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Abstract 

Shape Classification of the Anterior Cruciate Ligament Cross Section 

 

Michael A. DiNenna, M.S. 

 

University of Pittsburgh, 2021 

 

 

 

 

The objective of this study is to quantifiably classify the shape of the cross section of the 

anterior cruciate ligament (ACL). This will be done with the use of a three-dimensional laser 

scanner to construct a solid model and mathematical analysis. 

Ten freshly frozen cadaveric knees were used in this study. The intact knees were 

positioned in a six degrees of freedom robotic testing system. The knee was passively moved by 

the robot from full extension to 15 degrees flexion. The knee was then dissected so that only the 

ACL, tibia, and femur remained.  The dissected knee was placed in the robot and placed into the 

same position of 15 degrees of flexion as the intact knee.  The ACL was laser scanned and the 

insertions sites points were discretized. A three-dimensional model was constructed using 

software. The ligament axis was defined to be the line that connects the centroids of the two 

insertion sites. Five planes were defined perpendicular to this axis to represent the cross sections.  

Points outlining each cross section were compared to five shapes (ellipse, rectangle, triangle, 

peanut shape, and kidney shape) and the fit of the shape was measured using a Procrustes analysis. 

Twenty-nine out of the fifty cross sections were found to be best fit to an ellipse.  Compared 

to seven for triangle and kidney shape, five for rectangle, and only two for the peanut shape.  

Overall, the ellipse provided the best fit for a plurality of the cross sections. This study may 

provide information to construct ACL grafts with shapes closer to that of the original tissue. 
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1.0 Introduction 

The purpose of this study is to develop methods to quantitatively classify the shape of the 

cross section of the anterior cruciate ligament (ACL).  Around 200,000 ACL injuries occur every 

year in the United States and roughly half of those are reconstructed.1  In the past, photographs, 

calipers, MRIs and laser micrometers were used to measure the cross sectional area of the ACL. 

Today, three-dimensional laser scanning( Fujimaki et al) is used to measure the cross sectional 

area (CSA) of the ACL.2 Others have used computer imaging to look at the footprint of the ACL 

and found the mean distance of the posterior and anterior bundle to the center of the ligament.3 

Price et al studied the principal second moment of inertia of ACL cross sections.4 They found that 

the ratio of major-to-minor axis length of the cross sections decreased from the femoral insertion 

site to the tibial insertion site. This study will investigate the classification of the cross sections to 

five defined shapes. This may, in the future, allow clinicians to construct ACL grafts which are 

closer in shape to that of the native ACL.  
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2.0 Background 

To grasp the scope of this project, anatomical terms need to be defined as well as the nature 

of the injury and reconstruction. Likewise, the theory behind the quantitative shape comparison 

will be presented to understand the methods of the analysis.  

 

2.1 Anatomical Definitions 

The human knee is composed of four primary ligaments linking the tibia and femur. These 

are the anterior cruciate ligament (ACL), the posterior cruciate ligament (PCL), lateral collateral 

ligament (LCL), and medial collateral ligament (MCL). The ACL and PCL are shown in Figure 1. 

The main function of the ACL and PCL is to restrict anterior and posterior tibial translation, 

respectively. The focus of this study will be on the ACL. The ACL connects the femur and tibia 

and is located at the center of the knee. As previously stated, the ACL is primarily responsible for 

restricting anterior tibial translation (ATT).5 The ACL also plays a role in restricting tibial rotation 

and valgus and varus bending.5    
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Figure 1: Knee Anatomy with Labeled Ligaments6 

 

If the ACL is damaged, it may be surgically reconstructed with a graft formed from a 

ligament or tendon tissue about 50% of the time.1 One factor for this is the lifestyle of the patient. 

If they are an athlete, then they are much more likely have their ACL reconstructed than a non-

athlete.1 The harvested tissue is prepared as a graft which is approximately cylindrical in shape. 

Anatomical studies of the ACL have been done to obtain information of the size and shape of the 

ligament.7 Harner et al. noted the cross sectional shape of the ACL footprint was “irregular”.7 

“Irregular” was defined as “neither purely circular or elliptical or any other simple geometric 

shape”. The “irregular” shape was consistent amongst their eight specimens. 
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2.2 Procrustes Formula 

The Procrustes formula, is a formula that is used to quantify the similarity between two 

shapes.8 It is based on a least-squares type shape comparison with a one to one correspondence.9 

The Procrustes formula includes translation, rotation, and scaling operations in matching a shape 

and is shown in Figure 2. The method compares the boundary points on the two shapes with equal 

number of points. 

 

Figure 2: Process of the Procrustes Method in Fitting One Shape to Another10 

2.2.1 Previous Work with Procrustes Method 

Procrustes analysis has been used in other applications. Perez-Sala used Procrustes analysis 

to align postures of athletes in photographs with computer vision.11 This helps the artificial 

intelligence classify photos more easily. Facial recognition also uses Procrustes analysis in three-

dimensions to compare distinguished features and identification. Puente, mentions that Procrustes 

analysis can be used for matching clusters of data points.12 Procrustes has also been used in dental 

studies to study the shape of teeth to find the average shape of a tooth among the general 

population.13 Goodall et al. found a difference in the shape of rats’ skulls with nutritional 
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deficiencies using Procrustes analysis.14 In this study we will be using Procrustes analysis to 

compare ACL cross sections to predefined shapes. 

 

2.2.2 Description of Procrustes Formula 

Let A and B correspond to two shapes as represented by matrices of n evenly spaced 

cartesian boundary points. The number of boundary points, n, is the same for both shapes. Let Ax 

and Ay be column vectors of matrix A which correspond to the x and y coordinates of the boundary 

points, respectively. The boundary points are consecutively ordered based off their location. This 

is important since the comparison will be a one-to-one point comparison. Similarly let Bx and By 

be column vectors of the x and y boundary points of the second shape in the matrix B. The matrix 

A will contain the coordinates of what will be called the reference shape. The matrix B will contain 

the coordinates for what is termed the compared shape. The mean values of the x and y components 

for the two shapes are calculated as A̅x, A̅y, B̅x, and B̅y , respectively, where A̅x , for example, is 

given by equation (2-1). 

 
𝐴̅𝑥 = [

1

𝑛
∑ 𝐴𝑖

𝑥 

𝑛

𝑖=1

] (2-1)  

The coordinates in A and B need to be centered about a common origin so their respective 

centroids are at the same location. For this, the mean values of the coordinates are subtracted from 

every coordinate point. The new matrices will be defined as AO and BO with their respective 

column vectors AOx, AOy, BOx, and BOy. Equation (2-2) shows how these vectors were calculated 

with subscript i representing the ith row of the column vector. 
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 𝐴𝑂𝑖
𝑥 = 𝐴𝑖

𝑥 − 𝐴̅𝑥 (2-2) 

 [𝐴𝑂] = [𝐴𝑂𝑥 , 𝐴𝑂𝑦] (2-3) 

The sets of coordinates will be normalized for comparison. The normalized coordinate 

matrices will be termed ANORM and BNORM. 

 
[𝐴𝑁𝑂𝑅𝑀] =

1

√∑ (𝐴𝑂𝑖
𝑥)2𝑛

𝑖=1 + ∑ (𝐴𝑂𝑖
𝑦
)
2𝑛

𝑖=1

[𝐴𝑂] 
(2-4) 

 
[𝐵𝑁𝑂𝑅𝑀] =

1

√∑ (𝐵𝑂𝑖
𝑥)2𝑛

𝑖=1 + ∑ (𝐵𝑂𝑖
𝑦
)
2𝑛

𝑖=1

[𝐵𝑂] 
(2-5) 

The denominator in equations (2-4) and (2-5) is called the Frobenius norm. Now that 

coordinates have been centered about the origin and normalized, the Procrustes formula can now 

be used.   Now let 𝑹 be the orthogonal transformation matrix that minimizes the sum of squares 

of the residual matrix 𝑬 in equation (2-6).15,16 

 𝐸 = 𝐵𝑛𝑜𝑟𝑚𝑅 − 𝐴𝑛𝑜𝑟𝑚 (2-6) 

Let the value 𝑔1 be the sum of squares of 𝑬 shown in equation (2-7).  A second condition 

for 𝑹 is that it is unitary, shown in equation (2-8), where 𝑳 is a Lagrange multiplier matrix of 

unknown values. To minimize both values, the sum of the partial derivatives were set to 0 in 

equation (2-9). 

 𝑔1 = 𝑡𝑟(𝐸𝑇𝐸) (2-7) 

 𝑔2 = 𝑡𝑟(𝐿(𝑅𝑇𝑅 − 𝐼)) (2-8) 

 𝜕𝑔

𝜕𝑅
= 

𝜕𝑔1

𝜕𝑅
+

𝜕𝑔2

𝜕𝑅
 

𝜕𝑔

𝜕𝑅
= (𝐵𝑛𝑜𝑟𝑚

𝑇 𝐵𝑛𝑜𝑟𝑚 + 𝐵𝑛𝑜𝑟𝑚𝐵𝑛𝑜𝑟𝑚
𝑇 )𝑅 − 2𝐵𝑛𝑜𝑟𝑚

𝑇 𝐴𝑛𝑜𝑟𝑚 + 𝑅(𝐿 + 𝐿𝑇) = 0 

(2-9) 

The matrices (𝐵𝑛𝑜𝑟𝑚
𝑇 𝐵𝑛𝑜𝑟𝑚) and (𝐿 + 𝐿𝑇) in equation (2-9) are symmetric. 
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 𝐿 + 𝐿𝑇

2
= 𝑅𝑇𝐵𝑛𝑜𝑟𝑚

𝑇 𝐴𝑛𝑜𝑟𝑚 − 𝑅𝑇𝐵𝑛𝑜𝑟𝑚
𝑇 𝐵𝑛𝑜𝑟𝑚𝑅 = (

𝐿 + 𝐿𝑇

2
)

𝑇

 (2-10) 

Since (𝐿 + 𝐿𝑇) and (𝑅𝑇𝐵𝑛𝑜𝑟𝑚
𝑇 𝐵𝑛𝑜𝑟𝑚𝑅) are symmetric then (𝑅𝑇𝐵𝑛𝑜𝑟𝑚

𝑇 𝐴𝑛𝑜𝑟𝑚) is also 

symmetric from equation (2-10). Therefore, the condition in equation (2-11) must be met. 

 𝑅𝑇(𝐵𝑛𝑜𝑟𝑚
𝑇 𝐴𝑛𝑜𝑟𝑚) = (𝐴𝑛𝑜𝑟𝑚

𝑇 𝐵𝑛𝑜𝑟𝑚)𝑅 (2-11) 

Multiplying equation (2-11) by 𝑅 on the right and 𝑅𝑇 on the left yields equations (2-12) 

and (2-13) respectively. 

 𝐵𝑛𝑜𝑟𝑚
𝑇 𝐴𝑛𝑜𝑟𝑚 = 𝑅(𝐴𝑛𝑜𝑟𝑚

𝑇 𝐵𝑛𝑜𝑟𝑚)𝑅 (2-12) 

 𝑅𝑇(𝐵𝑛𝑜𝑟𝑚
𝑇 𝐴𝑛𝑜𝑟𝑚)𝑅𝑇 = 𝐴𝑛𝑜𝑟𝑚

𝑇 𝐵𝑛𝑜𝑟𝑚 (2-13) 

Multiplying equation (2-12) by equation (2-13) on the right yields equation (2-14) where 

both sides of the equation are symmetric. 

 𝐵𝑛𝑜𝑟𝑚
𝑇 𝐴𝑛𝑜𝑟𝑚𝐴𝑛𝑜𝑟𝑚

𝑇 𝐵𝑛𝑜𝑟𝑚 = 𝑅(𝐴𝑛𝑜𝑟𝑚
𝑇 𝐵𝑛𝑜𝑟𝑚𝐵𝑛𝑜𝑟𝑚

𝑇 𝐴𝑛𝑜𝑟𝑚)𝑅𝑇 (2-14) 

Both sides of equation (2-14) have the same eigenvalues. Let 𝑀 = 𝐵𝑛𝑜𝑟𝑚
𝑇 𝐴𝑛𝑜𝑟𝑚.  

 𝑠𝑣𝑑{𝑀𝑀𝑇} = 𝑅𝑠𝑣𝑑{𝑀𝑇𝑀}𝑅𝑇 (2-15) 

Where svd{} is the singular value decomposition function in equation (2-15). 

 𝑠𝑣𝑑{𝑀} = 𝑈𝑆𝑉𝑇 (2-16) 

 𝑠𝑣𝑑{𝑀𝑇} = 𝑠𝑣𝑑{𝑀}𝑇 = 𝑉𝑆𝑇𝑈𝑇 (2-17) 

U and V are unitary orthonormal eigenvectors and S is the diagonal eigenvalue matrix in 

equations (2-16) and (2-17) . A unitary matrix has the condition that 𝑈𝑈𝑇 = 𝐼. A diagonal matrix 

has only elements in the diagonal of the matrix as its name suggests. Since the singular value 

decomposition function is distributive, equations (2-15)-(2-17) are combined to form equation 

(2-18) 

 (𝑈𝑆𝑉𝑇)(𝑉𝑆𝑇𝑈𝑇) = 𝑅(𝑉𝑆𝑇𝑈𝑇)(𝑈𝑆𝑉𝑇)𝑅𝑇 (2-18) 
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Since U and V are unitary and S is diagonal, equation (2-18) is simplified into equation 

(2-19). 

 𝑈𝑆2𝑈𝑇 = 𝑅𝑉𝑆2𝑉𝑇𝑅𝑇 (2-19) 

In order for equation (2-19) to be true, equation (2-20) must be true as well. 

 𝑅 = 𝑈𝑉𝑇 (2-20) 

Once again R is the transformation matrix mapping BNORM to ANORM. The eigenvalue 

decomposition matrix, S, can be used to calculate the Procrustes distance in equation (2-21). 

 𝑃𝑑 = 1 − 𝑡𝑟(𝑆)2 (2-21) 

The diagonal values in S2 are equivalent to the eigenvalues found in equation (2-22). 

  |𝑀𝑀𝑇 − 𝜆𝐼| = 0 (2-22) 

Where I is the 2 by 2 identity matrix and 𝜆 is the eigenvalue.  The closer the Procrustes distance is 

to 0, the closer the fit of the set of coordinates in 𝐵 matches to the set of coordinates in 𝐴 and hence 

the closer the two geometric shapes. 
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3.0 Methods 

For the acquisition of data, the following methods were used. First the specimen was 

prepared for testing. Then the specimen was placed in a robotic testing system to place the 

specimen in a precise position. The specimen was laser scanned and the data was converted into a 

three-dimensional computer model. Cross sections of the model were taken with respect to the axis 

of the ACL. These cross sections were then compared to predetermined shapes using Procrustes 

analysis. Procrustes shape analysis was used to compare the fit of five shapes, (ellipse, rectangle, 

triangle, peanut shape, and kidney shape) to the ACL cross section.  

3.1 Specimen Preparation 

Ten freshly frozen cadaveric human knees were dissected and the femoral and tibial ends 

cast in resin.    

The ends of the femur and tibia were placed in a six degree of freedom robotic testing 

system. The coordinate system used is X in the medial-lateral direction of the knee, Y vertical to 

the ground and Z in the anterior-posterior direction of the knee.  

Then a program controlling the robot was used to position the knee so that the forces 

holding the knee were minimized in order to have the knee in a natural position. The robot 

determines the passive path of the knee from full extension to 15 degrees flexion. That angle of  

flexion was found to be the highest in-situ force in the ACL under a quadriceps load.17  
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After the robot has acquired the passive path of the intact knee, the knee was removed from 

the robot for dissection. All tissue and the femoral condyles were removed so that the ACL can be 

visualized.  After dissection, the surgeon marks with a surgical pen the femoral and tibial insertion 

sites with evenly spaced marks. The marks are shown below in Figure 3. 

 

The specimen was then returned to the robot and placed in the same position of 15 degrees 

flexion as that of the intact knee. 

Figure 3: Dissected Knee so that Only ACL, Tibia, and Femur Remain 
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3.2 Laser Scanning of the Anterior Cruciate Ligament 

The laser scanner (Faro, Inc.) interfaces with a solid modelling program (Geomagic, Inc.) 

to generate three-dimensional computer models of the scanned object.  The coordinates of the 

system were set to X, Y and Z which have been previously defined. Then the ACL insertion sites 

were then digitally recorded with the laser scanner. The laser scanner has a 1 mm precision in 

three-dimensional space that matches the precision of the pen used to mark the insertion sites. 

Twenty points were measured around each insertion site. The laser scanner was then used to scan 

the ACL including the immediate surrounding bone.  

3.3 Analysis of Three-Dimensional Computer Model 

3.3.1 Creating the Solid Model 

Once the ligament was scanned, the data was converted into a three-dimensional solid 

model (Geomagic, Inc).  Then the model was processed by applying a general smoothness 

function, removing overlapping elements, and filling any holes in the model. 

 

3.3.2 Defining the ACL Cross Sectional Axis 

Before ligament cross sections can be determined, the axis normal to the cross sections 

must be defined.  This was nontrivial because of the tissue’s nonuniform geometry. This axis was 
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chosen to be the vector connecting the centroids of the femoral and tibial insertion sites.  To 

calculate these centroidal positions, the mean value of the coordinate points that were digitized 

around the border of the insertion sites were calculated. 

In order to have cross sections only of the tissue, the regions of the solid model that were 

bone were removed. This was done by defining two splines around the boundary of the insertion 

sites and removing elements outside the splines.  

After this modification, the planes for the cross sections of the ligament were defined. The 

planes are perpendicular to the axis of the ACL. To define locations of proximal and distal sections 

of the ACL, five cross sectional planes were equally spaced across the length of the ligament so 

that bone was not included in the cross section. Points along the boundary of the cross sections of 

the tissue at these planes were found in terms of three-dimensional coordinates. Each cross 

sectional boundary was chosen to have 999 coordinate points.  

3.4 Shape Analysis of Ligament Cross Sectional Area 

3.4.1 Processing of the Cross Sectional Data 

With the collection of n cross sectional boundary data points and the directional vector of 

the ACL, the three-dimensional coordinates were converted into a set of two-dimensional planar 

coordinates. For this, the X, Y, and Z coordinate system was transformed using a rotation matrix, 

in a MATLAB program, for the transformation.  

The cross sectional boundary points were input into a n by 3 array, defined as T with the 

columns corresponding to X, Y, and Z global coordinates. This is shown in equation (3-1). 
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 [𝑇] = [𝑋, 𝑌, 𝑍] (3-1) 

The transformation matrix, 𝐐, was computed using the following steps. First, the ACL axis 

vector was used to define one of the three new base unit vectors. The second base unit was defined 

as perpendicular to the ACL axis and the global z axis in a direction similar to that of the global x 

axis. The third base unit vector is defined as the cross product of the first two base unit vectors. 

The collected directional vector components of the ACL axis, from the three-dimensional model, 

were listed as 𝑥𝐷 , 𝑦𝐷 , and 𝑧𝐷. The ACL axis is the transformed Y axis. The vector to be used as 

the transformed X axis is analogous to the sagittal plane perpendicular to the ACL axis shown in 

equation (3-2).  

 𝑣𝑥⃗⃗⃗⃗ = 𝑦𝐷𝑖̂ −  𝑥𝐷𝑗̂  (3-2) 

 𝑣𝑦⃗⃗⃗⃗ = 𝑥𝐷𝑖̂ + 𝑦𝐷𝑗̂ + 𝑧𝐷𝑘̂ (3-3) 

The X direction vector is converted to a unit vector. The ACL axis vector is already a unit 

vector. The vectors in new coordinate system can be shown in equations (3-4)-(3-6). 

 
𝑣𝑥 =

𝑣𝑥⃗⃗⃗⃗ 

‖𝑣𝑥⃗⃗⃗⃗ ‖
 (3-4) 

 𝑣𝑦 = 𝑣𝑦⃗⃗⃗⃗  (3-5) 

 𝑣𝑧 = 𝑣𝑥  × 𝑣𝑦 (3-6) 

The global coordinate system is represented as G, a 3 by 1 matrix where each row is a 

three-dimensional vector. 

 

[𝐺] = [

𝑔̂𝑥

𝑔̂𝑦

𝑔̂𝑧

] = [
1 0 0
0 1 0
0 0 1

] [
𝑖̂
𝑗̂

𝑘̂

] (3-7) 

Similarly, the transformed coordinate system is represented as V. 
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[𝑉] = [

𝑣𝑥

𝑣𝑦

𝑣𝑧

] =

[
 
 
 
 

𝑦𝐷

‖𝑣𝑥⃗⃗⃗⃗ ‖

−𝑥𝐷

‖𝑣𝑥⃗⃗⃗⃗ ‖
0

𝑥𝐷 𝑦𝐷 𝑧𝐷
−𝑥𝐷𝑧𝐷

‖𝑣𝑥⃗⃗⃗⃗ ‖

−𝑦𝐷𝑧𝐷

‖𝑣𝑥⃗⃗⃗⃗ ‖
‖𝑣𝑥⃗⃗⃗⃗ ‖]

 
 
 
 

[
𝑖̂
𝑗̂

𝑘̂

] (3-8) 

From the new matrix and the global matrix, the transformation matrix Q was constructed 

where the subscript notation is used to indicate the row of the matrix shown in equation (3-9). 

 𝑸𝑖𝑗 = 𝑽𝑖 ⋅ 𝑮𝑗 (3-9) 

With this transformation matrix the array T was converted into T’, an array of transformed 

coordinates using the equation (3-10), 

 [𝑇′] = [𝑇][𝑄𝑇] (3-10) 

where 𝐐T is the transpose of 𝐐 . 

Now the cross sectional boundary points share the same Y value due to the transformation. 

Since the cross section was now two-dimensional the Y coordinate was removed when storing the 

points. 

After the cross sectional boundary points were converted into two-dimensional data they 

were normalized for analysis. This includes centering the cross section, ordering them and 

converting units.  For the centralization, the mean value of both coordinates was subtracted from 

each point. It is important to index the points such that each point is located to its most proximal 

neighbor. To order the points, a function was created that loops through all the points and finds 

the point with minimum distance to each one and makes the necessary swaps in the array to place 

them in order. Folds in the cross section do not affect the ordering since the number of points in 

the cross section provides enough resolution for the smallest of folds allowed in the model. The 

units were converted from inches to millimeters.  
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3.4.2 Creating the Shapes 

In order to compare the various shapes to the cross sectional data points, different shapes 

were constructed. The Procrustes formula needs each shape to have the same number of boundary 

points as the cross sections (n).  In creating each shape, parameters were varied like the eccentricity 

of an ellipse or the ratio of length to width of a rectangle, to account for different geometries of a 

shape. 

Ellipse 

To construct an ellipse, the only parameter varied was the eccentricity. The eccentricity , 𝑒, 

relates the semi major axis, 𝑎, and the semi minor axis, 𝑏, by the equation (3-11). 

 𝑏 = 𝑎√1 − 𝑒2 (3-11) 

A 1 by n array of angles between 0 and 2𝜋 is established. Then Cartesian coordinates of an 

ellipse were created with the equations (3-12) and (3-13). 

 𝑋𝑒 = 𝑎 ∗ cos (𝜃) (3-12) 

 𝑌𝑒 = 𝑏 ∗ sin (𝜃) (3-13) 

A MATLAB function called ‘curvspace’ was applied to these points which evenly spaces 

the points, so that points are not clustered due to angular dependence of the shape.  To center the 

ellipse, the average 𝑋𝑒 and 𝑌𝑒 position was subtracted from every point. 

Rectangle 

To construct a rectangle, the width is the only varied parameter since the length will be 

scaled by the Procrustes function. To determine the boundary points, polar coordinates cannot be 

used as was done for the ellipse. For the spacing of points a different method was used since the 

‘curvspace’ function cannot be applied to shapes with a discontinuous tangent. This was done by 
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proportioning the number of points in a linear array by the its relative length. This is shown in the 

method below. 

Let 𝑛 be the total number of points and 𝐿𝑝 and 𝑊𝑝  represent the number of points in the 

length and widths respectively, From the perimeter of a rectangle the following equation was 

made. 2𝐿𝑝 + 2𝑊𝑝 = 𝑛. The length is dependent on width parameter. 𝑊𝑝 = 𝑎𝐿𝑝 where 𝑎 is 

constant scale factor between 0 and 1. Substituting 𝑊𝑝 into the first equation and solving for 𝐿𝑝 

yields equations (3-14) and (3-15) . 

 𝐿𝑝 =
𝑛

2(𝑎 + 1)
 (3-14) 

 

 𝑊𝑝 =
𝑎𝑛

2(𝑎 + 1)
 (3-15) 

Because these equations can result in a decimal, each value was rounded up to the nearest 

integer. To construct the arrays, let 𝐿 be 1 and 𝑊 = 𝑎𝐿. The eight arrays are four arrays of x 

coordinates and four arrays of y coordinates of the sides. 

       These sides create a rectangle composed of boundary points that is centered at the origin. This 

method yields a rectangle that has an even number of total points.  To compare the rectangle to a 

cross sectional boundary having an odd number of points a random point is removed using a 

random number generator from the rectangle.  

Triangle 

To determine the boundary points of a triangle, two parameters were altered. These 

parameters were two of the three angles of the triangle. The third angle is dependent on the values 

of the other two angles. There are three types of triangles that were constructed, acute, right, and 

obtuse. All three types of triangles were evaluated. Images of acute and obtuse triangles are shown 



 17 

in Figure 4 and  Figure 5, respectively.  An acute triangle being defined as a triangle where all the 

angles are less than 90 degrees. An obtuse triangle is defined to have one angle greater than 90 

degrees. To define the triangle the first angle, 𝜃, was taken to be the angle between the X axis and 

the first side of the triangle, with counter clockwise being a positive angle, as shown in Figure 4 

and Figure 5. The second angle 𝜙 is the angle between the first side and the second side where the 

second side connects the first side to the point x=0 and y=1. The third side is a line on the X axis 

that goes from 0 to 1.  The third angle is  𝜓 = 180𝑜 − (𝜃 + 𝜙).  

 

Figure 4: An Accute Triangle with Labled Sides and Angles 
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Figure 5: An Obtuse Triangle with Labled Sides and Angles 

 

 The first step in defining the boundary points was to start with converting the first side 

into its vertical and horizonal components. They were labeled 𝑌𝑡 and 𝑋𝑡 respectively. From the 

trigonometry of an acute triangle, the tangents of 𝜃 and 𝜙 are shown in equation (3-16) and (3-17). 

 
tan(𝜃) =

𝑌𝑡

𝑋𝑡
 (3-16) 

 

 
tan(𝜓) =

𝑌𝑡

1 − 𝑋𝑡
   (3-17) 

     The second equation was substituted for the two known angles in equation (3-18). 

 tan(𝜓) = tan(180𝑜 − 𝜃 − 𝜙) = −tan (𝜃 + 𝜙) (3-18) 

When solved for 𝑋𝑡  and 𝑌𝑡 in terms of 𝜃 and 𝜙 yields the equations (3-19) and (3-20). 

 
𝑋𝑡 =

tan(𝜃 + 𝜙)

tan(𝜃 + 𝜙) − tan(𝜃)
 (3-19) 

 𝑌𝑡 = tan(𝜃)𝑋𝑡 (3-20) 

The relative length of each side was needed to normalize distance between points.  
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|𝑆1| = √𝑋𝑡

2 + 𝑌𝑡
2 (3-21) 

 
|𝑆2| = √(𝑋𝑡 − 1)2 + 𝑌𝑡

2 (3-22) 

 |𝑆3| = 1 (3-23) 

 𝑆𝑡 = |𝑆1| + |𝑆2| + |𝑆3| (3-24) 

The number of points on each side corresponds to the ratio of the side’s length to the 

perimeter of the triangle which is 𝑆𝑡 shown in equation (3-24). Since this calculation will end in a 

decimal like the rectangle, each value was rounded up to the nearest integer.   

 
𝑆1𝑛 =

|𝑆1|

𝑆𝑡
𝑛 (3-25) 

 
𝑆2𝑛 =

|𝑆2|

𝑆𝑡
𝑛 (3-26) 

 
𝑆3𝑛 =

|𝑆3|

𝑆𝑡
𝑛 (3-27) 

Then the three sides of the triangle were constructed using x and y coordinate arrays like 

the rectangle. The first side is simply composed of 𝑋𝑡 and 𝑌𝑡. The second side is composed of 𝑌𝑡 

for the y array and the x array is a linear function of the y array shown in equation (3-28). 

 

 
𝑋2 =

𝑌2

tan (𝜃 + 𝜙)
+ 1 (3-28) 

The third side is composed of a x array from 0 to 1 and a constant y array of 0.  

This method can be used to create acute and obtuse triangles, but not right triangles, 

because the tangent of 𝜃 + 𝜙 is undefined. For a right triangle, the following the vectors were used 

to describe the three sides of the triangle. The first side had a x array from 0 to 1 with the y array 
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being the sine of the x array. The second side was an x array with a constant value of 1 and a y 

array from 1 to 0. Lastly the third side is the same array as the acute and obtuse triangles. 

Then with the three sides for any type of triangle, the sides were catenated like the rectangle 

vectors. Then random points were removed using a random number generator until n points 

remained. The triangle was then centered about the origin by subtracting the average X and average 

Y value from each point. Like the rectangle, the points were ordered based on their angle with 

respect to the origin.  

Peanut Shape 

For the shape of a peanut, polar coordinates were used. Equation (3-29) was similar to the 

equation for a Cassini oval, where 𝑏2 is the constant equal to the product of the oval’s foci to each 

point on the oval.18 The parameter 𝑏  in equation (3-29) changes the characteristic of the peanut 

shape. The greater the value of the parameter the more the peanut shape resembles an ellipse. The 

lower the constant the more pronounced the dimples of the shape appear. When comparing against 

cross sections, 𝑏  ranged from 1.4 to 2. If 𝑏 < 1.4, then the dimples will intersect and separate the 

shape into two parts which was not desired.   If 𝑏 > 2, then the peanut shape was entirely convex. 

This can be shown in Figure 6. 

 
𝑟 = √cos(2𝜃) + √cos(2𝜃) − 1 + 𝑏4 (3-29) 

Then two vectors were created to construct the shape. Starting first with polar coordinates 

and then transforming to cartesian coordinates.  An array of angles from 0 to 2𝜋 with n points was 

constructed and the r array was a function of 𝜃 and b. 

 𝜃 = [0,2𝜋, 𝑛] (3-30) 

 
𝑟 = √cos(2𝜃) + √cos(2𝜃) − 1 + 𝑏4 (3-31) 
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Due to the fact that some values of 𝑟 will be complex, 𝑋𝑝 and 𝑌𝑝 will be the real parts of 

the complex value. 

 𝑋𝑝 = ℜ(𝑟 ∗ cos(𝜃)) (3-32) 

 𝑌𝑝 = ℜ(𝑟 ∗ sin(𝜃)) (3-33) 

As with the ellipse, the function ‘curvspace’ in MATLAB, was used to order these points.  

 

Figure 6: Peanut Shapes with b = 1.3, 1.4, and 2.0 from Left to Right 

Kidney Shapes 

For a kidney shape, the below polar equation (3-35) was used. 

 𝜃 = [0, 𝜋, 𝑛] (3-34) 

 𝑟 = cos3(𝜃) + sin3(𝜃) (3-35) 

 Then these polar coordinates were converted into cartesian by the following equations. 

 𝑋𝑘 = 𝑟 ∗ cos(𝜃) (3-36) 

 𝑌𝑘 = 𝑟 ∗ sin(𝜃) (3-37) 

As with the peanut shape and the ellipse, the ‘curvspace’ function to space the points evenly 

was utilized.  Then the average X and average Y value was subtracted from all the coordinates to 

center the kidney shape about the origin.  The kidney shape is shown in Figure 7. 
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3.4.3 Comparing Defined Shapes to the Cross Sectional Area Point Data 

A MATLAB program was used to compare the defined shapes to the boundary point data 

of the cross sectional area that was measured from the ACL laser scan.  

General Comparison 

In general, the boundary point data file for a laser scanned cross section was compared to 

data point file for one of the defined shapes using a MATLAB program and the Procrustes distance 

is computed in equation (2-21), which has a value between 0 and 1 with 0 being a perfect fit.  An 

iteration is done for different aspect ratios for each shape to compute the minimum Procrustes 

Figure 7: Centered Kidney Shape. 
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distance among all the variations of that shape and the best fit shape, minimum Procrustes distance, 

is reported. 

For example, let a parameter be between 0 and 1. Then the first time through the loop the 

step of the parameter is adjusted by 0.1. Once the best value is selected like 0.3 then the range is 

narrowed to adjust the parameter between a range of 0.2 and 0.4 with a step of 0.01.  

To verify the computer analysis, the program was used to fit shapes to known boundary 

point data for exact shapes. The computer program was used to find the best fit for a given shape 

to exact data for a known shape. For a specific shape the analysis determined the shape parameters 

and Procrustes distance for the best fit shape. This evaluation yielded that for all of the defined 

shapes, the exact shape parameter was found and the Procrustes distance had a value of 0. This 

indicated that the shape fitting algorithm could determine correctly the best fit shape to known 

shapes.  

Next, the specifics will be presented defining the parameters and boundary points for each 

shape.  

Ellipse 

An ellipse has only one parameter, the eccentricity. The eccentricity of an ellipse is valued 

between 0 and 1 and is given by equation (3-38).  To fit the shapes of the cross sectional areas of 

the ACL, the eccentricity was varied between 0.1 and 0.9 but is not a linear correlation between a 

circle and a line. Therefore, it was needed to adjust our range and steps through the loops. 

 

𝑒 = √1 −
𝑏2

𝑎2
 (3-38) 

The first loop iterated through eccentricity of 0.1 and 0.9 with steps of 0.1.  Letting the best 

step represented by 𝑒1. 
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The second loop iterated through eccentricity values between 𝑒1 − 0.1 and 𝑒1 + 0.1 with 

steps 0.01. Letting the best step of this loop be represented by 𝑒2 . 

A third loop for the ellipse was created because of the non-linearity in the eccentricity. This 

loop iterated through 𝑒2 − 0.01 and 𝑒2 + 0.01 with steps 0.001. This was the final loop through 

parameters and gave the precise eccentricity of the best ellipse to fit the cross section. The 

Procrustes function also maps the ellipse onto the cross section so that the scaled semi major axis 

of the final ellipse was collected. A cross section overlapped with an ellipse is shown below in 

Figure 8. 

 

Figure 8: Best Fit Ellipse Compared to the Mid-Level of Sample 5 with Procrustes Distance Equal to 0.0019 

Rectangle 
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The rectangle has only one parameter like the ellipse. This is the ratio between the width 

the length. 𝑎 =
𝑊

𝐿
  .  Since this is a linear relation, the high precision as found in the ellipse is not 

needed. The first loop iterated through ratio values between 0.1 and 1 with steps of 0.1. As with 

the ellipse, let 𝑎1 be the best step. The second and final loop iterated through ratio values of 𝑎1 −

0.1 and 𝑎1 + 0.1 with a step size of 0.01.  

From this function the final width and length of the rectangle that best matches the cross 

section were calculated. A cross section overlapped with the best fit rectangle is shown below in 

Figure 9. 

 

Figure 9: Best Fit Rectangle Compared to Mid-Level of Sample 5 with Procrustes Distance Equal to 0.0129 

Triangle 
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The triangle has two parameters which are the two angles, 𝜃 and 𝜙, to iterate through. 

Multiple permutations of angles iterating through both angles were needed. 

The first nested loop iterated 𝜃 between 10° and 160° with steps of 10° and iterated 𝜙 

between 10° and 160° with steps of 10°. The best step for 𝜃 was represented by 𝜃1 and the best 

step for 𝜙 was represented by 𝜙1. 

The second nested loop iterated 𝜃 between  𝜃1 − 9° and 𝜃1 + 9° with steps of 1°. While 𝜙 

was iterated between 𝜙1 − 9° and 𝜙1 + 9° with a similar step of 1°. 

Taken from the triangle comparison, were the final two angles and the scale length which 

was calculated as the distance to furthest point from the origin. The cross section with the best fit 

triangle is shown below in Figure 10. 

 

Figure 10: Best Fit Triangle Compared to Mid-Level of Sample 5 with Procrustes Distance Equal to 0.0429 

Peanut Shape 
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The peanut shape has only one parameter 𝑏 which changes the characteristic dimple of the 

peanut shape. Discussed earlier, the 𝑏 that best characterizes the shape is between values 1.4 and 

2 which is the range. 

The first loop iterated through values of 𝑏 between 1.4 and 2 with steps of 0.1. The best 

step was represented by 𝑏1. 

The second and final loop iterated 𝑏 between 𝑏1 − .09 and 𝑏1 + .09 with steps of .01. The 

scale length of the peanut shape and the final value of 𝑏 were collected. A cross section with the 

best fit peanut shape is shown in Figure 11. 

 

Figure 11: Best Fit Peanut Shape Compared to Mid-Level of Smaple 5 with Procrustes Distance Equal to 0.0084 

Kidney Shape 
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The kidney shape has no parameters and therefore is one of the easiest to compare. The 

scale length information was extracted from the program once it had compared to a cross section. 

A cross section with the best-fit kidney shape is shown in Figure 12. 

 

Figure 12: Best Fit Kidney Shape Compared to Mid-Level of Sample 5 with Procrustes Distance Equal to 0.0097 

3.4.4 Analysis of the Data 

Five different views of the data were analyzed. The first was identifying the best fit shapes 

for each of the 50 cross sections.  Next, the average and standard deviation of the Procrustes 

distance were calculated for each shape for all cross-sections. Thirdly the best fit shape by level of 

cross section for all samples. The fourth comparison looks at the best fit shape for one sample 
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among all the levels. Lastly a view at the difference in distribution of best fit shapes between the 

mid-level, proximal, and distal cross section was analyzed. 
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4.0 Results 

Five different views were used to quantify the results. First was a comparison of the best 

shape among all cross sections which over 50% were an ellipse.  

The second perspective looked at the average Procrustes distance and standard deviation 

for each shape where the ellipse again outperformed the other shapes by 7x10-4 .  

The next comparison related the different levels of the ACL with level 1 corresponding to 

the cross section closest to the tibia and level 5 closest to the femur. Here is shown a small shift in 

increasing levels from mostly elliptical shapes to more complex ones like the peanut shape and the 

kidney shape. 

The fourth perspective focused on each specimen to see if the shape was specimen 

dependent. It can be seen in Table 5 that the 9th specimen was unique in having the best shape be 

a rectangle for 3 out of the 5 levels.  

Finally, the difference between the mid-level (3), and proximal and distal levels (5) and (1) 

respectively. The proximal and mid-level shared a similar distribution of best shapes, while the 

distal level differed from both. 

The best shape fit for each shape and level is shown in Table 1, which shows the overall 

results. 
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Table 1: Best Shape in Each Shape and Level 

 

4.1 Best Fit Shape for Individual Cross Sections 

Out of 10 samples with 5 cross sections each making a total of 50 induvial cross sections, 

29 best fit an ellipse, 5 best fit a rectangle, 7 best fit a triangle, 2 best fit a peanut shape and 7 best 

fit a kidney shape. This data is given in Table 2. 

Table 2: Best Fits for All Cross Sections 

Shape Ellipse Rectangle Triangle Peanut Kidney Total 

Best Fits 29 5 7 2 7 50 

Percent 58% 10% 14% 4% 14% 100% 

 

It is of interest to point out that 3 out of the 5 cross sections that best fit a rectangle were 

all from the same sample. This sample also had a cross sectional area more than twice that of any 

other sample. 

Sample Level 1 Level 2 Level 3 Level 4 Level 5 

1 Triangle Ellipse Ellipse Peanut Ellipse 

2 Triangle Ellipse Ellipse Triangle Triangle 

3 Ellipse Ellipse Ellipse Rectangle Kidney 

4 Ellipse Ellipse Kidney Ellipse Ellipse 

5 Ellipse Ellipse Ellipse Ellipse Ellipse 

6 Ellipse Ellipse Ellipse Kidney Peanut 

7 Ellipse Ellipse Ellipse Ellipse Kidney 

8 Ellipse Ellipse Kidney Kidney Kidney 

9 Rectangle Rectangle Rectangle Triangle Triangle 

10 Ellipse Ellipse Ellipse Triangle Rectangle 
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4.2 Best Fit Shape for All Cross Sections 

The average value of the Procrustes distance (PD), was taken for each shape fit for the fifty 

different cross sections and given in Table 3. 

Table 3: Average Procrustes Distance for All Shapes over All Cross Sections 

 

In which case the best average shape was the ellipse.  

4.3 Best Fit Shape by Cross Section for All Specimens 

Looking at the best shape among the level yielded Table 4. 

Table 4: Best Shape for Each Level 

Level Ellipse Rectangle Triangle Peanut Kidney 

1 7 1 2 0 0 

2 9 1 0 0 0 

3 7 1 0 0 2 

4 3 1 3 1 2 

5 3 1 2 1 3 

 

The ellipse was the better fit for Levels 1,2 and 3 for 70%,90%, and 70% of the samples. 

Levels 4 and 5 have a mix of shapes. A general trend seen was that the peanut shape and kidney 

shape rarely fit the first 3 levels but fit some samples in the 4th and 5th level. 

Shape Ellipse Rectangle Triangle Peanut Kidney 

Average PD 

10−3 

14.096 21.015 28.393 26.591 22.937 

Standard 

Deviation of 

PD 10−3 

12.41 10.446 10.787 13.807 14.453 
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4.4 Best Fit Shape for One Specimen Amongst All Levels 

When looking at each specimen as in Table 5 we see the following results. 

Table 5: Best Shapes for Each Sample 

Sample Ellipse Rectangle Triangle Peanut Kidney 

1 3 0 1 1 0 

2 2 0 3 0 0 

3 3 1 0 0 1 

4 4 0 0 0 1 

5 5 0 0 0 0 

6 3 0 0 1 1 

7 4 0 0 0 1 

8 2 0 0 0 3 

9 0 3 2 0 0 

10 3 1 1 0 0 

 

The ellipse is the best shape for the individual sample for 70% of the samples. Sample 9 

being an exception to other samples by not having any of the 5 cross sections have a best fit of an 

ellipse. 

4.5 Mid-Level Cross Section vs Distal and Proximal Cross Sections 

The proximal cross section which is closest to the femur is similar to the mid-level cross 

section. The distal cross section which is closest to the tibia has a different distribution of shapes 

than the proximal cross section and the mid-level cross section. This can be shown in Table 6. 

Table 6: Comparison of Mid-Level Cross Section vs Proximal and Distal Cross Sections 

Level Ellipse Rectangle Triangle Peanut Kidney 

1 7 1 2 0 0 

3 7 1 0 0 2 

5 3 1 2 1 3 
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5.0 Discussion 

The method of Procrustes method was compared against three other methods of shape 

analysis. Then applications of this study were discussed. Finally, the overall limitations of this 

study primarily lied in the scanning and modeling of the samples. 

5.1 Comparison 

Finite element scaling analysis (FESA) is used in three-dimensional shape analysis by 

fitting elements between landmarks. The advantage of FESA is the ability to locate morphometric 

differences in different objects. FESA does not have a good statistical measure though. It is best 

used for comparisons between large number of samples but not as precise in comparing detailed 

measurements between a few samples. FESA has been used to compare craniums of primates in 

anthropology in a variety of studies.19 FESA requires the use of landmarks and this study does not 

have defined landmarks. 

Thin plate splines or TPS is similar to the idea of mapping a terrain function to a two-

dimensional set of points to minimize the “bending energy” of the function between points.19 The 

bending energy criteria provides a non-symmetric fitting function. Therefore, the bending energy 

to morph shape A into shape B is different than the bending energy to morph shape B to shape A. 

This method is not applicable to this study since this study needs to standardize the quantity of 

shape similarity. 
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Euclidean distance matrix analysis (EDMA) uses the length between each landmark of a 

shape to compare different shapes. The advantage of EDMA is that it is able to locate the specific 

landmark locations that are most distinct between two shapes. The downside of EDMA is that the 

process of finding the featured landmarks becomes difficult with large number of landmarks.19 

EDMA has the same limitation as FESA in that it require landmarks. 

Procrustes analysis has a strength when processing a large number of boundary points. A 

set back of Procrustes analysis is that it treats every point in a shape with equal importance since 

the one-to-one comparisons are not weighted. This can lead to non-important features to outweigh 

the main features simply because there are more of them. An example of a important feature would 

be a sharp corner like that in a triangle and rectangle. If the Procrustes analysis is not used on 

equally spaced points the function will yield inconsistent results.20This was why ordering and 

spacing the points was crucial for the samples and shapes. 

While Price et al. and Harner et al. studied the area of the ACL cross section4 and ACL 

footprint7 respectively, they did not fit standard shapes to cross sections of the ACL. 

 

5.2 Application 

The results from this study can give information on constructing grafts that more closely 

resemble the shape of the native human ACL.  In the future graft sizers with various shapes could 

be constructed and methods to form non-circular bone tunnels could be devised.  

This method of analysis can also be used to study other biological tissues including 

ligaments, bones, and muscles. It can also be utilized to compare shapes of non-biological objects. 
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This method can help remove subjective bias when classifying shapes and add an objective 

measurement of best fit. 

 

5.3 Limitations 

This study was not without its limitations. First of all, the sample size and age range are 

not ideal. This is the case for most cadaver studies. 

There are some limitations to the scanning method as well. First of all, the scanner does 

poorly when detecting concavities with a large depth with respect to the surrounding surface. For 

this reason, parts of the scans that are near the femoral insertion have a tendency to not be fully 

rendered. The second limitation is that the combination of the robot’s arm and the flexibility of the 

laser scanner make some angles of scanning impossible leaving imperfections in the model that 

had to be smoothed in processing. The third limitation of the scanner is that it has trouble 

connecting sharp vertices. In some cases, the two edges that come to meet end up have an overlap. 

The overlap had to be removed. 

There are computational limits as well. Due to computing time, a precision for the 

parameter has to be made to optimize accuracy and computing time. Since the function of the 

Procrustes distance is dependent on shape parameters, the precision in first iteration may not be 

high enough to determine the global best fit shape parameters. The loop of localized iterations was 

used to reduce the overall computing time. 
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6.0 Conclusion 

From the results in the previous section, the shape of the ellipse outperformed all other 

shapes.  There will be sequential work on this topic involving kinematic testing, new shapes, and 

other anatomical structures. 

 

 

6.1 Conclusion 

The ellipse has the best fit to a majority of the cross sections. The peanut shape was shown 

to have the least number of best fits at 2 out of 50 cross sections. It is recommended that clinicians 

use an elliptical cross section as a graft in ACL reconstruction to more closely resemble the intact 

ACL 

6.2 Future Work 

Future endeavors will include scanning more specimens and under kinematic loading 

including anterior tibial translation, and interior/exterior rotation.  

Future work will entail looking at different shapes that were presented in this project like a crescent 

moon or ‘C’ chape. Using Procrustes analysis on other ligaments and biological structures can find 

the best shape fit for their respective geometries’. 
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