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Causal Learning With Delays Up To 21 Hours

Yiwen Zhang, M.S.

University of Pittsburgh, 2021

Considerable delays between causes and effects are commonly found in real life. However,

previous studies have only investigated how well people can learn probabilistic relations with

delays on the order of seconds. In the current study we tested whether people can learn a

cause-effect relation with delays of 0, 3, 9, or 21 hours, and the study lasted 16 days.

Surprisingly, we found that participants were able to learn the causal relation about equally

as well in all four conditions. These findings demonstrate a remarkable ability to accurately

learn causal relations in a realistic timeframe.
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1.0 Introduction

The ability to accurately learn cause-effect relations allows people to choose causes that

are most likely to bring out desirable outcomes. Hundreds of studies have investigated human

causal learning, and many more have investigated correlation detection and reinforcement

learning more broadly. However, a critical limitation of this research is that it has investi-

gated learning with relatively short delays on the order of seconds, if any. In contrast, in

everyday life, there are many causes that have an influence on an effect a few or even many

hours later (e.g., activities during the day that impact the quality of one’s sleep, or choices or

events one day can impact one’s mood the next day). Many people make important decisions

based on beliefs about cause-effect relations with delays, but it is not known how accurate

such judgments are.

For example, self-diagnosis of non-coeliac gluten sensitivity - fatigue, bloating, and other

symptoms related to eating gluten - has become increasingly common (Fasano et al., 2015).

However, the medical establishment has difficulty diagnosing non-coeliac gluten sensitivity

for a variety of reasons, including that people who think they are gluten sensitive expe-

rience strong nocebo effects (experiencing symptoms when taking a non-gluten containing

placebo) (Gibson et al., 2017). Deciding to cut gluten out of one’s diet has considerable

lifestyle implications and is a decision often made on one’s own without expert medical guid-

ance (Copelton & Valle, 2009). The question, therefore, is how accurately can people infer

that eating gluten-containing foods actually causes these delayed symptoms, and there are

countless other analogous questions that people face in daily life.

The goal for the current study was to conduct a well-controlled experiment to understand

the role of delay on the ability to accurately detect cause-effect relations.
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1.1 Delays in Conditioning and Reinforcement Learning

Temporal delays have been studied in animal conditioning and reinforcement learning for

decades. It has often been believed that temporal contiguity is crucial to contingency learning

(Renner, 1964; Rescorla, 1967; Skinner, 1948) . Thordike’s law of effect (1911) proposed

that the connection is more firmly established when the cue is ”accompanied or closely

followed by” the rewards. Skinner (1948) even posited that contingency can be reducible to

the temporal contiguity between the conditioned stimulus (CS) and unconditioned stimulus

(US).

Many studies have found that longer delays weaken learning. For instance, in classi-

cal trace conditioning, the rate of conditioning is inversely relate to the intra-trial interval

(Schneiderman, 1966; Schneiderman & Gormezano, 1964; Smith et al., 1969) . In instrumen-

tal conditioning, research over decades has found that animals have more difficulty acquiring

a response when the reinforcements are delivered with longer delays (see Boakes & Costa,

2014; Renner, 1964 for reviews).

Because traditional trial-by-trial models of learning do not model intra-trial temporal

dynamics, they cannot capture the effects of a delay (”trace learning”) (e.g., Rescorla &

Wagner, 1972). Subsequent reinforcement learning models such as Sutton and Barto’s Tem-

poral Difference model (1990) were specifically designed to capture the negative impact of

delay on learning by using a temporally-discounted record of previous events to predict future

events, called eligibility traces. Other associative learning theories that are more biologically

inspired explain the effect of the delay in trace learning by assuming a short window of as-

sociabiability. Those models also encode temporal traces for CSs which determines a short

optimal intra-trial interval for neuronal plasticity potential; the potential peaks shortly after

the CS and then decreases slowly (e.g., Gluck & Thompson, 1987; Grossberg & Schmajuk,

1989).

However, there are still open debates in the theorizing about the role of delay. First, in

a few settings it has been found that learning with delays ranging from 1 hour to 24 hours

is still possible (Logue, 1979). This phenomena of learning over a long delay, often called

‘preparedness of learning’ is believed to be an evolutionarily adapted ability for food-related
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conditioned stimuli (’taste aversion’) and for certain fearful stimuli and phobias (Dunlap &

Stephens, 2014), though is typically not believed to exist in other settings. Second, most of

the prior research focused on the time interval between the cue and outcome, but not the

inter-trial interval. Gallistel & Gibbon’s (2000) timing model proposes a phenomenon called

”time-scale invariance” - if the length of delay (response-reinforcer interval) is increased

proportionally to the inter-reinforcer interval, then there is no impact of delay. Clearly, how

delays affect learning is still a key question (Boakes & Costa, 2014; Gllistel et al., 2019).

1.2 Delays in Human Causal Learning

Within the field of human causal learning, there have also been debates about the role of

delay. Initially, it was believed that humans have difficulty learning cause-effect relations with

longer delays. For instance, very brief delays have a large influence on the causal judgment

of perceptual launching (Leslie & Keeble, 1987; Michotte, 1963; Young & Sutherland, 2009)

. Delays longer than 4 seconds significantly reduce causal judgements of action-outcome

relations in free-operant conditioning (Shanks, Pearson & Dickinson, 1989).

However, subsequent studies showed that not only are human capable of learning delayed

cause-effect relationships, but learning is not necessarily weakened by longer delays. One

line of research showed that causal learning is mediated by temporal assumptions (Buehner,

2005; Buehner & McGregor, 2006; Hagmayer & Waldmann, 2002) . Buehner and colleagues

argued that Shanks et al.’s (1989) results were due to learners having an expectation of

an immediate succession of causes and effects. Buehner and McGregor (2006) found that

participants gave stronger causal ratings to a long-delay action-outcome association than

short-delay association if they had an expectation of long delay. However, in these studies

the longer delays were still on the order of seconds.

Other research investigated the roles of the variability of delay and number of intervening

events as opposed to delay per se (Boakes & Costa, 2014; Lagnado & Speekenbrink, 2010),

how people use distributions of delays for inferring causal structures among multiple vari-

ables (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018) and how people judge singluar
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causation (whether one event was the cause of another) based on delay and the presence of

other causes (Stephan, Mayrhofer & Waldman, 2020). Those studies indicate that people

make use of delays to guide their judgments about causation.

1.3 Longer Delays and Current Study

Despite all this empirical and theoretical work on delay, an important open question is

how delays impact human learning in real-life situations. Almost all the prior research, with

the exception of the preparedness of learning research with animals, has focused on delays

on the order of seconds. However, many real-life causal events occur with delays of several

minutes, hours, or days. The primary goal of this research is to investigate how well people

are able to learn cause-effect relations with delays on the order of hours.

Recently we have begun studying how well people can learn cause-effect relations from

data presented one trial per day for a series of days, which we call ’ecological momentary

experiments’ (in contrast with ecological momentary assessments). The reason is that one

way in which standard causal-learning paradigms are artificial is that all the trials are pre-

sented in quick succession, whereas in the real world (e.g., learning if a medicine is working,

or what factors influence sleep), the experiences are spaced out over much longer periods

of time. We have found that people can learn true relations between a single cause and

a single effect about as well when spaced out one trial per day as when presented rapidly

within a few minutes (Willett & Rottman, 2021). Furthermore, in both short and long time-

frame conditions, participants incorrectly inferred correlations that did not exist (’illusory

correlation’) when observing skewed datasets. Follow-up research focused on people’s ability

to learn about two causes and one effect in a long timeframe setting (Willett & Rottman,

2020). Another study investigated reward-based learning, not causal learning, in both a

single massed session vs. several sessions spaced out over time. In this study, performance

was not different between the massed and spaced conditions when tested immediately after

learning, but performance was maintained significantly better in the spaced condition when

tested 3 weeks later (Wimmer et al., 2018).
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Critically, in all three of these studies there was no delay, so even though they are more

realistic in one sense that the trials are more spaced out, they are still artificial in that there

was very little delay if any between the cause and effect or action and feedback. The findings

that participants are able to learn single cause-effect relations quite well, and are able to

learn about two causes to some degree, possibly represent an overly optimistic picture of

real-world causal learning. The current study added delays between causes and effects in the

long timeframe, which simulates more realistic real world causal leanring.

In the current research, we conducted an ecological momentary experiment aimed to

assess the effect of temporal delays on causal learning over 16 days. We adopted a trial-by-

trial learning paradigm and spaced it out to one trial per day. We manipulated the intervals

between the cause and the effect within a trial, ranging from a few seconds to roughly 21

hours, to investigate whether long term causal learning is impeded with delay and the extent

to which people can accurately learn cause-effect relations with long delays.
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2.0 Methods

2.1 Participants

202 participants completed the study (150 females, Mage = 22.1, SDage = 5.6). 76 par-

ticipants were recruited within the Pittsburgh community (mainly undergraduate students)

and attended an in-person lab session on the first day of study. Due to the COVID-19

pandemic, the rest of participants were recruited through social media (e.g. Facebook) and

attended a video session over Zoom on the first day of study. Participants who successfully

completed the entire study were paid $40. The final analyses included 200 participants,

excluding 1 participant who explicitly reported they wrote down data during the study and

1 participant due to a programming error.

2.2 Design

The study employed a 2 × 4 between-subject design. There were two types of learning

datasets (positive correlation vs. negative correlation) and four temporal delay conditions

of roughly 0, 3, 9, or 21 hours between the cause and effect.

2.2.1 Datasets

In the positive dataset, the cause generated the effect (i.e. taking medicine was associated

with pain), and in the negative dataset, the cause prevented the effect (i.e. taking medicine

was associated with no pain). The positive correlation dataset used the following data: the

cause and effect were both present 6 times (A cell), both absent 6 times (D cell), the cause

was present and the effect was absent 2 times (B cell), and the cause was absent and the

effect present 2 times (C cell). For the negative dataset, the cell frequencies were reversed

[A=2, B=6, C=6, D=2]. According to the ∆P rule (Allan, 1980), the contingency between
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cause and effect were .5 and -.5 for the two datasets respectively. According to the Power

PC rule (Cheng, 1997), the causal power was +.66 and -.66. In order to ensure that the

contingency was kept the same for the first 8 days and the latter 8 days, we divided the

whole dataset into two identical sets ([A=3, B=1, C=1, D=3] for the positive; [A=1, B=3,

C=3, D=1] for the negative) and randomly ordered 8 trials within each half.

The reason for testing two different datasets was simply to distinguish learning from a

bias (e.g., a bias that participants on average believed that the medicine would be helpful

or harmful). Our goal was not to compare learning for the two conditions.

2.2.2 Temporal Delays

We manipulated the temporal delays within each trial. Participants observed 16 trials

and each trial contained a cause task in which participants learned whether the cause was

present or absent, and an effect task in which participants learned whether the effect was

present or not. In the 0-delay condition, participants did the cause and the effect task back to

back each day. In the 3-hour delay condition, participants did the cause task in the morning

and the effect task in the afternoon around 3 hours (min = 2, max = 7) later than the

morning task. In the 9-hour delay condition, participants did the cause task in the morning

and the effect task in the evening around 9 hours (min = 8, max = 15) later. In the 21-hour

delay condition, participants did the cause task in the afternoon and the effect task the next

morning roughly 21 hours (min = 16, max = 24) later. See Figure 1 for a visualization

of these windows of time to participate and Figure 5 for the distributions of average time

intervals that participants actually experienced over 16 days.

The study was run automatically through a custom built website using the psychcloud.org

framework. This website sent automated text message reminders, and allowed participants

to login only at the allocated times. When participants were supposed to do the task, they

were sent a text message, and if they did not do the task they received hourly reminders.

If a participant did not do one of the tasks (either the cause or effect task) within the

window of time that they were allotted on a given day, they were not allowed to participate

for the the rest of the day, and they received the same trial the subsequent day. This means
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that sometimes the cause task was repeated from one day to the next, but the effect task

for a given trial was never repeated, so there was only one opportunity to learn about the

cause-effect relation in a given trial. If a participant missed more than 4 days, they could

not continue to participate in the study. In total 6 participants were dropped from the study

due to missing more than 4 days.

2.3 Procedures

The entire study was conducted on participants’ mobile phones. The study contained

one practice task which happened in the lab (or over Zoom) on Day 0, one 16-day learning

task and one final judgement task which happened on Day 17.

On the first day (Day 0), participants were introduced to the study and did a practice

task to gain familiarity with the procedure. The practice task contained a four-trial learning

session and a testing session afterwards. In the learning session, the cause and effect tasks

were completed back-to-back.

The long-term task began on Day 1. At the beginning, the participants read a cover

story designed to make it plausible that the medicine could improve or worsen the outcome,

as follows:

”Please imagine that due to a health condition, you are on a medication called Primadine.

In addition to that health condition, you also sometimes have pain from arthritis. You have

heard that sometimes Primadine can improve or worsen the pain as a side effect.

Some medications happen to improve arthritis pain as a side effect by decreasing the

autoimmune processes that cause inflammation and pain in arthritis.

Other medications happen to worsen arthritis pain as a side effect by increasing the

autoimmune processes that cause inflammation and pain in arthritis.

For 16 days you are going to see whether or not you take Primadine and whether or not

you experience pain.

You want to figure out whether Primadine improves or worsens or has no influence on

your pain.”
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The entire learning session contained 16 trials, one trial per day. Each day participants

conducted two tasks, a cause task and an effect task (see Figure 2).

In the cause task, participants first saw an image of a scene. After they clicked the

‘Continue’ button, they were shown an icon and text of whether the cause is present or

absent that day. Participants then verified whether the cause was present or absent by

clicking a button. Only after they responded correctly would a ‘Continue’ button appear

allowing them to continue. Finally, they were asked to “tell a story that links both pictures

together.”1

The effect task followed a similar procedure, except that before seeing whether the effect

was present or absent, participants were asked to predict the status of the effect (whether

or not they have back pain). For the prediction, they were not reminded whether the cause

was present or absent, and the cause was not mentioned at all. After they submitted their

prediction, they received text feedback of their prediction and an icon showing whether they

had back pain or not, verified the presence or absence of the effect, and also wrote a story

linking the effect and contextual image.

On Day 17, the day after the 16-day learning task, they did a 15-minute final judgment

task. The task consisted of two parts. First, participants made four judgments of the cause-

effect relation. Second, participants were asked to recognize the contextual images they saw

each day and recall whether or not the cause and effect were present based on the images.

We will not discuss the memory task further in this article.

1We wanted to ensure that participants were paying attention and encoding the stimuli, not just clicking
through the task, given that this task was embedded in their daily lives and could happen while they were
doing other things. We were also concerned that if learning in all conditions was at floor it could be explained
merely due to a lack of processing. One potential concern is that this task may have led to increased salience,
perhaps leading to an overly optimistic picture of learning with delays. Though possible, these stories were
still quite short and likely took 10-20 seconds to write. In comparison, many real-world events that people
care to learn about are likely to be much more salient and important in one’s life (e.g., pain, sleep) leading
to deeper processing than in the current task.
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2.4 Measures

We used four measures of participants’ beliefs about the strength of the relation between

the cause and the effect at the end of the study. We also converted the trial-by-trial pre-

dictions of the effect during the learning phase into a measure of learning. All the measures

were scaled in a range of [-1,1] for analysis.

2.4.1 Causal Strength

Participants made a standard “causal strength” judgment by answering ”Do you think

that Primadine worsens, or improves pain?” (on a scale of −10 = strongly worsens, 0 = no

influence, to +10 = strongly improves). This question was asked both in the middle of the

learning session (before Trial 9) and in the testing session (after Trial 16).

2.4.2 Future Prediction Strength

Participants were asked about the probability of having pain given that they did or did

not take the medicine with the following question: “Imagine that ‘tomorrow’ (Day 17) you

take/do not take Primadine. On a scale of 0 to 100%, what do you think is the likelihood

that you would experience pain?” The future prediction strength was derived by subtracting

participants’ responses of when they do not take the medicine from when they do take the

medicine - similar to the ∆P rule (Allan, 1980).

2.4.3 Future Use Strength

Participants answered ”Do you think you should continue to use the Primadine” on a

scale of −10 = definitely no, 0 = unsure, to +10 = definitely yes.

2.4.4 Frequency Strength

We asked about participants’ memories of the frequencies of A, B, C, and D cells (e.g.,

for the A cell we asked “Of the 16 days in the study, how many days did you see a picture in
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which you did take Primadine and did experience pain”). We calculated frequency strength

by calculating p(effect | cause) − p(effect | ¬cause) from participants memories of A, B,

C, and D cells. We excluded one participant from data analysis due to this participant’s

frequency strength being incalculable due to a division by zero problem, which can happen

if some pairs of cells are judged as zero.

2.4.5 Trial by Trial Prediction Strength

We computed “trial by trial prediction strength” from participants’ predictions about

the presence or absence of the effect from Trial 9 to Trial 16 using the following equation:

p(predicted effect | cause) − p(predicted effect | ¬cause). We only used the last 8 trials to

have a measure after participants had an opportunity to learn the cause-effect relation, not

right at the beginning of learning.

11



Figure 1: The time windows for participation.
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Figure 2: Screenshots of the cause task and the effect task.

Note. In the cause task (left), participants learned and verified whether the cause was present or not 
based on the icon (whether or not they took the medicine), and then wrote a story to related the 
contextual image and the cause icon. After 0, 3, 9 or 21 hours delay, in the effect task (right), 

participants predicted that the effect would be present or absent (pain or no pain), received feedback, 
and verified the state of the effect. At the end of the effect task, participants also wrote a story to relate 

the contextual image and the effect.
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3.0 Results

The analysis follows our pre-registered plan available at https://osf.io/8tcvq. For ease of

interpretation, we inverse coded the strength judgements for the negative datasets so that

they are positive, and show them both together after reverse coding in Figure 3. As can

easily be seen in the Figure 3, participants’ judgments were above zero for all six measures

and for all 4 delay conditions, which provides evidence that participants were able to learn

the contingency between the cause and effect in every condition. All 24 t-tests against zero

were significant (see the t test labels in Figure 3), which provides evidence that participants

learned the contingency above chance in every condition. The all but one of the p-values

were ¡.001 and the Cohen’s D’s were in the range of 0.43 to 1.21. We conducted two analyses

to test the influence of delay. One compared the four delay conditions using an ANOVA.

The other analysis was a linear regression testing the influence of the actual time intervals

that a participant experienced (see the distribution of the actual time intervals in Figure 5).

Because the two analyses are very similar, we report the ANOVA results in the main paper

and the regression analysis in Appendix as well as mention the few discrepancies in the main

paper.

The ANOVAs tested for main effects of delay, dataset (positive vs. recoded negative)

and an interaction. If learning becomes weaker with longer delays, there would be a main

effect of delay.1

Table 1 presents the ANOVA results. We first discuss the main effect of delay. In four

of the measures (causal strength before Trial 9, and after Trial 16, future use strength, and

future prediction strength), there was no significant effect of delay, and the Bayes Factors

(BFs) were in the range of .03-.06, meaning that the evidence is roughly 20 to 1 in favor of the

null hypothesis of no influence of delay. In the frequency strength measure, the p-value was

1There are two highly related ways to conduct this analysis. One way involves testing for an interaction
between dataset and delay; if participants have more difficulty learning the cause-effect relations then their
judgments for the positive and negative datasets would get closer together over longer delays. Here as
preregistered, we took a simpler approach of inverse coding the judgments for the negative datasets so
that they are positive and then testing for a main effect of delay. These two approaches are very similar
mathematically and reach the same conclusions, only here we are primarily interested in a main effect of
delay whereas in the other version we would primarily be interested in the interaction.
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still non-significant and the BF was weaker, about 2 to 1 in favor of a null effect. (Different

from the ANOVA result, in the regression analysis for the frequency strength measure, the

p-value was .035 showing a significant effect of delays, but the BF was only 2.07 in favor of

an influence of delay.2)

The only measure that found a reliable influence of delay was the trial-by-trial prediction

strength measure (p=.006, BF=5.13 for the ANOVA and p=.003, BF=13.6 for the regres-

sion). As can be seen in Figure 3, participants’ predictions were stronger for the 0 and 3 hour

conditions than for the 9 and 21 hour conditions, suggesting that learning was somewhat

better with the shorter delays. We compared the trial-by-trial prediction strength measure

across the 0 vs. 3, 3 vs. 9, and 9 vs. 21-hour delay conditions. Out of these three compar-

isons, the only significant difference was 3 vs. 9 hours, F (1,95) = 7.048, p = 0.009, BF =

4.8.

In the above analysis the trial-by-trial prediction strength was computed from Trials

9-16 to capture behavior after participants had already had an opportunity to learn the

relationship. Figure 4 plots learning curves using trial-by-trial prediction strength for the

trials binned into groups of 4 collapsing across participants. As can be seen in the figure, the

biggest differences among four conditions occurred between Trials 9 to 12; by Trials 13-16

the differences between conditions were smaller.

In sum, four of the measures found evidence for a null effect of delay. The frequency

strength measure was more inconclusive, and the trial-by-trial prediction strength measure

did find some evidence for an influence of delay.

We now move on to the other main effect and interaction. Four out of the six ANOVAs

also found very strong main effects of dataset. This reflects the fact that participants tended

to give somewhat stronger judgments in the negative condition than the positive condition.

Because the negative condition was reverse coded, the main effect means that the recoded

judgments in the negative condition are more positive than the judgments in the positive

condition. This could have been due to a bias to think that the medicine is effective -

that the presence of the medicine would help prevent the back pain. Though the cover

2This is an example of how significant p-values especially in the range of .01-.05 can have weak BFs
(Wetzels et al., 2011).
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story explicitly said that the medicine could improve or worsen the back pain, this bias is

understandable, and is not of primary importance to the study. There were no significant

interactions between delay and dataset, with most of the BFs roughly in the range of 10 to

1 in favor of the null.
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Figure 3: Mean and 95% confidence interval of causal judgments in four delay conditions

and t-test results.

Note. p-values against 0 : *<.05,**<.01, ***<.001.
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Figure 4: Trial by trial prediction strength for every 4 trials.
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Table 1: ANOVA results for Causal Judgment measures.

F p BF η2p

Causal Strength (Before Trial 9)

Delay 0.62 0.603 0.05 <0.01

Dataset 3.98 0.048 1.03 0.02

Delay:Dataset 1.13 0.340 0.19 0.02

Causal Strength (After Trial 16)

Delay 0.18 0.908 0.03 <0.01

Dataset 14.17 <0.001 >100 0.07

Delay:Dataset 0.27 0.846 0.08 <0.01

Future Prediction Strength

Delay 0.76 0.518 0.06 0.01

Dataset 14.75 <0.001 >100 0.06

Delay:Dataset 0.57 0.635 0.10 <0.01

Future Use Strength

Delay 0.85 0.467 0.06 0.01

Dataset 12.57 0.001 55.71 0.06

Delay:Dataset 0.36 0.783 0.08 <0.01

Frequency Strength

Delay 2.24 0.085 0.41 0.03

Dataset 1.65 0.200 0.34 <0.01

Delay:Dataset 0.46 0.709 0.09 <0.01

Trial by Trial Prediction Strength

Delay 4.28 0.006 5.13 0.06

Dataset 12.12 0.001 45.9 0.06

Delay:Dataset 0.78 0.510 0.13 0.01
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4.0 Discussion

Understanding how well people can learn cause-effect relations with considerable delays

is crucial to understanding how accurately people can learn cause-effect relations in the real

world. This is the first study that used a controlled experiment to test causal learning with

delays on the order of hours rather than seconds.

Our approach for studying causal learning in more real-world timeframes is to incremen-

tally move towards more and more realistic learning situations. In our first study on learning

over a long timeframe, we simply stretched out the standard trial-by-trial paradigm so that

one trial occurred each day (Willett & Rottman, 2021). In the current study, we took the

next step of introducing delays between the cause and effect. We have also studied learning

over long timeframes with two causes but with no delays (Willett & Rottman, 2020 ). We

are intentionally taking small steps to understand how individual changes affect learning.

Running against the standard assumption that even short delays considerably impair

learning, we found that for the most part people were able to learn cause-effect relations

with delays up to 21 hours with minimal impact of the delay. There was some evidence of

an influence of delay in the trial-by-trial predictions and potentially the frequency strength

judgments, but not the other measures.

We were surprised how well participants performed in the delay conditions. First, it was

not obvious that people would have strong memories for whether or not the cause happened

9 or 21 hours earlier. If they forgot or got confused about whether the cause occurred

earlier in the day, this noise would have presumably impaired learning. Indeed, even in short

timeframe learning situations, people are worse when their working memory is taxed (e.g.,

Kao & Wasserman, 1993; Goedert et al., 2005; Aitken et al., 2001; De Houwer & Beckers,

2003; Liu & Luhmann, 2013; Waldmann & Walker, 2005) and age-related memory decline is

associated with worse learning (Mutter et al., 2012). We had thought that delays between

0 to 21 hours would reveal a considerable decrement to learning, and still think that it is

possible that if the same paradigm were extended to delays of 2 or 3 days that at some point

there may be a decrement, especially if the delay is long enough such that there are other
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cause or effect events in-between when an individual cause has an impact on the effect. For

example, if a cause influences an effect two days later, but in between there are two causes

and one other effect, this might be very hard to learn. Still, finding a lack of an influence of

delay up to 21 hours is still important in that it helps to narrow down when we can expect

real-world causal judgments to be accurate or not accurate.

Second, even if they did remember whether the cause happened earlier in the day, it is not

a given that people would have relatively accurate causal assessments at the end of 16 days.

We have found that in the long timeframe, similar to the short timeframe, people tended

to infer illusory correlation when observing skewed datasets (Willett & Rottman, 2021), so

causal learning is clearly imperfect. We also assume that when the causal learning task

gets hard enough (a long enough delay, too many causes, or other complex dynamics) that

people will have a very difficult time learning the relations. For example, whereas associative

learning and reinforcement learning approaches only require updating a belief about the

cause-effect relation each day, ’rule-based’ models of causal inference (e.g., Cheng, 1997;

Griffiths & Tenenbaum, 2005; Hattori & Oaksford, 2007) require people to have memories of

tallies of the all the experiences, and if these tallies are inaccurate the final judgments would

also be inaccurate. We found a bit of evidence of worse memories of such tallies for the

frequency strength measure in the regression analysis though not in the ANOVA analysis,

and more broadly, the causal judgments appeared to be mainly intact across all levels of

delay.

4.1 Potential Explanations for Inconsistencies in Findings

We used a number of dependent measures; most showed that learning was not impacted

by the delay, though there were some exceptions. Most notably, the length of delay affected

the trial-by-trial prediction strength. There are a number of potential factors that could have

contributed to influence of delay appearing primarily for the trial-by-trial predictions and

not the other measures, though unfortunately none of the available explanations proposed

below is entirely satisfactory.
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4.1.1 Interim vs. Final Measures of Learning

Unlike the other measures which were collected at the end of learning, the trial-by-trial

predictions of the effect were collected during each effect task during learning, so this measure

captures interim learning. Could this explain the difference? Figure 4 shows that the largest

impact of delay for the trial-by-trial measure was roughly during Trials 9-12. However, there

was not an effect of delay in the causal strength measure collected before Trial 9, suggesting

that learning was not considerably impaired by the delay half way through learning. It is

still possible that the trial-by-trial measure is more sensitive or is picking up differences

appearing earlier or later than the causal strength measure half way through learning, but

the lack of an influence of delay for the causal strength measure half-way through learning

provides some evidence that the difference may not be due to the interim nature of the

trial-by-trial predictions.

4.1.2 Direct vs. Indirect Assessments of the Cause-Effect Relation

Whereas some of the measures like causal strength and future use strength are fairly

direct measures of the cause-effect relation, the trial-by-trial predictions of the effect is a

less direct measure. Perhaps the less direct questions are more susceptible to an influence

of delay? On the one hand, the frequency strength judgment, which is also less direct,

also showed some (though less convincing) evidence of an influence of delay. The frequency

strength measure had people to recall their memories for the 16 events rather than make

a summary judgment about the relation between the cause and effect. On the other hand,

no influence of delay was seen in the future predictive strength measure, which was based

on participants’ predictions of the effect given the cause on a hypothetical 17th day. The

trial-by-trial prediction strength and future prediction strength measures are very similar to

one another, which makes this explanation less convincing.
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4.1.3 Effort Required to Recall the Cause to Make Predictions

When making the predictions of the effect, participants were not reminded of the state of

the cause that was presented earlier in the day - so accurate predictions would have required

participants to spontaneously recall whether the cause was present or absent earlier and

then use that information to predict the effect given their belief about the statistical relation

between the cause and effect. It is possible that this requires more effort in the longer delay

conditions so that participants may have been less likely to make predictions of the effect

based on the cause they saw earlier.

However, the notion that people in the long delay conditions did not spontaneously recall

the cause is problematic from all learning perspectives. Rule-based theories of learning as-

sume that people keep tallies of the different types of events of the cause and effect - if people

do not spontaneously recall the cause and encode it with the effect, then such accounts would

not be able to explain the successful learning measured by the other dependent measures.

One could argue that participants do not necessary need to spontaneously recall the cause

when asked to predict the effect, so long as they do so immediately after when presented

with the effect. Though possible, it is not clear why people would only spontaneously think

of the cause when presented with the effect, not when asked to make a prediction that would

be facilitated by thinking about the cause.

This notion is also problematic from a reinforcement learning perspective. Reinforcement

learning models (e.g., Rescorla & Wagner, 1972; Sutton & Barto, 1998) assume that learners

spontaneously make predictions of outcomes based on the cues, and that these predictions

are required for learning because learning is driven by prediction error. Thus, according

to these models difficulties making predictions should also be seen in difficulties in final

judgments. However, participants’ final judgments did not show an influence of delay.

4.1.4 The Impact of Repeated Predictions

We had participants make trial-by-trial predictions of the effect simply to increase at-

tention to the task. There is not a lot of work on the impact of including predictions in

sequential learning tasks. Well et al. (1988) found some hints that requiring trial-by-trial
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predictions may have improved discrimination for weak correlations at the end of learning,

though the potential effect was small. A benefit of making predictions could be viewed as

fitting with the retrieval practice and testing effect literature that finds that repeated prac-

tice retrieving to-be-remembered information improves long-term retention (e.g., Roediger

& Karpicke, 2008; Rowland, 2014). At the same, standard reinforcement-learning theories

assume that people spontaneously make predictions and that learning occurs through pre-

diction error. If people already spontaneously make predictions perhaps explicit predictions

may not have much of an impact.

There is some literature that embedding other types of judgments during learning, not

just at the end of learning, may impact final judgments. Collin and Shanks (2002) found

that embedding causal judgments during the learning led to final judgments that were more

aligned with the most recent evidence (a recency effect) whereas when participants only made

a single final judgment at the end of the learning without making interim judgments their

judgments were more consistent with the overall dataset or even primacy (see also Hogarth

and Einhorn, 1992, pg 16; Marsh & Ahn, 2006; Dennis & Ahn, 2001 for related theories and

evidence). However, all four delay conditions included the trial-by-trial predictions and one

intermediary causal strength judgment, and the primacy vs. recency effect is not relevant to

the stimuli we used. In sum, this finding does not explain why the trial-by-trial predictions

revealed an effect of delay but other measures did not.

4.2 Open Questions

There are a number of open questions. First, in the current study there was only one cause

and one effect, but in many real-life situations there may be multiple causes and multiple

effects and various delays between them which could complicate learning. Some research has

shown that when there are multiple causes, it is not the delay per se that leads to worse

learning but instead it is the number of intervening events or both (Boakes & Costa, 2014;

Lagnado & Speekenbrink, 2010; Revusky, 1971 ). Still, when there are multiple causes that

can occur at different times, relations with longer delays will typically have more intervening
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events, presumably making them harder to learn. An interesting point to consider is that

in the current study, the conditions with longer delays actually had many more intervening

events - it is just that these events occurred outside the context of the smartphone app.

Even though it may be relatively easy to filter out events deemed to be irrelevant in this

study simply due to the context of the phone, in real world situations people would need

to more actively choose to focus on certain events and not others, potentially making delay

harder. The current studies may suggest that a top-down attention-driven process that filters

out intervening events deemed to be irrelevant may be important for accurate learning with

delays. This sort of mechanism of what intervening events are ’relevant’ (e.g., Revusky, 1971)

is outside the bounds of existing theories of causal learning and reinforcement learning.

Second, the current study used a trial-by-trial classical or Pavlovian paradigm in which

the participants were presented with the cause and effect or the absence of the cause and

effect. In this sort of paradigm it is easy to map the single incidence of the cause to the single

incidence of the effect. However, in free operant instrumental paradigms, the participant can

choose to implement the cause(s) repeatedly. This might reveal more of an influence of delay

because it would be hard to map a single causal event to a single effect event - it is possible

for there to be many causal events before an effect event or an effect event without an obvious

recent causal event. Shank’s et al’s (1989) finding of worse learning with delays on the order

of seconds utilized a free operant paradigm. At the same time, Gallistel argues that in this

situation, it is not the absolute delay between the cause and effect that matters, but rather

the ratio between all the events including the inter-trial interval - he argues that when all of

aspects of the study are proportionally stretched out in time, learning proceeds at the same

pace, called timescale invariance (Gallistel & Gibbon, 2000) . We are planning on testing

this hypothesis in a free operant paradigm using long delays of multiple hours like in the

current study.

Third, in current study, participants learned only a single cause and a single effect, and

both the presence and absence of the events were very salient. However, in many real life

situations, nothing alerts the learner to an absence, which raises important challenges for

research (Gallistel, Craig, & Shahan, 2019, Hattori & Oaksford, 2007). For example, if

someone forgets to take medicine, or does not feel pain, these absences may go unnoticed.
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However, modifying the paradigm for real absences will be hard to implement because if a

participant fails to do a task when they receive a text message it will turn what should be

a presence into an absence.

Fourth, another important future direction has to do with a different sort of delay. Some

delays do not happen on a trial basis. For example, antidepressant medications can take

multiple weeks before starting to have an influence and in this case the medicine is taken

each day, whereas in the current study the medicine was taken on 50% of days. We are also

investigating this other sort of delay in a separate line of research.

In sum, it is possible that the reason we did not see much of an influence of delay was

that the study was still too simple. At the same time, some argue that stretching learning

out over time should not affect learning even in more complex paradigms. We took an

approach of making one change at a time to existing paradigms to investigate progressively

more complex and realistic learning situations, so that we can hopefully identify the specific

factors responsible for challenges in learning.
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5.0 Conclusions

This research makes an important empirical contribution to the field of human causal

learning specifically, and learning more generally, showing that learning is not necessarily

degraded even with considerable delays. Empirically, this raises the possibility that people

can accurately learn about the contingencies between events in their daily lives, at least in

simple cases with only one cause and effect. Theoretically, this research requires a reexam-

ination of the mental processes that underlie human causal and statistical learning, which

primarily assume that learning is degraded with increasing delay. Still, it is important to

try to test more complex and realistic learning situations, which may yet reveal impacts of

delay.
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Appendix A. Regression Analyses

Addition to the ANOVA analysis, we conducted linear regressions to test for an effect 

of the actual time intervals that a participant experienced. This analysis also differs from 

the ANOVA analysis in that it tests for a linear influence o f delay r ather than merely any 

differences between the four conditions.

In the experiment, participants completed the tasks each day within windows of time, 

so participants in the same condition could have experienced somewhat longer or shorter 

delays based on exactly when they choose to complete the tasks. This regressions used each 

participants average delay intervals. The delay is coded in terms of hours for interpreting the 

regression coefficient. The distribution of the actual delay that each participant experienced 

was shown in Figure 5.

Table A1 presents the results of the regressions. Similar to the ANOVAs, there were 

no effects o f delay f or the causal s trength measures b efore Trial 9  or a fter Trial 16, f or the 

future prediction strength, and for future use strength. Similar to the ANOVAs participants 

who experienced longer delays had weaker trial-by-trial prediction strength, and the BF was 

stronger in the regression analysis. One difference was t hat t here was a  s ignificant effect 

of delay on the frequency strength measure for the regression analysis but not the ANOVA 

analysis (p=.035) however, the BF was only 2.07.

Similar to the ANOVAs most of the regressions found an influence of dataset and none 

of them found an interaction between delay and dataset.
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Figure 5: The distribution of average delays that participants actually experienced over 16

days in four delay conditions.

Note. The vertical dash lines indicate the ideal delay in each condition.
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Table A1: Regression results for Causal Judgment measures.

β p BF η2p

Causal Strength (Before Trial 9)

Delay -0.003 0.417 0.37 <0.01

Dataset -0.101 0.291 0.46 0.02

Delay:Dataset -0.004 0.647 0.30 <0.01

Causal Strength (After Trial 16)

Delay -0.002 0.616 0.28 <0.01

Dataset -0.241 0.010 5.52 0.07

Delay:Dataset 0.0002 0.981 0.25 <0.01

Future Prediction Strength

Delay -0.004 0.237 0.46 <0.01

Dataset -0.261 0.001 27.3 0.07

Delay:Dataset 0.005 0.439 0.32 <0.01

Future Use Strength

Delay -0.003 0.525 0.30 <0.01

Dataset -0.293 0.006 8.61 0.06

Delay:Dataset 0.004 0.661 0.27 <0.01

Frequency Strength

Delay -0.006 0.035 2.07 0.02

Dataset -0.117 0.087 1.04 <0.01

Delay:Dataset 0.007 0.254 0.48 <0.01

Trial by Trial Prediction Strength

Interval -0.011 0.003 13.6 0.05

Dataset -0.277 0.001 30.2 0.06

Interval:Dataset 0.009 0.229 0.45 <0.01
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