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In today’s era of big-data, a new computing paradigm beyond today’s von-Neumann 

architecture is needed to process large-scale datasets efficiently. In response to this need, the field 

of neuromorphic computing has recently emerged. Inspired by the brain, neuromorphic approaches 

are better at complex tasks than even supercomputers and show much better efficiency. This is 

because, unlike modern computers that use digital ‘0’ and ‘1’ for computation, biological neural 

networks exhibit analog changes in synaptic connections during the decision-making and learning 

processes. However, the existing approaches of using digital complementary metal-oxide-

semiconductor (CMOS) devices to emulate gradual/analog behaviors in the neural network are 

energy intensive and unsustainable; furthermore, emerging memristor devices still face challenges 

such as non-linearities and large write noise. Here, we propose a novel artificial synaptic device 

use of an electrochemical dynamic synapse based on two-dimensional (2D) materials. The synaptic 

weight (channel conductance) of these dynamic synapses can be tuned via both a long-term doping 

effect from electrochemical intercalation and a short-term doping effect from ionic gating, thereby 

demonstrating programmable spatio-temporal dynamics, an essential feature for implementing 

spiking neural networks (SNNs). The electrical conductance of the channel is reversibly modulated 

by a concentration of Li ions between the layers of the 2D materials. This fundamentally different 

mechanism allows us to achieve a good energy efficiency (< 700 aJ per switching event), analog 

tunability (>5000 non-volatile states), good endurance and retention performances, and a linear 
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and symmetric resistance response. We demonstrate essential neuronal functions such as 

excitatory and inhibitory synapses, short term and long term plasticity, paired pulse facilitation 

(PPF), spike timing dependent plasticity (STDP), and spike rating dependent plasticity (SRDP), 

with good repeatability. Our scaling study suggests that this simple, two-dimensional (2D) synapse 

is scalable in terms of switching energy and speed. This work can lead to the low-power hardware 

implementation of neural networks for neuromorphic computing. 
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1.0 Introduction 

 

1.1. Motivation 

1.1.1 Neuromorphic Computing and Artificial Neural Networks (ANNs) 

Necessity for the next generation electronic devices with improved performances in terms 

of energy and speed is increasing speedily as transistor technology is closing to its Moore’s law. 

The human brain as the most efficient computational system has attracted a lot of attention between 

researchers to develop highly efficient device by emulating brain behaviors.  The human brain 

only consumes 20 W to do very complicated tasks such as speech and pattern recognition and all 

daily calculations required for our body to be functional daily life.[1] In contrary, the most famous 

super computer introduced by Oak Ridge National Laboratory uses significant energy 9.78 MW 

to do a complicated task.[2] The major challenges for the traditional computers that make them 

inefficient in energy consumption and speed is Von Neumann bottleneck due to the physical 

separation of the memory and central processing unit (CPU) and the information needs to be 

transferred between these two location due to the sequential execution of the operations.[3,4]  

Contrarily, biological systems able to do both processing and storing at the same location 

that enable to execute  computations in massively parallel networks, reducing the energy cost per 

operation.[5] Consequently, researchers are inpired to develop neuromorphic computing systems 

that can emulate brain functionalities to acheive or even exceed the brain efficiency. To fulfill this, 

scientists have successfully developed and applied ANNs in numerous  fields including: image 

and pattern recognition,[6] speech recognition,[7] machine translation,[8] and beating humans at 
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chess and recently, Go.[9] The hardware implementation of the ANNs are hindered by digital 

transistor as building block of current artificial synapses as thay cannot trully imitate the analoge 

bahavior of the biological synapses as building block of the biological neural network. The basic 

neural network operations such as neurpmorphic computations, Deep Neural Networks (DNNs) 

and Spiking Neural Networks (SNNs), will be reviewed in the folloaing sections. In addition, 

variouse of current approach that are under investigation to improve the synaptic devices 

performances with regard to the hardware acceleration of ANNs. Furthermore, different number 

of emerging arificial synaptic devices including phase change memory (PCM) based synapses, 

resistive random-access memory (RRAM) based synapses, Electrochemical synapses and two-

dimensional (2D) materials based synapses will be introduced and reviewed.  
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1.2 Background 

 

1.2.1 Neural Network Basics: Synapse and Network Operation 

The human brain, with its dense neural networks and adaptable memory elements 

(synapses), presents a fascinating computing model with extraordinarily low power 

consumption.[10] The human brain has almost ~1011 neurons, and each neuron is connected to 

another neuron through ~104 synapses, for a total of ~1015 total synapses.[10,11] As illustrated in 

Figure 1.1, each neuron is constituted of many different parts, including the soma that forms the 

body and is connected to the network via dendrites and an axon. Information is received from other 

neurons (inputs) via dendrites, and the terminal branches in the axon transmit the information on 

(output). The small gaps (20-40 nm) between the axon end of the presynaptic neuron and the 

dendrites of the postsynaptic neurons are known as synapses.  The connection strength between 

neurons, known as synaptic weight, can be strengthened (potentiation) or weakened (depression) 

during a procedure called synaptic plasticity, which is widely believed to be of major importance 

in the process of learning and memory making in the brain.   

After firing a neuron, a signal is realized and travels down the axon into the dendrites of 

the next neuron through synapses. The size of this signal is dependent on the neural connection 

strength or synaptic weight. Many artificial synaptic systems adopt a crossbar synaptic array 

structure that can be scaled up for an (Artificial Neural Network) ANN implementation, as 

depicted in Figure 1.1. Each input line through programmable resistors is connected to the output 

lines and each input influences the total output of each line. These resistors as synaptic devices 

determine how much of the input signal goes to each output signal. Various selection devices in 

modern arrays impede errors arising from so called sneak currents falsely influencing the 
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output.[12] Comprehensive research has been done to optimize these synaptic devices and their 

performance and establish the best possible neuromorphic system. Here besides reviewing the 

working principles behind ANNs, the device characteristics and consequent impact on these 

networks’ performances has been discussed.  

 

Figure 1.1. Comparison of biological and artificial neurons. Schematics of a biological neuron 

(left) vs. an artificial neural network (right). 

1.2.1.1 Neuromorphic Computation 

To show how ANNs execute their computation, we use a simple example of the recognition 

of handwritten digits across a feed-forward network, as illustrated in Figure 1.2. Initially the input 

image is separated into N binary iputes in black and white and each input is representing a specific 
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area of the initial image. The inputs then feed to a one hidden layer that is representing M hidden 

neurons for computations after receiving N inputs. Each neuron of an M hidden neuron in turn is 

connected to each 10 output neurons. A SET threshold level has been defined for the hidden layer, 

and if the summation of each input comming from the firat layer passes this level, the 

corresponding signal will be propagated into the next layer. This process occurs in all network 

layers untill it hits 10 output neurons (corresponding to 0-9 digits) in the output layer. The system 

then can realize the initial digit image, depending on the firing of the final neuron. Two important 

parameters that need to be considered are determining the threshold level and synaptic weight 

(connection strength) between the neurons. The synaptic weight is determining the weight of the 

distribution of the each input signal to each neuron of the next layer (M hidden layer). The synaptic 

weight can be trained using various algorithms and different methods. The main two methods are: 

offline training and online training. In offline training, a huge series of known data is fed into the 

system and the relevant synaptic weight is adjusted until the output is the known correct output. 

However, this method has some disadvantages such as the requirement of a large and established 

data SET to feed into the system and extensive trainingg time. For online training network training 

happens at the same time the data is entered. However, although this methods allows processing 

of dynamic data sets, sizable peripheral circuits are required for performing a vast number of 

weight updates in real time, as well as more on-chip memory for storage of the new weight 

values.[13] In online training the synaptic devices are required to show high endurance as the 

synapses are usually more on-the-fly. Furthermore, a large number of conductance states and a 

linear synaptic weight change are required to make it easier for the system to converge to an error 

minima. After completing the training, the self operation of the network, depending on the 

efficiency of the training scheme, will show different degrees of success. Two important 
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parameters to determine the choice of type of training, either offline or online, are the task that 

needs to be completed and the network type.[14] DNNs and SNNs are the two most well-known 

network types, where the former is useful for applications such as speech recognition and image 

classifications while the latter are used to allow ANNs to reach to maximum potential in artificial 

networks similar to the biological neural systems.  

 

 

Figure 1.2. Simple pattern recognition example. 2-Layer multilayer perceptron example of a 

simple network structure for handwritten digits recognition. The image is broken into a grid of N total 

areas, (the N input elements) those elements are all connected into a Hidden Neuron layer of size M, and 

those Hidden Neurons are then connected to the 10 Output Neurons, representing the digits 0-9. 

Reproduced with permission.[15] Copyright 2017, IEEE. 

1.2.1.2 Deep Neural Networks (DNNs) 

In 1943 McCulloch and Pitts developed a neuoal network for the first time, with the first 

perception of it implemented in 1958.[16] Because of computing power deficiency, the first devices 
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were unremembered until the 1980s. However, with the discovery of the error backpropagation 

techniques and chain rule in the late 20th century, we begin to observe a continiuous increase in 

accuracy and sophistication in neural network systems  .[16] DNNs (Multilevel Perceptrons, Deep 

Belief Networks, Convolutional Neural Networks etc.), as motivation behind modern day neural 

network advances, experienced a speedily explore by emerging modern computational power in 

the early 21st century.   DNNs, with their vast complexity and many layers, were capable of 

unsupervised, semi-supervised, and supervised learning and exceeded in tasks that had extensive 

training data.[16] Moreover, the increase in commecial availability of graphic processor units 

(GPUs) and field programmable gate arrays (FPGAs) as powerful parallel computation devices 

allowed development of new algorithms and network structures, resulting in further significant 

progress in DNN development .[17] Nevertheless, along with the continiuous progress in DNN 

devleopment came increases in complexity that requireda vast number of computational resources 

for their training. Consequently, substantial research efforts have been devoted o the maturing of 

DNN accelerators using custom designs. To fabricate a DNN accelerator, current CMOS devices 

are utilized with the help of on-chip buffers.[18] The major drawback for theses solutions, however, 

is scalability, as the large number of memory devices, usually static random access memories 

(SRAMs), are required. In addition, the size SRAM cells (each SRAM cell includes eight 

transistors) results in  low power efficiency caused by leakage current, creating another challenge 

for these memory devices.[18] Advances in artificial synaptic devices that can emulate human 

cognitive capabilities are indispensable to improving existing DNN configurations to acheive 

dense and energy efficient devices.  Thus researchers began to develop Spiking Neural Networks 

(SNNs). 
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1.2.1.3 Spiking Neural Networks (SNNs) 

Due to their close resemblance to biological systems, SNNs have attracted a lot of attention. 

It is believed that the major reason that capable brain in sequence recognition and memory is its 

potential to process spikes.[19,20] To make SNNs a reality, a technique to govern spike-timing-

dependent plasticity (STDP) is required.  This technique is hypothesized to be what dictates 

causality in human brain. If one stimuli correlates/causes another one several times, this 

correlation/causality is strengthened via synaptic connection change in the brain.[21] As 

summarized by Löwel and Singer “neurons that fire together, wire together.”[22] As illustrated in 

Figure 1.3a, for the single synapse structure with pre- and postsynaptic neuron, by continuous 

firing of presynaptic neuron without considering firing of post-synaptic neuron, it would seem that 

the pre-synaptic neuron has a direct effect on post synaptic neuron whether or not the post-synaptic 

neuron fires. As a result, the one observes a strengthened (excitatory) or weakened (inhibitory) in 

connection between these two synapses depending on the synapse’s type. On the other hand, with 

continuous firing of the post-synaptic neuron before firing in pre-synaptic neuron, it would seem 

that the pre-synaptic neuron has no effect on the relevant post-synaptic neuron and one observes 

weakened (excitatory) or strengthened (inhibitory) in connection area between these two neurons. 

There are four forms of STDP and a related synaptic weight change in the biological brain as 

illustrated in Figure 1.3b. Besides STDP, other parameters like dendritic locations, spiking orders, 

and firing rate have displayed to influence synaptic plasticity in the brain as well.[23] 
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Figure 1.3. Spike-timing-dependent plasticity (STDP) models. a) Example of a neuron (Neuron 

A) with its prior neuron layer (Neuron B). b) Examples of STDP desired weight change based on the time 

difference between Neuron A and Neuron B firing. Reproduced with permission.[24] Copyright 2018, John 

Wiley and Sons. 

 

Similar to DNNs, which can be built using many different approaches,, many techniques 

have been developed to build SNNs as well, depending on the required applications and the 

involved artificial synaptic device.[25] However, all the approaches need stringent timing 

mechanisms in addition to external secondary circuity to accomplish. In addition to the large 

physical chip area that is required for these incidental circuitries, a huge amount of memory is 

essential, resulting in unrealistic scalability of these synaptic devices.[25] As a result, to implement 

the next generation of SNNs, a synaptic device that is capable of internally incorporating STDP 

behaviors is required. 
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1.2.1.4 Existing Approaches and Synaptic Device Requriements 

A few neuromorphic computing systems are available to be used for hardware 

implementations of ANNs. The popular DNN system called TrueNorth uses almost 4096 CMOS 

based neuromorphic cores consisting of 106
 neurons and 246×106 synapses with a capability of 

conducting 58 G-synaptic operations per second (GSOPS). Despite its efficcient power 

consumption per operation (~ 2.5 pJ/op), compared to the human brain with a significant energy 

efficiency of per operation (~2 fJ/op), a lot of progress needs to be made and challemges 

addressed.[26, 27] Another well-known neuromorphic system based on SNNs is SpiNNaker.[28] Each 

of its 18 general purpose CPUs can model a few hundred neurons. Each neuron with its 103 

synapses along with the software considerations execute the required computations. Although 

SpiNNaker consumes more power compared to other existing computing systems, it surpasses 

others at training speed. While other computing systems uses offline training that might take hours, 

SpiNNaker uses online training in real time for large scale SNNs simulations, which provides a 

highly efficient spiking system.[29] Despite these promissing aspects, these systems suffer from 

scalability and high power consumption as they are utilizing traditional digital CMOS technology 

in their artchitecture. Therefore exploring a new synaptic device for hardware implementation and 

ANN accelerations is critical, and researchers are working on various types of artificial synapses 

to address the aforementioned challenges.  

In recent years various synaptic devices have been proposed. On the face of it, synaptic 

devices and emerging non-volatile memories (NVMs) have a lot of properties in common such as 

easy programming, easy reading, and high data retention. Accordingly, emerging NVM devices 

such as RRAM, spin-torque transfer random access memory (STT-RAM) and PCM have been 

adopted for developing synaptic devices due to their fast switching speed, low programing power, 
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good retention and scalability, all characteristics which have a vital role in emerging neuromorphic 

computing devices.[15]  

Despite their similarities, NVMs and synaptic devices have different applications and so 

their device metrics can be different. The most importan difference between NVMs and artificial 

synapses is the number of states available. NVMs are usually binary or at most multi-level cells 

(MLC) with maximum 8 states per device; however, for the purpose of learning accuracy and 

device density, artificial synaptic devices require a high number of distinct states. Moreover, while 

a high on/off ratio is prefered for NVMs for signal-to-noise ratio improvement, in synaptic devices 

that can result in low sensivitivity to individual synapses in larger arrays. Furthermore, some 

properties that are not important in NVMs such as symmetry and linearirty of the current-voltage 

govern DNN accuracy and play a key role in synaptic devices for ANN applications. The 

endurance and retention that are required in NVM applications, are important in synaptic devices 

as well depends on the required application. For example, a good endurance is required for a neural 

network that performs weight updates using online training. However, retention performance that 

does not play vital role in these systems are important in offline neural network with presynaptic 

weight.  

Now, the different types of artificial synaptic devices that have been developed so far will 

be appraised. There are four major types of synaptic devices that we will discuss including PCMs, 

RRAMs (including conductive-bridging, filamentary, and interfacial), electrochemical 

intercalation based synapses, and 2D material based synapses. We will review the working 

prenciples and device metrics for each device, evaulating their potential for implementation of the 

current ANN frameworks in terms of operating speed and energy, number of states (precision), the 



 12 

degree of symmetry and linearity of the state switching, reliability (device variations, endurance, 

and retention), and, finally, their potential in spatio-temporal dynamics for SNNs. 
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2.0 Emerging Artificial Electronic Synapses 

2.1 Phase Change Memory (PCM) 

Recently a promising NVM technology, PCM,  has emerged with good reliability, fast 

programming speed, scalability, low device-to-device variations, good endurance, multiple 

programming resistance levels, and high packing density.[30-35] In Figure 2.1a, a commonly used 

PCM cell structure, mushroom or T-cell, is illustrated in which the nanoscale PCM material is 

sandwiched between two bottom and top electrodes, where the phase change material can be 

switched between a crystalline phase in SET process (i.e. low resistance state or LRS) and an 

amorphous phase in RESET process (i.e. high resistance state or HRS) via Joule heating.[36] The 

concept of using phase change materials for memory application was originally proposed by 

Ovshinsky in 1969,[37] but it was the discovery of a family of fast switching (<100 ns) 

chalcogenides (Ge, Sb, and Te alloys) by Yamada et al. (Figure 2.1b),[38] which prompted the 

commercialization of PCM based optical data storage (DVDs and blu-rays) in the 1990s and, 

subsequently, the development of electrically programmable phase change random access 

memory.[39]  

In SET process, as shown in Figure 2.1c, [40] upon application of an electrical field (a series 

of electrical pulses with low amplitude) and consequence threshold switching, Joule heating is 

induced, causing the phase change material to heat up to its crystallization temperature (typically 

~150 °C) .[41] Upon crystallization, the material switched from the amorphous phase, where it is in 

a high resistance state (HRS), to a crystalline phase with a low resistance state (LRS). However, 

in the RESET process (the phase transition from crystalline to amorphous state) with application 
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of an electrical voltage pulse with high amplitude (to heat up the cell to above its melting 

temperature, usually >650 °C[42]), the programming region will melt due to the Joule heating 

induced by the current moving through the cell and quench rapidly due to the glass transition when 

the reset pulse is cut off. The SET process is the rate limiting step in PCM since the crystallization 

process involves atomic movement whereas RESET is the power limiting step as the cell needs to 

be heated up to its melting temperature. 

 

 

Figure 2.1. PCM synapse. a) Cross-section schematic of the mushroom PCM device. b) Family 

tree of fast switching chalcogenides. c) Schematic for implementing synaptic plasticity in PCM synapses. 

a) Reproduced with permission.[36] Copyright 2010, IEEE. b) Reproduced with permission.[38] Copyright 

2007, AIP. c) Reproduced with permission.[40] Copyright 2016, Nature. 

 

Unlike with binary memory applications, which switch immediately from one state to the 

other, the gradual phase transition in PCM between crystalline and amorphous states enables PCM 

materials to be useful for neuromorphic applications and ANN hardware accelerations due to its 

good scalability, fast speed, and its potential for analog switching. Various pulsing schemes, as 

shown in Figure 2.2a, have been explored to program PCM devices for synaptic plasticity 
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implementation. The PCM conductance can be tuned by modulating the amorphous to crystalline 

resistance ratio .[40] In Figure 2.2b, the cross-section transmission electron microscopy (TEM) 

images of a gradual programming process with fine control of resistance of a GST-PCM device is 

shown for both the SET and RESET processes through 100 steps.[11, 43] This working mechanism 

and multilevel cell operation has been employed for array density improvement in NVM 

applications. However, for neuromorphic applications a synaptic device with higher level of 

precision (# of available distinct states or precision level per device) is indispensable to enable it 

to be used for ANN implementation. A Ge2Sb2Te5 (GST)-based PCM synaptic device reported by 

Wright et al. displayed 10× precision with a dynamic range of 50× as illustrated in Figure 2.3a.[44] 

The GST PCM studied by Zhong et al. showed 10× precision and 5× dynamic range per device 

(Figure 2.3b).[45] Kuzum et al., in 2012, were able to demonstrate a PCM device with high 

precision (120 states per device) and reasonable dynamic range (~50×) with the help of a train of 

pulses with increasing amplitude (Figure 2.3c).[43] This considerable improvement in precision 

level in PCM artificial synapses promoted utilizing these devices for the hardware implementation 

of neural networks. Despite the promising aspects of???, such as good symmetry observed in the 

conductance response, the large cycle-to-cycle and device-to-device variation seen and high 

nonlinear behavior due to the stochastic nature of the phase transition processes negatively affects 

the learning performance in PCM synaptic arrays.[46-49] 
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Figure 2.2. SET  and RESET  in PCMs. a) A series of set pulses with low amplitude for set cycle 

and single high amplitude pulses required for reset cycle in blue (top), and corresponding set and reset 

current in red (bottom). b) TEM images illustrating the phase transition from fully set state to partially 

reset state with small amorphous region shown by small mushroom and fully reset state. a) Reproduced 

with permission.[40] Copyright 2016, Nature. b) Reproduced with permission.[43] Copyright 2012, ACS. 

 

 

 



 17 

 

Figure 2.3. Synaptic plasticity in PCMs. a) Resistance changes of the PCM device upon the 

application of 10 pulses (~1 V, 60 s). b) Resistance change using simple square pulse for the both set and 

reset cycles. c) Gradual reset and set using pulses with increasing amplitude. a) Reproduced with 

permission.[44] Copyright 2013, John Wiley and Sons. b) Reproduced with permission.[45] Copyright 2015, 

John Wiley and Sons. c) Reproduced with permission.[43] Copyright 2012, ACS. 

2.2 Resistive Random Access Memory (RRAM) 

RRAM devices are one of the most attractive emerging NVM technologies with their 

programmable resistive level for information encoding. The promising properties of these devices, 

such as a simple two terminal structure, low energy switching, fast switching speed, scalability 

and compatibility with established CMOS technology, have encouraged a lot of resarchers to work 

on developing these devices.  In addition to their usefulness for memory applications, their non-

volatility and minimal standby leakage power compared to SRAM devices mean that RRAM 

devices are also being explored for the hardware hastening of artificial neural networks. Moreover, 

RRAM devices with a crossbar array structure have the potential for large scale integration, a 

quality indispensable for ANNs. RRAM can be categorized into the three major types based on 

the switching mechanisms: CBRAM, filamentary RRAM, and interfacial RRAM (Figure 2.4). 
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The working mechanism and suitability of each of above-mentioned RRAM devices as artificial 

synaptic device are investigated in the following paragraphs.  

 

 

Figure 2.4. Device structure and working principle of CBRAM, filamentary RRAM, and 

interfacial RRAM. a) CBRAM is based on the conductive metal-ions filament formed electrochemically 

between an active top electrode and resistive switching layer. b) Filamentary RRAM is based on an 

oxygen vacancy filament through the resistive switching layer that is sandwiched between two inert metal 

electrodes. c) Interfacial-type RRAM is based on the barrier modulation effect at the metal /switching 

material interface layer, where the migration of oxygen ions towards the electrode reduces the effective 

barrier width of electron tunneling and immobile oxygen vacancies randomly distribute in the resistive 

switching layer.  

As illustrated in Figure 2.4a, the CBRAM operates via formation and dissolution of a 

conductive bridge pathway during the SET and RESET processes and switches between the 

resulting LRS and HRS states. The bridge is comprised of active metal cations such as Ag or Cu 

that are formed in the insulating switching layer such as metal oxides,[50] amorphous silicon,[51] or 

solid electrolyte.[52] Upon applying an electrical field in the SET process, the cations from the top 



 19 

electrodes are injected into the switching layers and the metallic conductive pathway bridges 

between the top and bottom electrode, and the device resistance switches to an LRS state. On the 

other hand, upon applying an electrical field with opposite polarity in the RESET process, this 

conductive bridge dissolves and device resistance transits to the HRS state. Characteristics such as 

simple structure and scalability, good retention, fast switching speed, and low switching voltage 

make CBRAM a promising candidate for synaptic device development. However, some drawbacks 

such as non-linear and asymmetrical conductive responses, large cycle-to-cycle and device-to-

device variation due to the stochastic nature of the conductive filament formation and dissolution 

have a negative effect on ANN performance and need to be addressed. Moreover, high 

conductivity in the LRS state (typically ranging from 300 Ω to 1 kΩ)[53] may result in huge leakage 

current in the crossbar structure, which is another issue for CBRAM devices implementation in 

hardware. 

In filamentary RRAM, similar to in CBRAM, the conductance change is based on a 

filamentary bridge forming and rupturing, only in this case with the help of available oxygen 

vacancies instead of metal cations, in the insulating material sandwiched between two electrodes. 

In Figure 2.4b, a typical metal-insulator-metal (MIM) vertical and two terminal structure of the 

filamentary-based RRAM is illustrated, where the insulating layer (switching layer) is made of 

metal oxides such as TiOx,
[54, 55] HfOx,

[56-59] AlOx,
[54, 56] WOx,

[60, 61] and TaOx.
[62, 63] Upon 

application of an electric field during the SET process, a conductive pathway consisting of oxygen 

vacancies is formed, inducing a soft breakdown in the oxide material (with limited current 

compliance to control the process) and device transit from HRS to LRS state. During RESET 

process, on the other hand, the filament cracks either by recombination of oxygen vacancies with 

oxygen ions upon application of an electric field with opposite polarity (bipolar RRAM) or through 
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Joule heat under a larger electric field (unipolar RRAM), causing transition from LRS to HRS.[64] 

Despite the promising aspects of filamentary RRAM devices such as their simple structure, low 

cost, good scalability, low switching voltage, and highly accessible switching materials compatible 

with established CMOS technology and fabrication facilities, they suffer from some drawbacks, 

including,  like CBRAM devices, the stochastic nature of the switching mechanism. This property 

due leads to difficulty controlling filament formation and dissolution; this lack of control induces 

large cycle-to-cycle as well as device variation, non-linear conductance response, and limited 

analog states, thereby limiting their performance as artificial synaptic devices.[62] The CBRAMs 

have some advantages over filamentary RRAMs including better reliability (retention and 

endurance) performance because of the greater stability of oxygen based filaments in comparison 

to metal cation based filaments. Furthermore, the RESET mechanism in CBRAM has smaller 

sensitivity to the electric field induced drift effect. However, some issues like voltage-time 

dilemma[65, 66] in filamentary RRAM, in particular in metal oxide-based devices, has been reported; 

this limits its performance because there is a tradeoff between long retention time and fast 

switching speed under the reading voltage stress test. A device with a TiN/HfOx/AlOx/Pt structure 

reported by Yu et al. exhibited good retention at high temperature (7200 s at 100 °C) and good 

cycling endurance (>105) upon application of short pulse (50 ns) indicating fast programming 

speed.[56] Additionally, Prezioso et al. showed that their Pt/TiO2-x/Al2O3/Pt device exhibited 

significant retention (10 years) operating at room temperature with life cycle > 5000 at relatively 

slow switching speed of 500 µs.[54] However, filamentary RRAM based artificial synapses are 

suffering from large cycle-to-cycle and device-to-device variation because of the stochastic nature 

of the switching mechanism involved in the random distribution of oxygen defects.  
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The third type of RRAM, non-filamentary or interfacial RRAM, works based on the 

metal/switching material tunnel barrier modulation effect via oxygen ion migration. In this type of 

RRAM, as illustrated in Figure 2.4c, unlike in filamentary RRAM an extra oxide layer (insulating 

layer) is used to serve as a load resistor for thermal runaway prevention and elimination of the DC 

current compliance requirement. An exotic oxide like TaOx and Pr1-xCaxMnO3 (PCMO) is 

incorporated in a typical resistive switching layer.[67-69] The SET process occurs whenoxygen ion 

migrate from the resistive switching layer in the direction of the metal/switching material interface 

upon application of an electric field. The electrons become capable of tunneling from the metal 

electrode to the switching layer due to barrier height reduction and cause transition from an HRS 

to an LRS state. On the other hand, in the RESET process, an electrical field with opposite polarity 

induces reverse migration of oxygen ions into the switching layer, resulting in strengthening of the 

tunnel barrier height and transition from the LRS to the HRS state. Interfacial RRAM is a 

promising candidate for synaptic applications due to its gradual switching process and forming of 

a free mechanism. However, despite the unique features presented by interfacial RRAM, including 

self-compliance, forming-free, and gradual switching with good analog precision, its relatively 

low programming speed cannot provide sufficient energy to build a high energy barrier to reach 

good retention.[10, 65] Furthermore, usage of exotic switching materials make the fabrication more 

complicated and expensive. 

2.3 Electrochemical Devices 

Apart from emerging technologies such as PCM and RRAM, which were originally 

developed with a goal towards enabling their use in NVM applications, scientists are 

demonstrating new devices created specifically for use in synaptic applications. For example, 
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recently researchers have developed electrochemical based artificial synapses with  high precision 

levels, low programming energy, high scalability, a built-in timing mechanism and linear and 

symmetrical conductance responses appropriate for SNN applications.[24, 70-72] In this type of 

device, the channel conductance (the synaptic weight) can be modulated through gate terminals 

with precise control by controlling the ionic concentration in the channel (synapse). The ionic 

exchange is facilitated via electrochemical reactions in a gel electrolyte.  

 

Figure 2.5. Electrical chemical synapses. a) A schematic of synaptic transistor with LiCoO2 as 

active channel. b) An organic polymer synapse consisting of liquid electrolyte (NaCl or KCl) sandwiched 

by PEDOT:PSS and PEI treated PEDOT:PSS layers. c) An ionic-gated synaptic transistor based on metal 

dichalcogenide crystal (WSe2) and phosphorus trichalcogenide (NiPS3 and FePSe3). a) Reproduced with 

permission.[70] Copyright 2017, John Wiley and Sons. b) Reproduced with permission.[71] Copyright 

2017, Nature. c) Reproduced with permission.[72] Copyright 2018, John Wiley and Sons.  

Three pioneer works that utilize an electrochemical intercalation technique are shown in 

Figure 2.5a-c, each of which uses different channel materials: lithium cobalt oxide (LiCoO2),
[70] 

organic polymers (poly(3,4-ethylenedioxythiophene) including polystyrene sulfonate or 

PEDOT:PSS),[71] and tungsten diselenide (WSe2),
[72] respectively. The key features necessary for 
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use in synaptic devices that these devices offer, such as good precision, good scalability, highly 

linear and symmetric response, and low power consumption, make them good candidates in terms 

of artificial synapse development. Despite having three terminal structures, low switching energy 

as well as good retention properties have also been achievable in these devices. This is because 

unlike in two-terminal devices such as RRAM[62] and PCM, [73] where there is a tradeoff between 

switching energy and retention due to the same barrier being used for programming and retention, 

in the three terminal structure introduced in electrochemical synapses, low switching energy and 

good retention characteristics are achievable as programming and retention mechanisms are 

decoupled.  

A new approach for synaptic devices using intercalating and deintercalating mobile ions in 

the active channel as synapse was developed by Fuller et al.[70] in 2017 (Figure 2.5a). In this 

device, LiCoO2, a common cathode material used in Li ion batteries (LIBs), and lithium 

phosphorus oxynitride (LiPON), havinggood chemical stability, are employed as an active channel 

and solid electrolyte, respectively.[74] They chose LiCoO2 due to its well-characterized 

electrochemical properties and their good endurance, as demonstrated in LIBs.[75] The authors 

reported a precise, reversible, and controllable linear channel conductance change (synaptic 

weight) with a dynamic range of 100 μS and 200 distinct states, as illustrated in Figure 2.6a.  

The same year, Burgt et al. .[71] revealed their nonvolatile organic device utilizing 

reversible electrochemical intercalation for neuromorphic computing applications (Figure 2.5b). 

They introduced PEDOT:PSS for use as the active channel where insertion and extraction of 

protons enable linear conductance change in the organic synapse. They reported good precision of 

400 states with a dynamic range of 300 μS in a linear, repeatable, and symmetric conductance 

response, as depicted in Figure 2.6b.  
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Figure 2.6. Long term potentiation (LTP) and depression (LTD) in electrochemial synapses. a) 

the LiCoO2 synaptic transistor by Fuller et. al. b) the polymer synapse by Burgt et al. c) the WSe2 synapse 

by Zhu et al. a) Reproduced with permission.[70] Copyright 2017, John Wiley and Sons. b) Reproduced 

with permission.[71] Copyright 2017, Nature. c) Reproduced with permission.[72] Copyright 2018, John 

Wiley and Sons.  

In 2018, Zhu et al.[72] reported on their 2D materials-based electrochemical synapse. 2D 

materials are attractive materials for the interlayer gaps as they provide good sites for mobile ion 

accommodation through electrochemical reactions (Figure 2.5c). In the reported work, WSe2 and 

phosphorus trichalcogenide were employed as the artificial synapse, and a gel electrolyte was used 

for ionic exchange between the channel and the metal electrode. They reported 60 distinct states 

with a 307 pS dynamic range for this device, as displayed in Figure 2.6c. In general, the artificial 

synapses developed based on electrochemical reactions showed higher precision levels in 

comparison with other technologies that were mainly designed for MLC NVMs;  as the channel 
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conductance can be precisely tuned through gate terminals and mobile ion concentration within 

the active channel, better linear conductance response is achievable compared to PCM and RRAM 

synaptic devices. 

2.4 Two-Dimensional (2D) Devices 

Unique and remarkable optical,[76] electrical,[77] and thermal features[78] have been 

observed in 2D materials such as graphene (Figure 2.7a), hexagonal boron nitride (h-BN) (Figure 

2.7b), transition metal dichalcogenides (TMDs) with the form of MX2 (where M = transition metal 

and X = chalcogen, such as MoS2 in Figure 2.7c), and black phosphorus (BP) (Figure 2.7d). 

Furthermore, 2D materials offer some special properties including sub-nanometer thickness 

without dangling bonds, indirect (bulk) to direct (monolayer) band gaps transistion when thinned 

down,[79] highly in-plane anisotropy (BP)[80] and anisotropic thermal transport (high in the in-plane 

direction[81] and low in the cross-plane direction[82]). In addition, 2D materials with qualities such 

as diverse band structures (semi-metals such as graphene, WTe2),
[83] small band gaps for low-

power transistor applications (MoTe2, HfSe2),
[84] ability to semiconduct (MoS2, WS2, BP),[85] and 

large band gap or insulating h-BN, have a strong potential for implementation in next generation 

computing systems. The artificial synaptic devices based on 2D materials, as shown in Figure 

2.7e-j, are under demonstrations with the help of physical mechanisms displayed by them like 

charge trapping, resistive switching, Joule heating etc. One of the first 2D based artificial synapses 

using twisted bilayer graphene was reported by Tian et al. (Figure 2.7e).[86].  
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Figure 2.7. 2D synapses. a, b) Lattice structures of graphene and h-BN. Reproduced with 

permission.[88] 2017, Springer Nature. c) Lattice structure of MoS2. Reproduced with permission.[89] 2013, 

American Chemical Society. d) Lattice structure of BP. Reproduced with permission.[90] 2014, American 

Physical Society. e) A schematic of a graphene dynamic synapse. Reproduced with permission.[86] 2015, 

American Chemical Society. f) A schematic of a h-BN synapse. Adapted with permission.[87] 2018, 

Springer Nature. g) A schematic of a MoS2 synapses based on Joule heating. h) A schematic of a back-

gated MoS2 hysteresis synapse. i) A schematic of a BP synaptic device. j) A schematic of the BP/SnSe 

heterojunction synaptic device. a-g) Adapted with permission.[91] 2018, American Chemical Society. h) 

Reproduced with permission.[92] 2017, American Chemical Society. i) Reproduced with permission.[93] 

2016, Wiley. j) Reproduced with permission.[94] 2017, American Chemical Society. 
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They report that graphene conductance (synaptic weight) can be tuned by trapping charge 

concentration at the AlOx defect sites. Shi et al. reported a multilayer h-BN artificial synapse 

shown in Figure 2.7f, where the boron vacancies and metallic ions conductive pathway are 

responsible for modulating the device conductance.[87] The switching mechanism in metal/h-

BN/metal synapses and CBRAM are similar, except the cation pathways formation in h-BN 

synapses is performed by the generated boron vacancies.[87] 

Sun et al.[91] reported on a mono layer MoS2 artificial synapse where synaptic weight 

modulation is based on the Joule heating effect (Figure 2.7g).[91] The conductance modulation in 

this device is dependent on the residual temperature increase caused by the resistive heating in 

MoS2. Arnold et al. [92] developed a MoS2 synapse where the adsorbed gas molecules and/or by 

MoS2/SiO2 interface and/or by defects in MoS2 led charge trapping shown in hysteresis behavior 

in its I-V characteristics. Tian et al. demonstrated synaptic plasticity through charge transfer 

between the BP channel and the native POx functional layer in a BP based artificial synapse 

(Figure 2.10i).[93]. Finally, a BP/SnSe junction-based synaptic device was reported by Tian et al. 

as well that uses emulation of synaptic plasticity bt taking advantage of the tunable electronic 

properties of the BP and SnSe heterojunction(Figure 2.7j).[94] 

2.5 Device Metrics Comparison 

The development of synaptic electronics for implementations in the hardware of ANNs has 

progressed rapidly in the last few years. Because of their similar requirements in terms of 

programming and retention, emerging NVM technologies such as PCM and RRAMs have attracted 

much attention as possible candidates for building large-scale artificial neural networks. It should 

also be noted that an ideal synaptic device also possesses additional properties that are traditionally 
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less important (even irrelevant) in NVM applications such as good precision levels, high linearity, 

and symmetrical conductance responses. In addition, the specific requirements of synaptic devices 

are likely application-dependent, e.g., good retention is more important for a neural network that 

is trained offline, where online training requires better endurance and more linear behaviors due 

to the frequency of weight updates. Hence, emerging devices based on electrochemical reactions 

or 2D materials, which are not originally geared towards NVM applications, are also being 

extensively investigated by researchers and reviewed here.  

Figure 2.8 summarizes the performances of a number of synaptic devices based on PCM, 

the three types of RRAMs (CBRAM, filamentary, and interfacial), electrochemical devices, and 

2D materials in terms of crucial device metrics such as precision (# of states), switching energy, 

operating speed, the degree of linearity and symmetry of the conductance response, reliability 

(device variations, endurance, and retention), and the potential in spatio-temporal dynamics for 

SNNs. PCM synapses have fast speed, decent precision and adequate endurances; but their non-

linear behavior, high RESET power, and large variation from the melt-quench process may hamper 

their performance. RRAMs offer CMOS compatibility, simple structure, and good scalability; 

however large device variation from the stochastic nature of the switching mechanisms can limit 

learning accuracy in large-scale neural networks. In addition, the abrupt SET process in CBRAM 

and filamentary RRAM can result in non-linear and asymmetrical response and also limit the 

device precision. Interfacial RRAMs have shown more gradual switching with better precision, 

though this is typically accompanied by a smaller dynamic range and a slower switching speed 

compared to other RRAM devices. 
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Figure 2.8. Radar graph comparing the device metrics among PCM (blue lines), CBRAM (purple 

lines), Filamentary RRAM (red lines), Interfacial RRAM (Orange lines), Electrochemical synaptic 

devices (brown lines) and 2D Materials-based synaptic devices (green lines), in terms of precision, 

energy, speed, linearity, reliability, temporal characteristics. 1 to 4 represents the four different degrees of 

desirability, respectively. 

 

Nanoscale devices based on electrochemical reactions offer good precision and linearity, 

as well as potentially low device variations. The low operating speed due to the slow ionic 

movement may be mitigated by device scaling. But reactive cations (e.g. Li+) can cause 

contamination issues and may be incompatible with CMOS devices. 2D materials offer good 

scalability and the potential for in-memory computing as 2D devices are considered promising 

candidates for next-generation logic devices. However, researchers are still looking for an ideal 
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switching mechanism in 2D devices as current 2D synapses based on charge trapping offer limited 

precision, non-linear and asymmetrical responses, and poor reliability.  

To implement timing-based plasticity for SNNs, many of the existing approaches employ 

complex timing circuitry and are thus not scalable. Techniques that utilize secondary effects with 

built-in temporal components such as electrostatic gating, Joule heating, or charge trapping are 

preferred. 

While most existing synaptic devices cannot fulfill the requirement of an ideal electronic 

synapse at the moment, there is an enormous opportunity to achieve orders of magnitude 

improvement in computation capability and energy efficiency through the hardware acceleration 

of ANNs. By combining the electrochemical reaction effect with 2D materials, an artificial 

electronic synapse optimized for the hardware acceleration of ANNs can be achieved. In the 

following chapters, an electrochemical synapse that utilizes a topological insulator (BixSb1-x)2Te3 

film will be presented that exhibits programmable spatiotemporal dynamics, high precision, linear 

and symmetric weight response, and impressive scalability in terms of energy and speed, thus 

demonstrating a promising potential to lead to the hardware acceleration of truly neurorealistic 

ANNs with superior cognitive capabilities and excellent energy efficiency.  
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3.0 Two Dimensional Electrochemical Graphene Synapse 

3.1 Synaptic Device Fabrication  

We choose to study graphene because graphite is a common anode material for Li ion batteries 

(LIBs), confirming graphene’s compatibility for Li intercalation [95]. We fabricated the graphene 

device through mechanical exfoliation (Kish graphite from HQ Graphene) and Graphene flakes 

were transferred onto SiO2 (285 nm) on Si substrate. The metal contacts (80 nm of Cu) were 

defined by electron-beam lithography and deposited through electron-beam evaporation. All 

devices were annealed under forming gas flow (Ar/N2) at 300 °C for an hour to improve contact 

resistance and remove tape residues and other surface adsorbents. Our electrochemical cell (Figure 

3.1) is similar to a planar “nano-battery” with the graphene and lithium iron phosphate (LFP) serve 

as the working and reference electrodes, respectively. The electrolyte (LiClO4 in PEO) was 

prepared following a recipe similar in Ref 1. We mixed LiClO4 (0.3 g) and PEO (1.0 g) powders 

with 15 ml of anhydrous methanol. We then stirred the mixture overnight at 50 °C. After applying 

the PEO electrolyte, the devices were annealed at 370 K in a vacuum probe station (~1.0 × 10-5 

mbar) for two hours to eliminate residual moisture before electrical measurements. 
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Figure 3.1 | Electrochemical graphene synaptic device structure. a, An optical image of an as-

fabricated electrochemical graphene synapse comprising of graphene, LFP, electrolyte, and metal contacts 

(80 nm of Cu). A zoomed-in optical image (b) and the atomic force microscopy (AFM) measurement (c) 

of the graphene synapse. The scale bar is 20 μm. 

3.2 Electrical and Electrochemical Characterization 

Electrochemical characterizations were carried out with a SP-200 BioLogic workstation. 

During galvanostatic discharge measurements, a constant 100 pA charging/discharging current 

was applied with the graphene connected to the working electrode and the LFP connected to the 

counter/reference electrodes. Electrical and pulse measurements were performed with a Keithley 

Semiconductor Parameter Analyzer (4200-SCS) with pulse measuring units (PMUs). All electrical 

measurements were performed in a vacuum probe station (~10-5 Torr). 
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3.3 Advantages of Using Graphene 

The 2D nature of graphene makes it an excellent host for accommodating guest ions 

between its layers.[95] We choose to intercalate Li ions in few-layer graphene in this work because 

(1) the electrochemical behaviors of graphite with Li ions have been thoroughly characterized 

since this material has already been widely used as an anode in Li-ion batteries (LIBs)[95-97] and 

(2) Li ions have been reported to have an unusually high diffusion coefficient (7×10-5 cm2s-1) in 

bilayer graphene at room temperature,[98] suggesting that a fast switching speed is possible. While 

Li ions can potentially be a source of contamination for Si devices[99] if not handled and contained 

properly, it is a good material to start with for our proof-of-concept demonstration because of its 

well-known electrochemical behaviors. In addition to graphene’s compatibility with the CMOS 

technology (good thermal stability and 2D nature)[100] and its potential for application in flexible 

electronics (excellent mechanical properties and ultrathin layers),[101] graphene can be easily 

integrated with emerging 2D electronics to form a densely connected logic and memory network, 

enabling a new paradigm in computing architectures and breaking the existing “memory 

bottleneck”. 

3.4 Advantages of Our Electrochemical Based Synapse 

Schematics of a biological synapse and our electrochemical graphene synapse are 

illustrated in Figure 3.2a-b, where the graphene channel resistance represents the synaptic weight, 

and the plasticity of the graphene synapse can be modulated by the signal from the reference 

electrode (lithium iron phosphate, or LFP), representing signals from presynaptic neurons. The 

solid electrolyte (LiClO4 in poly (ethylene oxide) (PEO)) allows ionic exchange to occur between 
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graphene and LFP. A major advantage of our approach is that we can achieve the reversible and 

precise tuning of the graphene device conductance by controlling the concentration of Li ions in 

graphene[95, 96] to mimic synaptic plasticity. In addition, unlike conventional memory technologies, 

the programming and storage mechanisms in the electrochemical synapse are decoupled,[71] 

allowing us to achieve both low-power switching and good retention properties. Figure 3.2c shows 

a schematic of the energy barriers for typical thermodynamic memory (ferroelectric and resistive 

random-access)[102] and kinetic memory (flash and PCM)[103] devices. The barrier heights for these 

memory devices are the same during the write and read operations, imposing a tradeoff between a 

low programming power (write) and good retention (read) in conventional memory technologies. 

In our electrochemical device, the programming (write) and retention (read) barriers can be 

decoupled by a circuit switch between graphene and LFP (Figure 3.2d). During the write 

operation, the circuit is closed, which allows both electrons (through the external circuit) and ions 

(through the electrolyte) to be exchanged between graphene and the reference electrode under a 

small bias. During the read operation, where the graphene resistance is sensed by a low-voltage 

pulse across the graphene channel with the circuit between graphene and LFP open, the electron-

blocking electrolyte prevents any electrochemical reactions and therefore maintains the state of 

the graphene synapse.  
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Figure 3.2. Electrochemical graphene synapse. a) Schematic of a biological synapse. b) Schematic of 

our graphene synapse. The synaptic weight is encoded into the channel conductance of the graphene device. 

We can modulate the synaptic plasticity (channel device) in our device by adjusting the Li ion concentration 

between graphene layers via electrochemical intercalation. c) Schematic of conventional memory 

technologies, where the energy barriers for programming and retention are the same, thereby creating a 

tradeoff between low-power writing and good retention. d) Schematics of the energy barriers for our 

electrochemical synapse during retention (read) and programming (write). The retention and programming 

mechanisms are decoupled through a circuit switch. The high V
b, off

 barrier during the open circuit read 

operation ensures good retention, while the low V
b, on

 barrier during the closed circuit write operation allows 

low-power programming. 
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3.5 Electrochemical Intercalation’s Working Mechanism 

Electrochemical intercalation has been the cornerstone of the LIB industry for decades, but 

it has only recently been employed as a technique for engineering the properties of 2D materials 

through charge transfer, impurity scattering, and band gap engineering.[104] Similar to a Li ion 

battery, our device has a working electrode (2D materials), a reference electrode (Li metal), and a 

liquid electrolyte to facilitate ionic exchange between the working and reference electrodes. The 

direction of the ionic movement in the system is dictated by the direction of current flow in the external 

circuit, as indicated by the red and blue arrows in Figure 3.3. To lower the resistance of the graphene 

synapse through intercalation, we used an external current to drive both negatively charged 

electrons and positively charged Li+ ions from the reference electrode (LFP) to graphene, indicated 

by the pink arrows. When we reversed the polarity of the external current, Li ions was driven out 

of the graphene (de-intercalation), indicated by the blue arrows, and the graphene resistance was 

increased. Governed by charge neutrality, for every electron, e-, flowing into/out of graphene in 

the external circuit, a corresponding Li+ ion enters/leaves graphene through the electrolyte. This 

process allows us to precisely modulate the Li ion concentration in our graphene synapse (thus, its 

synaptic weight) by controlling the total amount of charge (= current × time) transferred into/out 

of the graphene.  
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Figure 3.3. Schematic of the reversible electrochemical Li intercalation process. The pink (purple) 

arrows indicate the intercalation (de-intercalation) process, where both electrons, e-, and Li+ ions flow into 

(out of) the graphene working electrode. 

3.6 Galvanostatic Discharge of Graphene 

We performed galvanostatic charge/discharge measurement on our graphene sample with 

an electrochemical workstation (BioLogic SP-200). The constant charging/discharging current 

was 100 pA. As the Li concentration increases upon intercalation, the electrochemical potential of 

graphene vs. Li/Li+ decreases. We also observed various voltage plateaus as a result of the staging 

phenomena, consistent with previous reports on Li intercalation in graphite [95.96,105]. Even though 

intercalation is initiated from the edges of the 2D crystal [106], previous studies [96,107] have shown 

that all of the intermediate intercalated compounds (e.g. LiC72) have an approximately uniform 

distribution of intercalant (Li). This has been attributed to the formation and rapid growth of the 
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intercalate nucleus [96,107]. This is advantageous for the development of graphene synapse since it 

ensures that graphene devices with similar dimensions will have the same electrochemical 

response when they are intercalated to the same stage.  

 

Figure 3.4. The galvanostatic discharge process of graphene. The voltage plateau indicates the 

formation of different intermediate intercalated compounds: LiC72, LiC36, LiC18, LiC12, and the 

stoichiometric limit LiC6. The blue and green arrows indicate the direction of intercalation and de-

intercalation, respectively. 

Figure 3.4 shows the galvanostatic discharge measurement of a 20-nm graphite (see 

Figure 3.6b inset) thin film during Li intercalation. The intercalation process was controlled by a 

BioLogic SP-200 electrochemical workstation, and the discharge current was kept at 100 pA. We 

monitored the electrochemical potential of graphene by measuring the voltage difference between 

graphene and the reference LFP electrode. We observed multiple plateaus in our measurement, 

which corresponded to the formation of the intermediate compounds LiC72, LiC36, LiC18, LiC12, 

and, lastly, the stoichiometric limit LiC6, consistent with similar measurements reported in the 
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literature.[95, 96, 108] Even though intercalation is initiated from the edges of the 2D crystal,[109] 

previous kinetics studies[96, 109] have shown that all of the intermediate intercalated compounds 

(e.g. LiC72) have an approximately uniform distribution of intercalant (Li). This has been attributed 

to the formation and rapid growth of the intercalate nucleus.[96, 109] This is advantageous for the 

development of graphene synapse since it ensures that graphene devices with similar dimensions 

will have the same electrochemical response when they are intercalated to the same stage. 

 

3.7 In-situ Raman Spectra of Graphene at Different Intercalated States 

We also performed in situ Raman measurements to examine the different stages of 

graphene intercalation compounds, as illustrated in Figure 3.5. The Raman spectroscopy was 

performed using a Horiba LabRam instrument with a 532 nm laser. With a 100× objective, the 

laser spot radius was ~300 nm. The absorbed laser power was kept low (<20 μW) to avoid laser 

heating. Our pristine graphene displayed good film quality with no D band. Upon Li intercalation, 

we first noticed a slight upshift of the G band from 1580 cm-1 to 1605 cm-1, which was likely due 

to the doping effect of Li intercalation.[106, 108, 109] Subsequently, the G band split into two peaks, 

which was possibly due to a weakening of the C-C bond upon the influx of Li ions.[108, 109] 

Eventually, the G band vanished into the background noise at the LiC6 stage. The G band 

reappeared upon de-intercalation, thereby confirming the reversible nature of the electrochemical 

process.  

We used Raman spectroscopy to probe the change in bonding, strain, and doping during 

the intercalation process. Figure 3.5a shows the in-situ Raman measurement setup, where we 

connected the portable electrochemical workstation to our graphene synapse in the Raman stage. 
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Before Li intercalation, our graphene sample shows good film quality as we observe no D band in 

our Raman spectrum (Figure 3.5b). In the dilute stage (i.e. the initial intercalation stage before the 

formation of the first staging at LiC72), we observed a significant upshift (from 1580 cm-1 to 1605 

cm-1) in the G band, suggesting doping from the charge transfer process [95, 105, 106]. We also noticed 

a small downshift of the 2D band, likely due to the increased tensile strain [105, 106]. Upon further 

Li intercalation, the G band split into two peaks in the LiC36 and LiC12 stages. This has been 

attributed to the difference between the graphene layers adjacent to Li layer to those next to the 

empty galleries [105]. The 2D band disappeared into the background level consistent with previous 

reports, which indicated that electron doping can cause a rapid decrease in intensity in 2D band 

[105, 110]. Upon Li de-intercalation, the G band re-appeared at 1580 cm-1. 

 

 

Figure 3.5. In-situ Raman measurement. a) Experimental setup for in-situ Raman measurement. b) 

Raman spectra of the graphene synapse at different intercalation stages. 
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3.8 Electrical Conductance Modulation 

We performed direct current (DC) measurements to measure the electrical conductance of 

graphene as a function of its Li content, i.e., electrochemical potential. The electrochemical 

potential of graphene vs. Li/Li+ indicates its Li content. As shown in Figure 3.6a, in its pristine 

state, graphene has an electrochemical potential of ~3.0 vs. Li/Li+. As we intercalate more Li+ into 

graphene, its potential decreases until it becomes fully lithiated (LiC6) at 0.1 vs. Li/Li+. Thus, when we 

varied its electrochemical potential by changing the voltage difference between graphene and the Li 

metal in Figure 3.6b, we observed an ~700% modulation in the synaptic weight (channel 

resistance) in our graphene synapse, which is significantly more than the ~150% change that 

occurs in biological synapses.[111] This large modulation in electrical conductance suggests that the 

electrical characteristics of the graphene electrochemical synapse is mostly dominated by the 

electrochemical state (i.e. Li concentration) of the device, hence making our electrochemical 

synapse more immune to the variabilities of graphene devices from the growth and/or fabrication 

processes and suitable for scaling up to dense neural networks. Looking into the future, our 

electrochemical synapse’s tolerance for device-to-device variation in graphene will allow us to 

adopt the high-throughput, large-area chemical vapor deposition (CVD) growth of graphene thin 

films[113] for array-level integrations. 
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Figure 3.6. Electrochemical modulation of electrical conductance of graphene device. a, The 

electrochemical potential of graphene vs. Li/Li+ indicates its Li content. b, Modulation of the graphene 

conductance (synaptic weight) as a function of its electrochemical potential (Li concentration). The inset 

shows an optical image of the graphene synapse. The scale bar is 20 μm. 

a) b)
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3.9 Neuronal Functionality of Graphene Synapse 

3.9.1 Excitatory and Inhibitory Synaptic Response 

We could mimic both excitatory and inhibitory synaptic responses with our 2D 

electrochemical synapse, as illustrated in Figure 3.7a-b, respectively. When we sent a single 

intercalation current pulse (50 pA, 10 ms) to a 8-nm thick graphene synapse (see Figure 3.1b) to 

emulate a presynaptic input, we observed an ~30 Ω (0. 67%) decrease in the channel resistance R, 

which mimics an increase in the synaptic weight of an excitatory synapse upon stimulation[111, 113], 

as shown in Figure 3.7a. The ΔR value gradually diminished to a stable value of ΔR' = -10 Ω (-

0.22%). This result is similar to the short-term potentiation effect in a neural network, where the 

synaptic strength changes upon initial stimulation. This learning effect (increase in synaptic 

weight) gradually fades over time but still results in a permanent, smaller change in the synaptic 

strength.[114]  

Physically, the initial large change in the channel conductance of graphene likely results 

from a combination of the doping effect of Li intercalation[106] and the electric double layer (EDL) 

gating effect[115] from the intercalation pulse. The EDL gating effect, which originates from the 

introduction of a large amount of charge at the graphene/electrolyte interface by the applied 

voltage, is capacitive in nature and thus dissipates[115] when the applied pulse is off. The doping 

effect of Li intercalation is non-volatile[106] and contributes to the lasting, smaller increase in the 

channel conductance. Figure 3.7b shows the inhibitory synaptic behavior, where the synaptic 

weight (channel conductance) decreases upon presynaptic stimulation (de-intercalation pulse). 

Similarly, we observed a large initial increase (ΔR = + 30 Ω) in the channel resistance, which 
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settled down to a stable value at ΔR' = + 10 Ω, representing the non-volatile effect from Li 

deintercalation. 

 

 

Figure 3.7. Synaptic plasticity. Excitatory a) and inhibitory b) synaptic behaviors of an 

electrochemical graphene synapse. The decrease (increase) in the channel resistance of graphene upon an 

intercalation (de-intercalation) pulse (50 pA, 10 ms) mimics an excitatory (inhibitory) synaptic response. 

3.9.2 Programmable Long-Term Potentiation (LTP) and Long-Term Depression (LTD) 

Long-term potentiation (LTP) and depression (LTD), where the synaptic strength can be 

permanently improved and diminished through repeated stimulation, are two essential neuronal 

functions in learning.[116] In Figure 3.8, we demonstrated the occurrence of LTP and LTD in our 

2D electrochemical synapse through the application of a series of intercalation and de-intercalation 

pulses (50 pA, 10 ms). We were able to program over 400 distinct states into our device, suggesting 

that an extremely large number of non-volatile states are available for computations in our synapse. 

The synaptic response was linear and reproducible, which is desirable for system-level 

integration.[117] The R-squared value of the linear fit of the conductance response between 10 to 
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90% lithiation stage is 0.994, indicating a good linearity of the conductance response. This is 

expected because the increase in conductance depends on the amount of charge transferred into 

(out of) the graphene through the intercalation (de-intercalation) pulse.[71] This relationship is 

evident in our results, where ΔG is linearly dependent on the amplitude of the applied pulse. We 

studied the effect of the amplitude of the programming pulse on the change in synaptic weight 

(graphene channel conductance) on our electrochemical synapse by applying a series of 10-ms 

intercalating pulses with different amplitude (10 to 3000 pA). After each pulse, we applied a de-

intercalating pulse to switch the graphene synapse back to its original state before the next 

measurement. We observed a linear relationship between the change in synaptic weight (ΔG/G) 

with the pulse amplitude as shown in Figure 3.9. This is likely due to the doping effect from 

intercalation [95, 106]. From charge neutrality, the amount of intercalant (Li ion) and the associated 

charge transfer to the graphene through the electrolyte should equal to the same amount of 

electrical charge passed to the graphene in the external circuit (pulse amplitude × duration). This 

result suggests that we can further refine the step size (ΔG) and increase the memory density in 

our electrochemical synapse by modulating the amplitude of the applied pulses and our 

electrochemical synapse is highly scalable with excellent tunability. 
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Figure 3.8. Synaptic plasticity. Demonstration of long-term potentiation (LTP) and depression 

(LTD) in our 2D synapse through controlled intercalation. We programmed >400 distinct states into our 

electrochemical synapse through a series of intercalation/de-intercalation pulses. The synaptic response is 

symmetric, linear, and repeatable. 

 

Figure 3.9. Pulse measurement. The change in synaptic weight (ΔG/G) as a function of the applied 

pre-synaptic pulse. 
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3.9.3 Spike Timing Dependent Plasticity (STDP) of Graphene Synapse 

Spike timing dependent plasticity (STDP) plays an important role in learning and memory 

in biological neural networks.[114] As illustrated in different forms of STDP shown in Figure 3.10a, 

an STDP scheme governs how the spike (presynaptic signal) timing difference (Δt) determines the 

amplitude of the change in the synaptic weight (Δw).[11] We demonstrated the STDP capability in 

our electrochemical synapse through a two-pulse programming scheme, where the change in 

graphene conductance (ΔG) depends on the timing difference between the two pulses (Δt). As 

shown in Figure 3.10b, when the timing difference between the two intercalation pulses was small, 

we observed a large increase in the channel conductance (ΔG), similar to the strong memory effect 

observed for two temporally close events. When the timing difference was large, the change in 

channel conductance was subsequently smaller, analogous to the scenario in which the memory 

effect is weak when two events are temporally far apart.  

Interestingly, the conductance change, ΔG, followed an exponentially decaying trend with 

three characteristic time constants, τ1 = 22 ms, τ2 = 315 ms and τ3 = 19 s, similar to the timescale 

of biological synapses.[113] We speculate that the smaller time constants (τ1 and τ2) are related to 

the diffusion process during intercalation and thus should depend on the dimension (width and 

length) of the graphene synapse. The third (and much larger) time constant (τ3), which may rise 

from the diffusion process from LFP to graphene, is needed to better fit the tail end of the decay, 

as we illustrated in Figure 3.11. We observed a power law dependence of τ1 and τ2 on device 

dimensions, as predicted by the Einstein diffusion equation τD ≈ L2/(2D). Using a diffusion 

coefficient, D, of ~ 4×10-6 cm2/s for Li ions in graphene[99] and lateral dimensions of 4 μm (width) 

and 15 μm (length) for the graphene device, we estimated the average diffusion time (τD ≈ L2/2D) 

for our electrochemical synapse to be ~20 ms and 280 ms in the width and length directions, 
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respectively, consistent with our measured time constants (22 ms and 315 ms). These result are 

consistent with switching times reported by van de Burgt et al. for the organic electrochemical 

synapses[71] and suggest that we can engineer and optimize the timing of the STDP for our 2D 

electrochemical synapse by altering the device geometry.  

 

Figure 3.10. Spike timing dependent plasticity (STDP). a) Different forms of STDP in biological 

synapses, where the change in synaptic weight (w) depends on the timing difference (Δt) of synaptic events. 

b) In our graphene synapse, the change in resistance (synaptic weight) depends on the timing difference 

between programming pulses, mimicking the STDP scheme. The time constants τ1, τ2, and τ3 are ~22 ms, 

315 ms, and 19 s, similar to biological synapses. The ratio of the time constants τ2/τ1 = 14.5 is similar to the 

ratio of length/width for graphene (L/W)2 = 14.1, as predicted by the Einstein diffusion equation τD ≈ L2/(2D).  
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Figure 3.11 Spike timing dependent plasticity with one and two time scales. The change in synaptic 

weight (ΔG) as a function of the applied pre-synaptic pulse. The blue dashed time is an exponential decay 

fit with two time constants while the black dashed fit has three time constants, which fits the tail end of the 

decay better. We speculate that the two smaller time constants are related to the device dimension while the 

third, larger time constant depend on the distance between the LFP and the graphene. 

3.9.4 Scaling Performance of Graphene Synapses 

We studied the scalability of our 2D electrochemical synapse over a wide range of 

dimensions. The size and geometry of the graphene synapse determine the density of our analog 

memory as well as the programming speed and energy. As illustrated in Figure 3.12a, the time 

constants for STDP in our graphene synapse exhibited a power law dependence (y = cxα with α = 

1.9) over the device dimensions, as governed by Einstein’s diffusion equation, τD ≈ L2/2D. We 

project that the diffusion time for a graphene flake with 30 nm × 30 nm lateral dimensions can be 
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as fast as ~100 ns (10 MHz), which is comparable to that of dynamic random-access memory 

(DRAM) devices.[121] 

 

Figure 3.12. Scaling performance. a) Scaling trend of STDP time constants τ1 (pink circle) and τ2 

(blue square) as a function of device dimension (W or L). b) Scaling trend of switching energy (normalized 

by thickness) as a function of flake area. 

 

We also plotted the switching energy (normalized to the thickness) needed to induce a 0.25% 

change in the graphene synapse as a function of the area of the flake in Figure 3.12b. The 

switching energy (E = I × V × t) depends on the programming voltage (V) and the amount of 

charge (I × t) transferred. The programming voltage is determined by the electrochemical potential 

of graphene and remains approximately constant. The total charge should scale linearly with the 

area of the flake (assuming uniform thickness). The linear dependence of E on the area confirms 

our analysis and suggests an excellent scaling potential of the electrochemical synapse. The 

switching energy per synaptic event for our smallest device (3 μm × 12 μm × 3 nm) is 500 fJ, 

a) b)
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comparable to the switching energy of a biological synapse. We project that the switching energy 

of a submicron device (30 nm × 30 nm × 1 nm) can be as low as ~4 aJ, which is several orders of 

magnitude lower than the switching energy of biological synapses[111] and will significantly 

improve the energy efficiency of artificial neural networks.  

3.9.5 Reliability Performance of Graphene Synapses 

The graphene synapse displays good retention and endurance behaviors. The device 

conductance (synaptic weight) was stable under a 0.1 V reading bias (across the graphene channel) 

for more than 13 hours after a synaptic switching event, as shown in Figure 3.13a. The graphene 

device was disconnected from the reference electrode (LFP). We measured a 3.2% decrease in 

conductance at the end of the 13-hour stress test, consistent with the self-discharge effect observed 

in LIBs, where the conductance of the fully charged batteries typically decreases by ~3-5% in the 

first 24 hours due to impurities in the electrolyte and electrodes.[118] While this conductance drift 

is less than ideal for long term retention, it may be mitigated by adding a thin passivation layer on 

graphene, as it has been employed to reduce the self-discharge rate in LIBs.[119] Furthermore, this 

self-discharge rate in LIBs drastically slows down to approximately 1-2% per month thereafter,[121] 

projecting potentially good long-term retention properties for the graphene synapse.  

To study the endurance performance of our graphene electrochemical synapse, we cycled 

our device between its two intermediate states by a train of 10 ms pulses with alternating amplitude 

(±50 pA). We observed two distinct states with no signs of degradation for 500 cycles (Figure 

3.13b). The standard deviation for the two states are 0.047% (blue) and 0.045% (magenta), 

respectively. 
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Figure 3.13. Reliability Performance. a) Retention. The graphene resistance (synaptic weight) as a 

function of time under a 100 mV bias. The graphene synapse was disconnected with the reference electrode. 

b) Device endurance. We cycled our graphene synapse for 500 times through pulse measurements with no 

signs of degradation. 
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4.0 Two Dimensional Electrochemical MoS2 Synapse With Ultra-Fast Switching Speed And 

Low Programming Energy 

4.1 Introduction 

Neuromorphic computing has attracted remarkable attention as an emerging computational 

method for next generation computers. By designing new, and adapting existing, electronic devices 

the brain’s neural functionalities can be mimicked in several ways through use of algorithms [21], 

architecture [28] and hardware [117]. The resulting neuromorphic system would offer huge 

improvements in computational performance as well as energy efficiency in deep learning 

algorithms when implemented in multi layered artificial neural networks (ANNs) as compared to 

traditional von Neuman machines [122].  However, despite the massive advancement of the field 

in recent years, artificial neural networks (ANNs) still pale in comparison to the human brain in 

terms of energy efficiency and scalability [123].  

Traditional ANNs operate through a large number of conventional computing systems 

working in parallel. Ideally, high-level computations would be performed at an element (artificial 

synapse) which offers both data processing and storge at a single location, but von Neumann based 

ANNs still need to move data between processing and storage units [124]. As the field has matured, 

however, two main categories of networks have emerged: deep neural networks (DNNs) and 

spiking neural networks (SNNs).  

Deep neural networks (DNNs) have pioneered significant progress in various fields 

including computer vision problems [125,126], speech recognition [127-132], and natural 

language processing [133]. However, training DNNs typically requires an enormous amount of 
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computational power due to the vast number of parameters that need to be tuned, as well as the 

massive datasets required to do so.  

Spiking neural networks (SNNs) use signal spikes to process time-dependent information, 

a trait that plays a critical role in how the human brain operates [134]. These techniques, such as 

basic encoding of data as spikes, event driven computation, and temporal integration of signals 

have been mostly ignored in the development in DNNs. It would then seem that to have an efficient 

learning system that rivals the brain, demonstration and optimization of SNNs is of utmost 

importance, particularly for embedded applications with strict memory and energy constraints 

[135-141].  

Application specific integrated circuit (ASIC) designers at IBM, Intel, and Manchester 

University developed TrueNorth [142], Loihi [143], and SpiNNaker [144], respectively, by 

implementing SNN techniques. Despite energy efficiency improvements of up to three orders of 

magnitude, these fully digital systems based on complementary metal-oxide-semiconductor 

(CMOS) transistors are not able to truly simulate the analog behaviors of biological synapses. 

Furthermore, if these systems were scaled to the same complexity level as the human brain, which 

consists of ~1011 neurons and ~1015 synapses [145], the huge amount of energy consumption 

required for these devices would inhibit any practical applications, indicating poor scalability.    

Three emerging synaptic devices - resistive random-access memories (ReRAM) [56, 146-

148], phase change memory (PCM) [40,149,150], and electrochemical metallization memory 

(ECM) [151,152] - have been explored as synaptic computing units to overcome this scaling 

challenge because of their analog response, fast operating speed, small footprint, and ability to be 

easily integrated into existing semiconductor fabrication processes. Despite these promising 

aspects, these technologies are hindered by basic limitations: poor reliability and high 
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programming current in PCM [153,154] and variabilities in both temporal and spatial properties, 

as well as the inherently nonlinear operating process of both ECM and ReRAM [145,152,155,156].  

To address these issues, electrochemical three-terminal synaptic transistors have recently 

arisen as a promising substitute [24,70-72,157,158-161]. Their decoupled programing and storage 

mechanisms, as well as the precise modulation of channel conductance via ion insertion/extraction, 

results in linear and symmetrical switching, low programming power, low operating noise, high 

precision, and high endurances. Although polymer and titanium carbide MXene based devices 

have shown promising switching speeds down to sub microseconds, they suffer from challenges 

(e.g. low working temperatures, contaminations) that limit their potential to be implemented in 

ANNs [162]. These devices can also suffer from poor dynamic range (0.7 µS for 200 ns write 

pulse) and poor linearity for even 50 events, which limits their capability for ANN applications. 

Therefore, in order to fabricate a synaptic device which satisfies all the desired requirements for 

neuromorphic computing, different material systems need to be explored. 

Two-dimensional (2D) van der Waal (vdW) materials have attracted a lot of attention in 

low dimensional electronic, optoelectronic, and piezoelectric applications due to their special 

features and tunable band structures. Among these materials, semiconducting transition metal 

dichalcogenides (TMDCs) have become a strong prospect for novel electronic applications 

because of their resistance to short-channel effects, remarkable gate controllability at nanoscale 

channel lengths, as well as superb electrical characteristics [163-168]. Molybdenum disulfide 

(MoS2) is one of the most popular TMDC materials and its wide interlayer gap and scalable device 

size give it the potential to accommodate alkali ions like Na+, K+, and Li+ [169,170]. With this in 

mind, MoS2 can then be reversibly switched between a semiconducting (2H) and a metallic (1T) 

phase via intercalation of these alkali ions [106,171-173]. This phase transition, in addition to the 
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controllability of the intercalation process [174], makes MoS2 a strong candidate for neuromorphic 

computing applications by providing another route to mimic analog synaptic activities.  

Here, we present an artificial synaptic device with fast speeds (< 100 ns) and low energy 

consumption per event (< 4 fJ) based on MoS2 thin films. Three terminal solid state synaptic 

transistors with two gates using 2D-MoS2 have been investigated to determine their application 

for event based high performance learning systems. The short-term ionic gating effect in 

electrochemical transistors has been utilized in our recent work [175] to exhibit time dependent 

spatiotemporal dynamics for spike-based computations. The resulting SNNs, with their event 

driven nature and integration of temporal components, promise an exciting substitute for DNNs, 

with an outstanding energy efficiency and bandwidth, as well as a capability for cognitive 

computing by virtue of logical interface implementation to the existing hardware.  

This MoS2 based synapses utilize two different floating gates: Au for ionic gating, and 

LFP/Au for combined ionic gating and electrochemical intercalation processes. This enables the 

device to have both short- and long-term plasticity (STP and LTP) characteristics, which are used 

to demonstrate complex brain functionalities such as paired pulse facilitation (PPF), STP, LTP, 

and dynamic filtering. In addition, the conductance response is excellent in terms of linearity, 

symmetricity, and dynamic range. These controllable responses, as well as the flexibility offered 

by two different stimulus sources, make these synaptic devices superb candidates for future 

neuromorphic applications.  
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4.2 MoS2 Device Fabrication and Working Mechanism 

Schematics of a biological synapse and our electrochemical MoS2 synapse with two side 

gates are shown in Figure 4.1a,b where the MoS2 channel conductance constitutes the synaptic 

weight of the device. Lithium-ion phosphate (LFP), a Li+ ion reservoir, and Au have been 

employed for presynaptic electrodes to modulate Li concentration in the MoS2 channel via 

presynaptic electrical signals. It is worth mentioning that LFP has recently emerged as a cathode 

material in Li ion batteries (LIBs) because of its extended lifetime and large power density, as well 

as the fact that it is air-stable [176,177]. The reversible ionic exchange through a solid electrolyte 

LiClO4 in poly (ethylene oxide) [24] between MoS2 and the two side gates (LFP/Au and Au) leads 

to synaptic plasticity behaviors mimicking biological neurons.  
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Figure 4.1. Electrochemical MoS2 synapse. a) Schematic illustration of biological synapse. Created 

with BioRender.com. b) Schematic diagram of three terminal MoS2 artificial synapse in which the two Au 

and LFP gate terminals represent postsynaptic terminals and drain and source, emulating postsynaptic 

electrodes. The channel conductance (synaptic weight) of the MoS2 synapse can be modulated by Li+ ion 

migration to the channel upon application of electrical signal to the gates. c) Short-term doping due to 

accommodation of positive Li+ ions at the interface of the electrolyte and MoS2 and formation of electrical 

double layer gating effect by applying voltage pulse to the Au gate d) Long-term doping due to Li ion 

electrochemical intercalation and permanent accommodation into the MoS2 layered structured.  

 

As illustrated in Figure 4.1c,d, the plasticity of the MoS2 channel is driven by ionic gating 

and electrochemical intercalations processes caused by the Au and LFP gates, respectively. We 
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demonstrated that plasticity due to ionic gating (Au) is short term, regardless of the gate stimulation 

condition, such as duration, magnitude, frequency, and number. However, the LFP gate can cause 

short- or long-term plasticity in accordance with the presynaptic stimuli. Physically, these 

behaviors are due to the combined electrostatic (from ionic gating, Figure 4.1c) and 

electrochemical (from Li intercalation, Figure 4.1d) effects. When a potentiation pulse is applied, 

mobile Li+ ions are continuously inserted into the MoS2 lattice (electrochemical intercalation) and 

at the same time, the positive Li+ ions also accumulate at the interface of the electrolyte and MoS2, 

inducing more electrons in MoS2 through the field effect (electrostatic ionic gating). The 

electrochemical MoS2 synapse allows a precise change in channel conductance by controlling the 

Li+ ion content in the channel either by electrostatic effect or reversible Li+ intercalation/de-

intercalation. Such decoupled programming and storage mechanisms in this device have led to 

ultra-low energy consumption per switching and good retention properties.  

4.3 Electrochemical and Electrical Characterization 

The galvanostatic discharge measurement of a 10-nm thick MoS2 flake was performed 

using a BioLogic SP-200 electrochemical workstation with a constant discharge current 100 pA. 

The measured voltage difference between the LFP and MoS2 shows the electrochemical potential 

of MoS2 during the Li intercalation process. As shown in Figure 4.2a, when Li ions were 

intercalated into the MoS2, the electrochemical potential decreased, leading to high controllability 

of the channel synaptic weight and thereby allowing for analog synaptic behavior for ANN 

applications. We observed a plateau during the galvanostatic discharge at 1.1 V vs. Li/Li+. This 

plateau indicates a semiconducting (2H) to metallic (1T) phase transformation which is consistent 

with previous studies [178,179].  



 60 

The electrical characteristics (Id-Vg) of our MoS2 synapse was measured for pre- and post-

lithiation processes under VDS= 0.5 V (Figure 4.2b). After lithiation, we observed that the MoS2 

current level experienced an increase and the on/off ratio dropped significantly from 75,000 to 2.8, 

indicating successful lithiation, and thus successful phase transition, from semiconducting (2H) to 

metallic (1T). 

 

Figure 4.2. Electrochemical Li intercalation in MoS2 synapse. a) The galvanostatic discharge curve 

in MoS2 vs. Li/Li+ with LFP as the reference electrode. The plateau indicates phase transition from 

semiconducting (1H) to metallic (1T) during intercalation process. b)  The electrical I-V curve measurement 

before and after intercalation. Substantial decrease in ON/OFF ratio after intercalation process indicates 

permanent Li accommodation in MoS2 layers. 

4.4 Fast Speed Measurement Setup 

To characterize these synaptic devices using ultra short pulse stimuli (pulse width < 200 

ns) and observing how fast the Li+ ions can travel, we developed a high-speed measurement setup 

to operate fast programming and the storage process, as shown in Figure 4.3. In this setup we used 
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an oscilloscope (OSC) with a fast-reading rate for reading and a current amplifier in series with 

the OSC to amplify the signal coming from the device under test (DUT). 

Figure 4.3. Fast speed measurement setup. We used 4200 SCS for applying a 100 mV DC bias 

signal to the drain terminal and reading the output signal via oscilloscope (OSC) with high horizontal 

resolution in the range of nanoseconds desirable for fast speed reading. 

4.5 Short-Term Potentiation and Depression Induced by Ionic Gating and Electrochemical 

Intercalation Mechanisms Using Fast Single Stimuli 

In the brain, the activity dependent synaptic plasticity in the form of STP and LTP plays a 

crucial role in brain functionalities in terms of computation and memory [180, 181]. The influx of 

Ca2+ to the presynaptic membrane triggered by arriving stimuli causes neurotransmitter liberation 

and enhancement of the synaptic weight, which leads to STP. However, this temporal synaptic 
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enhancement will be diminished in tens of milliseconds due to the spontaneous extraction of Ca2+ 

from the postsynaptic membrane. By applying a positive presynaptic voltage pulse (+1V, 100 ns) 

to the Au gate, the Li+ ions are driven to the channel surface through the ion gel electrolyte. This 

increase in ion concentration in the channel surface introduces more electrons in the MoS2 (Figure 

4.4a, b), increasing the channel conductance. When the pulse is removed, the ions retreat back out 

of the channel and into the electrolyte (Figure 4.4c) and the conductance returns to its original 

state, demonstrating short term potentiation (STP), as shown in Figure 4.5 (a). This short-term 

effect is due to the Li+ ions donating excess electrons and inducing an electric double layer (EDL) 

gating effect [72,182]. By changing the voltage pulse polarity and driving ClO4
- to the channel 

surface (Figure 4.4d), the conductance will be decreased due to the induced holes in the channel, 

demonstrating short-term depression (STD), as depicted in Figure 4.5 (b). 
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Figure 4.4. Schematics of ion gated MoS2 synapse with three terminal transistor structures where 

the voltage pulse is injected to the side Au gate through the electrolyte. a) At Vg open, positive (Li+) and 

negative (LiClO4
-) ions are randomly distributed and the MoS2 channel is in its pristine state. b) At Vg > 

0, the positive Li+ ions induce n-type doping due to EDl and improve the channel conductance c) after 

removing the pulse, the transient formed EDL will be disappeared and the MoS2 returns to its pristine state 

d) At Vg < 0, the negative LiClO4
- ions induce p-type doping, reducing channel conductance. 
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Figure 4.5. Short term plasticity. (a) short term potentiation due to EDL by applying a (1V, 100 

ns) potentiation voltage pulse to the Au gate terminal. (b) Short term depression due to EDL by sending a 

(-1V, 100ns) depression voltage pulse to the Au gate terminal. 

4.6 Electrochemical Intercalation Process with Long-Term Doping in MoS2 Synapse 

In the electrochemical intercalation (E.I.) process (Equation 4.1), Li+ ions are driven into 

the vdW interlayers, not just the channel surface. Once the pulse is removed, they are expected to 

not retreat back into the ion gel spontaneously and to exhibit long-term plasticity effects. However, 

short term plasticity can be observed following the positive programming short pulse (1V, 100ns) 

to the LFP/Au gate. This implies that short pulse widths do not give the intercalated ions enough 

kinetic energy to diffuse deeper into the bottom layers of the MoS2 vdW material. However, as 

shown in Figure. 4.6a, when the response behaviors due to EDL and E.I. gates are compared after 

removal of the input voltage pulse, the time constant of the E.I. is larger than what is seen from 

the EDL effect, confirming that there are a limited number of Li+ ions intercalated into the MoS2 

a)   STP
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layers. The Li ion diffusion time measured is 10 ns (Figure 4.6b), showing the electrolyte used 

here is a good interface material for Li+ ion exchanges with high travel speed. Furthermore, the 

larger conductance change in E.I. confirms additional contributions from EDL mechanisms; 

however, the shallowness of the ions still allows the ions to readily diffuse back into the electrolyte 

on the pulse end, making the effect short term. 

 

 

 

However, for much longer injected pulses (~900 µs) long term potentiation (LTP) effects 

were observed from the LFP/ Au gate, as shown in Figure 4.6c. For these pulses the intercalated 

Li+ ions are no longer able to be naturally released from the vdW layers and so cause permanent 

change in synaptic weight. The same pulses at the Au gate still demonstrate short term plasticity, 

showing that the Li+ ions retreat into the ion gel when the gate bias is removed. We were able to 

fit the exponential decay for the both I.G and E.I responses using one and two term time scale 

equations, respectively. The results indicate an ionic gating effect for the Au gate and combined 

ionic gating and electrochemical intercalation for the LFP/Au gate due to contribution to the lateral 

geometry of the device in the process in addition to the channel surface. 

LiFePO
4
 → xLi+ + xe− + FePO4

−                                             (4.1) 

MoS
2
+ xLi+ + x𝑒− → Li

x
MoS

2
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Figure 4.6. Synaptic plasticity. a) Upon application of short stimulation (1V, 100 ns) to the side 

gates, we observed short term potentiation due to EDL for the Au gate and combined EDL and 

electrochemical intercalation for the LFP/Au gate. The larger conductance and two term time constants 

after fitting indicate an E.I. effect. b) Mobile Li+ ions diffusion time from electrolyte toward MoS2 channel 

c) By applying a longer pulse (900 µs) to the side gates, the Au gate resulted in short-term doping 

independence of the pulse condition, and the LFP/Au gate caused long-term doping due to the permanent 

Li+ ions accommodation in the MoS2 layers. 
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4.7 Synaptic Weight Modulation Through Short Pulse Width/Amplitude Variations 

The channel weight change (ΔG) is tunable for these synaptic devices by changing the 

presynaptic signals, similar to the process in biological synapses. This behavior is demonstrated 

for the LFP/Au gate via changing the pulse width and amplitude. Figure 4.7a, b shows ΔG as a 

function of pulse width up to 400 ns (fixed pulse amplitude 1 V) and pulse amplitude up to 2.5 V 

(fixed pulse width 100 ns). Both gates show close to linear relations between ΔG and pulse 

width/amplitude. The corresponding energy consumption per spike as a function of pulse width 

and amplitudes was also measured and shown in Figure 4.7c, f. This ultralow energy consumption, 

down to ~ 700 aJ, is much smaller than the amount used in biological synapses. In addition, this 

energy consumption can be further lowered by reducing the MoS2 geometry, as we have shown 

for our graphene synapse. 

 

Figure 4.7. Synaptic weight modulation for MoS2 Synapse. a) Synaptic weight change and 

corresponding energy consumption per spike by changing the pulse width and b) Amplitude showed our 

device synaptic weight mouldability desirable for DNN applications.  

a) b)

IG+EI IG+EI
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4.8 Long-Term Potentiation and Depression Emulation Using A Series of Potentiation And 

Depression Pulses 

Two forms of synaptic plasticity in biological neurons that are essential for mimicking 

natural learning processes are long-term potentiation (LTP) and long-term depression (LTD). 

These persistent activity-dependent changes in the synaptic strength play a critical role in learning 

and successive memory formation by emulating the behavioral properties of associative learning 

and spatial/temporal encoding of learned events in the brain.  

To mimic these brain functionalities in our MoS2 synapse, a train of consecutive identically 

programmed positive and negative pulses (|1𝑉|, 100ns) was applied to both floating gates, and the 

reversible LTP and LTD behaviors required for learning algorithms was demonstrated, as 

illustrated in Figure 4.8a, b. This reversible process for the Au gate is purely due to the 

electrostatic charge effect, indicating EDL for the Au gate independent of the pulse condition 

(Figure 4.8a). Similar to IG gate (Au) we observed short term effects for short pulse (100ns) in EI 

gate (LFP/Au), however, the response showed higher linearity and symmetricity, two important 

benchmarks for implementation of synaptic hardware into neural networks (Figure 4.8b). In 

addition, the dynamic range and number of distinct states are critical for DNN’s recognition 

accuracy using artificial synapses. Here, EI process fulfilled these requirements by expressing 100 

states and highly linear behavior compared to the IG procedure. To characterize our pulses, each 

potentiation/depression cycle was normalized and fit to the usual equations (Equation 4.2 and 

Equation 4.3):  

  𝐺   𝐺𝑚𝑖𝑛 + 𝐺𝑜(1 − 𝑒
−νpot∙p)                                             (4.2)                                           

𝐺  𝐺𝑚𝑎𝑥 − 𝐺𝑜(1 − 𝑒
νdep(𝑝− ))                                          (4.3)                                     
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where p is the normalized pulse number and νpot and νdep are the nonlinearity fitting coefficients 

for potentiation and depression, respectively. For an ideal conductance response, both nonlinearity 

fitting values should be 0, indicating linear changes in conductance.  

To show the superior performance of our artificial synapse, the device was programmed 

with 5000 up/down pulses (|1𝑉|, 1 µs) over > 12 x 103 cycles, as demonstrated in Figure 4.8c. 

The average linearity values of 0.440 +/- 0.112 and 0.426 +/- 0.107 for potentiation and depression, 

respectively, high symmetricity of the switching and large number of possible states make our 

MoS2 synapse an excellent candidate for neuromorphic computing. The same device was then 

characterized under the same conditions except with a longer (10 µs) pulse (Figure 4.8d). Results 

here showed that there is a trade-off between dynamic range and linearity, with the 10 µs pulse 

resulting in a larger dynamic range (~ 68 µS) and increased nonlinearity to 3.224 +/- 0.154 and 

3.530 +/- 0.105 for potentiation and depression, respectively.  
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Figure 4.8. Long term synaptic plasticity. a) LTP and LTD emulation of our MoS2 synapse due to 

EDL by applying a 100 of series pulses (1V, 100ns) to the Au gate. b) LTP and LTD due to combined EDL 

and EI effects by applying 100 consecutive pulses (100 ns) to the LFP/Au gate. Results showed a 

symmetric, reversible, and high linearity (compared to I.G.), which is preferable for DNN applications. c,d) 

Emulation of LTP and LTD  introducing high precision level desirable for ANNs upon application of 1µs 

and 10 µs pulse widths. 

 

When we plotted the energy per spike with respect to the pulse width (100 ns, 1 µs, 5 µs, 

and 10 µs) for EI responses, as depicted in Figure 4.9, a linear relationship between switching 

energy and pulse width was found. The projected ultra-low energy scale down to ~ 7 aJ for 1 ns 

pulse width reaffirms a super energy efficient MoS2 synapse for neuromorphic applications.  
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Figure 4.9. Programming energy per spike as a function of pulse width for electrochemical 

intercalation responses predicts low switching energy (~ 700 aJ) for MoS2 artificial synapse. 

 

The endurance characteristic of these synapses was also investigated for both the floating 

gates. As illustrated in Figure 4.10a, b, we observed smaller variations in conductance spreads for 

100 ns pulse trains for the E.I. gate (3.421 +/- 0.0182 and 0.567 +/- 0.022 µS for Gmax and Gmin, 

respectively) compared to I.G. (1.6179 +/- 0.003 and 3.515 +/- 0.016 µS for Gmax and Gmin, 

respectively). The longer pulse widths 1 µs (61.109 +/- 1.664 and 12.104 +/- 0.255 for Gmax and 

Gmin, respectively) (Figure 4.10c), 10 µs (75.991+/-0.714 and 8.203+/-0.314 for Gmax and Gmin, 

respectively) (Figure 4.10d), and 900 µs (64.386 +/- 0.298 and 14.545 +/- 0.234 for Gmax and Gmin, 

respectively) for the E.I gate exhibit low variations. The full characterization of each programming 

method is summarized in Table 4.1 for clarity.  The significantly low variation for the E.I. gate, 

even for large number of states (5000) and long pulses (900 µs), indicate a stable and controllable 
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electrochemical intercalation process as well as Li insertion/removal in MoS2 vdW layers with 

high yield. 

 

Figure 4.10.  The endurance performance for both I.G. and EI a) Endurance for IG with 100 

potentiation and depression pulses (1V, 100 ns). b) Endurance for E.I with 100 potentiation and depression 

pulses (1V, 100 ns). c) Endurance for E.I with 5000 potentiation and depression pulses (1V, 1 µs) d) 

Endurance for E.I with 5000 potentiation and depression pulses (1V, 10 µ s). 
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Table 4.1. Conductance response characterization for the both IG and EI gate terminals for different pulse 

widths. 

 Gmax Gmin νpot νdep 

1 µs (E.I.) 61.108+/-1.664 12.104+/-0.255 0.441+/-0.056 0.426+/-0.0536 

10 µs (E.I.) 75.991+/-0.714 8.203+/-0.314 3.224+/-0.077 3.530+/-0.0524 

900 µs (E.I.) 64.386+/-0.298 14.545+/-0.234 2.502+/-0.049 2.047+/-0.047 

100 ns (E.I.) 3.421+/-0.018 0.567+/-0.022 0.447+/-0.107 0.500+/-0.030 

100 ns (I.G.) 1.618+/-0.003 1.093+/-0.016 4.211+/-0.718 4.512+/-0.822 

4.9 Pair Pulse Facilitation (PPF) Emulation in MoS2 Synapse  

In neuroscience, neural facilitation, also known as paired-pulse facilitation (PPF), refers to 

an occurrence in which postsynaptic neuron potential invoked by two successive stimuli received 

by presynaptic neurons that cause an increase in presynaptic Ca+2 concentration. PPF as a form of 

short-term synaptic plasticity may be entangled in some neural tasks such as simple learning, 

information processing, and sound-source localization.  

The success of PPF in our electrochemical MoS2 synapse was demonstrated by applying 

consecutive paired pulses (100ns, 1V) to both side gates. As illustrated in Figure 4.11a, for IG, 

the channel conductance consistently decreases as the time interval of the two applied pulses 

increases, analogous to the manner of biological neurons. The synaptic weight change (ΔG) 

exponentially decayed with one time constant (𝜏  1= 102 ns) much faster than in biological 

synapses, which makes our artificial synapse unique in terms of programming speed in 
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neuromorphic computation applications. We speculate that the single time constant is related to 

the Li+ ion interactions with the MoS2 surface, resulting in an ionic gating effect. We repeated the 

PPF measurement with the same pulse parameter (100ns, 1V) on the EI gate and the result, as 

shown in Figure 4.11b, followed a double exponential decay function, similar to biological 

neurons, with two-time constants 𝜏1= 9 ns and 𝜏2= 131 ns. As we showed in our previous report 

[24] on graphene synapses, the two-time constants here are related to the MoS2 device dimension, 

with the smaller and larger time constants resulting from the diffusion process during intercalation 

in width and length direction, respectively.  

 

Figure 4.11. Paired pulse facilitation (PPF) where the synaptic weight can be modulated by two 

consecutive events at different time intervals. a) The PPF induced by EDL for the Au gate showed an 

exponential decrease in synaptic weight by increasing the time interval between two pulses (1V, 100ns). 

The time constant obtained from fitting shows a speed response much higher than that of biological neurons. 

b) The PPF response as a result of IG and EI effect by sending two consecutive pulses (1V, 100 ns) to the 

LFP/Au side gate. We observed two-time constants, 9 ns and 131 ns, which indicate ultra-speed response 

on the one hand and the potential of the speed to be improved by changing the device geometry on the other 

hand. 

, 
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4.10 Pulse Number Effect in Synaptic Weight Modulation and Short-Term to Long-Term 

Transition  

In the brain, synaptic activity is an activity specific modification of the strength of the 

synaptic connection (synaptic weight). The connection can be categorized as either STP or LTP, 

depending on its retention time. Enhanced synaptic plasticity, which is dependent on the synaptic 

connection, is caused by Ca2+ influx into the postsynaptic membrane as a result of the stimulus 

received in presynaptic membrane. This plasticity (STP) will last for only tens of milliseconds due 

to spontaneous liberation of Ca2+ from the postsynaptic membrane. However, this can be 

transformed to a comparatively permanent change (LTP) via repeated stimuli, depending on the 

structural change in the dendrite and synaptic connections caused by Ca2+ concentrations [183-

185].  

To emulate this phenomenon in our MoS2 synapses, different numbers of identical voltage 

pulses were applied to the presynaptic side gates while other pulse parameters were held fixed 

(0.5V, 1µs). For the Au gate, although the channel conductance experienced enhancement upon 

stimulation, the retention time and consequently the transition from STP to LTP was observed 

even for a large number of pulses, as illustrated in Figure 4.12a. We observed a linear increase in 

ΔG as we increase the pulse number to 7 x 104, as shown in Figure 4.12b, and a small drop at 

pulse number 105, which can be attributed to the induced charge accumulation and saturation at 

the interface of the electrolyte and MoS2 surface. Then we applied the same pulses (1V, 1µs) in 

differing amounts (300 < N < 20000) to the LFP/Au gate of the same MoS2 device. For total pulse 

numbers below 300, the plasticity observed was STP, but as the pulse number increased, not only 

did the magnitude of the channel conductance increase (∆𝐺𝑆.𝑇+𝐿.𝑇), but also the retention time 

underwent a significant increase, yielding LTP behavior, as shown in Figure 4.12c.  
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Figure 4.12. Synaptic weight modulation using pulse number. a) MoS2 conductance amplitude 

upon application of a large number of a series short pulses 1v, 1µ (5k to 100k) to the Au gate and monitoring 

the conductance response, the short-term potentiation due to fully EDL effect observed independence of 

number of stimulations, which is desirable for SNN applications. b) The linear relationship between 

conductance change amplitude and pulse number. The conductance drop at 100k indicates saturation of the 

induced charge due to EDL. c)  The conductance amplitude for different pulse numbers applied to the 

LFP/Au side gate. The short-term to long-term transition observed even with smaller pulse number 

compared to I.G. case indicates Li+ ions accommodation in MoS2 layers due to E.I. effect. d,e) The total 

synaptic change (∆𝐺𝑆.𝑇+𝐿.𝑇), and permanent synaptic change (∆𝐺𝐿.𝑇), showing highly linear relationship 

with pulse number without any degradation, indicating denser available distinct states for the E.I case 

compared to I.G. 
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Overall, the total and permanent conductance change, ∆𝐺𝑆.𝑇+𝐿.𝑇  , and ∆𝐺𝑆.𝑇+𝐿.𝑇  , 

respectively, were shown to be highly dependent on the pulse numbers and experienced linear 

changes indicating a spacious layered structure for Li+ ion accommodation to achieve high distinct 

states in our ECRAM, as shown in Figure 4.12d, e. To understand the transition behavior, the 

decayed curves of the device for each number of pulses were fit to an exponential decay curve 

using a modified “Kohlrausch” equation (Equation 4.4): 

𝐺𝑡  𝐺0 + 𝐴 exp(−
𝑡

𝜏
)                                                  (4.4) 

where 𝐺0 is the channel conductance in the permanent state, A is a perfector, and 𝜏 is a relaxation 

time constant indicating forgetting rate. This type of curve is frequently used in psychology to 

model forgetful behaviors [186]. For the I.G. process, independent of the pulse number we 

observed the same forgetting rate, ~111 ms, expressing the short-term memory behavior in our 

brain that is desirable for SNN applications (Figure 4.13). 

 

 

Figure 4.13. Short term plasticity and relaxation time for various pulse numbers in the IG process. 
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For the E.I. response, not only did the device conductance improve, even at a small number 

of consecutive pulses compared to the I.G. case, but the relaxation time also improved considerably 

by increasing the pulse number. To verify this result, we used a modified version of Eq. 4.2, adding 

a time constant term. The results of this fitting are shown in Figure 4.14a-e. Results indicate that 

upon increasing the pulse number, the retention time and synaptic weight rose. The plotted 

retention time (𝜏) as a function of pulse number in Figure 4.14f shows a clear improvement of 𝜏 

by increasing the number of stimulations, indicating short term to long term potentiation transition.    
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Figure 4.14. Short-term to long-term transition in the E.I. process. a-c) The retention for various 

pulse numbers shows two different plasticity from short to long term memory. f) The visualization of 

relaxation times (𝜏 , 𝜏 ) versus pulse number indicate by increasing the pulse number we can improve the 

long-term memory effect in our MoS2 synapse. 
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4.11 Temporal Dynamic Filtering and Synaptic Weight Modulation Using Pulse Frequency 

Variation 

The short-term synaptic depression and facilitation features in the human nervous system 

enable synapses to act as dynamic low-pass and high-pass filters, respectively. The specific 

behavior is controlled by stimulus frequencies, which are used for information transmission. For 

our synapse we were able to demonstrate high-pass temporal filtering, which is a desirable feature 

for SNN applications, by emulating PPF as discussed previously, where the higher conductance 

change (synaptic weight) appears for shorter time periods, Δt. Specifically, with the application of 

40,000 successive pulses (0.5V, 1µs) at different frequencies ranging from 10 kHz to 800 kHz to 

the Au gate, we observed an increase in conductance amplitude as the frequency increased, leading 

to a high-pass dynamic filter, as illustrated in Figure 4.15a. By varying the signal frequency and 

thus changing the pulse intervals, we can regulate Li+ diffusion and relaxation processes and are 

then able to modulate the synaptic weight magnitude (Figure 4.15b). Using this we are then able 

to emulate the spiking rate dependent plasticity (SRDP) observed in biological neurons. Similarly, 

we are able to imitate SRDP for the LFP/Au side gate by sending stimulations (20,000) with the 

same pulse width and amplitude (0.5V, 1µs), as illustrated in Figure 4.15c. As expected, by 

increasing the frequency (10 kHz to 800 kHz) and thus tuning the Li+ ions diffusive dynamic, not 

only on the device surface but also within the MoS2 vdW interlayers we were able to increase 

channel conductance in larger magnitudes compared to the those yielded by the Au gate and EDL 

formation (Figure 4.15d). Furthermore, the short term to long term plasticity transition was 

emulated for frequencies larger than 400 kHz due to the Li+ ion intercalation in the vdW layers 

and the LTP level was able to be increased by increasing the frequencies (Figure 4.15c).       
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  Figure 4.15. Dynamic filtering. a) High-pass temporal filtering characteristics upon application 

of 40000 consecutive potentiation pulses (1V, 1µs) with different frequencies (10k, 100k, 200k, 400k, 600k, 

and 800 kHz) to the Au gate. b) The pseudolinear increase in synaptic weight by increasing the frequencies. 

a)  The frequency dependent synaptic weight via applying 20000 pulses with various frequencies (10 k, 50 

k, 100 k, 200 k, 400 k, 600 k, and 800kHz) to the LFP/Au side gate. For frequencies below 400 kHz, we 

observed temporal high-pass dynamic filtering; for higher frequencies short-term to long-term transition 

occurs due to E.I. effect with d) linear change in total synaptic weight and e) permanent change in channel 

conductance. 

4.12 Device Network Demonstration for ANN Implementation 

To show the viability of using these synapses to form hardware for native ANN 

implementation, different network simulations were performed using MLP+ Neurosim [187]. This 

was used for devices characterized for both E.I. (100 ns, 10 us pulses) as well as Li Ion intercalation 
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(100 ns, 10 us, 100 us). The characterized synaptic devices were used to simulate a basic 2-layer 

perceptron for image recognition using the MNSIT standard number set [187] as well as ADAM 

network training methods [187]. The network was trained using 60,000 training images as well as 

10,000 test images per epoch, for a total of 125 training epochs. The hardware was simulated as a 

standard 1T1R crossbar layout, which uses the standard circuit peripheries described by MLP+ 

Neurosim [187].  

To determine the learning potential of these networks, the accuracy vs training epoch data 

was fitted to a saturating equation of the form (Equation 4.5):  

𝐴 ∗ (1 − 𝑒−𝑏∗𝑥)                                                       (4.5) 

Where 𝐴 is the saturation value of the network accuracy and 𝑏 is an empirical fitting value. The 

accuracies of these networks are shown below in Figure 4.16, with their saturation accuracy shown 

in the insets. As can be seen, the more linear the devices’ switching property was, the better the 

accuracy. Specifically, both 100 ns pulses for E.I. and ion intercalation vastly outperformed the 

others when energy efficiency is taken into account. It is worth noting the initialization issues that 

occurred with the 10 µs data; the network seemed to have issues with settling into a stable initial 

solution for a few epochs before getting back out of it, so the final saturation number could be 

different in a real network of this architecture.  



 83 

Figure 4.16. Network accuracy vs Training Epoch simulation results of training a 2-layer 

perceptron from MLP+ Neurosim for 125 training epochs. a-c) The results from 1 µs, 10 µs and 900 µs of 

E.I. programming methods respectively. d,e) Comparisons of 100 ns pulses for E.I. and I.G. training 

methods, respectively. 

4.13 Event-Based Spatio Temporal Pattern Recognition 

The use of electrochemical memristors for spatio-temporal pattern recognition has recently 

been demonstrated successfully [188]. This type of approach makes use of the transitive 

conductance response of these devices to single pulse stimuli, which can be used to model a 

synapse in a neuromorphic network. Such networks allow for power efficient classification of 

temporal and spatio-temporal patterns of activation. This is an important step in large 

neuromorphic systems, where information is often represented as asynchronous patterns of spikes 
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or events in time. Since all analog devices are intrinsically stochastic (leading to noise, cycle-to-

cycle and device-to-device variation), our previous studies [188] aimed to evaluate the effect of 

such variability on the accuracy of pattern recognition. Here, we test the proposed device with both 

methodologies in order to evaluate performance for both gates in presence of noise and cycle-to-

cycle variation. We built a stochastic model that could simulate our device’s response to arbitrary 

spike trains. To achieve this, we defined a descriptive model that was used to fit the device 

response to single pulses and extracted the distribution of parameters that would be used for its 

stochastic counterpart, as described in Equation 4.6. 

 

Where t0 is the timestamp of the pulse application and 𝑤 is its duration. The total conductance 

response G(t) is composed of a linear rise function Grise, which models the conductance increase 

for the duration of the applied input pulse and a double decay function Gdecay, which describes the 

subsequent conductance decay after the pulse is removed. 

Fitting the device response to multiple iterations of the same pulse allowed us to determine 

sets of values for linear coefficients A1, A2 and temporal coefficients 𝜏 , 𝜏 . We then extracted 

parameters for the ionic gating (IG) and the electrochemical intercalation (EI) gates for (3V, 800 

µs) pulses, which allowed generation of conductive temporal decays in the range of several 

milliseconds. 

Eq. 5

Eq. 6

Eq. 7

(4.6) 
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Table 4.2. Model parameters obtained with a (3 V, 800 µs) pulse. Each parameter is presented 

with its mean value ± Standard Deviation. The root mean square error (RMSE) serves as a 

measure of the fitting precision. 

 

 

Before fitting the data was normalized so that the mean maxima of the conductance was 1 

and the baseline conductance was zero. This allowed us to use the same stochastic model as that 

presented in our previous work [188] to simulate the device response to arbitrary input spike trains. 

Similar to in our previous work, stochastic parameters were modeled as Gaussian distributions, 

with mean and standard deviation obtained by fitting the experimental data, as shown in Table 

4.2. 

  

Where �̂�  is a normal random noise parameter used as additive noise induced in the device 

conductance. Its standard deviation, 𝜎𝜂 , is obtained from the RMSE in Table 2. For every 

individual input pulse sent to the memristive device, a set of parameters is drawn from the Gaussian 

distributions A1, A2, 𝜏 , 𝜏  to model cycle-to-cycle variation (Equation 4.7). Additionally, additive 

Eq. 8
(4.7) 



 86 

noise samples are drawn at a fixed sampling interval of 0.1 ms to add temporal white noise. The 

resulting stochastic model is described by the Equation 4.8-13. 

 

 

 

B1 and B2 model the baseline conductance reached prior to each incoming spike ti. B1 models the 

population of charges driven by A1 and 𝜏  while B2 models the charges driven by A1 and 𝜏 . Since 

we want to evaluate how the device’s stochastic behavior can affect computation, we compare the 

full stochastic model driven by the distribution of parameters in Equation 4.8 (called "Noisy" 

hereafter), against a fully deterministic "Ideal" model with fixed parameters (Equation 4.14). 

Eq. 9

Eq. 10

Eq. 11

Eq. 12

Eq. 13

Eq. 14

(4.8) 

 

(4.9) 
 

(4.10) 

 

(4.11) 

 

 

(4.12) 

 

 

(4.13) 
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The proposed device was tested using a discrimination task proposed in Wan et al. [175], 

which allows analysis of  the memristive synapse’s ability to enhance separation between different 

classes of spike trains by integrating temporal information. Figure 4.17 shows the overall scheme 

and results for this task. A simple one-to-one connection network is used with a pre-synaptic 

neuron connected to a post-synaptic neuron through the memristive synaptic device (Figure 

4.17a). The pre-synaptic neuron elicits spike trains modelled coming from a Poisson generator 

(Figure 4.17b-top). The neuron can generate different types of spike trains. These are treated as 

different classes for a discrimination task. The pre-synaptic neuron is connected through a 

"synaptic device" to a Leaky Integrator that acts as a post-synaptic neuron. The synaptic device 

can be either a "No-STP" simple memristor, modelled as a static multiplicative weight w, our 

"Noisy" memristor, or its "Ideal" counterpart. The principle behind this experiment is that in a 

Spiking Neural Network (SNN), the neuron membrane potential encodes and stores information 

before being transmitted as spiking activity to the rest of the network. Therefore, if a neuron is 

sensitive to a spike train temporal pattern, its membrane potential to different input inter-spike 

intervals should change significantly while responses to the same input spike train should be 

identical. 

In this process, different spike trains (or classes) generated randomly are sent to the same 

synaptic device/post-synaptic neuron. The post-synaptic membrane is then read at a given time 

tread after a "Sequence End" spike occurring at the time end. The individual membrane values are 

Eq. 15 (4.14) 
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compared calculating the mean Intra-class distance (𝐼𝑛𝑡𝑟𝑎𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅ , or the mean absolute distance 

between all the combinations of values of the same class) and the mean Inter-class distance 

(𝐼𝑛𝑡𝑒𝑟𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅ , or the mean absolute distance between all the combinations of values of different 

classes). Separability of classes is then calculated as  𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦   𝐼𝑛𝑡𝑒𝑟𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅  - 𝐼𝑛𝑡𝑟𝑎𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅ . In 

Figure 4.17d we test separability for the two gates (stimulated with a 3V, 800 µs pulse, parameters 

in Table 2) to compare the different synaptic devices. The Poisson generator frequency was set to 

10Hz. We performed our test with a slow post-synaptic neuron capable of integrating the spike 

train’s temporal information (𝜏= 100 ms), and a fast post-synaptic neuron that could not integrate 

temporal information (𝜏 = 10ms). The weight w for the No-STP was set so the maximum post-

synaptic membrane potential matched that of the ideal memristor (IG slow w = 14.33, EI slow w 

= 40.61, I.G. fast w = 7.40, E.I. fast w = 13.30). The times for the end of the spike train and read 

were set as tend = 970 ms and tread = 1000 ms, respectively. A total of 50 classes were generated, 

with 10 samples in each class. Unsurprisingly, for fast post-synaptic neurons, the proposed device 

natural STP offered significant improvements in class separation for temporal based tasks as the 

one proposed, as shown in Figure 4.17d (fast neuron). The EI gate offered longer decays (Table 

2) for the same pulse characteristic, which made it perform better for both slow and fast neurons 

in this task. It is worth noting that even for the fast Ionic Gate and slow neuron, the Ideal model 

performed better than the No-STP synapses (up to 1.47x better separation). As expected for this 

highly time sensitive scenario, stochasticity can hurt separation by increasing intra-class distance, 

although in all tested scenarios the device still performed better than "No-STP" standard 

memristors. This test can be useful to highlight the importance and possible use of this type of 

novel dynamical memristor, but it is only indicative of performance in real world scenarios.  
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Figure 4.17.  SNNs computation-based STP of our MoS2 synapse a) The diagram of our network, 

a Poisson pre-synaptic neuron connected to a leaky integrating post-synaptic neuron through a synaptic 

device (No-STP, Noisy or Ideal memristor). b) A simplified scheme of the benchmark. Different spike 

trains of fixed duration are generated by the pre-synaptic neuron, with a "Sequence end" spike added at 

tend to indicate the end of the stimuli. Each spike train is a class of a classification problem, and it is sent 

to the different synaptic devices and post-synaptic neurons multiple times to obtain multiple responses to 

the same class. The output of the network is represented by the post-synaptic neuron membrane potential 
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at the time tread. c) We calculate the mean Intra-class distance (𝐼𝑛𝑡𝑟𝑎𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅) and Inter-class distance (𝐼𝑛𝑡𝑒𝑟𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅) 

between the membrane reads to obtain the separability metric: 𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦   𝐼𝑛𝑡𝑒𝑟𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅ - 𝐼𝑛𝑡𝑟𝑎𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅. d) We 

test separabilty for the two gates (stimulated with a 3V, 800 µs pulse) both as an Ideal case (yellow) and 

stochastic Noisy device (red). We compare against a No-STP model (blue) which represents classical 

memristors with "static weights". We performed our test with a slow post-synaptic neuron capable of 

integrating the spike train’s temporal information (𝜏= 100 ms), and a fast post-synaptic neuron that could 

not integrate temporal information (𝜏= 10 ms). 

 

Moreover, the effect of noise and stochasticity on computation can be reduced by learning 

algorithms and highly redundant architectures [189] at a point where it can even improve 

computation [190-193]. To see how the device behaves on a real-world dataset, we tested it with 

the algorithm proposed by Rasetto et al. [188] on the N-MNIST dataset [194]. The network makes 

use of descriptors called Time Surfaces, which are spatial maps obtained by interpolating events 

with temporal kernels, usually exponential decays. In the case of memristors and image-based 

datasets like N-MNIST, each pixel produces an individual spike train based on a locally observed 

change of light, as illustrated in Figure 4.18a, b. The spikes then trigger write pulses for the 

memristor of the given pixel, and the conductance of spatial patches of memristor are sampled 

around the position of every new incoming spike, producing Time Surfaces (Figure 4.18 d, e). 

These descriptors can carry important spatiotemporal information about the input and can be 

clustered through unsupervised algorithms such as k-means to extract sets of features for 

classification or tracking.  

Here we test the same architecture proposed by Rasetto et al. [188] shown in Figure 4.18f. 

We test again I.G. and E.I. gates in both the "Ideal" and the "Noisy" case. Differently from the 

single neuron SNN test, we show that a full architecture can accommodate errors introduced by 
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the stochastic behavior of the device, resulting in no significant difference between the Ideal and 

Noisy case for both gates (Figure 4.18g). The pulse response of the EI gate seems to be better 

suited for N-MNIST classification with a 5% increase in accuracy. It could be due to the longer 

decay of the EI gate versus the IG or the presence of two different time constants in the EI gate, 

which could allow integration at two different time scales.  

In both tests we presented (the SNN and the full architecture), we can see that IG and EI 

gates differ in performance. The reason for this discrepancy has to be identified in the different 

temporal coefficients, which allow for integration at specific time scales. Ideally these temporal 

constants would have to be set during the design phase or by controlling the write pulse 

characteristics, hence our effort to determine the complex relation between device physics and 

temporal properties. 
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Figure 4.18. The process behind time surface generation. a-e) A diagram of the use of memristors 

for generating time surfaces, a descriptor for event-based datasets. a) An event-based camera emits events 

for different pixels P(Y,X). b). Each event is a settable writing pulse for different memristors connected 

individually to pixels. c) MoS2 artificial synapse. d) The conductance of the memristors can be sampled 

across different devices at each new event to create 2D maps called Time Surfaces (e). f) The scheme of 

the network we tested, black arrows indicate event streams; Time Surface Layers are determined by the 

spatial dimensions of the surfaces l and the number of clusters or features N obtained using k-means. Spatial 

sub-sampling was performed by reducing spatial coordinates of the input data by a parameter u. The number 

of cluster activations per recording were used to generate a histogram which was then fed to a Support 

Vector Machine allowing classification. g) The results on 10% of the M-MNIST dataset for 5 consecutive 

runs, showing virtually no difference between the Ideal and Noisy cases for both I.G. and E.I. (both gates 

were stimulated with 3V, 800 µs pulses). 
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4.14 Conclusion 

In conclusion, we developed a programmable three terminal MoS2-based synaptic 

transistor using two ionic and electrochemical side gates. The coupling of ionic and 

electrochemical modulation in our MoS2 dynamic synapse initiate a major breakthrough in 

neuromorphic as well as energy technologies.  In our MoS2 synapse, we were able to mimic basic 

brain functionalities such as STP, LTP, PPF, SRDP, and temporal filtering with ultra-fast 

switching speed (100 ns), ultra-low energy consumption (< 700 aJ), and extremely high precision 

(5000) with extraordinary linearity and symmetry, and good endurance performance. Moreover, 

biorealistic short term to long term transition was successfully emulated by varying pulse number 

and filtering frequency. We tested the STP effect with two previously proposed benchmarks for 

neuromorphic pattern recognition. We demonstrated a large boost in performance (up to 250x) 

over standard, non STP capable memristors in highly time-dependent scenarios, and we showed 

that device stochasticity, while affecting single neuron networks, might have virtually no effect on 

recognition rates for larger 2-layer architectures, all of which makes this device a perfect candidate 

for neuromorphic architectures. As far as we are aware, this artificial synapse exhibits the fastest 

ionic and charge transfer doping synaptic device with all the desired requirements for 

neuromorphic computing applications.  
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5.0 Programming MoS2 Dynamic Synapse With Long Voltage Pulse 

5.1 Introduction 

Despite the excellent performance of Von Neumann architecture-based computers in pure 

numerical calculations, their massive power consumption and slow speed make them incapable of 

efficiently handling modern intelligent tasks such as visual and speech recognition and real time 

analysis of large data sets [61]. On the other hand, the human brain system excels in terms of 

energy and speed at such complicated tasks, since the storage and processing of information occurs 

at the same locations in massively parallel and fault-tolerant neural networks [195-199]. With this 

in mind, new artificial neuromorphic computers inspired by the brain have attracted a great deal 

of attention from researchers as a new computing prototype [60,61,200-202].  

Researchers have first looked to how neurons work.  In the brain, neurons are connected 

via synapses, which can be considered a fundamental computing element. The connection strength 

between the neurons in the brain, synaptic weight, is precisely modified by Ca+2 concentration 

[184,195,203]. As a result, changing the synaptic weight (synaptic plasticity) is a key process for 

both learning and memory in biological neural systems [204]. So far, different methods of synaptic 

plasticity seen in biological synapses, such as short-term and long-term plasticity (STP and LTP) 

[24,72,145, 175,156, 205-207], pair pulse facilitation (PPF) [24,175,208,209], and spike timing 

dependent plasticity (STDP) [43,210,211], have been successfully demonstrated by artificial 

synapses. However, artificial neural networks have been traditionally implemented using existing 

CMOS transistors which are not ideal for this task due to their large power consumption, non-

scalability, and most importantly, inability to mimic the fully analog changes found in biological 
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synapses [117, 144]. In recent years, some emerging two-terminal non-volatile memories such as 

resistive random-access memory (ReRAM) [56,140,146,147], phase change memory (PCM) 

[40,149,150], ferroelectric random-access memory (FeRAM) [212,213], and electrochemical 

metallization memory (ECM) [151,152] have been widely investigated as artificial synapses. 

Despite some promising features like analog programming, high programming speed, and simple 

two terminal structures, there are some outstanding challenges that need to be addressed (high 

programming power and poor reliability performance in PCM and large variations in ReRAM and 

ECM devices) in order for these for neuromorphic applications and hardware implementations. 

Furthermore, these devices have limited applications for next generation spiking neural networks 

(SNN), which process information through generating time-encoded spiked signals.  

To overcome the limitations of existing device architectures, three-terminal electrolyte 

gated transistors based on an electrochemical redox mechanism have been proposed as artificial 

synaptic devices [24,71,72,175,158]. In these three-terminal devices, the channel conductance, the 

device’s synaptic weight, can be precisely controlled by applying an electrical signal to the gate 

electrode. Basic synaptic functionalities (high dynamic range and precision, symmetric and linear 

response, good reliability) have been demonstrated with low power consumption. Moreover, due 

to these devices having electrochemical reactions and electric double layer gating effects, both 

long term and short-term plasticity have been reported in the same device, a key property that plays 

a vital role in event driven computation in artificial neural networks [72, 175].  

Here we present an electrochemical three terminal transistor using MoS2 films. MoS2 is an 

exciting material in the transition-metal dichalcogenides (TMDs) family that has garnered a lot of 

attention in recent years in a multitude of applications. Here, its layered structure and anisotropic 

ionic transport and electrical properties, both in-plane and out-of-plane, as well as its ability to 
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modulate its physical characteristics by inducing a reversible phase change between the 

semiconducting (2H) and metallic (1T) phases allow for a robust device [214,215-217]. We 

demonstrate phase modulation in MoS2 thin films through field induced Li ion migration in the 

Van der Wal layers of the MoS2 channel, where low and high concentration of Li+ ions indicate 

2H and 1T phases, respectively. According to the literature [218- 220], the in-plane Li+ ion 

diffusivity in MoS2 films is considerable and allows the reversible phase transition via both an 

electrical field induced Li+ ion migration and electrochemical intercalation (E.I.) mechanism. The 

accommodation of Li ions in 2H multilayer MoS2 thin films (interlayer spacing of 0.62 nm) drives 

the phase transition (2H→1T) by destabilizing the 2H-MoS2 crystal [218]. Interestingly, this 

typical interlayer gap size has the potential to be expanded in the future and enable MoS2 to be a 

good host for other alkali metal ions accommodation as well [221-223]. Their capability for 

reversible ionic exchange and the resulting analogue conductance change make these MoS2 based 

devices a strong candidate for neuromorphic computing applications. Although promising MoS2 

artificial synapses have been demonstrated, their high programming voltage (3V), poor precision 

(100) and low speed (1ms) [219] need to be addressed for any hardware implementation in 

artificial neural networks. Here we present a three-terminal planar MoS2 transistor that displayed 

an improvement in programming voltage (1 V), and energy (4.1 pJ), as well as the high precision 

(5000 states) required for DNN applications. Furthermore, we explore the device potential for 

SNN applications by demonstrating time dependent synaptic features such as paired pulse 

facilitation (PPF), spike timing dependent plasticity (STDP), and temporal dynamic filtering. 
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5.2 Device Structure and Working Principles 

The schematic of a biological synapse and the proposed three terminal synaptic device are 

shown in Figure 5.1a,b, respectively. In the biological synapse (Figure 5.1a), the voltage-gated 

calcium channel is activated by an arriving action potential at the pre-synaptic cell (axon terminal) 

which allows an influx of Ca+2 ions into the axon terminal and triggers the synaptic vesicles to 

release their neurotransmitters into the synaptic cleft (20-40 nm gap between pre and post synaptic 

neuron). The neurotransmitters bind to receptors and cause ion channels to open (or close) in the 

cell membrane generating a connection strength (weight) change in membrane potential. The post 

synaptic potential can therefore be strengthened (potentiation) or weakened (depression) by tuning 

the Ca2+ concentration (synaptic plasticity). Here, we develop artificial synapse devices, as 

illustrated in Figure 5.1b, to demonstrate biorealistic synaptic functions.  The device consists of 

drain and source electrodes (Au [50 nm] / Ti [2 nm]) as well as two side gates (LFP/Au and Au) 

with a 10 µm physical distance from the MoS2 channel, as illustrated in Figure 5.1c,d. The 

drain/source electrodes read the conductance change (synaptic plasticity) of the device via a read-

out voltage (100 mV) while the two side gates control the electrolyte, which serves as the source 

for exchanging the Li+ ions between MoS2 and gate electrodes. 
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Figure 5.1. MoS2 synapse. a) schematic of biological synapse b) schematic of our MoS2 synapse. 

c,d) optical images of our MoS2 synapse. 

5.3 Synaptic Plasticity Role in Human Brain 

Synaptic plasticity is one of the most important characteristics of the human brain. It’s 

modification on the neural circuits is thought to be how behavior, feelings and general learning 

processes are formed. This event-based plasticity clearly has a key role in different aspects of the 

fundamental brain functionalities, and there is major ongoing research in order to understand its 

role in the formation of neural circuitry. 
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5.3.1 Mimic of Excitatory and Inhibitory Synapses Using Long Voltage Pulse 

In our brain, chemical synapses are the building block in neural circuits and play a basic 

role in memory, learning, and information processing. The most abundant and basic synaptic 

actions are classified as excitatory and inhibitory, where the synaptic weight increases or 

decreases, respectively, upon the action potential arriving. Upon application of a short stimulus to 

the presynaptic synapse and resulting temporal accumulation (removal) of Ca+ ions in presynaptic 

synapse, short-term plasticity occurs due to an enhancement (reduction) in synaptic weight. In 

electronic synaptic devices based on CMOS transistors and memristors, this key property is 

missing. Being able to fabricate devices that can emulate this behavior will strengthen 

neuromorphic computation functionalities, enabling them to better implement complicated tasks 

such as pattern recognition, speech recognition, cognition, learning and decision making.  

In our 2D ECRAM device we are able to mimic both excitatory and inhibitory synapses, 

respectively, simply by applying a single intercalation or deintercalation voltage pulse (|1 V|, 20 

ms) to the side gate, respectively, as shown in Figure 5.2a,b. The resulting potentiation and 

depression for the Au gate presynaptic electrode is fully transient due to the electric double layer 

(EDL) gating effect involved (Figure 5.2a). We observed an abrupt increase (decrease) ΔGtot= 

0.65 µS in channel conductance due to Li+ ions adsorption onto the MoS2 surface, which mimics 

an increase (decrease) in the synaptic weight of a biological excitatory (inhibitory) synapse. The 

value of ΔG is gradually diminished back to its original state (G = 49.1 µS) after removal of the 

applied pulse, and the weakly attached Li+ ions are liberated from the surface. On the other hand, 

upon applying the same voltage pulse to the LFP/Au gate, we observed more conductance change 

(ΔGL.T= 2.1 µS) compared to that at the pure Au gate, as illustrated in Figure 5.2b. This can be 
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attributed to the electrochemical intercalation (deintercalation) process that happens upon 

stimulation.  

 

Figure 5.2. Excitatory and inhibitory synapses. a) the emulation of short-term potentiation and 

depression of biological synapse through EDL effect upon application of positive and negative pulse signals 

to the Au ionic gate b) mimicking of potentiation and depression effect upon application of intercalating 

and deintercalating pulse signals and resulting combined EDL and electrochemical reaction phenomena.     

 

Moreover, the value of ΔG gradually decreased (increased) over time after experiencing a 

sharp change and reached a permanent and stable value at G = 49.4 µS. As we reported for our 

graphene synapse [24], the initial sudden transient change in channel conductance is coming from 

both short-term doping due to EDL and a long-term doping effect due to Li+ intercalation. 

However, doping of Li+ ions in vdW layers of MoS2 through electrochemical intercalation 

mechanism is permanent and the Li+ ions cannot diffuse back into the ion gel electrolyte without 

injecting a negative presynaptic voltage pulse. As a result, we observed nonvolatile and permanent 

effects which emulates of long-term potation effects in biological neural networks. As Shown in 
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Figure 5.2b, the permanent effect (ΔG= 2.1 µS) due to the positive intercalating pulse (+1V, 20 

ms) can be eliminated and the original conductance (49.1 µS) recovered upon application of 

deintercalating pulse (-1V, 20ms).  

 

5.3.2 Relaxation Process and Dynamic Behavior for The Response of The Both Ionic 

Gating and Electrochemical Intercalation Mechanisms 

The fitting parameters and calculated time scales for the responses of both side gates 

indicate their dynamic behavior after removal of the electrical field. For the Au gate, we observed 

a single time scale for the relaxation curve for both potentiation (Figure 5.3a) and depression 

(Figure 5.3b) actions as the adsorbed mobile ions on the surface can easily diffuse back into the 

gel electrolyte. However, for LFP/Au gate, the mobile ions can also intercalate into the inter layers 

of the MoS2. Once the pulse is removed, however, the backward diffusion is slower and 

accordingly we observed two-time scales due to the combined effects of surface adsorption and 

intercalation (Figure 5.3c.d).  
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Figure 5.3. Relaxation process of the injected mobile ions. a,b) the relaxation time versus time and 

fitting parameters for the both potentiation and depression mechanism after removal applied positive (+1V, 

20ms) and negative (-1V, 20ms) pulses to the EDL gate (Au). c,d) relaxation process with respect to time 

after injecting positive (+1V, 20ms) and negative (-1V, 20ms) pulse signals to the LFP/Au gate, resulting 

in two time constants after pulse removal. 

c) d)
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5.3.3 Energy Consumption as A function of MoS2 Synapse Thickness 

We have also investigated the dependency of the long-term synaptic weight on the vdW 

layer number by applying a single positive voltage pulse (+1V, 20 ms) to the E.I. gate. As seen in 

Figure 5.4, as MoS2 thickness increases the value of the permanent change increases, indicating 

more site availabilities for Li+ ions to be permanently accommodated. However, we have not seen 

any meaningful trend for the I.G case as all the Li+ ions diffused back due to the EDL and no 

intercalation occurred. 

 

 

Figure 5.4. Long-term potentiation versus device thickness. Long term doping with respect to 

MoS2 thickness indicates more space for mobile ion accommodation during intercalation process. 
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5.4 Emulation of Long-Term Potentiation and Depression Via Consecutive Potentiation 

and Depression Pulses For The Both Ionic Gating and Electrochemical 

Intercalation Mechanism 

Information storage is the main task of the brain, and it is widely believed that the majority 

of data and information is stored at synapses in the shape of changes in synaptic plasticity. Long-

term potentiation (LTP) and long-term depression (LTD), which result in permanent 

improvement/diminution in synaptic weight, have been widely studied as two major forms of 

synaptic plasticity in biological neurons and are believed to also play a vital role in learning and 

memory [224,225]. Both LTP and LTD have the potential to occur in a single synapse in response 

to various forms of activation of N-methyl-D-aspartate receptors [224]. We demonstrate LTP and 

LTD in our MoS2 synapse through the application of a train of pulses with opposite polarities (|1V|, 

20ms) to either side gates. By sending consecutive voltage pulses to the controlling electrode, we 

could mimic LTP by increasing the synaptic plasticity. Conversely, to avert new information 

encoding at the same synapse we selectively weaken the synaptic plasticity by sending negative 

voltage pulses to the controlling electrode. We programmed the MoS2 synapses via both side gates 

separately and recorded the synaptic weight modification for comparison. Although, as shown in 

Figure 5.5a,b, the synaptic weights experienced a large enhancement via both gate terminals, the 

capacity of the conductance change modifications due to the intercalation process obtained in 

LFP/Au gates is larger and with the same number of pulses we achieved a highly linear, symmetric, 

and reproducible response.  However, for the Au gate, as illustrated in Figure 5.5a, despite the 

high linearity observed at the initial stage of injected pulses, a gentle nonlinearity is detected at the 

end, with an even smaller pulse number (20 compared to LFP/Au gate’s 125). This indicates charge 

accumulation and saturation on the surface of the MoS2 due to the EDL effect. Moreover, the high 
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ON/OFF ratio for intercalation response (~15) compared to the EDL response (~1.5) indicates 

large dynamic range through the LFP/Au gate terminal, demonstrating its potential for DNN 

applications and computations in neural network systems. The good cycling endurance (> 104) for 

both Au (Figure 5.5c) and LFP/Au (Figure 5.5d) gate terminals as a result of EDL and combined 

EDL and intercalation effects also demonstrate its capability for hardware implementation. 
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Figure 5.5. LTP and LTD. a) emulation of LTP and LTD due to EDL effect upon application of 

20 consecutive positive and negative pulses to the Au gate terminal. b) emulation of LTP and LTD due to 

the combined EDL and intercalation/deintercalation effect with the application of a train of pulses (#125) 

to the LFP/Au gate terminal. c,d) demonstrating cycling endurance with good performances (> 104) for the 

both responses induced by EDL and combined EDL and electrochemical process. 

5.5 Synaptic Weight Modulation and Sort-Term to Long-Term Transition Using Multiple 

Potentiation Pulses and Retention Behavior 

Another important feature of the biological synapse that we were able to mimic in our 

artificial MoS2 synapse is STP to LTP transition upon applying a series of voltage pulses to the 

gate terminal. Similar to the biological synapse where the Ca2+ ions concentration in the cell plays 

a critical role in neural functions, Li+ incorporation and extrusion result in a dynamic balance in 

the artificial synapstic device, which heavily influences its learning and memory. As depicted in 

Figure 5.6a, no transition has been seen for the Au gate by increasing the number of applied pulses 

(1V, 50ms), indicating that all the Li+ ions that migrated toward the MoS2 surface due to the EDL 

effect diffused back into the electrolyte even after injecting 50 pulses. This transient nature of the 

synaptic plasticity in respect to the functionality and internal dynamics for the presented artificial 

synapse make it a strong candidate for SNN applications in neuromorphic computing systems. 

However, an obvious LTP effect has been observed upon applying successive voltage pulses to 

the LFP/Au gate, as illustrated in Figure 5.6b. Although we observed a short relaxation with time 

due to combination of the transient EDL effect and a spontaneous Li+ deintercalation process, the 

device conductance could not reach to its original state over time, implicating transition to a 

permanent level of device conductance due to enduring Li+ accommodation into the channel. The 
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retention measurement for 50 pulses confirms the LTP emergence and stability for a long period 

of time, > 2x105 s (Figure 5.6c). Physically, due to the subsequent stimuli, the appeared 

potentiation caused by the former pulse has no chance to be fully relaxed and the accumulated 

potentiation over the process results in conversion to LTP. 

 

 Figure 5.6. Short-term and long-term transition emulation using pulse number (N). a) conductance 

change (synaptic weight) in MoS2 channel upon application of consecutive potentiation pulses to Au gate 

terminal. The response shows short-term plasticity independent of the pulse number due to the EDL effect. 

b) the long-term potentiation effect upon application of successive positive potentiation pulses with 

different number. The LTP level increases by increasing the pulse number, indicating more Li+ ion 

concentration in the MoS2 layers due to electrochemical processes. c) retention behavior with more than 

2x105 s for N= 50.   
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5.6 Relaxation Behavior of The Synaptic Response Upon Application of Consecutive 

Potentiation Pulses to The Both Ionic Gating and Electrochemical Intercalation 

To understand the transition behavior, the decayed curve of the device numbers for each 

pulse number were fit to an exponential decay curve using a modified “Kohlrausch” equation 

(Equation 5.1): 

𝐺𝑡  𝐺0 + 𝐴 exp(−
𝑡

𝜏
)                                                    (5.1) 

where 𝐺0 is the channel conductance in the permanent state, A is a perfector, and 𝜏 is a relaxation 

time constant indicating forgetting rate. This type of curve is frequently used in psychology to 

model forgetful behaviors [186]. A train of pulse with 1V amplitude and 100 µs width was applied 

to both programming gates to demonstrate this feature. For the I.G. process, we observed the same 

forgetting rate ~125 ms (Figure 5.7) independent of pulse number, exhibiting the short-term 

memory behavior that is desirable for SNN applications. For the E.I. gate and consequent 

electrochemical intercalation process, however, the retention time and synaptic weight was raised 

by increasing the applied pulse number, as shown in Figure 5.8.  
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Figure 5.7. Relaxation time and fitting curve of EDL response after injecting 5000 potentiation 

voltage pulses (1V, 100 µs) shows a short-term effect with one time constant. 

For E.I. gate and consequent electrochemical intercalation process, however, the retention 

time and synaptic weight raised by increasing the applied pulse number, as shown in Figure 5.8.  

 

Figure 5.8. Conductance change (synaptic weight) for consecutive potential voltage pulse (+1V,  

100 µs) with various number.  
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Physically, for the highest pulse number (N=5000) a large number of Li+ ions were 

intercalated in the MoS2 layers and due to their permanent accommodation, long term effects 

appeared. For the subsequent smaller pulse numbers, more Li+ ions had the chance to be doped 

permanently in the vdW layers and cause enhancement in the long-term level. We plotted the fitted 

relaxation curve with respect to time for different pulse numbers (Figure 5.9a-d). As seen, the two 

obtained time constants are clearly increasing as the pulse number increases. As depicted in Figure 

5.9c, we observe a smaller time constant as the pulse number is decreasing because of the free Li+ 

ions in the vdW layers that can diffuse back into the electrolyte.  
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Figure 5.9. (a-d) Relaxation time and fitted parameters for various pulse number. e) Two obtained 

time constants versus pulse number. 
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5.6.1 Emulation of Learning, Forgetting, and Relearning Processes for Electrochemical 

Intercalation Process  

Using the results shown in Figures 5.8 and 5.9 we were able to demonstrate learning, 

forgetting, and relearning operations for our artificial synapse. As seen in Figure 5.10, following 

the synaptic weight improvement and relaxation decay for N = 5000, the synaptic weight reached 

its maximum weight after only N = 3000 stimulations, indicating a successful relearning process, 

similar to how our brain’s learning of the forgotten information for the second time is faster than 

the first time [226,227].    

 

Figure 5.10. Emulation of Learning, forgetting, and relearning process of the human brain using 

MoS2 artificial synapse.  
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5.7 Synaptic Weight Modulation by Changing Pulse Width and Amplitude 

In a biological neuron, the pattern of activity and Ca+2 influx through receptors can change 

the synaptic plasticity at an excitatory synapse and the new neural network formation required for 

learning and memory [228]. This feature is investigated in our artificial synapse, where the channel 

conductance change (ΔGSD) represents synaptic plasticity by varying the programming pulse width 

and amplitude applied to both side gates. As illustrated in Figure 5.11 and Figure 5.12, we 

observed pseudo-linear and linear relationships between conductance change (ΔGSD) with regard 

to pulse width (from 10 ms to 2 s, 1V) and pulse amplitude (from 0.5 V to 3 V, 20 ms), respectively, 

for both pure EDL (Au gate, Figure 5.11a-d) and combined EDL and intercalation (LFP/Au, 

Figure 5.12a,b). As expected, the amount of conductance change through the electrochemical 

intercalation effect is much higher than the sole EDL mechanism. The observed saturation for EDL 

in wider pulse widths (500 ms-2 s) as shown for a 2 s pulse (Figure 5.11b) is due to charge 

accumulation on the MoS2 surface, as mentioned above for a large number of applied pulses. 

Likewise, the saturation observed for larger pulse widths during intercalation (Figure 5.12a) is 

attributed to the high concentration of intercalated Li+ ions in the vdW layers of the MoS2 channel 

and resulting lack of space for newly arriving mobile Li+ ions. It is worth mentioning that the linear 

relationship between the channel conductance and pulse width amplitude indicates that we can 

further decrease the ΔGSD step size and increase the number of nonvolatile distinct states in our 

ECRAM during the LTP and LTD process by simply tuning the pulse width or amplitude. 
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Figure 5.11. Synaptic weight (channel conductance) tuning in EDL based MoS2 synapse via pulse 

width/amplitude variation. a) MoS2 channel conductance for different pulse widths b) conductance 

saturation for 2s pulse width due to charge accumulation on MoS2 surface c) synaptic weight change as a 

function of pulse width d) synaptic weight change with respect to different pulse amplitudes 
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Figure 5.12. Synaptic weight modulation in electrochemical based MoS2 synapse via pulse 

amplitude variation. a) synaptic weight change as a function of pulse width. b) synaptic weight change with 

regard to transferred charge due to intercalation effect. c)  synaptic weight change as a function of pulse 

amplitude.  

5.8 Neural Facilitation Emulation and Time Constants Dependency to Pulse Width for 

SNN Applications 

Paired-pulse facilitation (PPF), also known as neural facilitation, is a type of short-term 

synaptic plasticity in biological neurons that plays a key role in SNN applications such as learning, 

information processing, and sound-source localization [229,230]. The PPF exhibited in a 

biological synapse is based on two events within a short interval where the response to the second 

event intensifies with respect to the response to the first event. The reason for this enhancement is 

due to the liberation of Ca+2 caused by the second action potential that is added to those ions left 

over from the first stimulus [231,232]. This scenario was emulated for our artificial synapses for 

both side gates. We sent two consecutive voltage pulses (1V, 20 ms) with different time intervals 

b)a)
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to the presynaptic electrode and monitored the channel conductance change (ΔG). As shown in 

Figure 5.13a,b, the synaptic weight (ΔG) was determined by the time interval (Δt) between the 

two pulses, and as Δt increased, the observed ΔG decreased, emulating the dynamic short-term 

phenomenon in biological neural networks [232 ]. This mimics the learning/memory mechanism 

in our brain where the reinforcing learning/memory effect is strong when two incident stimuluses 

are temporarily close. For the Au gate, and thus channel conductance induced by EDL as shown 

in Figure 5.13a, the conductance change (ΔG) followed an exponential decay (∆𝐺  𝐶𝑒
−∆𝑡

𝜏 ) and 

the time constant extracted was similar to the time scale in biological synapses (𝜏= 21 ms) [232]. 

In addition, as shown in Figure 5.13c, we showed that by increasing the pulse width in the PPF 

process, the time constant increases, which is due to more Li+ ions accumulated at the interface 

and incomplete recovery before the second pulse.  

To investigate the electrochemical intercalation effect in PPF, paired pulses with varied time 

intervals were sent to the LFP/Au electrode (E.I.) and similar to with the I.G. process, the 

conductance change followed an exponential decaying trend (∆𝐺  𝐶  𝑒
−
∆𝑡

𝜏1  + 𝐶  𝑒
−
∆𝑡

𝜏2  ), as 

illustrated in Figure 5.13b; however this time there were two characteristic timescales 𝜏  

 3 𝑚𝑠  and 𝜏   44.9 𝑚𝑠. These values are analogous to those in biological synapses [113] and 

previous artificial synapses reported in the literature [24, 161,175,208]. These two-time scales, 

𝜏  and 𝜏 , are related to the diffusion process in the MoS2 vdW layers and thus should be attributed 

to the device lateral dimension, width and length, respectively, as established in prior reports 

[24,175].  
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Figure 5.13. Time dependent synaptic facilitation for SNN applications and learning process by 

sending two consecutive stimuli. a) Paired pulse facilitation emulation in our MoS2 synapse with one time 

scale fitting via ionic gating terminal. b) Pulse pair facilitation with two-time scales exponential decay 

fitting via E.I. gate terminal. c) Time scales obtained from PPF process in I.G. gate terminal with respect 

to the pulse widths 

 

5.8.1 Programming Speed and Energy Scalability by Engineering the Device Dimension 

We were able to engineer the switching speed of our MoS2 artificial synapse by engineering 

the device size, as displayed in Figure 5.14a, for a wide range of dimensions. The power law 

a) b)

+
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dependency of the time constants over the device dimensions confirms their relationships with the 

device size and geometry [24]. We project that by scaling the device’s lateral dimension down to 

10 nm × 10 nm, the programming speed can be scaled down to ≈ 1 GHz, comparable to dynamic 

random-access memory (DRAM) devices [121].  

The switching energy for the smallest flake size (26 µm2) is 4.5 pJ for the programming 

pulse with 1V amplitude and 20 ms width. To explore the scalability of the writing energy of the 

present ECRAM device, we monitored the switching energy (E = I ∙V ∙tw) for different devices 

with different areas, as shown in Figure 5.14b. The projection reveals that the programming 

energy could be scaled down to 0.1 aJ for a device of 10 nm × 10 nm. This trend indicates that our 

artificial synapse is an extremely promising candidate for artificial neural networks applications. 

To study the temperature effect on the switching speed in the E.I. process, we performed PPF 

measurements at different temperatures. As shown in Figure 5.14c, by increasing the working 

temperature in a vacuum, we observed smaller time constants, indicating faster switching speed 

for our artificial synapse as the programming speed is highly dependent on the intrinsic electrolyte 

transport and ion diffusivity [26]. 
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Figure 5.14. Scalable programming speed and energy. a) switching energy as a function of device 

lateral dimension. 1 GHz speed is achievable for device scaled down to 10 nm x 10 nm. b) Programming 

energy per event as a function of device area, indicating ultra-low switching energy (~ 0.1 aJ/update) for a 

device with 10 nm x 10 nm dimension. c) Time constant as a function of working temperature. 

5.9 Spike Timing Dependent Plasticity for Electrochemical Intercalation Process 

In addition to the PPF, we demonstrated spike timing dependent plasticity (STDP) as a 

Hebbian synaptic rule foundation for our MoS2 artificial synapse. Of the four types of STDP in a 

a) b)

c)
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biological neuron [23], we exhibited the asymmetric STDP as the governing type in many systems 

[233-236]. To implement STDP in our artificial synapses, we sent different spikes as pre and post 

synaptic events (|Vpre|= 2V and |Vpost|=1V, 20 ms) with various time differences to the presynaptic 

E.I. electrode using a commercially available multiplexer and monitored the synaptic change in 

response to the incident signals. We selected a saw-edged single pulse as Vpre and a square pulse 

as Vpost, where the temporal correlations and timing between these two spikes (Δt = Vpre - Vpost) is 

sent to the presynaptic gate and tunes the synaptic weight as shown in Figure 5.15a. When the Δt 

> 0 and Vpre precedes the Vpost, long term potentiation occurs and synaptic weight increases 

(Figure 5.15b, bottom left). Conversely, when Vpre succeeds the Vpost (Δt < 0) long-term 

depression ensues (Figure 5.15b, top-right). We then fit each potentiation using a two-term 

exponential function, and the characteristic time constants ( 𝜏   12 𝑚𝑠 ,  𝜏   50.8 𝑚𝑠  for 

potentiation, |𝜏 |   11.6 𝑚𝑠 ,  |𝜏 |   50.1 𝑚𝑠  for depression) are compatible with those of 

biological synapses. Moreover, the time constant scale with the device lateral dimension in each 

part indicates their scalability. 
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Figure 5.15. Spike timing dependent plasticity (STDP). a) Presynaptic and postsynaptic signals 

correlation to be sent to E.I. gate terminal using a multiplexer. b) Synaptic weight (channel conductance) 

change as a function of time interval between presynaptic and postsynaptic signals. In the asymmetric 

STDP, the obtained two-time constants in both sections of plasticity using two terms exponential decay 

equation are well matched with biological response. The ratio of the time constants 
𝜏 

𝜏 
  4.2 and the ratio 

of the lateral dimension of the device (
𝐿

𝑊
)  4.27 indicates scalability of the programming speed and 

power. 

5.10 High-Pass Dynamic Filtering Emulation and Short-Term to Long-Term Transition 

Investigation For The Both Ionic Gating and Electrochemical Intercalation 

Processes 

In addition to the investigations on pulse number, width, and amplitude, we studied 

diffusive dynamic of the Li+ ions as a result of stimulus frequency in both the EDL and 
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intercalation phenomena. A fixed number of consecutive voltage pulses (20 pulses, 1V, 20 ms) 

with various duty cycles were applied to the both presynaptic terminals. As illustrated in Figure 

5.16a, for different frequencies (2 Hz < f < 200 Hz) applied to the I.G. gate we could not see long 

term effects, indicating short term facilitation and high pass dynamic filtering. This behavior 

demonstrates biological synaptic actions, which is desirable for information processing in SNN 

applications. Physically, the field induced ion migration to the MoS2 channel and Li+ ions absorbed 

to the surface temporally, increasing the synaptic weight. After removal of the driving force, all 

the mobile ions diffused back into the electrolyte, with a one time scale relaxation decay, and short-

term potentiation happened independent of the pulse frequency.  

However, the same scenario for the E.I. gate induced long term effects, and upon varying the duty 

cycle of the pulses (decreasing the time intervals) we detected monotonous enhancement in the 

synaptic weight change, much more than in the I.G. case. In addition, the long-term potentiation 

caused by Li+ ion liberation and relaxation reduction indicates short term to long term transition, 

as illustrated in Figure 5.16b. For frequency range 2 Hz < f < 20 Hz no transition happened, and 

we observed short term plasticity independent of the pulse frequency useful for high pass filtering 

emulation. However, at higher frequency (> 30 Hz), it transitions from short term to long term 

effects, an important feature for learning processes and memory in an artificial synaptic device. 

The synaptic weight change for the EDL gate, as shown in Figure 15c, has a pseudo-linear 

relationship with frequency. For lower frequencies, a highly linear trend was observed. However, 

upon increasing the frequency (> 50 Hz), the higher concentration of mobile Li+ ions at the MoS2 

surface caused a charge accumulation and the device’s conductance change no longer followed a 

linear increase. Likewise, for the E.I. gate we observed a linear relationship between conductance 

change and frequencies lower than 20 Hz with a larger weight compared to EDL gate. However, 
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for frequencies larger than 20 Hz, a sharp increase was observed due to the electrochemical 

intercalation process and site availability for high concentration of Li+ ions accommodation.  

 

Figure 5.16. Frequency dependent synaptic weight for dynamic filtering emulation. a) Channel 

conductance as a function of frequency upon application of 20 potentiation pulses (1V, 20 ms) to EDL gate 

terminal. The short-term plasticity independent of the pulse frequency shows High-past the temporal 

filtering characteristics of our MoS2 synapse. b) Channel conductance as a function of frequency 

demonstrates two regions, including short term plasticity as dynamic filtering emulation for SNN 

applications and long-term plasticity for learning and memory applications. c) Synaptic weight versus 

frequency originated from EDL gate. d) Synaptic weight with regards to frequency caused by E.I. gate 

electrode. 
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5.11 Conclusion 

In summary, we report an artificial MoS2 synapse with reversible modulation of synaptic 

weight through Li+ ion electrochemical intercalation and EDL phenomena. Our MoS2 synapse 

exhibited switching energy as efficient as 4.5 pJ (for smallest device, 26 µm2) for a 1V, 10 ms 

pulse, and high precision (5000 states) upon administration of a100 µs pulse. In addition, our 

device performs with highly linear and symmetric responses, low variations, and good reliability 

(> 2 x 105 s retention and > 4 x 104 cycling endurance), making it a promising candidate for DNN 

applications. Moreover, the device displayed both STP and LTP caused by ionic gating and charge 

transfer doping, which is preferable for SNN applications. We demonstrate its capability for further 

biological synaptic functions, such as PPF, STDP as well as temporal filtering. The MoS2 synaptic 

device has the potential to further increase to faster switching speeds (1 GHz) and lower energy 

consumption (0.1 aJ) per update by scaling down the device dimension to 10 nm × 10 nm. 
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6.0 Summary 

In conclusion, we developed novel two-dimensional electrochemical devices as an artificial 

synapse using two dimensional dichalcogenides materials, including graphene and molybdenum 

disulfide (MoS2). Our graphene synapse displayed an energy efficiency ~500 fJ/switching, analog 

tunability (>400 distinct states), a linear and symmetrical response, and good retention and 

endurance performances. We demonstrated their ability to perform basic neuronal functions, such 

as short-term and long-term potentiation/depression as well as STDP. Our graphene synapse also 

exhibited potential for scaling, where we project a nanoscale electrochemical synapse can operate 

with as low of a switching energy as 4 aJ per switching event at 10 MHz.  

We also developed electrochemical synapses using MoS2, which is a transition metal 

dichalcogenide (TMD) with a bandgap, as another 2D material. MoS2 can be reversibly switched 

between a semiconducting (2H) and a metallic (1T) phase via intercalation. This phase transition 

provides another route to mimic synaptic activities in addition to the analog tuning. To have a 

comparable device in terms of switching speed with other non-volatile memories, we developed a 

fast speed measurement setup to improve the switching speed from milliseconds to nanoseconds. 

In MoS2 electrochemical synapses, we designed three terminal synaptic transistors with two 

floating gates for ionic gating and electrochemical investigations. Our MoS2 artificial synapse 

could mimic basic functionalities of the human brain such as STP, LTP, PPF, STDP, SRDP, 

dynamic filtering. and STP to LTP transition.  Furthermore, MoS2 synapses exhibited ultra-fast 

switching speed (<100 ns), ultra-low energy consumption (< 700 aJ/switching), and extremely 

high precision (>5000) with extraordinary linearity and symmetricity, and good retention and 

endurance performance, making it a promising candidate for DNN applications. Moreover, we 
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project an efficient programming energy (~ 0.1 aJ) and speed (~ 1 GHz) per update for a device 

dimension scale down to 10 nm x 10nm. 

With graphene and molybdenum disulfide’s 2D flexible nature and CMOS compatibility, 

our electrochemical synapses provide exciting opportunities to realize hardware implementation 

of fully functioning artificial neural networks for neuromorphic computing.  
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