is in agreement with Figs. 5.2(g,h). Fig. 5.4(c) shows the onset point

of the first zero-energy crossing in magnetic fields is strongly dependent on Vd3. The first

zero-energy crossing (peak center) can occur in a range of magnetic fields between 0.16T and

0.35T.
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Figure 5.5: Magnetic field evolution of the triple-dot Andreev bound states with different

measurement configurations shown in circuit diagrams above panels, (a) N1-N2, (b) N2-S3.

Vd1=315mV, Vd2=537.5mV, Vd3=396mV. Because the source and drain are reversed in (b)

compared to (a), we have flipped voltage bias axis in (b).

Fig. 5.5 shows magnetic field evolution of the triple-dot Andreev bound states to higher

magnetic fields (up to 1T). Between B=0 and 0.2T the splitting of Andreev resonances and

zero energy crossing are clear and in high contrast. However, signals are less prominent in

magnetic fields above ≈ 0.2T. This is due to the soft superconducting gap of NbTiN in finite

magnetic fields. Though it is possible to observe sharp resonances to higher fields in NbTiN

devices [27, 82, 62], here we have an additional constraint that our NbTiN electrodes are
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relatively narrow (≈ 200 nm) and thin (≈ 60 nm) in order to reduce the stress that may

break nanowires for devices with multiple superconducting electrodes. The narrow and thin

NbTiN contacts can explain the weakened proximity-induced superconductivity.

At fields above 0.2T, there are several additional resonances at low voltage bias. Spec-

trum and transport simulations predict up to 3 zero energy crossings in magnetic fields

depending on parameters of the triple-dot chain (see supplementary materials). It is plau-

sible that resonances at higher fields originate from D1 and D2. However, reduced contrast

prevents their unambiguous identification.

Fig. 5.5(b) illustrates how we can use the five-contact geometry of this device to gain

additional information on state localization along the chain. We apply voltage bias through

N2 and measure current and differential conductance from S3 while floating N1, S1, and

S2. The overall differential conductances are comparable in Figs. 5.5(a,b), confirming that

transport features observed in this paper are dominated by D3. We are essentially measuring

resonances with sharp features of D3 on a faint background of D1 and D2. Some of the

resonances beyond 0.2T do not show up in panel (b). This may confirm that they are due to

D1 and D2, which are not in the path of current in panel (b). However, it may also be due

to slightly more broadened features in panel (b) reducing the sensitivity to those resonances.

We also show in Fig. 5.13 that the tunnel barrier located at the left end near N1 is

significantly more open compared to the right tunnel barrier at N2. The inter-dot barriers are

also low. Thus whenever N2 is excluded from the measurement configuration, the resonances

broaden considerably.

Data are available on Zenodo [94].

5.4 Experimental methods

Nanowire growth: InSb nanowires are grown by metal-organic vapor phase epitaxy

(MOVPE). A typical nanowire is 3-5 µm in length with 120-150 nm diameter.

Nanowire deposition: InSb nanowires are transferred onto undoped Si substrates with

pre-patterned gate electrodes using a micromanipulator under an optical microscope. The
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gates are 1.5/6 nm Ti/PdAu covered by 10 nm of HfOx as the dielectric layer.

Contact deposition: contacts are patterned by standard electron-beam lithography. Sul-

fur passivation and Ar sputter cleaning are performed to remove the native oxidation layer

on nanowires before sputter deposition 5/60 nm of NbTi/NbTiN at an angle of 45 degrees

with respect to the substrate. Sulfur passivation removes the oxidation layer before e-beam

evaporation of 10/145 nm of Ti/Au.

Measurement: measurements are performed in a dilution refrigerator at a base tempera-

ture of 40 mK. Multiple stages of filtering are used to enhance the signal-to-noise ratio. All

voltage bias data are two-terminal measurements. Series resistance was taken into account

in calculating conductance in all figures.

5.5 Further reading

Background on Majorana zero modes in hybrid superconductor-semiconductor nanowires

can be found in [96, 97, 98, 99]. Experiments on multi-terminal nanowire devices can be

found in [100, 101, 72, 102]. Proposals of implementing the Kitaev chain with quantum dots

and superconductors can be found in [47, 48, 49]. Studies of Andreev bound states in hybrid

superconductor-semiconductor nanowire devices are discussed in [43, 90, 91, 85]. Prospects

of implementing Majorana-based quantum computation are assessed in [19, 103, 104, 105,

29, 106].

5.6 Discussion on different models

We were motivated by [47] and [48] in the early stages of the project. They propose to

use a chain of quantum dots to realize an effective Kitaev model. However, significant details

vary between these two proposals, and between the original Majorana proposals [31, 25, 26]

and our experimental approach. Thus, our devices do not in fact implement or intend to

implement the proposals in [47] and [48].
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Model in [47] is for a linear array of quantum dots interspersed with superconducting

islands. This model is an effective Kitaev chain when the nearest-neighbor hopping between

quantum dots (through a superconducting island) is allowed, and only a single spin-polarized

level in each dot participates in transport. Spin-orbit coupling rotates spin polarization as

an electron moves inside the dot, allowing proximity-induced superconductivity that pairs

electrons from neighboring dots rather than inside one dot (double occupation is forbidden

in each dot). The model also requires crossed Andreev reflection, which is a challenging

experimental requirement for a chain of dots.

Model in [48] requires spinful quantum dots at single occupations. This model also

features a tunable proximity effect between quantum dots and superconductors, which is

achieved by applying a phase difference between two superconductors attached to a single

dot. The tuning procedures described in [48] which include the tuning of chemical potentials,

superconducting phases, and couplings, are done at a fixed Zeeman energy, i.e., at a fixed

magnetic field.

Our devices are geometrically and functionally different from those described above.

However, they are also suitable for realizing the Kitaev chain, as our model (in Sec. 4.2),

tailored to our 3-dot system, demonstrates.

Below we explain in what ways our devices are different from those proposed in [47]

and [48]: In our devices, we have exactly three dots. Realizing chains of more dots as

suggested in [47] and [48] with their geometry and the current fabrication techniques is

challenging. Our device is not an array of alternating quantum dots and superconducting

islands [47] or a chain of quantum dots with superconducting loops [48], but a chain of

Andreev quantum dots. Each dot is strongly coupled to a superconducting lead in our

device and has a singlet ground state (a hybrid of empty and doubly occupied states) at zero

magnetic field. At finite magnetic fields, the ground states become spin-up doublet Andreev

Bound States. Dots have a quenched charging energy and exhibit no Coulomb blockade.

Devices characteristics captured by our model: Our model included in Chapter. 4 is not

a literal representation of our device, but it captures key features of what we measure. Our

model of three single-level quantum dots is a generic description of a quantum dot chain

with spin-orbit interaction, induced superconductivity, and Zeeman effect. The spin-orbit
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length in InSb nanowires has been measured to be in the range of 100 − 200nm [54, 55].

This is comparable to the distances between dots in our device. Spins undergo full or nearly

full rotation while tunneling between the dots over uncovered segments of the nanowire,

where spin-orbit is better understood. Our model captures this fact by setting parameters

α (spin-orbit coupling) and t (tunneling between dots) to be of similar values. Our model

contains superconducting pairing for electrons from the same dot, not adjacent dots, which

is consistent with the fact that we only observe Andreev bound states with singlet ground

states in each dot at zero magnetic field. In the model, we use small values for U (Coulomb

interaction) to capture the lack of charging energy.

Models in [107] and [108] propose to couple several finite-sized segments of topological

superconductor through tunnel gates. The chain thus consists of multiple wire sections with

individual superconducting islands. In each segment, Andreev bound states can be partially

separated into Majorana modes. By coupling the neighboring segments, inner Majorana

modes on each segment hybridize and leave the outermost Majorana modes unpaired, similar

to a Kitaev chain. Models in [107] and [108] are relevant to our study since the wire segments

are of a length similar to our devices. However, these models are too optimistic to assume

partially separated Majorana modes already exist in each wire segment, which needs to be

first experimentally established.

5.7 Supplementary data

5.7.1 Date from the triple-dot device

Supplementary data are from the triple-dot device shown in Fig. 5.1.

86



250 275 300 325 350 375
Vd1 (mV)

0.5

0.0

0.5

B
ia

s(
m

V
)

0

1.5

dI
/d

V
 (

10
3

2e
2
/h

)

0 1
dI/dV (10 3 2e2/h)

0 0.1 0.2 0.3 0.4 0.5
B(T)

0.5

0.5

B
ia

s(
m

V
)

Vd1=260mVVd1=250mV Vd1=267.5mV Vd1=275mV

Vd1=282.5mV Vd1=287.5mV Vd1=292.5mV Vd1=305mV

Vd1=314mV Vd1=322mV Vd1=325mV Vd1=330mV

Vd1=340mV Vd1=350mV Vd1=365mV Vd1=375mV

0.5

0.5

B
ia

s(
m

V
)

0.5

0.5

B
ia

s(
m

V
)

0.5

0.5

B
ia

s(
m

V
)

0 0.1 0.2 0.3 0.4 0.5
B(T)

0 0.1 0.2 0.3 0.4 0.5
B(T)

0 0.1 0.2 0.3 0.4 0.5
B(T)

Figure 5.6: Magnetic field evolution of the triple-dot Andreev bound states at different

D1 potentials. Gate voltage Vd1 is listed above each panel. For all panels, Vd2=576.5mV,

Vd3=392.5mV. Measured from N1 to N2.

Fig. 5.6 shows the full data set of D1 dependence of the magnetic field evolution of the

triple-dot Andreev bound states. In the range of 0-0.5T, with various gate voltages Vd1,

no clear differences in magneto-spectroscopy are observed. It means the triple-dot Andreev
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state that generates the zero energy crossing near 0.2T is not D1 dependent, and the Andreev

state does not locate at D1, the left end of the device.
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Figure 5.7: Magnetic field evolution of the triple-dot Andreev bound states at different

D2 potentials. Gate voltage Vd2 is listed above each panel. For all panels, Vd1=322.5mV,

Vd3=395mV. Measured from N1 to N2.

Fig. 5.7 shows the full data set of D2 dependence of the magnetic field evolution of the

triple-dot Andreev bound states. In the range of 0-0.5T, with various gate voltages Vd2,

no clear differences in magneto-spectroscopy are observed. It means the triple-dot Andreev

state that generates the zero energy crossing near 0.2T is not D2 dependent, and the Andreev
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state does not locate at D2, the middle of the device.
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Figure 5.8: Magnetic field evolution of the triple-dot Andreev bound states at different

D3 potentials. Gate voltage Vd3 is listed above each panel. For all panels, Vd1=322.5mV,

Vd2=576.5mV. Measured from N1 to N2.

Fig. 5.8 shows the full data set ofD3 dependence of the magnetic field evolution of the

triple-dot Andreev bound states. In the range of 0-0.5T, with various gate voltages Vd3, clear
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differences in magneto-spectroscopy are observed. The onset point of the first zero-energy

crossing in magnetic fields ranges from 0.16 to 0.35T. It means the triple-dot Andreev state

that generates the first zero-energy crossing in magnetic fields is D3 dependent, and the

Andreev state locates at D3, the right end of the device. At some gate voltages Vd3, several

additional resonances at low voltage bias are visible.

Data in Figs. 5.6, 5.7, and 5.8 are used to extract the zero-bias tunneling conductance

and plot the effective phase diagrams of zero-bias peaks for all three dots in Fig. 5.4. Fig. 5.4

summarizes the dot dependence and magnetic field dependence of the triple-dot chain.
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Figure 5.9: Additional data to Fig. 5.2. Bias spectroscopy of Andreev bound states in each

dot at different magnetic fields. Emergence of the first zero-energy crossing. When tuning

one dot, the other two gate voltages are fixed as: Vd1=322.5mV, Vd2=576.5mV, Vd3=395mV.

Measured from N1 to N2.
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Figure 5.10: Bias spectroscopy of ABS in each dot at higher magnetic fields. When tuning

one dot, the other two gate voltages are fixed as: Vd1=322.5mV, Vd2=576.5mV, Vd3=395mV.

Measured from N1 to N2.
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Fig. 5.9 and Fig. 5.10 show bias spectroscopy of Andreev bound states in each dot at

different magnetic fields. At B=0, anti-crossing Andreev resonances with Andreev bound

states in singlet ground state are observed in all three dots. When a parallel magnetic field

is applied, excited Andreev states (doublets) Zeeman split, while the ground state remains

a singlet and does not split with the applied magnetic field. We observe the splitting of

resonances of Andreev states transition from singlet to doublet ground state. The first zero-

energy crossing starts to emerge around B=0.14-0.18T. These zero-bias peaks of the first

zero-energy crossing are sensitive to Vd3 and not to (Vd1, Vd2). The ‘long’ zero-bias peaks

in Vd1 dependence and Vd2 dependence indicate that dot gate d1 and d2 are not coupled

to the state that crosses zero voltage bias at B=0.18T, which is localized at D3. At higher

magnetic fields, other resonances at low voltage bias are observed.

The states localized at D1 and D2 likely cross zero voltage bias at higher magnetic

fields since those Andreev states are coupled stronger to superconducting leads S1 and S2.

However, D3 dominates the transport, the zero-bias peaks at B=1-1.2T show some Vd1

dependence but strong Vd3 dependence. Moreover, as the superconducting gap softens in

higher magnetic fields, background conductance increases, and the resonances become broad

and low in contrast. It is implausible to claim the origins of the zero-energy crossings at

high magnetic fields.
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Figure 5.11: Magnetic field evolution of the triple-dot Andreev bound states at different

Vd3 indicated by short yellow lines in Fig. 5.4(c). (a) Vd3=400mV, (b) Vd3=380mV, (c)

Vd3=365mV. Vd1=185.0mV, Vd2=472.5mV. Measured from N1 to N2.

Fig. 5.11 shows magnetic field evolution of the triple-dot Andreev bound states at three

different Vd3 values indicated by short yellow lines in Fig. 5.4(c). From Fig. 5.4(c), the onset

point of the first zero-energy crossing in magnetic fields is Vd3 dependent. Fig. 5.11 provides

more details on how the Andreev states evolve and how zero-bias peaks develop in magnetic

fields. The spectra can be bias-asymmetric (a-b) or bias-symmetric (c). The first zero-energy

crossing can appear with different lengths in magnetic fields. Together with phase diagrams

in Fig. 5.4, we conclude the origin of the first zero-energy crossing in magnetic fields is

Andreev states localized at D3.
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Figure 5.12: Magnetic field evolution of the triple-dot Andreev bound states to

higher magnetic fields at different dot potentials, measured from N1-N2. (a)

Vd1=320mV, Vd2=537.5mV, Vd3=377.5mV. (b) Vd1=288mV, Vd2=540mV, Vd3=390mV. (c)

Vd1=320mV, Vd2=537.5mV, Vd3=335mV. (d) Vd1=285.5mV, Vd2=576.5mV, Vd3=370mV. (e)

Vd1=322.5mV, Vd2=576.5mV, Vd3=360mV. (f) Vd1=320mV, Vd2=537.5mV, Vd3=362.5mV.

(g) Vd1=320mV, Vd2=537.5mV, Vd3=365mV. (h) Vd1=288mV, Vd2=540mV, Vd3=375mV.
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Fig. 5.12 shows magnetic field evolution of the triple-dot Andreev bound states at dif-

ferent gates voltages to higher magnetic fields.
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Figure 5.13: Additional data to Fig. 5.5. Magnetic field evolution of the triple-dot Andreev

bound states with different measurement configurations shown in circuit diagrams above

panels, (a) N1-S2, (b) N2-S2. Vd1=315mV, Vd2=537.5mV, Vd3=396mV.

Fig. 5.13 shows magnetic field evolution of the triple-dot Andreev bound states with

different measurement configurations. Conductances are much higher in (a) than in (b),

which indicates that the tunnel barrier located at the left end near N1 is significantly more

open compared to the right tunnel barrier near N2. (b) is comparable to Figs. 5.5(a-b),

suggesting the inter-dot barriers are also low. Thus whenever N2 is excluded from the
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measurement configuration, the resonances broaden considerably.
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Figure 5.14: Magnetic field evolution of the triple-dot Andreev bound states when inter-dot

barriers are lifted, i.e., tune the quantum dot chain towards a continuous wire.

Fig. 5.14 shows magnetic field evolution of the triple-dot Andreev bound states in a more

open regime when inter-dot barriers are lifted, i.e., tune the quantum dot chain towards a

continuous wire. Due to fewer and weaker tunnel barriers, conductance is much higher than

measured with N1-N2 configuration, and the resonances are broadened. Instead of clear

splitting of Andreev states, zero energy crossing, and resonances at low voltage bias beyond

the first crossing shown in Fig. 5.12, a long zero-bias peak extends for near a half Tesla is

present. The differences might be related to increased inter-dot couplings as lowering inter-

dot barriers. However, a conclusion cannot be drawn based on these broadened resonances.

5.7.2 Data from another device with different geometry

Fig. 5.15 shows SEM of device B with a different triple-dot design. In an InSb nanowire,

three quantum dots are defined to the side of superconducting contacts by fine gates (in-

dicated by yellow lines). Quantum dots defined this way have weaker but gate-tunable

coupling to superconductors compared to the triple-dot design used in Fig. 5.1. (VL, VM ,
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VR) are plunger gate voltages tuning potentials in the left, middle, and right dot (DL, DM ,

DR). All three electrodes are superconducting NbTiN. The middle lead has a small trian-

gular contact to reduce stress. Transport measurements are performed using the two outer

leads as the source and drain while floating the center lead. Lack of non-superconducting

leads may result in additional resonances in spectra and complicate the interpretation of the

triple-dot states [109].

200 nm B

NbTiN NbTiN NbTiN

DL DM DR

VL VM VR

Figure 5.15: SEM of another triple-dot device with a different design in which quantum dots

are defined to the side of superconducting leads.
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Figure 5.16: Bias spectroscopy of (a) DL, (b) DM , (c) DR, B=0. Anti-crossing resonances

indicate Andreev bound states in all three dots have singlet ground state with even parity.
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Figure 5.18: Bias spectroscopy of DR with different VM , at B=0. (a) dI/dV vs. VM as a

reference for VM settings in the rest panels. (b-f) VM = 730, 740, 750, 755, 760mV.
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Figure 5.20: Magnetic field evolution of the triple-dot Andreev bound states at different gate

configurations. (a) Stability diagram of VL-VM , as a map for gate configurations used in the

rest panels. VR is kept the same during the measurement. (b-d) The evolution resembles

Zeeman splitting of trivial Andreev bound states. (e-f) A short and extensive zero-bias peak

appears.

100



5.8 Conclusions

Two conclusions can be drawn from our study.

First, our measurement technique can help identify where the states that generate zero-

bias peaks are localized along the chain. Therefore, applying this technique in future devices

will lead to the successful identification of the Kitaev chain regime.

Second, despite a large degree of control over Andreev states in multiple dots, the devices

we made here are still off from the Kitaev chain regime. Superconducting gap surviving

to higher magnetic fields and further optimized coupling between the nanowire and the

superconductor are desired. The limit to which we could push these measurements toward

the Kitaev chain mirrors efforts to realize Majorana modes in continuous ‘bulk’ nanowires

and faces similar challenges.

A more nuanced discussion of limiting aspects follows. Tunnel barrier gates have steep

gate traces making it harder to tune the chain in a balanced way, as the current through the

chain is sensitive to all barrier gates, and the same for inter-dot couplings. Leaving some

barriers open limits the ability to use all five contacts of the device as probes, since some

probes do not have high barriers between them. In future devices, reducing the width of

barrier gates can help by reducing gate lever arms and increasing the maximum possible

inter-dot coupling.

Another limitation of our design is that the coupling between dot and superconductor is

fixed. Due to weaker coupling between D3 and S3, Andreev states in D3 behave differently in

magnetic fields. An important regime to study in the future is where zero energy crossings

of all three dots happen closely in magnetic fields. This requires either identical dots or

larger tunability of dot-superconductor coupling. Intuitively, we want maximal coupling of

quantum dots to superconductors in order to have the largest induced gap such that the

parameter window for hosting the topological phase is maximized. However, it may be

beneficial to have a fixed or a tunable tunnel barrier between the semiconductor and the

superconductor in practice. In Sec. 5.7.2, we show another device design with triangular

NbTiN electrodes where dots are defined to the side of contacts as a way to control dot-

superconductor coupling.
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Collectively, these limitations make clear that within this design and fabrication method,

realizing chains longer than three dots is increasingly challenging. Well-separated Majorana

zero modes are not expected for a chain of three dots outside of fine-tuned regimes, i.e., when

Andreev states from all three dots reach zero bias at the same magnetic field (see simulation

results in Sec. 4.3).

On the other hand, realizing Majorana zero modes with a few quantum dots may be less

challenging than a simple chain model suggests. The total length of our triple-dot device

is more than 1µm, which would be sufficient to separate Majorana modes in a continuous

nanowire with a ‘bulk’ topological phase [83, 110, 111]. The length of each dot is ≈200 nm,

comparable to spin-orbit-interaction length of InSb [54, 55]. Each dot can be treated as one

short wire section, in which Andreev bound states can be partially separated into Majorana

modes [112, 113]. Several models already considered multiple segments of topological su-

perconductor that couple through tunnel gates [107, 108, 105, 114], which hybridizes inner

Majorana modes on each dot, leaving the outer ones unpaired, similar to the original Kitaev

proposal [31].

Advances in materials synthesis and improvements in processing and nanofabrication

may help resolve some issues discussed above. In-situ techniques for superconductor deposi-

tion can achieve uniform contacts and cleaner superconductor-semiconductor interfaces [64,

71, 93]. Selective-area grown (SAG) nanowires [76, 77] with carefully designed shadow wall

structures present a promising platform for scaling up to longer chains [72, 73, 78]. Super-

conducting materials with large and hard gap can be used, such as Sn [115] or Pb [116]. With

hard superconducting gap persisting in a much larger magnetic field, Andreev resonances

can still be prominent and in high contrast.
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6.0 Indium antimonide nanowires with tin shells

6.1 Introduction

As we enter the era of intermediate-scale quantum circuits [117, 118], materials con-

siderations come into renewed focus through their impact on quantum gate fidelity. The

most successful solid-state approaches rely either on superconductors [2], or on semicon-

ductors [119], with the future topological platform to require a hybrid of both [98]. The

search continues for the ultimate material capable of delivering low intrinsic decoherence.

In this context, the push for qubits based on Majorana zero modes that are expected to

be topologically immune to decoherence [120, 29, 121, 122] has accelerated the discovery

of high-quality interfaces between superconducting metals and low-dimensional semiconduc-

tors [64, 123, 71, 124]. Only a few superconductors were explored for Majorana qubits,

most notably aluminum which is also the material of choice for transmon quantum pro-

cessors [117]. Among the advantages of aluminum are its’ self-limiting native oxide and a

hard induced gap in proximate semiconductors [64, 67, 62, 71]. Due to this, aluminum is

widely known to exhibit 2e charging in small islands, a fundamental property that makes it

a low-decoherence superconductor [125, 126, 127, 128, 129, 68, 130, 73]. Among the disad-

vantages of aluminum are a relatively small superconducting gap equivalent to 1 K, and a

low critical magnetic field. This confines quantum computing to ultra-low temperatures and

even further constrains the design of future topological qubits, which will require a precise

balance of several energy scales [131].

Our study on Indium Antimonide nanowires with tin shells is published on [115].

6.2 Experimental results

We report induced superconductivity in InSb nanowires [59, 50] with Sn shells. InSb is

the highest electron mobility group III-V semiconductor with strong spin-orbit coupling [54]
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and large Landé g-factors in the conduction band [56]. These are the primary ingredients

of the Majorana recipe [25, 26], making InSb an optimal material for the investigation of

induced topological superconductivity [27, 132, 82, 133].

We find that InSb nanowires coupled to tin exhibit a hard induced superconducting

gap up to 700 µeV. Superconductivity persists to a significant magnetic field, up to 4T

for 15 nm thick Sn shells. Islands of tin do exhibit 2e-periodic charging patterns. This

effect is a landmark requirement for topological quantum computing and transmon qubits,

as it is a prerequisite for long quasiparticle stability times. Fluctuations of the quasiparticle

number on superconducting islands scramble qubit readout, while quasiparticle hopping

between islands is a source of decoherence [120, 29, 121, 122, 134]. Results are obtained

even though Sn and InSb exhibited no epitaxial relationship, which was previously viewed

as essential [67, 71].

We study electron tunneling into Sn through InSb in the normal metal-superconductor

(N-S) configuration. For this, we need a nanowire with only one end covered by Sn. We use

the uncovered end to define a tunnel barrier and an N-contact. In order to avoid damage

to InSb that results from etching away part of the Sn shell, we employ in-situ nanoscale

shadowing [71, 73]. An InSb flake stands in front of the nanowire, shadows the bottom of

the wire during deposition of Sn in ultra-high vacuum [135] (Fig. 6.1 (A)). We expect that

junctions defined by wet etching or lift-off would yield similar results [136, 137].
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Figure 6.1: (A) Scanning electron micrograph (SEM) showing a triangular InSb flake that

stood in the path of a beam of Sn atoms, shadowing the InSb nanowire in behind. Dark

streaks on the InSb substrate are also due to shadowing of the Sn beam by nanowires and

flakes. The inset shows the direction of Sn beam and indicates the shadowed and exposed

segments of the nanowire. (B) SEM of an N-S device (device A) with a flake-shadowed

Sn-InSb nanowire and Ti/Au contacts and a side gate. Magnetic field is in the plane of the

sample as shown by the arrow. (C) Zero magnetic field tunneling conductance spectrum of

device A in linear scale (top) and logarithmic scale (bottom), VBG = 7.5 V, VSG = −0.4 V.

(D) Magnetic field evolution (top) of the zero-field spectrum shown in panel (C). Line cuts

at two specific source-drain bias voltages are shown in the bottom.

The nanowire with Sn shell is positioned onto a doped Si/SiOx substrate which is used

as a back gate (BG) shown in Fig. 6.1 (B). A side gate (SG) is used to define and tune the

tunnel barrier near the edge of the tin-free segment. In Fig. 6.1 (C), the tunneling spectrum

reveals a two-orders-of-magnitude suppression in conductance around zero bias. The hard

gap indicates the elimination of decoherence pathways due to disorder and spurious subgap

states. A superconducting tunneling peak is at ±680 µeV, which is comparable to the gap of

tin. In magnetic fields, the hard gap is found to persist beyond 2T, with the gap “softening”

at higher fields and fully closing around 4T, shown in Fig. 6.1 (D). Magnetic field resilience

is an indicator of a thin uniform shell, and this resilience is another advantage of Sn since
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topological, spin, and some superconducting qubits operate at high magnetic fields.
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Figure 6.2: (A) SEM of device B (S-S device). Inset zooms in the shadow junction where Sn

shell is visible. (B) Differential conductance as a function of source-drain voltage bias V and

back gate voltage, VBG. The double arrows mark resonances at 4∆, 4∆/2 and 4∆/3. (C)

Differential resistance as a function of current bias I and VBG (bottom). Top panel shows

extracted switching current Isw (black) and IswRN (red) as a function of back gate voltage.

Fig. 6.2 (A) shows a superconductor-superconductor (S-S) device with both ends of the

nanowire covered by tin and only a narrow break in the shell to define an InSb weak link. For

this, we use a previously developed method of shadowing by crisscross nanowires [71]. We

study tunneling between two tin islands. In Fig. 6.2 (B), we observe a smooth nanowire pinch

off void of accidental quantum dot states. Three finite-bias resonances are observed, marked

4∆, 4∆/2, and 4∆/3. This sequence is a manifestation of Multiple Andreev Reflection
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processes, which are characteristic of transparent S-S junctions. They correspond to 615 µeV

± 10 µeV, which is somewhat smaller than the gap observed in the N-S device (Fig. 6.1 (C)).

At VBG < −1 V, only the 4∆ resonance is observed. We interpret this as the superconducting

tunneling regime. Because the S-S tunneling resonance is a peak in current, it appears as a

peak-dip structure in conductance.

The resonance at zero bias in Fig. 6.2 (B) is the Josephson supercurrent. This effect

is best studied in the current-bias configuration (Fig. 6.2 (C)). The switching current (Isw)

from superconducting to normal state is a peak in differential resistance. Isw decays smoothly

with more negative VBG. The current-voltage characteristics are weakly hysteretic, which is

reflected in the asymmetry of Isw in positive and negative current bias. In magnetic fields,

the Josephson effect is observed up to 1.5 T and remains significant with sharp switching up

to 0.5 T (Fig. 6.8). This significant field range is a positive development for schemes that

require coupling and decoupling of topologically superconducting islands at a finite magnetic

field for Majorana fusion or braiding [30, 105]. Measurements on continuous-shell nanowires

without shadow junctions yielded supercurrents in the range 20 − 30 µA corresponding to

the critical current density of 2 × 106 A/cm2 (Fig. 6.11). The extracted products IswRN

(RN is the normal state resistance) are in the range 125− 225 µeV, which is significant, and

of the same order of magnitude as the gap.
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Figure 6.3: (A) SEM of device C showing the Sn island, two shadow junctions with bare

InSb, side gates SG1 and SG2, and Ti/Au source-drain contacts which cover the outside

Sn segments and suppress superconductivity there. (B-C): 2e and 1e tunneling conductance

resonances measured at V = 0 at B = 0 T and B = 1 T, respectively. (D) Magnetic field

evolution of conductance along the dashed cut in panel (B). (E-F): V vs. gate spectroscopy

at B = 0 T and B = 1 T, respectively. The duration of data acquisition for each panel is of

order 1 hour, and the parity pattern is reproducible over days.
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In Fig. 6.3, we present key findings on 2e charging of a tin island. The island is defined

between two nanowire-shadow junctions in the N-S-N geometry (Fig. 6.3 (A)). At zero mag-

netic field, we observe a single family of Coulomb peak resonances consistent with charging

the entire island (Fig. 6.3 (B)). At a finite magnetic field of 1 T, the frequency of Coulomb

resonances doubles (Figs. 6.3 (C-D)). We attribute data at zero field to 2e charging, and

data at finite field to 1e charging. The transition from 2e to 1e is due to the superconduct-

ing gap or the lowest subgap state dropping in energy below the charging energy, which we

estimate to be 0.3 meV (Figs. 6.3 (E-F)). At finite magnetic field, it costs less energy to add

electrons to the island one by one, while near zero field, due to hard gap superconductivity,

it is advantageous to add electrons in pairs.

The two-electron charging effect is central for topological quantum computing because

the states of a topological qubit are distinguished by even/odd island charge parity. If only

1e charging periodicity were observed, it would mean that despite a well-defined supercon-

ducting gap, electrons can be added to an island one at a time, and the ability to distinguish

the states of a topological qubit is scrambled. 1e periodicity is also detrimental for transmon

qubits where single-electron tunneling is a decoherence mechanism [134].

Tin is an unusual material that has two different crystal phases with a phase transition

at 13◦C. The low-temperature α-Sn has a diamond cubic lattice, while the high temperature

β-Sn is tetragonal. The electronic properties of both phases are very different. α-Sn is a

semimetal that can also be a topological insulator in monolayer form [138, 139, 140], whereas

β-Sn is a metal with a superconducting transition temperature of 3.7 K.
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Figure 6.4: (A) Side-view TEM image along the 〈112〉 zone axis showing a homogeneously

thin shell. (B) Higher magnification TEM of the AlOx (red) - Sn (green) - InSb (blue) stack.

Arrows highlight the Sn grain boundaries. (C) HR-STEM image of the Sn-InSb interface.

The insets show Fourier transforms to the left and the right of the interface. (D) High-angle

annular dark-field STEM image of a shadow junction. (E) EDX elemental mapping of the

shadow junction in (D). The Al-rich layer (red) corresponds to AlOx, oxygen not shown for

clarity.
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For tin on InSb nanowires, we assess the structural properties and elemental distribution

using transmission electron microscopy (TEM). TEM images reveal a polycrystalline Sn shell

of uniform thickness around the InSb nanowire (Fig. 6.4 (A)): the shell features grains of

sizes 25 × 25 nm to 50 × 60 nm (Fig. 6.12). The Sn-InSb interface is abrupt, and some

Sn grains show epitaxial relationship with InSb. The high-resolution annular bright field-

scanning TEM image (Fig. 6.4 (C)) shows a section of the interface where the {111} planes

of zincblende InSb are aligned with lattice planes of a Sn grain with a lattice distance of

2.04 Å. This matches the {220} interplanar distance of β-Sn. This grain is one of thirteen

analyzed along the same nanowire. Eleven of the grains are identified as β-Sn from the fast

Fourier transform analysis of the interplanar distances (Fig. 6.4 (C), inset). Only two of those

β-Sn grains show a preferential epitaxial relationship with InSb. In contrast, α-Sn is lattice-

matched to InSb and can grow epitaxially [141]. The predominantly β-Sn shell observed

at room temperature by TEM agrees with superconductivity observed at low temperatures,

suggesting that no phase transformation of Sn occurred upon device cooldown.

In addition to the uniform shell thickness, the nanowire shadow junctions used in S-S

and N-S-N devices are sharp, with Sn islands defined abruptly on each side of the junction

(Fig. 6.4 (C)). Energy-dispersive x-ray spectroscopy (EDX) confirms that the Sn islands are

isolated from each other, and no interdiffusion between Sn and In is detected (Fig. 6.4 (D)).

A uniform 3-nm-thick AlOx passivation layer covers the entire nanowire, this layer maintains

integrity and smoothness of the shell on the scale of at least three months. Oxidation at the

Sn-InSb interfaces is not detected but cannot be fully excluded (Fig. 6.13).

Data are available at [142].

6.3 Materials and methods

Nanowire growth: InSb nanowires are grown using the vapor-liquid-solid technique in a

horizontal metal-organic vapor phase epitaxy reactor. The first nanowires used in this work

are stemless InSb nanowires with flakes as shadow objects (Fig. 6.1 (A)) [59, 135]. Both

InSb nanowires and flakes are grown on an InSb (111)B substrate with a selective-area mask
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and gold as catalyst.

The second type of nanowires, shown in FigS. 6.2 (A) and 6.3 (B) are shadowed by other

nanowires [71]. The InP (100) substrates are etched to expose the two {111}B facets, on

which gold particles are deposited with an offset on the two opposing facets of a trench.

Nanowires grow towards each other, such that the front wire shadows the back wire. InSb

wires are grown on InP stems.

Sn shell growth: After transiting in air, nanowire chips as grown are loaded in vacuum

for subsequent growth of Sn shells. The chips are gallium bonded to 3.3 mm thick, 90 mm

diameter molybdenum blocks. The absence of a native nanowire surface oxide is expected

to be essential in aiding in inducing a hard superconducting gap [64, 123, 71]. In order to

remove the native InSb oxide, atomic hydrogen cleaning is performed in a UHV chamber with

a base pressure < 1 × 10−10 Torr at 380◦C (thermocouple temperature) for 30 minutes, at

an operating pressure of 5× 10−6 Torr consisting primarily of hydrogen ambient [71]. Once

cleaned, the samples are transferred in-vacuo to an ultra-high vacuum chamber dedicated

for metal evaporation (base pressure < 5 × 10−11 Torr). Here, the nanowire samples are

cooled to 85±5K (−188±5◦C) for 2 hours, prior to tin evaporation. 15-nm-thick tin is then

evaporated from an effusion cell at a growth rate of 7.5 nm/hr and an evaporation angle

close to 60◦ from sample normal. This shallow evaporation angle aids the in-situ formation

of Sn islands with nanowire or flake shadows. After Sn evaporation, while the sample is

still expected to be at cryogenic temperatures (due to the thermal mass of the molybdenum

block), it is moved to an interconnected UHV chamber for the electron-beam evaporation of

a 3-nm-thick shell of AlOx, at normal incidence. This is done to prevent coagulation of the

evaporated tin layer on InSb nanowires (See Figure S10). The samples are then allowed to

warm up to room temperature in vacuum.

Device fabrication and measurements: Device fabrication is similar to previous work on

wires with epitaxial Al film [71]. We made global back gate substrates with doped and ther-

mally oxidized Si wafers, then covered them with 15nm HfOx to get a better dielectric layer.

Wires are transferred onto substrates using a micromanipulator under an optical microscope.

Contacts and gates are patterned by electron-beam lithography by curing the resist at room

temperature in a vacuum chamber (operating pressure < 1 × 10−4 Torr) to avoid nanowire
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heating and potential interdiffusion of Sn and In. Ar ion milling is performed to remove the

AlOx layer before evaporating 10/150 nm of Ti/Au. Measurements are performed in a dilu-

tion refrigerator with a 30 mK base temperature using a combination of direct current and

lock-in techniques. All voltage bias data are two-terminal measurements. A series resistance

of ≈ 5 kΩ due to measurement setup was taken into account in calculating conductance in

all figures as well as renormalizing V axis in Figs. 6.2 (B), 6.5, 6.6 (A). TEM studies were

performed using a probe corrected microscope operated at 200 kV, equipped with a 100 mm2

EDS detector.

6.4 Supplementary data
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Figure 6.5: Additional gate dependence data for flake-shadowed device A studied in Fig. 6.1.

The zero-field hard gap regime displays the presence of a quantum dot in the vicinity of a

tunnel barrier. A soft gap is observed for higher magnetic fields up to 4T. VBG = 7.5 V.
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Figure 6.6: Additional data for device B studied in Fig. 6.2. (A) Differential conductance as

a function of bias voltage and back gate voltage in the extended gate range compared with

Fig. 6.2. (B) and (C) show magnetic field dependence at VBG = −1.075 V, and VBG = −0.95

V, respectively. This device is at ≈ 60◦ angle with magnetic field, and as a result, the gap

closes at B ≈ 0.4 T, a lower field than in devices that were aligned parallel to the field, e.g.,

Fig. 6.1.
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Figure 6.8: (A) SEM image of device D with a nanowire shadow-defined break in the Sn

shell. (B) Differential conductance as a function of bias voltage and back gate voltage. (C)

Andreev bound states evolution in parallel magnetic fields at VBG = 1.4 V. (D) Current

bias measurement in the more positive back gate regime. (E) Extracted IswRN (blue) and

switching current Isw (red) as a function of back gate voltage. (F) Magnetic field dependence

of critical current.

Fig. 6.8 shows the characteristic of an S-S device D. The electron beam resist was baked

to 175◦C in the process of making this device. Magnetic field is applied parallel to this
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device. Differential conductance as a function of bias voltage and back gate voltage in

Fig. 6.8 (B) shows an evolution from the supercurrent regime at more positive VBG to the

quantum dot regime for more negative VBG. V axis is as measured and not renormalized

due to series resistance. Fig. 6.8 (C) shows Andreev bound states evolution in parallel

magnetic fields at VBG = 1.4 V. The resonances never reach zero bias due to the hard

gap. However, at B = 0.3 − 0.4 T, the finite bias resonances exhibit kinks. These are

the points where Andreev bound states cross zero chemical potential and undergo a ground

state quantum phase transition. Resonances are shifted by ±∆(B) in ± bias [109]. In an

N-S device, a zero-bias peak would have been observed instead of finite-bias kinks. The

superconducting gap remains open to 1.5 T in this device. Fig. 6.8 (D) shows the gate

evolution of the supercurrent. Fig. 6.8 (E) shows the extracted IswRN (blue) and switching

current Isw (red) as a function of back gate voltage. Magnetic field dependence of critical

current is shown in Fig. 6.8 (F). Josephson effect persists up to 1.5 T. This is consistent

with the magnetic field decay of the induced gap (Fig. 6.8 (C)). Previously, rapid decay of

supercurrent in InSb nanowires was reported on the scale of 100 mT [143]. It was explained

in the context of interference of supercurrent carried by multiple occupied subbands. Here,

supercurrent remains significant up to 0.5 T. This can be due to shorter junctions studied,

enhanced magnetic field screening by the Meissner effect in the Sn contacts, or a lower

subband occupation.
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peak emerges from the coalescence of two higher bias resonances. At these high magnetic

fields, the induced gap is soft, allowing for conductance at low bias, including the zero bias.

The zero-bias peak is approximately 0.1 2e2/h. We attribute this peak to a trivial zero-bias

crossing by subgap Andreev states.
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field and an 1e-periodic pattern at B = 0.4 T. (B) Magnetic field evolution showing a

transition from 2e-periodic to 1e-periodic pattern at finite field. (C) Differential conductance

as a function of bias voltage and a combination of back gate and side gate voltages along

the yellow dashed line in panel A.

Device F is a two-shadow device of similar geometry to device C in Fig. 6.3, however,

with a short Sn island of the order 100 nm. For this device, like device D, the electron beam

resist was baked at 175◦C in the process of making side gates and contacts. Like device C,

device F has two side gates aligned with the shadow junctions and a back gate. In contrast

to device C, which is in the N-S-N configuration, device F is in the S-S-S configuration,
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with the center Sn island having two superconducting leads due to the Sn shell. Nanowire

F is at a 30◦ angle with magnetic field. In Fig. 6.10 (A), zero-bias conductance showing a

2e-periodic pattern of resonances at zero field and a 1e-periodic pattern at B = 0.4 T. Note

that some resonances appear split at zero magnetic field. This is due to a subgap state that

is lower in energy than the charging energy [130]. In Fig. 6.10 (B), magnetic field evolution

shows a transition from 2e-periodic to 1e-periodic pattern at finite field. Fig. 6.10 (C) shows

differential conductance as a function of bias voltage and a combination of back gate and

side gate voltages along the yellow dashed line in (A). On the left, a zero-field scan reveals

that the zero-bias conductance resonances are due to supercurrent through the S-S-S device,

which here manifests as zero-bias conductance peaks due to a voltage-bias measurement

[144]. At finite field (right) a pattern of Coulomb diamonds is observed, and no supercurrent

is observed.
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Figure 6.11: Device G has an uninterrupted Sn shell on an InSb nanowire without any

shadows. The nanowire is grown on an InP stem. (A) SEM image showing 4 Ti/Au contacts

labeled 1 to 4 noting different configurations for 2-terminal current bias measurements. (B) 2-

terminal differential resistance as a function of bias current and magnetic field. Supercurrent

persists up to 3 T, magnetic field is aligned parallel with the nanowire. (C-E) Differential

resistance at zero magnetic field from different 2 terminal configurations. A variation in

critical currents is observed along the shell, with the critical current being the highest in the

central region of the nanowire. One possible explanation is the presence of grains of α-Sn,

which are not superconducting, with a random distribution along the nanowire.
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50 nm

Figure 6.12: Side view bright field TEM image acquired along the 〈110〉 zone axis showing

multiple Sn grains in the shell. Arrows and numbers are used to indicate the sizes of grains.
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Figure 6.13: Side view TEM images of the core-shell interface, displaying four of the Sn

grains listed in Table.1. (A) Grain A, which cannot unambiguously be assigned to either

α-Sn or β-Sn. (B) Grain C, β-Sn grain epitaxially related to the InSb lattice. (C) Grain L,

α-Sn. (D) Grain J, β-Sn.
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Figure 6.14: SEM image of a 15 nm tin film on an InSb nanowire grown at 85±5 K that was

allowed to warm up to 300 K in vacuum, without any immediate cap layer or oxidation. The

tin layer coagulates to form disconnected islands or droplets on the nanowire. In a separate

sample, such a film was also measured to be insulating across the wafer which confirms

that the tin metal droplets are discontinuous. It was also observed that coagulation of the

tin layer could be avoided by immediate oxidation of the tin film in a load lock, but such

films were found to show rapidly changing superconducting properties over days which was

attributed to continued oxidation of the tin layer underneath. No such change was observed

in tin films capped with AlOx which were found to be robust on the scale of 3 months.
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Grain dhkl (exp) hkl β dhkl β (lit) % deviation from lit β hkl α dhkl α (lit) % deviation from lit α epitaxy

A 0.198 211 0.2010 -1.2% 311 0.1956 +1.5%

C 0.209 220 0.2065 +1.0% 311 0.1956 +6.7% YES

D 0.203 220 0.2065 -1.4% 311 0.1956 +4.1%

211 0.2010 +1.3% - - -

E 0.206 220 0.2065 -0.4% 311 0.1956 +5.1%

F 0.205 220 0.2065 -0.5% 311 0.1956 +5.0%

G 0.274 101 0.2772 -1.3% 211 0.264 +3.7%

I 0.282 101 0.2772 +1.7% 211 0.264 +6.7%

J 0.277 101 0.2772 -0.0% 211 0.264 +5.0%

K 0.203 220 0.2065 -1.8% 311 0.1956 +3.7%

L 0.267 101 0.2772 -3.7% 211 0.264 +1.1%

M 0.280 101 0.2772 +1.2% 211 0.264 +6.2%

N 0.287 200 0.2920 -0.8% - - -

R 0.204 220 0.2065 -1.2% - - -

0.149 112 0.1472 +1.3% - - -

Table 6.1: Phase identification based on lattice spacings dhkl of 13 Sn grains imaged using

high-resolution TEM. All dhkl values are determined from Fast Fourier Transform patterns

constructed from the HRTEM images. All patterns were calibrated by InSb lattice spacings

present in the same images. The 211α spacing is not allowed based on crystal symmetry but

can appear in HRTEM images. The experimental inaccuracy in the dhkl values is estimated

to be 2.0 percent considering the limited number of pixels in the FFT patterns. Based on

this criterion, all grains can be assigned to the β-Sn phase apart from grains A and L. Grain

R is presented in Fig. 6.4 (C).

125



6.5 Conclusions

We study bottom-up grown semiconductor indium antimonide nanowires that are coated

with shells of tin. The shells are uniform in thickness. No inter-diffusion is observed at the

interface between Sn and InSb. Tunnel junctions are prepared by in-situ shadowing using

nearby nanowires as well as flakes. A 15 nm thick tin shell is found to induce a hard

superconducting gap in the range 600-700 µeV. Superconductivity persists up to 4 T in

magnetic field. A small island of Sn-InSb exhibits the coveted two-electron charging effect,

a hallmark of charge parity stability. The findings open avenues for superconducting and

topological quantum circuits based on new superconductor-semiconductor combinations.

Furthermore, our results illustrate that neither defect-free epitaxial wire-shell interfaces

nor single vacuum cycle growth of nanowire and shell are crucial requirements for demon-

strating a hard gap, field-resilient superconductivity, and 2e charging. We conclude that the

key components in attaining robust induced superconductivity are (i) removal of InSb native

oxide using atomic hydrogen prior to Sn growth, followed by (ii) liquid nitrogen cooling of

the nanowires during metal evaporation to produce a homogeneous ultrathin shell and (iii)

immediate passivation of the wire-shell hybrid with a stable dielectric. Fig. 6.14 illustrates

that when the sample is allowed to warm up without AlOx passivation immediately after the

cryogenic Sn shell growth, tin coagulates into discontinuous grains.

Without the need for epitaxial matching, many more superconductor-semiconductor com-

binations can be tried in search for decoherence-free qubit materials [73, 145, 146, 116, 137].

An immediate follow-up of our work are experiments on Sn-InSb devices in the Majorana

geometry in search for clear signatures of topological superconductivity, as well as charac-

terization of coherence times of Sn-based transmon qubits.
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7.0 Andreev blockade in a double quantum dot coupled to a superconductor

7.1 Introduction

Hybrid superconductor-semiconductor nanostructures are of interest in the context of

quantum computing. Most prominently, they are a platform investigated as a host of Majo-

rana zero modes that can be used to build topological qubits [27, 28, 147, 17, 25, 148, 30, 29].

While these qubits have not been realized, other types of qubits, namely Andreev, fluxonium,

and transmon have all been demonstrated with hybrid superconductor-semiconductor het-

erostructures [149, 150, 151]. Spin qubits can also be realized by quantum dots defined

in semiconductor nanowires [152, 153, 154, 155]. Quantum dots exhibit iconic transport

blockade phenomena: Coulomb blockade, which is used in metrology to set quantum current

standard [156], and Pauli spin blockade, which is used for readout and initialization of spin

qubits [157, 152]. In quantum dots coupled to superconductors, Andreev bound states form

as quantum dot energy levels hybridize with many-body particle-hole quasiparticles [158, 90].

The overwhelming majority of superconductors are known to host spin-singlet Cooper

pairs. The possibility of generating triplet Cooper pairs has been considered in proxim-

ity induced superconductivity both theoretically and experimentally [24, 26, 25, 27, 28].

Real-space oscillations of the superconducting order parameter, akin to the classic Fulde-

Ferrell-Larkin-Ovchinnikov phase but in the proximity region, were observed and referred to

as ‘finite momentum Cooper pairing’ [159]. In quantum dots coupled to superconductors,

supercurrent flow through a single spin state has been demonstrated [160]. The interplay of

spin polarization and supercurrent results in the π-Josephson effect characterized by a nega-

tive critical supercurrent. When spin-orbit interaction is added, this can lead to φ0-Josephson

junctions and the topologically superconducting state carrying Majorana modes [161, 162].

Cooper pair splitting via crossed Andreev reflection was studied as means of generating

entangled charge pairs [163, 164].

Several versions of a triplet blockade in quantum dots closely related to Andreev blockade

have been considered theoretically [163, 164, 165, 166, 167], with several works focusing on a
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parallel combination of quantum dots, which is relevant for crossed Andreev reflection [168,

169, 170]. Other types of blockade related to Andreev reflection, such as chiral blockade,

have been proposed [171]. A concurrent experiment to this one in a similar double dot setup

with two rather than one superconducting lead has studied a triplet blockade that develops

at a large magnetic field, where spin-triplet is the unique ground state of the double dot [172].

In contrast, Andreev blockade demonstrated in this work at zero magnetic field, due to the

stochastic filling of a quantum dot by random spins.

Our study of Andreev blockade in a double quantum dot is published on [173].

7.2 Theory of Andreev blockade

The theory of Andreev blockade and the details of the numerical modeling are covered in a

separate paper [174]. Here we summarize key concepts that are relevant for our interpretation

of the experimental data.

Andreev blockade is a consequence of a dynamical formation of a stable sub-gap spin-

triplet state. The series double dot setup allows for this to happen: a triplet state with

one spin on each dot can have a low chemical potential due to small exchange interaction

between spins.

Andreev blockade is the phenomenon that suppresses Andreev reflection due to spin

parity mismatch between the double quantum dot and the superconductor. Andreev blockade

is most apparent when the superconductor induces a hard gap in the nanowire. The hard

gap ensures the suppression of single-particle tunneling and enforces Andreev reflection as

the dominant means of transport.

Andreev reflection transfers a charge of 2e into the superconductor, where ‘e’ is the

electron charge (Sec. 2.3.2). In order to move the two electrons between the normal and

the superconducting lead, the double dot transitions through four charge configurations per

Andreev cycle. Therefore transport is only allowed at quadruple charge degeneracy points

where four charge configurations have similar chemical potentials all within a source-drain

bias window that does not exceed the superconducting gap. As a point of comparison, in
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non-superconducting double dots, transport involves moving just one electron between the

leads and takes place at triple, rather than quadruple, degeneracy points, which results in

the formations of the well-known honeycomb charge stability diagram [33].

Andreev blockade is controlled by the occupation of the normal dot QDN , but it is not

sensitive to the occupation of the superconducting dot QDS. QDS is strongly coupled to the

superconductor, and thE coupling hybridizes all states of the same parity. For example, states

with 0 and 2 charges are hybridized, and so are the states with 1 and 3 charges. Coupling

to the superconductor imposes an approximate particle-hole symmetry which mandates that

transport at odd-to-even and even-to-odd degeneracy points is the same. This translates

into the insensitivity of Andreev blockade to the occupation of QDS.

A complementary way to see why transport is insensitive to the charging state of QDS

is as follows. Throughout a transport cycle, two electrons must be added to QDS, driving

the dot from an even parity state to an odd parity state and back to an even parity state.

If the normal dot QDN has two charges on it, they must be of opposite spins, and one can

always escape into QDS. Specifically, if QDS is in the even parity state, either spins on QDN

can move to QDS, thus putting QDS into an odd parity state. If QDS is in an odd parity

state, one of the electrons on QDN has the opposite spin and can move to QDS resulting

in a transition to an even parity state. On the other hand, if QDN only has one spin, then

that spin cannot escape to QDS if QDS is an odd parity state of the same spin. Hence, the

charging state of QDN determines if an Andreev blockade can be established.

Reversing the direction of bias leads to a similar analysis, except the transport becomes

blockaded by the inter-dot triplet when QDN is doubly occupied. Specifically, if QDS is in

the even parity state, it can give up an electron of either spin to QDN and transition to the

odd parity state. However, if QDS is in the odd parity state, then the electron it can give

up to the QDN has a definite spin, and transport becomes blocked if QDN already has an

electron of the same spin on it.
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7.3 Device description

Figure 7.1: (a) Schematic of Andreev blockade. The blockaded configuration is indicated

with a red cross showing how a spin-triplet in DQD is prevented from forming a spin-singlet

Cooper pair. (b) Scanning electron microscope (SEM) image of a device similar to the one

studied in the main text. Section marked ‘Al/InAs’ is an InAs nanowire covered by an Al

shell. A section where the shell is etched and exposed bare InAs nanowire is marked ‘InAs’.

Vertical white lines mark gate electrodes used in creating the DQD.

We reproduce the experimental conditions required for the observation of Andreev block-

ade following a theoretical proposal [174]. We use a double quantum dot (DQD) to trap a

spin-triplet state in a semiconductor nanowire (Fig. 7.1 (a)). One side of the double dot is

connected to a superconductor so that transport out of the dot is via Andreev reflection.

The other side of the double dot is connected to a non-superconductor lead so that trans-

port into the dot is via single-electron tunneling. Charge carriers entering the double dot via

single-electron tunneling have a random spin orientation. While a spin-singlet configuration

makes Andreev reflection possible, a triplet configuration suppresses Andreev reflection and

130



blocks the current.

QDN is a normal dot in the multi-electron regime, while QDS is a superconducting

dot. The levels of QDS hybridize with the superconductor, resulting in Andreev bound

states [158], and therefore the particle number is no longer a good quantum number in QDS.

We describe the charge states in both dots by their parity, either even or odd. The parity of

states in QDN can be inferred by studying how the degeneracy points shift in magnetic fields,

with odd regions expanding and even regions shrinking at higher fields (see Fig. 7.12). The

parity of states in QDS can be inferred from Andreev spectra, with a region inside loop-like

resonance being odd (Figs. 7.2 (a-b)).

Fig. 7.1 (b) shows a scanning electron microscope (SEM) image of the nanowire device.

An InAs nanowire covered with ∼ 15 nm epitaxial Al is placed on top of 60 nm pitch gate

electrodes. The DQD is defined by electrostatic gate electrodes indicated in the image. VN

and VS are the gate voltages primarily used for tuning the dot states. Al on the left section

of the wire is selectively etched to make the normal contact.
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7.4 Experimental results
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Figure 7.2: Differential conductance spectra for (a-b) QDS and (c-d) QDN . Spectra are

taken by fixing one dot at a degenerate state while tuning the other dot with the (VS, VN)

combination. The voltage combinations are indicated in Fig. 7.3(a). The large white arrows

and small blue arrows indicate resonance peaks with different amplitudes.

Fig. 7.2 shows differential conductance spectra of a device similar to the one shown in

Fig. 7.1 (b). The device is first set to a double-dot regime by tuning all gates adjacent

to the superconducting lead. Spectra are then taken by fixing one dot at a degeneracy

point while tuning the other dot. Spectra of QDS show induced superconducting hard gap

∆ = 0.2 mV, which is consistent with other works [64, 67, 71, 137]. Inside the gap, loop-like

resonances due to gate-tuned Andreev bound states are observed. Spectra of QDN show

Coulomb diamonds and no clear induced gap. Together, these spectra demonstrate that we

have the right ingredients for Andreev blockade, i.e., a normal dot, an Andreev dot, and a

hard gap superconducting lead. To better understand the four panels of Fig. 7.2, it is helpful

to look at Fig. 7.3 (a), which shows a charge stability diagram and cuts in VN -VS space that
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correspond to Fig. 7.2.

Below we discuss other more subtle conditions that the system must meet for Andreev

blockade to be observable.

The induced superconducting gap should be hard [67] in order to suppress single-particle

transport below the gap. Any single-particle transport is a lifting mechanism of Andreev

blockade. Thus the softer the induced gap, the weaker are the Andreev blockade signatures.

The barrier to the superconducting lead should be low in order to induce Andreev bound

states. This is in contrast with Pauli blockade setups which typically require few-electron

regimes and hence high barriers. The inter-dot charging energy should be smaller than the

induced gap because the size of Andreev transport triangles shrinks rapidly with increasing

inter-dot charging energy. This parameter is largely controlled by the device’s geometry and

is difficult to extract from the data. In our numerical simulations, we set it to 10 µeV.

Following theoretical proposal [174], we are looking for the following experimental signa-

tures of Andreev transport and blockade in a N-QDN -QDS-S system.

1. At subgap voltage biases, current is confined to triangular regions of the charge stability

diagram. The triangles do not appear in closely spaced pairs as in non-superconducting

double dots where they form around triple points. Instead, each quadruple Andreev

degeneracy point is associates with a single transport triangle, the quadruple Andreev

degeneracy points themselves form a parallelogram grid in VS vs. VN space.

2. An alternating pattern of ‘blockade/no blockade’ is observed when VN tunes the quadru-

ple points. VS does not affect whether blockade is present or not. An ideal blockade

corresponds to total suppression of current below the gap. Various blockade lifting mech-

anisms discussed below result in partial lifting of Andreev blockade, in which case current

is observed at all quadruple points but is smaller at the blockaded ones.

3. The sign of source-drain bias voltage flips Andreev blockade. A quadruple point that is

blockaded in positive bias is lifted in negative bias, and vice versa. Signatures (2) and

(3) can be formulated together as follows.

Andreev blockade is expected for (odd,odd)→(even,even) charge parity transitions and

for (odd,even)→(even,odd) transitions, where the arrows indicate the direction of charge

transfer so that the conditions are valid for both signs of the applied bias.
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4. Andreev blockade is not present when superconductivity is suppressed by magnetic field

or temperature. An alternating pattern of current at degeneracy points or asymmetry in

source-drain bias should vanish under these conditions. Charge degeneracy points should

revert from single-triangle quadruple points to double-triangle triple points, signifying a

transition from Andreev 2e transport to normal 1e transport.

5. Andreev blockade can also be suppressed by the presence of sub-gap quasi-particles and

thermally excited quasi-particles, which result in leakage current through the double

quantum dot in the notionally blockaded regions of the charge stability diagram.

In principle, there should be no fine-tuning required to observe Andreev blockade. All

that is needed is one normal dot, one superconducting dot, and a hard gap superconductor

lead. Thus we are looking for a region of VS vs. VN that includes many charge degeneracy

points that exhibit blockade signatures. In practice, mesoscopic factors such as additional

quantum dots in the nanowire segments covered by the leads can introduce their own current

modulations. Thus some gate tuning may still be required to observe the Andreev blockade.
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Figure 7.3: (a-b) Experimental and (c-d) simulation results of a ‘unit’ stability diagram with

2× 2 quadruple degeneracy points. Parities in QDN and QDS are labeled on top and right

axes in panel (a), respectively. Dashed lines are traces along which spectra in Fig. 7.2 are

taken. The source-drain bias voltage is indicated in white. Parameters for simulation (in

meV): source-drain bias µS−µN = -0.1 in (c), 0.1 in (d), charging energy UN = 4, US = 0.7,

inter-dot charging energy UNS = 0.01, induced gap ∆S = 0.2, temperature T = 0.02.

Sig. 1, which is current confined to single, not double, triangles in the charge stability

diagram is illustrated in Figs. 7.3 (a,b). Stability diagrams are taken at two opposite bias

voltages. We observe elongated triangles for both bias directions, rounded due to relatively

low bias voltages required to stay below the aluminum induced gap. Numerical model results

in Figs. 7.3 (c,d) closely reproduce the experiment. The model uses realistic assumptions

of finite temperature discussed below in the Methods section. Larger gate range shown in

Fig. 7.4 confirms the single-triangle character of charge degeneracy points.
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Figure 7.4: Stability diagrams in a larger (VS, VN) parameter space. The yellow dashed

rectangle in panel (a) encloses the ‘unit cell’ discussed in other figures. There are 6 × 6

quadruple degeneracy points. Parities in QDN and QDS are labeled on top and right axes,

respectively. Blue (white) arrows indicate columns of conductance triangles with low (high)

current. The source-drain bias voltage is indicated in white. The blockade is column-wise

and bias-wise, consistent with the Andreev blockade prediction.

Sig. 2, an alternating pattern of high current/low current when the occupation of QDN is

changed, is illustrated in Figs. 7.3 and 7.4. We see dim degeneracy points followed by bright

ones. In Fig. 7.4 the dim columns are marked by dim arrows, while bright arrows mark the

bright columns. The region of (VS, VN) parameter space depicted contains 6× 6 degenerate

points. This behavior is also captured in the simulation Figs. 7.3 (c,d). All degeneracy

points are detectable, which means the blockade is partially lifted in the context of Andreev

blockade. In the simulation, we had to assume finite temperature to reproduce this behavior.

Finite temperature enables single-particle tunneling into a hard-gap superconducting lead
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via thermally excited quasi-particles.

Sig. 3 is the reversal of the alternating pattern of current carrying and blockaded triangles

in opposite bias. In Fig. 7.3 (a), at −0.1 mV, current is smaller for the degeneracy points on

the left. In Fig. 7.3 (b), at +0.1 mV, the current is smaller for the degeneracy points on the

right. Simulated Andreev blockade regime shows good agreement with this observation (see

Figs. 7.3 (a,b)). The same behavior largely holds in Figs. 7.4(a,b) over an expanded range

of gate voltages covering 6×6 degeneracy points.

Bias asymmetry can also be seen in Fig. 7.2. In the upper panels, Andreev loops have

non-symmetric amplitudes between positive and negative bias voltages marked by large and

small arrows so that either the upper or the lower half of the loop is brighter than the

other half. In Coulomb diamonds shown in the lower panels, the intensity pattern is anti-

symmetric with respect to the center of the figure. For example, in Fig. 7.2 (c), the left

region is bright at positive bias, while the right region is bright at negative bias. These

patterns are consistent with Andreev blockade: when the occupation of QDS is changed AB

is not affected, and when the occupation of QDN is changed AB appears at the opposite

bias. The full picture is more complicated as bias asymmetries are also observed at currents

above the induced gap. However, Figs. 7.8 and 7.9 illustrate that in general, bias asymmetry

at high bias does not follow the same pattern as low-bias asymmetry.
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Figure 7.5: Stability diagrams at different bias voltages and magnetic fields. (a-d) B = 0

and (e-h) B = 0.6 T. The bias voltage is indicated in each panel. The magnetic field is in

the sample plane at ≈24 degrees angle with the nanowire.

Finally, Sig. 4 which is the disappearance of other signatures when superconductivity is

suppressed, is presented in Fig. 7.5 and supplementary Figs. 7.7, 7.11, 7.14, 7.15. Figs. 7.5(a-

d) reproduce the same regime as in Fig. 7.3 for different bias voltages. When a magnetic field

of 0.6 T is applied, in Figs. 7.5(e-h), we observe that the alternating patterns of bright/dim

degeneracy points are no longer present, and neither is the bias voltage asymmetry. The

same holds true at elevated temperature as illustrated in Fig. 7.7.

Single elongated degeneracy points are replaced by less elongated points at higher fields

where superconductivity of the aluminum shell is suppressed (Figs. 7.5(e-h)) - in this regime

the charge degeneracy points appear more similar to those of a normal double dot with pairs

of triangular triple points, but with significant rounding and blurring and a weak inter-dot

capacitive coupling. This double dot is different from how normal dots are tuned in many

experiments because QDS is strongly coupled to the superconducting lead introducing tunnel

broadening at high bias above the gap. This is confirmed by higher co-tunneling current in

the vertical direction of almost all charge stability diagrams. In future experiments using a

larger gap superconductor such as Sn or Pb [115, 116, 137] as a shell can provide a larger

bias voltage range for the observation of Andreev blockade and make this observation more
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clear by reducing the role of tunnel broadening.

Data and code are available at [175].

7.5 Experimental methods

The growth of InAs nanowires with Al shells is performed using molecular beam epitaxy

(MBE). First, InAs nanowires are grown from pre-defined Au catalysts via vapor-liquid-solid

mechanism. After the nanowire growth, the growth chamber is cooled down, and in-situ Al

growth is carried out, ensuring the high-quality interface of the hybrid superconductor-

semiconductor heterostructures. Further discussion about the growth can be found in [137].

Electrostatic 60 nm pitch gates are patterned by 100 kV e-beam lithography (EBL)

with PMMA 950 A1 as the resist. The development for gate patterns is performed in 1:3

MIBK/IPA for 1 minute at a low temperature of -15 ◦C to enhance the resolution [176].

Then a bilayer of 1.5/6 nm Ti/PdAu is evaporated by electron-beam evaporation. The gates

are covered by 10 nm of HfOx as the dielectric layer, patterned by EBL and grown by atomic

layer deposition (100 cycles).

Nanowires are transferred onto the gate chip using a micro-manipulator under an optical

microscope. Windows for Al-etching are defined by 10 kV EBL. The PMMA resist is dried in

a vacuum chamber at room temperature to avoid heating the Al layer [71]. AlOx/Al on the

InAs wire is selectively etched using MF CD-26 developer/DI water solution for 2 minutes,

at a volume ratio of 1:20 at room temperature. Leads are made with EBL, Ar cleaning,

followed by e-beam evaporation of 10/130 nm of Ti/Au.

Measurements are performed in a dilution refrigerator with a 40 mK base temperature.

7.6 Further reading

Background information on single and double quantum dots can be found in [33].

An introduction to Andreev bound states can be found in [158].
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Majorana zero modes in 1D wires are discussed in [31, 25, 26].

Epitaxial growth of Al on nanowires and the hard gap can be found in Ref. [64, 67].

Transport properties in hybrid structures such as S-DQD-S [163, 165, 166, 172], QD-S-

QD [168, 169, 170], and N-DQD-S [167, 174, 177] have been studied extensively. Very few

studies are directly related to blockade phenomena. A recent experimental paper shows that

the Josephson current in an S-DQD-S device can be blocked due to spin-triplet pairs in a

magnetic field [172].

7.7 Discussion

A quantum transport blockade phenomenon is demonstrated, where a spin-triplet state

is stabilized at a boundary of a superconductor. The triplet prevents further charge transfer

into the spin-singlet superconductor. This blockade phenomenon could be used to study

the spin structure of superconductivity itself by analyzing the residual current that avoids

blockade. Moreover, it can play a role in quantum devices that combine spin polarization

and superconductivity, for example, in topological qubits.

We have considered the possibility that signatures (Sigs. 1, 2, 3, 4) arise due to fine-tuning

obtained by a deliberate search for predicted patterns in the experimental data. In this

scenario, signatures such as alternating bright/dim degeneracy points and bias asymmetries

are not due to Andreev blockade, but instead they arise accidentally due to additional states

co-existing with the QDN -QDS system in the same nanowire. For example, spurious Andreev

and normal quantum dots in the nanowire lead segments. Those other states are fine-tuned

to modulate transport in the double dot in just the right way to be consistent with Andreev

blockade.

We have observed that the Al etching process, which we use to remove the shell where we

define the double dot and the normal lead may leave behind Al islands which superconduct,

it can also damage the nanowire surface, leading to the formation of extra quantum dots,

or intermediate regimes with Al partially etched. While the device presented in the main

text results from optimized fabrication that addressed these issues, we cannot exclude the
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possibility of their presence. We see from e.g., Fig. 7.4 that while the stability points form a

dominating double-dot pattern, their intensities vary across a large VS-VN range suggesting

non-monotonic coupling to states outside the dots or non-monotonic inter-dot barriers.

Our argument for not favoring the above explanation is that a pattern consistent with

AB Sigs. 1, 2, 3 are observed over a regime covering 6×6 degeneracy points, in several

alternative double dot configurations, and, in a more limited range in another device. Fur-

thermore, the fact that bias asymmetry and alternating current patterns disappear when

superconductivity is suppressed (Sig. 4) convinces us that these phenomena have to do with

sub-gap superconducting transport, which is the regime of Andreev reflection.

Both Pauli blockade and Andreev blockade occur in double quantum dots with two

charges in a spin-triplet state. However, they have different origins. Pauli blockade is due

to Pauli principle, which prevents two electrons of the same spin from occupying the same

orbital. Andreev blockade is due to the inability of forming Cooper pairs out of spin-triplet

pairs. The characteristic energy scale of Andreev blockade is the induced superconducting

gap. The characteristic energy scale of Pauli blockade is the singlet-triplet energy level

spacing in the (0,2) charge configuration.

Andreev and Pauli blockades appear in different yet overlapping parameter spaces and

can be observed in the same device. In soft gap Andreev double quantum dots, Pauli

blockade has been previously observed in [90]. Though we did not observe Pauli blockade

in the device studied here. This is consistent with what is known of Pauli blockade - it is

a relatively rare phenomenon observed more frequently in few-electron double dots due to

larger singlet-triplet energies. Whereas, in multi-electron dots, such as those studied here,

Pauli blockade appears in one out of every 10 or 100 degeneracy points [178]. In contrast,

Andreev blockade is not expected to be as sensitive to quantum dot energy scales and is,

in principle, guaranteed by the superconducting gap. Even if singlet-triplet energies were

significant for all orbitals, Pauli blockade would be expected in 1 out of 4 degeneracy points,

while Andreev blockade is expected in 2 out of 4.
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7.8 Supplementary data

7.8.1 Supplementary data for the device presented in Sec. 7.4

100 nmB

InAs InAs/Al

VN VS

DrainSource

Figure 7.6: SEM image of device A that corresponds to data in Sec. 7.4. The image is taken

after Al is etched but before Ti/Au contacts deposition. The DQD is created electrostatically

using six gate electrodes (yellow lines) and the underlying doped Si substrate (as a global

gate).
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Figure 7.7: Temperature dependence of the transport region in Fig. 7.3. (a) Stability

diagrams at different temperatures. The temperature is labeled in each sub-panel. The

source-drain bias voltage is 0.1 mV. (b) Local maximum conductance extracted near four

degeneracy points versus the temperature. The asymmetry between the left and right max-

ima disappears above the critical temperature of bulk aluminum (1.2 K). B=0.
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Figure 7.9: (a) Stability diagram. (b-e) Bias spectroscopy as a function of gate voltages

along traces in (a).
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Fig. 7.9 (a) Stability diagram is the same as in Fig. 7.8 (b). The dashed lines are traces

along which bias-gate spectra in panels (b-e) are taken. The magnetic fields are noted for

each bias-gate panel. BV ert is the magnetic field used in Sec. 7.4. BHoriz is used only in this

figure. BHoriz is not aligned to perpendicular to the chip but is perpendicular to BV ert. The

Coulomb diamond (blue dashed diamond) in panel (b) yields charging energy of roughly 4

mV in QDN . Determining the charging energy in QDS is difficult. The blue dashed lines

in panel (c) show edges of Column diamonds with negative slopes. The positive slope edges

are hard to distinguish except near VN = 360 mV. This is because in our device, the QDS

has a shallow barrier to the superconducting lead causing strong asymmetry. We assume the

charging energy in QDS to be below 1 meV.
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Figure 7.10: Additional data to Fig. 7.5, at zero magnetic field. Bias voltages are noted on

each panel.
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Figure 7.11: Additional data to Fig. 5, at -0.1 mV bias and different fields. The yellow

short line in panel (a) indicates where VS = 355 mV (see Fig. 7.12).
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Figure 7.12: (a) Current vs. VN extracted from data in Fig. 7.11, at VS = 355 mV. Curves

are shifted vertically for clarity, with a step of 0.1 nA. Black asterisks marks resonance peaks

due to levels in QDN . Data at 0.4 T and 0.6 T are multiplied by 10 to highlight the peaks.

(b) Peak-to-peak distance vs. magnetic field shows Zeeman splitting of QDN levels. The

dashed line is a linear fit to the points. The charging energy EC of the QDN is about 4 mV

(Fig. 7.9). An effective g-factor of 6.9 can be estimated with equation ∆VN = α(gµBB+EC),

where α is a coefficient be determined, µB is the Bohr magneton, gµBB is the Zeeman energy.

These data can be used to assign even and odd occupations in QDN .
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Figure 7.13: Zeeman splitting of QDN in the large regime discussed in Sec. 7.4. (a-b)

Stability diagrams at -0.1 mV. The magnetic field is noted in each panel. (c) Asterisks show

peak positions extracted from a series of horizontal linecuts. Dashed lines are linear fitting

lines. These data can be used to assign even and odd occupations in QDN .
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Figure 7.14: Additional data for Fig. 7.5, at -0.2 mV bias and at different magnetic fields.

(a) (b)

(c) (d)

354 379VN (mV)

340

375

V
S

(m
V
)

0.0

0.5

1.0

1.5

2.0

I 
(n

A
)

354 379VN (mV)

340

375

V
S

(m
V
)

0 T 0.2 T

0.4 T 0.6 T

Figure 7.15: Additional data for Fig. 7.5, at -0.5 mV and different applied magnetic fields.
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Figure 7.16: (a) This is a repeat from Fig. 7.3 (a). The white dashed lines are traces along

which spectra (b-d) are taken. (b-d) Spectra at different VS values. (b,d) are the same as

Fig. 2(c,d). While panel (c) is a new dataset in between (d) and (b).
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Figure 7.17: Differential conductance spectra for a series of slightly shifting traces in VS-VN .

(a) is the same as Fig. 7.11(a). Red lines are traces along which spectra (b-h) are taken.

The asymmetry between positive-bias and negative-bias Andreev resonance half-loops shows

up for cuts taken through the middle of the bias triangles (d-f) but is not apparent for cuts

away from that regime.
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Figure 7.18: (a) The rectangle shows the regime in Fig. 7.4. There is a charge jump near

VN = 407 mV due to the instability caused by the large scan range. (b) The same device

in another gate voltage configuration was obtained by re-tuning all six gates. This panel

contains data from seven small-range scans. The rectangles indicate regimes where data in

Fig. 7.19 and Fig. 7.20 are taken.
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Figure 7.19: A different regime with a different gate voltage configuration (see Fig. 7.18).

The stability diagrams show bias asymmetry that is similarly consistent with Andreev block-

ade. However, in this regime, the pattern does not clearly repeat over multiple periods as it

does in Fig. 7.4. (a-f) The bias is noted in each panel. Spectra of QDS are taken when QDN

is at (g) right and (h) left degeneracy point.
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Figure 7.20: A different regime with a different gate-voltage configuration (see Fig. 7.18).

The stability diagrams show bias asymmetry consistent with Andreev blockade. The asym-

metry does not obviously repeat in adjacent degeneracy points. The dot QDS is stronger

coupled to the superconducting lead such that the Andreev loop containing the odd-parity

region is reduced to a point, and we observe a single degeneracy point on the left and a

single on the right at zero magnetic field. At finite field, the pattern of four degeneracy

points is restored at QDS undergoes a quantum phase transition, and the odd-parity region

develops. (a-d) -0.05 mV. (e-h) 0.05 mV. Spectra of QDS are taken along traces near QDN ’s

0-1 transition.
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7.8.2 Data from other devices

2.5

0.0

2.5

2.5

0.0

2.5

V1 V2 V3 V4 V5 V6
2.5

0.0

2.5

50 100 150
V4 (mV)

0.4

0.2

0.0

0.2

0.4

B
ia

s 
(m

V
)

0.0

0.1

0.2

0.3

dI
/d

V
 (

2e
2
/h

)

V1

V6

V2 

V3

V4 

V5

Se
ct

io
n 

w
ith

 A
l

200 nm

(a)

2.3 2.4 2.5
V4 (V)

2.25

2.30

2.35

2.40

2.45

2.50

V
2

(V
)

0

61 mV
(d)

(c)

1.3 1.4 1.5
V4 (V)

1.50

1.55

1.60

1.65

1.70

1.75

0

32 mV
(e)

1.3 1.4 1.5
V4 (V)

1.50

1.55

1.60

1.65

1.70

1.75

0.0

0.1

I (
nA

)

0.1 mV
(f)

(b)

1.5 1.6 1.7

0.02

0.00

0.02 V4=1.3

(g)

Figure 7.21: Characterization of Device B. (a) The SEM image. (b) Gate voltage config-

urations for data in panel c (top), d (middle), and e-f (bottom). The device can be tuned

from a single dot regime (panel c, spectrum, and panel d, stability diagram) to a double

dot regime (panel e-f). The bias voltage is indicated in white in each stability diagram. (g)

linecut for (f) at V4 = 1.3V.
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Figure 7.22: (a-b) Device B in a regime that shows bias asymmetry. The large white

and small blue arrows indicate columns that have high and low currents. The pattern does

not obviously repeat itself along the V4 direction. We can not conclude whether the bias

asymmetry is due to a coincidence or due to Andreev blockade. (c) The rectangle-enclosed

regime in panel a. Dashed lines are traces along which spectrum (d-g) are taken. Andreev

bound states in QDS have weak and squared-shape loops (d-e) due to relatively large charging

energy.
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Figure 7.23: Characterization of Device C. (a) The SEM picture after etching. The blue

polygon is the design pattern for the normal lead. (b-c) Spectra taken by tuning V1 Andreev

bound states. The gate voltage configurations are shown on the rightmost column.
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Figure 7.24: (a-b) Stability diagrams of device C. Yellow lines are traces along which the

spectra in panels (c-f) are taken. The dashed rectangle highlights a regime where there is

bias asymmetry.
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7.9 Conclusions

We design and investigate an experimental system capable of entering an electron trans-

port blockade regime in which a spin-triplet localized in the path of current is forbidden from

entering a spin-singlet superconductor. A double quantum dot is created electrostatically

near a superconducting lead in an InAs nanowire. The superconducting lead is a molecular

beam epitaxy grown Al shell. The shell is etched away over a wire segment to make room

for the double dot and the normal metal gold lead. The quantum dot closest to the normal

lead exhibits Coulomb diamonds (Fig. 7.2 (c-d)), the dot closest to the superconducting lead

exhibits Andreev bound states and an induced gap (Figs. 7.2 (a-b)). At low voltage bias

across the double dot, below the induced gap, transport exhibits patterns that our theory

predicted for a four-step Andreev charge transport cycle which arises when two electrons are

transported through the double dot. As evidence of Andreev blockade, we find asymmetry

between quadruple charge degeneracy points at even-to-odd and odd-to-even transitions in

the normal dot. The observed asymmetry has the properties predicted by theory [174]: it

is flipped at opposite bias, and it disappears at higher temperature and at higher magnetic

field. Experimentally, we find that current is not completely blocked in the regimes we label

as Andreev blockade. Our numerical model, based on [174], accounts for this by introducing

finite temperature, a soft induced gap, and disorder. We observe the predicted quadruple

level degeneracy points of high current and a periodic conductance pattern controlled by

the occupation of the normal dot. Even-odd transport asymmetry is lifted with increased

temperature and magnetic field. This blockade phenomenon can be used to study spin tex-

tures and dynamics in the vicinity of superconductors. It may also find utility in quantum

computing devices that utilize Andreev or Majorana states.

Recently larger hard gaps have been induced in semiconductor nanowires in experiments

with tin (gap of 0.6 mV) and lead (gap of 1.2 mV) shells [115, 116]. It would be interesting

to repeat Andreev blockade experiments using these superconductors. First, a higher ratio

of gap to measurement temperature may result in stronger blockade. Second, the ability

to work at higher bias and larger charging energies would make the observation of various

blockade features such as bias triangles more conclusive and reduce the role that rounding
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plays at low biases. Finally, blockade can be studied to higher magnetic fields, allowing for

a detailed investigation of spin textures in the parent superconductor.

Several improvements can be made in immediate follow-on work related to materials pro-

cessing and device fabrication. This would impact Andreev blockade experiments and many

works aimed at searching for Majorana modes and building superconductor-semiconductor

qubits. For instance, the wet etch degrades the quality of nanowires by introducing defects.

The supplementary information in [73, 137] shows that even using the ‘standard’ etchant

for InAs-Al wires may result in InAs damage or Al islands. The use of shadow walls or dry

etching is a promising avenue to explore for alleviating these issues.

At the most basic level, Andreev blockade offers a means of studying spin-resolved trans-

port in hybrid devices at zero magnetic field. We foresee the application of Andreev blockade

in experiments that probe spin pairing in superconductors. Much like Pauli blockade was

used to investigate spin mixing mechanisms in semiconductors due to hyperfine, spin-orbit,

or electron-phonon coupling, Andreev blockade can be used to detect triplet pairing or ad-

mixtures thereof in the superconducting lead. A two-arm Andreev blockade device with two

double dots in parallel can be used as a spin-sensitive probe for crossed Andreev reflection.

Quantum dots with superconducting leads are building blocks of Andreev qubits, Kitaev

emulators, and topological qubits [149, 47, 29]. These devices may manifest Andreev block-

ade or utilize it to detect the state of a qubit or an emulator by providing a spin-dependent

transport or transition rate element.

160



8.0 Conclusions and outlook

8.1 Conclusions

Kitaev chain is a theoretical model of a one-dimensional topological superconductor

with Majorana zero modes at the two ends of the chain. Intending to emulate this model,

in Ch. 4, we study a tight-binding model of a 3-site quantum dot chain. Simulations of the

energy spectrum and transport suggest partially-separated Majorana zero modes localize at

two end sites within a narrow parameter window. Theory indicates that the triple-dot states

acquire Majorana polarization in the fine-tuned regime (Kitaev regime) when Andreev states

in all three dots reach zero-energy in a narrow range of magnetic field. A zero-bias peak

that extends in magnetic fields would appear. In Ch. 5, we build a chain of three Andreev

quantum dots in a semiconductor InSb nanowire. We observe Andreev bound states in each

of the three dots and study their magnetic field and gate dependence. However, in our device,

Andreev states in one of the dots reach zero-energy at a lower field than in the other two,

placing the Kitaev regime with Majorana end modes out of reach. Our Andreev quantum

dot chain experiment has two major limitations. (i) Despite a large degree of control over

Andreev states in multiple dots, our devices are still off from the Kitaev chain regime.

Devices with greater uniformity and tunability should realize the Kitaev chain with a high

yield. This remains challenging for device fabrication with ex-situ oxide removal and contact

deposition, in which disorder is easily introduced. (ii) A hard induced superconducting gap

surviving to higher magnetic fields and further optimized coupling between the nanowire

and the superconductor are desired.

To solve the limitations, in Ch. 6, we present a study of hybrid InSb/Sn nanowire devices

fabricated with in-situ shadow technique. A hard induced superconducting gap that persists

up to 4 T in magnetic field is observed. A small island of Sn-InSb exhibits the two-electron

charging effect, a hallmark of charge parity stability. In Ch. 7, we study Andreev blockade

phenomenon, in which a hard superconducting gap is required. We build a double quantum

dot in a hybrid InAs/Al nanowire. One normal dot exhibits Coulomb diamonds, and the
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other superconducting dot exhibits Andreev bound states and an induced gap. At voltage

bias below the induced gap, the double dot could enter Andreev blockade regime, in which

an electron of the spin-triplet state is forbidden from entering a spin-singlet superconductor.

We observe asymmetry between quadruple charge degeneracy points at even-to-odd and

odd-to-even transitions in the normal dot with predicted signatures of Andreev blockade.

Even-odd transport asymmetry is lifted with increased temperature and magnetic field.

8.2 Outlook

As an alternative approach to realizing Majorana zero modes other than a continuous

wire, a chain of quantum dots can help overcome the disorder and allows spatially resolved

transport measurements. The device geometry (multiple contacts and local gates) enables

identifying where the states that generate zero-bias peaks are localized along the chain. For

both continuous wires and quantum dot chains, multi-terminal is suitable for studying the

correlation of two end states with non-local measurements and distinguish delocalized Majo-

rana bound states from localized Andreev bound states. Therefore, applying this technique

in future devices will lead to the successful identification of the Kitaev chain regime and

definitive proof of well-separated Majorana zero modes.

Our Andreev quantum dot chain experiment is limited by a soft induced gap of thin and

narrow NbTiN contacts nonuniformly deposit ex-situ. Superconducting materials with large

and hard gap can be used, such as Sn [115] or Pb [116]. With a hard superconducting gap

persisting in a much larger magnetic field, Andreev resonances can still be prominent and in

high contrast. To avoid ex-situ etching, various in-situ shadow lithography techniques have

been used for superconductor deposition [71, 72, 73].

However, the in-situ shadow lithography techniques for hard-gap superconductor depo-

sition, such as Sn and Pb, are only available to the semiconductor nanowire/superconductor

shell geometry. Because as discussed in Sec. 6.5, a thin and uniform superconducting shell is

the key to hard-gap and field-resilient superconductivity. It means the advanced nanowires

with hard-gap superconductors (such as those used for experiments in Chs. 6 and 7) have to
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be in a core/shell geometry. Therefore, they are inapplicable for a three-terminal geometry,

as contacting the shell through ex-situ deposition of a superconducting lead (as thick as the

nanowire diameter) would damage the thin and uniform shell, which is required for a hard

gap.

1	µm

Figure 8.1: Hybrid InAs SAG nanowire/Al with shadow wall structures for quantum dot

chain.

Selective-area grown (SAG) nanowires [75, 76, 77] with carefully designed shadow wall

structures present a promising platform for multi-terminal experiments on hybrid semi-

conductor SAG nanowire/superconductor structures through in-situ superconductor deposi-

tion [72, 73, 78].

SAG semiconductor nanowires often suffer from a high density of defects due to lattice

and symmetry mismatch between the nanowire material and the substrate. This results in

poor electrical characteristics, including low electron mobility and low coherence lengths.
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Low electron mobility and low coherence lengths suggest that it is not suitable for realizing

Majorana zero modes in a continuous SAG nanowire. Further development of SAG growth

may eventually solve this problem. For example, lateral heterostructures growth can poten-

tially help with this issue by incorporating buffer layers to reduce lattice mismatch and using

capping layers to reduce surface scattering.

However, the low electron mobility of SAG nanowire is not a problem for realizing Ma-

jorana zero modes in a quantum dot chain. Fig. 8.1 shows a SAG InAs nanowire with

selective grown Al superconducting contacts achieved by a shadow wall structure and angle

superconductor deposition discussed in Sec. 3.3.2. The SAG InAs nanowire is covered by

smooth Al superconducting contacts separated by abrupt shadowed regions free of Al. With-

out the screening effect of the superconductor, tunnel barriers can be created in the InAs

nanowire segments of the shadowed regions through side gates (to be fabricated). These gate-

controlled tunnel barriers can define quantum dots in the nanowire. As shown in Fig. 3.12

(e), depending on the crystallographic directions, SAG nanowires can have different cross-

sectional shapes. With angled deposition, a thin superconducting contact can fully cover

nanowire facets and extend. It allows using the extended superconducting contacts as probe

electrodes rather than superconducting islands, enabling the multi-terminal measurements.
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Appendix A Fabrication recipes

A.1 Substrate preparation

1. Ultrasonicate chip in Acetone for 5 min.

2. Ultrasonicate chip in IPA for 5 min.

3. Rinse chip in IPA.

4. Blow dry by N2.

5. Bake at 120C for 2 min.

6. Oxygen plasma cleaning with 200 W at 500 mTorr for 2 min.

A.2 Standard EBL process

1. Spincoat PMMA 950 A4 at 4000rpm for 1 min, bake at 175C for 15 min.

2. EBL at 10kV with 10/30/60 µm aperture and ≈ 135µC/cm2 dosage.

3. Develop in MIBK/IPA(1:3) for 1 min and in IPA for 1 min.

4. Resist residual removal by oxygen plasma cleaning with 200 W at 500 mTorr for 15 s.

A.3 Markers

1. Standard EBL process to define markers.

2. Evaporation of 5 nm Ti and 50 nm Au.

3. Lift off in Acetone for at least 2 hours.
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A.4 Deposition of HfOx

1. Standard EBL process to define windows for dielectric layer on local gates.

2. Set temperature of all stages to 120C.

3. Set temperature of precursor tetrakis dimethylamino hafnium (TDMAHf) to 75C.

4. ALD thermal deposition of ≈ 10nm HfOx for 100 cycles.

5. Lift off in Acetone for at least 2 hours.

A.5 Deposition of superconducting contacts

1. SEM imaging of nanowires and design contact patterns.

2. Standard EBL process to define contacts.

3. Oxide removal by sulfur passivation with 1:200 concentration at 60 C for 30 min.

4. Rinse chip in DI water and blow dry.

5. Mount chip on sample holder with a 30 degree wedge (for deposition with an angle of 60

degree).

6. Load sample in load-lock, turn on turbo pump and wait for pressure to drop below

5 × 10−b Torr. Then transfer sample into AJA main vacuum chamber and wait for

pressure to reach UHV. A typical pressure of 1.5 × 10−8 Torr can be achieved by a

cryogenic pump in less than 2 hours. For a better vacuum below 1× 10−8 Torr, a short

thermal evaporation of Ti can be applied.

7. Nanowire surface cleaning by gentle in-situ sputter cleaning with 20 W at 10 mTorr for

10 s.

8. Sputter deposition of 5 nm NbTi and 60 nm NbTiN at 3 mTorr.

9. Lift off in Acetone for at least 2 hours.
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A.6 Deposition of normal contacts

1. SEM imaging of nanowires and design gate and contact patterns.

2. Standard EBL process to define contacts.

3. Oxide removal by sulfur passivation with 1:200 concentration at 60 C for 30 min.

4. Rinse chip in DI water and blow dry.

5. Load sample in Plassys MEB 500 vacuum chamber wait for pressure to reach UHV. A

typical pressure is 2× 10−8 mbar.

6. Evaporation of 10 nm Ti and 145 nm Au.

7. Lift off in Acetone for at least 2 hours.

A.7 Sulfur passivation

1. Mix 0.29 g elemental sulfur with 3 mL ammonium sulfide to get ammonium polysulfide

(NH4)2Sx solution.

2. Dilute ammonium polysulfide solution with DI water at a ratio of 1:200.

3. Put device chip into a beaker with 5 mL diluted ammonium polysulfide solution and

heat in a water bath at 60 C for 30 min. Wrap the beaker in aluminum foil to avoid light

exposure.

4. Rinse chip in DI water and blow dry.

A.8 Fabrication with hybrid InSb/Sn nanowires

1. SEM imaging of nanowires and design gate and contact patterns.

2. Spincoat PMMA 950 A4 at 4000rpm for 1 min. To prevent heating the superconducting

shell from baking the resist, leave the chip in vacuum at room temperature for the resist

to dry.

3. Standard EBL process to define contacts.
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4. Oxide removal by Ar ion milling at 250 V with 15 mA for 1 min.

5. Evaporation of 10 nm Ti and 140 nm Au.

6. Lift off in Acetone for at least 2 hours.

A.9 Fabrication with hybrid InAs/Al nanowires

1. SEM imaging of nanowires and design gate and contact patterns.

2. Spincoat PMMA 950 A4 at 4000rpm for 1 min, dry in vacuum.

3. Standard EBL process to define windows for Al etching.

4. Selective Al etching by MF CD-26 developer/DI water a volume ratio of 1:20 for 2 min.

5. Spincoat PMMA 950 A4 at 4000rpm for 1 min, dry in vacuum.

6. Standard EBL process to define contacts.

7. Oxide removal by Ar ion milling at 250 V with 15 mA for 1 min.

8. Evaporation of 10 nm Ti and 130 nm Au.

9. Lift off in Acetone for at least 2 hours.

A.10 Fabrication with SAG InAs nanowires with Al or Sn shells

1. SEM imaging of nanowires and design gate and contact patterns.

2. Spincoat PMMA 950 A4 at 4000rpm for 1 min, dry in vacuum.

3. Evaporation of 10 nm Al as an anti-charging layer for EBL.

4. EBL at 10kV with 10/30/60 µm aperture and ≈ 135µC/cm2 dosage.

5. Removal of the anti-charging layer by MF CD-26 developer for 2 min.

6. Develop in MIBK/IPA(1:3) for 1 min and in IPA for 1 min.

7. Resist residual removal by oxygen plasma cleaning with 200 W at 500 mTorr for 15 s.

8. Selective removal of superconductors.

• Selective removal of Al by etching with MF CD-26 developer/DI water a volume

ratio of 1:20 for 2 min.
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• Selective removal of Sn by Ar ion milling at 500 V with 25 mA for 3 min.

9. Lift off in remover PG.

10. Spincoat PMMA 950 A4 at 4000rpm for 1 min, dry in vacuum.

11. Standard EBL process to define contacts.

12. Oxide removal by Ar ion milling at 250 V with 15 mA for 1 min.

13. Evaporation of 5 nm Ti and 100 nm Au.

14. Lift off in remover PG.

15. ALD thermal deposition of 10 nm HfOx at 90 C.

16. Spincoat PMMA 950 A4 at 4000rpm for 1 min, dry in vacuum.

17. Standard EBL process to define top gates.

18. Evaporation of 5 nm Ti and 120 nm Au.

19. Lift off in Acetone.
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Appendix B List of publications

Hao Wu, Po Zhang, John P. T. Stenger, Zhaoen Su, Jun Chen, Ghada Badawy, Sasa

Gazibegovic, Erik P. A. M. Bakkers, and Sergey M. Frolov, Triple andreev dot chains in

semiconductor nanowires (2021), arXiv:2105.08636.

Po Zhang, Hao Wu, Jun Chen, Sabbir A. Khan, Peter Krogstrup, David Pekker, and

Sergey M. Frolov, Evidence of andreev blockade in a double quantum dot coupled to a

superconductor (2021), arXiv:2102.03283.

M. Pendharkar, B. Zhang, H. Wu (co-first author), A. Zarassi, P. Zhang, C. P.

Dempsey, J. S. Lee, S. D. Harrington, G. Badawy, S. Gazibegovic, R. L. M. Op het Veld, M.

Rossi, J. Jung, A.H. Chen, M. A. Verheijen, M. Hocevar, E. P. A. M. Bakkers, C. J. Palm-

strom, and S. M. Frolov, Parity-preserving and magnetic field-resilient superconductivity in

InSb nanowires with Sn shells, Science 372, 508-511 (2021).

Z. Su, R. Zitko, P. Zhang, H. Wu, D. Car, S. R. Plissard, S. Gazibegovic, G. Badawy,

M. Hocevar, J. Chen, E. P. A. M. Bakkers, and S. M. Frolov, Erasing odd-parity states in

semiconductor quantum dots coupled to superconductors, Phys. Rev. B 101, 235315 (2020).
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[72] Sebastian Heedt, Marina Quintero-Pérez, Francesco Borsoi, Alexandra Fursina, Nick
van Loo, Grzegorz P. Mazur, Micha l P. Nowak, Mark Ammerlaan, Kongyi Li, Svetlana
Korneychuk, Jie Shen, May An Y. van de Poll, Ghada Badawy, Sasa Gazibegovic,
Nick de Jong, Pavel Aseev, Kevin van Hoogdalem, Erik P. A. M. Bakkers, and Leo P.
Kouwenhoven. Shadow-wall lithography of ballistic superconductor–semiconductor
quantum devices. Nature Communications, 12(1):4914, Aug 2021.

[73] Damon J. Carrad, Martin Bjergfelt, Thomas Kanne, Martin Aagesen, Filip Krizek,
Elisabetta M. Fiordaliso, Erik Johnson, Jesper Nyg̊ard, and Thomas Sand Jespersen.
Shadow epitaxy for in situ growth of generic semiconductor/superconductor hybrids.
Advanced Materials, 32(23):1908411, 2020.

[74] James L. Webb, Johan Knutsson, Martin Hjort, Sepideh Gorji Ghalamestani, Kim-
berly A. Dick, Rainer Timm, and Anders Mikkelsen. Electrical and surface properties
of inas/insb nanowires cleaned by atomic hydrogen. Nano Letters, 15(8):4865–4875,
Aug 2015.
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