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Abstract 

Integrative Analysis of Modular Structure of Genes in High-throughput Tumor Profiles 

 

Lifan Liang, PhD. 

 

University of Pittsburgh, 2021 

 

 

 

 

Cellular functions, such as signal transduction, transportation, cell cycle, and various 

metabolism, require cooperation of many gene products. Following the central dogma, such large-

scale cooperation within and across cells often leave traces on different omics profiles. One major 

clue would be the strong correlation among genes in genomics, epigenetics, transcriptomics, and 

proteomics. Based on this premise, we started to identify functional modules by integrating 

pairwise correlation among genes from different information sources into the form of multiplex 

networks. Although all the layers of the multiplex shared the same protein interactome as the 

skeleton, edge weights in each layer represents pairwise correlation from a different type of 

information sources. This formation allows information flow from one data source to another. We 

also designed a novel graph clustering algorithm to detect gene sets with strong correlations inside. 

However, the multiplex integration only yields marginal improvement against single 

omics. We turn to the mutual exclusivity patterns in cancer genomics. This pattern suggests that a 

single somatic alteration event may be sufficient to promote tumorigenesis. We pushed the 

assumption further to state that disruption of a single pathway could lead to differential expression 

of a large set of genes, which is supported by our work on Boolean matrix factorization. Then we 

proposed the OR-gate network (ORN) to model the causal mechanism from somatic alterations to 

transcriptomics. Results showed that it is able to recover the heterogeneity among cancer samples 

and functional modules responsible for certain dysregulation in cancer transcriptomics. 



 v 

Still, ORN has two major limitations. One is the issue of co-amplification. ORN cannot 

distinguish passengers in the same copy number variation hotspot as the drivers. To this end, we 

applied the word2vec model to extract gene embedding from biomedical literature. Another issue 

is the transcriptional regulation module may not be accurate. To this end, we developed a novel 

algorithm (peak2vec) to uncover transcriptional motif patterns and coregulation from the 

chromatic accessibility profiles. 

In the future, we will integrate gene embedding and peak2vec into the ORN framework to 

better understand the causal impact of somatic alteration as functional modules. 
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1.0 Introduction 

Cancer is a disease caused by genetic changes leading to uncontrolled cell growth and 

invasion into nearby tissues. Hence biological research has focused on characterizing molecular 

mechanisms of somatic mutations in cancer cells. Such efforts have facilitated the development of 

precision oncology and greatly improved clinical outcomes of cancer patients. For example, the 

discovery of somatic mutations in the BRAF gene in 66% of melanoma cell line (H. Davies et al. 

2002) has led to the development of Vemurafenib, a new standard of care for patients with  BRAF-

V600 mutant melanoma (Fisher and Larkin 2012). The success of targeted therapy demonstrated 

the importance of pathway-level understanding in cancer biology.  

However, despite the improving survival rates, cancer remained the second-leading cause 

of death in the world (GBD 2018). This is because most cancer patients cannot be cured with 

targeted therapies. For example, the percentage of patients estimated to respond to immunotherapy 

targeting PD1 and CTLA4 was 12.46% (Haslam and Prasad 2019).  And the reason why patients 

differ in responsiveness is still unknown, indicating our lack of understanding of how genomic 

changes perturbed signaling pathways that underlie cancer phenotypes. 

Researchers on the computational side have proposed various approaches to investigate 

pathway dysregulation in cancer since the emergence of large high-throughput data repositories 

related to cancer. The Cancer Genome Atlas (TCGA) is the earliest effort to provide molecular 

profiles of patients from most cancer types, including genomic profile, transcriptomic profile, 

epigenomic profile, and proteomic profiles. Other initiatives, such as METABRIC (Curtis et al. 

2012) and TARGET (Gerhard et al. 2018), have generated similar omics profiles of patients from 

certain cancer types. With emerging datasets and computational methods, precision oncology has 
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made tremendous progress. However, these computational approaches have limitations yet to be 

resolved. As illustrated in detail in the background section, single-omics approach may fail to 

capture data patterns that are truly related to disease mechanism. On the other hand, integrative 

analysis either relies too much on current knowledge or imposes assumptions not plausible in 

biology. 

In this project, we developed several novel algorithms for pattern recognition problems in 

genomic, transcriptomic, and proteomic. Isolation clustering (Chapter 3) identified functional 

modules over the multiplex in a greedy way. BMF (Chapter 4) identified coregulation patterns in 

transcriptomics. ORN (Chapter 5) links genomics and transcriptomics together to identify latent 

pathways of somatic mutations that cause differential expression in transcriptomics. Gene 

embedding (Chapter 6) utilized knowledge curated in literature to summarize functional 

similarities among genes. Peak2vec (Chapter 7) learns motif mixture in the ATAC-seq to infer 

gene regulation. In the future, we aim to integrate all these models from different data sources into 

the framework of ORN, so we may conduct de novo inference of signaling pathways in cancer 

reliably. 

1.1 Hypothesis and Specific Aims 

The major hypothesis of this dissertation is that different data sources provide different 

clues to the functional interaction among genes. Specifically, we hypothesize that: (1) integrating 

multiple information sources improves the performance of functional module identification; (2) 

coexpression among genes hints at their functional similarity and their coregulation; (3) functional 

relationships among SGAs are implicated by their impact on transcriptomics; (4) biomedical 
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literature is a reliable data source to infer functional relationships among genes; (5) chromatin 

accessibility combined with DNA sequence information can reveal gene regulation. 

To examine these hypotheses, this dissertation explored multiple omics data with the 

following specific aims: 

1. Isolation clustering: As a preliminary attempt of integrative analysis of gene 

functions, we directly integrated various information into the form of a multiplex 

network. Information sources include protein-protein interaction, biomedical topic 

modeling, and gene expression profiles. To verify the performance gain of such 

network formation, we developed isolation clustering to identify functional modules 

and protein complexes in this network. 

2. BEM: Within a set of similar tumor samples, a set of genes express with strong 

correlation. This set of genes may be regulated by the same pathway or participate in 

the same biological function. By modeling this coexpression pattern with the AND-OR 

product, we developed a novel Boolean matrix factorization method to systematically 

discover the coregulated genes sets and heterogeneous tumor situations. 

3. ORN: The phenomenon of mutual exclusivity indicates that mutation of a single gene 

may be sufficient to disrupt one or more pathways. By integrating genomic and 

transcriptomic profiles of cancer samples with OR-gate relationship, it is possible to 

characterize the functioning role of somatic mutations in cancer and infer patient-

specific pathway activities de novo. 

4. Gene embedding: Neighboring passenger mutations are often amplified together with 

the driver mutations. In this case, we cannot distinguish driver mutations according to 

their functional impact. Hence, we applied word2vec to biomedical literature to 
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generate embedding vectors for genes. To avoid overrepresentation of well-known 

genes, we learned gene embedding from their semantic representation instead. 

5. Peak2vec: BMF identified coexpression patterns with gene-level read count 

information. To complement this approach, we explored the usefulness of DNA 

sequence information by adapting deep learning models to recognize motif patterns in 

ATAC-seq peak sequences.  

1.2 Outline of the Dissertation 

Chapter 2 provides the research background and datasets in use for the dissertation so as to 

identify the gap in current research and motivate our research projects. Chapter 3 describes our 

initial attempt to integrate transcriptomics, proteomics, and literature to identify functional 

modules.  Chapter 4 describes the Boolean matrix factorization applied to coexpression module 

identification, which naturally extends to the OR-gate network (ORN) illustrated in Chapter 5. 

One major limitation of ORN is that it cannot distinguish passenger mutation in the same CNV 

hotspot as the driver. We demonstrated our solution to address the issue of co-amplification in 

somatic mutation (Chapter 6). In Chapter 7, we introduce the sequence embedding techniques that 

may integrate sequence information into the framework. Finally, we will summarize the 

contribution and limitations of this dissertation project and discuss future research directions in 

Chapter 8. Our main content has been summarized in Figure 1. 
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Figure 1 Outline of the dissertation 



 6 

2.0 Background 

This chapter introduced the datasets and methods we used in the subsequent project. 

Datasets are mostly from the TCGA project. As for the methods, we will describe the background 

knowledge about Boolean matrix factorization (BMF), word2vec, deep learning, and motif 

analysis. Since each of these methods represents a vast research field, this chapter only covers the 

basic knowledge of the computational techniques employed in the dissertation. 

2.1 The Cancer Genome Atlas (TCGA) 

TCGA (Tomczak, Czerwińska, and Wiznerowicz 2015) is the largest initiative to provide 

molecular profiles for over 30 types of human tumors.  Over the past decade, TCGA has grown in 

both sample sizes and omics measurements. Currently, TCGA has collected 11315 samples, 

including from both normal and cancer conditions. Besides whole exome sequencing and RNA-

seq data, TCGA has adopted methylation array, whole genome sequencing (ICGC/TCGA Pan-

Cancer Analysis of Whole Genomes Consortium 2020), ATAC-seq (Corces et al. 2018), and 

miRNA-seq (Chu et al. 2016), providing a much more comprehensive molecular profile of cancer 

samples. 

In this project, we utilized somatic mutation, copy number variations (CNVs), RNA-seq, 

and ATAC-seq. These four data types will be described in this section.  

Somatic mutations: Somatic mutations consist of single nucleotide polymorphism (SNP) 

and insertion-deletion mutations (INDEL). Somatic mutations have the potential to alter all steps 
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of gene expression depending on their genomic location. When present within transcriptional 

regulatory elements, they can affect mRNA expression. When present within coding regions, 

mutations can impact mRNA splicing, nucleo-cytoplasmic export, stability, and translation. When 

present within a coding sequence and leading to an amino acid change (referred to as a non-

synonymous SNP or mutation), they can modify the protein’s activity. If the mutation is 

synonymous (i.e., does not change the nature of the amino acid), then translation rates or mRNA 

half-life may be affected.(Robert and Pelletier 2018) Since this project is linking differential 

expression to somatic mutation, we only used non-silent gene-level mutations that have been 

sequenced and processed(Ellrott et al. 2018). The raw input for our algorithm would be a matrix 

with each row as a gene and each column as a sample. Value “1” in the ith row and jth column 

means the ith gene mutated in the jth sample. 

Copy number variation: CNVs are a type of structural variant involving alterations in the 

number of copies of specific regions of DNA, which can either be deleted or duplicated. In TCGA, 

the copy number of DNA regions was segmented and estimated from the SNP array data. This 

project combined CNVs and somatic mutations to generate the somatic genomic alterations 

(SGAs) profiles of tumor samples. SGAs would be the actual input for the ORN algorithm. Please 

note that one region with CNV may cover multiple genes, making it difficult to distinguish driver 

mutations from passengers. We will try to address this issue in the Planned works with gene 

embedding methods. 

Gene expression: RNA-seq measures the volume of gene expression. TCGA has 

completed over 11,000 RNA-seq assays. RNA expression represented cellular phenotypes of 

cancer. Molecular subtypes of breast cancer were identified based on gene expression data 

(Wallden et al. 2015). Another major application of RNA-seq is differential expression analysis. 
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Differential expression analysis can identify differentially expressed genes (DEGs), which indicate 

abnormal cellular functions leading to cancer. In this project, we performed differential expression 

analysis and used the DEG status as the end results for somatic mutations. 

ATAC-seq: As the name suggests, Assay of Transposase Accessible Chromatin 

sequencing (ATAC-seq) aims at locating chromatin open region by sequencing DNA fragments 

from Tn5 enzyme cleavage (Buenrostro et al. 2013). While other technologies (e.g., DNase-seq, 

FAIRE-seq, and ChIP-seq) require millions of cells as input materials (Buenrostro et al. 2013), 

ATAC-seq only requires 500-50000 cells. Its simplicity results in an exponential increase of 

curated ATAC-seq datasets and publications, indicating its value in a wide spectrum of biological 

questions (Yan et al. 2020). Computational analysis of ATAC-seq often involves peak calling 

(Tarbell and Liu 2019), peak-gene linking (Corces et al. 2018; Wang, Jiang, and Wong 2016), 

nucleosome positioning (Schep et al. 2015), and footprinting analysis (Wang, Jiang, and Wong 

2016). In TCGA, ATAC-seq was performed on 410 samples from 404 donors in 23 types of cancer. 

Analysis revealed over 100K novel regulatory elements and novel cancer subtypes (Corces et al. 

2018).  

 

2.2 Boolean Matrix Factorization 

Boolean matrix factorization (BMF) is a variant of the standard matrix factorization 

problem in the Boolean semiring (Pauli Miettinen and Neumann 2020): given a binary matrix, the 

task is to find lower rank binary matrices so that their  AND-OR product (described in Chapter 4) 

is as close to the original matrix as possible. Since the AND-OR product is a different operation 
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than the operation in linear algebra, standard matrix factorization techniques, such as singular 

value decomposition (SVD) and nonnegative matrix factorization (NMF), fail to work. In addition, 

finding the exact solution is NP-hard (P Miettinen, Mielikäinen, and Gionis 2008). 

Therefore, over the past decades, researchers have proposed various techniques to find 

approximate solutions. The earliest approach is combinatorial optimization exemplified by ASSO 

(P Miettinen, Mielikäinen, and Gionis 2008), PANDA+ (Lucchese, Orlando, and Perego 2014) 

and GRECOND+ (Belohlavek and Trnecka 2018). ASSO alternates between the column factor 

and row factor to optimize the reconstruction error. PANDA+ first finds dense components as the 

core and extends from them to cover more ones while the error is not increasing. Similarly, 

GRECOND starts by generating a decomposition that does not over-cover and then iteratively 

updates to commit over-covering to decrease the error. 

A more recent approach tries to find the solution with maximum likelihood, which our 

work in Chapter 4 belongs to. In order to compute the likelihoods of the lower rank factors, all the 

methods (Frolov, Husek, and Polyakov 2014; T Rukat, Holmes, and Titsias 2017; S Ravanbakhsh 

and Póczos 2016) need to make prior assumptions on the data generation process. The fully 

Bayesian approach (Tammo Rukat et al. 2017) assumed that Boolean factors were generated by a 

uniform Bernoulli distribution. A more recent method (Neumann 2018) assumed that one side of 

the matrix only contains clusters with relatively large size. Unfortunately, prior knowledge on 

factors' sizes is usually unavailable in transcriptomic data. Previous studies have shown that the 

number of genes within a coexpression module can be less than 100 (Padilha and Campello 2017) 

or close to 1000 (van Dam et al. 2018). The number of samples within a cluster is even more 

unpredictable. Thus, assumptions about bicluster sizes may a impose strong bias in gene 

expression analysis. 
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In Chapter 4, we presented a new model that introduced a more hierarchical framework that is 

free of assumptions about the factor size while retaining the advantages of previous algorithms.  

2.3 Deep Learning Models 

Some models described in this dissertation are inferred by the backpropagation algorithm. 

Particularly, the ORN (Chapter 5) is structured like the fully connected neural network and the 

multinomial convolution (Chapter 7) is a variant of the convolutional kernel. This section will 

briefly describe the structure of fully connected neural network and the kernel operation in 

convolutional neural network. 

The fully connected neural network is a fundamental architecture of deep learning models. 

Namely, all the nodes in one layer are connected to all the nodes in the next. The connection 

between node i in layer L and all the nodes in the previous layer can be characterized by two steps: 

(1) inner product between node values and edge weights; (2) activation function of the product. 

The nonlinear activation function sets neural networks apart from linear models, enabling deep 

learning to approximate any function (Hornik, Stinchcombe, and White 1989). 

Convolutional neural network (CNN) is usually applied to images with RGB channels. In 

this case, convolution is applying a cube to scan through the image with multiple kernels. Each 

kernel is essentially a tensor. When scanning a certain region, the pixel values will be summarized 

to a scalar that is the sum of the product between the kernel and the region. Therefore, convolution 

is effectively scanning through the image for the visual pattern defined by the kernel. Note that in 

order to accelerate the computation, CNN does not scan through the image. Rather, it generates 

many duplicate kernels to apply to the full image in parallel and ensure they share the same 
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parameters. Although this parameter sharing scheme requires much more memory space, it 

significantly reduces the computational complexity of time. 

Deep learning has been well known for its prediction performance and computational 

efficiency. However, deep learning models are difficult to interpret. Although many research 

methods attempt to open the black box by approximating the trained black box with an 

interpretable model, we have not seen much success so far. In this dissertation, we took advantage 

of the deep learning’s computational efficiency and force it to learn interpretable patterns from 

high-throughput data. 

 

2.4 Word Embedding 

Word embedding approach originated from the distributional hypothesis, i.e., words that 

occur in the same contexts tend to purport similar meanings. Researchers in computational 

linguistics aimed at representing words with vector space, such that words with similar meanings 

should appear close together in the vector space. The breakthrough in this direction is Word2Vec. 

It outperformed all the previous approaches, whether neural network methods or matrix 

factorization methods. Its simplicity also demonstrated superior interpretability. For example, the 

vector for “king” minus the vector “man” would approximate the vector for “queen”. Following 

word2vec’s success is a variety of improved approaches, including factorization of point-wise 

mutual information matrix (Levy and Goldberg 2014), GloVe (Pennington, Socher, and Manning 

2014), and ConceptNet Numberbatch (Speer, Chin, and Havasi 2016). 
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Recently, the word2vec algorithm has been applied to several bioinformatics studies (Du 

et al. 2019; S. Kim et al. 2018). These studies used coexpression (Du et al. 2019; Xiangyu Li et al. 

2017), co-mutation (S. Kim et al. 2018) or protein-protein interaction (S. Kim et al. 2018) to define 

the context of genes. These embedding vectors have been applied to tissue deconvolution or tumor 

driver identification. However, high-throughput data are often confounded with technical variance, 

especially batch effects (Soneson, Gerster, and Delorenzi 2014). More importantly, the correlation 

observed in high-throughput data may not indicate functional relations. For example, gene 

expression of tissue-specific house-keeping genes often fluctuates according to the tissue 

proportions in samples. In this case, coexpression merely imply that genes express within the same 

tissue. Gene2vec (Du et al. 2019) also showed that gene embedding constructed from coexpression 

reflected tissue specificity. 

Hence it may be better directly apply word2vec to biomedical literature. However, 

Biomedical literature may focus on well-known genes and neglect others. In Chapter 6, we 

constructed semantic representation for each gene before applying the word2vec model. In this 

way, we may achieve higher order inference in the embedding space so that less well-known genes 

will also be modeled accurately. 

 

2.5 Transcription Factor Motif Analysis 

Sequence motifs are short, recurring patterns in DNA that are presumed to have a biological 

function (D’haeseleer 2006). Throughout this thesis, motifs indicate sequence-specific binding 

sites for transcription factors (TF). Although it is well known that TF recognizes specific sequences 



 13 

of nucleotides, the binding sequence is not identical across binding sites. Hence a popular approach 

to describe the motifs is through a position frequency matrix (PFM) or a position probability matrix 

(PPM), which is the format for most databases of TF motifs. 

However, the format of PFM or PPM may be too restricted to capture the regularity of the 

motif recognition mechanism. Early research has suggested that site dependency and the 

characteristics of protein domain need to be considered in the task of de novo motif detection (Xing 

and Karp 2004). Currently, computational researchers address this issue with multiple PPM or 

multiple kmers. For example, Deepbind (Alipanahi et al. 2015; Guo et al. 2018) used multiple 

convolution kernels to detect the binding affinity of one TF. When performing motif matching, 

research also showed that using a set of kmers instead of a PPM may improve performance (Guo 

et al. 2018). As a result, this over-kill fashion of motif detection can only be applied to ChIP-seq 

where only one putative TF is investigated. When multiple TFs are present in an assay, it is difficult 

to handle the heterogeneity of TF representation. When dealing with chromatin accessibility 

profiles where multiple TF activities can be interrogated, researchers often turn to footprinting 

analysis, despite the fact that only one fifth of TFs exhibit the footprint patterns (Baek, Goldstein, 

and Hager 2017). 

In Chapter 7, we revisit the idea of motif detection in chromatin accessibility, particularly 

ATAC-seq. We showed that with slight modification of the convolution kernels, it is possible to 

infer cis-regulatory elements from ATAC-seq. 
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3.0 Preliminary Attempt: a Multilayer Approach to Identify Functional Modules by 

Integrating PPI, Gene Expression and Literature 

This chapter presented our preliminary attempt at analyzing the modular structure of genes 

by integrating multi-omics data and literature knowledge with a multiplex network. 

3.1 Background of Functional Module Identification 

Understanding the mechanisms of pathway perturbations underlying complex human 

diseases remains a difficult problem, hindering the development of targeted therapeutics. Complex 

diseases involve many genes and molecules that interact within context-specific cellular networks, 

such as signaling networks, physical interaction networks, and coexpression networks (Choobdar 

et al. 2018). For example, cancer was often viewed as the disruption of cellular signaling networks. 

Such complex networks are inherently modular(Hartwell et al. 1999), meaning that genes usually 

perform certain biological functions in separate groups. Therefore, to investigate complicated 

cellular mechanisms, it is necessary to characterize the modular structure of cellular networks.  

A functional module is defined as a group of genes or their products that are related by one 

or more genetic or cellular interactions, e.g., coregulation, coexpression or membership of a 

protein complex, of a metabolic or signaling pathway, or of a cellular aggregate (e.g. chaperone, 

ribosome, protein transport facilitator) (Tornow and Mewes 2003). Since physical protein-protein 

interactions directly indicate the cooperation of gene products to drive a biological process, a 

variety of clustering methods were developed to identify functional modules from protein-protein 
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interaction networks (Ji et al. 2014). Zinman, et al. (Zinman, Zhong, and Bar-Joseph 2011) have 

found that functional interactions that are part of functional modules are conserved at a much 

higher rate, further supporting the advantage of using protein interaction networks. Unfortunately, 

the computational methods for functional module identification are clearly limited by the poor 

quality of the underlying PPI data, which is noisy with high rates of false positive and false 

negative (Bader et al. 2004; Xiaoli Li et al. 2010). 

Another popular approach is to identify functional modules from coexpression network. 

Unlike protein interaction networks, edges in coexpression networks indicate differential 

expression of two genes within the same sample or condition. It assumes that tightly interacting 

and functionally dependent proteins are co-expressed across most conditions. This assumption is 

a reliable heuristic for functional module identification, despite that coexpression is not direct 

evidence for functional relation.  Studies had successfully identified stable functional modules 

from coexpression networks across species (Stuart et al. 2003). Therefore, the status of 

coexpression modules should be highly related to the activities or behavior of cells. Many 

biological studies have identified active functional modules related to certain diseases from 

coexpression networks (Shi et al. 2014; You et al. 2016).  

However, in the case of coexpression network, identifying functional modules at the 

appropriate granularity is a big challenge. As each experimental condition usually has perturbed 

multiple signaling pathways, differentially expressed genes in each condition usually correspond 

to multiple dysregulated biological processes (Bader et al. 2004). This could result in predicted 

functional modules being a superset of several real functional modules. 

In addition, high-throughput expression data also has its own data quality issues. For 

example, RNAseq data still suffered from technical issues, such as batch effects and 
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contamination. Recent studies have developed different methods to improve the accuracy of 

module identification by integrating coexpression networks and protein interaction networks 

(Tornow and Mewes 2003; Bader et al. 2004; Huang and Fraenkel 2009; Suthram et al. 2010; Dey, 

Hsiao, and Stephens 2017). However, data quality issues common in high-throughput data remain 

unresolved. 

Besides high-throughput data, decades of research efforts have obtained and validated vast 

amounts of biological knowledge through wet-lab experiments, which are valuable resources for 

further research. Such knowledge should contain much fewer errors compared to high-throughput 

data. A few studies have attempted to utilized the literature for functional module identification 

(Y. Liu, Liang, and Wishart 2015; Chen, Paisley, and Lu 2017; J. Kim, Kim, and Lee 2017; Z. 

Yang et al. 2014). However, relying on literature alone may lead to findings biased towards well 

studied genes, providing less novel insights. 

Since high-throughput data is less biased towards well-known genes and literature has 

fewer data quality issues, integrating these two information sources seems promising. This study 

has developed a multiplex clustering method to integrate data extracted from high-throughput 

experiments and biomedical literature for the purpose of functional module identification. 

Multiplex is a natural way to represent interactions in a complex system from multiple perspectives 

(“Networks - Mark Newman - Oxford University Press” n.d.). Random walks on multiplex can 

induce congestion even when every single layer remains decongested (Solé-Ribalta, Gómez, and 

Arenas 2016). Also, the fraction of nodes a random walker can travel has increased, owing to their 

resilience to uniformly random failures (De Domenico et al., n.d.). Thus, the dynamics of diffusion 

has changed in multiplex. Functional module identification on multiplex is likely to yield different 

results than each of its single layer. 
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Two major hypotheses were tested in this project (chapter): (1) gene-topic associations 

extracted from literature is able to reveal functional relations of genes and provide information 

complementary to high-throughput data; (2) integration of multiple information sources with 

multiplex approach can improve the accuracy of functional module identification. 

3.2 Construction of the Multiplex Network 

3.2.1 Topic modeling of genes 

Title and abstract information of biomedical articles were downloaded from PubMed on 

April 10, 2013. First, by treating each gene as a document, tf-idf scores were calculated to identify 

words most pertinent to a certain gene. For yeast literature, words with tf-idf scores lower than 53 

were removed; and the vocabulary was restricted to 6000. For human literature, the thresholds 

were 167 and 13000 for tf-idf scores and vocabulary size respectively. Second, a word vector was 

then created for each gene by going through its list of 200 words with the highest tf-idf scores and 

including only the ones that occur in the vocabulary. For each sample, whether collected from a 

yeast perturbation experiment or a cancer patient sample, word vectors for its differentially 

expressed genes were combined. nHDP (Paisley et al. 2015) was used to identify the latent topics 

in the set of combined word vectors.  

Topic-document associations and topic-word associations generated from nHDP were 

further utilized to calculate the gene-topic association scores used in this study. Association 

strength between a certain gene g and a certain topic t was calculated by the total sum of products 

of: (1) a specific word w’s count in g’s word vector, (2) t’s probability in document d, (3) the word 
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w’s probability in t. We refer to Chen’s work (Chen, Paisley, and Lu 2017) for a detailed 

description of this section. 

3.2.2 Similarity measure 

Functional similarity among genes was calculated with topic-gene association matrix and 

transcriptomic profiles respectively. For the topic-gene association matrix, association scores less 

than one were set to zero. The similarity measure was computed based on Simrank(Jeh and Widom 

2002): 

  𝑇𝑖 = 𝑐1(𝑆𝑇𝐺𝑖𝑆)(1) 

𝐺𝑖 = 𝑐2(𝑆𝑇𝑇𝑖−1𝑆)(2) 

where S was a g by n matrix containing the association score between n topics and g genes, 𝐺𝑖 was 

the g by g matrix containing the similarity among genes in the ith iteration, 𝑇𝑖 was the n by n matrix 

containing the similarity among topics in the ith iteration, and 𝑐1 and 𝑐2 were the hyper-parameters 

controlling the impact of later iterations. In this study, both 𝑐1 and 𝑐2 were set to 0.8. The equation 

(1) and (2) were iterated until T and G reached convergence. Note that only the similarity matrix 

G was used in the next section. 

For the transcriptomic profile data, expression values were dichotomized. Gene 

expressions higher or lower than 95% interval of the distribution was encoded as one, otherwise 

zero. Cosine similarity was used to compute the similarity among genes, which is: 

𝑠𝑖𝑚𝑖𝑗 =
𝑒𝑥𝑝𝑖∙𝑒𝑥𝑝𝑗

√||𝑒𝑥𝑝𝑖||∙||𝑒𝑥𝑝𝑗||
(3) 

where 𝑒𝑥𝑝𝑖 was the vector of expression values of the ith gene across all the experiments, ||𝑒𝑥𝑝𝑖|| 

is the L2 norm of that vector. 
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3.2.3 Computation of similarity matrix 

Protein-protein interaction (PPI) networks were used as the base network. The similarity 

measures computed in the last section were used as the edge weights for these PPI networks. Thus, 

the topic-based interactome consisted of the topology of a PPI network with edge weights from 

the topic-gene association matrix; and the expression-based interactome consisted of the topology 

of a PPI network with edge weights from transcriptomic profile data. For PPI curated in BioGrid 

for yeast, we only selected interactions supported by at least two studies. 

These two interactomes were further combined into one network by treating each 

interactome as a layer and connecting the same gene across different layers, as demonstrated in 

Figure 2. 

 

Figure 2 Illustration of the combined interactome, brown edges were artificial edges added to connect these 

two layers. 
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3.2.4 Network integration 

For all the networks described above, self-loops were removed. Edges with zero similarity 

and nodes with zero weighted degrees were removed. The combined network is represented by a 

supra-adjacency matrix (Boccaletti et al. 2014): 

𝐴 = [
𝐴1 𝐼𝑁

𝐼𝑁 𝐴2
] 

where 𝐴𝑖 is the adjacency matrix for the ith layer, 𝐼𝑁 is an N by N identify matrix, N is the number 

of nodes in a single layer. 

 

3.3 Isolation Clustering on the Multiplex 

The algorithm developed in this study consist of two steps: (1) transform the adjacency 

matrix into a matrix representing k-step walks visiting probability; (2) enumerate each node to 

identify clusters with locally optimal isolation. 

3.3.1 Network transformation 

With the network constructed from previous steps, the Markov transition matrix, M, should 

be computed next, which is: 

𝑀𝑖𝑗 = 𝐴𝑖𝑗/𝐴𝑖.(4) 

where 𝐴𝑖. is the sum of the ith row of A. 
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From M, we further computed a matrix C, where 𝐶𝑖𝑗 is the probability that node j is visited 

if a walk of K steps starts from node i. In this study, K is always set to 10. Since 𝐶𝑖𝑗  is 

complementary to the probability that node j never shows up in the path, it can be computed as: 

𝐶𝑖𝑗 = 1 − 𝟏𝑖
𝑻 (𝑀𝐼−𝑗)𝐾𝟏            (5) 

where 𝟏𝑖 is the vector with only the ith element as one, others zero, 𝐼−𝑗 is an identity matrix with 

the jth diagonal value zero, 𝟏 is the vector of 1. 

As the vectorization of the operation above, the matrix C can be computed by the procedure 

below: 

 

Box 1. Algorithm for computing the matrix C 

3.3.2 Objective function 

Let us denote 𝑡𝑖𝑗 as the number of times node j is present in the path started from node i, 

then 𝑡𝑖𝑗 is sampled from a Bernoulli distribution with probability 𝐶𝑖𝑗. Thus, 𝐶𝑖𝑗 can also be viewed 

as the expected number of times node j is present if a k-step walk is started from node i, which is: 

𝐶𝑖𝑗 = 𝑃𝑟(𝑡𝑖𝑗 = 1) = 𝐸(𝑡𝑖𝑗)           (6) 

We further denote R as a subset of nodes and 𝑡𝑖𝑅 as the total number of nodes of R present 

in the walk: 

𝑡𝑖𝑅 = ∑ 𝑡𝑖𝑗𝑗∈𝑅                    (7) 

We can derive that: 

𝐶1 = 𝐴 ∙ (𝟏 − 𝐼) 

    for i in (2: K): 

     𝑑𝑖𝑎𝑔(𝐶𝑖−1) = 𝟎 

     𝐶𝑖 = 𝐴 ∙ 𝐶𝑖−1 

         𝐶 = 𝟏 − 𝐶𝑖 
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𝐸(𝑡𝑖𝑅) = 𝐸(∑ 𝑏𝑖𝑗𝑗∈𝑅 ) = ∑ 𝐸(𝑏𝑖𝑗)𝑗∈𝑅 = ∑ 𝐶𝑖𝑗𝑗∈𝑅           (8) 

We can further generalize the equation by denoting 𝑡𝑄𝑅 as the total number of nodes in R 

present in a walk started from a node in Q. A walk is started from node i in R for 𝑊𝑖 times. From 

the law of total expectation, we can derive that: 

𝐸(𝑡𝑄𝑅) = ∑ ∑ 𝑊𝑗𝐶𝑖𝑗𝑗∈𝑄𝑖∈𝑅                     (9) 

Assuming 𝑊𝑗=1 for every j, we developed two measures to capture the degree of isolation 

of a subset R. One is retention: 

𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
𝐸(𝑡𝑅𝑅)

𝐸(𝑡𝑅𝐺)
=

∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝑅

∑ ∑ 𝐶𝑖𝑗𝑗∈𝐺𝑖∈𝑅
           (10) 

where G is the subset for all the nodes within the graph, 𝑡𝑅𝑅 is the expected number of nodes of R 

visited in the k-step walks started from each node in R once, 𝑡𝑅𝑈 is the expected total number of 

nodes of G visited in the k-step walks started from each node in R once. The higher retention, the 

more likely walkers started in R will stay in R. 

The other is: 

𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 =
𝐸(𝑡𝑅𝑅)

𝐸(𝑡𝐺𝑅)
=

∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝑅

∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝐺
              (11) 

where 𝑡𝑅𝑈 is the expected total number of nodes of R visited in the k-step walks started from all 

the nodes in G once. The higher exclusion, the less likely walkers outside R will get in. 

Combining these two measures, the objective function, named isolation in this study, is: 

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑅 =
𝐸(𝑡𝑅𝑅)

𝐸(𝑡𝑅𝐺)+𝐸(𝑡𝐺𝑅)
=

∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝑅

∑ ∑ 𝐶𝑖𝑗𝑗∈𝐺𝑖∈𝑅 +∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝐺
(12) 
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Figure 3 Illustration of the intuition of the objective function. Nodes within the red dotted circle would be a 

region with high isolation since walkers inside are likely to stay within and walkers outside are unlikely to get 

in. 

 

3.3.3 Optimization procedures 

To identify clusters with maximal isolation, we adopted a greedy approach iterating 

between two phases. One is expansion. In the expansion phase, isolation is calculated for each 

individual node outside the cluster: 

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑅 =
∑ 𝐶𝑖𝑗𝑗∈𝑅 +∑ 𝐶𝑗𝑖𝑗∈𝑅

∑ 𝐶𝑖𝑗𝑗∈𝐺 +∑ 𝐶𝑗𝑖𝑗∈𝐺
(13) 

Note that the top 10 nodes with 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑅 higher than the original cluster are added into 

the cluster. 

The other is shrinking. In this phase, isolation is calculated for each individual node within 

the cluster. All the nodes with 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑅 lower than the original cluster are removed from the 

cluster. The algorithm keeps iterating between expansion and shrinking until there are no more 

qualified nodes for expansion. 
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3.3.4 Proof of convergence 

For expansion, let us denote the set of qualified nodes as X and the resulting cluster as R’. 

For each node i within X, 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖𝑅 > 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑅. In other words: 

∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝑋 + ∑ ∑ 𝐶𝑗𝑖𝑗∈𝑅𝑖∈𝑋

∑ ∑ 𝐶𝑖𝑗𝑗∈𝐺𝑖∈𝑋 + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝑋𝑖∈𝐺
>

𝐸(𝑡𝑅𝑅)

𝐸(𝑡𝑅𝐺) + 𝐸(𝑡𝐺𝑅)
 

Thus: 

𝐸(𝑡𝑅𝑅) + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝑋 + ∑ ∑ 𝐶𝑗𝑖𝑗∈𝑅𝑖∈𝑋

𝐸(𝑡𝑅𝐺) + 𝐸(𝑡𝐺𝑅) + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝐺𝑖∈𝑋 + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝑋𝑖∈𝐺
>

𝐸(𝑡𝑅𝑅)

𝐸(𝑡𝑅𝐺) + 𝐸(𝑡𝐺𝑅)
 

On the other hand, 

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑅′𝑅′ =
𝐸(𝑡𝑅𝑅) + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝑋 + ∑ ∑ 𝐶𝑗𝑖𝑗∈𝑅𝑖∈𝑋 + 𝐸(𝑡𝑋𝑋)

𝐸(𝑡𝑅𝐺) + 𝐸(𝑡𝐺𝑅) + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝐺𝑖∈𝑋 + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝑋𝑖∈𝐺

>
𝐸(𝑡𝑅𝑅) + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝑋 + ∑ ∑ 𝐶𝑗𝑖𝑗∈𝑅𝑖∈𝑋

𝐸(𝑡𝑅𝐺) + 𝐸(𝑡𝐺𝑅) + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝐺𝑖∈𝑋 + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝑋𝑖∈𝐺
 

Hence 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑅′𝑅′ > 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑅 after expansion. 

Similarly, an increase of isolation after shrinking can be proved. Thus, our objective 

function, isolation, is always increasing during iterations, and convergence is guaranteed. 
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Box 2. Clustering Algorithm 

 

3.3.5 Merging overlapped clusters 

Highly overlapping clusters are likely to exist for this method. Additionally, for integrated 

networks, duplicate gene IDs in the same cluster need to be removed. Therefore, overlapping 

among clusters were evaluated by Jaccard coefficients: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐶𝑖, 𝐶𝑗) =
|𝐶𝑖∩𝐶𝑗|

|𝐶𝑖∪𝐶𝑗|
(14) 

where 𝐶𝑖 was the ith cluster, |𝐶𝑖| was the number of genes in 𝐶𝑖. 𝐶𝑖 ∩ 𝐶𝑗 was the intersection of 𝐶𝑖 

and 𝐶𝑗, and 𝐶𝑖 ∩ 𝐶𝑗 is the union of 𝐶𝑖 and 𝐶𝑗. A graph with clusters as nodes was constructed. There 

is an edge between cluster i and j if 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐶𝑖, 𝐶𝑗)>0.8. Sets of highly overlapping clusters is 

identified as a connected component of the graph, union and intersection of all the clusters within 

function IsolationOptimization(C); 

Input: The matrix C 

Output: The list of tuples of index 

let R be an empty list 

let S be a set of indexes of all the nodes in C 

Sort S in the descending order of RowSum(C) 

while S != Null do 

region = S.pop() 

candidates = expand(C, region) 

while candidates != Null do 

   region = region.add(candidates) 

   region = shrink(C, region) 

   candidates = expand(C,region) 

end while 

R.append(region) 

S = SetDifference(S, region) 

end while 

return (R) 

end 
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a set is computed and added into the set. For each sets, the cluster with the maximal isolation will 

remain while all the others will be removed. 

3.4 Experimental Results 

We first identified differentially expressed genes from RNA expression data. Then we 

calculated topic-gene association from Pubmed titles and abstracts. These two types of data were 

used to calculate functional similarity among genes used as edge weights for protein interaction 

networks respectively. The two weighted PPI networks were further connected with the multiplex 

approach. Finally, we developed a clustering algorithm to identify functional modules with locally 

maximum isolation from the two-layer protein interaction network. Our clustering algorithm on 

multiplex was compared with itself on single layer network. Then it was compared against other 

methods in terms of protein coverage and accuracy. 

3.4.1 Descriptive Statistics 

BioGrid curation of PPI for saccharomyces cerevisiae contained 32353 interactions among 

4518 gene products. The transcriptomic profile of yeast perturbation experiments contained 

expression values of 5980 genes under 1525 knockout conditions. The topic-gene association 

matrix contained 216 topics and 5348 genes. 

After network construction, the yeast interactome based on topic modeling had 4187 genes 

and 30989 interactions; the yeast interactome based on transcriptomic profiles contained 4179 
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genes and 30887 interactions; the interactome based on the combination of the transcriptomic 

interactome and the topic-gene associations contained 8302 genes and 65793 interactions. 

The protein interaction network contained 10945 nodes and 56471 edges. The 

transcriptomic profile of breast cancer patients in TCGA contained 1218 samples and 20252 genes. 

The topic-gene association matrix contained 209 topics and 16712 genes. 

After network construction, the human interactome based on transcriptomic profiles 

contained 10029 genes and 49909 edges. The human interactome based on topic modeling 

contained 10368 genes and 48806 edges. The combined interactome contained 19266 genes and 

212292 edges. 

 

3.4.2 Single-layer versus multiplex 

We first checked if a method using both knowledge and expression data can obtain better 

performance than those using only protein interaction networks or combined with topic 

association.  As shown in Figure 4, Figure 5, Figure 6, and Figure 7, after being weighted by topic 

association, PPV was improved across all evaluations. It was further improved when information 

about topic association and coexpression were combined with the multiplex approach. This 

suggests that our clustering algorithm tends to identify clusters with fewer false positives.  

However, sensitivity has remained mostly unchanged or slightly worse. In particular, 

sensitivity has decreased when evaluated against CYC2008 in the species of yeast. This suggested 

that, while false positives were reduced, true functional relations may be more likely to be ignored, 

resulting in lower sensitivity. 
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Figure 4 Performance of isolation clustering on three different human interactomes, using Gene Ontology as 

gold standard. 

  

 

Figure 5 Performance of isolation clustering on three different human interactomes, using CORUM as the 

gold standard. 
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Figure 6 Performance of isolation clustering on three different yeast interactomes, using Gene Ontology as 

the gold standard. 

 

 

Figure 7 Performance of isolation clustering on three different human interactomes, using CYC2008 as the 

gold standard. 

3.4.3 Comparison with other methods 

We then compared our clustering method with some other well-known methods in terms 
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for our method (isolation) is more skewed towards size 3-10. For the species of yeast, CYC2008 

has over 83.3% of proteins with size less than 10, while the percentage of MCL, Infomap, Isolation 

was 73.8%, 64.4%, and 92.3% respectively. For the species of human, 89.5% of proteins 

complexes in CORUM contain less than or equal to 10 gene products, while 88.9% of functional 

modules generated by isolation clustering has such small size. Assuming that this distribution of 

CORUM and CYC2008 represents the true distribution of protein complexes, it indicated that the 

modular structure characterized by Isolation clustering was similar to that within real cells.  

 

Table 1 The distribution of cluster size by different methods on yeast interactomes. The rightmost column is 

the gold standard used in this study. 

Size MCL Walktrap Infomap MCODE ClusterOne Isolation CYC2008 

3 – 10 342 158 275 135 426 995 198 
11 – 50 107 44 140 21 86 82 36 

51 - 
100 

13 5 7 11 10 1 2 

100-
200 

0 5 5 2 4 0 0 

>200 1 0 0 0 0 0 0 
 

Table 2 The distribution of cluster size by different methods on human interactomes. The rightmost column 

is the gold standard used in this study. 

Size MCL Walktrap Infomap MCODE ClusterOne Isolation CORUM 

3 – 10 1008 323 506 319 1322 2131 1562 
11 – 

50 
353 83 241 47 108 260 176 

51 - 
100 

15 13 16 8 0 4 5 

100-
200 

0 3 3 1 0 1 2 

>200 0 0 0 3 0 0 0 
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3.4.3.1 Protein coverage 

As shown in Figure 8, clusters generated by ClusterOne, MCODE, and Walktrap can only 

cover around half of the interactome. MCL, Infomap, and Isolation had covered over 90% of the 

interactome. Significantly higher coverages indicated that clustering methods based on random 

walks (i.e., MCL, Infomap, and Isolation) might provide more information about novel proteins 

so as to generate more biological insights. In the next section, only MCL, Infomap, and Isolation 

were compared against each other in terms of accuracy. 

 

Figure 8 In clustering for both yeast and human interactomes, clustering based on random walks has covered 

most proteins, while density-based clustering discarded around half the proteins. 

 

3.4.3.2 Geometric accuracy 

As shown in Figure 9 and Figure 10, Isolation has outperformed MCL and Infomap in yeast 

interactome in terms of geometric accuracy. The accuracy of our method is slightly higher than 

other methods. However, in the case of human interactomes, these three methods yielded very 

similar performance. 
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Figure 9 Comparison of geometric accuracy of MCL, Infomap, and Isolation on yeast interactomes 

 

 

Figure 10 Comparison of geometric accuracy of MCL, Infomap, and Isolation on human interactomes. 

 

3.4.4 Examples of clusters 

Our clustering results have found many overlaps with known complexes. Two of them 

were perfect matches (Figure 11). For some genes misclassified to a complex, we are able to 

identify close functional relations from literature. For example, our methods had grouped PINX1 
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with TRF-Rap1 complex I (Figure 12). Although PINX1 is not part of the complex, it is well 

studied that PINX1 can mediate TRF1 (or TERF1) and TERT accumulation in the nucleus and 

enhances TERF1 binding to telomeres(X. Z. Zhou and Lu 2001; Yonekawa, Yang, and Counter 

2012), thus affecting the function of the complex. 

Furthermore, “misclassified” genes without direct evidence may be more interesting since 

they could provide new insights for current knowledge. For example, C18orf21 was grouped with 

Rnase/Mrp complex by our method (Figure 13). Several studies have found genetic associations 

between variants in C18orf21 and human phenotypes. Besides the high-throughput data (BioPlex 

(Huttlin et al. 2017)) used in this study, no further experiments have been conducted to investigate 

the functions of C18orf21. Our results suggested that C18orf21 could function by regulating 

Rnase/Mrp complex. Another example was shown in Figure 14, where PNMA6A, DRAP1, 

PTCD3, AURKAIP1, and DDX55 were grouped with the 28S ribosomal subunit. Through 

literature we found that these misclassified genes, except PNMA6A, have a significant impact on 

mitochondrial ribosome though detailed mechanisms are not clear (Koc et al. 2013; S. M. K. 

Davies et al. 2009; Schmid and Linder 1992). 

 

Figure 11 The two predicted complexes perfectly matched to CORUM complexes. On the left is matched to 

hTREX84 complex. On the right is matched to SNAPc complex. 
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Figure 12 Predicted complex matched to telomere-associated protein complex and TRF-Rap1 complex I, 

2MD. Blue nodes were genes predicted but absent in the gold standard. 

 

 

Figure 13 Predicted complex matched to Rnase/Mrp complex. Blue nodes were genes predicted but absent in 

the gold standard. 
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Figure 14 Predicted complex matched to 39S ribosomal subunit, mitochondrial. Blue nodes were genes 

predicted but absent in the gold standard. 

 

3.5 Contribution and Limitations 

As illustrated in the results, isolation clustering tends to identify isolated regions supported 

by both layers in the multiplex. Such tendency reduces false positives while inducing more false 

negatives. As shown in the results (Section 3.4), our new clustering algorithm, Isolation, has 

achieved better, or at least comparable, performance with other well-known clustering algorithms 

based on random walk. Particularly, subnetworks with locally maximal isolation exhibited higher 

confidence of being true positive when compared with MCL and Infomap. When compared with 

clustering algorithms such as ClusterOne, our algorithm has covered over 90% of proteins, while 

density-based clustering can only cover around 50%. This leads to higher PPV from density-based 

clustering algorithms.  
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In addition, end-users usually prefer PPV to sensitivity. In other words, biomedical 

researchers may care more about whether the predicted modules reveal functional relationships 

among genes rather than whether all the closely related genes are included in a module. Thus it is 

natural for users to focus on positive predictive value or precision rather than composite scores 

used by most methodological studies.  From this perspective, our integrative approach provides 

practical values.  

Selected examples in the result section has shown that false positive genes could be 

functionally related in a way other that protein complexes. This illustrated one fundamental 

limitation for functional module identification and its evaluation. Biological experiments should 

be conducted to further verify the predicted modules. 

This project also demonstrated that topic modeling of biomedical literature is an effective 

complementary source of information. Knowledge validated and curated in the form of literature 

are generally more reliable than high-throughput data. By integrating knowledge into the 

functional module identification process, false positives caused by data quality issues can be 

reduced. Thus, functional modules are identified with higher confidence. 
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4.0 Identifying Coexpression Patterns with Boolean Matrix Factorization 

This chapter describes the motivation, assumptions, and modeling of our improved 

Boolean matrix factorization. It also includes experimental results that applied BMF to bulk RNA-

seq, scRNA-seq, and spatial transcriptomic profiles. 

4.1 Need for Biclustering Algorithm in Gene Expression Analysis 

Grouping genes or samples according to their shared expression patterns was an important 

task. On the genes' side, similar expression profiles across conditions indicated coregulation of 

gene expression, which can be used to infer upstream pathway activities (Tai et al. 2018) and the 

regulatory relationship between transcription regulators and target genes (Paul et al. 2015). On the 

samples' side, clusters of samples help reveal the heterogeneity in the disease population. For 

example, (Sørlie et al. 2001) has identified clinically relevant breast cancer subtypes from 

expression profiles alone. This task has become ever more prevalent since the emergence of new 

technologies such as single cell RNAseq (A. P. Patel et al. 2014) and spatial transcriptomics 

(Berglund et al. 2018), which enable us to interrogate tumor heterogeneity with finer granularity. 

However, clustering directly on only one side (either on the sample side or the gene side) 

yields limited performance. That is because computational distance between objects is 

contaminated by the noise in irrelevant features. As illustrated in Fig. 1a, given that coregulation 

mechanism is prevalent in expression profile, the similarity between samples/conditions should 

only depend on a small group of genes with common upstream factors. Since at most several 
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hundred genes can be coregulated, the distinctive expression profiles for a cluster of samples is no 

more than several hundred genes. This means all the other genes acted as random noise for the 

identification of this one cluster. Most studies handled such issues with feature selection. This 

approach requires prior knowledge or external information, which potentially hinders the 

identification of novel and interesting features. Moreover, the issue of contamination cannot be 

resolved even with perfect feature selection. A selected subset of genes can be informative features 

for one cluster while being random noise to another. 

Thus, biclustering should be a natural choice when it comes to high dimensional gene 

expressions analysis. By finding clusters and their corresponding features simultaneously, 

biclustering directly resolved the contamination issues above. Since first proposed by (Cheng and 

Church 2000), various biclustering algorithms have been developed and applied to gene expression 

data (Xie et al. 2019). However, most biclustering algorithms (Tanay, Sharan, and Shamir 2002; 

Bergmann, Ihmels, and Barkai 2003; G. Li et al. 2009) are heuristic-based with local iterative 

search. Thus these algorithms are mostly used to identify subtle gene-sample substructure, rather 

than tasks requiring systematic analysis of sample heterogeneity such as subtype classification or 

cell type deconvolution.  

Another popular approach is to factorize the gene-sample matrix (Stein-O’Brien et al. 

2018). As an example, nonnegative matrix factorization (NMF) has been widely used in gene 

expression analysis in the past decade (Brunet et al. 2004). By performing dimension reduction on 

both columns and rows, the matrix factorization approach provides more information about global 

heterogeneity. Recently, a comprehensive evaluation (Saelens, Cannoodt, and Saeys 2018) showed 

that matrix factorization outperforms clustering and biclustering in terms of identifying 

coexpression modules. However, this approach does not explicitly provide clustering structures. 
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Even for methods that provide bicluster structure (Hochreiter et al. 2010), the assumption of linear 

combination may not be sufficient to capture the coregulation patterns in transcriptomic data. 

4.2 Biclustering Formulation with Boolean Matrix Factorization 

Besides the differential expression matrix X. We need to define two latent variables, U and 

Z. Unl indicates that pathway l is perturbed in sample n. Zml indicates that pathway l regulates gene 

m. Note that the term “pathway” used in this chapter denotes any biological mechanism that may 

play a regulatory role in gene expression, such as transcription factors, signaling pathways, cell 

population, and disease subtypes. Therefore, the matrix U represents the abnormality status of 

transcriptional regulation mechanisms. 

First, we need to impose two assumptions about gene expression regulation: (1) differential 

expression takes place when its regulating pathway is perturbed; (2) if a gene is regulated by 

multiple pathways, perturbation of one pathway is sufficient to cause differential expression. 

With these assumptions, we state that X is the outcome of the AND-OR product rule: 

 

𝑋𝑛𝑚 =∨𝑙≤𝐿 (𝑈𝑛𝑙 ∧ 𝑍𝑚𝑙) (1) 

 

where ∨  is the OR operator and ∧  is the AND operator. In this study, however, a different 

formulation was adopted. We assume that each element of X, 𝑋𝑛𝑚, is sampled from a different 

Bernoulli distribution. Similarly, every element in the latent factors is sampled from different 

Bernoulli distributions. The generative process of X can be described as follows: 
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𝑈𝑛𝑙 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜇𝑛𝑙) 

𝑍𝑚𝑙 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜁𝑚𝑙) 

 

where 𝜇 is a N×L matrix with values in [0, 1], 𝜁 is a M×L matrix with values in [0, 1]. Clearly, by 

forcing 𝜇 and 𝜁 to be binary, our formulation will be identical to previous Bayesian approaches. 

Thus, our formulation is a generalized version of the Bernoulli model. With this approach, our 

goal for Boolean matrix factorization is to estimate the parameters 𝜇 and 𝜁 instead of their samples 

U and Z. 

Since the AND-OR product is a logical Boolean operation, 𝑋𝑛𝑚 can be seen as the output 

of a function of U and Z. Hence, we can derive how 𝑃(𝑋𝑛𝑚 = 1|𝜇𝑛𝑙, 𝜁𝑚𝑙) can be computed with 

𝑃(𝑈𝑛𝑙 = 1|𝜇𝑛𝑙) and 𝑃(𝑍𝑛𝑙 = 1|𝜁𝑚𝑙) given their logical relationship. 

 

𝑃𝑛𝑚 = 𝑃(𝑋𝑛𝑚 = 1) = 1 − 𝑃(𝑋𝑛𝑚 = 0) = 1 − ∏ [1 − 𝑃(𝑈𝑛𝑙 = 1, 𝑍𝑛𝑙 = 1)]𝑙≤𝐿   

 

where the conditional parameters are ignored for convenience. 

Assuming U and Z are independent, in other words, whether a pathway is perturbed is not 

related to which gene it regulates, we have: 

 

𝑃(𝑈𝑛𝑙 = 1, 𝑍𝑛𝑙 = 1|𝜇𝑛𝑙, 𝜁𝑚𝑙) = 𝑃(𝑈𝑛𝑙 = 1|𝜇𝑛𝑙)𝑃(𝑍𝑛𝑙 = 1|𝜁𝑚𝑙) =  𝜇𝑛𝑙 ∗ 𝜁𝑚𝑙  

 

Therefore, 𝑃(𝑋𝑛𝑚 = 1|𝜇𝑛𝑙, 𝜁𝑚𝑙) can be expressed as: 

 

𝑃𝑛𝑚 = 1 − ∏ (1 − 𝜇𝑛𝑙 ∗ 𝜁𝑚𝑙)
𝑙≤𝐿

(2) 
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4.3 Model Inference 

And the model likelihood, the objective function we maximize regarding 𝜇 and 𝜁, can be 

computed as: 

 

𝐿𝐿(𝜇, 𝜁; 𝑋) = ∑ [𝑋𝑛𝑚𝑙𝑜𝑔𝑃𝑛𝑚 + (1 − 𝑋𝑛𝑚)log (1 − 𝑃𝑛𝑚)]
𝑛≤𝑁,𝑚≤𝑀

(3) 

 

    Conventional gradient descent is not applicable because 𝜇 and 𝜁 need to be within the 

interval [0, 1]. Thus,  𝜇 and 𝜁 are reparameterized as σ(A) and σ(B) elementwise: 

 

𝜇𝑛𝑙 = 1/(1 + 𝑒−𝐴𝑛𝑙) 

𝜁𝑛𝑙 = 1/(1 + 𝑒−𝐵𝑛𝑙) 

 

   With reparameterization, it becomes a problem of unconstrained nonlinear programming. 

A simple gradient ascent algorithm is sufficient to jointly optimize the estimators of A and B. The 

partial likelihood gradients regarding A are: 

 

𝜕𝐿𝐿

𝜕𝐴𝑖𝑙
= ∑ [

𝜇𝑛𝑙𝜁𝑚𝑙(1 − 𝜇𝑛𝑙) (1 −
𝑋𝑛𝑚

𝑃𝑛𝑚
)

1 − 𝜇𝑛𝑙𝜁𝑚𝑙
]

𝑚≤𝑀

(4) 

 

Note that A and B are symmetric, thus the partial gradient of B can be computed similarly 

as A. In the subsequent description, equations related to B and Z were also neglected due to this 

symmetry. 
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We further introduce a parameter, 𝜖, to explicitly model the probability that elements in X 

is contaminated by noise (flipped from 1 to 0 or vice versa). In this scenario, the observed data, 

X*, is generated as: 

 

𝐶𝑛𝑚 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜖) 

𝑋𝑛𝑚
∗ = 𝐴𝐵𝑆(𝑋𝑛𝑚 − 𝐶𝑛𝑚) 

 

where 𝐶𝑛𝑚  is a N×M binary matrix with every element as a i.i.d sample from a Bernoulli 

distribution parameterized by a scalar 𝜖. ABS is the function of taking absolute values. To reflect 

the addition of noise in the model, we need to add one step in the generative process: 

 

𝑃∗ = (1 − 𝜖)𝑃 + 𝜖(1 − 𝑃) 

 

The noisy observation, 𝑋∗, is sampled from P* instead of P: 

 

𝑋𝑛𝑚
∗ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃∗) 

 

Thus, the model likelihood becomes: 

 

𝐿𝐿(𝜇, 𝜁; 𝑋∗) = ∑ [𝑋𝑛𝑚
∗ 𝑙𝑜𝑔𝑃𝑛𝑚

∗ + (1 − 𝑋𝑛𝑚
∗ )log (1 − 𝑃𝑛𝑚

∗ )]
𝑛≤𝑁,𝑚≤𝑀

5 
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     To optimize the likelihood function regarding 𝜇, 𝜁 and 𝜖, we applied the expectation 

maximization algorithm. In M step, 𝜇 and 𝜁 are estimated with the gradient based method. The 

difference is the presence of a fixed ϵ, leading to a different equation for likelihood gradients: 

 

𝜕𝐿𝐿

𝜕𝐴𝑖𝑙
= ∑

𝜇𝑛𝑙𝜁𝑚𝑙(1 − 𝜇𝑛𝑙)(1 − 𝑃𝑛𝑚)(1 − 2𝜖)(𝑃𝑛𝑚
∗ − 𝑋𝑖𝑗

′ )

(1 − 𝑃𝑛𝑚
∗ )𝑃𝑛𝑚

∗ (1 − 𝜇𝑛𝑙𝜁𝑚𝑙)
𝑚≤𝑀

(6) 

 

 In E step, based on the modified generative process described in the beginning of this 

section, the expected value of 𝜖 is equivalent to the difference between the noisy observation, X*, 

and the reconstructed data without noise, �̂�:  

 

𝜖 =
|𝐶|

𝑁𝑀
=

|�̂� − 𝑋∗|

𝑁𝑀
(7) 

 

The estimate above is only approximate. The exact estimate should be the average 

difference between X* and P*. However, the exact estimate requires a much more stringent 

convergence criterion in the M step. During synthetic experiments, the performance of the 

approximate estimate is not significantly different from the exact one. Thus, the approximate 

estimate of 𝜖 was adopted. 

We further impose prior distribution on 𝜇 and 𝜁: 

 

𝜇𝑚𝑙 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 

𝜁𝑚𝑙 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 
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In practice, 𝜇 and 𝜁 can comply with different Beta distributions. For the convenience of notation, 

we simply assume they have a common prior distribution. Thus 𝜇 and 𝜁 are estimated based on 

Maximum a Posteriori (MAP) estimator. The posterior probability function of 𝜇 and 𝜁 is: 

 

Pr(𝑋|𝜇, 𝜁, 𝜖) = 𝐿𝐿 + (𝛼 − 1) [ ∑ 𝑙𝑜𝑔𝜇𝑚𝑙

𝑚≤𝑀,𝑙≤𝐿

+ ∑ 𝑙𝑜𝑔𝜁𝑛𝑙

𝑛≤𝑁,𝑙≤𝐿

]

+ (𝛽 − 1)[ ∑ log (1 − 𝜇𝑚𝑙)

𝑚≤𝑀,𝑙≤𝐿

+ ∑ log (1 − 𝜁𝑛𝑙)

𝑛≤𝑁,𝑙≤𝐿

] 

 

where LL is described in Section 2.3. We applied gradient ascent to the objective function. The 

partial gradient for Pr(𝑋|𝜇, 𝜁, 𝜖) is: 

 

𝜕 Pr(𝑋|𝜇, 𝜁, 𝜖) /𝜕𝐴𝑛𝑙 = 𝜕𝐿𝐿/𝜕𝐴𝑛𝑙 + (𝛼 − 1)(1 − 𝜇𝑛𝑙) − (𝛽 − 1)𝜇𝑛𝑙 

 

Clearly, when 𝛼 and 𝛽 are set to 1, the MAP estimator will be identical to the maximum 

likelihood estimator. When 𝛼 and 𝛽 are larger than 1, latent factors will be skewed towards 0.5; 

when 𝛼 and 𝛽 are less than 1, latent factors are pushed towards 0 or 1. Alternatively, the entropy 

of 𝜇  and 𝜁  can be used as penalty, and the objective becomes minimizing KL divergence. 

However, users can push the sparsity of latent factors by making 𝛼 and 𝛽 asymmetric, which is 

not available with entropy. 

Our approach to matrix completion is simple. During training, parameters are only updated 

based on the gradients from the observed data points. When convergence is reached, missing data 

are imputed by the reconstructed data without noise. 
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4.4 Experimental Results 

Our algorithm was compared with the message passing approach (Siamak Ravanbakhsh, 

Póczos, and Greiner 2016) and the full Bayesian approach (Tammo Rukat et al. 2017), referred to 

as LoM/OrM below. The Bernoulli prior for the two algorithms were estimated using the empirical 

Bayes approach described in (Tammo Rukat et al. 2017). During synthetic experiments, we 

evaluated the three algorithms on two tasks: noisy matrix factorization and noisy matrix 

completion. In real data experiment, the three algorithms were compared by the subtype 

classification accuracy on RNAseq datasets from TCGA (Tomczak, Czerwińska, and 

Wiznerowicz 2015). Finally, we demonstrated our algorithm's real-world application to three 

datasets generated by bulk RNAseq, scRNAseq, and in situ hybridization, respectively. 

4.4.1 Simulation experiment 

The observed matrices with noise, X*, were synthesized based on the same sampling 

scheme as our probabilistic problem formulation, except that each scalar value in latent factors 

was sampled from a uniform distribution on interval [P-0.3, P+0.3]. P was determined by the preset 

matrix density P(X=1): 

 

P(𝑋 = 1) = 1 − (1 − 𝑃2)𝐿 (8) 
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4.4.1.1 The task of matrix factorization 

We evaluated the three algorithms on four different noise levels (flip probability): 0.0, 0.1, 

0.2, 0.3. The sampling scheme was repeated 10 times for each noise level. The performance was 

measured by the reconstruction error rates, which is comparing the reconstructed matrix with the 

synthesized matrix without noise: 

 

𝑒𝑟𝑟 = |�̂� − 𝑋|/(𝑁𝑀) 

 

As shown in Figure 15, although EM algorithm is likely to reach a local optimum, the 

performance of BEM is more stable across different noise levels compared with other probabilistic 

approaches. BEM has achieved zero error in 9 out of 10 synthetic datasets with lower noise levels 

(flip probability ≤ 0.3), while the other two can only perfectly reconstruct the noiseless matrix in 

6 to 9 synthetic samples. Statistical analysis showed that BEM was significantly better than LoM 

when there is no noise and outperformed MP when the noise level reached 0.3. However, when 

the flip probability is above 0.3, LoM performed slightly better than message passing and BEM. 

Such comparison results remained the same when matrix density was 0.3 (Appendix Figure 1) and 

0.7 (Appendix Figure 2). 
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Figure 15 Reconstruction error (8% max) of synthetic data when Bernoulli priors varied. Synthetic matrices 

were 1000×1000 with rank 5. BEM (Left) is the algorithm proposed in this study; MP (right) is short for 

message passing; LOM (middle) is the Logical factorization machine. 

 

When tested against various matrix sizes and Boolean ranks, the degree of freedom versus 

sample size, (𝑁 + 𝑀)𝐿/(𝑁𝑀), is important for the relative performance of BEM. As shown in 

Appendix Figure 3 and Appendix Figure 4, when Boolean rank was increased from 5 to 10, LoM 

achieved the best performance across different noise levels. However, when matrix sizes increased 

from 1000 to 2500, LoM's performance has a much greater variance than message passing and 

BEM. 



 48 

4.4.1.2 The task of matrix completion 

We evaluated the three methods with various observed fraction (i.e. 30%, 50%, 70%, 95%). 

The matrices were generated with the same sampling scheme as above. The noise was set at 20%. 

The performance was measured by the fraction of correctly inferred values. As shown in Figure 

16, although BEM only significantly outperformed LoM when the observed fraction is 50%, its 

performance is favorable across different settings except when observed fraction is 30%. 

In summary, BEM outperformed other probabilistic Boolean matrix factorization methods 

when the noise level is less than or equal to 30%. Since most gene expression datasets satisfy these 

conditions, BEM is more suitable to transcriptomic data than other Boolean matrix factorization 

methods. 
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Figure 16 Reconstruction error on synthetic data with varying observed fractions. BEM (left) is the algorithm 

proposed in this study; MP (right) is short for message passing; LoM (middle) is the Bayesian sampling 

approach. 

4.4.2 Real data experiments 

4.4.2.1 Classification of breast cancer subtypes 

We downloaded transcriptomic profiles of breast cancer patients from TCGA (Tomczak, 

Czerwińska, and Wiznerowicz 2015). The data was dichotomized to encode differential 

expression. The criteria for differential expression are: (1) absolute log fold change > 0.23; (2) 

adjusted p value ≤ 0.05. Differential expression was encoded as 1, otherwise 0. 

From this binary matrix, 15 factors were extracted with our algorithm and others for 

comparison. The number of factors was determined by Akaike information criteria (AIC). To 
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examine the effectiveness of BEM, we investigated the proportion of patient subtypes in the factors 

on the samples' side.  

To compare the performance of these factorization methods, we used factors about the 

samples (or meta-samples) as features for tumor subtype classification. It was conducted with 

Multinomial logistic regression. Logistic regression come from a python package named "scikit-

learn". We randomly sampled 80% of the expression data to train the logistic regression. The rest 

were used as the test set to evaluate classification accuracy. This procedure was repeated 20 times 

to evaluate whether the performance difference was stable. As shown in Figure 17, our algorithm 

had achieved the highest classification performance among algorithms for Boolean matrix 

factorization. 

 

Figure 17 Breast cancer subtype classification accuracy 
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We further investigated classification accuracy with other Boolean matrix factorization 

methods in each tumor subtype. As shown in Figure 17, all the Boolean matrix factorization 

methods achieved high accuracy in the subtype of LumA and Basal. It indicated the genes 

expression data and the subsequent differential expression analysis had provided abundant 

discriminative information about the two subtypes. However, LoM and Message Passing were less 

effective in discerning the Her2-enriched subtype, which has the smallest sample size. This result 

showed that by getting rid of assumptions about factors' sizes, BEM was more likely to capture 

subtle patterns that have greater variance on factor sizes. 

 

Table 3 Accuracy (%) with each subtype with 15 factors 

Subtype Normal LumA LumB Her2 Basal 

# of Samples 119 434 194 67 143 

LoM 12.5 87.9 52.8 53.4 90.8 

MP 37.5 83.5 66.1 62.1 89.7 

BEM 0.0 86.1 59.8 72.4 94.9 
 

4.4.2.2 Cell type deconvolution from single cell RNA-seq 

The single cell RNAseq data about melanoma patients was collected from Gene Expression 

Omnibus (GSE120575). This dataset contained 55737 genes on 16291 cells across 48 samples. 

Patients were administered with CTLA4 therapy, PD1 therapy, or both. 19 out of 48 samples were 

measured before immunotherapy. The rest are measured afterward. At least 163 cells were 

measured within a patient sample. The expression values were encoded as 1 if the gene had 

nonzero expression values, otherwise 0. Genes that expressed in less than 1% of the cells or over 

99% of the cells were removed. Only 10474 genes remained. We chose 10 factors based on the 

Akaike information criteria (AIC), which is close to the choice of 11 clusters in the original study. 
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We constructed the gold standard for major cell types from the marker gene sets provided in the 

original study (Sade-Feldman et al. 2018). In addition, due to high overlap in the gold standard, 

CD4 T cells and CD8 T cells were merged into T cells (87.8% of CD8 T cells were also CD4 T 

cells); cDCs dendritic cells, pDCs, macrophage, neutrophils, and myeloid were merged as myeloid 

cells. (Over 50% of each of these cell types were also classified as myeloid cells). 3764 cells that 

could not be classified by the gold standard marker genes were discarded. Cell types with small 

cell counts and little overlap with each other were simply denoted as "Others" in Figure 18. 

 

 

Figure 18 Each column shows the proportions of each cell type in one factor. 

 

The cell-side factors were dichotomized with 0.5 as the cutoff. After dichotomization, if 

the factor value of the ith cell in the jth factor was 1, then the ith cluster contained the ith cell. 

Clearly, the clusters were not mutually exclusive. As shown in Figure 18, the first four factors 
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corresponded to T cells exclusively (from 98.7% to 85.9%). 94.2% of T cells belonged to at least 

one of these four factors. The fifth factor corresponded to B cells mostly (82.9%). And 97.7% of 

B cells belonged to this factor. The sixth factor corresponded to myeloid cells mostly (89.1%). 

Also, 77.6% of myeloid cells belong to this factor. The other four factors were mostly a mixture 

of T cells and myeloid cells. They might capture cellular functions across cell types. It showed our 

algorithm was able to identify high levels of expression patterns accurately. 

We also aggregated the factors on the cell side into sample level features by taking an 

average of all the factor values in cells belonging to the same sample. These aggregated values for 

19 samples before therapy were used as features in logistic regression to predict responsiveness of 

patients. The target variable was binary, either responsive or nonresponsive. Accuracy was 

evaluated with leave-one-out cross validation. As shown in Table 4, using the 10 features from our 

algorithm was significantly better than the original cell type information. Our algorithm had 

probably extracted information related to therapy responsiveness beyond merely cell types. Since 

the prior was set to encourage extreme values, sample features aggregated from binarized Boolean 

factors has achieved the best performance (78.9%). 

 

Table 4 Prediction accuracy of immunotherapy responsiveness 

Features Accuracy (%) 

Gold standard cell type 42.1 
Aggregated Boolean factors (continuous) 63.2 
Aggregated Boolean factors (0.5 cutoff) 78.9 
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Table 5 GO enrichment analysis of single cell gene factors 

Factors Enriched GO 

1 cellular response to interferon-gamma (GO:0071346) 

cytokine-mediated signaling pathway (GO:0019221) 

2 T cell activation (GO:0042110) 

interleukin-21-mediated signaling pathway (GO:0038114) 

3 T cell receptor signaling pathway (GO:0050852) 

cytokine-mediated signaling pathway (GO:0019221) 

4 transcription regulation in response to hypoxia (GO:0061418) 

neutrophil degranulation (GO:0043312) 

3(unique) T cell activation (GO:0042110) 

cytokine-mediated signaling pathway (GO:0019221) 

 

Table 6 TF enrichment analysis of single cell gene factors 

Genes’ factors  Size of enriched genes Enriched TFs 

1 407 EZH1; FOXP3 
2 260 IKZF4; XBP1; FOXP3 
3 834 EZH1; NKX25; MEIS2 
4 316 ZBTB7B; STAT1; XBP1 
3(unique) 492 NKX25 

 

 

We further performed transcription factor (TF) enrichment analysis and gene ontology 

(GO) enrichment analysis on factors on the gene side to investigate therapy related gene regulation 

mechanisms. More specifically, input for the analysis were genes with ones after binarization of 

the four factors that consist of T cells. Shown in Table 5 and Table 6 were the top TFs and GOs 

significantly enriched (P<0.001). Factor 1 and factor 3 were similar as they share 1 factor (EZH1) 

and 1 Biological process (cytokine-related). (Abdalkader et al. 2016) suggested that the absence 

of EZH1 was important in controlling proliferation/resting of lymphoid cells. The disruption of 

EZH1 / EZH2 ratio signified an abnormal immune cell state. Factor 1 might represent T cells in 

response to INF-gamma, the viral response. We further analyzed genes uniquely activated in factor 

3 to distinguish the two. Factor 3 might capture expression patterns of T cells in hypoxia.  Actually, 
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patients with high aggregated values in these two factors tended to be nonresponders. Thus, we 

suspected that the presence of imbalanced EZH1/EZH2 ratio and hypoxia had negative effects on 

patient responsiveness. Factor 2 is characterized by IL-21 response, which activates T cell. Patients 

with high Factor 2 values tend to be responders. This is consistent with current knowledge 

((Santegoets et al. 2013). Two enriched TFs in factor 2, IKZF4 and FOXP3, often collaborated in 

immunosuppressive activities (Jia et al. 2019). Since the two TFs were enriched for knockout 

experiment, the expression pattern of factor 2 indicated the immunostimulatory state of immune 

cells. The enrichment analysis, combined with Figure 19, showed that these three T cell dominant 

factors described above had captured distinct expression patterns capable of discriminating 

immunotherapy responsiveness. 

 

 

Figure 19 The distribution of responders (blue) and nonresponders (brown) over aggregated Boolean factor 

values. Bins in deep brown is the overlapping proportions. Nonresponders tend to have higher aggregated 

values in factor 1 and factor 3, while responders have higher values in factor 2. However, this is not statistically 

significant due to limited sample size (19 samples). 
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4.4.2.3 Segmentation of Spatial Transcriptomics 

Spatial transcriptomic data about hippocampal formation in adult mouse brain was 

downloaded from Allen Brain Atlas (Lein et al. 2007). Our selected region had ~ 5000 voxels. 

Each voxel contained an expression profile of ~ 20000 genes. Gene expression values were 

measured within situ hybridization (ISH) technology. As shown in Appendix Figure 5, the number 

of non-expressed genes per voxel was consistent within the same Sagittal section. Thus, we 

believed that most non-expressed genes were actually missing values and masked them as is. 

Sagittal sections with less than 3000 expressed genes were removed. Above zero expressions were 

dichotomized based on the individual average of each gene. Clearly, this dataset contained both 

missing values and noisy measurements, which was suitable to test our algorithm's performance. 

Different numbers of latent factors were attempted, including 2, 5, 10, 15, and 30 factors. 

As shown in Figure 20 and Figure 21, our algorithm produced spatially tight clusters without the 

aids of spatial information. We also tried 5 factors, 15 factors, and 30 factors, the voxels assigned 

to each factor were still close together (see Appendix Figure 6, Appendix Figure 7, and Appendix 

Figure 8). 
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Figure 20 2-factorization of spatial transcriptomics in mouse hippocampal formation 

 

 

Figure 21 10-factorization of spatial transcriptomics in mouse hippocampal formations 
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We also investigated the alignment of our voxel factors with the anatomical labels. On a 

high-level anatomical category (Figure 22), most factors were dominant in either hippocampal 

region or retro hippocampal region, except factor 1 and factor 10. These two factors may represent 

the area bridging the two parts or expression patterns unrelated to anatomy labels. With finer 

granularity (Figure 23), factor 1 and factor 10 were indeed a mixture of many different areas. Other 

factors seemed to be somewhat aligned with anatomical structure. Only two out of seven labels 

were dominant in most of those factors. 

 

 

Figure 22 10-factorization of spatial transcriptomics mapped to high-level anatomical labels 
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Figure 23 10-factorization of spatial transcriptomics mapped to 7 low level anatomical labels 

4.5 Contribution and Limitations 

In this chapter, we presented a new algorithm for Boolean matrix factorization via 

Expectation Maximization (BEM). Synthetic results showed that BEM could recover latent factors 

accurately even with varying bicluster sizes. We applied BEM to three transcriptomic datasets 

generated with bulk RNAseq, single cell RNAseq, and ISH respectively. Given appropriate 

dichotomization, results in Bulk RNAseq and single cell RNAseq showed that BEM was able to 

extract information related to expression patterns such as disease subtypes and cell types. Results 

in ISH expression data also indicated that our algorithm could extract neuron expression patterns 
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without the aid of spatial information. Our algorithm is more suitable for systematic analysis of 

coregulation patterns, such as subtype classification and gene signature identification. 

When analyzing gene expression data with BEM, users should be aware of several practical 

details. One is hyperparameter tuning. In the step of noise estimation, we assume that noise was 

symmetric. That is, the probability of 1 flipped to 0 is the same as that of 0 flipped to 1. Future 

research could further look into ways to alleviate such assumptions. 

Our algorithm is applicable to other high-throughput data as long as the tasks of latent 

variable inference can be represented as dense bipartite subgraph problem or the tiling problem. 

The hyperparameters in this algorithm, the Beta prior, should be set to 0.95 when binary factor 

values are preferred. If users need to estimate the uncertainty of the output, the Beta prior should 

be set to (1, 1). Hence the probabilistic estimates returned by the algorithm are not biased towards 

0 or 1. 

Boolean matrix factorization extracted clusters from genes and samples simultaneously. 

However, Boolean factors on the genes' side often consisted of more than a thousand genes. This 

hinders the interrogation of genes' contribution for phenotype shared within sample clusters. 

Future research may need to utilize external information to further decompose the gene factors, or 

identify the minimally representative gene sets for each factor. 
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5.0 Modeling the Impact of Somatic Mutations on Transcriptomic Profiles by Extending 

BMF to OR-gate Network 

In this chapter, we first described the pattern of mutual exclusivity, which supports that the 

impact of somatic mutations on signaling pathways can be modeled by the AND-OR product. Then 

we connect the AND-OR product from somatic mutations to pathways to gene expression to 

formulate the OR-gate network (ORN). Comparison with fully connected neural network and 

application to real data show that ORN is capable of identifying patient factors related to survival 

and novel mutations related to tumorigenesis. 

5.1 Modeling Mutual Exclusivity in Somatic Mutation Profiles with the AND-OR Product 

Mutual exclusivity (ME) is a phenomenon that mutation events of genes participating in 

the same pathway often avoid occurring in the same sample. Computational researchers have 

utilized this pattern to identify mutations affecting the same pathway (Szczurek and Beerenwinkel 

2014; Yulan Deng et al. 2019; Leiserson, Reyna, and Raphael 2016). 

The mutual exclusivity pattern can be explained by the collider in the Bayesian network. 

As shown in Figure 24, CDKN2A and RB1 are one of the across-ME pairs identified by 

MEMCover (Y.-A. Kim et al. 2015), they cooperate to regulate cell cycle (Hatzistergos et al. 

2019). Mutation on one of them is sufficient to dysregulate cell cycle and differentiation, 

significantly increasing the risk of cancer. Therefore, when conditioned on the observation of 

cancer, mutation events of RB1 and CDKN2A have negative interactions. 
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Figure 24 Fig A is a mutual exclusivity plot from Kim Yoo-Ah’s study (Y.-A. Kim et al. 2015). Fig B explained 

the mutual exclusivity among VHL, APC, and EGFR by the collider shape in Bayesian network. 

 

From the analysis above, mutual exclusivity implied that when a group of genes is affecting 

the same biological functions, mutation on one of them is sufficient to perturb the function, which 

can be modeled by the AND-OR product defined in Equation 1. Thus, we have 

𝑃𝑎𝑡ℎ𝑠𝑝 =∨𝑚≤𝑀 (𝑀𝑢𝑡𝑠𝑚 ∧ 𝑈𝑚𝑝) 

where S is the number of samples, M is the number of genes in genomics, P the number of 

pathways, and 𝑃𝑎𝑡ℎ is a S×P matrix, 𝑀𝑢𝑡 is the S×M binary event matrix of somatic mutation, U 

is the M×P causal relationship matrix between SGA and pathways. 

For the convenience of notation, we rewrote the AND-OR product as a vectorized function: 

𝑃𝑎𝑡ℎ = 𝑈 ⊗ 𝑀𝑢𝑡 
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where 𝑃𝑎𝑡ℎ is the output of the AND-OR product (⊗) of U and 𝑀𝑢𝑡. 

5.2 Extending BMF to OR-gate Network 

As established in Section 4.2, the relationship between differential expression and 

pathways can be modeled as 

𝐸𝑥𝑝𝑟 = 𝑍 ⊗ 𝑃𝑎𝑡ℎ 

where 𝐸𝑥𝑝𝑟 is the S×G RNA expression matrix, G is the number of genes in transcriptomic 

profiles, and Z is the P×G causal relationship matrix between pathways and DEG. Combining the 

equation we derived in Section 5.1, we have  

𝐸𝑥𝑝�̂� = 𝑍 ⊗ (𝑈 ⊗ 𝑀𝑢𝑡) (3) 

where 𝐸𝑥𝑝�̂� is the estimated differential expression matrix. This notation is necessary because 

inference of ORN relies on minimizing the difference between 𝐸𝑥𝑝�̂�  and 𝐸𝑥𝑝𝑟  (described in 

Section 5.3.2). We need to emphasize that the elementwise operation of ⊗ is identical to Equation 

2 (Section 4.2). Therefore, it is clear how to derive the details of the model from the overall 

formulation (Equation 3) here. 

In addition, we need to emphasize that the matrix 𝑃𝑎𝑡ℎ is equivalent to the matrix 𝑈 in 

Chapter 4. They both serve as the indicator for the abnormality status of latent transcriptional 

regulation mechanism. The term “pathway” here is also similar to the “pathway” in Chapter 4. 

Usage of this term in the two chapters is not related to the signal transduction order. To be more 

specific, this chapter contains two concepts that can be referred to as “pathway”. One is the 

“pathway module” that consists of a group of somatic mutations participating in the same function. 

The other is the “pathway status”, indicating whether the pathway is functioning normally or not. 
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As illustrated in Figure 25, pathway modules are identified by the edge weights (the matrix 𝑈). 

The pathway status is represented by the matrix 𝑃𝑎𝑡ℎ. 

 

 

Figure 25 Illustration of pathway representation by ORN. Figure on the upper part is the biologically 

plausible representation of a signalling network of the gene products. An SGA event in one of the gene 

products can disrupt the normal signal cascade. Within the ORN framework, we replaced the realistic 

representation by connecting all the possible SGA events of genes to an OR gate indicating the pathway 

status. After parameter estimation and causal relation extraction, edges with larger weights remain, resulting 

in the figure in the lower part. Gene-level SGAs connecting to the same pathway status produce the 

functional module. Pathway status is then connected to transcriptomics with the same logical OR 

relationships. Instead of signal transduction or transcription regulation, ORN edges are more abstract, 

representing noisy logical induction. 
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5.3 Model Implementation 

 

Figure 26 Workflow overview of ORN. The input for ORN consists of quantified matrices of single nucleotide 

variation (SNV), copy number variation (CNV), and gene expression (RNAseq). SNV and CNV were combined, 

binarized, and filtered on the genes' side to produce a binary event matrix. As for RNAseq, we calculate robust 

Z score for each gene in each sample. We assumed Logical OR relations when binary events led to pathway 

dysregulation and, in turn, led to differential expression. ORN algorithm aimed to infer: (1) the relationship 

between somatic mutations and signalling pathways; (2) the relationship between signalling pathways and 

differential expressions. With the ORN output, we can recover pathways that were perturbed by somatic 

mutations and caused differential expression. 

 

This section covers implementation issues when ORN is applied in simulation experiments 

and real datasets. As illustrated in Figure 26, we first describe how to transform Genomic profiles 

and transcriptomic profiles to binary matrices in Section 5.3.1. Then we illustrate how to estimate 
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model parameters in Section 5.3.2. Section 5.3.3 illustrates how to interpret the results from ORN. 

Finally, Section 5.3.4 described the evaluation of ORN in Simulation experiments. 

5.3.1 Data preprocessing 

The input and output of a probabilistic OR-gate function are required to be Boolean 

variables. Therefore, before applying ORN to real-world datasets, we need to transform genomic 

profiles and transcriptomic profiles into binary matrices.  

For the somatic alteration profiles, binary values dictate whether a gene has somatically 

mutated within a sample. We used two types of data: (1) non-silent gene-level single nucleotide 

variation (SNV) dataset; (2) gene-level copy number variation (CNV). An element in the CNV 

matrix was set to 1 if its original value was 2/-2. The cutoff for CNV was decided because a looser 

cutoff, such as 1/-1, does not have strong correlations with gene expression. We then combined 

CNV and SNV data into a binary event matrix, that is, if the alteration of gene i was observed in 

either SNV or CNV in sample j, then the ijth element in the binary event matrix was set to 1.  

For the transcriptomic profiles, a binary value dictates whether a gene has differentially 

expressed within a sample. We first removed genes with median expression counts lower than 10 

across all samples to avoid insufficient statistical power. Then the Z scores provided by the 

CBioPortal (Cerami et al. 2012) platform were binarized. A gene has differentially expressed if its 

Z score exceeds the range of P-value 0.05. More specifically, an element in the Z score matrix was 

set to 1 if its absolute value was greater than 1.96, otherwise 0. 

To further filter the genes in the SGA level, we applied Multitask Lasso implemented in 

Scikit-learn (Pedregosa et al. 2011). The genomic profiles were used as independent variables and 
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the status of differential expression as targets. Somatic mutations with nonzero coefficients were 

retained as the input for ORN. 

5.3.2 Gradient-based parameter estimation 

Given the relationship matrix U and Z, the aggregate pathway status can be computed with 

the OR gate function. Therefore, we only need to estimate U and Z in the model. These two types 

of parameters are estimated by maximizing the likelihood of observed gene expression given the 

generative process of ORN. That is, the objective function to optimize for ORN is the overall log 

likelihood of the observed Expr given estimated Expr:  

𝐿𝐿(𝐸𝑥𝑝𝑟) = ∑ [𝐸𝑥𝑝𝑟𝑠𝑔𝑙𝑜𝑔𝐸𝑥𝑝𝑟𝑠𝑔
̂ + (1 − 𝐸𝑥𝑝𝑟𝑠𝑔) 𝑙𝑜𝑔(1 − 𝐸𝑥𝑝𝑟𝑠𝑔

̂ )]
𝑠≤𝑆,𝑔≤𝐺

 

where 𝐸𝑥𝑝�̂�𝑠𝑔  is the probability of differential expression of the gth gene in the sth sample 

computed by the ORN. Similar latent variable models, such as LDA (Blei, Ng, and Jordan 2003), 

are usually computationally expensive with MCMC or variational inference. However, we found 

that the layered structure of ORN is similar with the neural network architect. Thus, the learning 

algorithm essential to all deep learning models, back propagation, can be used to estimate ORN 

parameters. 

First, we need to reparameterize U and Z such that the parameters are not bounded within 

[0,1]. That is, every element in the matrix U and Z is regarded as an output of a scalar within 

[−∞, +∞]: 

𝑈𝑚𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜇𝑚𝑝) 

𝑍𝑝𝑔 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜁𝑝𝑔) 
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where 𝜇 and 𝜁 are matrices with the same shape as U and Z, but their values are unconstrained. 

This enables us to apply gradient-based methods to identify maximum likelihood of ORN 

regarding 𝜇 and 𝜁. 

During implementation, we adopted the Rprop algorithm (Braun 1992) to learn 𝜇 and 𝜁. 

This algorithm requires the gradient of 𝜁 with respect to 𝐿𝐿(𝐸𝑥𝑝𝑟): 

𝜕𝐿𝐿

𝜕𝜁𝑝𝑔
= 𝑍𝑝𝑔(1 − 𝑍𝑝𝑔) ∑ [

𝑃𝑎𝑡ℎ𝑠𝑝(1 −
𝐸𝑥𝑝𝑟𝑠𝑔

𝐸𝑥𝑝𝑟𝑠𝑔
̂ )

1 − 𝑃𝑎𝑡ℎ𝑠𝑝𝑍𝑝𝑔
]

𝑛≤𝑁
 

Using the chain rule, we can also derive the gradient of 𝜇 with respect to 𝐿𝐿(𝐸𝑥𝑝𝑟): 

 

𝜕𝐿𝐿

𝜕𝜇𝑚𝑝
= ∑

𝜕𝐿𝐿

𝜕𝑃𝑎𝑡ℎ𝑠𝑝
∙

𝜕𝑃𝑎𝑡ℎ𝑠𝑝

𝜕𝑈𝑚𝑝𝑠≤𝑆
= ∑

𝜕𝐿𝐿

𝜕𝑃𝑎𝑡ℎ𝑠𝑝
∙

𝑀𝑢𝑡𝑠𝑚𝑈𝑚𝑝(1 − 𝑈𝑚𝑝)(1 − 𝑃𝑎𝑡ℎ𝑠𝑝)

1 − 𝑀𝑢𝑡𝑠𝑚𝑈𝑚𝑝𝑠≤𝑆
 

 

where the computation of 𝜕𝐿𝐿/𝜕𝑃𝑎𝑡ℎ𝑠𝑝 is symmetric to 𝜕𝐿𝐿/𝜕𝑍𝑠𝑝. 

To control the sparsity of parameters, we assume U and Z are samples from the Beta 

distribution. Thus, the gradients above need to be modified. For example, the partial derivative of 

𝜁 should be modified as: 

𝜕𝐿𝐿

𝜕𝜁𝑝𝑔
∗

=
𝜕𝐿𝐿

𝜕𝜁𝑝𝑔
+ (𝛼 − 1)(1 − 𝜁) + (𝛽 − 1)𝜁 

where 𝛼 and 𝛽 are the hyperparameters for Beta distribution. For all the experiments in this study, 

we set 𝛼 = 𝛽 = 0.95. The procedure for model estimation has been summarized in Figure 27.  



 69 

 

Figure 27 The pseudo code to compute the two relationship matrices U and Z, and the pathway activities 

5.3.3 Causal relation extraction 

After learning the model parameters, 𝜇 and 𝜁, we can recover U and Z through the element-

wise sigmoid function of 𝜇 and 𝜁. The matrix of patient-specific pathway status, Path, can be 

recovered by computing the OR gate function given SGAs and U. 

When applied to real-world datasets, we also need to extract pathway modules and regulons 

corresponding a latent pathway. The pathway module was determined by the matrix U. If 𝑈𝑚𝑝 >
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0.5, then we concluded that mutation of gene m could disrupt pathway p. From an operational 

perspective, a pathway module corresponding to pathway p’ would be genes with 𝑈𝑚𝑝′ > 0.5.  

Regulon related to a latent pathway is extracted similarly. If 𝑍𝑝𝑔 > 0.1, then we conclude 

that the disruption of pathway p can cause differential expression of gene g. In this way, the set of 

genes regulated by the same pathway are grouped into a coexpression module. Note that for real 

data analysis in this study, the cutoff for elements in Z was the top 5% value among all genes in 

the pathway p.  

Please note that for convenience, the module of SGAs and the modules of DEGs 

corresponding to a latent pathway will simply be called “upstream module” and “downstream 

module” respectively in following sections. 

Since there is no ground truth for real data analysis, we performed Gene Ontology (GO) 

enrichment analysis on the downstream modules to characterize the functional impacts of the 

upstream modules 

5.3.4 Simulation and evaluation 

Synthetic data was generated by following the probabilistic OR gate mechanism. First, 

somatic mutations and the two relationship matrices were generated with Bernoulli distribution. 

Then Path and DEG were generated by performing noisy OR-gate computation with 𝑃0 = 0. To 

simulate the mutual exclusivity patterns observed in real data, we performed post pruning. When 

several mutations belonging to the same pathway took place in the same sample, all but one of 

them were removed. 

The artificial neural network (NN) was used as a baseline to evaluate ORN's efficacy of 

inferring pathway activities. To ensure the neural network model was comparable with ORN, it 
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had one hidden layer, and the activation function was sigmoid. In this way, the values of hidden 

neurons were also within [0,1]. We ran NN and ORN on 20 synthetic datasets and computed their 

reconstruction error and the average cosine similarity of pathways. Reconstruction error was 

computed as: 

error =
∑ |𝐸𝑥𝑝𝑟𝑠𝑔

̂ − 𝐸𝑥𝑝𝑟𝑠𝑔|𝑠≤𝑆,𝑔≤𝐺

𝑆 × 𝐺
 

We further propose Jaccard score to evaluate how ORN’s performance changes in various 

settings. Unlike reconstruction error, this criterion measures the similarity between the inferred 

relationship matrix and the ground truth. To compute Jaccard score, we first need to compute 

Jaccard similarity for U and Z respectively: 

𝑠𝑖𝑚(𝑈.𝑝
∗ ) = 𝑚𝑎𝑥𝑝′≤𝑃[𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑈.𝑝

∗ , 𝑈.𝑝′)] 

𝑠𝑖𝑚(𝑍𝑝.
∗ ) =  𝑚𝑎𝑥𝑝′≤𝑃[𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑍𝑝.

∗ , 𝑍𝑝′.)] 

where U* and Z* are the true relationship matrix in synthetic data. The function Jaccard(A, B) 

takes the form: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) = 𝐴 ∙ 𝐵/(𝐴 + 𝐵 − 𝐴 ∙ 𝐵) 

Then the Jaccard score for one dataset is: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑠𝑖𝑚(𝑈.𝑝
∗ )𝑠𝑖𝑚(𝑍𝑝.

∗ )/𝑃
𝑝≤𝑃
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5.4 Experimental Results 

5.4.1 ORN was effective in recovering OR-gate relationships 

Synthetic data were generated according to the generative process described in “Simulation 

and evaluation”. The number of pathways was set to 5; The number of samples, SGAs, and DEGs 

were all set to 1000. This was referred to as the standard setting. 

We proposed Jaccard score and reconstruction error to evaluate the performance. Jaccard 

score can measure the concordance between inferred relationship matrices and the ground truth. 

Details of calculation was described in “Simulation and evaluation”. 

From the standard setting, each condition was changed separately to see how they affected 

the performance. As shown in Figure 28, ORN has achieved almost perfect recovery (>99%) in 

the standard setting. However, ORN’s performance dropped over 20% when the number of 

samples dropped from 1000 to 500, or the number of mutations increased from 1000 to 3000 

mutations. Note that when the number of DEGs were reduced to 500, the performance remained 

the same. Interestingly, the performance of ORN also decreased and became unstable when more 

pathway modules were needed. 
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Figure 28 Performance of ORN across different settings. In the standard setting, ORN has recovered pathway 

modules with almost perfect accuracy. Reducing the number of DEGs did not affect the performance of ORN. 

Adding more pathway modules would introduce more variation to ORN’s performance. When the number of 

samples decreased to 500 or the number of mutations increase to 3000, the median Jaccard score has decreased 

to 73% and 81% respectively. 

 

5.4.2 ORN provided more insights than the neural network 

We cannot identify similar algorithms that only used high-throughput data to infer pathway 

activities. However, we found that artificial neural networks (NN) with sigmoid activation function 

can also produce binary values in the hidden layer. In addition, both ORN and NN used backward 



 74 

propagation to optimize parameters. Thus, we designed a neural network architecture similar with 

ORN and used it as a baseline. 

In the synthetic experiment, although NN converged to comparable reconstruction error as 

ORN, its accuracy in pathway recovery was only around 50% (Figure 29). This showed that NN 

is less capable of capturing all the signals in the data. 

 

 

Figure 29 Comparison of ORN and NN on synthetic datasets. Boxplot on the left showed the distribution of 

prediction error of NN and ORN across 20 synthetic experiments. Boxplot on the right showed the distribution 

of cosine similarity between the inferred pathways and ground truth 

 

Similar results were observed when we applied NN to the glioma dataset (described in 

Section 5.4.3). The relationship matrix estimated with NN is much more redundant than ORN. GO 

enrichment analysis of the downstream modules (see Appendix Table 2) also showed that NN 
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could only capture less than 5 major aspects with 10 hidden neurons, while ORN can cover 

different biological aspects of glioma with each pathway module. As shown in Figure 30, the 

relationship matrix learned by NN contains much redundancy, while each pathway in ORN 

regulated different sets of genes with few overlaps. This indicated that the biological mechanism 

from somatic mutations to transcriptomic profiles could be more accurately characterized by the 

OR-gate logic imposed by ORN rather than conventional non-linear relationships.  

 

 

Figure 30 Heatmap representation of the relationship matrix between pathways and differential expression 

after row normalization. Relationship matrix generated by a neural network (NN) contains many redundant 

signals, while ORN automatically pushes for sparsity. Each pathway module in ORN has uniquely caused a 

subset of genes to express differentially. 

 

5.4.3 ORN detected pathways closely related to patient survival 

After applying ORN to the lower grade glioma dataset. Pathway activities showed that 

pathway 6 and pathway 7 had significant impacts on patient survival (Figure 31). We performed 

Gene Ontology (GO) enrichment analysis on the top DEGs in these pathways (see Appendix Table 

2). The downstream module of pathway 6 is mostly related to DNA processing activities. Cancer 
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samples with this pathway dysregulated probably have compromised genomic instability (Negrini, 

Gorgoulis, and Halazonetis 2010), leading to worse survival. Its upstream module includes CDK13 

(Blazek et al. 2011), H3F3A (Tagami et al. 2004), IDH1 (Wu et al. 2019), PTEN (Ho et al. 2020), 

SNRPE (Z Li and Pützer 2008) that are closely related to DNA repair or DNA replication. 

As for pathway 7, we found that PTEN, H3F3A, and POM121L12 were shared by the 

upstream modules in both pathways. However, the top 300 DEGs caused by the two pathways 

have no genes in common. GO enrichment analysis showed that downstream modules are related 

to neutrophil activities, Ras signal transduction, and viral genome replication. We conjectured that 

cancer samples with pathway 7 dysregulated exhibited viral infection and its immune response. 

Since virus infection can drive glioma formation (McFaline-Figueroa and Wen 2017), This 

subgroup of patients may be more likely to progress to malignancy and worse survival. 

 

 

Figure 31 LGG patients with pathway 6 (A) and pathway 7 (B) dysregulated have worse overall survival. X-

axis is in the unit of month; Y-axis represents the proportion of each subgroup. 102 patients' pathway 6 were 

dysregulated, 100 patients' pathway 7 were dysregulated. Both groups have 62 samples in common. 
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When applying ORN to liver cancer samples, we also identified two pathways related to 

patient survival (Figure 32). One is the pathway 2. GO enrichment analysis of the upstream 

alterations showed that pathway 2 mainly affected epithelial tube formation (GO:0072175) and 

other activities located on membrane (cytoskeletal anchoring and protein localization). Epithelial 

tube formation contributed to epithelial to mesenchymal transition (EMT) and mesenchymal to 

epithelial transition (MET) that played a vital role in liver cancer development and metastasis (Xia 

et al. 2015).  the overlapped gene Podocalyxin (PODXL) was found to be overexpressed in HCC 

cell line and could be used as a biomarker to predict the prognosis of HCC due to participating in 

HCC migration and invasion processes (Amantini et al. 2016). Fibrosis growth factor receptor 2 

(FGFR2) (also in neuron projection morphogenesis, GO:0048812) and its partner driver gene were 

frequently found in intrahepatic cholangiocarcinoma (ICC) (F. Li, Peiris, and Donoghue 2020; Sia 

et al. 2017).  This pathway module was also enriched for regulation of cardiac conduction 

(GO:1903779). One gene related to cardiac conduction, ASPH, was found to be is highly 

overexpressed in cholangiocarcinoma(CCA) and HCC (Lavaissiere et al. 1996). Inhibition of 

ASPH could decrease CCA development (Nagaoka et al. 2020). Another related gene, ITPR2, is 

the major intracellular calcium release channel in hepatocyte to regulate Calcium (Ca2+) signaling, 

resulting in regulating lots of function of hepatocytes, including glucose and lipid metabolism, 

apoptosis, gene transcription, bile secretion, and cell proliferation (Kruglov et al. 2011). ITPR2 

was also found to be decreased in fatty liver with impaired liver regeneration (Kruglov et al. 2011).  

The other one, pathway 3, is related to progress free interval. Enrichment analysis showed 

that both upstream mutations and downstream regulons participate in the lectin pathway. Few 

studies have investigated the association between lectin and liver disease. A recent study 

(Schierwagen et al. 2020) showed that expression c type lectin played an important role in different 
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stages of chronic liver disease. It is possible that lectin in important for the immune response within 

tumor environment. Several genes related to lectin pathway were shown to be important in liver 

cancer. For example, KRAS is usually found mutated in CCA patients (Mahipal et al. 2018; Ross 

et al. 2014). The proto-oncogene tyrosine kinase Src is usually aberrant expressed in HCC with an 

effect on cell proliferation, differentiation (Zhu et al. 2020; Walker et al. 2019; El Sayed, Helmy, 

and El-Abhar 2018; Lau et al. 2009). Meanwhile, mucin 5AC (MUC5AC) as a secreted Mucins, 

It was upregulated in ICC and CHC patient and inflammation (L. Yang et al. 2013), it is a good 

diagnostic marker in CCA and be used a biomarker to differentiate CCA from benign biliary 

disease (Xuan et al. 2016; Cuenco et al. 2018). The upstream module in pathway 3 is also enriched 

for cation transport (GO:0006812). Genes related to cation transport were also important for liver 

cancer. For example, LRP2 is involved in fusion in HCC patients (Fernandez-Banet et al. 2014),  

and some research found complement C3 concentration changes occurred at very early stage of 

tumorigenesis in serum proteins of diethylnitrosamine (DEN). 2-AAF induced Wistar rats tumor 

model (Malik et al. 2013), it might be a novel therapeutic approach for liver cancer (Xu et al. 

2020). 
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Figure 32 Liver cancer patients with pathway 2 (A) dysregulated have worse overall survival.  Dysregulation 

of pathway 3 results in worse progression free interval. 

 

5.4.4 ORN characterized common mechanisms in cancer 

As for the results in the METABRIC dataset, upstream modules of six pathway modules 

were almost identical and hence merged into one union (pathway 0, 1, 2, 7, 9, 14 in Appendix 

Table 3). This module contained well-known oncogenes such as TP53, PTEN, PIK3CA, and 

MAP3K1.  The corresponding pathway was dysregulated across all samples (probability above 

0.5). This pathway likely represented the common cause of breast cancer. GO enrichment analysis 

(see Appendix Table 4) showed that its corresponding downstream module was mostly involved 

in mitosis, such as G1/S transition of mitotic cell cycle phase transition (GO:0044772). Pathway 

5 also exhibited similar downstream effects but had different SGAs. Most notably, MIR604 was 

in the upstream modules of pathways. Studies have shown that polymorphism of MIR604 was 
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related to the development of hepatocellular carcinoma (Cheong et al. 2014) and the metastasis of 

colorectal cancer (Boni et al. 2011). MIR604 was differentially expressed in breast cancer (S. 

Zhang et al. 2018). Still, to our knowledge, the impact of MIR604 mutation in breast cancer has 

not been investigated. In the case of LIHC, both the upstream and downstream modules in pathway 

module 1 were significantly enriched with nucleotide-excision repair (GO:0006289) and DNA 

repair (GO:0006281). This pathway contained TP53BP1, ERCC3, BRCA2, which are well known 

for the DNA maintenance activities. 

In the glioma dataset, we found pathway 4 to be closely related to immune response. 

Downstream modules of pathway 4 were enriched for various immune responses, including 

cytokine-mediated signalling and toll signalling. This subgroup of patients may not be responsive 

to immune therapy. Within this pathway was the mutation of interferon alpha 21 (IFNA21), which 

played an important role in inflammatory response and toll signalling.  IFNs were also identified 

as major factors of patient response to various cancer therapies (Budhwani, Mazzieri, and Dolcetti 

2018). Moreover, we found that PTK6 and SRMS were within the same upstream module. The 

products of two genes work closely together as intracellular kinases (Serfas and Tyner 2003) and 

promotes invasive prostate cancer (Wozniak et al. 2017). However, they are rarely studied in the 

context of glioma and immune response. 

Like glioma, one particular pathway in breast cancer captured abnormal immune response 

in a subgroup of cancer samples. The downstream module in pathway 3 is related to immune 

response, including T cell activation (GO:0042110), regulation of immune response 

(GO:00507006), inflammatory response (GO:0006954). The upstream module included CDC20, 

COLEC12, MED8, MPL, SOX5, and OTUD1. CDC20 was known to be related to T cell 

activation. COLEC12's protein product is associated with innate immunity (Ma et al. 2015). SOX5 
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was shown to be related to B cell proliferation (Rakhmanov et al. 2014). Another interesting gene 

was MED8. Studies showed that MED8 was important to regulate resistance against bacteria in 

plants (An and Mou 2013). Meanwhile, MED8 was implicated in renal cell carcinoma. However, 

it is rarely investigated in the case of breast cancer and innate immunity. As for OTUD1, a recent 

study (L. Zhang et al. 2018) has shown that its induction by RNA virus may inhibit innate immune 

response.  

5.4.5 ORN detected pathway dysregulation specific to cancer types 

Although not related to patient survival, other pathways in glioma samples also captured 

different aspects of molecular characteristics. For example, pathway 0 is closely related to the 

biosynthesis of cholesterol, steroid, and alcohol, while cholesterol metabolism has recently been 

studied as a potential therapeutic target (Pirmoradi et al. 2019). In addition, downstream modules 

of pathway 0 contained differentially expressed genes enriched for central nervous system 

development. In the corresponding upstream module, we identified SZT2 (Tsuchida et al. 2018) 

and TIAM1 (M. B. Miller et al. 2013)  to be closely related to nervous system development. Other 

mutations, such as CPAMD8 and RUBP1, exhibited mutual exclusivity and similar expression 

patterns. Yet, these two genes have not been studied in terms of central nervous system 

development. 

As for the breast cancer samples, the upstream module of pathway 8 contained several 

well-known driver mutations, including KRAS, APC, and ARID1A. As shown in Figure 33, most 

genes in this upstream module exhibited mutual exclusivity, while these mutations caused 

differential expression of a similar set of genes. The downstream module was enriched for telomere 

and t-circle formation, which were well-known factors for cancer initiation and tumor survival 
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(Jafri et al. 2016). In the upstream module, the relation between telomere and APC (Yibin Deng, 

Chan, and Chang 2008), KRAS (W. Liu et al. 2017), ARID1A (Zhao et al. 2019), PRKG1 (Lee et 

al. 2013) were reported. Although mutually exclusive to the four genes above, we have not found 

research linking BAP1, MIR604, and MICAL3 to telomere activities. 
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Figure 33 Illustration of pathway 8 in breast cancer samples. Cancer samples sorted by pathway activities 

(middle figure) was the X-axis shared by the three subplots. The upper figure showed the mutation event of the 

upstream module (cutoff 0.5), while the bottom figure showed the heatmap of differential expression of the 

downstream module (roughly top 1% related). The top figure showed patterns of mutual exclusivity, while the 

bottom showed a strong correlation between pathway activities and differential expression. 
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5.5 Contribution and Limitations of ORN 

To our knowledge, ORN is the first de novo method to infer patient-specific pathway 

activities from genomic profiles to transcriptomic profiles of cancer patients. Compared with the 

traditional neural network method, ORN provided much more insight into how the somatic 

mutations function together. In a traditional neural network, the activation of a node is decided by 

the accumulation of all inputs. In contrast, the output of a node in ORN would be true if any input 

to this node is true. Hence, the ORN agrees with the premise of mutual exclusivity of somatic 

alteration in tumors.  

Meanwhile, OR-gate also allows the co-occurrence of genes within the same pathway. This 

flexibility enables the model to handle the rare situation where genes within the same pathway 

mutated together. Still, when the pathway modules were known, the relations between SGA and 

pathways established the “collider” shape well known in Bayesian network. Thus, when learned 

with backward propagation, ORN tends to identify the mutual exclusivity patterns. 

Besides mutual exclusivity, there are many other patterns or biological mechanisms in 

cancer biology. For example, if two mutations co-occurred in most samples, then they are likely 

to disrupt two different pathways causing tumor. This co-occurrence pattern is best captured by 

AND-gate instead of OR-gate. However, the output of AND-gate should be the 

occurrence/progression of tumor. Such information is difficult to integrate into our model. In the 

future, we may consider modifying the model to integrate other relevant information. 

Please note that the “pathway module” formulated in this study may not exactly correspond 

to a known pathway. In the real data analysis, we showed that a pathway module may represent 

the impact of somatic alterations on immune response and microenvironment (i.e. pathway 4 in 

glioma and pathway 3 in breast cancer). In addition, a pathway module may also encapsulate the 
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joint status of multiple pathways. For example, pathway 0, 1, 2, 7, 9, and 14 in breast cancer 

probably captured a common set of dysregulated pathways. That is because ORN is performed on 

the sample level. If several biological pathways were dysregulated on the same sets of patients, 

ORN could not distinguish them. 

In the real data analysis with lower grade glioma and breast cancer, ORN has recovered 

major mechanisms consistent with current knowledge, such as abnormal DNA repair ability and 

immune response. Glioma patients with these dysregulated pathways had lower survival rates. 

ORN further revealed mechanisms specific to cancer types, such as steroid metabolism and 

nervous system development in glioma. We identified several somatic mutations that might be 

related to certain malfunctions in cancer cells, worthy of further biological investigation. However, 

ORN requires in-depth analysis to obtain useful insights. In the future, we will try to develop 

statistical tests to automatically return meaningful genes in both upstream and downstream 

modules. 

For the METABRIC dataset, none of the aggregate pathway status inferred by ORN is 

significantly related to patient survival. We conjectured that there are two reasons: (1) Somatic 

mutations may not be the only source of variance of RNA expression. Sharma, et al (Sharma, 

Jiang, and De 2018) showed that copy number alterations, epigenetic changes, transcription 

factors, and microRNAs collectively explain, on average, only 31–38% and 18–26% expression 

variation; (2) compared with glioma samples, cellular constitution in breast cancer samples was 

probably more diverse. To handle the first issue, we need to include more data sources in a 

principled way. In the future, epigenetic profiles may be included to inform the coregulation of 

RNA expression. To deal with the second issue, future research needs to incorporate reliable 

complete deconvolution algorithms in the data preprocessing step.   
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For some genes in the pathway module, we failed to find evidence supporting their 

functional associations to the affected DEGs. Although some of them were likely to provide novel 

molecular insights, many were false positive. Upon closer investigation, we believe there are two 

major sources of false positives: (1) passenger mutations that exclusively occur in highly mutated 

samples. For example, ACSS1 was in most upstream modules of glioma because it only occurred 

in highly mutated samples, which had most pathways dysregulated. (2) passenger mutations within 

the same copy number variation event as driver mutations. When a set of genes mutated in almost 

the same set of patients, it is likely that only one of them contributed to the pathway dysregulation. 

During analysis, we also found that different pathway modules may share a subset of 

somatic mutations. For example, pathway 6 and pathway 7 in glioma have PTEN in common. 

Thus, it is possible that hierarchical structures of SGA functions can be inferred from the 

overlapping pathway modules. In the future, we may provide more convenient visualization 

utilities to analyze the hierarchies among pathway modules. In addition, so far we have not found 

an effective measure to identify the appropriate number of pathway modules. We encourage future 

research on the balance between model complexity and model likelihood of ORN. 

We proposed ORN to infer pathway modules and their dysregulation status from high-

throughput profiles of cancer samples. Application of ORN in lower grade glioma and breast 

cancer detected pathway modules closely related to patient survival. ORN also connected somatic 

mutations to key mechanisms of cancer, such as DNA repair and innate immune response. 

Although some mutations' function (e.g., MIR604) was not supported by literature, they were 

mutually exclusive to well-known driver mutations and caused differential expression in a similar 

subset of genes. We encouraged biological researchers to use ORN to infer personalized pathway 

activities and generate novel hypotheses for targeted therapy.  
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6.0 Distinguishing Cancer Drivers from Coamplification with Gene Embedding Learned 

from Biomedical Literature 

This chapter describes the motivation, rationale, methods, and results of the construction 

of gene embedding. More specifically, it is about how we managed to extract knowledge from 

biomedical literature to address the co-amplification issues observed in ovarian cancer. 

6.1 The Problem of Coamplification 

As a type of structural variation, copy number variation is a common somatic mutation 

event that drives tumorigenesis. When amplified, certain DNA sections, as long as millions of base 

pairs, are duplicated on the same chromosome. As a result, it is difficult to pinpoint the driver 

genes from other passengers if they are located in the same copy number variation hotspot. For 

example, as shown in Figure 34, NOTCH3 and PIK3CA co-amplified with several other genes in 

ovarian tumors simply because these genes are located near each other in the genome. Among all 

the genes located in the same copy number variation hotspot, only one or two genes contribute to 

tumorigenesis. Conventional statistical analysis (e.g., mutual exclusivity analysis) cannot 

distinguish the driver gene from its neighboring passengers. However, this challenge can be 

addressed easily with our gene embedding vectors. 
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Figure 34 Visualization of somatic mutation profiles by OncoPrint on CbioPortal (Gao et al. 2013).  Both 

NOTCH3 (A) and PIK3CA (B) have almost identical copy number alteration profiles with their neighboring 

genes. It is difficult to distinguish NOTCH3 and PIK3CA (drivers) from their neighbors (passengers) with data-

driven approaches. 

 

6.2 Material and Method 

6.2.1 Corpus collection and text preprocessing 

Four types of biomedical texts were collected: (1) Title and abstract of biomedical articles 

from PubMed; (2) Gene summary provided by RefSeq (updated in 2012); (3) Gene Reference into 

Function (GeneRIF) from NCBI where each gene must be covered with more than 5 literature 

excerpts; (4) Description of Gene Ontology (GO) terms in the category of biological process. 
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For all the text corpus, we removed numbers, multiple white spaces, words with less than 

2 characters, and special symbols. All the words were changed to lower case and Porter-stemmed. 

 

6.2.2 Semantic representation 

We combined the corpus of GeneRIF and RefSeq to compute tf-idf. A score was obtained 

for each word by multiplying tf-idf with the total frequency of the corresponding word. Words 

with a top 30000 score remain in the corpus. Since each entry in GeneRIF and RefSeq corresponds 

to a gene, the corpus was reorganized such that each gene has a document containing all the unique 

words from both GeneRIF and RefSeq. Finally, we constructed the <gene, word> pairs if a word 

appears in the gene document. These <gene, word> pairs were used as the semantic representation 

for genes. 

6.2.3 Word2Vec 

We used Word2vec implemented in genism (Rehurek and Sojka 2010). Among all the 

variants of word2vec, we chose the skip-gram approach with negative sampling. Given a word in 

a sentence, the skip-gram model predicted its context. Each word was encoded as a one-hot vector 

and then linearly transformed into an embedding vector. Let the probability of word i in the context 

of word j be: 

Pr(𝑤𝑖|𝑤𝑗) =
exp (𝑣𝑖

𝑇𝑣𝑗)

∑ exp (𝑣𝑖
𝑇𝑣𝑗)𝑗′∈𝑤𝑖𝑛𝑑𝑜𝑤
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where 𝑤𝑖 is the ith word in the corpus, and 𝑣𝑖 is its corresponding embedding vector. Embedding 

vectors were learned by optimizing Pr(𝑤𝑖|𝑤𝑗) for pairs of co-occurring 𝑤𝑖 and 𝑤𝑗 in the literature 

or <gene, word> pairs. To minimize Pr(𝑤𝑖|𝑤𝑗) when 𝑤𝑖 and 𝑤𝑗 do not co-occur, random samples 

from the vocabulary will be used as the negative samples instead of going through the whole 

vocabulary in each iteration. 

 

6.2.4 Evaluation 

We evaluated whether our gene embedding can improve functional module identification. 

To do this, we first constructed the mutual exclusivity network. It is well known that genes 

perturbing the same pathway often avoid co-mutation in tumor samples. This phenomenon is 

called mutual exclusivity (Yulan Deng et al. 2019; Remy et al. 2015). Mutual exclusivity has been 

widely used to determine whether genes belong to the same pathway (C. A. Miller et al. 2011; 

Ciriello et al. 2013; Canisius, Martens, and Wessels 2016; J. Zhang and Zhang 2018). We 

performed mutual exclusivity analysis on 579 somatic mutation profiles of TCGA (Tomczak, 

Czerwińska, and Wiznerowicz 2015) ovarian tumor samples downloaded from the Xena browser 

(Goldman et al. 2020). Genes that mutated in less than 5% of samples or absent in the embedding 

space were removed. 4718 genes remained. We adopted the classic one-sided Fisher exact test to 

compute pairwise mutual exclusivity among genes. An edge is added between two genes if their p 

value is less than 0.1. We also calculated the odd ratios as the edge weight: 

𝑂𝑅 = (𝐴 + 0.5)(𝐷 + 0.5)/(𝐵 + 0.5)(𝐶 + 0.5) 

where A, B, C, and D are the four elements in the contingency table: 
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# of samples in different conditions Gene j mutated Gene j not mutated 

Gene i mutated A C 

Gene i not mutated B D 

 

After constructing the mutual exclusivity network, we used cosine similarity of gene 

embedding as the edge weights for the network. Then we perform clustering on the network with 

and without the edge weights so as to evaluate whether gene embedding can improve functional 

module identification. 

As for the clustering algorithm, we used isolation clustering proposed in our previous work 

(Liang et al. 2019). This algorithm first transforms the network into a Markov transition matrix. 

Then it computes the probability of node i visiting node j in 5 steps as the connectivity matrix C. 

Finally, clusters were identified with locally maximal isolation: 

 

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝑅

∑ ∑ 𝐶𝑖𝑗𝑗∈𝐺𝑖∈𝑅 + ∑ ∑ 𝐶𝑖𝑗𝑗∈𝑅𝑖∈𝐺
 

 

where 𝐶𝑖𝑗 is the element at the ith row, the jth column of C, R is the subset of nodes in the cluster, 

and G is all the nodes in the graph. 

6.3 Experimental Results 

After preprocessing, our corpus contains (1) Title and abstract of 8,514,630 biomedical 

articles; (2) RefSeq gene summary that covered 15764 genes; (3) 1,198,717 GeneRIF excerpts 

covering 23837 genes; (4) 30835 Gene Ontology (GO) term definition in the category of biological 
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process. Corpus from RefSeq and GeneRIF was further transformed to around 1 million <gene, 

word> pairs. The gene embedding vectors were obtained after training the Word2vec model and 

converted to gene symbols. These 300-dimensional embedding vectors covered 31845 genes. 

6.3.1 Word embedding has captured similarity of concepts from literature 

Since the accuracy of gene embedding depends on the word embedding, we first explored 

the word embedding directly learned from literature. We computed cosine similarity between a 

query (e.g. “PTEN”) and all the other words in the embedding space. Top 300 most similar words 

for each query were visualized with the wordcloud package in Python. As shown in Figure 35, 

gene symbols were most similar with their closely related genes, pathways, or synonyms. For 

example, “pi3k” and “akt” were among the most similar words when querying “PTEN”. It is well 

known that these three proteins collaborated in PI3K/AKT signaling pathway (Castellino and 

Durden 2007). 

 

 

Figure 35 Wordcloud visualization of word query to the word embedding. The bigger the font size, the more 

similar the word is to the query word. 
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6.3.2 Gene embedding was consistent with current knowledge of biological pathways 

We downloaded gene sets of biological pathways from WikiPathways (Slenter et al. 2018). 

Gene sets with 3 genes or less were removed. For each gene in a pathway, we computed: 

 

𝑅𝑎𝑡𝑖𝑜𝑖 =
∑ 𝑐𝑜𝑠𝑖𝑛𝑒(𝑔𝑖, 𝑔𝑗)𝑗∈𝑃 /|𝑃|

∑ 𝑐𝑜𝑠𝑖𝑛𝑒(𝑔𝑖, 𝑔𝑘)/|𝑅|𝑘∈𝑅
 

where i is a certain index of genes, 𝑔𝑖 is the embedding vector for the ith gene, P is a set of gene 

indices within the same pathway except the ith gene, R is a set of 10 randomly selected gene 

indices, and |P| is the number of indices in P. Note that, the ith gene was excluded from the 

pathway P. Clearly, the higher the ratio, the closer pathway members are located in the embedding 

space. We computed this ratio for every gene and generated the distribution shown in Figure 36. 

91.81% of genes have a ratio larger than 1, while a similar approach, mut2vec (S. Kim et al. 2018), 

has 82.78% larger than 1. It implied that neighboring genes in the embedding space were more 

likely to collaborate in biological processes. 
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Figure 36 The distribution of cosine similarity ratios for all the genes based on Wikipathway. The embedding 

vectors of 91% of genes are more similar with its pathway members than random genes, while mut2vec has 

83%. 

 

Take the example of NOTCH3 and PIK3CA illustrated before (Figure 34), though it is 

difficult for statistical methods to distinguish driver genes from the genomics profiles, our gene 

embedding showed that PIK3CA was much closer to PTEN signaling members than its 

neighboring genes (Table 7 and Table 8). Although not as obvious, NOTCH3 is also 

distinguishable from its neighbors. 

 



 95 

Table 7 Cosine similarities of our embedding vectors between PTEN-PIK3CA pathway members and hotspot 

mutation neighbor of PIK3CA. Each row is a neighbor gene. Each column is a pathway member. Compared 

with its neighbors, PIK3CA is the most similar gene with all the pathway members. 

 
PTEN STK11 AKT1 AKT2 TSC1 MTOR EGFR ERBB2 ERBB3 FGFR1 KRAS NRAS BRAF 

KCNMB2 0.388 0.145 0.314 0.237 0.190 0.358 0.280 0.213 0.236 0.381 0.105 0.183 0.150 

ZMAT3 0.499 0.344 0.411 0.284 0.301 0.426 0.371 0.333 0.333 0.367 0.351 0.362 0.262 

PIK3CA 0.627 0.627 0.690 0.366 0.541 0.650 0.688 0.656 0.590 0.539 0.694 0.617 0.490 

KCNMB3 0.475 0.222 0.370 0.214 0.209 0.422 0.350 0.288 0.240 0.402 0.183 0.189 0.176 

ZNF639 0.603 0.279 0.300 0.353 0.309 0.330 0.370 0.409 0.333 0.525 0.249 0.283 0.279 

MFN1 0.347 0.359 0.392 0.172 0.353 0.392 0.317 0.299 0.276 0.275 0.334 0.275 0.191 

GNB4 0.462 0.307 0.292 0.297 0.335 0.317 0.347 0.388 0.368 0.412 0.260 0.306 0.220 

 

Table 8 Cosine similarities of our embedding vectors between NOTCH signaling pathway members and 

hotspot mutation neighbor of NOTCH3. Each row is a neighbor gene. Each column is a pathway member. 

Compared with its neighbors, NOTCH3 is the most similar gene with all the pathway members. 

 JAG1 JAG2 MAML2 MAML3 DLL1 DLL3 DLL4 HES1 

CASP14 0.498766 0.455305 0.304931 0.419004 0.348857 0.416664 0.332073 0.371251 

OR1I1 0.325886 0.321224 0.201185 0.346904 0.199607 0.350854 0.205338 0.187183 

SYDE1 0.440563 0.36717 0.194305 0.389681 0.315622 0.381245 0.375707 0.254521 

ILVBL 0.274814 0.23507 0.150193 0.205635 0.132573 0.276393 0.096576 0.215826 

NOTCH3 0.501024 0.480401 0.385019 0.425642 0.426736 0.444915 0.429611 0.479549 

 

6.3.3 Gene embedding can distinguish cancer drivers from passengers 

We further evaluated whether cancer drivers from the same type of cancer will be closer in 

the embedding space. We collected the list of drivers for different types of cancer from IntOGen 

(Martínez-Jiménez et al. 2020). As shown in Figure 37, cancer drivers are located closer to each 

other in our embedding space than mut2vec. 
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Figure 37 The distribution of cosine similarity ratios for all the genes based on Intogen. Embedding of 88.88% 

of genes are more similar with its pathway members than random genes, while mut2vec only has 64.57%. 

6.3.4 Gene embedding improved functional module identification 

A mutual exclusivity network with edge weights of odd ratios was constructed. We used 

isolation clustering to identify functional modules in this mutual exclusivity network. Then we 

followed our previous approach (Liang et al. 2019) to construct a two-layer multiplex by adding 

edge weights of cosine similarity from the gene embedding. In the gene embedding layer, each 

gene is only connected to neighbors with top 1% cosine similarity. Overall, biological pathways 

were more enriched in the modules identified from the multiplex (Figure 38). For example, a 

module from the multiplex overlaps with the MAPK signaling pathway over 13 genes, while the 

best hit from the single layer network overlaps with 4 genes (Table 9). We also performed 
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enrichment analysis on Gene Ontology (GO) annotation in the category of biological process. The 

result (Fig. 6) was consistent with pathway enrichment analysis. 

 

 

Figure 38 Distribution of log P values from pathway enrichment analysis of functional modules. The smallest 

p values across all pathways were selected for each functional module. Ranksums test showed that gene 

embedding significantly improved the performance (p=0.002).  
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Table 9 Examples of biological pathways where the best hits from multiplex were much more accurate than 

that from mutual exclusivity alone. 

 

pathway 

size 

Mutual exclusivity Multiplex with gene embedding 

overlap/module 

size 

-log10(P 

value) 

overlap/module 

size 

-log10(P 

value) 

DNA IR-damage and cellular response via 

ATR 

29 1/11 1.14 19/82 26.32 

Globo Sphingolipid Metabolism 6 2/41 2.88 6/45 12.01 

MAPK Signaling Pathway 70 4/118 0.89 13/23 17.7 

Metapathway biotransformation Phase I 

and II 

46 6/53 4.75 21/68 26.49 

Novel intracellular components of RIG-I-

like receptor (RLR) pathway 

16 2/67 1.60 8/35 12.97 

Nuclear Receptors Meta-Pathway 86 4/37 2.21 15/68 11.69 

Oxidation by Cytochrome P450 20 3/53 2.75 10/68 13.05 

 

6.4 Contribution and Limitations 

This study proposed to use semantic representations of genes to learn gene embedding from 

biomedical literature. To our knowledge, no studies have attempted to construct gene embedding 

from literature alone. A previous study (S. Kim et al. 2018) indicated that a combination of 

mutation profiles, literature, and PPI is required to identify cancer driver mutations. We conjected 

there are two major obstacles. First, it is difficult to extract the concept of genes from text. 

Although genes may be directly mentioned by their symbols (e.g. PTEN, MAPK), authors in 

different articles may choose different terms or different levels of concepts. For example, 

researchers may refer to the fibroblast growth factor family instead of enumerating relevant 

members in that family (N. S. Patel et al. 2013). The other issue is that biomedical literature payed 

more attention to already well-known genes. It leads to difficulty in learning embedding for less 

well-known genes directly and accurately. However, the example of PIK3CA in Introduction 
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showed that our approach, with literature alone, can distinguish driver mutations from its 

passengers. Experiment results also showed that our gene embedding space was consistent with 

current knowledge of pathways. These results indicated our gene embedding had captured the 

latent knowledge about genes’ functional relationships from biomedical literature.  

In the future, we need to refine the semantic representation of genes. Although this study 

showed that GeneRIF and RefSeq provided effective representations for genes, their maintenance 

requires manual summary and annotation. Furthermore, they are still limited by our current 

knowledge of genes. We need to devise a way to integrate literature with high-throughput data 

before or during the learning process of gene embedding. 

Another issue is that one single similarity metric is insufficient to capture the multifaceted 

nature of functional relationships among genes (e.g., protein moonlighting (Espinosa-Cantú et al. 

2018)). Similarly, researchers in the NLP community have proposed various approaches of multi-

sense word embedding (Tian et al., n.d.; Jain et al. 2019) to handle context-dependent semantics. 

In the future, we may need to develop a multi-sense model to capture different functional contexts 

of genes. 
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7.0 Peak2vec Enables Inference of Transcriptional Regulation from ATAC-seq 

This chapter focus on the development of a novel algorithm to detect TF motifs from 

chromatin accessibility profiles. The resulting method can identify the motif and its corresponding 

binding sequences. Application to the consensus peak sets in TCGA liver cancer samples showed 

that we are able to identify several transcription factors related to liver tissues. 

7.1 The Difficulty of Identifying Cis-regulatory Elements from Chromatin Accessibility 

Profiles. 

Since first described in 2013 (Buenrostro et al. 2013), ATAC-seq has gained particular 

popularity. The exponential increase of ATAC-seq curated datasets indicates its value in a wide 

spectrum of biological studies (Yan et al. 2020). In particular, the project of TCGA has profiled 

410 tumor samples with ATAC-seq to interrogate the transcriptional regulation (Corces et al. 

2018). Unlike TF ChIP-seq, activities of multiple transcription factors are captured in ATAC-seq, 

offering a great opportunity to systematically analyze gene regulation in different conditions. 

Currently, the major approach to analyze TF activities in ATAC-seq is to utilize the 

footprinting pattern (Zhijian Li et al. 2019; Karabacak Calviello et al. 2019). Although these 

methods have yielded insights into transcriptional regulation, only one fifth of TF motifs show 

protection from the DNA cleavage (Baek, Goldstein, and Hager 2017). The results can be limited 

by the range of applicable TFs. 
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Computational researchers have utilized the motif information to complement the 

footprinting pattern, such as TFEA (Rubin et al. 2021) and MEME-centrimo (Bailey and 

Machanick 2012). TFEA performed TF enrichment analysis on the peak regions in the differential 

analysis to identify TFs causally responsible for biological differences between samples. MEME-

centrimo compared the cleavage counts of predicted binding sites with the cleavage events around 

them. However, these methods relied on curated TF motifs, which may be incomplete, inaccurate, 

and inconsistent across tissues and conditions. 

On the other hand, deep learning has been successfully applied to de novo identification of 

TF motifs in TF ChIP-seq experiments, with the best performance among different approaches 

(Alipanahi et al. 2015). However, despite various improvements (Quang and Xie 2019; Park et al. 

2020; Tareen and Kinney 2019) and expanded application (Ghanbari and Ohler 2020; J. Zhou and 

Troyanskaya 2015) over the past five years (Koo and Ploenzke 2020), we have rarely seen any 

deep learning applications to identify TF binding activities in the chromatin accessibility profiles. 

This is probably because a conventional deep learning algorithm may not be a suitable tool when 

there are multiple TFs mixed in the set of sequences. This will be demonstrated in the simulation 

experiment. 

Here we presented a novel variant of convolutional neural network (CNN), Peak2vec, to 

perform de novo inference of the coregulation among enriched regions by constructing the 

embedding space from the peak sequences in ATAC-seq. We hypothesized that by modifying 

existing deep learning algorithms, it is possible to uncover various TF binding specificities and 

downstream regulon within the chromatin accessibility profiles without relying on current 

knowledge. 
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7.2 Inference of Sliding Window Multinomial Mixture via Modified Convolution Neural 

Network 

The overall architecture of Peak2Vec is illustrated in Figure 39. For each fix-length DNA 

sequence, we generated the one-hot encoding matrix for both strands. The binary matrix is scanned 

by multinomial convolution of different sizes. Normalized convolution output is concatenated 

together as the embedding vector. The embedding space of regulatory regions is learned by 

classifying whether a sequence was a peak region or a random sequence. Features with positive 

correlation to the real peak regions were selected as the embedding vector for enriched sequences. 

 

 

Figure 39 The architecture and workflow of Peak2vec. DNA sequences are transformed into one-hot encoding 

array. Three layers of multinomial convolution are applied to the array. Three max pooling layer are applied 

to each convolution output to generate feature representation that are concatenated for binary classification. 

After training the model for binary classification, features with positive coefficients towards peak region 

prediction were selected to construct the embedding space of peak sequences. 
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7.2.1 Multinomial convolution kernel 

In this section, we show how one dimensional (1D) convolution connects to multivariate 

multinomial mixture in theory and introduce the basic convolution unit in Peak2Vec. First of all, 

1D convolution is basically applying a sliding window (named “kernel”) over an “image” along 

the first dimension. Suppose the input “image”, C, is an N by M matrix, the kernel, W, is an N by 

K matrix, then the output (named “feature map”), 𝐶∗, would be a vector of length (𝑀 − 𝐾 + 1). 

The relationship between the input and output is: 

𝐶𝑖
∗ = 𝑏 + ∑ 𝑊.𝑘 ∙ 𝐶.𝑖+𝑘−1

𝐾

𝑘=1
 

where 𝑊.𝑘 ∙ 𝐶.𝑘+𝑖−1 is the inner product between the kth column of W and the k+i-1th column of 

C, b is the scaler for bias terms. This is the same one-dimensional convolution as in DeepBind or 

DeepSEA. Usually, multiple sliding windows will be applied to the “image”. Hence the feature 

map, C*, expands to a matrix of L by (𝑀 − 𝐾 + 1), given that L is the number of kernels. And the 

bias term, b, expands to a vector of length L. 

However, in this study, we apply the Softmax function to each column of W such that each 

column sums up to one. In this way, the lth kernel, 𝑊𝑙, can be interpreted as the parameterization 

of a multivariate multinomial distribution Zl. Hence lth component of multinomial distribution Z, 

the kth column of W, 𝑊.𝑘, represents that  

𝑊.𝑘 = 𝑃(𝑋𝑘|𝑍𝑙) 

In addition, we also perform Softmax on the bias term. So 𝑏𝑙 represent the prior probability 

of 𝑍𝑙 . Furthermore, we take the log of W and b elementwise before applying convolution. 

Considering the computation of 𝐶𝑖
∗, we have 
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𝐶𝑖
∗ = log (𝑃(𝑍𝑙)) + ∑ log(𝑃(𝑋𝑘|𝑍𝑙)) ∙ 𝐶.𝑖+𝑘−1

𝐾

𝑘=1
 

= log [(𝑃(𝑍𝑙) ∏ (𝐶.𝑖+𝑘−1|𝑍𝑙)
𝐾

𝑘=1
] 

= 𝑙𝑜𝑔𝑃(𝐶.[𝑖,𝑖+𝐾−1], 𝑍𝑙) 

The output C* would become the log joint probability of the i to i+K-1 columns of C and 

the lth kernel. Then we further perform the Softmax function over each column of C*. Clearly,  𝐶𝑖
∗ 

after Softmax dictates the posterior probability of 𝑍𝑙. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑖
∗) =

𝑃(𝐶.[𝑖,𝑖+𝐾−1], 𝑍𝑙)

∑ 𝑃(𝐶.[𝑖,𝑖+𝐾−1], 𝑍𝑙)𝑙≤𝐿
= 𝑃(𝑍𝑙|𝐶.[𝑖,𝑖+𝐾−1]) 

At this point, it is clear that the specialized convolution kernel here is analogous to 

performing the EM algorithm for multivariate multinomial mixture on each sliding window. The 

forward computation is inferring the membership of samples, the E step. The backward 

propagation is learning distribution parameters and priors, the M step. This is only an analogy 

because of two major differences: (1) we do not identify the maximum likelihood in each iteration 

of backpropagation as in the real M step; (2) the distribution parameters are shared across all 

sliding windows. Still, this theoretical connection may provoke insights in theoretical analysis and 

deep learning models development. 

In summary, we applied log Softmax function to the kernel weights and biases before 

convolution. After convolution, we applied Softmax to the feature map. In this way, kernel weights 

(W) and biases (b) can be interpreted as components of multivariate multinomial mixture and 

corresponding priors. The feature map can be regarded as the posterior probability that the scanned 

section of C is sampled from the lth kernel.  

In addition, as shown in Figure 39, the feature map of the first and the second convolution 

layer directly feed to the next convolution layer without pooling. This can reserve position 
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information for the next convolution. However, only the first convolution layer is interpretable 

because it is directly connected to the one-hot encoding matrix of DNA sequences. Although the 

other convolution layers cannot be interpreted as position weight matrix (PWM), they enable the 

model to capture complicated regulatory sequence patterns.  

7.2.2 Max pooling layer 

The max pooling layer outputs the maximum value of every row of 𝐶∗. This means that a 

kernel is activated if it has high posterior probability in any subsequence of the sample. Output of 

this layer become features for the classification task. The feature size is the number of kernels in 

the corresponding convolution layer. 

7.2.3 Model training 

All the outputs from pooling layers are concatenated as an embedding vector U. The 

embedding was trained by binary classification on whether the sequence contains regulatory 

elements or not. Suppose the binary label is a vector Y of length S (sample size), then the objective 

is the cross entropy between Y and the estimated Y. 

𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ [𝑌𝑙𝑜𝑔�̂� + (1 − 𝑌) log(1 − �̂�)]
𝑠≤𝑆

 

�̂� = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑈 ∙ 𝑃 + 𝑏′) 

where Sigmoid is the sigmoid function, P is the weights, b’ is the bias term. The model is trained 

with gradient-based optimization, specifically RMSprop.  
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7.2.4 Handling the reverse complement strand 

The reverse complement also went through the variable length multinomial convolution 

and produced a concatenated embedding vector. As shown in Figure 39, we selected the bigger 

value from both strands for each feature and constructed the final embedding vector for training. 

7.2.5 Data preprocessing 

The set of positive sequences were constructed by extending certain length upstream and 

downstream to the peak summits of ATAC-seq. In the simulation experiment, the extension length 

was 100 base pairs. In real data analysis, the extension length was 250. We generated a negative 

sequence with the same dinucleotide frequency from the positive sequence. A sequence of length 

M is then transformed into 4 by M matrix via one-hot encoding. 

7.2.6 Embedding vector interpretation 

We used a Gaussian mixture to identify the clusters of the embedding vectors. For each 

cluster, samples are divided into two groups, samples in the cluster and samples in other clusters. 

We then perform Wilcoxon test to identify motif features with significantly higher values in the 

cluster than outside the cluster. The feature with the smallest p value is regarded as the signature 

motif for the corresponding cluster. 
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7.3 Results 

7.3.1 Simulation experiment 

To validate Peak2Vec’s capability of identifying different structural regularities from 

enriched DNA sequences, we collected TF ChIP-seq of JUN, CTCF, and POLR2A from the 

HepG2 cell line in the ENCODE project. We selected the top 1000 peaks from each TF in terms 

of q values. 6000 negative sequences were also generated. Peak2Vec was trained on 9000 samples 

in total. Peak2vec has three layers of multinomial convolution. Each layer has 256 kernels. 

 

 

Figure 40 PCA visualization of the embedding space (A), Gaussian mixture (B), and hierarchical clustering (C) 

of the embedding vectors. 
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Figure 41 Embedding space generated by conventional convolutional neural network (CNN). PCA 

visualization of the embedding space (A), Gaussian mixture (B), and hierarchical clustering (C) of the 

embedding vectors. 

 

We then performed conventional clustering algorithms on the embedding space. As shown 

in Figure 40, the three TF can be identified in different clusters despite the clustering algorithm. 

In subsequent real data analysis, we continued to use Gaussian mixture to identify coregulation 

modules in ATAC-seq profiles. 

To demonstrate the necessity of multinomial convolution, we also implemented a 

convolutional neural network (CNN) model with conventional convolutional kernels and ReLu 

activation as described in DeepBind (Alipanahi et al. 2015). Other than the kernels, our 

implemented CNN has the same architecture and the same training procedure as the peak2vec. The 

results are shown in Figure 41. Clearly, CNN fails to distinguish different TFs in the embedding 

space. 

We further extract the signature motif for the three clusters. As shown in Figure 42, the 

motif signature is similar to the motif in JASPAR. In the case of CTCF, “CCTCC” is similar to 

“CCACC” in JASPAR. As for JUN, the first four base pairs match nicely to the motifs in JASPAR. 

We cannot find motifs for POLR2A in any database. JASPAR also cannot find any high-quality 
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motifs for POLR2A. Still, Figure 42 showed that the embedding of POLR2A peak sequences are 

distinguishable from the other two. 

 

 

Figure 42 Comparison between signature motif from Peak2vec (above) and motifs from JASPAR (below). 

There is no curated motifs for POLR2A. 

7.3.2 Application to ATAC-seq profiles of liver cancer 

We downloaded liver cancer type-specific peak signals from Xena Browser. 26513 peaks 

with signal values above 10 have been selected. All the sequences have a fixed length of 500 bps. 

We then generated 53026 negative sequences following the same dinucleotide frequency of the 

peaks. The model is significantly larger than that in the simulation experiment, with 1024 kernels 

in each layer. 

After extracting the embedding vectors from Peak2vec, we conducted Gaussian mixture 

on the embedding vectors. The number of clusters was set to 80, as determined by the Akaike 

information criterion (AIC). The signature motifs were extracted to compare with the motifs 

curated in JASPAR vertebrate dataset. Signatures extracted from clusters seem to be redundant for 
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many unique clusters. As shown in Figure 43, the signature motif of some clusters can be matched 

to known motifs quite nicely.  

 

 

Figure 43 Signature motifs that can be matched to known motif in JASPAR. For each subplot, the upper part 

is the signature and the bottom part is the known motif. (A) is matched to the transcription THAP11; (B) is 

matched to the transcription factor NRF1; (C) is matched to SP1; (D) is matched to ZSCAN4; (E) is matched 

to KLF9; (F) is matched to KLF15. 

 

In addition, we searched through the multinomial convolution kernels other than cluster 

signatures to identify meaningful motifs. The search was taking the intersection of motif matching 

results and gene set enrichment analysis results. Motif matching was performed in the same way 

as above. As for gene set enrichment analysis, we extracted peaks with top 1000 score for each 
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kernel and feed them to ChEA3 for enrichment analysis. As shown in Figure 44, brute force 

searching also revealed other motifs missed by the clustering analysis. 

 

 

Figure 44 Motif identified through searching all the kernels. (A) was matched to PBX3 with enrichment analysis 

FDR=5.37e-6; (B) was matched to SRF with ENCODE enrichment analysis FDR=0.014; (C) was matched to 

EGR2 with ENCODE enrichment analysis FDR=0.0475; (D) was matched to ONECUT family with ReMAP 

enrichment analysis FDR=8.34e-6. 

 

We also found that although some convolution kernels had not found a significant match 

to the curated motifs, they may still be biologically meaningful. Examples in Figure 45 showed 
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that some kernels might capture a pair of TFs at work (Figure 45A) or were not distinguishable 

enough (Figure 45B). 

 

 

Figure 45 Learned motifs that only found a weak match in the JASPAR database. Kernel in (A) consists of 

two known TF motifs, ZBTB18 and STAT1. Kernel in (B) can be matched to ZBTB32 if only the top 

nucleotide was considered. 

7.4 Contribution and Limitations 

In this study, we presented Peak2vec, a novel algorithm that can identify ATAC-seq peaks 

regulated with the same TF while providing the corresponding signature motif. To our knowledge, 

this is the first model to infer transcriptional regulation relying solely on ATAC-seq. The idea of 

employing similar deep learning algorithms to study epigenomics has been quite popular along the 

past decade (Alipanahi et al. 2015; J. Zhou and Troyanskaya 2015; Lal et al. 2021). We contributed 

to the methodology by adapting the convolution kernels so that it can identify multiple TFs within 
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the chromatin accessibility profiles. Our results show that peak2vec is effective in analyzing 

sequences with diverse binding specificity. 

Peak2vec is also easier to interpret since a multinomial convolution kernel directly 

represents a position weight matrix (PWM). When applying deep learning to extract motifs from 

TF ChIP-seq, previous research (Alipanahi et al. 2015) needs to align the sequences according to 

activated position in the feature map. 

Still, there is much room for improvement. One particular issue is that enrichment analysis 

for coexpression module did not overlap with motif comparison much. It is probably due to two 

reasons: (1) peaks were mapped to the nearest genes. This may not be accurate, especially for 

peaks in the remote regions. They may be trans-regulatory elements; (2) TFs may have different 

binding sites in different tissues. In the future, we need to utilize the RNA expression information 

to determine the correlation between peaks and genes, which has been partially employed in the 

TCGA project (Corces et al. 2018). 

Another limitation is that although Peak2vec is capable of finding novel TF motifs, it is 

difficult to determine the identity of the TF whose motif is not curated. Future research may 

develop methods to ascertain TF identity given the motif and corresponding regulon inferred from 

Peak2vec. 

In addition, we performed Gaussian mixture on the embedding vector. This method 

performed well when the number of clusters was known. Such is the case with the simulation 

experiment. However, in real data experiment, the number of TFs involved are unknown. When 

determined by AIC, the number tends to be too large and led to redundant clusters. In the future, 

we need to refine the workflow on how to extract the TF motifs and their corresponding regulon. 
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Please note that application of peak2vec is not restricted to ATAC-seq. Any set of fixed 

size sequences can be the input. For example, peak2vec may also be applied to TF ChIP-seq 

experiment in case multiple motifs exist as cofactors. In the future, we may expand the application 

of peak2vec to other types of high-throughput technologies. 

This study presented a novel algorithm named peak2vec. We believe peak2vec would serve 

as a valuable tool for biologists to analyze transcriptional regulation from ATAC-seq profiles. It 

also deserves the attention of computational researchers due to its general utility to extract 

sequence information from sequencing data.  
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8.0 Discussion 

This dissertation project explores various topics of computational analysis of high-

throughput data. While some topics have vast research body, such as network clustering and 

biclustering, others, such as inferring latent pathways and ATAC-seq deconvolution, have rarely 

been attempted with a data-driven approach. In the former topics, this dissertation has developed 

methods with performance gain. As for the latter, we developed new models to address the 

question with promising results. Overall, the major hypothesis was supported by our investigation 

throughout this dissertation. That is, each omics profile provides different clues to the big picture 

of gene functions. 

Although this dissertation presented research projects with diverse methodologies, they are 

connected in terms of the biological questions to be addressed. First, we directly integrated 

transcriptomics, proteomics, and literature knowledge into the multiplex network formulation. We 

developed a novel clustering algorithm to identify functional modules from this integrative 

network. With all the integrated information, our method has improved greatly on precision. This 

is because our method is prone to identify functional modules supported by multiple knowledge 

sources, namely the intersection. This integrative approach improved the reliability and 

reproducibility of the computational discovery. The downside is that functional modules strongly 

supported by a single data source can be neglected, reducing the possibility of revealing novel 

biological insight. With the obvious improvement of precision and minor loss of recall, the overall 

accuracy was improved. Thus, our hypothesis about the performance gain from multiplex 

integration is supported by the multiplex approach. Still, we need to develop better heuristics from 

specific biological mechanisms so we may address the downside of the multiplex approach. 
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We then looked into the bicluster problem of transcriptomics. We assumed that when a 

gene is regulated by multiple pathways, dysregulation of one of them is sufficient to cause 

differential expression of the gene. With this assumption, we are able to model the relationship 

between gene expression and latent pathways with the AND-OR product. The biclusters identified 

by our method reveal information about cancer subtypes, tumor microenvironment, and cellular 

functions related to patient survival. Therefore, investigation in Chapter 4 supports our hypothesis 

that coexpression among genes hints at their functional similarity and their coregulation. 

After developing an improved BMF algorithm for various transcriptomic data, we realized 

that the OR-gate mechanism underlying the BMF model could be generalized to capture the causal 

mechanism about how somatic mutations disturb biological pathways, particularly the mutual 

exclusivity pattern. Hence, we expanded the BMF model to integrate the genomic profiles, leading 

to the model of ORN. This model assumes that somatic mutations affect pathways and then cause 

differential expression following the same OR-gate logic. Experimental results show that ORN 

can identify somatic mutations affecting the same pathway and causing similar sets of genes to 

differentially express. The pathway genes identified by ORN also exhibit mutual exclusivity 

patterns. Our work on ORN indicated that functional relationships among SGAs can be identified 

by their impact on the transcriptomic profiles, which is one of our major hypotheses to examine in 

this thesis. 

However, ORN has notable limitations. One is the size of somatic mutations. Since the 

OR-gate only needs one input unit to activate, the output will almost always become activated if 

the input size is over 10,000. In the case of ORN, the size of candidate mutations easily goes 

beyond 20,000. Therefore, we have filtered the somatic mutations with penalized regression before 

feeding ORN. Still, this approach may include too many passengers while excluding drivers with 
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moderate effects. To refine the input for ORN, we developed gene embedding from biomedical 

literature. By constructing semantic representations for each gene, we improve information 

coverage for less well-known genes. Results showed that our gene embedding captures the 

functional space of genes better than previous models. Our study showed that biomedical literature 

is an important information source for the functional relationships of high-throughput omics data. 

Although unlikely to generate novel insights, knowledge from literature is able to complement the 

data quality issues of high-throughput data. Therefore, our hypothesis about the value of this data 

source is supported by our evaluation of gene embedding. 

Another limitation of ORN is the size of pathways. Despite the promising results of BMF, 

its performance decreases dramatically when too many latent pathways are involved. This is 

limited by the sample size as spurious correlation arises when the sample size (<1,000) is much 

smaller than the gene size (> 10,000). To this end, we attempted to complement the gene level read 

count information with DNA sequence information. It leads to a new model, Peak2Vec. 

Essentially, Peak2Vec is using multinomial mixture to project the DNA sequences into an 

embedding space, such that sequences with similar motifs patterns are closer in the embedding 

space. Our results show Peak2Vec is able to identify different TF motifs from the sequences sets 

of ATAC-seq. This supports our hypothesis that transcriptional regulation can be inferred from 

chromatin accessibility profiles. 
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9.0 Future Work 

The results of this dissertation support that different types of omics data provide different 

information about gene functions. These differing data types can complement each other in 

discovering novel functioning roles of genes. We have not yet developed an integrated framework 

that utilizes all types of data at once. It is a longer-term goal, beyond this dissertation. 

In the shorter term, we plan to investigate combining two methods together to see if doing 

so improves the performance of inferring regulatory mechanism. For example, BMF could be 

combined with Peak2vec to identify co-regulation modules with higher resolution and higher 

confidence. This is because BMF utilizes the correlation of gene expression while Peak2vec 

utilizes the similarity of DNA sequence in regulatory regions. The two types of information are 

complementary to each other. Another possible integration is to use gene embedding to filter the 

driver mutations as input for ORN. We can examine whether ORN provides more reliable insights 

when most neighboring passengers are removed. 

The model assumptions of ORN could be too strong. Although the OR-gate relationship is 

supported by the mutual exclusivity pattern, it cannot explain pathway crosstalk or the co-

occurrence pattern. We may consider adopting the AND-gate relationship into the framework.  In 

principle, AND-gate requires all the input to be one for the output to turn one. This property is 

aligned with the co-occurrence pattern and pathway crosstalk, which suggests that tumorigenesis 

requires a certain combination of pathway dysregulation. However, integration of AND-gate may 

substantially increase model complexity, hence adding difficulty to inference and interpretability. 

This could be the major issue we need to address in the future. 
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Furthermore, we need to expand the applicability of ORN to other kinds of diseases. Since 

most diseases are not caused by somatic mutations, we may start investigating how germline 

variants lead to increased susceptibility or prognosis. For the problem of elucidating the impact of 

germline variants, various approaches have already been proposed, including GWAS, PheWAS, 

eQTL, and Mendelian randomization. We need to learn more from the existing methods and 

consider how our work demonstrated in this dissertation may fit into this developed body of 

research. 
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Appendix A Supplementary Information for Chapter 4 (BMF) 

 

Appendix Figure 1 Reconstruction error of synthetic data when Bernoulli is different for all latent factors. 

Sample matrix is 1000 by 1000, rank 5, density 0.3 

 

 

Appendix Figure 2 Reconstruction error of synthetic data when Bernoulli is different for all latent factors. 

Sample matrix is 1000 by 1000, rank 5, density 0.7 
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Appendix Figure 3 Reconstruction error of synthetic data when Bernoulli is different for all latent factors. 

Sample matrix is 2500 by 2500, rank 5, density 0.5 

 

 

Appendix Figure 4 Reconstruction error of synthetic data when Bernoulli is different for all latent factors. 

Sample matrix is 1000 by 1000, rank 10, density 0.5 

 



 122 

 

Appendix Figure 5 The x axis is the ordered saggital section of Hippocampal formation in mouse brain. The y 

axis is the number of expressed genes. Each box is the voxel distribution of the number of expressed genes in 

each slides. The number of expressed genes is unusually consistent across voxels within a section. Thus we 

assumed that "non-expressed" genes are actually not measured. 
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Appendix Figure 6 5-factorization of spatial transcriptomics in mouse hippocampal formation 

 

 

Appendix Figure 7 15-factorization of spatial transcriptomics in mouse hippocampal formation 
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Appendix Figure 8 30-factorization of spatial transcriptomics in mouse hippocampal formation 
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Appendix B Supplementary Information for Chapter 5 (ORN) 

Appendix Table 1 Comparison of the GO enrichment analysis results of ORN and NN on the dataset of 

glioblastoma. Note that the pathways are not aligned between ORN and NN. 

  ORN NN 

0 

cell-cell adhesion via plasma-membrane 
adhesion molecules, cholesterol 
biosynthetic process, secondary 
alcohol biosynthetic process 

chromosome segregation, mitotic 
nuclear division, DNA replication 

1 NA 
mitotic nuclear division, chromosome 
segregation, mitotic sister 
chromatid segregation 

2 
synaptic vesicle cycle, vesicle-
mediated transport in synapse, 
neurotransmitter secretion 

cilium movement, axoneme assembly, 
microtubule bundle formation 

3 

oxidative phosphorylation, regulation 
of cellular amino acid metabolic 
process, anaphase-promoting complex-
dependent catabolic process 

axoneme assembly, microtubule bundle 
formation, cilium movement 

4 
positive regulation of cell 
activation, adaptive immune response, 
leukocyte proliferation 

mitochondrial electron transport, 
NADH to ubiquinone, mitochondrial 
respiratory chain complex assembly, 
mitochondrial translational 
elongation 

5 
ribosome biogenesis, rRNA metabolic 
process, ncRNA transcription 

chromosome segregation, sister 
chromatid segregation, mitotic 
nuclear division 

6 
chromosome segregation, DNA 
replication, mitotic nuclear division NA 

7 

glycosyl compound catabolic process, 
negative regulation of viral genome 
replication, nucleoside catabolic 
process 

vesicle-mediated transport in 
synapse, synaptic vesicle cycle, 
synaptic vesicle localization 

8 

establishment of protein localization 
to endoplasmic reticulum, SRP-
dependent cotranslational protein 
targeting to membrane, protein 
targeting to ER 

adaptive immune response, lymphocyte 
mediated immunity, positive 
regulation of cell activation 

9 
microtubule-based movement, 
intraciliary transport, intraciliary 
transport involved in cilium assembly 

axoneme assembly, microtubule bundle 
formation, cilium movement 
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Appendix Table 2 GO enrichment analysis of the gene sets regulated by the 10 latent pathways in 

glioblastoma. 

pathways enriched GO Adjusted P values 

0 regulation of cholesterol biosynthetic process (GO:0045540) 0.006887475 

 regulation of steroid biosynthetic process (GO:0050810) 0.006743178 

  cholesterol metabolic process (GO:0008203) 0.009005787 

1 sulfur compound biosynthetic process (GO:0044272) 0.879586995 

 linoleic acid metabolic process (GO:0043651) 1 

  unsaturated fatty acid metabolic process (GO:0033559) 1 

2 chemical synaptic transmission (GO:0007268) 4.59E-04 

 synaptic vesicle endocytosis (GO:0048488) 6.05E-04 

  potassium ion transport (GO:0006813) 0.002609833 

3 mitochondrial ATP synthesis coupled electron transport (GO:0042775) 2.82E-04 

 

positive regulation of protein ubiquitination involved in ubiquitin-
dependent protein catabolic process (GO:2000060) 1.77E-04 

  

negative regulation of ubiquitin-protein ligase activity involved in 
mitotic cell cycle (GO:0051436) 2.29E-04 

4 cytokine-mediated signaling pathway (GO:0019221) 1.40E-09 

 neutrophil activation involved in immune response (GO:0002283) 7.74E-09 

  cellular response to cytokine stimulus (GO:0071345) 1.37E-08 

5 mRNA splicing, via spliceosome (GO:0000398) 8.04E-10 

 mRNA processing (GO:0006397) 3.35E-09 

  

RNA splicing, via transesterification reactions with bulged adenosine as 
nucleophile (GO:0000377) 3.05E-08 

6 DNA metabolic process (GO:0006259) 2.90E-30 

 DNA replication (GO:0006260) 8.13E-23 

  DNA repair (GO:0006281) 2.90E-18 

7 negative regulation of Ras protein signal transduction (GO:0046580) 0.012246249 

 neutrophil degranulation (GO:0043312) 0.010323356 

  neutrophil activation involved in immune response (GO:0002283) 0.007721001 

8 translation (GO:0006412) 4.91E-05 

 peptide biosynthetic process (GO:0043043) 1.66E-04 

  translational termination (GO:0006415) 1.38E-04 

9 cilium assembly (GO:0060271) 5.55E-05 

 organelle assembly (GO:0070925) 3.30E-05 

  cilium organization (GO:0044782) 4.58E-05 
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Appendix Table 3 Enrichement analysis of the pathway modules (SGA) from each latent pathway in the 

METABRIC dataset. 

pathway Enriched pathways adjusted pvalues 

0,1,2,7,9,14 Endometrial cancer 4.48E-07 
 Melanoma 1.08E-06 
 Human T-cell leukemia virus 1 infection 3.40E-06 

3 Cell cycle 0.511572572 
 Viral carcinogenesis 0.660471068 
 Human T-cell leukemia virus 1 infection 0.520416156 

4 Thermogenesis 0.234719355 
 Hippo signaling pathway 1 
 Nicotinate and nicotinamide metabolism 1 

5 Cell cycle 1 
 Pathways in cancer 0.834110529 
 Cellular senescence 0.557848337 

6 Tyrosine metabolism 0.239695777 
 Dopaminergic synapse 1 
 Phenylalanine metabolism 1 

8 Hepatocellular carcinoma 0.037311118 
 Thermogenesis 0.047707284 
 Endometrial cancer 0.054969018 

10 Dopaminergic synapse 1 
 Tyrosine metabolism 1 
 ABC transporters 1 

11 AMPK signaling pathway 0.019275147 
 Adipocytokine signaling pathway 0.039825758 
 Transcriptional misregulation in cancer 0.462991613 

12 Cocaine addiction 1 
 Amphetamine addiction 1 
 Synaptic vesicle cycle 1 

13 PI3K-Akt signaling pathway 1 

 

 

 

 

 

 



 128 

Appendix Table 4 GO enrichment analysis of the downstream modules (DEG) of each latent pathways 

extracted from the METABRIC dataset. 

pathways enriched GO Adjusted P values 

0,1,2,7,9,14 metaphase plate congression (GO:0051310) 0.00605092 
 mitotic sister chromatid segregation (GO:0000070) 0.006466205 

  mitotic cell cycle phase transition (GO:0044772) 0.005949139 

3 T cell activation (GO:0042110) 7.65E-05 
 regulation of immune response (GO:0050776) 6.00E-05 

  cellular defense response (GO:0006968) 1.88E-04 

4 protein targeting to ER (GO:0045047) 6.71E-06 

 
cotranslational protein targeting to membrane (GO:0006613) 1.72E-05 

  
negative regulation of mitotic cell cycle phase transition 
(GO:1901991) 1.31E-05 

5 mitotic cell cycle phase transition (GO:0044772) 0.002754501 
 cytoskeleton-dependent cytokinesis (GO:0061640) 0.004108474 

  cell cycle G1/S phase transition (GO:0044843) 0.003473781 

6 viral gene expression (GO:0019080) 0.09646972 
 viral transcription (GO:0019083) 0.056216791 

  viral process (GO:0016032) 0.202794165 

8 formation of extrachromosomal circular DNA (GO:0001325) 1 
 t-circle formation (GO:0090656) 0.660897824 

  telomere maintenance via telomere trimming (GO:0090737) 0.440598549 

10 regulation of cellular component movement (GO:0051270) 1 

 regulation of transcription from RNA polymerase II promoter in 
response to hypoxia (GO:0061418) 1 

  regulation of epithelial cell migration (GO:0010632) 1 

11 positive regulation of protein glycosylation (GO:0060050) 1 
 nucleotide-excision repair (GO:0006289) 1 

  nuclear-transcribed mRNA catabolic process, exonucleolytic 
(GO:0000291) 1 

12 nucleosome organization (GO:0034728) 0.213337743 
 mitochondrial translational elongation (GO:0070125) 0.213620717 

  mitochondrial translational termination (GO:0070126) 0.167382305 

13 mRNA processing (GO:0006397) 0.010155928 
 mRNA splicing, via spliceosome (GO:0000398) 0.011027941 

  RNA splicing, via transesterification reactions with bulged 
adenosine as nucleophile (GO:0000377) 0.014034429 
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