
Terrain-Relative Navigation for Precision Landings based on

a Hierarchical Localization Approach

by

Hector Alejandro Li Sanchez

B.S. Electrical Engineering, University of Pittsburgh, 2019

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Hector Alejandro Li Sanchez

It was defended on

November 5, 2021

and approved by

Dr. Samuel Dickerson, PhD., Associate Professor, Department of Electrical and Computer

Engineering

Dr. Ahmed Dallal, PhD., Assistant Professor, Department of Electrical and Computer

Engineering

Thesis Advisor: Dr. Alan George, PhD., Department Chair and Mickle Chair Professor,

Department of Electrical and Computer Engineering

ii

Copyright © by Hector Alejandro Li Sanchez

2021

iii

Terrain-Relative Navigation for Precision Landings based on

a Hierarchical Localization Approach

Hector Alejandro Li Sanchez, M.S.

University of Pittsburgh, 2021

Terrain-relative navigation (TRN) refers to a class of algorithms that can be used to ob-

tain the precise location of a vehicle in a GPS-denied environment by using a pre-computed

terrain map. This map consists of recognizable landmarks that can be used to establish

correspondences between spacecraft measurements and the terrain. Although several TRN

approaches have been successfully implemented in the past, there is still a need for robust,

flexible, and efficient TRN algorithms capable of supporting localization across wide tra-

jectory paths without the need for additional sensor measurements. In this work, a new

TRN system based on hierarchical localization is designed and evaluated. The proposed sys-

tem aims to take advantage of recent advances in algorithms for autonomous navigation in

terrestrial environments to improve the efficiency over previous TRN implementations. An

extensive evaluation of the proposed system is conducted using a lunar imagery dataset. To

assess the feasibility of deploying the proposed TRN system in a real scenario, the system is

realized using a Xilinx Zynq-7045 SoC—a device featured on relevant space platforms. Ex-

perimental results show that the system is capable of localizing over 90% of images featuring

a wide range of scale, rotation, and illumination changes. In addition, leveraging the hard-

ware acceleration capabilities of the FPGA contained within the target platform allows for

processing of images at a rate of at least 25 FPS, which is sufficient for real-time operation.

Keywords: Terrain-Relative Navigation, Feature Extraction, Field Programmable Gate

Array (FPGA), Computer Vision, System-on-Chip (SoC).

iv

Table of Contents

Preface . x

1.0 Introduction . 1

2.0 Background . 3

2.1 Terrain-Relative Navigation . 3

2.2 Scale-Invariant Feature Transform (SIFT) 5

2.3 Vector of Locally Aggregated Descriptors (VLAD) 7

2.4 Approximate Nearest Neighbors (ANN) Search 8

2.4.1 Product Quantization (PQ) . 9

2.4.2 Inverse File (IVF) . 10

3.0 Approach . 11

3.1 Feature Extraction . 12

3.1.1 SIFT Keypoint Detection . 13

3.1.2 SIFT Descriptor Computation . 14

3.1.3 VLAD Descriptor Computation . 18

3.2 Coarse-Level Localization . 20

3.2.1 PCA Dimensionality Reduction . 20

3.2.2 ANN Search using PQ . 21

3.3 Fine-Level Localization . 23

3.3.1 ANN Search using PQ+IVF . 24

4.0 Performance Evaluation . 26

4.1 Experimental Design . 26

4.1.1 Evaluation Dataset . 26

4.1.2 Test Platform . 27

4.2 Results and Discussion . 28

4.2.1 Localization Accuracy . 28

4.2.2 Execution Time . 33

v

4.2.3 Resource Utilization . 36

5.0 Conclusions and Future Work . 38

Appendix. Dataset and Database Generation Procedures 40

Bibliography . 43

vi

List of Tables

4.1 Results for SIFT descriptor quality evaluation. 30

4.2 TRN system resource utilization on Zynq-7045 SoC. 37

A1 Transformation parameters used to generate dataset query images. 40

vii

List of Figures

2.1 Conceptual diagram for PQ vector encoding. 9

3.1 System architecture diagram highlighting major sub-components. 11

3.2 Illustration of the local SIFT features (green) and the global SIFT descriptor

(blue) computed during feature extraction. 12

3.3 FPGA architecture diagram for stream-based SIFT keypoint detection. 13

3.4 FPGA architecture diagram for stream-based SIFT descriptor computation. . . 15

3.5 Conceptual timing diagrams illustrating how the proposed architecture reduces

the amount of stalls in the keypoint-detection pipeline. 16

3.6 FPGA architecture diagram for stream-based VLAD descriptor computation. . 19

3.7 Illustration of the coarse-level localization stage using a nearest neighbors search. 20

3.8 FPGA architecture diagram for stream-based PCA dimensionality reduction. . . 21

3.9 FPGA architecture diagram for stream-based PQ ANN search. 22

3.10 Illustration of the database SIFT feature selection process using coarse localiza-

tion results. (a) Database SIFT feature locations for a section of the terrain map.

(b) Tile boundaries corresponding to the retrieved VLAD database indices. (c)

Selection of a subset of database SIFT features that lies within any of the tile

boundaries. 24

3.11 Histograms summarizing the value distribution of (a) original database SIFT

descriptors and (b) residuals between original database SIFT descriptors and

their nearest codebook word. 25

4.1 Examples of the query images derived from the Chang’e 3 landing site map. . . 27

4.2 Feature matching results using the proposed SIFT accelerator on images from

the (a) Boat and (b) Graffiti sequences in the Oxford dataset. Only a small

number of matches are drawn to reduce clutter. 29

4.3 Examples of correctly localized query images. 31

viii

4.4 Analysis of the relationship between the number of database tiles retrieved and

(a) the proportion of correctly localized queries and (b) the number of SIFT

features from the database that are selected for matching. 32

4.5 Scatter plots illustrating how (a) the number of detected query features and (b)

the number of selected database features affect the execution time of the system. 33

4.6 Comparison of the average execution time of the system for an increasing number

of detected query features based on the number of retrieved tiles. 34

4.7 Breakdown of the execution time for each stage of the TRN pipeline. 35

A1 Visualization of the location of database queries with respect to the terrain map. 41

ix

Preface

This research was supported by industry and agency members of the NSF Center for

Space, High-Performance, and Resilient Computing (SHREC) and by the IUCRC Program

of the National Science Foundation under Grant No. CNS-1738783. I would like to thank

Dr. Alan George (University of Pittsburgh), Dr. Chris Owens (Astrobotic), Dr. Sebastian

Sabogal (NASA GSFC), and Noah Perryman (University of Pittsburgh) for their exceptional

mentorship throughout this project. Special thanks to Astrobotic for providing lunar imagery

data used in this work.

In addition, I would like to thank my parents and friends for their continuous support

throughout the years. Thanks to my girlfriend Pia for her emotional support, especially

while I was conducting this research during the pandemic. Finally, I would like to thank my

fellow graduate students at SHREC for their assistance and insightful discussions.

x

1.0 Introduction

Space missions that require landing on planetary objects other than the Earth present

a unique set of challenges and constraints. In order to land safely and efficiently, it is

crucial to have a precise knowledge of the spacecraft location in real-time so that correct

navigation decisions can be performed. Localization in space is a difficult problem due to

a lack of GPS, and approaches based solely on inertial measurement units (IMUs) suffer

from drift over time. Terrain-relative navigation (TRN) refers to a class of computer vision

algorithms that can be employed to aid autonomous navigation by greatly reducing the

uncertainty in position [1]. This is accomplished by comparing images from an onboard

camera during landing with a terrain map that is obtained a priori. Using this data, a

position estimate relative to the terrain can be obtained, which addresses the problem of

drift in dead reckoning methods. With reduced position uncertainty, highly precise landings

can be achieved. Increasing landing precision is valuable as it enables safe landings closer to

science objectives or in areas with relatively more hazardous terrain [2].

Several approaches to TRN have been designed over the years, with the Mars 2020

Perseverance rover being one of the most recent successful implementations of this technique.

TRN approaches vary widely [3] in how the map information is represented, the methods

used to compare camera images to the terrain map, and how this information is used to create

a position estimate. Despite the successes of previous TRN implementations, improvements

in cost, robustness, and efficiency of TRN systems are highly desirable. TRN systems for

flagship missions such as the Mars 2020 Perseverance rover require years of R&D, cost

millions of dollars to develop, and still have limitations in their range of operation due

to performance constraints [2]. Consequently, there is a need for new TRN algorithms to

support future missions, especially with the proliferation of commercial space operations.

In this research, the design and evaluation of a novel TRN system based on a hierarchi-

cal visual localization approach is presented. This approach draws inspiration from recent

advances in algorithms for autonomous navigation of terrestrial vehicles. A hierarchical ap-

proach centered around image retrieval and feature matching greatly extends the amount of

1

terrain that can be covered by the map due to a highly efficient map representation and the

method used to compare images from the camera with the map. Additionally, the system is

designed to target a hybrid CPU+FPGA system, leveraging the acceleration capabilities of

an FPGA to meet real-time processing requirements. A terrain map consisting of real lunar

imagery obtained from a prior landing mission is used to evaluate the performance of the

proposed TRN approach using several metrics.

2

2.0 Background

This chapter first presents an overview of previous works in TRN, highlighting the goals

and motivations behind a new TRN approach. Additionally, the main concepts behind hi-

erarchical localization—the basis for the proposed approach—are presented. Finally, several

sections detail the mathematical background for the algorithms employed in the proposed

system.

2.1 Terrain-Relative Navigation

One of the earliest uses of camera measurements to aid in localization during space

missions was the Mars Exploration Rover Descent Image Motion Estimation System (MER

DIMES) [4]. In this system, a series of three images taken during descent were used to reduce

the uncertainty in the spacecraft horizontal velocity. Since then, several TRN systems have

been independently developed.

Most TRN approaches are based on the concept of mapped landmarks. In [5], the authors

present an overview of the TRN sub-system of the Lander Vision System (LVS) designed for

the Mars 2020 Perseverance rover. This design is based on a two-stage process, consisting of

a coarse and fine localization step. In the coarse localization step, three large image patches

are matched to the map using a frequency-based correlation method. Using these matches,

a general estimate of the position is obtained (within 2 to 3 km). This is followed by a

fine localization step where a series of small image patches (up to 100) are matched using

spatial correlation. This system was successfully deployed as part of the landing system for

the Mars 2020 Perseverance rover. However, the correlation methods used in this approach

require a reliable initial estimate of the spacecraft position. Namely, the approach requires a

highly accurate estimate of the altitude (within 200 m), as template matching is not robust

to changes in scale. Additionally, the high computational complexity of performing the

template matching limits the size of the map to a single 1024×1024 image. The OSIRIS-

3

REx feature-based navigation system [6], which was designed to collect rock samples from

the near-Earth asteroid Bennu, is also based on mapped landmarks. Here, the location of

known features on the surface of the asteroid are tracked using a digital terrain map (DTM)

and a spatial correlation approach to match the features. Due to the matching approach,

this system is also highly dependent on an initial position estimate.

An approach that relies on similar principles, yet is fundamentally different than mapped

landmark systems, is presented in [7]. Here, the authors exploit the abundance of craters

on the lunar surface for a TRN algorithm based on crater detection. Since crater rims

are elliptical in shape, they can be modelled as a conic laying on the lunar surface. By

combining this assumption with a crater detection front-end and leveraging the geometric

properties of conics, an invariant descriptor can be created. This descriptor can then be

used to match against a database of craters. Though this approach is promising in some

contexts, the dependence on distinguishable and favorable crater distributions limits its use

in general scenarios. This is especially true for small bodies such as asteroids with non-

uniform shapes. Finally, there are a few map-free methods, such as the one presented in [8],

which resemble visual odometry techniques. In this system, there is no reference map, and

a statistical framework is employed to generate a pose estimate without the need to identify

features. However, the lack of an absolute reference means that it is impossible to avoid the

accumulation of drift.

To address the problems associated with spatial correlation, the authors in [9] present

the Optical Precision Autonomous Landing (OPAL) system. In this approach, the map

representation consists of a set of 3D feature points which are computed using a custom

feature extractor similar to SIFT [10]. These points serve as landmark features that are

robust to perspective and illumination changes. Then, feature points are extracted from the

camera during landing and matched to the database points to create a pose estimate. This

approach resembles previous works in visual localization for terrestrial applications [11, 12,

13]. The feature point representation has an advantage over correlation-based methods, as

the features’ robustness to scale and rotation changes means that there is less reliance on

an initial pose estimate. Additionally, representing the map using feature points instead of

image patches results in reduced memory consumption.

4

To build upon the success of previous TRN systems, this work aims to incorporate el-

ements from state-of-the-art hierarchical visual localization methods. One of the current

limitations of feature-based TRN approaches is that when considering a large terrain map,

the amount of features required to cover the map area is very large. This results in a high

computational cost to match camera features to the database, as well as an increased like-

lihood of erroneous matches. To address this problem, a hierarchical localization approach

is adopted, combining principles from [2], [9], and [13]. The main objective of the approach

is to only select a subset of the feature points in the database for matching. This is ac-

complished by performing the matching using two stages: a coarse localization stage and a

fine localization stage. In the coarse localization stage, high-level properties of the image

are used to determine which feature points from the database are suitable candidates for

matching. Then, feature point correspondences between camera and database points are

established during a fine localization stage. An additional objective of this study is to speed

up the matching of features by using approximate nearest neighbor (ANN) search techniques

instead of a brute-force search. The following sections describe the mathematical background

for the algorithms used to realize this pipeline in detail.

2.2 Scale-Invariant Feature Transform (SIFT)

In this section, a brief review of SIFT feature extraction is provided. This includes

highlighting the major steps of the algorithm and associated computations. A detailed

description of the SIFT algorithm can be found in [10].

The first step in the SIFT pipeline is the construction of a difference of Gaussians (DoG)

pyramid used for keypoint detection. First, a scale-space pyramid is created by convolving

the input image I with a series of 2-D Gaussian kernels G, defined in (2-1). The standard

deviation σi of each Gaussian filter is computed by starting with a base standard deviation

σ, then successively multiplying by a constant factor k to generate each subsequent σi.

G(x, y, σi) =
1

2πσ2
i

e
−(x2+y2)

2σ2
i . (2-1)

5

In this design, the scale-space pyramid contains five scales, following the suggestion from

the original authors of the SIFT algorithm [10] to use a base standard deviation σ = 1.6

and a constant factor k =
√
2. The Gaussian image corresponding to the last scale is

downsampled and serves as the input image for the next octave in the pyramid. This

process can be repeated an arbitrary number of times. To construct the DoG pyramid, each

Gaussian image in the scale-space pyramid is subtracted from the image corresponding to

the next scale.

After computing the DoG pyramid, candidate keypoints are selected by performing non-

maximum suppression. For each pixel in the DoG pyramid (excluding the first and last

scales), a 3×3×3 window consisting of neighboring pixels within the current and adjacent

scales is created. Points are selected as candidate keypoints if they are local extrema within

this window and have a magnitude larger than a certain threshold.

Once a point is selected as a candidate keypoint, another test is performed to reject

features with a strong edge response for improved stability. First, the trace and determinant

of the Hessian matrix H at the candidate keypoint location are computed by using the

second-order gradients. This process can be observed in (2-2) through (2-4). From these

values, the edge response of the candidate keypoint is evaluated using the inequality in (2-5).

If the inequality is true, then the point is selected as a feature. The variable r serves as a

thresholding parameter and can be adjusted to modify the detector’s sensitivity.

H =

Dxx Dxy

Dxy Dyy

 (2-2)

Trace(H) = Dxx +Dyy (2-3)

Det(H) = Dxx ×Dyy −D2
xy (2-4)

Trace(H)2

Det(H)
<

(r + 1)2

r
(2-5)

Computation of each SIFT descriptor is performed using the Gaussian image from the

scale-space pyramid corresponding to the octave and scale in which the keypoint was de-

tected. First, a main orientation is assigned to the keypoint so that the feature descriptor is

invariant to changes in rotation. To accomplish this, the gradient orientation and magnitude

6

of each pixel is calculated in a window patch centered at the keypoint location. Then, an

orientation histogram consisting of 36 evenly-spaced bins is computed. The bin with the

highest magnitude is selected as the main orientation.

The next step consists of computing the SIFT histogram. Each pixel in a square region

around the keypoint location is rotated according to the assigned main orientation. Next,

the region is divided into 16 sub-regions in a 4×4 square pattern. The size of the regions

is dependent on the scale at which the keypoint was detected. An orientation histogram

consisting of eight bins is computed for each sub-region. Trilinear interpolation is used to

distribute the magnitude from each pixel into adjacent histogram bins. The 16 histograms

are concatenated to produce an unnormalized vector consisting of 16× 8 = 128 values.

Finally, the descriptor is normalized and each vector entry is quantized to eight bits,

creating the final output descriptor. In the original SIFT implementation [10], normalization

is performed using the L2-norm. However, further research in [14] demonstrated that square-

root normalization (rootSIFT) results in more accurate feature descriptors. For rootSIFT

normalization, each entry is first divided by the L1-norm. Then, the square root of each

value is computed to produce the final normalized value.

2.3 Vector of Locally Aggregated Descriptors (VLAD)

Context-based image retrieval (CBIR) is a computer vision application consisting of

searching across a large database of digital images. In most CBIR scenarios, the task is to re-

trieve one or more database entries whose content most closely resembles that of a given query

image. In the context of autonomous navigation, CBIR can be used for a visual localization

or place recognition task. In order to search the database, a compact image representation

is needed, typically by combining local descriptors (such as SIFT features). Some popular

algorithms used for this purpose include Fisher vectors [15, 16], bag-of-features (BOF) [17],

and the vector of locally aggregated descriptors (VLAD) [18]. In this work, VLAD is cho-

sen as a global descriptor due to its high representation accuracy, search efficiency, and low

memory consumption per descriptor.

7

The VLAD descriptor requires training of a codebook, similar to BOF. The codebook

C = {c1, ..., ck} consists of k visual words (in this case, SIFT descriptors) and is learned using

a clustering algorithm such as k-means. Then, a VLAD descriptor for a given image can

be computed using a set of local descriptors. Each local descriptor x is aggregated by first

finding the nearest visual word ci for each descriptor using a nearest neighbor search. The

difference between the descriptor and the visual word x− ci is computed, and the differences

for each descriptor assigned to cluster ci are accumulated. When using a local descriptor with

d dimensions and a codebook containing k visual words, the resulting VLAD representation

contains a total of D = d× k dimensions.

After all local descriptors are aggregated, the VLAD descriptor is normalized in a two-

step process as presented in [19]. First, an intra-normalization step where the accumulated

vectors corresponding to each codebook word vi are L2-normalized is performed. Then,

an inter-normalization step where the entire descriptor is L2-normalized is performed to

create the final output descriptor. Finally, the dimensionality of the VLAD descriptor is

optionally reduced using principal component analysis (PCA) to reduce its memory footprint

and increase the search efficiency [18].

2.4 Approximate Nearest Neighbors (ANN) Search

In order to establish correspondences between query and database features, a nearest

neighbors search must be performed. The only way to obtain the true k-nearest neighbors

for a given query vector x is to exhaustively compute the distance between the query vector

and each database vector yi, using a metric such as the Euclidean distance. The complex-

ity of an exhaustive nearest neighbors search where N query vectors are matched to M

database vectors and each vector has d dimensions is O(dNM). Therefore, this approach

presents scalability issues when the dimensionality of the vectors and the amount of com-

parisons to make is large. To address this issue, significant research has been devoted to

algorithms for an approximate nearest neighbors (ANN) search. With these algorithms, the

computational complexity and memory consumption of the search is greatly reduced, at the

8

cost of returning vectors with a high probability of being the true nearest neighbors instead

of a guarantee. This work focuses on two ANN approaches to improve the search efficiency:

Product quantization and the inverse file data structure.

2.4.1 Product Quantization (PQ)

In product quantization, database vectors are encoded into a compact representation

to speed up computing distances between query and database vectors [20]. The process

used to encode each database vector is shown in Figure 2.1. First, each database vector

is separated into m groups of equal size. Then, a set of m subquantizers are trained on

the database vectors using a clustering method such as k-means. Each subquantizer will

produce a total of k replication values (for this work, 256 replication values are used). To

encode the vector, each of the m groups is first quantized to its nearest value learned by the

subquantizers. Then, each group is encoded using an 8-bit value corresponding to its index

in a lookup table of all replication values. For a vector with d dimensions encoded using m

subquantizers, the number of vector elements is reduced by a factor of d/m.

X1 X2 X3 X4 X5 X6 X7 X8 … Xn-3 Xn-2 Xn-1 Xn

Quantizer 1 Quantizer 2 Quantizer m…

X’1 X’2 X’3 X’4 X’5 X’6 X’7 X’8 … X’n-3 X’n-2 X’n-1 X’n

Y0 Y1 … Ym

Encoder 1 Encoder 2 Encoder m…

Figure 2.1: Conceptual diagram for PQ vector encoding.

9

In addition to reducing the amount of memory required to store each vector, using

PQ speeds up the computation of the nearest neighbors search. As previously discussed,

computing an exhaustive nearest neighbors search for N d-dimensional query vectors across

a database with M entries requires O(dNM) multiplications and additions. When using PQ,

each group is encoded to one of k discrete values. Therefore, it is possible to pre-compute

the distances between the query vector and each of the m groups for all replication values k

and store them in a lookup table. Then, computing the distance between each query vector

and database vector consists of m table lookups and m − 1 additions. Overall, the total

number of multiplications and additions are reduced to O(dNk) and O(mNM) additions,

respectively. In practice, k << M , so the number of multiplications needed to perform the

search is reduced substantially.

2.4.2 Inverse File (IVF)

An additional technique used to speed up computation is to use an inverse file data

structure to reduce the number of vector comparisons. Here, a coarse quantizer consisting

of C codebook words learned through k-means is used to separate database vectors into C

groups. Each database vector is assigned to the group corresponding to its nearest codebook

word in the coarse quantizer. Then, when performing the search, the nearest codebook word

for each query vector is also computed. Each query vector is only matched with database

vectors belonging to the same cluster. With this approach, the average number of vector

comparisons required is decreased by a factor of C. The accuracy of the search is slightly

decreased, as it is possible that the true nearest neighbors of a query vector do not belong

to the same cluster as the query vector.

10

3.0 Approach

Programmable Logic (PL)

Processing System (PS)

DMA Scheduling

HP0

Port

HP1

Port

Interface Legend

AXI4

AXI4-Lite

AXI4-Stream

Accelerator Configuration Database Management

Main

DMA

GP0

Port

PCA

Dimensionality

Reduction

PQ ANN

Search

(VLAD)

PQ ANN

Search

(SIFT)

SIFT

Descriptor

Computation

VLAD

Descriptor

Computation

SIFT

Keypoint

DetectionAuxiliary

DMA

External

DDR Memory

Figure 3.1: System architecture diagram highlighting major sub-components.

This chapter presents a detailed description of the proposed hierarchical TRN pipeline

and its realization on a hybrid CPU+FPGA System-on-Chip (SoC) device. A hybrid archi-

tecture was chosen to leverage the parallelism enabled by an FPGA to accelerate compute-

intensive parts of the application, while the CPU is used to perform most of the control-

oriented segments. The overall system architecture is shown in Figure 3.1. For each input

image (which will also be referred to as the query image), the task is to establish feature

point correspondences between the query image and the database. The TRN pipeline con-

sists of three major stages: First, in the feature extraction stage, SIFT and VLAD features

are extracted from the input image. Then, in the coarse localization stage, a nearest neigh-

bor search between the extracted VLAD descriptor and a pre-computed database yields a

rough estimate of the map region that corresponds to the view of the camera. Finally, the

11

SIFT features extracted from the query image are matched to a subset of the database fea-

tures in the fine localization stage. The system operates using a collection of stream-based

accelerators. Each accelerator module also contains an Advanced eXtensible Interface 4 -

Lite (AXI4-Lite) interface that is used to configure each module and initiate direct memory

access (DMA) transfers. The CPU manages configuration of the DMA controller, accelerator

modules, and selection of the database features.

3.1 Feature Extraction

The first major stage of the TRN pipeline is feature extraction. Here, the input im-

age (with a resolution of 1024×1024 pixels in this design) is transformed into a compact

representation consisting of local and global feature descriptors. This process is illustrated

in Figure 3.2. SIFT feature extraction is performed to obtain a set of N local descriptors,

where each descriptor contains 128 dimensions. Then, these features are aggregated into a

single VLAD descriptor using 16 codebook clusters, which serves as a global representation

for the image. A series of FPGA modules were designed to perform these tasks concurrently

and efficiently. These modules are described in the following subsections.

67 186 61 … 183

188 0 160 … 248

126 33 232 … 98

128 120 160 … 194

213 75 178 … 164

104 76 217 … 118

… … … … …

14 40 208 … 51

-47 52 -4 … 94

N×128 SIFT Descriptors

1×2048 VLAD Descriptor

Input Image

Figure 3.2: Illustration of the local SIFT features (green) and the global SIFT descriptor

(blue) computed during feature extraction.

12

3.1.1 SIFT Keypoint Detection

A diagram illustrating the streaming architecture for keypoint detection is shown in Fig-

ure 3.3. To compute the DoG pyramid, each Gaussian image in scale space is constructed in

parallel. To reduce resource utilization, the separability of the Gaussian kernel is exploited to

compute each 2D convolution as two 1D convolutions operating across the rows and columns

of the image. The vertical filtering step is performed first so that the resources required to

implement the line buffer are shared across all scales. The coefficients of each Gaussian kernel

are converted to fixed-point representation (with 8 integer bits and 8 fractional bits) so that

the convolutions can be performed efficiently. The Gaussian image corresponding to the first

scale is copied to an output stream used for computation of the SIFT descriptors. The input

for the next octave is computed by downsampling the Gaussian image corresponding to the

last scale by a factor of two and writing it to an output stream. A series of subtractors are

used to compute the DoG pyramid from the scale-space pyramid. The resulting architecture

produces a stream for each image in the DoG pyramid and processes one pixel per cycle.

Pixel

Position

Counter

Gaussian

Pyramid

Generation

Non-Maximum

Suppression

Edge

Rejection

DoG

Pyramid

Generation

2nd Order

Gradient

Computation
SIFT

Keypoint Data

Input of Next OctaveImage

Downsampler

Base Gaussian Image

Replicated for Keypoint Detection at N Scales

Input Image

Keypoint Selector Module

Figure 3.3: FPGA architecture diagram for stream-based SIFT keypoint detection.

The DoG pyramid streams are fed into a series of keypoint selection modules to detect

SIFT keypoints. Each module contains two datapaths that implement the non-maximum

suppression and edge-rejection tests in parallel. For non-maximum suppression, a 3×3 slid-

ing window is instantiated for each scale, combining adjacent scales to form the 3×3×3

window. To perform the edge-rejection test, the second-order gradients of the DoG image

13

are calculated using a sliding window, feeding the resulting stream into another module that

calculates the formulas shown in (2-3), (2-4), and (2-5).

Each test produces a single-bit output indicating whether or not the point should be

rejected. If both tests pass, a 64-bit value containing the octave, scale, row/column position,

and response strength of the resulting keypoint is written to the output stream. By perform-

ing detection across all scales in parallel, the system is able to perform the keypoint-detection

step at a rate of one pixel per cycle regardless of the number of features detected.

3.1.2 SIFT Descriptor Computation

Based on prior works, it is evident that the SIFT descriptor computation is the main

bottleneck. The problem is related to the large size of the descriptor window used for main

orientation assignment and computation of the SIFT histogram. To implement the descrip-

tor window using BRAM without the performance degradation introduced by stalling the

keypoint-detection pipeline each time a descriptor is computed, a new architecture centered

around parallel processing elements (PEs) is proposed. A diagram of the proposed archi-

tecture is shown in Figure 3.4. In this architecture, execution time is greatly improved due

to two optimizations. Firstly, leveraging the simple dual-port configuration of the BRAM

greatly reduces the number of stall cycles whenever a descriptor is computed. Additionally,

this configuration enables the introduction of independent PEs, which can compute multiple

SIFT descriptors in parallel.

To compute each SIFT descriptor, a 15×15 window is used for the main orientation

assignment, while a 31×31 window is used to create the SIFT descriptor histogram. Due to

the large size of the sliding window, it is more beneficial to realize it using BRAM storing 31+

lines from the image in a ring-buffer structure than to instantiate a large number of registers.

By streaming data into this buffer as the Gaussian image is computed, the descriptor window

buffer contains all of the pixels required to compute a descriptor for the keypoint located

at the center of the 31×31 window at any given time. In previous works, a single-port

BRAM is used to implement the buffer. For the rest of the thesis, such an implementation

14

Main Orientation

Computer

SIFT

Keypoint Data

Input

Scheduler

Descriptor

Window Buffer

Keypoint

FIFO

Descriptor

Normalization

Output

Descriptor

Merger

SIFT

Feature Data

FSM Controller

Base Gaussian Image

OriMag

Computer

SIFT Histogram

Accumulator

Replicated N Times

Descriptor Processing Element (PE)

Figure 3.4: FPGA architecture diagram for stream-based SIFT descriptor computation.

will be referred to as the naive architecture. In Figure 3.5, a series of conceptual diagrams

illustrate the limitation of this naive architecture and how the proposed solution addresses

this limitation. Within each diagram, KPT and DSC represent operation of the keypoint-

detection and descriptor-computation pipelines, respectively. Pixels corresponding to the

location of detected keypoints are labeled with a letter.

In the naive implementation, it is not possible to write new pixels into the descriptor win-

dow buffer while also reading pixels needed for the descriptor computation from the buffer

because there is only one memory port. Whenever a descriptor is computed, the keypoint de-

tection pipeline must stop completely until the entire descriptor is computed. Consequently,

the overall execution time will increase linearly with the number of features, degrading the

performance of the system. In the proposed architecture, this would correspond to a delay

of 1,382 cycles per feature. The time required to compute each SIFT descriptor is illustrated

in Figure 3.5 by a delay of five cycles.

To address this issue, the dual-port configuration of the BRAM is leveraged, where

reads and writes can be performed concurrently at two independent addresses. Using this

configuration, values needed to compute the descriptor can be read independently of the

write port used to store new pixels from the keypoint-detection step. Thus, stalling the

keypoint-detection pipeline can be avoided until another keypoint is detected. Even though

computing each descriptor still requires the same number of cycles, the overall execution

15

time decreases because the keypoint-detection and descriptor-computation pipelines operate

in parallel for some time. This is illustrated in the second diagram of Figure 3.5. Keypoints

are expected to be located sparsely within the image, so many stall cycles can be eliminated

using this strategy without any additional resource costs.

Further performance improvements can be achieved by instantiating multiple PEs, which

can compute SIFT descriptors independently of each other. It is simple to understand how

using N descriptor PEs should decrease descriptor computation time by a factor of N .

In practice, the actual performance improvement is greater due to the dual-port BRAM

configuration. The amount of stall cycles eliminated is inversely proportional to the distance

between two consecutive keypoint locations. When multiple PEs are used, keypoints are

distributed equally across all PEs, so sparsity of keypoints within each PE is increased. This

can be seen when comparing the second and third diagrams in Figure 3.5. When using one

PE, the keypoint-detection pipeline must stall once keypoint B is reached until computation

of descriptor A is completed. When using two PEs, descriptors A and B are computed

by independent PEs. Hence, the keypoint-detection pipeline would not need to stall until

keypoint C is reached. This benefit is strengthened as more parallel PEs are added.

A B

Time

KPT

Naive Architecture

C

DSC

A BKPT

Proposed Architecture w/ Single PE

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5DSC

KPT

A1 A2 A3 A4 A5 C1 C2 C3 C4 C5DSC1

B1 B2 B3 B4 B5 D1 D2 D3 D4 D5DSC2

C D

A B C D E

Proposed Architecture w/ Multiple PEs

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5

C1 C2 C3 C4 C5 D1 D2

E1 E2

Figure 3.5: Conceptual timing diagrams illustrating how the proposed architecture reduces

the amount of stalls in the keypoint-detection pipeline.

16

The orientation and magnitude (OriMag) windows are generated serially, with the win-

dow used for main orientation assignment being calculated first. The first-order gradients

of the image are computed using a 3×3 sliding window, which is then connected to another

pipeline that computes the magnitude and orientation in parallel. The required inverse tan-

gent and square-root operations are implemented as fixed-point functions using the CORDIC

IP module available as part of the Xilinx IP library [21]. Input gradients are stored as 9-bit

signed integers, the output magnitude is stored as a 10-bit unsigned integer, and the output

orientation is stored as a 6-bit unsigned integer corresponding to 5.625 degree increments.

To compute the main orientation, each value in the OriMag window is used to create

an orientation histogram. A histogram containing 32 bins instead of 36 bins is used, which

simplifies assigning each data point from the OriMag window to a bin. While the histogram

is being computed, a simple comparator circuit keeps track of the bin index with the largest

magnitude. Once the entire window has been processed, a flag is asserted to indicate that

the main orientation is valid and computation of the main descriptor histogram can begin.

The SIFT descriptor histogram is computed in a similar fashion to the main orientation

assignment, processing data one sample at a time. However, a more complex circuit is needed

to accumulate the histogram due to the required rotation and triliniear interpolation. To

implement the rotation, the coordinates of each sample (x, y) relative to the window center

are rotated using (3-1) and (3-2) according to the main orientation θ. A small lookup table is

used to compute the sine and cosine of the main orientation angle, since the angle is limited

to only 32 discrete values.

x′ = x cos θ − y sin θ (3-1)

y′ = x sin θ + y cos θ (3-2)

For the trilinear interpolation, each data point may contribute to up to eight entries in

the descriptor vector. Therefore, eight BRAM arrays are used to accumulate the SIFT de-

scriptor histogram, each containing 128 entries. For each datapoint, the rotated coordinates

(x′, y′) and orientation for each data point are used to calculate how the magnitude should

distributed across the eight bin indices. Each BRAM array can be accessed independently,

17

so the accumulation can be pipelined to process one data point per cycle. Once the entire

window has been processed, values from the eight BRAM arrays are summed using an adder

tree, and a 128-entry array containing the unnormalized SIFT descriptor is streamed to the

next sub-module.

The complete unnormalized histogram is streamed into a final module that performs

normalization as done in rootSIFT. The input is first converted to floating-point represen-

tation and stored in a single BRAM cell, while the L1-norm of the histogram is computed

in parallel. Floating-point operations are implemented using modules available in the Xilinx

IP library [22], which make use of dedicated DSP resources for area efficiency. Each entry

in the histogram is divided by the L1-norm, followed by a square root operation. Finally,

the normalized entries are converted from floating-point to fixed-point representation and

quantized to eight bits. Outputs from each PE are merged into a single output stream using

a series of FIFOs and a multiplexer.

3.1.3 VLAD Descriptor Computation

As local SIFT features are computed, they are streamed out to a module responsible for

computing a single VLAD descriptor representing the entire input image. In Figure 3.6, a

diagram illustrating the FPGA architecture for the VLAD descriptor computation module

is shown. Codebook coefficients are stored in BRAM using an 8-bit signed representation

and are configured via the AXI-Lite interface. SIFT features are received via an AXI-Stream

interface and are temporarily stored in a small set of registers during aggregation. To perform

the aggregation, a nearest neighbor search is performed between the incoming descriptor and

each of the 16 VLAD codebook cluster centers. Eight subtractions are performed in parallel

in order to maximize performance for the given stream data width. Additionally, a processing

element consisting of the eight parallel subtractors and nearest neighbor search sub-modules

can be replicated to aggregate up to N descriptors in parallel. Once the nearest cluster

center is found, the SIFT residual is computed and added to the VLAD descriptor memory.

The index of the nearest cluster and the resulting SIFT residual are written to the output

stream, which will be used during the fine localization stage. Overall, it takes 336 cycles

18

to aggregate each feature, which is less than the number of cycles needed to compute each

SIFT descriptor. The SIFT and VLAD modules operate concurrently, so performing the

aggregation of the SIFT features does not affect the overall execution time.

VLAD

Codebook

Memory

Descriptor

Normalization

Nearest

Neighbor

Search

SIFT

Descriptor

Aggregation

VLAD

Descriptor

Memory

Controller

SIFT

Feature Data
8x Subtractor

Codebook

Configuration
SIFT Residuals and

VLAD Descriptor

Replicated to Aggregate

N Descriptors in Parallel

VLAD Descriptor Processing Element (PE)

Figure 3.6: FPGA architecture diagram for stream-based VLAD descriptor computation.

Once all SIFT descriptors have been aggregated, the VLAD descriptor undergoes a

normalization stage. Following the method in [19], normalization consists of an intra-

normalization step followed by an inter-normalization step. The VLAD descriptor is first

converted to floating-point using modules from the Xilinx IP Library [22]. Then, a pipeline

consisting of multiplication, accumulation, and square root floating-point modules is realized

to perform the normalization. The intra-normalization and inter-normalization steps are per-

formed serially, so the same pipeline is reused between steps to reduce resource utilization.

After the inter-normalization step, values are quantized to an 8-bit signed representation and

are written to the output stream. The normalization process takes a total of 6,313 cycles

and is performed once per image.

19

3.2 Coarse-Level Localization

After SIFT and VLAD descriptors have been extracted from the image, the next stage in

the TRN pipeline is to perform a coarse localization step. In this stage, the VLAD descriptor

obtained during the feature extraction stage is used to retrieve a set of map tiles. This stage

consists of first reducing the VLAD descriptor dimensionality from 2048 to 128 using PCA,

then performing an ANN search across the entire VLAD database and retrieving the top k

matches. The objective is to retrieve database tiles that correspond to the same area of the

map that is visible in the camera image.

-47 52 -4 … 94

ANN Search Across

Database

K-Nearest MatchesQuery VLAD

Descriptor (after PCA)
-12 7 32 … -9

125 96 -26 … 12

… … … … …

82 34 13 … 4

Figure 3.7: Illustration of the coarse-level localization stage using a nearest neighbors search.

3.2.1 PCA Dimensionality Reduction

Performing the nearest neighbor search using the full VLAD descriptor (which contains

2048 dimensions) is cost-prohitive in terms of execution time and memory consumption, so

the dimensionality of the vector is reduced from 2048 to 128 via PCA. During creation of

the database, the principal components of the database VLAD vectors are computed, and

the 128 components that capture the highest variance are kept. Coefficients are quantized

to an 8-bit signed representation.

20

Input Vector

Memory

8x Multiplier 8x Accumulator

Controller

Input Vector and

PCA Coefficients

Output Vector

Figure 3.8: FPGA architecture diagram for stream-based PCA dimensionality reduction.

To perform the dimensionality reduction with high efficiency, an accelerator module

following the architecture shown in Figure 3.8 was constructed. For this accelerator, a 64-

bit wide stream containing both the input vector and PCA coefficients is used. First, the

input vector (consisting of 2048 8-bit signed values) is read from the stream and stored in

a small memory. Then, PCA coefficients are read from the stream at a rate of eight values

per cycle. A set of multipliers and accumulators are used to perform the vector/matrix

multiplication. Since the PCA coefficient matrix is fixed and computed ahead of time, its

values are rearranged for optimal dataflow. The execution time for this step depends solely

on the input and output vector dimensions. For input and output dimensions of size N and

M , the dimensionality reduction takes a total of (N +NM +M)/8 cycles.

3.2.2 ANN Search using PQ

After reducing the dimensionality of the query VLAD descriptor, an ANN search is

performed to retrieve the top k tiles from the database. The ANN search is performed in the

FPGA using the accelerator architecture shown in Figure 3.9. This design operates using

a single input and output stream and consists of three stages. In the first stage, the query

21

VLAD descriptor (after PCA) is read from the input stream and stored in a register array.

Then, the PQ codebook is streamed through the module. During this stage, the asymmetric

distance lookup table containing the L2 distance between the query vector and each of the

codebook words is computed. By computing the lookup table in this fashion, there is no

need to store the codebook coefficients in BRAM, which saves resources. Finally, database

features are streamed through the module. As data is read from the input stream, the

distances between query and database vectors are computed efficiently using the asymmetric

distance lookup table. After each distance is computed, the distance is sent to a module

responsible for keeping track of the k-nearest neighbors using a list. Once all database vectors

have been processed, the match indices and distances are written to the output stream.

Query

Feature

Memory

Asymmetric

Distance

Lookup Table

K-Nearest

Neighbor

Selection

Accumulator

Squared

Difference

Calculation

Controller

Query Features, PQ Codebook,

and Database Features

Match Indices

and Distances

Replicated to Process

M Queries in Parallel

ANN Search Processing Element (PE)

Figure 3.9: FPGA architecture diagram for stream-based PQ ANN search.

The design shown in Figure 3.9 contains several configurable parameters. These include

the dimensionality of the vectors, the number of subquantizers used for the PQ encoding,

and whether the vectors are signed or unsigned. Additionally, the architecture supports

perfoming search for multiple queries in parallel by replicating PEs to match the number of

22

query vectors. This flexibility allows for efficient reuse of this module to match the SIFT

features, which is done in the next stage of the TRN pipeline. The execution time for this

module is dependent on the various configuration parameters. Consider a search consisting

of N d-dimensional query vectors and a database containing M vectors, each encoded using

m subquantizers with k replication values. The number of cycles required to compute and

return the S nearest matches for each query is shown in (3-3). Since the number of database

vectors is usually much larger than all other variables, the number of subquantizers m plays

a significant role in the time needed to perform the search.

TPQ = (Nd+ kd+Mm)/8 +NS (3-3)

3.3 Fine-Level Localization

The third stage in the TRN pipeline is a fine localization stage, where SIFT features

from the query image are matched to the database. This is accomplished by using coarse

localization results to select a subset of the database SIFT features, followed by another

ANN search. Additionally, an inverse file data structure is used to reduce the amount of

vector comparisons. The process used to select the database SIFT features is depicted in

Figure 3.10. Each region of the database map contains a dense amount of features, as shown

in Figure 3.10a. However, most of the features are irrelevant for a given query, as they

are located outside the camera view. Using the coarse localization results, it is possible to

obtain an estimate of the region of interest that should align with the view of the camera,

as shown in Figure 3.10b. The SIFT database features are stored in memory using a tree

data structure such that they are grouped into tiles. Using this approach, it is possible to

determine which database SIFT features lie inside the region of interest as pictured in Figure

3.10c without the need to evaluate the coordinates of each individual feature.

23

(a) (b) (c)

Figure 3.10: Illustration of the database SIFT feature selection process using coarse local-

ization results. (a) Database SIFT feature locations for a section of the terrain map. (b)

Tile boundaries corresponding to the retrieved VLAD database indices. (c) Selection of a

subset of database SIFT features that lies within any of the tile boundaries.

3.3.1 ANN Search using PQ+IVF

To match the SIFT features, another instance of the FPGAmodule used during the coarse

localization step is used, with a few modifications to the configuration. Multiple PEs are

instantiated to process several query descriptors at the same time. The two nearest matches

for each query feature are returned to perform an outlier rejection step using the ratio of

their distances, as described in [10]. In order to speed up the computation and increase the

accuracy of the search, the vector search is performed using an inverse file. Because the

inverse file and VLAD descriptor use the same number of clusters and are trained using the

same data, they share identical codebooks. The indices computed during aggregation of the

SIFT features can be used to separate the query features into clusters. Then, only database

and query features that belong to the same cluster are compared. This reduces the number

of comparisons per query and consequently speeds up the computation of the matching step

significantly.

24

Using the inverse file data structure also contains benefits regarding PQ encoding. As

described in [20] and shown in Figure 3.11, the distribution of vector residuals has a smaller

variance and is normally distributed, which enables a more efficient encoding of database

vectors. Consequently, the distortion error introduced by PQ encoding is reduced, leading to

a more accurate search. Thus, it is more beneficial to use the vector residuals for matching

instead of the original SIFT descriptors. Once again, the earlier computation of the VLAD

descriptor can be leveraged to obtain the residuals for the query SIFT features without any

additional cost. This is because computing a VLAD descriptor already requires computing

the vector residuals between each SIFT feature and its nearest codebook word. The VLAD

accelerator module is configured to output the SIFT descriptor residuals instead of the full

descriptor values for this purpose.

(a) (b)

Figure 3.11: Histograms summarizing the value distribution of (a) original database SIFT

descriptors and (b) residuals between original database SIFT descriptors and their nearest

codebook word.

25

4.0 Performance Evaluation

An extensive evaluation of the proposed TRN system was performed to demonstrate its

viability in a real-world scenario. To accomplish this, a custom visual localization dataset was

constructed using real lunar images obtained from the Lunar Reconnaissance Orbiter (LRO)

spacecraft. Then, the system described in the previous chapter was realized on a development

board that resembles the architecture of a relevant space computing platform. Finally,

experimental results are presented and the performance of the TRN system is analyzed

using several metrics.

4.1 Experimental Design

This section contains details about the experimental design that is used to evaluate

the proposed TRN approach. First, the procedure used to generate the dataset used for

evaluation is described. Then, details about the target platform and the configuration of the

FPGA modules are presented.

4.1.1 Evaluation Dataset

There are no standard datasets for the evaluation of TRN algorithms, so a custom dataset

was created for this purpose. First, a lunar terrain map with a size of 11,171×47,903 pixels

and a ground sample distance of 1.6m/px was acquired from LRO imagery. The terrain

map covers the area surrounding the landing site for the Chang’e 3 moon landing mission.

From this terrain map, a dataset consisting of 5,000 query images—each with a resolution

of 1024×1024 pixels—was constructed. Some examples of the query images derived from

the terrain map are shown in Figure 4.1. A transformation involving random changes to

the translation, rotation, scale, illumination, contrast, and Gaussian noise was employed to

generate each query image.

26

Figure 4.1: Examples of the query images derived from the Chang’e 3 landing site map.

A database consisting of VLAD and SIFT descriptors was derived from the terrain map.

More details about the procedure used to generate the query images and the database struc-

ture can be found in the Appendix. The evaluation task using this dataset is as follows: For

each query image, an estimate for the homography between the query image and the terrain

map is computed. Then, this estimate is used to solve for an approximation of the transla-

tion, rotation, and scale parameters of the transformation. The approximation is compared

to the ground truth value and is considered correct if the translation error is ≤5 pixels, the

rotation error is ≤1.5 degrees, and the scale error is ≤0.05.

4.1.2 Test Platform

Since execution time is a critical part of the TRN application, the system should be

evaluated using an embedded platform with computational power that resembles what could

be used in a real mission. For this reason, the Xilinx ZC706 development board was used as

the test platform [23]. This development board features the Xilinx Z-7045 SoC, which is the

same device used by the SHREC Space Processor (SSP) [24]. This justifies the use of the

ZC706 development board as an appropriate platform for experimentation.

27

The FPGA modules used to realize the TRN pipeline contain several configurable pa-

rameters that affect the performance of the overall system. The CPU and FPGA clock

frequencies for the device are set to 800 MHz and 225 MHz, respectively. The SIFT key-

point detector is configured for a maximum resolution of 1024×1024 pixels. The SIFT and

VLAD descriptor computation modules both use two PEs to decrease the latency of the

feature extraction. For coarse localization, database VLAD descriptors are encoded using

32 subquantizers (leading to a size of 32 bytes per descriptor), and the ANN search module

is configured to process a single query and return the ten nearest matches. For fine local-

ization, 16 subquantizers (leading to a size of 16 bytes per descriptor) are used to encode

database SIFT descriptors, while the ANN search module is configured to process 16 queries

in parallel and return the top two matches for each query.

4.2 Results and Discussion

4.2.1 Localization Accuracy

In order to implement SIFT feature extraction on the FPGA, it was necessary to make

certain modifications to the algorithm to optimize computation for hardware. For all other

FPGA accelerators, their outputs were exactly the same as in software. As a result, it

was necessary to analyze the SIFT accelerator by itself to ensure that the modifications

performed did not compromise the quality of the resulting features. In the context of feature

extraction, the simplest way to evaluate the quality of the resulting descriptors is to perform

an image-matching task. For this task, a pair of images with a known homography is used

to test the ability to detect feature points that can be identified across multiple scenes.

For this research, the popular Affine Covariant Features dataset [25] was used. Examples

of the feature-matching results are shown in Figure 4.2b. Features were extracted from each

image pair and matched through a nearest-neighbor search. Then, the known homography

was used to compute the number of correct matches. The SIFT implementation found in

OpenCV version 3.4 was used as a software baseline. Results of the evaluation are shown in

28

Table 4.1. From this data, it can be observed that the SIFT accelerator performs similarly

to the software baseline. This validates the quality of the SIFT features produced by the

proposed hardware implementation.

(a) (b)

Figure 4.2: Feature matching results using the proposed SIFT accelerator on images from

the (a) Boat and (b) Graffiti sequences in the Oxford dataset. Only a small number of

matches are drawn to reduce clutter.

After the validating the functionality of the SIFT FPGA accelerator, the entire TRN

pipeline was evaluated using the lunar imagery dataset. For each query, an estimate of the

transformation parameters used to generate the image was computed using local feature

correspondences obtained from the TRN pipeline. Some examples of correctly localized

images are shown in Figure 4.3. From this figure, it can be observed that queries with

a wide range of scales, rotations, positions, and illumination conditions can be correctly

localized. For each image, a subset of the local feature matches demonstrate that the system

is somewhat robust to outlier matches. For the image highlighted with an orange frame

(top right), there are several erroneous matches with a map tile that represents an area not

actually visible in the query image. However, there were still enough correct correspondences

to compute an accurate homography.

The coarse localization step is the most crucial stage of the pipeline, as it is impossible

to establish true correspondences between the query and database features if there are no

relevant tiles retrieved. One of the free parameters in the pipeline is the number of retrieved

tiles used in the fine localization step. The localization performance of the system was

29

Table 4.1: Results for SIFT descriptor quality evaluation.

Sequence Implementation
of # of Correct Matching

Matches Matches Rate

Boat
Software 545 518 95.05%

Hardware 411 375 91.24%

Graffiti
Software 248 151 60.89%

Hardware 143 76 53.15%

UBC
Software 584 561 96.06%

Hardware 699 676 96.71%

Trees
Software 539 438 81.26%

Hardware 702 581 82.76%

Leuven
Software 294 262 89.12%

Hardware 331 299 90.33%

30

Figure 4.3: Examples of correctly localized query images.

31

evaluated for a varying number of retrieved tiles as summarized in Figure 4.4. From this

data, a few insights about the effect of retrieving a higher number of tiles can be obtained.

Firstly, as shown in Figure 4.4a, increasing the number of retrieved tiles leads to a higher

percentage of correctly localized queries. When using only the nearest tile match, 77.5%

of queries are correctly localized, with performance improving to 92.78% when ten tiles are

retrieved. This behavior is explained by the fact that as more tiles are retrieved, there is a

higher likelihood that there is at least one relevant item in the set of retrieved tiles. This also

introduces more irrelevant tiles, but the SIFT matching step is robust enough to be largely

unaffected. As shown in Figure 4.4b, one negative effect of retrieving more tiles is that the

number of SIFT database features selected for matching will increase significantly. A median

of 1,407 SIFT features are selected when only using the nearest tile match, while the median

increases to 9,072 SIFT features when ten tiles are retrieved. This has implications for the

execution time of the application, which will be discussed in the next section.

1 2 3 4 5 6 7 8 9 10

of Retrieved Tiles

50

55

60

65

70

75

80

85

90

95

100

L
o

c
a

liz
a

ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

(a)

1 2 3 4 5 6 7 8 9 10

of Retrieved Tiles

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

#
 o

f
S

e
le

c
te

d
 S

IF
T

 F
e

a
tu

re
s

10
4

(b)

Figure 4.4: Analysis of the relationship between the number of database tiles retrieved and

(a) the proportion of correctly localized queries and (b) the number of SIFT features from

the database that are selected for matching.

32

4.2.2 Execution Time

The proposed TRN pipeline was evaluated on the target platform and the execution time

to process each query was measured. Since this application is desired to run in real-time, it is

important to understand how the execution time of the application varies across many input

images. The number of SIFT features in the query and database sets used for matching have

the largest effect on execution time and are the only variables that vary considerably across

multiple images. Therefore, the relationship between these variables and the execution time

was studied. For this experiment, the number of retrieved tiles K was set to four. In Figure

4.5, scatter plots demonstrate that the number of query features detected is the strongest

predictor of the overall execution time. In both cases, the general trend is that the execution

time increases linearly with the number of features. The R2 values for the linear models

shown in Figures 4.5a and 4.5b were 0.9908 and 0.7012, respectively, indicating a strong

correlation between the number of features and execution time. All queries are processed

within less than 40 ms, corresponding to a framerate of up to 25 FPS. This processing speed

is suitable for real-time operation during a space landing scenario.

0 500 1000 1500 2000 2500 3000

of Detected Query Features

0

5

10

15

20

25

30

35

40

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

(a)

0 2000 4000 6000 8000 10000

of Selected Database Features

0

5

10

15

20

25

30

35

40

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

(b)

Figure 4.5: Scatter plots illustrating how (a) the number of detected query features and (b)

the number of selected database features affect the execution time of the system.

33

To further evaluate the execution time characteristics of the TRN system, additional tests

were performed to explore the relationship between the number of tiles retrieved and the

mean execution time. As previously discussed, increasing the number of retrieved tiles will

improve the localization accuracy, but the average number of SIFT database features selected

will also increase. Thus, it should be expected that increasing the number of retrieved tiles

will negatively affect the execution time. In Figure 4.6, execution time results for a varying

amount of retrieved tiles are presented. From this data, it can be observed that a higher

number of retrieved tiles will result in a larger mean execution time. Setting the number of

retrieved tiles to ten instead of one increased the average execution time by approximately

12.91% to 17.57%, depending on the number of detected query features. Overall, it can be

concluded that the improved localization accuracy from retrieving a larger number of tiles

is beneficial enough to justify the small execution time penalty.

0 500 1000 1500 2000 2500

of Detected Query Features

0

5

10

15

20

25

30

35

M
e

a
n

 E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

K = 1

K = 4

K = 7

K = 10

Figure 4.6: Comparison of the average execution time of the system for an increasing number

of detected query features based on the number of retrieved tiles.

34

The final component of the execution time evaluation was to investigate how much time

is required to perform each stage in the pipeline. In Figure 4.7, a breakdown of the mean exe-

cution time for each of the pipeline stages is presented. A few insights about the performance

of the system can be obtained from this data.

500 1000 1500 2000 2500

of Detected Query Features

0

5

10

15

20

25

30

35

M
e
a
n
 E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Feature Extraction

Coarse Localization (VLAD)

Fine Localization (SIFT)

Figure 4.7: Breakdown of the execution time for each stage of the TRN pipeline.

The feature extraction stage consumes a large proportion of the execution time when

the number of detected features is small, but this proportion decreases when more features

are detected. This can be explained by considering the two components of SIFT feature

extraction. The keypoint detection module will require processing the image at a rate of

one pixel per cycle, so there will be a fixed execution time cost even when few features

are detected. The descriptor computation module consumes additional cycles based on how

many features are detected, but increases slowly due to the optimizations presented in the

FPGA architecture discussion.

35

For the coarse localization stage, the execution time is constant regardless of the number

of features and is a small proportion of the overall execution time. This behavior can be

explained by considering that the coarse localization step consists of a PCA dimensionality

reduction of the query VLAD descriptor followed by an ANN search across the entire VLAD

database. Both of these steps require a fixed amount of operations, so there is little variability

in the execution time. Additionally, the ANN search is performed very quickly (as it only

takes four cycles to compute each vector distance), so the execution time is small even if the

database has a large number of entries.

It was found that the fine localization stage dominates the execution time as the number

of detected query features increase. The ANN search used for matching SIFT features is

performed by processing 16 query vectors at a time. Therefore, more detected features will

increase the number of iterations linearly. In addition, a high number of detected query

features requires a larger amount of CPU processing to separate the query features by their

corresponding cluster. These factors result in the fine localization step consuming the most

amount of time when the number of detected features is large. Overall, optimizing this stage

of the pipeline is the most promising strategy for improving the execution time of the system.

4.2.3 Resource Utilization

The resource-utilization figures for each of the sub-components of the TRN system are

shown in Table 4.2. These values were obtained using post-implementation reports from the

Vivado design tools. Here, the data movement network consists of the two DMA controllers

as well as the interconnect used to enable communication between the processor system and

the various accelerators through an AXI4-Lite interface. Overall, the system consumes less

than a third of the available resources, which allows for flexibility in the implementation.

The low resource utilization enables the incorporation of additional processing steps on the

FPGA, if required by the application. Alternatively, additional PEs can be instantiated

in the feature extraction and fine localization stages to speed up computation at the cost

of increased resource utilization. Finally, the number of processing elements can be scaled

down at the cost of increased latency to accommodate for resource-contrained devices.

36

Table 4.2: TRN system resource utilization on Zynq-7045 SoC.

Subsystem LUT FF BRAM18k DSP

Data Movement Network 10,436 13,889 44 0

SIFT Keypoint Detection 5,385 5,733 23 46

SIFT Descriptor Computation 14,572 14,908 84 12

VLAD Descriptor Computation 5,264 5,669 11 15

PCA Dimensionality Reduction 497 260 1 8

PQ ANN Search (VLAD) 2,065 1,749 9 0

PQ ANN Search (SIFT) 20,152 13,958 129 0

Total Utilization 58,371 56,166 301 81

(% of Available Resources) 26.70% 12.85% 27.61% 9.00%

37

5.0 Conclusions and Future Work

This research consisted of the design and evaluation of a new TRN system based on a

hierarchical localization approach. The proposed system draws inspiration from successes in

terrestrial autonomous navigation applications and is a promising solution for future space

missions. The feature-based representation of the terrain map based on robust SIFT features

enables localization without the need for a reliable initial estimate of the position. Using

global image descriptors for a hierarchical search allows for an efficient matching of features

obtained from a camera to the terrain map database. In order to meet the execution time

requirements of the application under low SWaP-C constraints, the proposed TRN system

was realized in a heterogeneous CPU+FPGA architecture. The Xilinx ZC706 development

board was chosen for testing as it features the Zynq-7045 SoC–a device is also present in the

SHREC Space Processor. By designing FPGA accelerators for each stage of the pipeline,

the execution time was reduced to an acceptable level for real-time operation.

To evaluate the performance of the system, a localization dataset was constructed by

using terrain maps of the moon obtained from a real space mission. Using the proposed

approach, it was possible to create an efficient representation for a terrain map covering

over 800 squared kilometers. An extensive evaluation of the characteristics of the TRN

system was conducted. The translation, scale, and rotation transformation parameters of

up to 92.78% of the images in the dataset were correctly estimated, independent of a prior

position estimate. All queries were processed within 40 ms due to the implementation of

large-scale search algorithms and FPGA modules for acceleration of each of the pipeline

stages. The proposed TRN system consumes less than a third of the available resources

within the target platform. A tradeoff between resource utilization and execution time can

be performed depending on the needs of the application.

There are several steps to extend this research and improve the capabilities of the pro-

posed system. Firstly, additional evaluation using more realistic datasets will aid in under-

standing the capabilities of the proposed TRN system. Images used for evaluation in this

study consisted of real lunar imagery, but did not use a model of the cameras that may be

38

available during space missions. Using images from a simulated descent will improve the

quality of the evaluation dataset. In addition, replacing SIFT and VLAD descriptors with

alternative feature representations—such as deep-learned features—is a promising direction

to improve robustness. An evaluation of the tradeoffs between execution time, memory

consumption, and localization accuracy when using these feature representations should be

studied. Finally, integration of the proposed TRN algorithm into a guidance, navigation,

and control (GNC) system will validate the utility of the new TRN algorithm as a tool to

enable more precise landings in future missions.

39

Appendix Dataset and Database Generation Procedures

Details about the procedure used to generate the dataset and database used in the

experiments are provided in this section. A dataset of 5,000 query images with a resolution of

1024×1024 pixels was used as an evaluation dataset for the TRN system. Constructing each

query image consisted of two steps. First, a transformation consisting of applying a random

set of changes to the position, scale, and rotation of the query relative to the terrain map were

performed. Then, the illumination was modified by changing the brightness and contrast of

the image, followed by the addition of Gaussian noise. For each query, the transformation

parameters were determined by selecting values from a random, uniform distribution. In

Table A1, the minimum and maximum values for each of the transformation parameters

is listed. The scale parameters were chosen to cover a wide range of altitudes while also

considering the degradation of rendering quality based on the ground sample distance of the

map. The luminance, contrast, and noise parameters were chosen experimentally to provide

a reasonable amount of distortion to the images.

Table A1: Transformation parameters used to generate dataset query images.

Parameter Minimum Maximum

Luminance +20 −20

Contrast −25% +25%

Gaussian Noise σ2 = 0 σ2 = 10

Scale ×0.25 ×2

Rotation −180° +180°

In Figure A1, a visualization of the terrain map and the location of all database queries is

shown. Due to its large aspect ratio, the map is split in half for better visualization. Queries

correctly localized by the TRN system are shown in green; incorrectly localized queries are

shown in red.

40

Figure A1: Visualization of the location of database queries with respect to the terrain map.

41

Generating the terrain map database consisted of the following procedure. First, SIFT

features were extracted from the terrain map, which were used to train the VLAD codebook

and SIFT PQ codebook. Then, the terrain map was divided into a uniform grid of squares,

where each square has a side length of 1024/3 pixels. A set of tiles was constructed where

each tile corresponds to a region of 3×3 squares in size. Tiles containing 150 or more SIFT

features were selected as database tiles.

A VLAD descriptor was computed for each database tile, followed by a PCA dimension-

ality reduction. This set of VLAD descriptors was used to train the VLAD PQ codebook,

which was subsequently used to compress the data. To increase robustness to altitude

changes, the map was resized by several scaling factors and the entire process was repeated

at each scale. Overall, a total of 9 map scales were computed, leading to a database size of

around 30,000 VLAD descriptors and over 2 million SIFT features.

One concern with using such a large dataset in an embedded application is memory con-

sumption, but this is mostly addressed by applying PQ to the data. By compressing the

VLAD descriptors with PCA and PQ, the size of the VLAD database was reduced from

≈67.4 MB to ≈1.1 MB, corresponding to a 64× reduction in size. The SIFT descriptors are

compressed using PQ only, which reduced their size from ≈388.3 MB to ≈47.1 MB, corre-

sponding to an 8× reduction in size. The costs to store database SIFT feature coordinates,

codebooks, and additional overhead for the database structure increase the overall memory

consumption of the system to a total of ≈73.4 MB. This amount is fairly manageable for the

target device used in this study, which contains 1 GB of DDR3 memory.

42

Bibliography

[1] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar, and L. Matthies,
“Vision-aided inertial navigation for spacecraft entry, descent, and landing,” IEEE
Transactions on Robotics, vol. 25, no. 2, pp. 264–280, 2009.

[2] A. Johnson, S. Aaron, J. Chang, Y. Cheng, J. Montgomery, S. Mohan, S. Schroeder,
B. Tweddle, N. Trawny, and J. Zheng, “the Lander Vision System for Mars 2020
Entry Descent and Landing,” Guidance, Navigation and Control 2017: Proceedings
of the 40th Annual AAS Rocky Mountain Section Guidance and Control Conference,
pp. 143–158, 2017.

[3] A. E. Johnson and J. F. Montgomery, “Overview of Terrain Relative Navigation ap-
proaches for precise lunar landing,” IEEE Aerospace Conference Proceedings, 2008.

[4] A. Johnson, R. Willson, Y. Cheng, J. Goguen, C. Leger, M. Sanmartin, and
L. Matthies, “Design through operation of an image-based velocity estimation sys-
tem for mars landing,” International Journal of Computer Vision, vol. 74, no. 3,
pp. 319–341, 2007.

[5] A. E. Johnson, Y. Cheng, J. Montgomery, N. Trawny, B. Tweddle, and J. Zheng,
“Real-time terrain relative navigation test results from a relevant environment for
mars landing,” AIAA Guidance, Navigation, and Control Conference, 2013, pp. 1–13,
2015.

[6] D. A. Lorenz, R. Olds, A. May, C. Mario, M. E. Perry, E. E. Palmer, and M. Daly,
“Lessons learned from OSIRIS-REx autonomous navigation using natural feature
tracking,” IEEE Aerospace Conference Proceedings, 2017.

[7] J. A. Christian, H. Derksen, and R. Watkins, “Lunar crater identification in digital
images,” 2020.

[8] J. S. McCabe and K. J. Demars, “Anonymous feature processing for efficient onboard
navigation,” AIAA Scitech 2020 Forum, vol. 1 PartF, no. January, pp. 1–20, 2020.

[9] C. Owens, K. Macdonald, J. Hardy, R. Lindsay, M. Redfield, M. Bloom, E. Bailey,
Y. Cheng, D. Clouse, C. Y. Villalpando, A. Hambardzumyan, A. E. Johnson, and
A. D. Horchler, “Development of a signature-based terrain relative navigation system
for precision landing,” AIAA Scitech 2021 Forum, no. January, pp. 1–20, 2021.

43

[10] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[11] D. M. Chen, G. Baatz, K. Köser, S. S. Tsai, R. Vedantham, T. Pylvänäinen,
K. Roimela, X. Chen, J. Bach, M. Pollefeys, B. Girod, and R. Grzeszczuk, “City-
scale landmark identification on mobile devices,” Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 737–744, 2011.

[12] T. Sattler, W. Maddern, A. Torii, J. Sivic, T. Pajdla, M. Pollefeys, and M. Okutomi,
“Benchmarking 6DOF Urban Visual Localization in Changing Conditions,” IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 8601–8610, 2018.

[13] P. E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse to fine: Robust
hierarchical localization at large scale,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 12708–
12717, 2019.

[14] R. Arandjelović and A. Zisserman, “Three things everyone should know to improve
object retrieval,” in 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2911–2918, 2012.

[15] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies for image catego-
rization,” Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2007.

[16] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the Fisher kernel for large-scale
image classification,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6314 LNCS,
no. PART 4, pp. 143–156, 2010.

[17] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with large
vocabularies and fast spatial matching,” Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2007.

[18] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a
compact image representation,” Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, pp. 3304–3311, 2010.

44

[19] R. Arandjelovic and A. Zisserman, “All about VLAD,” Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, pp. 1578–
1585, 2013.

[20] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor
search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33,
no. 1, pp. 117–128, 2011.

[21] Xilinx, CORDIC v6.0, December 2020. Xilinx LogiCORE IP Product Guide (PG105).

[22] Xilinx, Floating-Point Operator v7.1, February 2021. Xilinx LogiCORE IP Product
Guide (PG060).

[23] Xilinx, Zynq-7000 All Programmable SoC Technical Reference Manual, December
2017. Xilinx User Guide (UG585).

[24] N. Perryman, T. Schwarz, T. Cook, S. Roffe, A. Gillette, E. Gretok, T. Garrett,
S. Sabogal, A. George, and R. Lopez, “Stp-h7-caspr : A transition from mission
concept to launch,” Proceedings of the 35th Annual AIAA/USU Conference on Small
Satellites, 2021.

[25] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. Van Gool, “A comparison of affine region detectors,” International
Journal of Computer Vision, vol. 65, no. 1-2, pp. 43–72, 2005.

45

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	4.1. Results for SIFT descriptor quality evaluation.
	4.2. TRN system resource utilization on Zynq-7045 SoC.
	A1. Transformation parameters used to generate dataset query images.

	List of Figures
	2.1. Conceptual diagram for PQ vector encoding.
	3.1. System architecture diagram highlighting major sub-components.
	3.2. Illustration of the local SIFT features (green) and the global SIFT descriptor (blue) computed during feature extraction.
	3.3. FPGA architecture diagram for stream-based SIFT keypoint detection.
	3.4. FPGA architecture diagram for stream-based SIFT descriptor computation.
	3.5. Conceptual timing diagrams illustrating how the proposed architecture reduces the amount of stalls in the keypoint-detection pipeline.
	3.6. FPGA architecture diagram for stream-based VLAD descriptor computation.
	3.7. Illustration of the coarse-level localization stage using a nearest neighbors search.
	3.8. FPGA architecture diagram for stream-based PCA dimensionality reduction.
	3.9. FPGA architecture diagram for stream-based PQ ANN search.
	3.10. Illustration of the database SIFT feature selection process using coarse localization results. (a) Database SIFT feature locations for a section of the terrain map. (b) Tile boundaries corresponding to the retrieved VLAD database indices. (c) Selection of a subset of database SIFT features that lies within any of the tile boundaries.
	3.11. Histograms summarizing the value distribution of (a) original database SIFT descriptors and (b) residuals between original database SIFT descriptors and their nearest codebook word.
	4.1. Examples of the query images derived from the Chang'e 3 landing site map.
	4.2. Feature matching results using the proposed SIFT accelerator on images from the (a) Boat and (b) Graffiti sequences in the Oxford dataset. Only a small number of matches are drawn to reduce clutter.
	4.3. Examples of correctly localized query images.
	4.4. Analysis of the relationship between the number of database tiles retrieved and (a) the proportion of correctly localized queries and (b) the number of SIFT features from the database that are selected for matching.
	4.5. Scatter plots illustrating how (a) the number of detected query features and (b) the number of selected database features affect the execution time of the system.
	4.6. Comparison of the average execution time of the system for an increasing number of detected query features based on the number of retrieved tiles.
	4.7. Breakdown of the execution time for each stage of the TRN pipeline.
	A1. Visualization of the location of database queries with respect to the terrain map.

	Preface
	1.0 Introduction
	2.0 Background
	2.1 Terrain-Relative Navigation
	2.2 Scale-Invariant Feature Transform (SIFT)
	2.3 Vector of Locally Aggregated Descriptors (VLAD)
	2.4 Approximate Nearest Neighbors (ANN) Search
	2.4.1 Product Quantization (PQ)
	2.4.2 Inverse File (IVF)

	3.0 Approach
	3.1 Feature Extraction
	3.1.1 SIFT Keypoint Detection
	3.1.2 SIFT Descriptor Computation
	3.1.3 VLAD Descriptor Computation

	3.2 Coarse-Level Localization
	3.2.1 PCA Dimensionality Reduction
	3.2.2 ANN Search using PQ

	3.3 Fine-Level Localization
	3.3.1 ANN Search using PQ+IVF

	4.0 Performance Evaluation
	4.1 Experimental Design
	4.1.1 Evaluation Dataset
	4.1.2 Test Platform

	4.2 Results and Discussion
	4.2.1 Localization Accuracy
	4.2.2 Execution Time
	4.2.3 Resource Utilization

	5.0 Conclusions and Future Work
	Appendix. Dataset and Database Generation Procedures
	Bibliography

