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Abstract 

Multivariate Functional Brain Imaging Signatures of 

Cardiovascular Reactivity During Psychological Stress 

Thomas Edward Kraynak, PhD 

 

University of Pittsburgh, 2021 

 

 

 

 

Cardiovascular reactions to psychological stressors are associated with cardiovascular 

disease (CVD) risk. Human brain imaging studies have identified brain regions and systems 

implicated in generating and regulating stressor-evoked cardiovascular reactivity, yet the 

reliability and generalizability of these findings remain unclear. Predictive modeling using 

multivariate and machine learning approaches has the promise of developing signatures of brain 

activity that can reliably predict outcomes, yet few studies have applied these approaches toward 

identifying signatures of stressor-evoked cardiovascular reactivity. Thus, the aims of the present 

study were (1) to develop novel multivariate signatures of stressor-evoked brain activity that could 

reliably predict concurrent cardiovascular physiology during stress within individuals, and (2) to 

evaluate whether previously reported brain signatures of cardiovascular reactivity generalize to 

new individuals, stressor contexts, and measures of cardiovascular physiology. Participants were 

242 midlife adults (118 men and 124 women; age 30 to 51 years; 71% white) without psychiatric, 

immune, or cardiovascular diagnoses. Participants completed two validated cognitive stressor 

tasks during functional magnetic resonance imaging (fMRI) and concurrent monitoring of systolic 

blood pressure (SBP) and heart rate (HR). Multivariate machine learning models combining 

dimensionality reduction, regularized regression, and cross-validation were used to predict within-

participant changes in SBP and HR during stress. Separately, two previously published 

multivariate signatures were applied to maps of stressor-evoked brain activity to predict SBP and 
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HR. Contrary to hypotheses and prior reports, multivariate patterns of stressor-evoked brain 

activity did not reliably predict changes in SBP and HR during stress. Notwithstanding their 

unreliable prediction of SBP and HR, brain activity patterns relating to SBP and HR were 

comprised of brain regions implicated in psychological stress and physiological control processes. 

In addition, two previously published multivariate brain signatures of stressor-evoked 

cardiovascular reactivity were found to modestly predict changes in SBP and HR during stress. 

These findings extend our understanding of the reliability and stability of fMRI-based signatures 

reflecting brain processes that may link stressful experiences to CVD risk.  
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1.0 Introduction 

1.1 Stressor-evoked cardiovascular reactivity: behavioral and health significance 

Stress is ubiquitous in life. A stressor can be defined as an environmental, situational, or 

life event stimulus that may be appraised by an individual as taxing or exceeding their ability to 

cope with or respond adequately to it (Kivimäki & Kawachi, 2015; Lee et al., 2003). Stressors may 

take the form of external stimuli perceived by the individual (e.g., an argument or traffic jam) or 

internally generated thoughts and cognitions (e.g., recalling a past traumatic experience, 

anticipating a future event). Whether a stimulus is categorized by an individual as a stressor 

depends on external factors such as the intensity, duration, predictability, and controllability of the 

stressor, as well as internal factors such as an individual’s history, goals, and expectations (Cohen 

et al., 2016). Psychological perspectives on acute stress posit that encounters with stressors engage 

primary appraisals, in which an individual interprets the stressor in order to gauge the level of 

threat, personal relevance, and meaning, as well as secondary appraisals, in which an individual 

estimates whether they have sufficient resources to adequately engage or cope with the stressor 

(Folkman, Lazarus, Gruen, et al., 1986). Hence, according to the above perspectives, stressors or 

demands that are appraised as exceeding the ability to cope will result in subjective experiences of 

“stress” (Folkman, Lazarus, Dunkel-Schetter, et al., 1986). In conclusion, both primary and 

secondary psychological appraisals are implicated in translating stressor exposure to the subjective 

experience of psychological stress. 

In addition to evoking psychological experiences of stress, acute stressful experiences elicit 

changes in cardiovascular, neuroendocrine, and immune physiology. From a biological 
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perspective, these physiological changes may be adaptive insofar as they prepare an organism to 

behaviorally respond to the experience (Weiner, 1992). More specifically and in the context of 

cardiovascular physiology, changes evoked by psychological threats are functionally implicated 

in the recruitment and redirection of metabolic support towards peripheral muscles and tissues that 

are needed in order to engage with (or flee from) threats in the environment (Carroll et al., 2009; 

Obrist, 1981). Historically, these cardiovascular changes were once described as “defense 

reactions” (Hess & Brügger, 1943) and are henceforth termed stressor-evoked cardiovascular 

reactivity. 

Two well-studied metrics of stressor-evoked cardiovascular reactivity include heart rate 

(HR) and blood pressure (BP). Both HR and BP, as well as other endpoints of cardiovascular 

physiology, are determined by complex autonomic, humoral, endocrine, and immune processes 

(Gordan et al., 2015; Hall, 2015). Heart rate refers to the number of heart beats measured within a 

time period (usually expressed in beats per minute) and is reciprocal to the heart period, which 

refers to the length of time in between heart beats (usually expressed in milliseconds). In contrast, 

BP refers to the pressure of circulating blood against arterial walls in the vasculature, and therefore 

is determined by both cardiac (e.g., HR) as well as vascular (e.g., peripheral resistance) factors. A 

chief mechanism governing top-down control of the heart and vasculature is via the two arms of 

the autonomic nervous system (ANS); namely the sympathetic nervous system (SNS) and 

parasympathetic nervous system (PNS). To elaborate, HR is chiefly determined by intrinsic 

“pacemaker” cells in the sinoatrial (SA) node of the heart, which spontaneously depolarize in order 

to initiate contraction. These pacemaker cells and their firing patterns are primarily under tonic 

inhibitory control by PNS activity via vagal cholinergic pathways. In addition, SNS-mediated beta-

adrenergic input both lowers the threshold for excitation of SA node cells and increases myocardial 
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contractility, resulting in increased cardiac output. Finally, SNS outflow activates alpha-adrenergic 

receptors in peripheral vessels, which increases vascular resistance and therefore increases BP. 

Accordingly, as BP is substantially influenced by HR, the two metrics tend to be moderately 

correlated across individuals and behavioral contexts (Hall, 2015).  

During acute stressful experiences, both BP and HR tend to rise (McEwen, 1998), and this 

change is primarily mediated via increased and decreased activity in the sympathetic and 

parasympathetic branches of the autonomic nervous system (ANS), respectively (Grossman et al., 

1996; Mills & Dimsdale, 1991). However, while stressors tend to increase SNS and decrease PNS 

activity, the patterning of these branches are not universally reciprocal in nature, and can 

sometimes act in independent or coactive patterns (Allen & Crowell, 1989; Berntson et al., 1994; 

Brindle et al., 2014). Specifically, while BP and HR each comprise multiply determined end points 

of physiology, their stressor-evoked changes are generally thought to be mediated via some 

combination of beta-adrenergic sympathetic activation as well as vagal parasympathetic 

withdrawal, both of which tends to vary across individuals and across behavioral states (Berntson 

& Cacioppo, 2007). Hence, HR and BP are not “biomarkers” or indicators or either SNS or PNS 

activity per se, but rather reflect a complex combination of the latter two ANS branches, which 

therefore suggests they may be governed by separable neural systems higher in the brain. 

Stressor-evoked cardiovascular reactivity has garnered the interest of health psychology 

and behavioral medicine researchers due to its speculated link to health outcomes. To elaborate, 

individuals vary appreciably in the magnitude and patterning of their cardiovascular reactions to 

stress, with some individuals exhibiting large-scale, or exaggerated reactivity (Allen et al., 1991). 

Moreover, these individual differences appear to be reliable and stable across individuals and over 

time  (Kamarck et al., 1992, 1994; Kasprowicz et al., 1990). Previously, these observations led to 
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the hypothesis that repeatedly exaggerated expression of stressor-evoked cardiovascular reactivity 

could confer risk for CVD (Krantz & Manuck, 1984). This hypothesis has been supported by 

experimental animal models of social primates, showing that cardiovascular reactivity to stress 

associates with the severity of atherosclerotic lesions (Manuck et al., 1983). Exaggerated 

cardiovascular reactivity also predicts CVD risk across several human studies (Gianaros et al., 

2002; Jennings et al., 2004; Kamarck et al., 1997). Stressor-evoked cardiovascular reactivity may 

interact with stressful life experiences to predict CVD risk (Kamarck et al., 2018) which is 

consistent with a diathesis-stress model of health and disease, in which a stable trait (i.e., diathesis; 

here, a phenotype for reactivity) interacts with external stressors to confer the greatest risk. 

Mechanistically, large-magnitude cardiovascular reactions to stressors may relate to elevated CVD 

risk by promoting changes in vascular tissue that promote atherosclerosis, or the chronic 

thickening of the arterial wall (Treiber et al., 2003). These changes are mediated via several 

possible mechanisms, including increased patterns of turbulent blood flow within the vasculature, 

increased shear stress on the arterial walls, as well as disruptions to metabolism in epithelial cells 

(Bairey Merz et al., 2002).  Systematic reviews and meta-analyses examining prospective 

associations between metrics of cardiovascular reactivity and physical health outcomes showed 

the strongest and most consistent effects for systolic blood pressure (SBP) reactivity, hence 

emphasizing its potential role for health (Chida & Steptoe, 2010; Turner et al., 2020). In contrast, 

HR reactivity does not tend to show consistent effects with future cardiovascular health across 

studies (Chida & Steptoe, 2010).  

To conclude, individual differences in stressor-evoked cardiovascular reactivity may be 

linked to physical health outcomes; however, there is still an incomplete understanding of the 

mechanisms that may contribute this link. To this end, the brain is thought to comprise the key 
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pathway linking acute psychological stress with downstream cardiovascular reactivity and 

potential cardiovascular disease risk (Gianaros & Jennings, 2018; Gianaros & Wager, 2015; 

Kraynak et al., 2018). 

Brain imaging studies of stressor-evoked cardiovascular reactivity.  To examine the 

above knowledge gap, human brain imaging and psychophysiology research has examined 

the brain and physiological mechanisms thought to be implicated in generating and 

regulating stressor-evoked cardiovascular reactivity. To this end, studies administer standardized 

laboratory batteries that aim to recreate a conceptually valid experience of 

psychological stress in the brain imaging environment. To do so requires developing a protocol 

that incorporates enough of what are considered to be the key ingredients of a stressful 

experience, each involving a combination of processing conflicting or cognitively 

demanding stimuli, performing under time pressure and without certainty of success, and 

receiving negative feedback from the environment (Debski et al., 1991; Steptoe & Vögele, 

1991). Examples of these tasks include completing difficult mental arithmetic tasks under 

time pressure or preparing to give a difficult speech before an audience. In these studies, 

participants perform acute stress tasks during brain imaging and concurrent peripheral 

cardiovascular recording. Brain imaging methods employed in these studies include positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI).  

Early brain imaging studies on the neural correlates of stressor-evoked cardiovascular 

reactivity focused on correlations on a within-participant basis; namely, these studies examined 

the correspondence between changes in cardiovascular physiology across a session within each 

participant separately, and subsequently tested whether there were stable associations within the 

brain across participants. For example, in one of the first published brain imaging studies on this 
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topic, 6 participants underwent PET scanning while performing stressful mental arithmetic and 

handgrip tasks (Critchley et al., 2000). For each participant, a general linear model was constructed 

to test for the association between change in mean arterial pressure (MAP) and the PET response 

for individual 60-second periods of stressor tasks. The estimates from these general linear models 

were then combined at the group level to identify where these associations were consistent across 

individuals. Results from this study indicated that mean arterial pressure was correlated with PET 

response within the dorsal anterior cingulate cortex (dACC), cerebellum, and brainstem. This same 

within-participant approach has been applied in several other studies that used cognitive (Gianaros 

et al., 2004, 2005) and socioevaluative stress tasks (Fechir et al., 2010; Wager, van Ast, et al., 

2009; Wager, Waugh, et al., 2009).  

In contrast to the above studies testing at the within-participant level, several studies have 

examined neural correlates of stressor-evoked cardiovascular reactivity at the between-participant 

level. By taking an individual differences approach, these latter studies have identified regions 

where individual differences in stressor-evoked cardiovascular reactivity associate with stressor-

evoked neural activity. Specifically, these brain imaging studies adopt a similar approach as 

standard laboratory psychophysiology studies, by calculating for each participant a change score 

in cardiovascular physiology from baseline or a non-stress condition and calculating a 

corresponding map of BOLD response from the corresponding brain imaging data. For example, 

individual differences in SBP responses to a cognitive stressor paradigm were associated with 

corresponding individual differences in task-evoked activity in the perigenual ACC (pgACC) and 

amygdala (Gianaros et al., 2008). 

While between-participant and within-participant approaches as described above may 

appear similar, it can be argued that they may provide complementary information about stress, 
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the brain, and cardiovascular control. More specifically, as discussed above, individual differences 

in stressor-evoked cardiovascular reactivity are more likely to reveal neural correlates that reflect 

stable and trait-like phenotypes, which may emerge from a combination of genetic, developmental, 

psychosocial, and other influences (Wu et al., 2010). As such, studies of individual differences in 

reactivity sometimes consider these competing factors by statistically covarying for them. In 

contrast, within-participant approaches might reveal neural correlates that more closely reflect 

processes related to peripheral physiological control that are generalizable across individuals. Put 

differently, between-participant approaches can plausibly inform individual phenotypes and risk 

factors, whereas within-participant approaches can plausibly inform psychological and physiology 

processes relevant to stress and health.  

By examining associations between peripheral cardiovascular physiology and brain 

imaging metrics of neuronal activity, these studies have identified some of the brain systems that 

are implicated in stressor-evoked cardiovascular reactivity. To summarize, these studies point to a 

collection of brain regions and systems that include the medial prefrontal cortex (mPFC), anterior 

cingulate cortex (ACC), insula, amygdala, thalamus, and brainstem cell groups (Gianaros & 

Wager, 2015). Below I briefly review some of the findings on these brain systems and their 

speculated role in stressor-evoked cardiovascular reactivity. 

1.2 Neurobiology of stressor-evoked cardiovascular reactivity 

mPFC and ACC. The medial surface of the prefrontal lobe, comprising the medial 

prefrontal cortex (mPFC) and anterior cingulate cortex (ACC), is broadly linked to various 

cognitive, affective, and physiological processes relevant to stress and cardiovascular control. In 
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particular, the ventromedial subdivision of the PFC (vmPFC) is implicated in ascribing personal 

relevance to experiences and events, and generating so-called “affective meaning” (Roy et al., 

2012), which is important for constructing psychological stress responses (Cohen et al., 2016). 

Moreover, the vmPFC is implicated in regulating PNS contributions to HR and BP (Thayer et al., 

2012; Thayer & Lane, 2009). In contrast, more dorsal regions of the mPFC and ACC are implicated 

in conflict monitoring, motivation, and error detection, which comprise separable components of 

stressor processing (Amiez & Procyk, 2019; Botvinick et al., 2004). Hence, different subdivisions 

of the mPFC and ACC may contribute to separable psychological components of stressful 

experiences. Similarly, with respect to cardiovascular physiology, mPFC and ACC control of the 

SNS and PNS arms of the ANS may be somatotopically organized, with more dorsal subdivisions 

of the mPFC and ACC more closely linked to pro-sympathetic and anti-parasympathetic control, 

and more ventral subdivisions linked to anti-sympathetic and pro-parasympathetic control 

(Critchley, 2004; Gianaros & Wager, 2015; Kraynak et al., in prep).  

Insula. Like the mPFC and ACC, the insula is implicated in both psychological and 

physiological processes of stress and cardiovascular control. The insula processes viscerosensory 

information from internal organs and tissues - a process termed interoception (Craig, 2009; Khalsa 

et al., 2018) – which is important for maintaining homeostasis across behavioral states and 

contexts. Moreover, insula-mediated interoceptive processes are thought to play a role in how 

bodily states contribute to the construction of affective feelings, which likely contribute to 

subjective experiences of psychological stress (Damasio & Carvalho, 2013). Moreover, the insula 

regulates cardiac function and is implicated in stress-related cardiac disorder and dysfunction, in 

particular stress-related cardiac arrhythmias (S. Oppenheimer & Cechetto, 2016; S. M. 

Oppenheimer et al., 1991).  
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Amygdala. The amygdala has long been implicated in processing salient stimuli, 

particularly those that involve threat and unpredictability (Davis & Whalen, 2001; LeDoux, 2003; 

Lindquist et al., 2016). Moreover, the amygdala is implicated in stress-related HR and BP 

responses to emotional contexts (Goldstein et al., 1996), although the consistency of the size and 

direction of these effects are unresolved (Gianaros et al., 2008, 2020). 

As a part of my comprehensive exam project, I reviewed and meta-analytically synthesized 

the above literature on the neural correlates of stressor-evoked cardiovascular reactivity (Kraynak 

et al., in prep). This meta-analysis revealed that across 11 studies of stressor-evoked cardiovascular 

reactivity, there were consistent effects in clusters in the medial prefrontal cortex (PFC), including 

the ventromedial PFC and dACC, as well as the insula, thalamus, amygdala, and putamen, 

consistent with prior meta-analyses (Beissner et al., 2013; Gianaros & Sheu, 2009; Ruiz Vargas et 

al., 2016). Importantly, ancillary analyses from this meta-analysis suggested that studies utilizing 

within-participant designs reported more consistent effects than studies utilizing between-subject 

designs in the ACC, vmPFC, insula, amygdala, and thalamus (Kraynak et al., in prep). To 

conclude, there is accumulating evidence that brain activity in these brain regions is associated 

with stressor-evoked cardiovascular reactivity, in line with the view that these regions may be 

engaged by psychological stressors and may regulate internal physiology.  

1.3 Multivariate brain imaging signatures of stress and cardiovascular reactivity 

Importantly, most the above imaging studies of stressor-evoked cardiovascular reactivity 

have several limitations and shortcomings, many of which can be attributable to how these studies 

build statistical models with their brain imaging and psychophysiology data. More concretely, 
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most of the above studies use mass univariate statistical testing, which entails constructing and 

estimating separate general linear models (GLMs) for every voxel in the brain, resulting in several 

hundred thousand statistical models which are individually constructed and estimated. 

Subsequently, thresholds are applied to these thousands of voxels to identify the voxels or groups 

of voxels (i.e., clusters) that exhibit the most significant effects (Benjamini & Hochberg, 1995).  

Indeed, the above mass-univariate approach produces at least 4 potential limitations. First, 

because these mass univariate approaches employ multiple statistical tests across thousands of 

voxels in the brain, extreme associations may be highlighted, resulting in an elevated false positive 

rate (Eklund et al., 2016; Kriegeskorte et al., 2009; Vul et al., 2009). Moreover, due to multiple 

testing, only highly significant associations are revealed, which in turn may produce statistical 

false negatives when testing on small samples or data with few observations (Marek et al., 2020). 

Second, from a psychometric perspective, the test reliability of BOLD responses in individual 

voxels tends to be poor, which severely limits its ability to identify correlates of behavior and 

physiology that are reliable across observations and contexts (Elliott et al., 2020). Third, the 

regression models employed in many of these mass univariate approaches treats the behavioral 

metric of interest as the predictor (X) and BOLD response in the brain as the outcome (Y), whereas 

in the context of stressor-evoked cardiovascular reactivity, this conceptual equation may be 

reversed. Fourth, the statistical models produced by this approach are purely descriptive in nature, 

and therefore are not used to generalize to predict outcomes (e.g., reactivity) in independent 

observations and individuals. 

The above issues were particularly apparent with respect to literature bearing on the neural 

correlates of stressor-evoked cardiovascular reactivity, as revealed by meta-analytic findings from 

my comprehensive exam project. Specifically, whereas the studies of stressor-evoked 
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cardiovascular reactivity reported effects in the brain that appeared to be “consistent” across 

studies when applying cluster-based statistical thresholding, the average proportion of studies 

reporting “consistent” effects in these regions was 0.52 (max 0.69). This suggests that overall 

reproducibility of these findings in the brain is only moderate in  magnitude (Kraynak et al., in 

prep). Thus, in order to identify reliable, reproducible, and generalizable neural correlates of 

stressor-evoked cardiovascular reactivity, more sophisticated approaches may be needed. 

Accordingly, approaches combining dimensionality reduction, machine learning, and 

cross-validation techniques may address each of the above limitations (Coutanche & Hallion, 

2019; Haxby et al., 2001; Woo et al., 2017). First, given the large number of variables (features) 

in the BOLD response, such that the number of predictive features (i.e., voxels of BOLD response) 

tends to vastly exceed the number of observations (i.e., trials, conditions, or participants), 

dimensionality reduction approaches such as principal component analysis can simplify the 

representation of the BOLD response into higher-order components, similar to how factor analyses 

identify higher-order latent factors of complex sets of features. Cross-validation is used to train 

models in one dataset and apply that model towards unseen observations and individuals. In the 

context of multivariate brain imaging models, cross-validation is used both to evaluate the stability 

of the model as well as its generalizability to novel contexts and participant samples.  

The above approaches are thus focused on understanding how patterns of brain activity 

reliably predict behavior, as opposed to the traditional mass-univariate “brain mapping” 

approaches that examine associations without respect to overall patterns. Importantly, as 

mentioned above, machine-learning approaches produce testable models, or signatures, of brain 

activity that can then be applied to novel samples, behavioral contexts, and psychological 

processes. This in turn produces a powerful framework for testing for generalizable signatures of 
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stress and stressor-evoked cardiovascular reactivity. One salient example of this line of inquiry has 

been progressing in research on the neural correlates of pain processing. Here, a multivariate 

signature of thermal pain processing, termed the Neurologic Pain Signature (Wager et al., 2013), 

has been applied to test its sensitivity, specificity, and generalizability toward characterizing pain 

processing across various contexts related to thermal pain, including observed pain (Krishnan et 

al., 2016),  social pain (Woo et al., 2014), and cognitive regulation of pain (Woo et al., 2015), 

among others. 

In the context of stressor-evoked cardiovascular reactivity, this line of inquiry can be 

powerfully applied to test questions such as: Are the multivariate brain signatures of one metric of 

cardiovascular physiology (e.g., HR reactivity) specific to only that metric, or are they 

generalizable to another metric (e.g., SBP reactivity)? Do multivariate signatures of reactivity to 

one type of psychological stress task (e.g., speech preparation) generalize to reactivity to another 

type (e.g., difficult cognitive challenges)? Are multivariate signatures of reactivity in a healthy 

college sample generalizable to midlife adults with or without subclinical cardiovascular disease 

or other comorbid conditions? These questions may be key to developing a cumulative and 

generative science on the neural correlates of stressor-evoked cardiovascular reactivity, yet more 

studies are needed in order to contribute towards developing a repertoire of brain signatures across 

various stress tasks, samples, and outcomes. 

Indeed, to my knowledge, only two studies have used the above machine learning and 

cross-validation techniques to identify multivariate signatures of brain activity that predict 

cardiovascular reactivity to psychological stress. As detailed below, these two studies share several 

commonalities in their approaches and findings, yet nonetheless have several important 
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differences. As the proposed dissertation project aims to fill critical gaps in knowledge revealed 

by these two studies, both studies are detailed below.  

The first of these two studies examined multivariate predictors of HR reactivity on a within-

participant basis to a socioevaluative stress task (Eisenbarth et al., 2016). In this study, 18 college-

aged healthy participants underwent a so-called “speech preparation” socioevaluative stress 

paradigm, in which they were instructed to prepare themselves to give a speech before a panel of 

professors and experts. The speech preparation task involved 2 separate 2-minute periods of speech 

preparation. Participants did not end up being asked to administer the speech; however, the speech 

preparation period reliably altered heart rate (HR) and skin conductance level (SCL), another 

measure of ANS activity. This study successfully developed two whole-brain multivariate 

signatures that predicted within-participant changes in HR and SCL. The average correlation 

between predicted and observed HR across participants was r = .54, whereas the average 

correlation between predicted and observed SCR was r = .58. Significant weights for the HR 

signature were observed in the dACC, vmPFC, hippocampus, and temporal pole. The multivariate 

signatures predicting HR and SCL were only moderately correlated with each other, suggesting 

that different brain systems may be involved in regulating pathways of autonomic outflow to affect 

various end organ systems. 

The second study examined multivariate predictors of SBP reactivity on a between-

participant basis to two cognitive stress tasks (Gianaros et al., 2017). The cognitive stressor 

protocol comprised a color-word Stroop task and a Multisource Interference Task (MSIT), 

respectively (Bush & Shin, 2006). In contrast to the study by Eisenbarth et al., this study tested a 

community sample of midlife adults. This study successfully developed a whole-brain multivariate 

signature that predicted individual differences in SBP reactivity. Specifically, the correlation 
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between predicted and observed SBP reactivity was r = .32 in a hold-out test sample. Significant 

weights for the SBP signature were observed in the dACC, vmPFC, insula, amygdala, basal 

ganglia, thalamus, and cerebellum, among others. 

1.4 Interim summary and open questions 

Taken together, the above brain imaging literature on the neural correlates of stressor-

evoked cardiovascular reactivity stand to greatly improve our understanding of the brain bases of 

stress-related mechanisms underlying cardiovascular disease risk. However, the modest 

consistency of these findings raises important concerns about their reliability and replicability; 

hence, it is proposed to redress these concerns by implementing multivariate approaches, which 

incorporate dimensionality reduction, machine learning, and cross-validation, to identify 

signatures of brain activity and connectivity can predict changes in cardiovascular responses to 

stress. Yet, there is relatively little research implementing the above machine learning approaches 

in the context of stressor-evoked cardiovascular reactivity, and several open questions remain.  

For instance, it is currently unclear to what extent the multivariate signature of HR 

reactivity developed by Eisenbarth et al. generalizes to predict HR evoked by other stressor 

paradigms, (e.g., cognitive challenges) or measured in different samples (e.g., midlife adults). This 

is an open question to the extent that different types of psychological stressors may evoke differing 

signatures of neural activity that nonetheless lead to relatively similar responses in cardiovascular 

output, or rather to the extent that the neural correlates of cardiovascular reactivity may vary across 

the lifespan. Similarly, it is unclear to what extent the multivariate signature of SBP reactivity 

identified in the study by Gianaros et al. (2017), focusing on individual differences in SBP 
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reactivity, generalizes to or shares commonalities with signatures that predict within-participant 

change over time, even in the same sample of participants. For example, it was recently shown 

that multivariate brain signatures predicting within-person changes in pain reports to thermal pain 

were comprised of different brain regions and networks than those predicting individual 

differences in overall pain reports in the same participants (Petre et al., 2019). Hence, these 

questions have the potential to deepen our understanding of the brain systems that may link 

stressful experiences to cardiovascular reactivity and potentially CVD risk, across stress contexts, 

participant samples, and endpoints of cardiovascular physiology. 

To this end, the current study aimed to build off prior work by developing multivariate 

brain signatures of BP and HR reactivity, on a within-participant basis, to a cognitive stressor 

paradigm in a community sample of midlife adults. Thus, the current study primarily focused on 

SBP reactivity as its cardiovascular metric of interest, due to its relevance to health, but also 

examined HR reactivity, due to its prominence in the psychophysiology literature. In addition, the 

current study integrated these findings in the context of multivariate signatures developed and 

published elsewhere, and to test whether previously published signatures could predict reactivity 

in these data.  

 

1.5 Study aims 

 Accordingly, to address these gaps, the current study had the following aims: 

Aim 1: Using machine learning and cross-validation, develop whole-brain multivariate signatures 

of brain activity that predict within-participant variation in SBP and HR reactivity during a 

cognitive stressor paradigm. The goal was to theoretically replicate and extend the work by 
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Eisenbarth et al. (2016) in a novel sample comprising midlife adults (as opposed to young 

adults) with a cognitive challenge paradigm (as opposed to a socioevaluative stressor 

paradigm) and considering additional health-relevant metrics of cardiovascular physiology 

(i.e., SBP). 

Hypothesis 1a: A multivariate signature of brain activity will predict changes in systolic blood 

pressure (SBP) during psychological stress. Whereas the signature will be whole-brain in 

nature, significant contributors to the signature will comprise core brain regions involved 

in stress and BP control, including the dACC, insula, amygdala, thalamus, PAG, and 

brainstem. 

Hypothesis 1b: A multivariate signature of brain activity will predict changes in heart rate 

(HR) during psychological stress. Similar to the above, the signature will be whole-brain 

in nature, but significant contributors to the signature will comprise core brain regions 

involved in stress and HR control, including the vmPFC, insula, amygdala, thalamus, PAG, 

and brainstem. 

Hypothesis 1c: Each of the two multivariate signatures identified above will generalize to 

significantly predict changes in the other metric of cardiovascular physiology. For 

example, the multivariate signature predicting SBP will generalize to predict significant 

variance in HR, and vice versa. However, the effect size of this prediction will be smaller 

in magnitude as compared to the prediction of its own measure of cardiovascular 

physiology (e.g., SBP), in line with the findings of Eisenbarth et al. (2016).  

Hypothesis 1d:  In addition to generalizing to the other metric of cardiovascular physiology, 

idiographic predictions at the group level will generalize to significantly predict reactivity 

in held-out individuals (i.e., group-based prediction). However, the effect size of this 
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prediction will be smaller in magnitude as compared to the idiographic predictions 

examined above, in line with the findings of Eisenbarth et al. (2016). 

Aim 2: Examine the generalizability of previously published multivariate signatures of stressor-

evoked cardiovascular reactivity as they relate to within-participant changes in BP and HR to 

these stressor paradigms. The goal of this aim was to situate the findings of Aim 1 in the context 

of prior literature and identify common and distinct features of these multivariate predictors of 

cardiovascular reactivity. Thus, the first hypothesis involved characterizing the similarities and 

differences between all multivariate signatures, whereas the latter hypotheses involved 

applying the previously published multivariate maps to the present data. 

Hypothesis 2a: Multivariate signatures produced from the current study (Aim 1) will show 

several commonalities with prior maps, notably that they each comprise core visceral 

control areas.  

Hypothesis 2b: The multivariate signature predicting individual differences in SBP reactivity 

to a cognitive stressor as reported by Gianaros et al. (2017) will not significantly predict 

within-person changes in SBP to the same cognitive stressor. 

Hypothesis 2c: The multivariate signature predicting HR reactivity to a psychosocial stressor 

as reported by Eisenbarth et al. (2016) will not significantly predict changes in HR to a 

cognitive stressor. 
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2.0 Methods 

2.1 Participants 

Participants were drawn from the Pittsburgh Imaging Project (PIP), which is a longitudinal 

study of the psychosocial and neurophysiological correlates of CVD risk and its progression over 

midlife (Gianaros et al., 2017; Sheu et al., 2012). Participants in PIP were 331 midlife men (N = 

165) and women (N = 166) aged 30 to 51 years old and were recruited between 2008 and 2014 via

mass mailings to community residents in Southwestern Pennsylvania. Participants were free of 

chronic physical health conditions, including any history of clinical coronary heart disease or a 

cardiovascular disease event, cardiovascular surgery, cancer, chronic kidney or liver condition, 

type 1 or 2 diabetes mellitus, or pulmonary or respiratory disease (Gianaros et al., 2017). 

Participants also did not report any current or past psychiatric diagnoses of substance abuse 

disorders. All participants provided informed consent to participate in study protocols, and the 

study was approved by the University of Pittsburgh Institutional Review Board.  

The present study was the first analysis on fMRI-based multivariate signatures of within-

participant changes in stressor-evoked cardiovascular reactivity in the PIP sample; as mentioned 

above, a prior report examined multivariate predictors of individual differences in stressor-evoked 

cardiovascular reactivity in the same sample (Gianaros et al., 2017).  
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2.2 Procedures 

2.2.1 MRI protocol 

Data for the proposed study was drawn from the MRI assessment taken during the baseline 

wave of the PIP study. This MRI assessment started between 7:00 and 11:00 AM, and participants 

refrained from eating, exercising, and consuming caffeinated and tobacco products, as well as 

drinking alcoholic beverages, for at least 8 hours prior to the start of this visit. At the MRI 

assessment, participants underwent seated BP measurement and practiced the MRI stressor tasks 

with a trained research assistant. Participants were then inserted into the MRI scanner and rested 

for 20 minutes. During this time, 3 to 5 baseline prestressor BP and HR measurements were 

collected (see below). While in the scanner, participants then completed 2 stressor tasks during 

functional MRI (fMRI) acquisition and BP and HR monitoring (see below). A high resolution 

structural MPRAGE scan was acquired between the 2 stressor tasks.  

2.2.2 Stressor protocol 

The psychological stressor protocol as implemented in PIP included a color-word Stroop 

task (Boutcher & Boutcher, 2006) and a modified Multi-Source Interference Task (MSIT; Bush & 

Shin, 2006), each modified for the MRI scanner environment and each modified to induce a 

prototypical stressful experience (Sheu et al., 2012). Specifically, each task required participants 

to process conflicting information, perform under time pressure, and respond to negative feedback. 

Tasks were presented using ePrime 2.0 (Pittsburgh, PA). 
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In each task, participants completed 4 blocks of trials in an incongruent condition, which 

were each interleaved with 4 blocks of trials in a congruent condition. Each incongruent and 

congruent block lasted between 52 and 60 seconds and were preceded by a 10- to 17- second 

fixation (rest) period. Each task lasted 9 minutes 20 seconds. 

In the color-word Stroop, participants were presented with a target word in the center of 

the screen along with four identifier words (red, blue, yellow, green) at the bottom of the screen. 

During all Stroop trials, participants were instructed to select the position of the identifier word at 

the bottom of the screen that named the text color of the target word. During Stroop congruent 

trials, the color of the target word matched the color of all the words at the bottom of the screen. 

During Stroop incongruent trials, all color words were mismatched with their text color. 

Separately, in the MSIT, three numbers (each 1 – 3) were presented on the screen, with two 

identical numbers and one differing number. In all MSIT trials, participants were instructed to 

identify the position of the differing number. During MSIT congruent trials, the value and the 

position of the differing number match, whereas during MSIT incongruent trials the value and 

position of the differing number did not match.  

In both tasks, participants were instructed to respond using a button press fastened to their 

right hand (1=thumb, 2=index, 3=middle, 4=ring). Following their response, participants were 

provided positive (green checkmark) or negative (red x-mark) feedback based on their trial 

performance. To account for individual differences in behavioral performance, in both stressor 

tasks, incongruent trial periods were titrated to adjust the amount of time allowed for the participant 

to respond. This titration was implemented such that each participant would not surpass 60% 

overall accuracy during incongruent blocks. The titration was implemented by adjusting the 

amount of time the participant was allotted to respond; after 3 consecutive correct responses, this 
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time allotment was shortened by 300 milliseconds, and after 3 consecutive incorrect responses, 

this time allotment was lengthened by 300 milliseconds. If the participant failed to respond within 

the allotted time frame, they the computer would indicate they were too late.  

Measures of trial response accuracy and reaction time were recorded by the ePrime 

software. These measures were averaged across trials within each condition (incongruent, 

congruent) to verify the tasks successfully titrated accuracy and reaction time. Measures of 

accuracy and reaction time were also averaged across trials within individual blocks for later 

analysis.  

2.2.3 Cardiovascular monitoring 

During MRI, BP and HR were measured during the resting (prestressor) and stressor task 

periods from the brachial artery of the left arm using an oscillometric device. Specifically, the 

device was set to inflate every 2.5 minutes during the prestressor period and once during each 

incongruent and congruent block of the Stroop and MSIT. The device reported 1 reading of HR, 

SBP, diastolic BP (DBP), and mean arterial pressure (MAP) per reading. Hence, in contrast to the 

continuous HR monitoring as implemented in Eisenbarth et al. (2016), 1 reading of BP and HR 

was collected per each incongruent and congruent block in the Stroop and MSIT, which is taken 

to reflect the overall ambient BP and HR during that period. Moreover, unlike the study by 

Eisenbarth et al. (2016), SCL was not collected. Accordingly, 3 to 5 baseline prestressor readings 

were collected for each participant, as well as 16 task-related readings in total (8 Stroop and 8 

MSIT, each comprising 4 incongruent and 4 congruent readings). 
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2.3 Data analysis 

2.3.1 Cardiovascular reactivity 

For SBP and HR separately, reactivity scores were calculated for each task block by 

subtracting the average of the final 3 prestressor readings from the task block reading. 

Accordingly, a reactivity score of 0 mmHg or 0 BPM indicated no change in SBP or HR from the 

average of the baseline reading, respectively. For each participant, the distribution of these 

reactivity scores were visually inspected. Reactivity scores greater than 3 standard deviations from 

the mean were flagged and interpolated to the nearest neighbor. Various metrics of SBP and HR 

were examined, including the mean prestressor baseline reading, mean reactivity, standard 

deviation of reactivity, as well as mean reactivity separated by incongruent and congruent 

conditions during Stroop and MSIT. 

2.3.2 MRI data acquisition 

Functional MRI (fMRI) data were acquired on a 3 T Trio TIM whole-body MRI scanner 

(Siemens, Erlangen, Germany), equipped with a 12-channel phased-array head coil. Blood-oxygen 

level-dependent (BOLD) images were acquired with a gradient-echo EPI sequence using the 

following parameters: field-of-view (FOV) = 205 × 205 mm2, matrix size = 64 × 64 mm2, 

repetition time (TR) = 2,000 ms, echo time (TE) = 28 ms, and flip angle (FA) = 90. Thirty-nine 

slices (3 mm thickness, no gap) were obtained in an interleaved sequence in an inferior-to-superior 

direction, yielding 280 BOLD images per task. For spatial coregistration of BOLD images, T1 

weighted 3D magnetization-prepared rapid gradient echo (MPRAGE) neuroanatomical images 
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were acquired over 7 min 17s by these parameters: FOV = 256 × 208 mm2, matrix size = 256 × 

208 mm2, TR = 2,100 ms, time-to-inversion (TI) = 1,100ms, TE = 3.29ms, and FA=8. 

2.3.3 MRI preprocessing and first level analysis 

BOLD fMRI data from the Stroop and MSIT were processed using Statistical Parametric 

Mapping (SPM) software, version 12 (SPM12; http://www.fil.ion.ucl.ac.uk/spm/). For each task, 

images were realigned to the first image, corrected for motion distortion, and normalized to 

Montreal Neurological Institute space. Normalized images were rescaled (2-mm isotropic voxels) 

and smoothed with a 6-mm full width at half maximum Gaussian kernel.  

Prior reports using these data constructed individual first-level general linear models 

(GLM) and contrast maps to model the main effects of condition (Incongruent versus Congruent) 

for the Stroop and MSIT (Gianaros et al., 2017). The present study reports the results of these main 

effects contrast maps in the analytic sample (N = 242). Moreover, the present study constructed 

novel GLMs that accounted for block-specific patterns of brain activity. Specifically, in individual 

first-level analyses, a separate regressor modeled each of the 8 blocks of incongruent and 

congruent trials for each task. This approach is comparable to a so-called ‘beta series’ design, in 

which every trial is modeled separately in a design matrix (Rissman et al., 2004). Each block was 

therefore modeled using separate regressors, each convolved with a double gamma hemodynamic 

response function in SPM. Accordingly, individual first-level analysis GLMs produced 8 block-

related whole-brain beta maps per task. Regressors corresponding to the presence of the 

incongruent versus congruent conditions were not modeled. Finally, regressors of no interest 

included the 6 realignment parameters derived from preprocessing, 2 timeseries reflecting the 

mean white matter and cerebrospinal fluid signal, as well as their temporal derivatives and square 

http://www.fil.ion.ucl.ac.uk/spm/
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terms of all 8 signals, yielding a total of 32 regressors of no interest (Ciric et al., 2017; Satterthwaite 

et al., 2019). These regressors of no interest were included in all GLMs to account for motion and 

physiological artifacts that may influence the BOLD signal (Power et al., 2013, 2015).  

2.4 Aim 1: Multivariate signature development 

Several algorithms exist for multivariate and machine learning approaches to brain imaging 

data, including support vector regression (SVR), principal components regression (PCR), least 

absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic net 

regression, decision trees, and more (Hastie et al., 2009). Each of these algorithms have different 

strengths and limitations as it pertains to multivariate analysis handling brain imaging data, which 

comprises large numbers of predictors which are moderately intercorrelated. The proposed study 

aims to use principal component regression combined with least absolute shrinkage and selection 

operator (hereafter, LASSO-PCR; Wager et al., 2011, 2013).  

To clarify, by using a multivariate and machine learning framework, the BOLD responses 

as measured by the beta maps produced above, restricting within gray matter voxels, served as the 

multivariate predictor variable, and either SBP or HR reactivity served as the outcome variable. In 

line with the approach taken by Eisenbarth et al. (2016) the multivariate signatures were be used 

to make predictions about cardiovascular reactivity within individuals (idiographic cross-

validation) and about new individuals (group-based cross-validation) (Eisenbarth et al., 2016). 

The LASSO-PCR approach has been previously described in detail (Eisenbarth et al., 2016; 

Gianaros et al., 2017, 2020; Wager et al., 2011, 2013). In general, this approach combines 

dimensionality reduction (PCR) with penalized regression (LASSO) within a cross-validated 
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framework. More concretely, to reduce the dimensionality of the predictor variables (i.e., voxels 

in each block-related beta map), the voxel-by-block matrix were first submitted to a principal 

component analysis (PCA) using singular value decomposition (SVD). The outcome variable of 

interest (here, either SBP reactivity or HR reactivity) was then regressed onto the remaining 

principal components by LASSO regression using the ‘lassoglm’ function in MATLAB (Hastie et 

al., 2009; Tibshirani, 1996). In LASSO regression, beta coefficient estimation is subject to the L1 

penalty (regularization), which selects predictive features by penalizing (shrinking) non-

significant predictive features to zero (Efron et al., 2004; Zhao et al., 2009). The extent of this 

penalization procedure was constrained by the parameter lambda (λ), in which a higher λ produces 

a more penalized and thereby sparser predictor space. In the LASSO-PCR procedure, following 

this feature selection step, the sparse regression coefficient matrix was subsequently back-

projected to voxel space via the SVD transformation matrix to produce a whole-brain weight map. 

Accordingly, the dot product of the whole-brain weight map with an individual contrast map was 

estimated to generate a predicted estimate of SBP or HR reactivity.  

In line with the approach of Eisenbarth et al. (2016), primary analyses implemented 

idiographic cross-validation to develop individualized multivariate signatures of SBP and HR. As 

mentioned above, the shrinkage parameter λ described above determines the sparsity of regression 

models, and the influence of a given λ value is likely to differ according to input data. To this end, 

the λ parameter was optimized first using leave-one-out-cross-validation (LOOCV) in an ‘inner 

loop’ and applied in an ‘outer loop’ to predict individual reactivity observations using LOOCV 

again. LOOCV is a form of k-fold cross validation in which one observation serves as the test 

sample, and all other observations serve as the training sample. That is, to first identify the optimal 

shrinkage parameter, λ, and thus the number of principal components that best predict SBP (or 
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HR), LOOCV was applied within an inner loop, before generalizing to new observations in an 

outer loop. As such, the cross-validation approach employed here implemented “nested” cross 

validation. Within each cross-validation fold, LASSO-PCR was conducted on training samples 

using a sequence of 1000 λ values, and the performance of each λ was evaluated by calculating the 

average of the mean squared error (MSE) between predicted and observed reactivity in the testing 

sample. After identifying the optimal λ, the entire LASSO-PCR procedure was repeated using this 

λ on the entire inner loop sample, producing a whole-brain multivariate predictive pattern of 

cardiovascular reactivity.  

The predictive performance of each multivariate signature was summarized using 4 types 

of statistics (5 metrics in total) describing either the association or the discrepancy between 

predicted and observed SBP and HR reactivity (Forman & Scholz, 2010), in line with prior work 

(Gianaros et al., 2020). Metrics were computed individually for each participant, and the 

descriptive statistics of metrics across the entire analytic sample was summarized using the mean 

and standard error (SE). First, the association between predicted and observed SBP and HR was 

characterized using the Spearman’s rank correlation coefficient (rho). The nonparametric 

Spearman’s rank correlation was chosen over the parametric Pearson correlation (r) in order to 

reduce the potential influence of outlier points, especially as the subject-specific predicted-

observed associations were drawn from a small number of observations (i.e., 16 block-related 

reactivity observations per subject). A one-sample t-test was conducted on the entire group of 

predicted-observed rho values to test if idiographic model performance was significantly different 

from zero across individuals. Second, the discrepancy between predicted and observed reactivity 

was described using mean absolute error (MAE). Third, the variance in observed values explained 

by predicted values (R2) was calculated using the sums of squares formulation (Poldrack et al.,
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2020; Scheinost et al., 2019). Finally, Bayes Factors (BF10 and BF01) were used to describe the 

strength of the association between the predicted and observed reactivity and to aid in interpreting 

results that did not meet conventional statistical significance (Morey & Rouder, 2011). BF10 refers 

to the probability of the alternative hypothesis, relative to the null hypothesis, whereas BF01 refers 

to the probability of null hypothesis, relative to the alternative hypothesis.  

To identify voxels that reliably contributed to a given brain signature of cardiovascular 

reactivity (i.e., SBP or HR), the respective multivariate signatures were combined across all 

participants, and a one-sample t-test was computed at each voxel. These t-statistic maps were 

thresholded using the false discovery rate [q < 0.05; (Benjamini & Hochberg, 1995)], in line with 

the approach of Eisenbarth et al (2016). Descriptive statistics of each cluster was reported in tables, 

including its size (number of voxels), center coordinates, and constituent brain regions. Moreover, 

the spatial similarity of the SBP and HR maps was compared by calculating the correlation across 

signatures for each participant and summarized for the analytic sample using the mean ± SE. 

2.4.1 Cross-modality and group-based cross-validation 

In addition to the above idiographic approach, the generalizability of each signature was 

examined both across physiological modality (i.e., SBP versus HR) and across participants. First, 

generalizability across physiological modality (within participants) was examined by applying 

each participant’s brain signature corresponding to one measure (e.g., SBP) to their series of beta 

maps, and comparing predicted scores to observed scores of the other measure (e.g., HR), and vice 

versa. Second, generalizability across participants was examined by implementing 10-fold cross 

validation at the group level. That is, within each cross-validation loop, the multivariate signatures 

derived at the idiographic stage were averaged across training participants and applied to holdout 
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test participant beta maps. Importantly, the cross-validation fold membership was determined by 

stratifying across the respective mean reactivity scores (i.e., mean stressor-evoked SBP or HR 

reactivity). Model performance of cross-participant generalizability was examined using the same 

metrics as idiographic models. Finally, these 2 tests of generalizability were assessed by directly 

comparing model performance metrics to the primary, idiographic, within-modality approach, 

using paired t-tests (Eisenbarth et al. 2016).   

2.5 Aim 2: Generalizability of published multivariate signatures 

The multivariate signature for within-participant HR reactivity developed by Eisenbarth et 

al. (2016) was retrieved from the CANlab GitHub repository1 and the multivariate signature for 

between-participant SBP reactivity developed by Gianaros et al. (2017) was retrieved from the 

CoAxLab GitHub repository2. For each participant and signature, the PIP Stroop and MSIT images 

were resampled to the signature image and cosine similarity was computed for each of the 16 

block-related contrast maps to produce predicted observations of HR and SBP reactivity. The 

overall performance of these published signatures on PIP data was assessed using the same metrics 

as described above (Spearman’s rho, R2, MAE, Bayes Factors). These metrics were compared to 

the performance metrics of the multivariate signatures developed in Aim 1 using paired t-tests. 

1

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2016_Eisenbar

th_JNeuro_autonomic_patterns  

2 https://github.com/CoAxLab/BPReactivityPhenotype 

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2016_Eisenbarth_JNeuro_autonomic_patterns
https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2016_Eisenbarth_JNeuro_autonomic_patterns
https://github.com/CoAxLab/BPReactivityPhenotype
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2.6 Planned supplementary analyses 

2.6.1 Local spatial similarity analyses and network similarity analyses of signatures 

In addition to testing the correspondence between SBP and HR signatures on a voxel-wise 

basis as described in Aim 1, additional analyses examined the correspondence between these 

signatures in terms of local patterns of prediction weights. Specifically, using a spherical 

searchlight with a 5 voxel radius, the spatial correlation between each participant’s SBP and HR 

signature was calculated for each voxel’s neighborhood, followed by a one-sample t-test to identify 

voxels where local patterns ere similar between signatures across participants (Eisenbarth et al., 

2016). A second set of supplementary analyses examined the spatial correspondence of the 

idiographic SBP and HR signatures respect to established intrinsic networks (Yeo et al., 2011) 

consistent with prior work (Gianaros et al., 2020; Ginty et al., 2019). Specifically, the cosine 

similarity of the SBP and HR idiographic signatures (as well as their difference) was computed for 

7 intrinsic networks (visual, somatomotor, dorsal attention, ventral attention, limbic, 

frontoparietal, default mode). The overall correspondence of each multivariate signature and their 

difference was evaluated using t-tests. 

2.6.2 Psychometric properties of brain signatures 

Psychometric properties of brain imaging data, such as test-retest reliability and internal 

consistency, may influence their predictive performance (Kragel et al., 2021). To explore this, the 

internal consistency of the Stroop and MSIT was calculated using the split-half method 

(Infantolino et al., 2018). Specifically, for each participant and task, general linear models were 
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constructed separately on the first and second half of the BOLD signal data, respectively. From 

these general linear models, voxel-wise contrasts reflecting the difference in BOLD signal during 

incongruent vs congruent conditions were computed. The internal consistency of each task was 

then computed by calculating the correlation between the contrast maps from the first and second 

halves of each task and applying the Spearman-Brown (SB) correction [SB = 2r/(1+r)]. Maps of 

internal consistency were thresholded according to standard conventions depicting ‘fair,’ ‘good,’ 

and ‘excellent’ reliability (Cicchetti, 1994). Finally, internal consistency maps were then averaged 

across tasks for each participant and compared on a voxel-wise basis to whole-brain main effects 

maps and signatures generated by the idiographic machine learning methods (Gianaros et al., 

2020).  

2.6.3 Contribution of nuisance variables 

The BOLD signal may be sensitive hemodynamic coupling, which may vary as a function 

of cardiovascular arousal. Thus, it cannot be ruled out whether BOLD signal predictors of 

cardiovascular reactivity reflect true stressor-evoked “neural” changes. Moreover, excessive head 

motion significantly influences the BOLD signal and therefore may confound relationships 

between BOLD activity and within-participant changes in behavior (Power et al., 2012; 

Satterthwaite et al., 2013). Two sensitivity tests were conducted to examine these possibilities. 

First, the prediction of reactivity from pulsatile white matter and CSF nuisance signal was tested 

using idiographic LASSO-PCR. Second, the prediction of reactivity from the above nuisance 

components and motion covariates was tested using idiographic LASSO-PCR. In both analyses, 

block-related averages of nuisance variables (WM/CSF/motion) were computed to be used in 
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prediction analyses. Model performance for the prediction of cardiovascular reactivity from these 

nuisance variables was computed and reported as in Aim 1.  

2.6.4 Predicting behavior from brain signatures of cardiovascular reactivity 

In addition to testing the cross-modal (e.g., SBP vs HR, prior studies vs present study) 

generalizability of brain signatures, it is unclear whether these signatures would generalize to 

predict other behavioral or psychological outcomes related to the Stroop and MSIT. Measures of 

accuracy and reaction time were recorded in the Stroop and MSIT, and these variables were 

averaged within blocks. To this end, associations between ongoing behavioral performance and 

cardiovascular reactivity were explored. Moreover, it was tested whether signatures derived in 

Aim 1 generalized to predict behavioral performance.  

2.7 Post-hoc exploratory analyses 

Results of the Aim 1 analyses revealed that, for many participants, the LASSO-PCR 

algorithm did not generate reliable idiographic models of neither SBP nor HR reactivity (see 

Results Section 3.4). More concretely, for a large proportion of idiographic models (19% SBP 

models, 16.5% HR models), the optimized LASSO regularization parameter λ returned zero 

components, thus producing a so-called ‘null’ model comprising a constant term and zero voxel 

weights. For these idiographic models, the model performance was uniformly poor (i.e., negative 

predicted-observed Spearman’s rho’s). Given these null findings with respect to the primary aims 

of this study, two sets of post-hoc, unplanned exploratory analyses were conducted to further 
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identify the source of poor model performance. Specifically, the first set of post-hoc analyses 

examined sources of poor model performance across individuals, and the second set of post-hoc 

analyses explored alternative machine learning algorithms that may have been better suited to these 

data. 

2.7.1 Examining sources of poor model performance 

Various factors were explored that may have contributed to individual differences in the 

success of the LASSO-PCR algorithm to generate reliable models of stressor-evoked 

cardiovascular reactivity; these included resting cardiovascular physiology, mean cardiovascular 

reactivity, variability in cardiovascular reactivity, head motion, and behavioral performance. On 

these factors, participates for whom the LASSO-PCR generated so-called ‘null’ models were 

compared to participants for whom the LASSO-PCR model produced models comprising whole-

brain weight maps. In addition, associations between each of these factors with a continuous 

measure of model performance (i.e., Spearman’s rho) was assessed using multiple linear 

regression.  

2.7.2 Exploring alternative machine learning approaches 

Moreover, in view of the null findings bearing on idiographic models of cardiovascular 

reactivity, alternative machine learning approaches were explored. To elaborate, the above 

patterning of poor model performance may have been partially attributable to the sparsity 

constraint introduced by the LASSO shrinkage parameter, λ. To this end, other machine learning 

approaches that do not impose this shrinkage parameter may be more effective at reliably 
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generating models of cardiovascular reactivity, especially when the model comprises few 

predictors. Specifically, principal component regression (PCR) retains dimensionality reduction 

as in LASSO-PCR but does not apply regularization, thus avoiding the patterning of so-called 

‘null’ models observed by LASSO-PCR. To this end, unplanned post-hoc analyses repeated the 

procedures described in Aim 1, replacing the LASSO-PCR algorithm with PCR. The model 

performance metrics were computed and reported as in Aim 1. Moreover, these post-hoc analyses 

were compared to the primary analyses reported in Aim 1 in terms of both model performance 

metrics as well as the multivariate patterns of BOLD activity. 

2.8 Software and code availability 

Analyses were conducted in the MATLAB environment using code previously developed 

for multivariate analysis of fMRI data (https://github.com/canlab) and in line with prior 

publications (Gianaros et al., 2020). Analysis code is available on GitHub 

(https://github.com/tekraynak/dissertation) and whole-brain maps are available on NeuroVault 

(https://neurovault.org/collections/HXXJSDEL) (Gorgolewski et al., 2015). 

https://github.com/canlab
https://github.com/tekraynak/dissertation
https://neurovault.org/collections/HXXJSDEL
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3.0 Results 

3.1 Descriptive statistics 

After quality control review of the complete PIP sample (N= 331), several participants 

were excluded for the following reasons: later endorsing antihypertensive medication use 

following MRI assessments (N = 1); poor behavioral compliance with stressor tasks (i.e., accuracy 

lower than chance on congruent trials; N = 2); MRI data acquisition or reconstruction failure (N = 

8); insufficient BOLD signal coverage (N = 3); incompletely acquired cardiovascular monitoring 

(N = 75). Thus, analyses were conducted on an analytic sample of 242 participants (118 men, 124 

women). 

Participants excluded from analysis for the above reasons were compared to participants 

in the analytic sample according to primary study variables. Compared to excluded participants, 

included participants were younger (t = -3.16 p = .001), had lower BMI (t = -4.29 p < .001), had 

lower resting (pre-task) SBP (t = -3.03 p = .003), and exhibited less variability in stressor-evoked 

SBP (t = -3.62 p < .001). In contrast, included participants did not significantly differ from 

excluded participants in terms of sex, race, years of education, smoking status, task accuracy, task 

reaction time, resting HR, mean stressor-evoked SBP, mean stressor-evoked HR, and variability 

in stressor-evoked HR. Table 1 provides descriptive statistics of the analytic sample (N = 242). 
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Table 1. Descriptive statistics of analytic sample. 

Characteristic (N = 242) M ± SD or N (%) 

Age 39.7 ± 6.21 

Sex  

Male 118 (48.8%) 

Female 124 (51.2%) 

Race and Ethnicity  

White 172 (71.1%) 

Black / African American 54 (22.3%) 

Asian 13 (5.4%) 

Multiracial 2 (0.8%) 

Other 1 (0.4%) 

Smoking Status  

Never 148 (61.2%) 

Former 53 (21.9%) 

Current 41 (16.9%) 

Years of School 16.80 ± 3.26 

Body Mass Index 26.10 ± 4.28 

Cardiovascular physiology 

SBP: baseline (mm Hg) 122.00 ± 11.60 

SBP: stressor-evoked change (overall) (mm Hg) 3.75 ± 5.11 

SBP: stressor-evoked standard deviation (overall) (mm Hg) 4.22 ± 1.55 

SBP: stressor-evoked change (Stroop) (mm Hg) 4.46 ± 5.94 

SBP: stressor-evoked standard deviation (Stroop) (mm Hg) 3.87 ± 1.69 

SBP: stressor-evoked change (MSIT) (mm Hg) 3.04 ± 4.79 

SBP: stressor-evoked standard deviation (MSIT) (mm Hg) 3.83 ± 1.63 

HR: baseline (BPM) 67.40 ± 9.23 

HR: stressor-evoked change (overall) (BPM) 6.27 ± 4.87 

HR: stressor-evoked standard deviation (overall) (BPM) 3.47 ± 1.84 

HR: stressor-evoked change (Stroop) (BPM) 7.16 ± 5.70 

HR: stressor-evoked standard deviation (Stroop) (BPM) 3.20 ± 1.85 

HR: stressor-evoked change (MSIT) (BPM) 5.37 ± 4.65 

HR: stressor-evoked standard deviation (MSIT) (BPM) 2.80 ± 1.48 

Behavioral Performance 

Mean accuracy, Stroop incongruent trials 0.56 ± 0.09 

Mean accuracy, MSIT incongruent trials 0.56 ± 0.09 

Mean accuracy, Stroop congruent trials 0.84 ± 0.09 

Mean accuracy, MSIT congruent trials 0.91 ± 0.07 

Mean reaction time, Stroop incongruent trials (sec) 1.87 ± 0.50 

Mean reaction time, MSIT incongruent trials (sec) 0.90 ± 0.22 

Mean reaction time, Stroop congruent trials (sec) 1.31 ± 0.32 

Mean reaction time, MSIT congruent trials (sec) 0.54 ± 0.11 
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3.2 Stressor-evoked cardiovascular reactivity  

In the analytic sample, the resting baseline pre-stressor SBP and HR was 122 ± 11.6 mmHg 

and 67.4 ± 9.23 BPM, respectively (Table 1). Of the Stroop and MSIT readings, 3 SBP and 2 HR 

readings were deemed within-participants outliers (i.e., greater than 3 standard deviations from the 

respective participant mean) and were interpolated to the nearest neighbor. Consistent with prior 

reports on this sample (Gianaros et al., 2017; Sheu et al., 2012), the Stroop and MSIT together 

elicited significant increases in SBP (3.75 ± 5.11 mmHg, t = 11.41, p < .001) and HR (6.27 ± 4.87 

BPM, t = 20.01, p < .001) across participants in the analytic sample (Figure 1). The mean within-

participant correlation between SBP and HR was rho = .27 ± .02, t = 13.71, p < .001. 

Two linear mixed models tested for task-related and condition-related differences in SBP 

and HR reactivity within participants, modeling task (Stroop, MSIT) and condition (incongruent, 

congruent) as fixed factors and participant as a random factor. There was a significant effect of 

condition for both SBP and HR, in which incongruent conditions elicited significantly greater 

reactivity than congruent conditions (SBP B ± SE = 1.23 ± 0.20, t = 6.18, p < .001; HR B ± SE = 

2.11 ± 0.16, t = 12.92, p < .001). There was not a main effect of task on SBP nor HR (SBP B ± 

SE = 0.56 ± 0.44, t = 1.26, p = .21; HR B ± SE = 0.58 ± 0.36, t = 1.58, p = .11). However, there 

was a significant interaction of task and condition (SBP B ± SE = 0.57 ± 0.28, t = 2.03, p = .04; 

HR B ± SE = 0.80 ± 0.23, t = 3.48, p < .001) wherein there was greater reactivity during Stroop 

incongruent trials compared to other trials.  
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Figure 1. Stressor-evoked cardiovascular reactivity. 

Panels depict the time course of change in systolic blood pressure (SBP; top) and heart rate (HR; bottom) reactivity 

during the baseline prestressor period, the MSIT, and the Stroop. Change scores were calculating by subtracting the 

mean of the participant’s mean baseline readings. Circles reflect the group mean at each timepoint, and error bars 

reflect the group standard deviation (N = 242). Note that the order of administering the MSIT and Stroop was 

counterbalanced across participants but are grouped in this figure to illustrate task-related differences. 
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3.3 Stressor-evoked BOLD activity 

Consistent with prior reports, the Stroop and MSIT engaged similar ensembles of brain 

regions commonly evoked by cognitive stressor paradigms (Akdeniz et al., 2014; Dedovic et al., 

2005). Specifically, both tasks significantly activated the dorsolateral prefrontal cortex, dorsal 

anterior cingulate cortex, anterior insula, cerebellum, thalamus, periaqueductal gray, and pons 

(Figure 2; FDR < .05). Both tasks also significantly deactivated the ventromedial and orbitofrontal 

prefrontal cortex, amygdala, and hippocampus. The pattern of stressor-evoked BOLD activity was 

similar across the Stroop and MSIT (voxel-wise r = .80; dice coefficient of thresholded maps = 

.79). 
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Figure 2. Stressor-evoked BOLD activity. 

Color-scaled t-maps of brain areas exhibiting significant BOLD signal changes for the incongruent > congruent 

contrasts of the MSIT and Stroop. Maps are shown at a false discovery rate (FDR) threshold of 0.05 and extent 

threshold of 50 voxels. On the left, activation values are projected on the lateral and medial brain surfaces for both 

hemispheres. On the right, activation values are projected on limbic and brainstem volumes. Warmer colors 

(red/orange) reflect relative increases in activity, whereas cooler colors (blue) reflect relative decreases. Legends 

indicate the range of t-statistics depicted in each map. 
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3.4 Aim 1: Multivariate signatures of stressor-evoked cardiovascular reactivity 

Primary analyses tested whether idiographic models implementing LASSO-PCR with 

cross-validation could reliably predict within-participant variation in SBP and HR. Figure 3 depicts 

distributions of predicted-observed Spearman’s rho values for each model, and Table 2 presents 

summary statistics for Spearman’s rho and other metrics of model performance. As described 

previously, idiographic whole-brain weight-maps were combined across participants to identify 

brain regions that consistently contributed to predictions. Considering that a portion of idiographic 

models described hereafter were found to not reliably predict within-participant in SBP and HR 

(see below), whole-brain voxel-wise weight-maps were nonetheless combined across all 

participants, thus including idiographic weight-maps of models that shrank all principal 

components to zero and therefore were uniformly comprised of zeros. These latter maps were 

included to conservatively adjust for the prevalence of so-called ‘null’ models. 

3.4.1 Hypothesis 1a: Idiographic prediction of SBP reactivity 

The overall prediction of SBP within individuals was rho = -0.04 ± 0.04, t = -0.94, p = 

.345; R2 = 0.05 ± 0.01; MAE = 3.14 ± 0.07; BF10 = 1.12 ± 0.10; BF01 = 2.51 ± 0.12 (Figure 3, 

left panel; Table 2, first row). That is, across participants, the overall distribution of within-

participant Spearman’s rank-order correlations between predicted and observed SBP was not 

significantly different from zero. These correlations ranged from -.99 to .85, with idiographic 

models predicting statistically significant variation (rho > 0 and p < .05) in SBP reactivity in only 

51 participants (21%) (Figure 3, left panel). Notably, in 46 participants (19%), the cross-validated 

LASSO shrank principal component features such that zero principal components were retained 
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in the final model; thus, for these participants, the model comprised a constant term and zero voxel 

weights. Moreover, the distribution of Bayes Factors suggested evidence in support of the null 

hypothesis. Hence, contrary to study hypotheses, a multivariate signature of brain activity did not 

reliably predict changes in SBP during psychological stress. 

 

 

Figure 3. Predictions of stressor-evoked cardiovascular reactivity using LASSO-PCR. 

Bar and violin plots depict distributions of predictions (i.e., predicted-observed Spearman’s rho) for multivariate 

signature development using LASSO-PCR (Aim 1). Each point depicts the prediction of a participant. Lightly 

shaded bars depict the group mean, and dark shaded bars reflect the group standard error (N = 242). Violin plots 

depict the distribution shape. Left panel describes predictions for idiographic predictions trained to predict SBP and 

HR, respectively (Hypotheses 1a-1b). Middle panel describes predictions trained on one measure of physiology and 

tested on the other (Hypothesis 1c). Right panel describes predictions trained using group-based cross-validation 

(Hypothesis 1d). 
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Table 2. Model performance of idiographic multivariate signatures using LASSO-PCR. 

Model performance across cardiovascular physiology (SBP, HR) and brain signatures for idiographic models using 

LASSO-PCR (Aim 1). Each model was evaluated according 4 sets of metrics describing the association between 

predicted and observed values: the Spearman’s rank-order correlation (rho), coefficient of determination (R2), mean 

absolute error (MAE), and Bayes Factors (BF10, BF01). Each statistic was reported using the group mean (M) and 

standard error (SE). In addition, the group distribution of Spearman’s rho estimates was evaluated using a one-

sample t-test. 

 rho R2 MAE BF10 BF01 

 M ± SE t  p M ± SE M ± SE M ± SE M ± SE 

Idiographic prediction 

SBP -.04 ± .04 -0.94 .345 0.05 ± 0.01 3.14 ± 0.07 1.12 ± 0.10 2.51 ± 0.12 

HR .08 ± .04 2.00  .047 0.11 ± 0.02 2.44 ± 0.08 1.33 ± 0.10 2.25 ± 0.12 

Cross-modal prediction 

SBP -> HR .00 ± .03 -0.06  .947 -0.99 ± 0.06 5.35 ± 0.22 0.36 ± 0.02 3.64 ± 0.09 

HR -> SBP .10 ± .03 3.12 .002 -0.81 ± 0.28 5.55 ± 0.21 0.46 ± .03 3.43 ± 0.11 

Group-based prediction 

SBP .17 ±.02 8.48  < .001 -0.63 ± 0.04 5.68 ± 0.22 0.33 ± 0.01 2.95 ± 0.12 

HR .29 ± .02 13.92  < .001 -0.41 ± 0.04 6.53 ± 0.27 0.37 ± 0.02 2.43 ± 0.12 

 

A one-sample t-test of the within-participant signatures of SBP reactivity revealed several 

brain areas that consistently contributed to idiographic SBP models (FDR < .05, k > 50 voxel 

threshold). Specifically, and consistent with study hypotheses, SBP was predicted by positive 

weights in the dorsal anterior cingulate cortex. In addition, SBP was predicted by positive weights 

in the dorsolateral prefrontal cortex, and cerebellum, and by negative weights in the caudate and 

putamen (Figure 4; Table 3). The strength of voxel weights in the thresholded signature was 

moderately correlated with voxel weights in the average main effects map reported above (r = 

.36). However, brain regions observed in the thresholded signature predicting SBP did not strongly 
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overlap with those observed in the thresholded Stroop and MSIT main effects maps (dice 

coefficients < .04).  

Figure 4. Brain regions consistently contributing to idiographic models of SBP and HR. 

Regions were identified by conducting a voxel-wise one-sample t-test on idiographic predictive maps and applying a 

false discovery rate (FDR) threshold of 0.05 and extent threshold of 50 voxels. Top panel depicts significant clusters 

identified in SBP (left) and HR (right) models and are projected onto a cutaway surface. Bottom panel depicts a 

series of axial slices on the whole-brain volume. Warm colors (red/orange) reflect positive weights, and cool colors 

(blue) reflect negative weights. 
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Table 3. Brain regions consistently contributing to idiographic models of SBP. 

Regions were identified by conducting a voxel-wise one-sample t-test on idiographic predictive maps and applying a 

false discovery rate (FDR) threshold of 0.05 and extent threshold of 50 voxels. 

Effect 

Direction 
Region Label 

Peak MNI Coordinates 
Voxels 

Peak 

Weight X Y Z 

Positive Dorsal Anterior Cingulate Cortex 0 18 44 356 4.57 

Dorsal Anterior Cingulate Cortex 8 24 30 134 4.55 

Dorsolateral Prefrontal Cortex -32 4 58 174 4.47 

Dorsolateral Prefrontal Cortex -32 44 22 260 4.39 

Dorsolateral Prefrontal Cortex -46 12 30 432 4.92 

Superior Parietal Gyrus 10 -70 44 4151 6.00 

Visual Cortex -30 -82 20 557 4.59 

Cerebellum 0 -80 -12 3588 5.50 

Cerebellum -6 -64 -18 253 4.72 

Cerebellum 12 -62 -22 140 4.70 

Negative Occipital Lobe 54 -60 38 195 -4.58

Visual Cortex 14 -90 14 222 4.24

Caudate, Putamen 18 14 4 287 -4.46

Caudate, Putamen -14 16 -4 217 -5.10

3.4.2 Hypothesis 1b: Idiographic prediction of HR reactivity 

The overall prediction of HR within individuals was rho = 0.08 ± 0.04, t = 2.00, p = .047; 

R2 = 0.11 ± 0.02; MAE = 2.44 ± 0.08; BF10 = 1.33 ± 0.10; BF01 = 2.25 ± 0.12. That is, although 

the distribution of within-participant Spearman’s rank-order correlations between predicted and 

observed HR were significantly different from zero according to standard conventions, there was 

substantial variation in performance of the idiographic models. These correlations ranged from -

.99 to .96, with idiographic models predicting statistically significant variation (rho > 0 and p < 

.05) in HR reactivity in only 74 participants (30%) (Figure 3, left panel). Notably, in 40 participants 

(16.5%), the cross-validated LASSO shrank all principal component features such that zero 
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principal components were retained in the final model; thus, for these participants, the model 

comprised a constant term and zero voxel weights. Moreover, the distribution of Bayes Factors 

suggested evidence in support of the null hypothesis. Hence, contrary to study hypotheses, a 

multivariate signature of brain activity did not reliably predict changes in HR during psychological 

stress, even though the distribution of Spearman’s rho’s were statistically different from zero. 

A one-sample t-test of the within-participant signatures of HR reactivity revealed several 

brain areas that consistently contributed to idiographic HR models (FDR < .05, k > 50 voxel 

threshold). Consistent with study hypotheses, HR was predicted by positive weights in the anterior 

insula, and by negative weights in the medial prefrontal cortex and amygdala. In addition, HR was 

predicted by positive weights in the dorsal anterior cingulate cortex, dorsolateral prefrontal cortex, 

inferior parietal lobule, cerebellum, and midbrain, and by negative weights in the posterior insula, 

hippocampus, caudate, and putamen (Figure 4; Table 4). The strength of voxel weights in the 

unthresholded signature was moderately correlated with voxel weights in the average main effects 

map reported above (r = .56). Moreover, brain regions observed in the thresholded signature 

predicting HR overlapped moderately with regions observed in the thresholded Stroop and MSIT 

main effects maps (dice coefficients > .20). 

Comparing the predictive performance of the above idiographic models revealed that 

idiographic HR models were significantly more predictive than idiographic SBP models, as 

evidenced by significantly higher predicted-observed Spearman’s rho values (paired t = 3.08, p = 

.002), higher R2 values (paired t = 2.32, p = .021), and lower MAE values (paired t = -7.88, p < 

.001). By contrast, the idiographic SBP and HR models did not significantly differ in terms of 

Bayes Factors.  



46 

Table 4. Brain regions consistently contributing to idiographic models of HR. 

Regions were identified by conducting a voxel-wise one-sample t-test on idiographic predictive maps and applying a 

false discovery rate (FDR) threshold of 0.05 and extent threshold of 50 voxels. 

Effect 

Direction 
Region Label 

Peak MNI Coordinates 
Voxels 

Peak 

Weight X Y Z 

Positive 
Premotor Cortex, Dorsolateral 

Prefrontal Cortex 
-24 10 42 10245 7.03 

Dorsolateral Prefrontal Cortex 42 6 28 183 4.02 

Medial Prefrontal Cortex 10 62 -14 880 5.22 

Superior Parietal Gyrus -62 -44 22 209 3.99 

Superior Temporal Gyrus -56 -44 8 213 4.47 

Anterior Insula 36 22 0 718 5.69 

Cerebellum, Visual Cortex -4 -74 4 23577 6.84 

Thalamus 16 -20 14 290 4.77 

Thalamus -10 -16 8 376 4.16 

Substantia Nigra 4 -18 -8 646 3.95 

Negative Medial Prefrontal Cortex 6 48 6 8780 -5.98

Superior Parietal Gyrus 58 -22 40 654 -4.65

Superior Parietal Gyrus 48 -64 38 1160 -5.08

Inferior Temporal Gyrus -38 4 -38 258 -4.17

Superior Parietal Gyrus -46 -66 38 1535 -5.80

Somatomotor Cortex -36 -26 62 255 -4.30

Somatomotor Cortex 4 -28 72 688 -4.45

Posterior Cingulate -4 -26 48 273 -3.72

Posterior Cingulate 2 -44 30 1362 -4.64

Amygdala 32 -10 -24 2464 -5.26

Amygdala -24 -12 -20 844 -4.73

Posterior Insula -40 -4 0 384 -4.78

Posterior Insula 40 -10 10 827 -4.79

Posterior Insula -42 -22 14 733 -4.29

Caudate, Putamen -4 14 0 1919 -5.30

Putamen 18 12 -10 459 -4.97

Cerebellum 28 -80 -36 289 -4.04

Cerebellum -28 -80 -36 564 -4.83

Brainstem 4 -32 -42 286 -4.08

Brainstem -8 -28 -34 191 -3.74
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The unthresholded weight-maps reflecting the overall idiographic predictions of SBP and 

HR were positively correlated across voxels (r = .65). By contrast, the thresholded weight-maps 

(FDR < .05, k > 50 voxel threshold) showed only modest overlap in terms of their suprathreshold 

regions (dice coefficient = .13). Comparing the overall weight-maps using paired t-tests revealed 

there were no significant differences in the weight maps in terms of individual voxel weights when 

thresholded at FDR < .05, k > 50 voxels. 

3.4.3 Hypothesis 1c: Cross-modal prediction  

The idiographic models trained on SBP and HR reactivity were tested on the other metric 

of cardiovascular physiology for each participant. The idiographic LASSO-PCR models trained to 

predict SBP and tested on HR showed unreliable prediction of HR, overall rho = .00 ± .03, t = -

0.06, p = .947; R2 = -0.99 ± 0.06; MAE = 5.35 ± 0.22; BF10 = 0.36 ± 0.02; BF01 = 3.64 ± 0.09 

(Table 2 and Figure 3, middle panel). Although this result was contrary to study hypotheses, it was 

somewhat expected in the context of the failure to develop reliable idiographic models of SBP 

(Hypothesis 1a, above). Finally, the strength of this prediction (rho) did not significantly differ 

from the idiographic prediction of SBP described previously (paired t = 1.72, p = .09).  

The idiographic LASSO-PCR models trained to predict HR and tested on SBP showed 

somewhat reliable prediction of SBP, rho = .10 ± .03, t = 3.12, p =.002; R2 = -0.81 ± 0.28; MAE 

= 5.55 ± 0.21; BF10 = 0.46 ± .03; BF01 = 3.43 ± 0.11. However, the strength of this prediction 

did not significantly differ from the idiographic prediction of HR (paired t = 0.91, p = .365), which 

was contrary to study hypotheses as well as the findings of Eisenbarth et al. (2016). 
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3.4.4 Hypothesis 1d: Group-based prediction 

In addition to testing the generalizability of idiographic models across measures of 

cardiovascular physiology, models were also tested in terms of their generalizability to new 

individuals. Thus, 10-fold cross-validated predictions stratifying across mean levels of stressor-

evoked cardiovascular reactivity showed modestly reliable prediction of SBP, overall rho = .17 

±.02, t = 8.48, p < .001; R2 = -0.63 ± 0.04; MAE = 5.68 ± 0.22; BF10 = 0.33 ± 0.01; BF01 = 2.95 

± 0.12 (Table 2, bottom panel; Figure 4, right panel). Contrary to study hypotheses, the group-

based prediction of SBP was significantly more predictive than the idiographic prediction of SBP 

(paired t = 5.69 p < .001) and HR (paired t = 2.66 p = .008).  

Similarly, the group-based prediction of HR was also modestly reliable, overall rho = .29 

± .02, t = 13.92; p < .001; R2 = -0.41 ± 0.04; MAE = 6.53 ± 0.27; BF10 = 0.37 ± 0.02; BF01 = 

2.43 ± 0.12. Contrary to study hypotheses, the group-based prediction of HR was significantly 

more predictive than the idiographic prediction of SBP (paired t = 8.02, p < .001) and HR (paired 

t = 6.02, p < .001), and it was also significantly more predictive than the group-based prediction 

of SBP (paired t = 5.11, p < .001). 

3.5 Aim 2: Generalizability of published multivariate signatures 

3.5.1 Hypothesis 2a: Commonalities between published and empirical brain signatures. 

The prediction weights of the published signatures by Eisenbarth et al. (2016) and Gianaros 

et al. (2017) were not strongly correlated across voxels, r = .04 (Figure 5). Notably, and consistent 
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with study hypotheses, prediction weights in the signature by Eisenbarth et al. were modestly 

correlated with the prediction weights in the idiographic SBP (r = .16) and idiographic HR (r = 

.20) signatures developed in Aim 1. By contrast, prediction weights in the signature by Gianaros 

et al. were not strongly correlated with the prediction weights in either idiographic signature 

developed in Aim 1 (r’s < .06). 

 

Figure 5. Commonalities between published and empirical brain signatures. 

Each panel depicts a lateral hemisphere surface rendering of empirical (top left; bottom left) and previously 

published (top right; bottom right) multivariate brain signatures of stressor-evoked cardiovascular reactivity. 

Connections between each signature reports the voxel-wise association (Pearson r) between each pattern. The 

thickness of each arrow corresponds to the effect size of the association. 
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3.5.2 Hypothesis 2b: Generalizability of Gianaros et al. (2017) 

Applying the unthresholded published signatures to the block-specific beta maps in the 

analytic sample to predict SBP and HR revealed appreciable variability in predictive performance 

(Figure 6; Table 5). Specifically, applying the published signature by Gianaros et al. to predict 

within-participant changes in SBP revealed an overall rho = .05 ± .02, range -.67 to .75, t = 2.79, 

p = .005; R2= -0.85 ± 0.04; MAE = 5.80 ± 0.22; BF10 = 0.29 ± 0.01; BF01 = 3.91 ± 0.07. Finally, 

applying the published signature by Gianaros et al. to predict within-participant changes in HR 

revealed an overall rho = .09 ± .02, range -.67 to .85, t = 4.82, p < .001; R2 = -0.80 ± 0.04; MAE 

= 6.82 ± 0.28; BF10 = 0.27 ± .01; BF01 = 4.07 ± 0.07. The signature of Gianaros et al. did not 

significantly differ in terms of its prediction of SBP and HR (t = 1.56, p = .121). Thus, contrary 

to study hypotheses, the multivariate signature of individual differences in SBP reactivity as 

reported by Gianaros et al. was found to modestly predict within-participant changes in SBP and 

HR in this sample. However, it should be noted that the observed effect size of this prediction was 

smaller than the effect originally reported by Gianaros et al. (hold-out test sample r = .32). 
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Figure 6. Generalizability of previously published brain signatures. 

Bar and violin plots depict distributions of predictions (i.e., predicted-observed Spearman’s rho) of SBP and HR 

reactivity from published brain signatures (Aim 2). Each point depicts the prediction of a participant. Lightly shaded 

bars depict the group mean, and dark shaded bars reflect the group standard error (N = 242). Violin plots depict the 

distribution shape. Left panel depicts idiographic predictions from the signature of individual differences in SBP 

reactivity by Gianaros et al. (2017) (Hypothesis 2b). Right panel depicts idiographic predictions from the signature 

of HR reactivity by Eisenbarth et al. (2016) (Hypothesis 2c). 

 

Table 5. Generalizability of previously published brain signatures. 

Each model was evaluated according 4 sets of metrics describing the association between predicted and observed 

values: the Spearman’s rank-order correlation (rho), coefficient of determination (R2), mean absolute error (MAE), 

and Bayes Factors (BF10, BF01). Each statistic was reported using the group mean (M) and standard error (SE). In 

addition, the group distribution of Spearman’s rho estimates was evaluated using a one-sample t-test. 

 rho R2 MAE BF10 BF01 

 M ± SE t p M ± SE M ± SE M ± SE M ± SE 

Gianaros et al. (2017) 

SBP  .05 ± .02 2.79 .005 -0.85 ± 0.04 5.80 ± 0.22 0.29 ± 0.01 3.91 ± 0.07 

HR  .09 ± .02 4.82  < .001 -0.80 ± 0.04 6.82 ± 0.28 0.27 ± .01 4.07 ± 0.07 

Eisenbarth et al. (2016) 

SBP .13 ± .02 6.09  < .001 -0.74 ± 0.04 5.79 ± 0.22 0.30 ± 0.01 3.83 ± 0.08 

HR .20 ± .02 9.67  < .001 -0.58 ± 0.04 6.81 ± 0.28 0.37 ± 0.01 3.45 ± 0.09 
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3.5.3 Hypothesis 2c: Generalizability of Eisenbarth et al. (2016) 

Applying the published signature by Eisenbarth et al. to predict within-participant changes 

in HR revealed an overall rho = .20 ± .02, range -.60 to .88, t = 9.67, p < .001; R2= -0.58 ± 0.04; 

MAE = 6.81 ± 0.28; BF10 = 0.37 ± 0.01; BF01 = 3.45 ± 0.09. In addition, applying this published 

signature to predict within-participant changes in SBP revealed an overall rho = .13 ± .02, range -

.64 to .89, t = 6.09, p < .001; R2= -0.74 ± 0.04; MAE = 5.79 ± 0.22; BF10 = 0.30 ± 0.01; BF01 = 

3.83 ± 0.08. The signature of Eisenbarth et al. was significantly more predictive of HR than of 

SBP (t = 3.25, p = .001). Thus, contrary to study hypotheses, the multivariate signature of within-

participant changes in HR reactivity as reported by Eisenbarth et al. was found to modestly predict 

within-participant changes in HR and SBP in this sample. However, it should be noted that the 

observed effect size of this prediction was smaller than the effect originally reported by Eisenbarth 

et al. (cross-validated r = .54). 

3.6 Planned supplementary analyses 

3.6.1 Local spatial similarity analyses and network analyses of signatures  

In addition to comparing the multivariate signatures from Aim 1 on a voxel-wise basis, 

planned supplementary analyses additionally compared these signatures based on local patterns of 

prediction weights, as well as their correspondence with large-scale intrinsic networks. First, local 

searchlight analyses were conducted on each participant for whom the idiographic LASSO-PCR 

routine generated voxel-wise predictive weight-maps for both SBP and HR (N = 165). Combining 



 53 

the resulting searchlight maps across participants and applying an FDR threshold of .05 and extent 

threshold of 50 voxels revealed that nearly the entire volume (96.8% of gray matter voxels) showed 

a significant positive covariation in the local pattern between idiographic SBP and HR maps. This 

result was likely due to a combination of the strong association between the two sets of weight-

maps (group-level voxel-wise r = .65) plus the large sample size for conducting one-sample t-tests. 

By contrast, no regions exhibited significant negative local covariation in the local patterns 

between maps. Considering this result, the resulting searchlight map was thresholded to show the 

top 5th percentile of voxels showing the strongest local pattern similarity across voxels (Figure 7; 

mean r > .28; t > 7.88). This map revealed strongest estimates of local pattern similarity in the 

anterior cingulate cortex, medial prefrontal cortex, dorsolateral prefrontal cortex, anterior insula, 

and visual cortex (Figure 7). 

 

Figure 7. Local spatial similarity analyses. 

Similarity maps were thresholded to depict voxels showing greater than 95th percentile in the average local spatial 

correlation at neighboring voxels. 
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The similarity of individual multivariate signatures was assessed with large-scale intrinsic 

brain networks, and these similarity metrics were combined across participants (Figure 8; Table 

6). The SBP signature showed significant positive correspondence with the dorsal attention (t = 

4.31, p < .001), ventral attention (t = 2.78, p =.006), frontoparietal (t = 2.39, p = .018), and visual 

(t = 4.89, p < .001) networks. The HR signature showed significant correspondence with all but 

one network: specifically, it showed positive correspondence with the dorsal attention (t = 3.07, p 

< .001), frontoparietal (t = 3.31, p = .001), and visual (t = 7.50, p <.001) networks, as well as 

negative correspondence with the somatomotor (t = -2.17, p = .031), limbic (t = -3.04, p = .003), 

and default mode (t = -2.81, p = .005) networks. There were significant differences between the 

SBP and HR signatures in terms of their correspondence with these networks: the SBP signature 

showed significantly greater correspondence with the somatomotor (paired t = 2.30, p = .022) and 

limbic network (paired t = 2.78, p = .005), whereas the HR signature showed significantly greater 

correspondence with the visual network (t = 2.05, p = .041). 
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Figure 8. Network similarity analyses of SBP and HR signatures. 

Polar plots depict the mean ± SE of correspondence between each multivariate signature and large-scale intrinsic 

networks. Right panel: paired t-test of the correspondence between SBP and HR signatures and intrinsic networks. 

Networks with a significant effect (p < .05) are labeled in red. 

 

 

Table 6. Correspondence between multivariate signatures and large-scale intrinsic brain networks. 

 SBP HR Difference (SBP > HR) 

 
mean r t p mean r t p paired t p 

Somatomotor .00 0.74 .461 -.01 -2.17 .031 2.30 .022 

Dorsal Attention .02 4.31 < .001 .01 3.07 .002 0.96 .337 

Ventral Attention .01 2.78 .006 .01 1.87 .062 0.71 .476 

Limbic .00 0.32 .752 -.01 -3.04 .003 2.78 .005 

Frontoparietal .01 2.39 .018 .02 3.31 .001 -0.74 .456 

Default Mode .00 -0.02 .982 -.02 -2.81 .005 2.22 .027 

Visual .03 4.89 < .001 .05 7.50 < .001 -2.05 .041 
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3.6.2 Psychometric properties of brain signatures 

The median Spearman-Brown internal consistency of Stroop and MSIT voxels were 0.46 

and 0.41, respectively, whereas the maximum internal consistency for the Stroop and MSIT voxels 

were 0.89 and 0.87, respectively. The Stroop demonstrated significantly greater internal 

consistency across voxels than the MSIT, paired t = 223.46, p < .001. The Stroop and MSIT 

internal consistency maps were correlated across voxels, r = .75; thus, the Stroop and MSIT 

internal consistency maps were combined into a map depicting the average internal consistency at 

each voxel.  

Figure 9 depicts the whole-brain maps comprising voxel-wise estimates of internal 

consistency for the Stroop and MSIT, as well as their average. These maps were thresholded to 

depict ranges of consistency considered to be ‘fair’ (rSB range .4 to .6, red), ‘good’ (rSB range .6 to 

.75, yellow), and ‘excellent’ (rSB > .75, green). In the Stroop, 34,650 voxels (16.7%) exhibited 

‘good’ and an additional 7,474 voxels (3.6%) exhibited ‘excellent’ consistency, whereas in the 

MSIT, 25,808 voxels (12.4%) exhibited ‘good’ and an additional 2,417 voxels (1.6%) exhibited 

‘excellent’ consistency. Regions exhibiting ‘good-to-excellent’ consistency (rSB > 0.6) when 

averaged across the Stroop and MSIT and surviving an extent threshold of 50 voxels included 

regions such as the ventromedial prefrontal cortex, dorsolateral prefrontal cortex, primary motor 

cortex, and somatosensory cortex (Table 7).  
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Figure 9. Internal consistency of the Stroop, MSIT, and their average. 

Whole-brain voxel-wise maps that depict the split-half internal consistency of the Stroop and MSIT, as well as a 

map depicting the average internal consistency of both tasks. Voxels are shaded according to whether they fall in the 

‘fair’ (rSB range .4 to .6), ‘good’ (rSB range .6 to .75) or ‘excellent’ (rSB > .75) range. Clusters showing ‘good to 

excellent’ internal consistency in the average internal consistency map are described in Table 7.  

 

 

Table 7. Regions demonstrating good-to-excellent internal consistency. 

These regions (Spearman-Brown corrected r > .6) are depicted in green color in Figure 9.  

Region Label 
Peak MNI Coordinates 

Voxels Peak rSB 
X Y Z 

Ventromedial Prefrontal Cortex 0 54 -16 570 0.70 

Dorsolateral Prefrontal Cortex 44 26 18 150 0.67 

Lateral Prefrontal Cortex; Occipital Cortex -18 -70 28 44104 0.85 

Primary Motor Cortex 42 4 48 2781 0.78 

Somatosensory Cortex -2 4 56 977 0.72 
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Associations between internal consistency, main effects of BOLD activity (incongruent > 

congruent contrast), and prediction beta weights were explored across voxels (Figure 10). These 

scatterplots suggested that internal consistency tended to constrain the magnitude of the main 

effect contrast parameter for a given voxel (Panel A). In other words, the maximum absolute main 

effect that a voxel could elicit was in part limited according to its internal consistency. In addition, 

these scatterplots showed that main effects tended to correlate positively with multivariate 

signature prediction weights (Panel B & C). Finally, these scatterplots similarly showed that 

internal consistency tended to constrain the magnitude of multivariate signature prediction weights 

(Panel D & C).  
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Figure 10. Comparisons of mean response, internal consistency, and prediction weights. 

Scatterplots depict voxel-wise associations between mean reasonse, internal consistency (Spearman-Brown 

corrected r), and prediction weights. Mean response refers to the incongruent > congruent contrast averaged across 

the Stroop and MSIT. 

3.6.3 Contribution of nuisance variables 

To examine whether physiological or motion-related artifacts may play a potentially 

confounding role in predicting stressor-evoked SBP or HR reactivity, two sets of sensitivity 
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analyses repeated the idiographic LASSO-PCR approach used in Aim 1, this time replacing whole-

brain BOLD beta maps with block-related averages in white matter and cerebrospinal fluid signals, 

as well as block related averages in head motion estimates.  

The first sensitivity analysis used the mean white matter and cerebrospinal fluid signals 

plus their temporal derivatives and squares (see section 2.3.3). These analyses revealed uniformly 

poor performance in the ability to reliably predict SBP and HR (Table 8, top panel). Predictions 

of SBP and HR by these physiological signals were significantly worse than the idiographic 

models using whole-brain BOLD beta maps in Aim 1 (t’s < -5.42, p’s < .001).  

Similarly, the second set of sensitivity analyses repeated the first, adding head motion 

estimates to the white matter and cerebrospinal fluid signal, and incorporating temporal derivatives 

and squares (see section 2.3.3). These models also revealed uniformly poor performance in the 

ability to reliably predict SBP and HR reactivity (Table 8, bottom panel). Whereas the prediction 

of SBP by these physiological signals and head motion estimates was not significantly worse than 

the idiographic models using whole-brain BOLD beta maps in Aim 1 (t = -1.28, p = .20), the 

prediction of HR was indeed significantly worse than the idiographic model derived in Aim 1 (t = 

-2.32, p = .02).  

Table 8. Contribution of nuisance variables to prediction. 

 rho R2 MAE BF10 BF01 

 M ± SE t  p M ± SE M ± SE M ± SE M ± SE 

Idiographic prediction from white matter and cerebrospinal fluid signals 

SBP -.30 ± .04 -7.87 < .001 -0.17 ± 0.04 3.43 ± 0.08 0.96 ± 0.07 2.64 ± 0.11 

HR -.17± .04 -4.28 < .001 -0.08 ± 0.04 2.70 ± 0.09 1.09 ± 0.09 2.52 ± 0.12 

Idiographic prediction from white matter and cerebrospinal fluid signal, plus head motion estimates 

SBP -.10 ± .04 -2.68 < .001 -0.13 ± 0.05 3.38 ± 0.09 0.51 ± 0.03 3.13 ± 0.10 

HR -.02 ± .04 -0.65 .514 -0.01 ± 0.02 2.61 ± 0.09 0.57 ± .03 2.87 ± 0.10 
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3.6.4 Predicting behavior from brain signatures of cardiovascular reactivity 

Within participants, SBP and HR reactivity tended to covary with task accuracy and 

reaction time. Specifically, within-participant task accuracy tended to correlate negatively with 

SBP and HR reactivity (SBP rho = -.15 ± .02, t = -8.71, p < .001; HR rho = -.29 ± .02, t = -14.93, 

p < .001). Similarly, within-participant task reaction time tended to correlate positively with SBP 

and HR reactivity (SBP rho = .24 ±.02, t = 9.89, p < .001; HR rho = .32 ± .02, t = 12.80, p < 

.001). The large effects observed here may have been confounded by the presence of incongruent 

versus congruent conditions in the Stroop and MSIT, which were designed to experimentally affect 

both accuracy and reaction time between conditions (see Section 2.2.2). Thus, associations 

between behavioral performance and cardiovascular reactivity were reevaluated using partial 

correlations that adjusted for condition. These partial correlations revealed that task accuracy was 

not associated with cardiovascular reactivity when accounting for condition (SBP rho = .01 ± .02, 

t = -1.12, p = .26; HR rho = -.02 ± .02, t = -1.13, p = .25). However, task reaction time continued 

to correlate with cardiovascular reactivity when accounting for condition (SBP rho = .01 ± .02, t 

= -1.12, p = .26; HR rho = -.02 ± .02, t = -1.13, p = .25). 

The generalizability of idiographic signatures and their predictions of cardiovascular 

reactivity as developed in Aim 1 was tested with respect to behavioral measures of task accuracy 

and reaction time. These analyses revealed that predicted cardiovascular reactivity tended to 

correlate on a within-participant basis in terms of both task accuracy and reaction time. 

Specifically, idiographic predictions of SBP and HR reactivity tended to generalize to predict task 

accuracy (SBP rho = -.08 ± .02, t = -4.30, p < .001; HR rho = -.11 ± .02, t = -5.61, p < .001). 

Similarly, idiographic predictions of SBP and HR reactivity tended to generalize to predict task 

reaction time (SBP rho = .18 ± .03, t = 6.35, p < .001; HR rho = .21 ± .03, t = 7.46, p < .001).  
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The associations observed between condition (incongruent, congruent), cardiovascular, 

and behavioral performance raised the question of whether the idiographic models using leave-

one-out cross-validation may have been impacted by the presence of different conditions which 

reliably evoked differences in behavioral and cardiovascular responding. To this end, unplanned 

post-hoc analyses reran the nested cross-validated LASSO-PCR procedure described in Aim 1 but 

replacing the LOOCV outer fold with a k = 2 fold cross-validation outer fold and stratifying by 

condition. That is, models were trained on all images from one condition (e.g., incongruent, N = 8 

images per participant) and tested on all images from the other condition (e.g., congruent), thus 

ensuring that condition-related differences in BOLD activity, behavioral performance, and/or 

cardiovascular reactivity did not inflate model development and testing. These idiographic models 

generated moderate predictions of SBP and HR reactivity (SBP rho = .37 ± .02, t = 22.89, p < 

.001; HR rho = .52 ± .02, t = 31.83, p < .001). 

3.7 Exploratory post-hoc analyses  

3.7.1 Examining sources of poor model performance  

Given the above patterning of null results regarding idiographic prediction of SBP and HR 

reactivity, exploratory post-hoc analyses examined factors that may explain individual differences 

in model performance. For SBP, participants for whom the LASSO shrank all principal component 

features to zero showed significantly less SBP reactivity (t = -2.22 p = .03) and less SBP variability 

(t = -2.12 p .04) than the remainder of participants but did not significantly differ in terms of 

baseline SBP, head motion, task accuracy, or task reaction time. For HR, participants for whom 
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the LASSO shrank all principal component features to zero showed significantly less HR 

variability (t = -2.30 p .02) than the remainder of participants but did not significantly differ in 

terms of baseline HR, mean HR reactivity, head motion, task accuracy, or task reaction time.  

Multivariable regression models examining the linear contribution to model performance 

(predicted-observed rho) by baseline cardiovascular physiology, mean reactivity, variation in 

reactivity, head motion, accuracy and reaction time revealed that only cardiovascular (SBP, HR) 

variability significantly predicted individual differences in model performance (SBP B ± SE = 

0.09 ± 0.03, t = 2.86, p = .005; HR B ± SE = 0.08 ± 0.02, t = 3.20, p = .002) (Table 9). That is, 

the idiographic LASSO-PCR models tended to predict cardiovascular reactivity more reliably in 

participants who elicited more variability in their SBP and HR reactivity throughout the Stroop 

and MSIT. Across participants, the model performance in predicting SBP (i.e., Spearman’s rho) 

was positively associated with model performance in predicting HR (r = .20 p = .002), suggesting 

that individual differences in the ability to reliably predict one measure of cardiovascular reactivity 

was associated with the ability to reliably predict the other.  
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Table 9. Individual difference factors relating to idiographic predictions. 

Multivariable regressions examined individual differences contributing to idiographic predictions (predicted-

observed Spearman’s rho) derived in Aim 1. 

 B SE t p 

Idiographic SBP prediction 

(Intercept) -0.12 0.89 -0.13 .894 

Baseline SBP 0.00 0.00 -1.18 .238 

SBP reactivity (mean) 0.01 0.01 1.31 .190 

SBP variability (SD) 0.09 0.03 2.86 .005 

Task accuracy 0.72 0.85 0.84 .401 

Task reaction time -0.22 0.17 -1.31 .193 

Head motion (FD) -0.22 0.37 -0.60 .547 

Idiographic HR prediction 

(Intercept) 0.38 0.77 0.50 .621 

Baseline HR 0.00 0.00 0.93 .353 

HR reactivity (mean) 0.01 0.01 0.58 .563 

HR variability (SD) 0.08 0.02 3.20 .002 

Task accuracy -1.04 0.84 -1.24 .217 

Task reaction time -0.02 0.17 -0.11 .913 

Head motion (FD) -0.53 0.35 -1.50 .135 

 

3.7.2 Exploring alternative machine learning approaches 

Multivariate signatures developed in Aim 1 performed poorly, possibly as a result of the 

LASSO regularization parameters shrinking all principal components to zero and producing null 

models (Figure 11). Hence, post-hoc exploratory analyses repeated the idiographic and other 

predictive models developed in Aim 1 with principal component regression (PCR). These models 

revealed modestly reliable predictions of SBP and HR reactivity (Figure 12; Table 10).  Moreover, 

idiographic predictions using PCR produced significantly more reliable predictions of SBP and 

HR reactivity than the idiographic predictions developed in Aim 1 using LASSO-PCR (SBP t = 
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9.87, p < .001; HF t = 8.77, p < .001). Similarly, the cross-modal predictions applied using models 

developed using PCR produced significantly more reliable predictions than those from Aim 1 

(SBP->HR t = 5.30, p < .001; HR->SBP t = 2.29, p = .02). By contrast, the group-based 

predictions using PCR did not significantly differ from those developed in Aim 1 (SBP t = 1.51, 

p = .13; HR t = 1.68, p = .09). 

 

Figure 11. Regularization within the cross-validated LASSO-PCR procedure. 

LASSO-PCR shrinks principal components of x to minimize mean square error (MSE) of cross-validated 

predictions. The degree of this shrinkage is determined by the parameter λ. A. The model that retains 10 components 

minimizes MSE of prediction. B. The model that retains all 15 components minimizes MSE of prediction, akin to 

principal component regression. C. The model that retains zero components minimizes MSE of prediction, 

producing a null model that predicts mean of training observations for each test observation and therefore producing 

a negative association between predicted and observed Y.  
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Figure 12. Post-hoc exploratory predictions of stressor-evoked cardiovascular reactivity using principal 

component regression (PCR). 

Bar and violin plots depicting distributions of predictions (i.e., predicted-observed Spearman’s rho) for multivariate 

signature development in post-hoc exploratory analyses using PCR. Each point depicts the prediction of a 

participant. Lightly shaded bars depict the group mean, and dark shaded bars reflect the group standard error (N = 

242). Violin plots depict the distribution shape. Left panel describes predicted-observed associations for idiographic 

predictions trained to predict SBP and HR, respectively. Middle panel describes predictions trained on one measure 

of physiology and tested on the other. Right panel describes predictions trained using group-based cross-validation. 
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Table 10. Model performance of exploratory idiographic multivariate signatures using PCR. 

Each model was evaluated according 4 sets of metrics describing the association between predicted and observed 

values: the Spearman’s rank-order correlation (rho), coefficient of determination (R2), mean absolute error (MAE), 

and Bayes Factors (BF10, BF01). Each statistic was reported using the group mean (M) and standard error (SE). In 

addition, the group distribution of Spearman’s rho estimates was evaluated using a one-sample t-test. 

 rho R2 MAE BF10 BF01 

 M ± SE t p M ± SE M ± SE M ± SE M ± SE 

Idiographic prediction 

SBP .14 ± .02 5.85 < .001 -0.24± 0.03 3.54 ± 0.09 0.37 ± 0.02 3.45 ± 0.09 

HR .24 ± .02 10.63 < .001 -0.10 ± 0.03 2.67 ± 0.08 0.50 ± 0.02 3.28 ± 0.11 

Cross-modal prediction 

SBP -> HR .16 ± .02 8.08 < .001 -0.67 ± 0.06 5.35 ± 0.22 0.36 ± 0.02 3.64 ± 0.09 

HR -> SBP .10 ± .03 3.12  .002 -0.81 ± 0.28 5.55 ± 0.21 0.46 ± .03 3.43 ± 0.11 

Group-based prediction 

SBP .17 ±.02 8.48 < .001 -0.63 ± 0.04 5.68 ± 0.22 0.33 ± 0.01 2.95 ± 0.12 

HR .29 ± .02 13.92  < .001 -0.41 ± 0.04 6.53 ± 0.27 0.37 ± 0.02 2.43 ± 0.12 

 

The model predictions using the planned LASSO-PCR method from Aim 1 and the 

exploratory PCR method revealed a unique patterning of associations between the two methods. 

This patterning is depicted in Figure 13. Specifically, in participants for whom the planned 

LASSO-PCR method returned a positive predicted-observed rho, the corresponding prediction 

using PCR was nearly identical (Figure 13; SBP r = .95, HR r = .96). However, in participants for 

whom the planned LASSO-PCR method returned a negative predicted-observed rho, the 

corresponding prediction using PCR was nearly always greater in magnitude (SBP: 97.0%; HR: 

95.3%). This was particularly apparent in participants for whom the original LASSO-PCR model 

returned zero principal components via the LASSO (Figure 13, red datapoints). This suggested the 

apparent improvements in predictions using PCR were among participants with particularly poor 
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or null predictions using LASSO-PCR. Finally, comparing the unthresholded weight-maps derived 

from the planned LASSO-PCR and post-hoc PCR models revealed they produced highly similar 

maps (SBP r = .85, HR r = .94). 

 

Figure 13. Correspondence between predictions using LASSO-PCR and PCR. 

Each point depicts the predicted-observed Spearman’s rho for a participant (N = 242). The diagonal line reflects the 

unity line (y = x). Colors indicate whether any principal components were retained for that participant in their 

LASSO-PCR idiographic model.  
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4.0 Discussion 

The overarching aims of the present study were (1) to develop novel multivariate signatures 

of stressor-evoked brain activity that could reliably predict concurrent stressor-evoked 

cardiovascular reactivity within participants, and (2) to test if previously reported multivariate 

signatures of stressor-evoked cardiovascular reactivity could generalize to reliably predict 

cardiovascular physiology when tested on new participant samples, stressor contexts, and 

measures of cardiovascular physiology. There were 2 main sets of findings.  

First, it was hypothesized that machine learning methods using dimensionality reduction, 

penalized regression, and cross-validation would successfully develop models and signatures of 

brain activity that reliably produced predictions of cardiovascular reactivity within individuals. It 

was also hypothesized that these signatures would generalize to predict other measures of 

cardiovascular reactivity as well as reactivity in other individuals. Overall, the present study found 

limited support for these hypotheses; that is, predictions derived from multivariate and cross-

validated signatures of brain activity did not reliably correlate with within-participant changes in 

stressor-evoked SBP and HR activity. Moreover, these signatures did not generalize to reliably 

predict other measures of reactivity. However, signatures derived using group-based cross-

validation showed modest predictions of reactivity. Notwithstanding their inability to reliably 

predict cardiovascular reactivity, however, these signatures of brain activity were found to 

comprise cortical and subcortical regions that are implicated in psychological stress and 

physiological control processes.  

Second, it was hypothesized that previously published brain signatures of stressor-evoked 

cardiovascular reactivity would share similarities with the signatures developed in the current 
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study, but these published brain signatures would not generalize to reliably predict reactivity in 

the current study. The present study found mixed support for these hypotheses: brain signatures 

developed in Aim 1 were found to moderately associate with a previously published signature of 

HR reactivity by Eisenbarth et al. (2016), but not as strongly with a previously published signature 

of individual differences in SBP reactivity by Gianaros et al. (2017). Moreover, and somewhat 

surprisingly, the brain signature predicting individual differences in SBP reactivity by Gianaros et 

al. as well as the signature predicting within-participant HR reactivity were both found to modestly 

predict within-participant changes in SBP and HR during stress.  

4.1 Aim 1: Multivariate signatures of stressor-evoked cardiovascular reactivity 

In the present study, cross-validated multivariate signatures of stressor-evoked brain 

activity did not reliably predict changes in SBP and HR, contrasting with prior reports by 

Eisenbarth et al. (2016) and Gianaros et al. (2017). Several factors may have accounted for these 

differences in results, including cardiovascular monitoring methods, stressor paradigms, and the 

suitability of the selected machine learning algorithm; each factor is discussed below. 

First, the method of cardiovascular monitoring as employed by the current study may have 

limited the ability to reliably predict within-participant changes in SBP and HR from stressor-

evoked brain activity. To reiterate, in the present study, one SBP reading and one HR reading was 

collected during each 52-to-60 second incongruent and congruent block of the Stroop and MSIT. 

Thus, each reading of SBP and HR may have only depicted a momentary index of the prevailing 

SBP and HR, whereas the true SBP and HR may have significantly fluctuated throughout the 

block. By comparison, Eisenbarth et al. collected continuous ECG recordings and derived 
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continuous HR throughout the entirety of the stressor task. Thus, Eisenbarth et al. had the 

opportunity to characterize patterns of cardiovascular changes that may have been richer and 

possibly more reliable than what was collected in this sample. Future studies that aim to identify 

multivariate signatures of within-participant changes as attempted in the present study would likely 

benefit from collecting continuous measures of SBP and HR in the scanner environment. 

Second, aspects of the stressor paradigm employed here may have limited or otherwise 

modified predictions of cardiovascular reactivity. To elaborate, the Stroop and MSIT were 

originally designed using principles of cardiovascular psychophysiology to measure individual 

differences in stressor-evoked cardiovascular reactivity (Kamarck & Lovallo, 2003), and were 

validated to reveal individual differences in brain activity showing high test-retest reliability (Sheu 

et al., 2012). The current study adds important new findings to this concept, specifically showing 

that the Stroop and MSIT employed in the MRI environment here also show acceptable internal 

consistency across voxels (Figure 9). Moreover, the internal consistency of individual voxels 

appeared to constrain their prediction weight (absolute value) in signatures of SBP and HR 

reactivity (Figure 10, Panel D & E). This latter observation has been reported previously in tasks 

involving the passive viewing of affective faces and scenes (Gianaros et al., 2020) but has not yet 

been explored in the Stroop and MSIT. Taken together, these findings suggest that psychometric 

properties such as internal consistency may significantly influence multivariate brain imaging 

signatures. 

However, despite the acceptable psychometric properties (i.e., test-retest reliability, 

internal consistency) of the Stroop and MSIT, it is possible that these tasks may not have elicited 

sufficient variability in SBP or HR to enable reliable predictions on a within-participant basis. 

Evidence for this possibility comes from post-hoc analyses showing that greater variability in SBP 
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and HR during the stressor tasks was associated with improved predictions in idiographic models 

(Table 9). As the primary models used idiographic cross-validation, it follows that models would 

require a sufficient level of variation in the outcome (e.g., SBP) in order to identify and validate 

reliable predictors. By contrast, models trained on outcomes with little or no variability would 

overfit the training data, thus capturing noise or measurement error in the outcome and not reliably 

predicting outcomes in holdout test data. Hence, it is possible that although the Stroop and MSIT 

elicited robust changes in overall SBP and HR (see Figure 1) that makes them well-suited to the 

study of individual differences, they may not have elicited sufficient variability in SBP and HR to 

identify predictors of changes within participants. As a comparison, in the speech preparation task 

employed by Eisenbarth et al., there may have been greater variability in changes on a within-

participant basis, because the psychological demands of having to give a speech evolves slowly 

throughout the scan session.  

Another aspect of the task paradigm that may have influenced predictions involves the use 

of different conditions (i.e., incongruent, congruent) that systematically engage varying levels of 

psychological experiences, behavioral responses, and cardiovascular reactivity. As described 

previously, due to their design, the incongruent and congruent conditions of the Stroop and MSIT 

reliably differ in terms of response accuracy and reaction time. In addition to their well-

documented differences in brain activity (Figure 1; Gianaros et al., 2017; Sheu et al., 2012), these 

tasks elicited condition-related differences in SBP and HR in the analytic sample (Section 3.2). 

Hence, it is possible that the presence of strong condition-related effects may have obscured the 

multivariate relationship between patterns of brain activity and prevailing cardiovascular 

reactivity. This possibility was examined by conducting post-hoc analyses that cross-validated 

predictions within each condition separately. The models derived from these analyses showed 
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moderate prediction of SBP and HR (Section 3.6.4), thus suggesting that conditions may not have 

systematically influenced prediction in the primary analyses. 

A third factor possibly contributing to the results may have been related to the selection of 

dimensionality reduction and regularized regression methods. To this point, violin plots depicting 

the distribution of idiographic predictions revealed that, for both SBP and HR, a substantial 

proportion of idiographic models returned a prediction-observed Spearman’s rho with a large 

negative effect size (e.g., rho < -.75), as evidenced by the heavy lower tail in both distributions 

(Figure 3, left panel). Notably, the predictions generated by the group-based prediction did not 

show this heavy lower tail (Figure 3, right panel). Examining idiographic models with large 

negative predictions revealed that, for many participants, the poor model fit may have been 

attributable to the cross-validated LASSO regularization procedure. To elaborate, the LASSO 

regularization procedure optimized the shrinkage parameter λ in order to minimize the MSE of 

predictions (Figure 11, left panels, blue lines). In many participants, the minimum MSE was 

obtained via cross-validation to retain either some (Figure 11A) or all (Figure 11B) principal 

components. The latter model is identical to principal components regression. However, in some 

idiographic models, the level of λ producing the minimum MSE required shrinking all principal 

components to zero (Figure 11C), thus producing returning a so-called ‘null’ model comprising 

zero voxel weights and a constant term. Thus, for these idiographic models, the cross-validated 

predictions of test observations comprised the mean value of all training observations in that cross-

validation fold, which therefore produced a negative correlation between test observations and test 

predictions across leave-one-out cross-validation folds (Figure 11C). 

The negative predictions produced above raised the question of whether the LASSO 

regression step of the LASSO-PCR algorithm produced biased predictions in the context of null 
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or otherwise small effect sizes. To explore this, post-hoc exploratory analyses conducted 

permutation tests to characterize the null distribution of effect sizes produced by LASSO-PCR 

(Coutanche & Hallion, 2019). Specifically, in 1000 participants selected with replacement, 

cardiovascular reactivity scores (SBP or HR) were permuted, and idiographic models were 

developed to predict these permuted scores. These permutation analyses showed that the 

idiographic prediction of permuted SBP and HR was rho = -.45 ± .02, t = -29.02, p < .001, and rho 

= -.40 ± .02, t = -25.43, p < .001, respectively. Thus, when attempting to predict permuted data, 

the LASSO-PCR procedure produces negatively biased predictions that are not centered around 

rho = 0. By contrast, predictions of permuted reactivity that were derived from previously 

published multivariate signatures were found to produce null distributions that center around rho 

= 0 (range .002 to .007; p’s > .42). Thus, the LASSO-PCR procedure may be produced negatively 

biased predictions in the context of null or low effect sizes as observed in the present study. 

To test if the regularized regression step of the LASSO-PCR procedure was indeed 

implicated in producing poor model fits, in a set of post-hoc exploratory analyses, idiographic 

cross-validated predictions were repeated using principal components regression (PCR) without 

regularized regression via the LASSO. PCR produced relatively reliable predictions of SBP and 

HR reactivity (Table 10; Figure 12) and these predictions were significantly improved over the a 

priori LASSO-PCR models. Importantly, whereas PCR offered little improvement over LASSO-

PCR for models with positive predictions, PCR offered substantial improvement over LASSO-

PCR for models with negative predictions (rho < 0), especially models that retained zero principal 

components in regularized regression (Figure 13, red points).  

Another potential reason why the selection of regularized regression approaches may not 

have fit the present study was due to the number of observations (n) and features (p) available in 
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each model. First, because there were 16 block-related measures of SBP and HR reactivity per 

participant, idiographic models using leave-one-out cross-validation in the present study could not 

create training folds comprising more than 15 images. By comparison, the study by Eisenbarth et 

al. cross-validated models using 80 training images and 11 test images in each fold, thus potentially 

providing more stable predictions across cross-validation folds that would therefore more likely 

generalize to new test data and test individuals (Woo et al., 2017). Moreover, because the LASSO-

PCR routine used a principal component reduction step prior to the LASSO, the feature space was 

reduced from > 200,000 voxels to p = n-1 (i.e., 15) principal components. Thus, the number of 

principal component features available to fit in cross-validated idiographic models may have been 

too small to reliably predict reactivity. As stated previously, measuring cardiovascular reactivity 

at a higher temporal resolution has the potential to side-step this issue in future studies.  

In addition to the above factors, there was a possibility that factors such as physiological 

noise or head motion may have confounded multivariate predictions of cardiovascular reactivity, 

especially considering the dramatic effect these nuisance variables have on metrics of functional 

connectivity MRI (Power et al., 2012; Satterthwaite et al., 2012). However, multivariate 

predictions using these variables failed to reliably predict SBP and HR reactivity (Table 8), and 

moreover the prediction of HR reactivity was significantly worse than the primary idiographic 

models, indicating that it was unlikely that these factors had a significant confounding influence 

on the results obtained in the primary analyses.  

As expected, because idiographic models generated unreliable predictions of SBP 

reactivity, they subsequently did not generalize to predict HR reactivity (Figure 3; Table 2). 

However, and somewhat surprisingly, idiographic models trained to predict HR appeared to 

modestly predict SBP reactivity (Table 2), although it should be noted that most individual 
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predictions were not significant. Moreover, and in contrast to the findings by Eisenbarth et al., 

group-based models produced improved predictions over idiographic models for both SBP and 

HR reactivity. However, this conflicting finding was most likely due to the poor performance of 

the idiographic models, as the predictions from the group-based models explored here were 

somewhat smaller in effect size than the group-based predictions reported by Eisenbarth et al. (r = 

.32). Nonetheless, these findings confirm prior findings that individuals share commonalities in 

terms of brain representations of cardiovascular reactivity during stress.  

Notwithstanding the above problems with generating reliable predictions of stressor-

evoked cardiovascular reactivity, the models generated brain signatures that comprised key 

visceral control circuits that have long been implicated in psychological stress and cardiovascular 

control. Most notably, when applying an FDR correction to the brain signatures for SBP reactivity, 

the dACC emerged as a consistent contributor to (albeit unreliable) predictions. The dACC is 

functionally implicated in numerous psychological processes, including cognitive control, error 

monitoring, action selection, negative emotion, threat processing, and pain processing (Botvinick 

et al., 2004; Kragel et al., 2018; Shackman et al., 2011; Shenhav et al., 2016; Wager et al., 2016). 

Moreover, the ACC is broadly implicated in regulating peripheral cardiovascular physiology via 

its direct connections to autonomic and neuroendocrine effector pathways (Amiez & Procyk, 2019; 

Dum et al., 2016; B. Vogt, 2009). As detailed previously, the dorsal subdivision of the ACC in 

particular is commonly associated with pro-sympathetic influences over the ANS, which may 

become particularly apparent in the context of behaviorally-evoked cardiovascular reactivity 

(Critchley, 2004; Gianaros & Wager, 2015); (Matthews et al., 2004; Thayer & Lane, 2009). For 

example, patients with lesions to the dACC show reduced BP and HR responses to psychological 

and physical stressors (Critchley et al., 2003), and electrically stimulating the dACC in epilepsy 
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patients induces transient increases in BP and HR (Caruana et al., 2018; Parvizi et al., 2013; Pool 

& Ransohoff, 1949). Thus, the present study contributes to the growing body of evidence 

suggesting the dACC may comprise a key cortical regulator of SBP, particularly in the context of 

psychological stress. 

The brain signature of HR reactivity comprised weights in several hypothesized brain 

regions, including the vmPFC, amygdala, and hippocampus. The negative weights in the vmPFC 

are consistent with several studies showing negative associations between vmPFC activity and HR 

reactivity, consistent with a hypothesized role for the vmPFC in pro-parasympathetic outflow 

(Gianaros et al., 2004; Matthews et al., 2004; Thayer et al., 2012; Wager, Waugh, et al., 2009). 

The negative weights in the amygdala and hippocampus are somewhat consistent with other 

studies reporting stressor-evoked deactivation in limbic structures (Pruessner et al., 2008), 

although the directionality of the association between amygdala activity and HR reactivity have 

been mixed (Critchley et al., 2000; Wager, Waugh, et al., 2009). Finally, negative weights were 

observed in the bilateral posterior insula, a region which is implicated in processing ascending 

viscerosensory information (Craig, 2009, 2014).  

The brain signatures trained to predict SBP and HR reactivity were correlated both at the 

whole-brain and at the local pattern level, and moreover did not show significant differences in 

prediction weights at the voxel level. This suggests these two signatures may be capturing 

substantial shared variance in cardiovascular reactivity suggesting these two models may be 

capturing substantial shared variance. This finding contrasts somewhat with the results of 

Eisenbarth et al., who observed several differences in multivariate signatures of HR and skin 

conductance level (SCL) reactivity. Although there were no statistically significant differences 

between the SBP and HR signatures at the voxel-wise level, network analyses showed significant 
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differences in how these signatures were represented within large-scale intrinsic networks. Chief 

among these differences were significantly more negative correspondence of the HR signature 

with the somatomor, limbic and default mode networks. These differences between signatures at 

the network level suggest that even evaluating and comparing multivariate signatures may require 

pattern-based approaches, as opposed to voxel-wise statistical tests (Ginty et al., 2019) 

4.2 Aim 2: Generalizability of published multivariate signatures 

In the present study, comparing the empirically derived idiographic maps with previously 

published signatures revealed associations with the signature of Eisenbarth et al. (2016). 

Specifically, the voxel-wise HR reactivity pattern was positively associated with the signature of 

Eisenbarth et al., and moreover shared several commonalities, including positive weights in the 

dACC, DLPFC, and cerebellum, as well as negative weights in the vmPFC, temporal lobe, and 

posterior insula. It should be noted that these associations were observed despite the two studies 

differing appreciably in terms of their participant demographics and stressor paradigm. It may be 

speculated that these strong associations may have been related to their shared capturing of within-

person changes in cardiovascular physiology, as opposed to stable individual differences as 

captured by Gianaros et al. (2017). By contrast, the signature of SBP reactivity shared 

commonalities with the signature by Gianaros et al. via positive weights in the dACC, again 

suggesting this region may be implicated in translating both within-participant processes related 

to SBP changes as well as the expression of individual differences in SBP reactivity. 

Previously published brain signatures of stressor-evoked cardiovascular reactivity were 

found to modestly predict SBP and HR responses during stress in the analytic sample. To my 
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knowledge, this was the first study to empirically test the generalizability of brain signatures in 

this domain. Such generalizability tests have been widely conducted in other areas of research, 

including pain processing (Wager et al., 2013), negative emotion (Sicorello et al., 2021), and 

decision making (Cosme et al., 2020). However, the effect sizes observed in this aim, while 

statistically significant, were substantially smaller in magnitude than the effects observed in the 

above fields pertaining to generalizability of predictions. Nonetheless, these tests comprise a 

critical step towards building a repertoire of brain signatures that reflect various aspects and 

contexts of stress-related physiology that are important for health (Erickson et al., 2014; Inagaki, 

2020). 

4.3 Strengths 

The present study had several strengths, including the use of a representative sample of 

healthy adults free of potentially confounding chronic physical disease or medication use that may 

have affected cardiovascular physiology. Second, the use of multivariate and machine learning 

approaches to predict stressor-evoked cardiovascular reactivity represents an important departure 

from mass-univariate correlational approaches that are subject to elevated false positive rates and 

poor generalizability (Eklund et al., 2016; Kriegeskorte et al., 2009). Third, the second aim utilized 

what could be considered a so-called ‘gold-standard’ approach of cross-validating multivariate 

brain signatures of a psychological or behavioral process across studies – that is, taking a model 

trained in a different sample and applying it to a novel context and set of participants (Scheinost 

et al., 2019). Finally, this study also carefully considered the psychometric properties of the brain 
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imaging data, which are becoming more important in the context of developing reliable models of 

psychological processes by brain imaging data (Kragel et al., 2021). 

4.4 Limitations 

In addition to the previously detailed limitations regarding cardiovascular monitoring 

method and task design, it should be noted that the predictions explored in this study are 

nonetheless cross-sectional in nature. In other words, although the signatures developed here and 

in other studies were used to ‘predict’ measures of cardiovascular reactivity, they do not 

demonstrate that patterns of stressor-evoked brain responses have a causal influence over 

cardiovascular reactivity. Indeed, patterns or features of stressor-evoked brain activity may reflect 

efferent visceromotor commands to influence peripheral cardiovascular physiology, or they may 

reflect ongoing viscerosensory processing or representation of the prevailing or changing 

cardiovascular physiology in the periphery, or they may reflect some combination of the two 

mechanisms (Kraynak et al., in prep; Seeley, 2019). To address this limitation, future studies will 

need to combine the multivariate methods used in this study with study designs that experimentally 

manipulate brain activity (e.g., using noninvasive neuromodulation; Kaur et al., 2020; Makovac et 

al., 2017) or modulate peripheral cardiovascular physiology (e.g., using physiological challenges; 

Hassanpour et al., 2016) and test for effects and predictions on subsequent responses to 

psychological stressors .  
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4.5 Future directions 

As mentioned previously, future studies could aim to replicate and extend these findings 

by employing more fine-grained measurement of SBP and HR during stressor paradigms. 

Moreover, future studies might incorporate multilevel modeling into the above machine learning 

and cross validation methods in novel participants to better parse components of brain activity that 

reliably contribute to within-person changes versus stable individual differences (Petre et al., 

2019). Further exploring these multivariate signatures will increase our understanding of the brain 

systems that may link psychological stress to CVR risk. 

4.6 Conclusions 

In summary, the present study aimed to build upon the small but growing number of brain 

imaging studies using machine learning methods to predict stressor-evoked cardiovascular 

reactivity, a known biobehavioral risk marker for CVD. The findings of the study suggest that 

stressor-evoked cardiovascular reactivity may not always be reliably predicted by patterns of brain 

activity, depending on the stressor task and the parameters of cardiovascular physiology. This 

study adds preliminary evidence that cross-validated models of stressor-evoked cardiovascular 

reactivity may moderately generalize to participant samples and stressor paradigms, which is a 

critical validation step toward developing brain-based signatures of stress-related disease risk that 

may be eventually used identify at-risk individual or identify treatment targets. 
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