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Abstract 
 

Establishing the structure-property relationship for grain boundaries (GBs) is critical for 

developing next generation functional materials, but has been severely hampered due to its 

extremely large configurational space. Atomistic simulations with low computational cost and 

high predictive power are strongly desirable, but the conventional simulations using empirical 

interatomic potentials and density functional theory suffer from the lack of predictive power and 

high computational cost, respectively. A machine learning interatomic potential (MLIP) recently 

emerged but often requires an extensive size of the training dataset, making it a less feasible 

approach. Here we demonstrate that an MLIP trained with a rationally designed small training 

dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an 

affordable computational cost. In particular, we employed a rational approach based on the 

structural unit model to find a small set of GBs that can represent the entire configurational space 

and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be 

enough to represent the entire configurational space of graphene GBs. Using the atomistic Green’s 

function approach and the MLIP, we revealed that the structure-thermal resistance relation in 

graphene does not follow the common understanding that large dislocation density causes larger 

thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room 

temperature and is higher when the dislocation density is small at sub-room temperature. We 

explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural 

phonon modes. Our work shows that a machine learning technique combined with conventional 

wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport 

simulation, which has been mostly limited to single crystals, to complex yet practically important 

polycrystals with GBs. 
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Introduction 

Grain boundaries (GBs) are of interest in many applications because they are common 

defects and largely affect electrical, mechanical, and thermal properties. For two dimensional (2D) 

materials such as graphene, experimental studies showed that GBs commonly exist in graphene 

sheets prepared by exfoliation1-5, causing the fundamental physical properties of polycrystal 

samples largely deviate from those of single crystals. Therefore, engineering GBs is an effective 

way to achieving desired electronic, thermal, and mechanical properties in many applications6-14. 

The physical properties are largely dependent on the local atomic structure of GB5,6,15 and 

thus it is important to establish the structure-property relationship on how a GB structure affects 

the physical properties. However, establishing such a structure-property relationship has been 

challenging mainly for two reasons. The first is that GBs have extremely large configurational 

space. For example, three dimensional (3D) materials have 5 degrees of freedom (misorientation 

angle noted as TM hereafter, line angle, and three degrees of freedom of crystalline grain orientation 

in 3D space) for GB structures, making the configurational space extremely large. The second is 

that the experimental characterization of individual GB requires significant efforts particularly for 

preparing samples with a geometrically well-defined GB. The samples with GBs have been 

prepared by bonding two wafers with a twist angle but it often leaves void at the interface16. 

Therefore, it is challenging to experimentally study enough number of GBs to draw a statistically 

conclusive finding on the structure-property relationship. 

Atomistic simulation can be a useful tool for the study of GBs if it has high predictive 

power, but also has major challenges. The atomistic simulation for thermal transport such as 

molecular dynamics (MD)7,8,10,17-19 and the atomistic Green’s function (AGF)14,20 require an 

interatomic potential. A common approach for the interatomic potential has been empirical 

potentials that have a rigid functional form parametrized based on quantum mechanical calculation 

results and experimental data. Although the empirical potentials have been useful for promoting 

the understanding of physical phenomena from an atomistic level, they have clear limitations. For 

the physical properties that were not considered for the parametrization, empirical potentials do 

not provide an accurate prediction. Also, because of its rigid functional form, it is usually not 

flexible enough to describe a wide range of atomic configurations. On the contrary, ab initio 

calculation can be highly accurate and have a predictive power without adjustable parameters as 

demonstrated by the recent studies. For example, the high thermal conductivity of boron arsenide 



was experimentally confirmed21-23 after the prediction from ab initio simulation24. Also, the 

significant hydrodynamic phonon transport in graphitic materials was predicted using ab initio 

simulation first25,26 and then experimentally confirmed27,28. However, the ab initio simulation for 

thermal transport has been limited to single crystalline phase and point defect cases. For the 

thermal transport across GBs, the ab initio simulation is not feasible due to its high computational 

cost considering the size of GB atomic structures.   

A recently emerging method is to use machine learning schemes to predict the interatomic 

interactions based on the dataset from ab initio simulations29-40. This so-called machine learning 

interatomic potential (MLIP) was motivated by the fact that the interatomic interaction is a 

function in a high dimensional space where machine learning outperforms conventional regression 

methods. Recently developed MLIPs show that the MLIP can be as accurate as ab initio 

calculations while its computational cost is several orders-of-magnitude cheaper than the ab initio 

calculations29-31,41. In particular, the MLIP was proven for predicting the thermal transport in 

crystalline phase29,31,34 and partially disordered crystalline phase that has vacancies29. This 

confirms that the MLIP is accurate enough to correctly capture subtle anharmonicity, which is 

critical for phonon-phonon scattering and phonon-strain field scattering, and is also flexible 

enough to describe various atomic configurations including vacancies. However, extending the 

past success of MLIP to spatially extended disorder case (e.g., GBs) has some challenges. Unlike 

vacancies, the GBs have extremely large atomic configurational space. Therefore, the training 

dataset should be carefully designed such that it can represent the entire configurational space. In 

addition, the size of the training dataset should be minimal since generating the training dataset 

from ab initio calculation can be prohibitively expensive considering the typical size of GB 

structures. 

 In this work, we develop MLIPs using the Gaussian regression, called the Gaussian 

approximation potential (GAP) 41,42, for studying phonon transport across graphene GBs. We use 

a systematic framework based on the structural unit model to select the complete and orthogonal 

training dataset. With the carefully chosen a few GBs for the training dataset, we show that the 

GAP can produce identical results as the ab initio calculations for the wide range of GBs while its 

computational cost is 6 orders of magnitude cheaper than the ab initio calculations. Using the GAP 

and AGF, we then report several important features of phonon transport across GBs in graphene 

with its high predictive power. We distinguish the influence of dislocation core and extended strain 



field on phonon scattering, and reveal an intriguing scattering of flexural phonon modes by out-

of-plane buckling in graphene GBs. We also briefly evaluate an empirical potential (Tersoff) that 

has been widely used in past studies by comparing it to GAP. 

 

Results 

 

Identifying the small set of GBs representing the entire configurational space of GBs 

A challenge in developing an MLIP for GBs is how to prepare a complete set of training 

data. Considering the typical period length of GBs and the area strained by a GB, a supercell that 

contains a GB can be too large for the ab initio calculation. Thus, for the training dataset, it is 

critical to select a small set of GBs that can represent the entire configurational space of GBs. In 

early studies developing an MLIP for general purpose, a fraction of the total database was chosen 

for the training dataset without much rationale, with the remaining as the testing dataset29,41-44. 

Recently, active learning schemes have been proposed to reduce the size of training datatset45-47, 

making it possible to simulate the dynamic evolution of systems such as phase change in a large 

scale for a long time period. While the active learning scheme can be used for general cases, it 

does not allow to use of preexisting knowledge on the system of study even when it is available. 

Besides, the active learning scheme is more suitable for molecular dynamics simulation in which 

a training dataset is added based on the measured uncertainty at each time step. For phonon 

transport simulation, the lattice dynamics-based method (e.g., AGF) has several important 

advantages over molecular dynamics simulations such as modal analysis and no statistical error. 

We use the fact that most GBs have hierarchical structures with basic building blocks as 

demonstrated in the previous studies that analyzed the GB structures with the structural unit 

model48-50. A basic idea is to identify those basic building blocks or unique local atomic 

environments (LAEs) from many GBs and find a small set of GBs that contain the complete set of 

the unique LAEs51. Then, an MLIP trained with the data from the small set of GBs is expected to 

accurately capture the interatomic interactions of GBs in the entire configurational space. We 

analyzed 20 GBs covering the full span of TM which contains a total of 5544 LAEs. In this work, 

we focus on symmetric GBs with zero line angle because several parameters that are expected to 

affect phonon scattering such as GB formation energy, dislocation density, and out-of-plane 

roughness are nearly unchanged with the line angle in graphene4. The LAEs were described using 



the smooth overlap of atomic position (SOAP) descriptors52, which show the significant overlap 

among the 5544 LAEs. By comparing the similarity of the SOAP vectors from the total 5544 

LAEs51, we could identify that the total 5544 LAEs can be reduced to only 12 and 13 unique LAEs 

for the structures relaxed by Tersoff empirical potential (TSF)53,54 and density functional theory 

(DFT), respectively. The TSF and DFT produce slightly different structures after relaxation, and 

hence the number of unique LAEs also differ. The analysis shows that the total 20 GBs covering 

the full span of TM can be composed using those 12 or 13 unique LAEs, confirming the idea that 

the extremely large configurational space of GBs in fact have a very small number of basic building 

blocks. We then identified 5 representative GBs shown in Figure 1 that contain all of the 12 or 13 

unique LAEs. The selected GBs significantly differ from each other in terms of the topological 

arrangements and the density of disclinations. We used the 5 GBs to generate a training dataset for 

our GAP, train the GAP, and performed the AGF simulation with the GAP to simulate the phonon 

transport across GBs as discussed in the method sections. 

 

Validation of the simulation framework using TSF 

We use the TSF potential to validate our simulation framework from selecting 

representative GBs to the AGF calculation. Unlike the ab initio calculation, the TSF potential is 

computationally cheap enough to generate the data of interatomic force constants and transmission 

function of all the 20 GBs. Therefore, the GAP trained with the TSF data (called GAPTSF hereafter) 

can be directly validated against the results from TSF for all the 20 GBs. In Figure 2, we compare 

the GAPTSF and TSF for the GB formation energy, and spectral phonon transmission function. 

The GAPTSF and TSF agree well with each other for the prediction of the GB energy for both the 

training and testing GBs. In particular, the spectral phonon transmission functions, the property of 

interest in this work, are identical for all GBs. This confirms that the 5 GBs chosen from the LAE 

analysis are enough to represent the entire 20 GBs and thus the resulting GAP is highly accurate 

and reliable for a wide range of GBs.  

 

Results from GAP trained with datasets from DFT (GAPDFT) 

With the success of GAPTSF, we proceeded to developing GAPDFT using the training 

dataset from density functional theory (DFT) calculation. Like GAPTSF, the GAPDFT also shows 

excellent accuracy. The root-mean-square of errors (RMSE) of energy and force are 0.0011 eV 



and 0.052 eV/Å respectively for the training set, and the RMSE of energy and force are 0.0019 eV 

and 0.066 eV/Å respectively for the testing set. In Figure 3, we examine the GAPDFT compared 

to DFT for the relaxed atomistic structures. The structures relaxed by the GAPDFT are identical 

to those by DFT in particular for the out-of-plane atomic displacements. 

Figure 4 presents the GB formation energy from GAPDFT and DFT, showing good 

agreement between them for the entire range of TM. The overall trend of GB formation energy 

from the GAPDFT follows the trend predicted by the Read-Shockley model55; the GB formation 

energy is linear to TM for low TM (<15°) and high TM (>45°) while the mid-range TM show non-

monotonic behavior of GB formation energy with respect to TM.  

In Figures 4b and 4c, we separate the GB formation energy into the contribution from local 

dislocation cores (called core energy, 𝐸core) and surrounding strain field (called strain energy, 

𝐸strain)56,57 to better understand the GB formation energy and its effects on phonon transport. We 

should note that this is one of the noteworthy advantages of MLIPs. The MLIPs can predict each 

atom’s contribution to total energy while DFT cannot in principle. The core energy (𝐸core) and 

strain energy (𝐸strain) can be defined as: 

𝐸core =  
∑ 𝐸𝑖−

𝑁core
𝑁tot

𝐸bulk
𝑁core
𝑖

𝑙unit
     (1) 

𝐸strain =  
∑ 𝐸𝑖−

𝑁strain
𝑁tot

𝐸bulk
𝑁strain
𝑖

𝑙unit
     (2) 

where 𝑁core  and 𝑁strain  are the number of atoms forming dislocation cores (pentagons and 

heptagons) and hexagon lattices, respectively. The 𝑁tot is the total number of atoms. The 𝐸bulk 

and 𝑙unit are the energy per atom in the perfect crystalline phase and the length of GB. The core 

energy and strain energy from GAPDFT in Figures 4b and 4c seem physically reasonable. The 

dislocation density linearly increases with TM, have a maximum value at mid-TM, and linearly 

decreases with TM (see Figure S3). Therefore, the core energy in Figure 4b is maximum in the mid-

TM range where the dislocation density is maximum. The strain energy is minimum in the same TM 

range where the lattice can open up to insert one additional lattice plane to form an edge dislocation 

and thus the strain is minimized58.  

In Figure 5, we present the thermal resistance as a function of TM at various temperatures 

from the AGF and the Landauer formalism calculations. At high temperatures of 500 K and 1500 

K in Figures 5c and 5d, the thermal resistance has a concave shape with respect to TM, having a 



maximum resistance value at mid TM range. This behavior is similar to the case of Si and diamond 

at 1000 K that a previous study reports using molecular dynamics simulation with an empirical 

potential8. A common explanation for this behavior has been that the dislocation density is the 

maximum in the mid-TM and thus the phonon scattering by GBs is expected to be maximum in the 

mid-TM range. However, we observe different behaviors at low temperatures at 300 K and 100 K. 

At 300 K in Figure 5b, the concave shape of thermal resistance becomes negligible and the 

resistance is nearly independent of the TM. As temperature further decreases to 100 K in Figure 5a, 

the thermal resistance shows a convex shape with respect to TM, having the lowest thermal 

resistance at mid-TM. The behavior of thermal resistance at 100 K and 300 K is clearly opposite to 

the current understanding that the higher dislocation density leads to higher thermal resistance. For 

graphene GBs, the higher dislocation density does not necessarily lead to higher thermal resistance. 

In particular, at 100 K, the thermal resistance is even higher when the dislocation density is smaller.  

A possible explanation for this intriguing behavior of thermal resistance as a function of 

TM at different temperatures is that dislocation core and nearby strain field affect the phonon 

scattering by GBs to the different extents at different temperatures. At low temperatures, heat is 

mostly carried by long wavelength phonons which experience only weak scattering by dislocation 

cores since the wavelength is much longer than the characteristic size of the cores. The strain field 

can be a major contributor to the phonons scattering at low temperature due to its spatially extended 

characteristics. This is supported by the fact that the strain energy distribution in Figure 4c and the 

thermal resistance at 100 K in Figure 5a have a similar trend with respect to TM; both thermal 

resistance and strain energy are minimum in the mid-TM. At high temperatures where the short 

wavelength phonons are the major heat carriers, the wavelengths become comparable to the size 

of dislocation cores which thus cause strong scattering due to its nature of large lattice distortion 

compared to the strain field. The thermal resistance at 500 K and 1500 K in Figure 5 follow a 

similar trend as the core energy in Figure 4b.  

Observing the important role of the strain field for phonon scattering at low temperatures, 

we further investigate its detailed mechanisms. Figures 6a and 6b show the thermal conductance 

normalized by the ballistic thermal conductance of perfect graphene as a function of temperature. 

The normalization eliminates the specific heat effects from the conductance and thus shows how 

much the thermal conductance is suppressed by phonon scattering at a GB at various temperatures. 

The total 20 GBs can be clearly separated into two groups: one showing monotonously decreasing 



normalized thermal conductance as a function of temperature shown in Figure 6a and the other 

showing increasing at low temperature and then decreasing normalized thermal conductance with 

temperature shown in Figure 6b. It is interesting to see that most GBs of the first group are from 

mid-TM while the latter group is from the small and large TM. To explain the different behavior of 

the two GB groups, we consider spectral transmissivity defined as the phonon transmission 

function across a GB normalized by the ballistic phonon transmission function across single 

crystalline graphene. In Figure 6c, we present the spectral transmissivity for the two GBs with TM 

of 6.02° and 32.20° that represent each group. In the frequency range below 15 THz which 

dominates the thermal transport below room temperatures, the two GBs show a remarkable 

difference. While the spectral transmissivity is high and nearly constant for the GB with TM=32.20°, 

the transmissivity for the GB with TM=6.02° is low and increases rapidly with frequency. It is 

noteworthy that the majority of phonon states below 15 THz are from the flexural acoustic phonon 

branch due to the quadratic phonon dispersion and large density-of-states.  

The remarkably different scattering of flexural modes in the two GB groups is originated 

from the structural difference, in particular buckling induced by a GB. This is consistent with the 

previous studies59,60 that showed flexural modes are strongly scattered by buckling of GB structure. 

Figure 6d shows that the two groups of GBs are very different in terms of out-of-plane buckling. 

The common disclinations in graphene, pentagon and heptagon, create compression and dilation 

stress at the tips of disclinations, respectively. When a GB has low or high TM, the pentagon and 

heptagon disclinations are far from each other due to the low density of dislocations, and thus the 

out-of-plane buckling is induced to reduce the compressive and dilation strain. On the contrary, 

when a GB has a mid TM, the disclination cores are densely packed along the GB line with the 

pentagon and heptagon cores placed next to each other. In such a case, the compressive and dilation 

strain are canceled and the out-of-plane buckling does not occur55. Therefore, at low temperatures 

where the thermal phonon wavelength is comparable to the characteristic length of buckling, the 

significant buckling in GBs with low and high TM causes strong scattering of the flexural phonon 

modes. As a result, the GBs with low and high TM exhibit higher thermal resistance at 100 K than 

those with mid TM in Figure 5a, although they have lower dislocation density.  

 
Comparison of TSF and GAPDFT 



Lastly, it would be interesting to present a brief comparison of GAPDFT and TSF since 

the TSF has been widely used in past studies while its accuracy for phonon transport across GBs 

has not been comprehensively examined. In Figure 4, we compare GAPDFT and TSF for the GB 

formation, core, and strain energies. Figure 4a shows that the TSF overestimates the GB formation 

energy compared to the GAPDFT. This is because the core energy from TSF is larger than that 

from GAPDFT in the mid-TM range where the density of dislocation core is maximum as shown 

in Figure 4b. On the contrary, for strain energy in Figure 4c, the TSF and GAPDFT show similar 

predictions for the wide range of TM although the strain energy from TSF is slightly smaller. The 

comparison of the core and strain energy from TSF and GAPDFT indicates that TSF is reasonably 

accurate in predicting the energy of strained hexagon structure while poor in predicting the energy 

of severely distorted structures such as pentagons and heptagons. 

The thermal resistances from TSF and GAPDFT in Figure 5 are observed similar, but the 

force constants and spectral transmission functions behind the thermal resistance values are 

noticeably different for TSF and GAPDFT. For the self-interaction force constant in the crystalline 

phase, the TSF overpredicts by 35% compared to the GAPDFT (see Supplementary Information 

S5). The force constant prediction by TSF has more pronounced error in the core region of GBs. 

In Figures 7a and 7b, we present the error of TSF in predicting force constant change upon the 

introduction of GBs. We define the normalized error as |ΔΦii,TSF−ΔΦii,GAPDFT|/ΔΦii,GAPDFT where 

Φii is a self-interaction force constant and ΔΦii is the difference of a self-interatomic force constant 

from the perfect crystalline case (i.e., Φii,GB−Φii,crystal). The figure shows that the error in the core 

region is pronounced and reaches up to 50% while the error is small for the surrounding hexagons. 

This agrees with the aforementioned observation that the TSF has significant error for dislocations 

while is reasonably accurate for strained hexagons. As a result, the spectral transmissions from 

GAPDFT and TSF in Figures 7c and 7d show substantial difference above 20 THz where 

dislocation cores are important for phonon scattering. Overall, the suppression of transmission 

functions from the perfect crystalline phase is noticeably larger in TSF than in GAPDFT, also 

supported by the overprediction of core energy by TSF in Figure 4b. However, below 20 THz 

where the strain field is the dominant cause for phonon scattering, the GAPDFT and TSF show 

similar suppression of the spectral transmission function.  

 

  



Discussion 

In summary, we demonstrated that MLIPs trained with the rationally designed minimal 

dataset can predict phonon transport across GBs with ab initio predictive power and accuracy 

while the computational cost is affordable. A special attention was paid on reducing the required 

training dataset by employing the idea of structural unit model that GBs have hierarchical 

structures and have only a few basic building blocks. Our approach shows that only 5 GBs are 

enough to represent the entire configurational space and thus the small training dataset using those 

5 GBs is sufficient for an MLIP. Indeed, our test using TSF and GAPTSF shows that force 

constants and spectral transmission functions from the TSF and GAPTSF are nearly identical for 

20 GBs covering the entire configurational space.  

The GAPDFT trained with the dataset from DFT reveals several intriguing characteristics 

of phonon scattering by GBs with ab initio accuracy. Previous studies for three dimensional bulk 

materials suggested that thermal resistance increases with dislocation density, but we showed that 

graphene does not follow the same trend. The thermal resistance at room temperature does not 

depend on the dislocation density and even decreases with increasing dislocation density. We 

explained this with the two dimensional structural characteristics of graphene: flexural phonon 

modes carrying the majority of heat and out-of-plane buckling induced by GBs. The heat-carrying 

flexural phonon modes are strongly scattered by the out-of-plane buckling which is pronounced 

for the GBs with low dislocation density. Thus, dislocation density alone cannot determine the 

scattering of phonons in polycrystalline graphene but the surrounding strain field plays an 

important role.  

We also briefly examined the accuracy of TSF for thermal transport across GBs by 

comparing it to GAPDFT. The overall thermal resistance values from both TSF and GAPDFT 

reasonably agree with each other, but the force constants and spectral transmission functions show 

a noticeable difference. In particular, TSF shows inaccuracy in predicting dislocation cores 

(pentagons and heptagons) while is reasonably accurate for the strain field. As a result, the 

transmission functions from TSF agree with those from GAPDFT at low frequency where the 

strain field is important for phonon scattering, but shows noticeable error in the mid to high 

frequency range.  

Our work provides deep insights into the atomic-level mechanisms governing phonon 

transport across graphene GBs, particularly for the buckling effects on phonon transmission and 



thermal resistance. This understanding may help to explain phonon transport across GBs in other 

two-dimensional materials and also to engineer their thermal properties using GBs. The present 

method for developing MLIPs with minimal training dataset can be easily extended to three 

dimensional materials. It would help to predict and understand thermal transport in the 

polycrystalline phase of emerging materials for which a reliable interatomic potential has not been 

developed yet.  

  



Methods 

 

Finding a small set of representative GBs 

The common disclinations in graphene are pentagon and heptagon rings and each LAE 

includes a few rings of pentagon, hexagon, and heptagon. We selected 20 GBs that covers the full 

span of TM (0° to 60°) which include a variety of disclination densities and different topological 

arrangement of disclinations. The TM and coincidence site lattice (CSL) Σ values of the 20 GBs 

are listed in table S1 of the supplementary information (SI).  

 We generated 20 supercells that contain those 20 GBs. For structure relaxation using MD 

simulations, a periodic boundary condition is preferred for all directions of the supercells. However, 

a GB breaks the translational symmetry along the direction perpendicular to the GB line. We, 

therefore, make a supercell that includes two GBs of the same type with the opposite GB direction 

such that the supercell is periodic along the direction perpendicular to the GB line. To generate 

such a structure, we first constructed a supercell that contains a single GB using an algorithm based 

on the centroidal Voronoi tessellation4. Then, we appended the same supercell that is rotated by 

180q and the resulting supercell is periodic along the direction perpendicular to the GB line. We 

then relaxed the obtained supercell, particularly for buckling, by running MD simulations at 300 

K in the NVT ensemble using the LAMMPS package, with a time step of 0.5 fs and TSF potential. 

For the DFT calculations, we further optimized the structure of supercells relaxed by MD 

simulations using the energy minimization scheme in the VASP package. The DFT calculations 

were performed using ultrasoft pseudopotentials with a plane wave cutoff energy of 286 eV. The 

convergence criteria for energy and force were set to 10-8 eV and 10-6 eV/Å, respectively.  

We used the SOAP52 descriptor to find the smallest GB dataset that contains all the 

representative LAEs in the 20 GBs. The SOAP descriptor places a Gaussian function on each atom 

to construct the density of neighbor atoms 𝜌𝑖 , which is then expanded in a basis set of radial 

functions gn(r) and spherical harmonics Ylm(r) as 

𝜌𝑖(𝐫) = ∑ 𝑐𝑛𝑙𝑚
(𝑖) g𝑛(𝑟)𝑛𝑙𝑚 𝑌𝑙𝑚(𝐫), 

where 𝑐𝑛𝑙𝑚
(𝑖)  are the expansion coefficients for atom i. The descriptor is formed from these 

coefficients by computing the power spectrum elements 

𝑝𝑛𝑛′𝑙
(𝑖) = 1

√2𝑙+1
∑ 𝑐𝑛𝑙𝑚

(𝑖) (𝑐𝑛′𝑙𝑚
(𝑖) )∗𝑚 . 



The resulting descriptor has invariance under translation, rotation, and the permutation of atoms. 

For each GB, a SOAP descriptor for each atom i in the GB is calculated and represented as 

coefficients of basis functions 𝒑𝑖 = {𝑝1, 𝑝2,⋯ , 𝑝𝑁} . The length of the SOAP vector N is 

determined by a radial basis cutoff nmax and an angular basis (spherical harmonic) cutoff lmax. We 

evaluate the dissimilarity of LAEs using SOAP descriptors which is defined as51: 

𝑑𝑖𝑗 = √𝒑𝑖 ∙ 𝒑𝑖 + 𝒑𝑗 ∙ 𝒑𝑗 − 2𝒑𝑖 ∙ 𝒑𝑗 

where 𝒑𝑖 and 𝒑𝑗 are the SOAP vectors for the two atoms i and j. We introduce a parameter H, 

serving as a criteria for the unique LAE. If 𝑑𝑖𝑗 > H, the 𝒑𝑖 and 𝒑𝑗 are different from each other 

indicating that the two atoms i and j are surrounded by different LAEs. Otherwise, we determine 

𝒑𝑖 and 𝒑𝑗 represent the same LAE. In this work, we used 0.04 for the value of H. 

 

Training GAP 

We performed MD simulations of the 5 representative GBs to generate training data, which 

are the snapshots of the atomic position, force, and configurational energy. The MD simulations 

were performed at 300 K in the NVT ensemble with a time step of 0.5 fs. After initial time steps 

for thermal equilibration, we took one snapshot every 50 time steps to reduce the correlation 

between snapshots. The training datasets for both GAPTSF and GAPDFT include relaxed 

structures of the 5 selected GB structures and 50 snapshots for each GB at 300K. After obtaining 

the training dataset, we used the same hyperparameters to fit the GAP models, as shown in Table 

S2 of the Supplementary Information. 

 

AGF simulation  

For the AGF simulation, the supercell needs to be sufficiently large so that the leads do not 

have strain from a GB. The supercell we used for the AGF calculation is 10 times longer in the 

direction perpendicular to GBs than those we used for training GAP. Since the AGF simulation 

does not require translational symmetry along the heat flow direction, the supercells for the AGF 

calculation contain only one GB for each unlike those for training the GAP that have two GBs. 

See Supplementary Information S3 for the details of supercells. We used phonopy61 and 

LAMMPS62 to calculate second-order force constants. In the AGF simulation, we used decimation 

technique63,64 to approximate surface Green’s functions and we used a frequency broadening factor 



of 1 cm-1 for the continuous representation of discrete eigenfrequencies. We observed a good 

convergence of transmission function with 20 transverse wavevectors for the GB with the largest 

width (TM=50.57°). For other GBs, the number of transverse wavevectors was determined such 

that the product of the number of transverse wavevectors and the width of GB is the same for all 

GBs. 
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Figure 1. Five representative GBs from (a) TSF and (b) DFT showing distinct features such as 
density of disclinations and the their topological arrangements. The angle in each figure shows the 
misorientation angle. The green circle shows the cutoff radius for defining LAE. 
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Figure 2. Validation of GAPTSF against TSF for (a) formation energy of GBs, and (b) 
transmission function. The solid symbols in (a) represent GBs used for training the GAPTSF. The 
solid lines and dots in (b) are from GAPTSF and TSF, respectively. In (b), the two GBs with 
θM=6.0° and 48.36° and the other two GBs with θM=9.43° and 50.57° are from the training and 
testing dataset, respectively. 
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Figure 3. Validation of GAPDFT against DFT for relaxed structures projected onto a-b plane. (a) 
θM=48.36º from the training dataset and (b) θM=9.43º from the test dataset.  The color represents 
out-of-plane displacement in Å. 
  

(a) θM=48.36º

(b) θM=9.43º

GAPDFT

DFT

GAPDFT

DFT



 
 
Figure 4. Comparison of DFT, GAPDFT, and TSF for (a) GB formation energy, (b) core energy, 
and (c) strain energy. The solid symbols in (a) represent the GBs that were used for training 
GAPDFT. 
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Figure 5. Thermal resistance with varying misorientation angles at (a) 100 K, (b) 300 K, (c) 500 
K, and (d) 1500 K. 
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Figure 6. Role of out-of-plane buckling for scattering of flexural phonon modes. (a-b) normalized 
thermal conductance as a function of temperature for (a) GBs showing monotonously decreasing 
behavior and (b) GBs showing increasing behavior at low temperatures. The values in the legends 
represent misorientation angle. (c) Phonon transmissivity for two representative GBs showing a 
remarkable difference in low phonon frequency range below 15 THz. (d) Comparison of the two 
representative GBs in terms of out-of-plane buckling. The color represents out-of-plane 
displacement of atoms and the pentagon and heptagon are marked in blue and red, respectively.  
  

0 500 1000 15000.5

0.6

0.7

0.8

0.9

1.0

Temperature (K)

N
or

m
al

iz
ed

 th
er

m
al

 c
on

du
ct

an
ce

 

17.90º
21.79º
26.01º
27.80º
29.41º
32.20º
35.57º
40.35º
42.10º
46.83º

0 500 1000 1500
0.5

0.6

0.7

0.8

0.9

1.0

Temperature (K)

N
or

m
al

iz
ed

 th
er

m
al

 c
on

du
ct

an
ce

 

6.01º
7.34º
9.43º
10.99º
13.17º
16.43º
44.82º
48.36º
49.58º
50.57º

(a) (b)

0 10 20 30
0.0

0.5

1.0

Frequency (THz)

Tr
an

sm
is

si
vi

ty

32.20º

6.01º

(c)

(d) θM=6.01º

θM =32.20º Å

Å



 

 
 
Figure 7. Comparison of TSF and GAPDFT showing inaccuracy of TSF for predicting force 
constants on dislocation cores and transmission function above mid phonon frequency. (a-b) 
normalized error of self-interatomic force constants, defined as 
|∆𝜙𝑖𝑖,TSF − ∆𝜙𝑖𝑖,GAPDFT| ∆𝜙𝑖𝑖,GAPDFT⁄  where ∆𝜙𝑖𝑖  is the difference of self-interaction force 
constants in GB and perfect graphene. (c-d) suppressed transmission function from perfect 
graphene for 20 GBs. The values in the legend are misorientation angles. 
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S1. Basic features of grain boundaries in graphene 

Two dimensional materials have two degrees of freedom in the grain boundary (GB) 

configuration space shown in Figure S1. One is a misorientation angle (TM) which is the smallest 

rotation angle making one grain aligned with the other grain, which is θ1 + θ2 in Figure S1. The 

TM ranges from 0° to 60°. The other is a line angle (LA), which measures the asymmetry of two 

grains about the GB that can be calculated as θ1 − θ2. In this work, we consider symmetric GBs 

only where the two grains are symmetric about the grain boundary and the line angle is zero. A 

previous study shows that characteristics of grain boundaries such as dislocation density, grain 

boundary formation energy, and the out-of-plane buckling do not depend on the line angle1.  

 

 

Figure S1. A typical structure containing two identical GBs with periodic boundary conditions 

along both the parallel and perpendicular directions to the GB. Each rectangle shown with 

dashed line represents one unit cell.  

 

As it is shown in Figure S2, the graphene GBs show two combinations of primary 

disclinations (pentagon and heptagon rings), one is the GBs with the defects that are straight to the 

GB direction and has the Burger’s vector of (1,0), and the second is the GBs with the defects that 

are not straight to the GB direction with the Burgers’ vector of (1,0)-(0,1). 



 
Figure S2. Two types of dislocation in graphene with the Burger’s vector of (a) (1,0) and (b) 

(1,0)-(0,1) 

 

It is useful to divide the entire range of TM into three groups to characterize the GBs: the 

low TM (<15°), mid TM (15°<MA<45°), and high TM (>45°). Low and high TM structures consist 

of (1,0) and (1,0)-(0,1) types, respectively, and have relatively low dislocation densities. However, 

GBs with mid TM have high dislocation density and the dominant type of defects changes from 

(1,0) to (1,0)-(0,1) as TM increases. Further detailed characteristics of GB structure with varying 

MAs was comprehensively discussed in previous studies1. 

In addition to disorder in the in-plane surface of graphene GBs, the out-of-plane buckling 

is common for most GB structures1-3 which is a unique characteristic of 2D materials that 3D 

materials do not possess. The out-of-plane buckling reduces the local strain and stress and thus the 

GB structures with the lowest formation energy have the buckling.  

 

  

GB structures

(a) (b)



S2. Details of the chosen 20 GBs 

 In this study, we chose 20 GBs that covers the entire range of TM. The following Table S1 

summarize the characteristics including TM and the coincidence site lattice number (CSL, ∑). Note 

that the structures relaxed by the Tersoff (TSF) potential and density functional theory (DFT) 

calculation are slightly different and thus so are their GB period and disclination density. 

 
Table S1. List of selected GBs with their structural properties 

 

index θM (deg.) 
CSL 

∑ 

Structures relaxed by TSF Structures relaxed by DFT 

GB period (Å) 
Disclination 

density (Å-1) 
GB period (Å) 

Disclination 

density (Å-1) 

1 6.01 91 23.7608 0.0842 23.3084 0.0858 

2 7.34 61 19.4537 0.1028 19.0835 0.1048 

3 9.43 37 15.1509 0.132 14.8627 0.1346 

4 10.99 109 26.0123 0.1537 25.5172 0.1568 

5 13.17 19 10.8593 0.1842 10.6527 0.1877 

6 16.43 49 17.4449 0.2293 17.1116 0.2337 

7 17.9 93 24.0326 0.2497 23.5727 0.2545 

8 21.79 7 6.6012 0.3029 6.4725 0.309 

9 26.01 79 22.1546 0.3611 21.7306 0.3681 

10 27.8 39 15.5647 0.3855 15.2662 0.393 

11 29.41 97 24.5397 0.4075 24.0737 0.4154 

12 32.2 13 8.9919 0.4448 8.8178 0.4536 

13 35.57 67 20.3977 0.3922 20.0072 0.3998 

14 40.35 103 25.2933 0.3163 24.8106 0.3224 

15 42.1 31 13.8792 0.2882 13.6149 0.2938 

16 44.82 43 16.3393 0.2448 16.0284 0.2496 

17 46.83 57 18.8093 0.2127 18.4503 0.2168 

18 48.36 73 21.2859 0.1879 20.8804 0.1916 

19 49.58 91 23.7631 0.1683 23.3122 0.1716 

20 50.57 111 26.2369 0.1524 25.7374 0.1554 



 

 Figure S3 shows the density of disclination with respect to the TM. The disclination 

density has a linear relation with TM, having the maximum at the TM of around 35°. 

 

 
Figure S3. Density of disclination for selected 20 GBs relaxed with TSF and GAPDFT. 
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S3. Generation of the atomic structures for training Gaussian approximation potential 

(GAP) and the atomistic Green’s function (AGF) calculation. 

 

We generated supercells, each of which contain one GB from the 20 GB we chose, for 

GAP training and AGF calculation. The supercell for the AGF calculation is much larger than that 

for the GAP training. For the AGF calculation, the lead or contact serving as a heat reservoir needs 

to be crystalline graphene without strain induced by a GB. Thus, the supercells should be large 

enough so that a GB is placed far from the leads eliminating the strain in the lead. In our case, each 

supercell for the GAP training contain less than 500 atoms whereas the supercell for the AGF 

calculation is roughly 10 times larger than the supercell for the GAP training. The following Table 

S2 summarizes the size of supercells for the GAP training and AGF calculation. 

For each supercell, we generated an initial atomistic structure using the code from previous 

work1 based on the selected TM and the length of structure for one GB and then we inverted and 

merged the second inversely located GB to obtain the structure with two GBs and periodic 

boundary condition along the GB direction. Then, we relaxed the supercell using the TSF potential 

and DFT simulation with energy and force tolerances of 1e-6 eV and 1e-7 eV/Å respectively. The 

atomistic structures relaxed by the TSF and DFT are similar to each other, but slightly different as 

seen in Table S1. For the supercells that were used to generate training dataset of GAP, we 

amended the same supercell that is rotated by 180q to the original supercell so that it satisfies the 

translational invariance along the perpendicular direction to the GB. An example is shown in 

Figure S1. 

 

Table S2. List of supercells for GAP training and AGF calculation. The length of supercell is the 

dimension along the heat flow direction, i.e., perpendicular to a GB. The length is from the 

structures relaxed by DFT 

 

index θM (deg.) 
Supercells for GAP Supercells for AGF 

# of atoms  Length  (Å) # of atoms  Length  (Å) 

1 6.01 356 38.109 3676 407.494 

2 7.34 276 35.996 2608 353.45 

3 9.43 224 36.807 1500 261.129 



4 10.99 368 35.342 4648 471.233 

5 13.17 160 36.547 776 188.719 

6 16.43 260 39.675 1996 301.466 

7 17.9 336 35.584 1316 144.858 

8 21.79 96 38.463 680 136.343 

9 26.01 328 38.142 3232 385.202 

10 27.8 216 35.997 554 94.007 

11 29.41 344 38.23 4200 451.203 

12 32.2 128 37.657 1320 388.38 

13 35.57 300 37.851 2764 357.0618 

14 40.35 372 36.804 4232 441.137 

15 42.1 196 36.158 2616 497.056 

16 44.82 240 37.323 3500 564.489 

17 46.83 276 37.337 2684 376.326 

18 48.36 324 37.8 3400 421.036 

19 49.58 336 35.589 3884 430.688 

20 50.57 408 39.606 1440 144.769 

 

 

 

  



S4. Details of training GAP 

 In the following table, we present the hyperparameters used for training GAPTSF and 

GAPDFT.  
 

Table S3. List of hyperparameters for GAPTSF and GAPDFT 

Hyperparameter Note 2-body 3-body SOAP 

rcut (Å) Cutoff radius of the descriptor 4.0 4.0 4.0 

d (Å) Transition width over which the 
magnitude of SOAP descriptor 

monotonically decrease to 0 

- - 1.0 

G (eV) Weight of different descriptors 10.0 3.7 0.07 

Nt Number of representative atomic 
environments selected using the 

corresponding sparse method 

50 200 650 

Sparse method  Uniform Uniform CUR 

nmax Radial basis cutoff - - 12 

lmax Angular basis cutoff - - 12 

Venergy (eV/atom) Expected error for atomic energy 0.001 

Vforce (eV/Å) Expected error for force 0.0005 

  



S5. Self-interaction force constants from TSF and GAPDFT 

 

 Here we present the magnitude of the self-interaction force constants for the comparison 

of TSF and GAPDFT potentials. The results in Figure S4 show that the difference between TSF 

and GAPDFT as large as 35 %. We observed that the differences between the interacting force 

constants are consistent between GAPDFT and TSF for all the GBs including training and testing 

GB structures. 

 
Figure S4. Comparison of magnitudes of self-interaction force constants from GAPDFT and 

TSF for a training structure with TM=48.36° and a test structure with TM=9.43° 
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