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Deep Learning for Motion Recognition

Sara Daraei, PhD

University of Pittsburgh, 2021

Automatic analysis and interpretation of human motion from visual data has been one

of the most significant computer vision challenges since 1970. In recent years, deep learning

has fueled the rapid advancement of computer vision topics. In particular, human motion

analysis has drawn substantial attention due to its practical importance in many applications

in a variety of domain including social behavior studies, medical assistance, robotics, sport

analytics, and more.

Human motion is one of the key parts of human social behavior and a rich source of

information. We move our whole body involving head, shoulders, hands, trunk, legs, and

limbs combined with facial expressions flavored with our individualized style to transmit

social signals. A number of studies have suggested the existence of unique motion signatures

of individuals by analyzing data obtained from Kinect™ devices, and Electromyography

(EMG) electrodes attached to muscles. Meaning that when we move and communicate, we

tend to use our characteristic style of motion. These distinct motion patterns are attributed

to behavioral and anatomical di↵erences between individuals as well as their di↵erent muscle

activation strategies.

This research aims at establishing a fully-automated framework to push the envelope of

understanding information hidden in human motions from visual inputs and its potential

applications on a set of fundamental tasks including classification, identification, and user

authentication. For this purpose, we propose a number of deep learning approaches and try

to tackle the problem from a data-driven perspective and figure out to what extend we would

be able to model human motion signatures and see if it is possible to authenticate or identify

people based on their movement pattern. Our results demonstrate an accuracy of 94.04% for

human authentication and 92.62% for human identification among 10 subjects confirming

that human motion conveys information regarding their identity and can be considered as

practical biometric cues. Considering particular applications and their limitations, we further
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propose a generative biometric model that e�ciently learns task-relevant features in data

and integrate them into a probabilistic authentication setting based on limited amount of

data. The proposed framework is able to authenticate the correct subject 86.11% of times.
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1.0 INTRODUCTION

Body motions are one of the key aspects of human social behavior and a rich source of

information. We move with our whole body involving head, shoulders, hands, feet, trunk,

and limbs combined with facial expressions flavored with our individualized style to transmit

social signals [98, 76]. Due to many potential important applications, ”Looking at People”

is currently one of the most active challenges being explored in parallel by di↵erent research

communities. In computer vision, automatic human motion analysis from visual data has

been one of the most important challenges due to the advancement of video camera technolo-

gies and the significance in many domains such as psychology, medical assistance, security,

social behavior, robotics, human-computer interactions, virtual reality, sport analytics, and

etc. Currently, hundreds of applications are enhanced with existing such technologies while

others are in the urgent need of missing pieces of this puzzle.

During the past decade, development of deep learning algorithms and progress in pro-

cessor technologies, has fueled the rapid advancement of computer vision topics including

human motion analysis. Human pose estimation, in particular, caught a huge amount of

attention from computer vision communities resulting in growth of this domain and imple-

mentation of many algorithms to estimate human body pose from visual data [30, 157]. The

temporal evolution in the field of human pose estimation naturally became an attractive

option for making progress in many other human motion analysis domains such as human

activity recognition and many more. While, problems such as human pose estimation and

human activity recognition are examples of classical computer vision challenges that caught

a huge amount of e↵orts and attention, a numerous topics in the field of human motion anal-

ysis remained partially-explored due to the limited understanding of the patterns hidden in

data or immature analytical descriptor. In this research, we aims at establishing a frame-

work to push the envelope of understanding human motion and its potential application as

an authentication/identification technique.

In recent years, a number of studies have suggested the existence of distinct and iden-

tifiable motion patterns of individuals by analyzing movement data obtained from Kinect
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devices [115] and Electromyography (EMG) electrodes attached to muscles [67]. From these

studies, unique motion patterns can be attributed to anatomical di↵erences and the exis-

tence of individual muscle activation strategies or signatures. Behavioural contrasts between

individuals is also another reason that distinguishes their movement patterns [171, 46, 111].

These studies highlight the potential of body movements as a biometric method and its

usefulness in multi-modal identification systems.

Human motion biometrics has been considered as an authentication/identification tech-

nique in a number of research papers relying on the fact that human motion patterns are

unique. Headbanger is a software device implemented on Google GLASS to authenticate

users based on their free-style head movement in response to an external audio stimulus.

Furthermore, gait identification, including stride length and arm swing, has attracted signif-

icant attention as a non-contact, non-obtrusive method for authentication which is resilient

to cyber attacks [162, 156, 142]. In a separate e↵ort, [121] utilize arm swing data captured

from cellphone inertial sensors, accelerators and gyroscopes, and explore convolutional tem-

poral models for human authentication. Perhaps the most relevant study to this research is

[29] which proposes an identification approach using convolutional neural network based on

radar micro-Doppler patterns and achieves average accuracy of 85.6% for 10 people.

In this research, we propose a framework that is able to model human motions from

visual input. The proposed framework focuses on the design and implementation of a fully

automated human motion analysis network as the video inputs are not annotated and ac-

quiring human pose annotation for large data is not feasible. We approach the problem from

a data-driven perspective to figure out to what extent we can model individual’s motion

patterns and see if it is possible to authenticate or identify people based on their motion

signature.

Historically, the di�culty of data collection for biometric research has been a challenge

due to practical biasis and legal problems. Therefore, the majority of existing literature are

limited to lab-scale data collection which is a poor representation of the real world data due

to subjects self consciousness and also limited amount of sample data.

Furthermore, two main key challenges in implementing an automatic human authentica-

tion/identification framework are the e�cient learning of task-relevant representation of the

2



data and also the incorporation of them in a biometric setting characterized by individuals.

These challenges meet limitations due to low computational power as well as limited amount

of training samples.

In response to the above-mentioned challenges, we develop a non-intrusive and non-

cooperative technique for human verification as well as identification which is based on

the in-the-wild footage of subjects. Unlike other studies established in this domain, the

proposed framework is able to model human motion only by looking at in-the-wild footage

of individuals and does not require any additional devices such as Kinect™, wearable or

RADAR sensors. To the best of our knowledge there is no similar work established yet that

could model human motion patterns based on visual inputs.

Moreover, in the further steps of this research we intend to address challenges related

to low computational power or limited amount of training samples by figuring a universal

background model which is cable of learning a general human motion distribution in the

motion feature space that could be trained o✏ine before being used in any application.

Apart from the potential application which we are going to briefly discuss in next section,

the key contribution of this research is in proposing a temporal architecture that is able to

model multiple temporal sequences. This model will be specifically developed for motion

biometric recognition while it is applicable to many other problems in computer vision.

1.1 Applications

The framework we propose in this manuscript is a research tool that could be utilized

in variety range of application. Bellow, we briefly describe few potential applications of our

work:

– User Authentication One of the key potential application of the proposed frame-

work is user authentication for consumer devices. Authentication based on movements

could be used in mobile phones, smart cars, smart homes and many other applications to

e↵ortlessly unlock the device for the user without the need for their direct communication.
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– Security and Surveillance Cameras Motion biometric o↵ers advantages over phys-

iological biometrics which either require close-distance cooperation of the subject like

fingerprint or their accuracy is highly dependable on image quality and lighting condi-

tions like face and iris recognition. For example, as shown in figure 1, in low light con-

ditions, only coarse body motions are detectable in security/surveillance camera footage

and thus other biometrics fail. Moreover, in situation that the subjects are covering their

face with a mask or hat, it would be di�cult to identify them based on their conventional

biometrics.

Figure 1: Example of surveillance footage in which conventional biometrics are not useful

and only coarse body motions are detectable.

– Virtual Reality Emerging metaverses are predicted to define the future of enter-

tainment and social interactions [145] where body motions are captured to provide an

immersive experience. A key experience of these metaverses are interactive virtual avatars

which are either built super-realistically from high resolution images of the real individ-

uals or cartoonist animated 3D objects. People can walk into a casino and play a hand

of poker or chat with their family/friends in remote locations as all are in the same loca-

tion. While these metaverses try to emulate real life experiences and social interactions,
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avatars identity theft and fraud appears to be a big security concern [16, 24]. Authenti-

cating virtual reality users by tracking their behaviour in performing goal-oriented tasks

has gained attention in research community recently [89, 171].

– Video Conferencing On recent closures and due to Covid-19, online video conferenc-

ing has become a trend and part of everyday life, as people are confined in their places

and work from home. Many of these video conferencing platforms provide the feature of

avatars to communicate with others remotely. As an example, LoomieLive [7] is a video

conferencing platform that provides customizable 3D avatars driven purely by audio.

As shown in figure 2, users are able to be fully engaged in your video conference while

protecting their appearance and background. This could be a situation where identity

theft will become a significant security risk, specifically in confidential meeting.

Figure 2: An example of avatar-based video conferencing: LoomieLive video conferencing

allows users to fully engage in video conference meetings while protecting their appearance

with a costumizable 3D avatar.

– Content-based Video Indexing Currently most of content-based video indexing

technologies are based on based on pixels rather than perceived content [149]. Such thing

can easily being manipulated by the state-of-the-art video tools and technologies. The

framework proposed in this research could be considered as a step toward content-based

video management.
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– Deepfake Identification Deepfakes are synthetic media that leverage powerful tech-

niques from machine learning, deep learning and computer vision to generate or manip-

ulate visual and audio content with a high potential to deceive the audience [81]. In

these videos one person is replaced with someone else’s likeness. To mention few ex-

amples, the President Obama’s 2019 video in which he was swearing during a public

service announcement or Mark Zuckerberg’s viral video in which he was announcing that

he is deleting Facebook or Queen Elizabeth’s alternative 2020 Christmas message that

an image of it is shown in figure 3. Such deepfake videos are becoming more and more

successful as the the quality of videos are increasing due to development of machine

learning/deep learning and computer vision algorithms. Furthermore, the tools of today,

and for sure those of tomorrow, provide accessibility for anyone to create such videos.

In this situation, identity theft could be a big concern. Analyzing deepfake personalities

motion could help with distinguishing between the real and the fake person.

Figure 3: Queen Elizabeth deepfake Christmas message vs her real Christmas message.

1.2 Key Aspects

– Firstly, as explicitly mentioned in the title of this proposal, each proposed methodology

in this research is in associated with domain of automatic analysis of human motion
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from visual data. We begin our exploration by looking at modeling human motion as

a general problem.

– One significant priority of this work is the data-driven learning of visual data rep-

resentations. Therefore, as oppose to designing hand crafted features for each specific

type of input, we use deep learning models to achieve such purpose. In the context of

our proposed research, we explore temporal strategies for learning motion features and

propose a number of recurrent deep neural network architecture.

– All applications proposed in this dissertation are considered as a machine learning

problem, regardless of their objective. Therefore, it worth to highlight the important

aspects of the learning pipeline; first, the data used in this research are labeled real-data

and the data representations are sequential (temporal); second, all models are trained in

a fully supervised manner; and third, the problem formulation is considered as validation

and classification problem.

1.3 Thesis Organization

This rest of this manuscript is organized as follows:

– Chapter 2 focuses on literature review of the existing state-of-the-art deep learning ap-

proaches implemented specifically for pose estimation, activity recognition, and biometric

recognition.

– In Chapter 3, we temporarily put the proposed framework and its applications aside and

focus on reviewing the existing deep learning models in detail.

– Chapter 4 is dedicated to our deep learning motion authentication framework and dis-

cussion around it.

– Chapter 5 focuses on proposing a deep learning framework for human identification

among a set of 10 subjects.

– Chapter 6 evaluates and interprets the robustness of proposed methods in chapter 4 and

chapter 5.
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– Chapter 7 addresses the challenges of the potential human motion recognition appli-

cations and propose a lightweight framework which is applicable on devices with low

computational power, storage, and memory.

– Chapter 8 concludes our work and sheds light on future potential research directions in

this domain.
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2.0 BACKGROUND: HUMAN MOTION ANALYSIS

In this chapter, we provide a general overview of existing approaches for human motion

analysis from visual data. Even though some of the discussed context might not be directly

relevant to the topic of this research, they still provide the essential background and in-

sight for better understanding of the domain and existing challenges. For more extensive

review in the area of deep learning, the reader is invited to move forward to the next chapters.

The field of human motion analysis contains a broad range of topics; e.g. human pose

estimation, human activity recognition, and human authentication/recognition. Although

some approaches for one problem might be applicable for another, depending on the level of

abstraction, di↵erent aspects could play significant roles. In this chapter, we aim to provide

a near-range subset of motion-related problems focusing on human pose estimation, human

action recognition, human identification, and more general approaches when applicable.

2.1 Human Pose Estimation

The goal of Human Pose Estimation (HPE), which has been studied for decades, is to

obtain posture of human body by automatically locating the position or spatial location of

body keypoints from given sensors or in vision-based approaches, from a given image or video

[84]. Challenges such as occlusions, clothing, lighting, small and barely visible keypoints,

and strong articulation makes this task a di�cult computer vision problem [23].

Traditionally, the gesture recognition process used to start with preprocessing of data to

make algorithms to work on as much as useful data as possible. Then, it was followed by

extracting hand-crafted feature which were designed by computer vision experts. Many of

hand-crafted features were based on edge-based descriptors such as HoG [38], SIFT [104],

and SURF [25]. Due to the high dimensionality of feature vector, principal component

analysis is used in many of traditional approaches. However, the main di�culty with classical
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approaches is the necessity to claim crucial features in each task; i.g. one classifier that

works for one task is not applicable to another. Also, traditional models do not scale well

as the number of classes increase. As a result, classical methods showed bad generalization

performance which followed by insu�ciency in determining the accurate locations of body

parts [112].

In 2012, a paradigm shift happened when AlexNet [85], a deep-learning based model,

won the ImageNet competition by a large margin. Since then, deep neural network mod-

els has been applied in a variety range of topics including human pose recognition. Deep

learning based approaches easily outperformed state-of-the-art traditional models by rapid

progression as well as more significant feature extraction from metadata [40]. Figure 4 rep-

resents the di↵erences between deep learning and traditional computer vision workflow. An

interested reader may refer to [161] for detailed review of di↵erences between deep learning

and traditional computer vision approaches.

Figure 4: Traditional computer vision workflow represented in (a) vs. deep learning workflow

represented in (b). Figure from [166]

While we do not study all deep learning approaches for human pose estimation in details,

it is important to have an overview of existing works. For more details on current HPR deep

learning models, an interested reader may refer to several notable surveys that summarized
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and compared the research in this area [33, 40, 176, 127]. The current literature of this

area could be categorized in several di↵erent ways depending on the body type they choose

as the representation or their approach to tackle the problem. As demonstrated in figure

5, there are three types of conventional human body models in human pose estimation

literature; skeleton-based model, contour-based model, and volume-based model. In the

next few paragraphs, We provide a general overview on each of human body models and we

refer an interested reader to these two well-summarized surveys [102, 55] for more details.

Figure 5: Conventional human body models used in HPE literature. (a) skeleton-based

model, (b) contour-based models, (c) volume-based models. Figure from [33]

Skeleton-based Models Skeleton-based models could be described as a graph where

nodes represent the locations of body joints and edges indicate the joints connections within

the skeletal structure [49]. The simplicity and flexibility of the skeleton-based model lead to

the wide utilization of this model in human pose estimation literature. However, it has some

limitation in providing texture, width, and contour information.

Contour-based Models The contour-based model is used widely in earlier studies in

human pose estimation. In this model, human body parts are represented by rectangular

bounding boxes over the person silhouette. The bold benefit of this contour-based models is

that they provide width and contour information. Cardboard models [79] and Active Shape

Models (ASMs) [36] are two of widely used contour-based models.

Volume-based Model Volume-based models are 3D human body models, normally

captured with 3D scans and represented in mesh form. Shape Completion and Animation of
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People (SCAPE) [21] and Skinned Multi-Person Linear model (SMPL) [103] are two of the

widely used volume-based models.

Moreover, current human pose estimation literature could be categorized based on their

respective characteristics. Figure 6 illustrates the tree-structure taxonomy of deep learning-

based monocular human pose estimation approaches.

Human Pose Estimation 
(HPE)

2D HPE

3D HPE

2D Single

2D Multiple

3D Single

3D Multiple

Bottom-up 

Detection-based 

Regression-based  

Top-down 

Model-free 

Model-based 

Figure 6: Taxonomy of deep learning-based monocular human pose estimation approaches

2.1.1 2D Human Pose Estimation

2D human pose estimation aims to predict the location of body keypoints/joints in 2D

space from images or videos.

2.1.1.1 2D Single-Person Pose Estimation In 2D single-person pose estimation, the

algorithm is able to localize one person in the input image. For images with more than one

person, preprocessing is necessary to crop the image into images with single person. The

single-human pose estimation pipeline could be classified into two categories depending on

the di↵erent problem formulation in predicting keypoints: regression-based and detection-

based methods.

Regression-based Methods In regression-based approaches, the input image is di-

rectly mapped to the body joints or parameter of human body models [157]. Due to non-
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linearity of the problem, the direct mapping of the input image to body joints is a challenging

task.

Detection-based Methods Detection-based methods aim to target the approxi-

mate locations of body parts or joints by rectangular bounding boxes or in recent works

by heatmaps [34, 117]. The benefit of this approach is that the small region representations

provide dense pixel information with stronger robustness. However, for example, heatmap

representation su↵er from limited accuracy due to lower resolution caused by the pooling

operation in CNN. Figure 7 presents an example of heatmap-based single-person human pose

estimation.

Figure 7: An example of heatmap-based single-person human pose estimation: (a) original

image ; (b) generated heatmap; (c) estimated pose

2.1.1.2 2D Multi-Person Pose Estimation There is a set of challenges that makes

2D multi-person pose estimation a di�cult task. For example, there is no prompt over the

number of people in each input image and the interactions between individuals increase the

complexity of part associations. Moreover, as the number of people increases in an image,

the run-time complexity tends to grow. In order to address these challenges, 2D multi-person

pose estimation approaches can be categorized into two mainstream methods: top-down and

bottom-up approaches.

Top-down Methods Top-down approaches (e.g. PoseNet [123], RMPE [48]) first

detect all the people in the image using a set of bounding boxes, and then try to predict

individuals poses using the existing single-person pose estimation method. The e�ciency of
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top-down approaches in multi-person pose estimation heavily depends on the performance

of the pose estimator and the run time is proportional to the number of people in the image.

Bottom-up Methods Bottom-up approaches (e.g. DeepCut [128], DeeperCut [71],

OpenPose [30]) directly detect the location of body joints and then assemble the into distinct

human body skeletons. In a complex environment with multiple human, correct assembling

of keypoints is a challenging task. The processing time of some of the existing bottom-up

approaches are really fast. Even some are able to be run in real time [30, 118].

2.1.2 3D Human Pose Estimation

The goal of 3D human pose estimation is to predict the location of body joints in 3D

space from visual inputs or other sources such as Kinect [6], VICON [13], or TheCaptury [11].

However, compare to monocular cameras that have been widely used for 3D pose estimation,

these commercial products required special markers/devices on human body and work in a

very constrained environment. Compare to 2D human pose estimation, 3D estimation is

significantly more di�cult problem as it needs to predict the depth information related to

keypoints. Moreover, lack of 3D in the wild ground truth data is a major limitation. In this

section we divide the current approaches of 3D human pose estimation into two sections of

3D single-person pose estimation and 3D multi-person pose estimation and provide a general

overview on each one.

2.1.2.1 3D Single-Person Pose Estimation In most of 3D single-person pose esti-

mation approaches, the bounding box around the person is provided; meaning that the

algorithm is not necessarily enhanced with the person detection process as well. As shown

in figure 6, 3D single person pose estimation could be divided into two main categories:

model-free methods and model-based methods.

Model-free Methods In model free methods, human body model is not used as

the predicted target or half-between cues. Instead, they either directly map an image into

a 3D-pose or estimate depth ( e.g. [94, 126, 95, 154, 125]) or estimate depth following

intermediately predicted 2D pose from 2D pose estimation methods. The second approach
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Figure 8: Predicting 3D human pose estimation using 2D approaches. Figure from [178].

gains the benefit of 2D pose estimation which involves the easy utilization of images from

2D datasets; e.g. as shown in figure 8, some of them first estimate the 2D pose and then

extend that to 3D by a 2D-to-3D pose estimator which utilizes linear layers [106] or heatmaps

[178, 155].

Model-based methods In model-based approaches, a parametric body model is used

for human pose estimation. Recent models are majorly estimated from multiple scans of

diverse people ( e.g. [61, 103, 179]) or combination of di↵erent body models ( e.g. [78]). The

parameters in these models are updated based on separate body pose and shape components.

2.1.2.2 3D Multi-Person Pose Estimation The field of 3D multi-person pose estima-

tion is a pretty much a new field and a few methods are propose. For example, [108] utilizes a

2D bottom up approach to estimate individuals pose in 2D and then uses an occlusion-robust

pose-maps (ORPM) for multi-style occlusion information. As another example, [136] uses a

three-stage neural network that first detects the location of individuals using Region-based

Convolutional Neural Networks (R-CNN) is employed to detect people locations. Then using

a classifier, each pose proposal is assigned with the closest anchor-pose. Finally, the poses

are refined with a regressor correspondingly.
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2.1.3 OpenPose

OpenPose [31], is one of the most popular single/multi-person 2D pose estimation frame-

works that successfully estimates human body, hand, face, and foot keypoints (135 keypoints

in total) from a single image, video, or real-time footage. OpenPose first introduced on 2016

and ever since has been widely used in many studies with di↵erent purposes to obtain human

body pose [120, 113, 122, 44, 158].

Figure 9: OpenPose overall pipeline [30]: (a) input image that is fed into the CNN network

which jointly predicts: (b) part confidence map and (c) PAFs for part association. (d) the

bipartite step which matches body part candidates. (e) part candidates are matched into

full poses for all individuals in each image.

Taking a bottom-up approach, OpenPose uses a multi-stage Convolutional Neural Net-

work (CNN) architecture, in which first predicts the confidence map of body keypoints using

a feed-forward network and then finds the Part A�nity Fields (PAFs), a two dimensional

vector that demonstrates the position and orientation of each limb over the image domain.

Later, in the parsing step, a set of bipartition matching is performed to associate body part

candidates and finally part candidates are assembled into full-body poses. Figure 9 repre-

sents the OpenPose general pipeline; the network takes a w ⇥ h colored image as the input

(a) and estimates the 2D skeleton-based poses for each person within the image (e).

The OpenPose network architecture is presented in figure 14. The input image is first

passed to a pre-trained convolutional neural network such as the first 10 layers of VGG-19

[147] for feature extraction. The feature maps F are the input to the proposed architecture.
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Figure 10: OpenPose multi-stage architecture: The first set of stages in blue, predicts PAFs;

the last set in orange detects confidence maps. The predictions of each stage and their

corresponding image features are concatenated for each subsequent stage. Each convolutional

block includes 3 convolutional layer of kernel 3 [30].

Through a feed forward network, the first set of steps shown in blue, iteretively predicts the

part a�nity fields (L) and the steps in orange detects confidence maps (S). The symbol �t

is used as function representation of the CNN with input F that outputs part a�nity field

L at stage t, and the symbol ⇢t is used as function representation of the CNN with input

F that outputs confidence map S at stage t. With intermediate supervision at each stage,

the iterative process helps to increase the precision of predictions over successive stages; i.e.

original features along with the prediction from previous stage are all used to produces more

refine predictions:

S
t = ⇢

t(F, St�1
, L

t�1)), 8t � 2 (2.1)

L
t = �

t(F, St�1
, L

t�1)), 8t � 2 (2.2)

At the end of each branch one loss function is applied in order to generate the best sets

of S and L. A standard L2 loss is used the estimated predictions and ground truth maps
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and fields:
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Where p represents a single pixel location in an image, * stands for ground truth, J

represents the total number of body part and C represents the total number of limbs. W (p)

stands for the weight added to the loss functions to address a practical problem that some

datasets do not completely label all individuals. The overall loss function is the combination

of the two above-mentioned loss functions:

f =
TX

t=1

(f t
S + f

t
L) (2.5)

One of the key benefits of OpenPose is that it can be run on both GPU and CPU

only systems with di↵erent operating systems including Mac OSX, Windows, Ubuntu, and

embedded systems. The user can select an input between image, video, webcam. The

output could be in images with keypoint displays (JSON, XML, YML, ...) or could be

saved as array of keypoint coordinations on disk (JSON, XML, YML, ...). The user is also

able to enable/disable body, foot, face, and hand detectors, control pixel normalization, and

even control the number of GPUs to use. Figure 11 represents an example of OpenPose

json output for 2D estimation of body and hands keypoints. As can be seen, each keypoint

is represented by coordinates x and y and a degree of confidence c. The image output of

OpenPose could be seen in figure 9 part (e).

2.2 Human Activity Recognition

After successful implementation of algorithms to estimate human body pose in each

image frames, understanding human movements and the type of activity they are doing
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Figure 11: OpenPose json file output for 2D estimation of hand and body keypoints.

naturally comes next. The goal of human activity recognition (HAR) is to automatically

distinguish and analyze human activities from data captured through sensors or cameras.

Although, identifying the category of these activities is an easy task for human being, it is a

very di�cult problem for intelligent computer systems as human motions space is very high

dimensional and the interactions complicate the searching process into this space. Moreover,

the instantiation of same task by di↵erent subjects with di↵erent style of movements, creates

substantial variations [172].

However, due to the wide range of applications, a huge amount of research has been

actively conducted on identifying human activities since 1990s [50]. The task could be

generally described as: given a sequence of movement data, identify the class of activity

that the subject is performing. Depending on the activity, task’s complexity might vary. For

example, walking or dancing is less complex than the scenarios when subjects are interacting

with others.

The research conducted in the field of human activity recognition are divided into two

primary categories depending on the method that the input data is captured: vision-based

and sensor-based approaches. In sensor-based approaches, movement data are collected

from wearable sensors (e.g. [45, 131]), smartphones (e.g. [90]), or environmental sensors
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(e.g. [170]). Signal data captured from sensors could be one-dimensional (as in wearable

devices) or could be 2-dimensional or 3-dimensional (as in optical sensors). However, one

problem with sensors is that when the subject is beyond their range, they are not able to

receive the signals and work properly. Vision-based approaches, on the other hand, are those

that the data are collected through cameras. Thus, they are more a↵ordable and easy to

collect as cameras are much more on hand than sensor devices. However, the precision of

outputs relies heavily on the image quality as well as brightness changes [39]. Although

human activity recognition using vision-based approaches is much more new of a field, but

both of these approaches are still very popular and are actively being used.

Figure 12: Human activity recognition process with deep learning approaches. Figure from

[3].

For a long period of time, traditional machine learning algorithms such as support vector

machine (SVM) [15], random forest [65], Bayesian networks [169], and Markov models [138]

have been used to solve the activity recognition problem. In addition to the time-consuming

steps for hand-crafting features, machine learning algorithms were performing great only

under restricted and controlled environments and also limited input data [130]. In recent

years, deep learning approaches received a great amount of attention from the computer

vision community as they outperformed conventional machine learning algorithms in many

tasks including human activity recognition. While the input of human activity recogni-
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tion models could be captured through di↵erent devices, after they pre-processed the deep

learning is a robust method that could be used in both categories.

As an example, [69] presents a user-independent deep learning-based approach using

CNN for local feature extraction together with simple statistical features that preserve in-

formation about the global form of time series. They further compare the impact of time

series length on the performance of their neural network. [163] also designs and implements

a smartphone inertial accelerometer-based architecture for human activity recognition which

basically collects the sensor data sequence and extracts high-e�cient features and obtains

user behavior by a three-axis accelerometers. After pre-processing data and extracting fea-

ture vectors, they use a real-time classification deep learning method using CNN, LSTM,

and SVM and compared the results.

On the other hand, [120] predicts human activities from monocular videos in MHAD

database [2] which contains 10 di↵erent classes of human activities such as waiving, jump-

ing, clapping, and etc. They first extract the human pose in each video frame using a

skeleton-based human pose estimation method and then extract human motion feature vec-

tors between consecutive frames. Finally they apply an LSTM recurrent neural network on

feature vectors and reach an overall accuracy of 92.4%.

The majority of studies in HAR demonstrated promising results by classifying the ac-

tivities that have been already seen during training. [18] introduces a method that is able

to discover and infer new unseen activities that integrates low-level sensor data with the

semantic similarity of world vectors as it would be more e�cient to re-utilize information

obtained from existing activity recognition models instead of collecting more data with the

goal of training a new model from scratch. Figure 13 represents the main idea of such work.

As, human activity recognition has been significantly studied in the literature and the

state-of-the-art methods are studied and surveyed in di↵erent papers, we may refer an inter-

ested reader to following papers for more details in this area: [26, 20, 28, 151, 133, 99, 77,

148, 160, 146, 91].
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Figure 13: The main idea of Zero-shot human activity recognition using non-visual sensors

[18].

2.3 Human Biometric Recognition

For personalization, authentication or security purposes, it is important to be able to

distinguish a person from others and make an application less accessible. Biometrics, unlike

token-based features such as ID cards or passwords, cannot get lost or easily be emulated

[109]. Even though, there have been several attempts to duplicate them [52, 47], many

methods have been established to distinguish the real biometrics from the fake ones [4, 110,

100]. Biometric features are generally divided into two primary group: physiological features

[73] such as facial features, fingerprints, palms, iris, retinas, ears, and dental biometrics, or

behavioral features [175] such as signatures, keystroke, and gait rhythm while voice and

speech features could be considered as both as it has a touch of both physiological and

behavioral biometric features.

Among all biometrics considered in human recognition literature, fingerprints and face
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are arguably the most commonly used biometrics [109]. Face, because of having several

discriminative features, can be a good fit for recognition task [75]. However it is prone to

change due to aging, surgeries, facial expressions, pose, angle, and image resolution [124,

59]. Fingerprints minutiae features, on the other hands, are robust from a unique pattern

for each person. They were first used for murder identification dating back to 1893 [62].

Palmprints are another biometrics considered for authentication purposes by the computer

vision community. Geometry of hands, principal lines, delta points, and minutiae patterns

are all features that used to to distinguish individuals based on their palmprints [174].

Texture of iris or pattern of blood vessels in retinas are also two popular biometrics

within eye that are used for identification task. Since there are many factors are involved

in formation of retina patterns and iris textures, the probability of the false matches is

extremely low [41]. It has been shown that even the two eyes of the same person have

di↵erent retina texture [42]. However, [137] brings up the concern of changing in the iris

texture of patients involved in a modern cataract surgery, in way that the iris recognition is

no longer feasible which is a valid concern in the application that rely on this authentication

technique.

Ears are another biometrics used for identification; shape of lobes, means, centroids are

all considered relatively statistic for each person and all can be measured remotely and does

not request for the individual’s direct interaction [27, 14], however ears size does change over

time which brings up some challenges for this authentication technique.

Dental identification based on radiography images is another technique mostly used in

cases that other assets of identification (e.g., fingerprint, face, etc) are not available. Tooth

can change appearance within time due to dental work, decays, missing, or etc; that’s why

in court of law, dental based identification is considered less reliable than other biometrics,

but in some cases such as fire, this could be the only available biometrics [74, 32].

Additionally, our ability to recognize a friend based on their manner of walking [37],

suggests that human identification could go well beyond physical features. Therefore a

huge amount of studies focused on analyzing behavioral biometrics to find patterns that are

robust enough to identify individuals with them. Among behavioral biometrics, signature

is one biometrics that has been widely used for identification. Speed, pressure of the pen
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Figure 14: Sample images of several biometrics gathered for recognition task. From top to

bottom: sample images for face [5], fingerprint [8], iris [86], plamprint [9], ear [87], and gait

[167] recognition. Courtesy of [109].
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during creation, thickness of strokes, all could be measured and compared for authentication

purposes [150].

Linguistics, is another biometric domain that has been very practical during history to

identify writers based on the language and writing patterns [51]. Moreover, Voice examining

both physiological and behavioral biometric, applies analyzes of a person’s voice to verify

their identity. While twins might have a similar voice print, di↵erent algorithm has been

conducted to distinguish them based on their speech pattern combined with some other

biometrics such as ears shape [17].

Figure 15: Illustration of learning feature representation by deep neural network [107].

Unlike classical biometric recognition which was based on hand-crafted features, deep

learning based models provide an end to end learning framework which can jointly learn

feature representation and the recognition task. This is achieved by a multi-layer network

which is able to learn feature representation in multi level as shown in figure 15. The

progress in processor technologies as well as development of new methodologies for training

neural networks not only enabled scientists to train existing biometric recognition deep neural
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networks much faster, but also led them to explore other human biometrics for the human

identification task. As an example, gait analysis, including stride length and arm swing, has

attracted significant attention as a non-contact, non-obtrusive method for authentication

which is resilient to cyber attacks [162]. Moreover, it is less likely to be obscured as it

appears to be di�cult to camouflage, especially in cases of serious crime [119]. [35] provides

a detailed review of existing state-of-the-art biometric recognition approaches. [121], for

example, utilizes arm swing data captured from smartphone inertial sensors, accelerators

and gyroscopes, and explore convolutional temporal models for human authentication.

Human body movements, one of the key aspects of human social behavior, have enjoyed

the attention in a variety of research communities [33]. Since 1970, human body motion

has been studied to address a broad range of challenges including gesture [114, 101], action

[129, 168], and activity recognition [133, 165].

A number of studies have suggested the existence of distinct and identifiable motion

patterns of individuals by analyzing movement data obtained from Kinect devices [115] and

Electromyography (EMG) electrodes attached to muscles [67]. From these studies, unique

motion patterns can be attributed to anatomical di↵erences and the existence of individual

muscle activation strategies or signatures. Behavioural contrasts between individuals can

be considered as another reason for individual movements and their relations to each other

[171, 46, 111]. These studies highlight the potential of body movements as a biometric

method and its usefulness in multi-modal identification systems. Motion biometric o↵ers

advantages over physiological biometrics which either require close-distance cooperation of

the subject like fingerprint or their accuracy is highly dependable on image quality and

lighting conditions like face and iris recognition. For example, in low light conditions, only

coarse body motions are detectable in security/surveillance camera footage and thus other

biometrics fail.

Recently, a number of researches have used human movements as an authentication

method relying on the fact that individuals movements are distinct and identifiable. For

example, Headbanger [97], is a software device implemented on Google GLASS to authenti-

cate users through their free-style head movement in response to an external audio stimulus.

The movement data are collected from the built-in accelerometer when the user performs
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head movements. As illustrated in figure 16, the reliability and robustness of the system of

the system is evaluated and shown in two authenticating mode; authenticating the owner

for login, and preventing an attacker from login. The authentication process in headbanger

is consisted of four principal steps; sensor data collection, filtering data to smoothen them

for subsequent processing, parameter generation, and classification. For the parameter gen-

eration the distances between two accelerometer samples are calculated and considered as

parameters. For classification, a threshold–based classifier with a threshold µs+n�s is chosen

to find the top-K samples with the smallest average distance as template. µs denotes the

average value of the distance, �s is the standard deviation, and n is a tunable parameter

of the classifier. In authenticating process, if the distance between the testing sample and

the template is bellow the threshold, the test sample is labeled as success and the user is

accepted by the system. Otherwise, the user is not considered as the owner, and is rejected.

Figure 16: Illustration of the evaluation of headbanger in (a) authenticating the owner, (b)

preventing attackers. Figure from [97].

In another e↵ort, [70] proposes a method by integrating laser range finders (LRFs) in

the environment and wearable accelerometers with reliable ID information to identity of

pedestrians. The users are identified when the results of walking motions from feet of a

pedestrian matches his/her body oscillation. Figure 17 demonstrate the proposed concept
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and flow of the proposed network.

Figure 17: Concept (a) and flow (b) of the proposed framework [70] for pedestrian identifi-

cation.

Another line of research, focused on human identification approaches based on radar

micro-Doppler signatures. Doppler radar are known as a suitable tool to collect data as it is

not a↵ected by low light light and bad weather conditions. Using a three-layer deep convo-

lutional autoencoder, [143] successfully distinguishes seven gaits based on the micro-Doppler

signatures collected by a 4 GHz continuous wave radar. [135] propose a feature extraction

algorithm which automatically generate a set of shape spectrum features extracted from

the cadence velocity diagram of the human micro-Doppler signature collected by an X-band

radar. Further, a Näıve Bayesian classifier and a shape-similarity-spectrum classifier is used

to recognize individuals. Perhaps the most relevant study to this research is [29] which

utilizes deep learning algorithms to address the recognition task based on individuals radar

micro-Doppler signatures. This work propose a deep onvolutional neural network which is

able to learn the necessary features and classification conditions from raw micro-Doppler

spectrograms. The same method has been previously used in [82] for activity recognition

which could be considered as a simpler task as the spectrograms of di↵erent human ac-

tivities are significantly di↵erent most of the time while spectrograms of di↵erent people

performing the same activity is very similar. Figure 18 demonstrates two examples of people

spectrograms. Once the spectroms are collected a deep convolutional neural network with a

logistic regression is employed to solve the multi-class classification problems. The achieve
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the average accuracy of 85.6% for 10 people identification.

Figure 18: Sample spectrograms of two di↵erent people walking on the left, samples of visual

data on the right.

In this work, we analyze human upper-body motion features captured from in-the-wild

footage of individuals to to learn their movement patterns. Later, given a human movement

sequence data, we predict the identity of the person based on the probabilities obtained by

our proposed model.
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3.0 BACKGROUND: DEEP LEARNING

Deep Learning, which is a class of machine learning, has been experiencing waves of

excitement followed by a period of oblivion. However, it was not used until recent years that

the progress in graphics processing units (GPUs) and the appearance of large, high-quality

labeled datasets and the invention of advanced algorithms, made it possible for computers

to learn in an entirely data-driven fashion with minimal feature engineering.

In 1940s-1960s early works in deep learning, or better say cybernetics, as it use to be

called back then, was described as a simple neural network trained in supervised and unsu-

pervised manner [252,122]. Later, in 1980s-1990s, the second wave came under the name of

connectionism with the invention of backpropagation [254]. The modern era of deep learn-

ing as defined by [109] started in 2006 [126, 26, 245] and since around 2011 it has been

actively used and made a tremendous impact in a variety of domains such as image process-

ing, computer vision, natural language processing, machine translation, medical information

processing and image analysis, art, and so many others. Experimental results show that

deep learning successfully outperformed traditional machine learning approach in majority

of domains. It worth mentioning that some of the connectionism works are still reconsidered

and reformulated in new contexts. We may encourage an interested reader to go through

this comprehensive survey of the field [259]] for more in-depth details about the history of

the matter.

In this chapter, we aim to build a ground for our work by reviewing some of the most

relevant classes of deep learning models. We start by reviewing the categories of deep learning

approaches followed by discussing state-of the art feed-forward and temporal neural models.

we further provide a brief review on milestones of unsupervised learning.
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3.1 Types of Deep Leaning Approaches

Deep learning approaches are categorized into few main categories: supervised, semi-

supervised (or partially supervised), and unsupervised. In supervised learning, labeled

data are used to train the model and calculate loss function. Semi-supervised learning,

use data that are partially labeled as it is in Generative Adversarial Networks (GAN). In

unsupervised learning, data are not labeled at all and the model aims to figure out the

internal representation or important features to discover unknown relation of data. Clus-

tering, generative techniques, and dimensionality reduction are examples of unsupervised

learning. In adition to these categories, there is also another learning category named Re-

inforcement Learning (RL) that deals with learning via interaction and feedback, or in

other words learning to solve a task by trial and error. RL is sometimes discussed under

semi-supervised and sometimes are discussed under unsupervised learning approaches [19].

The pictorial diagram of deep learning categories is represented in figure 19.

Deep Learning

Supervised  
Learning

Unsupervised  
Learning

Reinforcement 
Learning

Figure 19: The categories of deep learning approaches; semi-supervised learning is considered

as the shared area between supervised and unsupervised learning.
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3.2 Deep Feedforward Network

Deep feedforward neural network, also called multi layer perceptrons (MLPs)

are the quintessential deep learning models [56] which basically is a connections of neu-

rons/units. The general purpose of feedforward networks is to map an input x to an output

y by approximating function f which is defined as y = f(x; ✓). The values of parameter

✓ is expected to be learned in a way that results into the best approximation. The term

feedforward relates to the fact that the information flows through the function from the

input to the output and there is no feedback fed again to the model. The term network also

is used as the feedforward neural networks can be typically defined as a chain of functions

f(x) = f
(3)(f (2)(f (1)(x))) where each f

(n) represents the n-th layer of the network build

from hidden units that act in parallel. Each hidden units resembles a neuron that received

information (inputs) from many other units and computes its activation value. In fully

connected networks, each neuron in a layer receives information from all neurons in the

previous layer. Moreover, the term neural in these networks refers to hidden units (neurons)

which is inspired by neuroscience.

We assume that the reader is familiar with the fundamentals of artificial intelligence

models. However, we will still go over feedforward neural network basic equations but try

our best to keep it as brief as possible.

In theory, universal approximation theorem states proves that for any arbitrary smooth

function, there exists a feedforward network large enough with any squashing activation

function that is able to achieve any degree of accuracy we desire. However, the theorem does

not specify the su�cient amount of hidden layers for such approximation. In practice, it is

enough to have a continuous function on a bounded subset of IRn. Furthermore, it worth

mentioning that feedforward networks ability to estimate any smooth functions does not

mean that the approximation could be learned. Overfitting could be one example of such

situation.

Design of hidden units is not as easy task. Although, there are many research actively

focused on this problem, the process still is consisted of trial and errors and it is impossible

to say which functions works best in advance. To choose the best hidden units, the network
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is trained based on a specific kind and the performance of the network is evaluated and

compared.
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Figure 20: The architecture of fully connected deep feedforward neural network.

Finally, let’s dive into the notations of fully connected feedforward neural network equa-

tion. As demonstrated in figure 20, at each layer l+1 and for each input, the values taken by

hidden units xl+1 are recursively calculated by taking from activations of the previous layer

xl in the following vector form:

xl+1, j =  (Wlxl + bl) (3.1)

where  represents a non-linear activation function such as sigmoid, hyperbolic tangent, and

rectified linear unit (ReLU), Wl is a weight matrix defining the weight coe�cient between

the i
th neuron from previous layer and the jth neuron in the l

th layer, and bl is the vector of

biasis in each layer.

Generally neural networks are trained by gradient decent using chain rule and back-

propagation [139] of the error from output to input in order to minimize the error defined

in cost function. In other word, back propagation allows the information from cost flows
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back in the network for computing gradient decent. Depending on the type of data, the loss

function varies. In supervised regression, loss function is obtained by calculating the mean

square error (MSE) similar to machine learning approaches:

LR(D) =
|D|X

i=1

NX

j=1

||y(i)j � ỹ
(i)
j ||22 (3.2)

where D represents a training samples, y(i) is a ground truth label of i-th sample while the

ỹ
(
i) is the networks predicted label of sample i, and N is the number of outputs. While loss

function calculates the penalty in a single training set, the cost function almost refers to the

same meaning but calculates the penalty in a number of training sets.

In classification task, there is a need to represent a probability distribution over a discrete

variable with n possible values that represent classes. The output function is a softmax which

is a generalization of sigmoid function that is used in binary classification problems. The

winner class is the one with the highest posterior probability. The posterior probability for

observation xo for class cn is calculated as:

ỹn = P (cn|xo) =
exp(W n

j xl�1)P
j exp(W

T
j xl�1)

(3.3)

where W denotes the weight matrix and Wn is a set of weights connecting the previous layer

with an output element n. The loss function in classification is calculated by taking the

negative log-likelihood of the softmax which is the cross-cross-entropy between the ground

truth labels and the network prediction:

Lc(✓,D) = �
|D|X

i=1

logP (Y = y
(i)|x(i)

o , ✓) (3.4)

where ✓ denotes all of network parameters including biases and weights for all layers.
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3.3 Convolutional Neural Networks

A convolutional neural network (CNN) [92] is a deep learning algorithm which

have been tremendously successful in capturing the spatial and temporal dependencies in

data with grid-like topology such as image data (2D-grid) or time-series (1-D grid). The

high dimensional of input data could be very high in these cases. For example, imagine a

7680×4320 image which is consisted of three channel; red, green, and blue. the role of a

CNN is to reduce the dimentionality of the data in a way that the essential features that are

critical for a good prediction are not lost. Therefore, the primary benefit of CNN architecture

over fully-connected networks is the significant reduction in the number of parameters as the

input is processed locally by sliding a set of convolutional filters over it [56]. For example in

case of very basic binary images, the feedforward network might show an average precision,

however, in complex images, the accuracy will not be reliable. CNNs, on the other hand,

could be trained to understand sophisticated images with complex pixel dependencies.

Figure 21 illustrate an example of convolutional neural network used on image dataset.

As can be seen, CNN architecture is consisted of two main block; feature learning and clas-

sification blocks. The feature learning block, which is the particular characteristic of CNNs,

functions as a feature extractor by applying convolution filtering operations for template

matching. The goal of convolutional layers which are the key component of CNNS, is to

detect the presence of a set of features in the input. Each convolutional layer is also followed

by a pooling layer which output for example a maximum (in max pooling) within a local

neighborhood. That’s how the dimentionality reduction happens without missing the bold

features. In the first layer, several convolution kernels (filters) could be used to extract fea-

ture maps. These feature maps will be then resized or normalized by an activation function.

This process can be repeated for several time to obtain new feature maps using a di↵erent

kernel. finally, the output of this block will be a vector which is built from the last feature

map.

The second block is not particular to only CNNs and can bee seen in other types of

network for classification purposes. The vector values from the first block are transformed

by several activation function to obtain a new vector that corresponds to the output classes.
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The i�th element of the output vector denoted the probability that the input image belongs

to class i. The probabilities are calculated in the last layer using a logistic activation function

for binary classification and softmax for multi-class classification.

Figure 21: An example of neural network architecture [1]; the CNN architecture is generally

consisted of two main block of feature learning and classification. In feature learning block,

critical features are extracted using convolutional layers. In the classification block, the

feature vector is transformed into a probability vector corresponding to the classes of the

output.

As other neural networks, network training happens by minimizing the cross-entropy

function between predicted classes and labeled classes and the parameters are calculated

using gradient decent and backpropagation.

AlexNet [85] was the first convolutional neural network that achieved a significant success

in computer vision problems, which was introduced in 2012. The proposed architecture of

AlexNet is 8-layer deep where the last three layers are fully-connected. Since then, a number

of complex and advanced convolutional neural networks has been proposed in this area. We

may refer the reader into some of these state-of-the-art networks: LeNet [93], VGGNet [147],

GoogLeNet [152], ResNet [63], and ZFNet [173].
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3.4 Sequence Modeling

The problem of sequence modeling that aims to model, interpret, make predictions of

sequential data, is one of the most important challenges in computer vision. Since the

temporal modeling is one of the significant aspects of motion analysis (the main goal of this

thesis), we try to provide a more comprehensive review of this type of deep neural networks.

3.4.1 Recurrent Neural networks

Recurrent Neural networks (RNNs) [140] are a family of deep neural algorithms

that are designed for modeling sequential data or time-series. Like convolutional neural

networks that are specialized for processing data with grid-like topology, recurrent neural

networks is specially designed for processing the sequence of x(1)
, x

(2)
, ...x

(⌧). The output of

an RNN network for the input x
(
t) is not only obtained through the feedforward process

but also is a↵ected by the information from previous time steps. While CNNs could be used

in problems with time-series data and be computationally more e�cient compare to RNNs,

but they are not able to remember contexts or attention to local patterns as RNNs are.

Therefore, depending on the problem and priorities, each of these two networks could be

applied.

Figure 22 illustrates a simple one layer recurrent neural network. The rolled structure

is demonstrated on the left and the unrolled structure over time is on the right. As can be

seen, in this type of network the output from previous steps are considered as inputs. From

bottom to top, x is the input state, h stands for hidden state, and y denotes the output

state. Wxh, Whh, and Who are the weights between input layer and hidden layer, the hidden

layer h connection wights, and connection weights between the hidden layer and the output

layer. To formulate this, For an RNN with the input sequence of x = {x0, x1, ..., xT}, a state

h = {h0, h1, ..., hT�1} will be calculated for each neural unit in hidden layers:

ht = fH(Whhht +Wxhxt + bh) (3.5)

37



… …

xt�1 xt+1x

yt�1 yt+1yy

x

Wxh Wxh Wxh Wxh

Who Who WhoWho

h h h + 1h � 1
Unrolled

Whh WhhWhh WhhWhh

Figure 22: The structure of a simple one layer recurrent neural network; compressed structure

is illustrated on the left and unrolled structure on the right.

where bh is the bias vector, and fH(.) is the activation function in the hidden layer. Output

for each hidden layer y = {y0, y1, ..., yT�1} will be generated as:

yt = fO(Whoht + bo) (3.6)

where bo denotes the output layer bias vector, and fO is the output layer activation function.

In deeper recurrent neural networks, many of these recurrent layers could stack up to each

others.

Recurrent models, because of the dynamic nature of their representations, are capable of

modeling rich temporal evolutions by generating low-latency feature vectors based on previ-

ously observed data. Due to RNN’s ability to retain memory over time, they have previously

shown e�ciency in modeling temporal data in di↵erent context [57, 58]. However, RNNs

su↵er from challenges such as vanishing or exploding gradients [64] during back-propagation

through time as the sequences of input data get longer. The reason for gradient vanishing

could be apparent if we unfold the recurrent neural network in time, as shown in figure 22.

Now that the network is unrolled, it seems very similar to a very deep feedforward network.

However, in the recurrent network, the gradient of errors which are used to update weights
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in the back-propagation process, are a↵ected by the recursive multiplication of recurrent

weights matrix. In this situation in case of eigen-values less than one for this matrix, the

gradients exponentially converge to zero. This process only could be prevented if a saturable

function such as sigmoid is used as activation. However, in this case, the network would be

able to catch only few steps as the history but not long-term dependencies [56].

3.4.2 Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTMs) is an extended version of RNNs

that are explicitly designed to learn the long-term dependencies in the data. They have been

tremendously used to address a large variety of problems and appeared to be performing

well on learning long dependencies in the data. The architecture of all recurrent networks

including LSTM networks is consisted of one or several repeating neurons. In vanilla RNNs,

neurons have a very simple structure (e.g tanh) as shown in figure 22.

ct�1 ct

htht�1

ht

xt

Figure 23: The structure of a single LSTM memory block. ct�1 is the cell state from the

previous time step, ht�1 is the output the previous state, and x is the input. ct and ht are

the current cell state and output. Figure from [105] with auther’s modifications.

LSTM networks, as an advanced RNN architecture, replaces these simple nonlinear units

with gated memory blocks. The impact of gates is to regulate the units to maintain and
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access information over long periods of time. As illustrated in figure 23, each memory blocks

contains a cell state ci with three inputs; the input gate it, the output gate ot, and the forget

gate ft. The cell state could be modified by the forget, input, and output gate all placed

below it.

The first step in this process starts with the forget gate which basically is a sigmoid

function and decides that what part of information is going to be thrown away. The next

step is to decide what information we want to store or update in cell state. This process

contains two parts; the first part is a sigmoid function which decide what values needs to

be updated and the next step is a tanh function that create a vector of values to be added

to the cell state. Lastly, the memory block should decide what would be the output. This

output will be based on our a filtered version of the cell state. This process has two steps

either; first, the sigmoid function decides what parts of the cell state will be outputted. Then

the cell state go trough the tanh function to be compressed between -1 and 1 and the will

be multiplied by the output of sigmoid function to only outputs the selected parts [12]. To

formulate this:

ft = �(Wxfxt +Whfht�1 + bf ) (3.7)

it = �(Wxixt +Whiht�1 + bi) (3.8)

ct = ftct�1 + it tanh(Wxcxt + bc) (3.9)

ot = �(Wxoxt +Whoht�1 + bo) (3.10)

ht = ot tanh(ct) (3.11)

where all the W are the connection weights between two neighbor layers, �(.) is the sigmoid

function, and all the b are biases.
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LSTM networks have been tremendously used to address sequence modeling problems

and shown shown state-of-the-art performance. What was describe, so far, is a normal

LSTM. However, there are other proposed LSTM networks which are a little bit di↵erent.

In one of the most popular LSTM network proposed by [53], gates are able to look at the

cell state. Therefore, the output of LSTM can be calculated as:

ft = �(Wxfxt +Whfht�1 +Wcfct�1 + bf ) (3.12)

it = �(Wxixt +Whiht�1 +Wcict�1 + bi) (3.13)

ct = ftct�1 + it tanh(Wxcxt +Whcct�1 + bc) (3.14)

ot = �(Wxoxt +Whoht�1 +Wcoct + bo) (3.15)

ht = ot tanh(ct) (3.16)

where all the W are the connection weights between two neighbor layers, �(.) is the sigmoid

function, and all the b are biases.
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4.0 HUMAN AUTHENTICATION

4.1 Introduction

In this chapter we present an automatic deep neural network framework which is able to

model human motions from visual input. We further investigates the potential capability of

motion sequences as an active biometric verification technique. We approach the problem

from a data-driven perspective to figure out to what extent we can authenticate individuals

based on their movement patterns. We propose a deep learning approach using OpenPose

and a three-layer LSTM recurrent neural networks (RNN) to verify the subject against others

based on their motion signature. We use the person-specific video dataset introduced by [54]

which contains 144 hours of data from 10 speakers with diverse set of backgrounds including

television show hosts, university lecturers and televangelists. They cover a large range of

topics such as chemistry, history of Rock music, current news, reading bibles and Qur’an.

The proposed method focuses on the design and implementation of a fully automated

human authentication network as the video dataset is not annotated and acquiring human

annotation for large amounts of video is not feasible. OpenPose library [30] is used to extract

33 2D skeletal body keypoints and motion features are calculated as of changes in angle and

magnitude between body joints in consecutive frames. We use recurrent neural network

(RNN) with LSTM to learn long-term dependencies within our data. Since multi-layers

RNNs can extract more rich semantics features, we design three-layer LSTM to realize this

task. Lastly, we use Dropout and L2 regularization to avoid overfitting.

4.2 Dataset

In this work, we use speaker-specific gesture dataset [10], which was first specifically

tailored by [54] to find the connection between conversational gesture and speech for further

prediction of human gesture from audio. The dataset originally contains 144 hours of in-the-
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wild footage of 10 gesturing single-speaker from di↵erent backgrounds including 5 television

show hosts, 3 university lecturers, and 2 televangelists as shown in figure 24.

John Oliver Ellen DeGeneres John StewartSeth Meyers Conan O'Brien

Mary Angelica Assim al-Hakeem Shelly Kagan John Covach Mark Kubinec

Figure 24: The speaker-specific gesture dataset containing video data of 2 televangelists

(Mary Angelica and Assim Al-Hakeem), 3 university lecturers (Shelly Kagan, John Covach,

Mark Kubinec), and 5 television show hosts (Seth Meyers, John Oliver, Ellen DeGeneres,

Conan O’Brien, and John Stewart).

The speakers cover a large range of topics such as chemistry, history of Rock music,

current news, reading bibles, and Qur’an. The set of speakers are deliberately chosen by the

authors as they could find hours of clean single-speaker footage for each person available on

YouTube.

The authors further used out-of-the-box face recognition and pose detection systems to

split each video into intervals that only contains the speaker in the frame where all detected

keypoints are visible. The final dataset contains 60,000 such intervals with an average length

of 8.7 seconds and a standard deviation of 11.3 seconds which sums up to 144 hours of video.

In this research, we deliberately selected the speaker-specific gesture dataset due to three

main reason; first, it only contains one speaker in all intervals; second, it is collected from in-

the-wild footage of subjects; and third, all the subjects are performing the same task which

is talking to audience. We further manage to use 50 hours subset of the speaker-specific
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gesture dataset that contains intervals with more than 10 seconds of length.

4.3 Movement Data

To estimate individuals’ pose over time we use OpenPose for visual sequence of data

at a rate 15 fps. OpenPose enables us to train over a large amount of data. Among 135

keypoints detected by OpenPose, we use the 33 corresponding to nose, neck, shoulders,

elbows, wrists, fingers (10 keypoints), eyes, and ears as shown in figure 27. Key positions

of eyes, ears, and nose are used inside the set of body keypoints as they have information

about head orientation. However, facial signals like lips movement, eye-gaze, eyebrows, jaw

and cheek motions are ruled out to avoid any possible impact influenced by facial expression.

After obtaining the skeletal keypoints, each keypoint is normalized by subtracting the per-

individual mean, divided by the standard deviation. Motion features are calculated between

consecutive frames for each keypoint defined by the change x and y coordinations.
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Figure 25: Skeletal keypoints used for pose detection in each frame.

It is worth noting that as shown in supplementary material of [54], these keypoints are not

ground truth annotations obtained from human observers but rather pseudo ground truth
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generated from pose estimation machine. The distance between OpenPose estimation and

the mean of human annotations is small enough to be used in our authentication framework.

4.3.1 Architecture and Implementation Details
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Figure 26: Architectural overview of proposed authentication network. OpenPose

is used to detect individuals’ pose over time. Motion features are calculated by the change

in keypoints coordination between consecutive frames. Given an input sequence of motions,

the 3-layer LSTM recurrent neural network outputs whether the input belongs to the subject

of study or not.

In order to authenticate individuals based on their motion signatures, we implement

a recurrent neural network with LSTM cells to find the long term dependencies in our

data. Details about LSTM recurrent neural network has been discussed in chapter 3. The

framework of the proposed model is presented in Figure 26. Our model is consisted of one

input layer, three hidden layers and a sigmoid classifier considering that multi-layers RNNs

can extract more rich motion features. For the input layer, we used joints coordination
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combined with the �x and �y as a feature vector of 132 dimension:

Fn = [x1, y1,�x1,�y1, ..., x132, y132,�x132,�y132]

where n demonstrate the index of frame in the video. �x and �y also corresponds to

the motions related to keypoints between consecutive frames. The hidden layers include two

regular layers with 256 LSTM cells with tanh activation function and one dropout layer with

0.5 rate to boost the performance of network. Furthermore, L2 regularization is applied

to our network to avoid overfitting. The output of the model is obtained from a sigmoid

classifier (a dense layer with a sigmoid activation function), projecting whether the input

motion sequence belongs to the subject or not.
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Figure 27: The two kinds of features from a sequence are concatenated to form input feature

vectors.

To formulate the problem precisely, suppose F is the input motion sequence to our

network, and we want to see if the input F belongs to subject s or not. The output of

proposed network would be ’0’ meaning that the input sequence does not belong to subject

s or would be ’1’ meaning that the user is authenticated. Since the problem could be
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considered as a binary classification, we use sigmoid function as the activation function in

the output layer:

�(s) =
1

1 + e�s
(4.1)

Finally, in order to measure the error between true values and the predictions, we use

binary cross-entropy loss function. We also use Adam optimization algorithm with the

default learning rate of 0.001 to enhance the fitting ability. We train and implement our

networks using Lasagne on an NVIDIA GPU TESLA K80.

4.4 Experiments

We show that our method successfully authenticates the individuals in our dataset based

on their movement patterns and quantitatively outperforms baselines.

4.4.1 Baselines

We compare our methods to several other conventional approaches. All the classifiers

are trained in a fully supervised way using 80% of data for training and 20% of data for

validating and testing.

Support Vector Machine (SVM) Due to high classification performance of SVM, it is

used in a wide range of classification problems including human authentication/identification

[72, 68, 164]. SVM attempts to reach the increase the classification accuracy by creating

hyper-planes that maximize the margins between classes [120]. By minimizing the cost func-

tion, SVM reaches the optimal feasible accuracy. In this work, we use a non-linear binary

SVM classifier with sigmoid kernel to authenticate speakers based on their motions.
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Decision Trees Another method exploited in recognition studies is decision tree [144, 88].

A decision tree classifies inputs by sorting them down a tree-like graph from the root to

leaves, with the leaf node representing the label of classification. In a recursive process,

each node in the graph acts as a test case for some attributes and each edge descending

corresponds to one of the possible answers.

Random Forests We further compare our authentication model against a Random For-

est model that generally is used in several studies for human authentication/identification

[83, 141, 43]. Random Forest is an ensemble learning method used in both classification and

regression. The key di↵erence between random forest and decision tree is that a decision

tree is built on the entire dataset and uses all the variable of interest while a random for-

est generates multiple decision trees based on random selection of observations and specific

variables and then average the resits.

4.4.2 Quantitative Evaluation

As the performance of models might di↵er depending on the input sequence, we randomly

chose 360 test sequence with 10 second duration and compare our model to all other baselines.

Table 10 represents the average accuracy obtained by each model. To evaluate the average

accuracy of each classifier, we ran 10 repetitions of the particular experiments on a random

selection of training and test sets. Table 3 demonstrates the precision and recall obtained

from the prediction of a single experiment with the same training and test set for each

classifier.

As shown in Table 10, among all conventional approaches considered in this study, SVM

performance was generally the lowest while Random Forest and Decision tree showed better

performance. However, they still were not able to di↵erentiate all speakers properly. The

proposed LSTM neural network outperformed other classifiers obtaining the highest average

accuracy of 94.07%.

To validate that the subjects are statistically discriminant, student’s t-test is applied.
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The p-value calculated for our models is less than 0.05 representing the statistically sig-

nificance of this method. Figure 45 displays the results distribution obtained by di↵erent

classifiers. As shown, the LSTM achieved the superior results with a higher median and

accuracy over other classifiers.

4.5 Conclusion

We presented a deep learning approach for human authentication based on body mo-

tions. Our network is consisted of a pose estimation machine (OpenPose) and a three layer

LSTM RNN. OpenPose detects body keypoints in visual sequences and LSTM network acts

as the classifier for the authentication task. In the path of architecture design, we considered

di↵erent classification methods and selected LSTM as the most capable option due to its

lower classification error and its capability to detect long dependencies. We ran our model

over Speaker-specific gesture dataset and measured accuracy of authentication for 10 speak-

ers. The results demonstrate robust high accuracy of predictions, confirming the strong link

between human body motions and their identity. This approach works with monochrome

or RGB video stream and does not require custom hardware like Lidar/Kinects, motion

or EMG sensors on the body. The test results of our model shows average authentication

accuracy of 94.07%.

Despite the strong performance of the proposed model, the current network presented in

this paper is only capable of authenticating single-person in each test sequence and adding

multi-person authentication requires more work. However, we see this work as a preliminary

step toward active biometric authentication that does not require the direct communication

and cooperation of subjects.
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Table 1: Precision and Recall of four classification methods on a test set of 360 sequence.

Name
SVM Decision Tree Random Forest LSTM

Recall Precision Recall Precision Recall Precision Recall Precision

Almaram 0.79 0.38 0.67 0.76 0.89 0.82 0.92 0.93

Angelica 0.44 0.63 0.72 0.78 0.82 0.87 0.96 0.92

Conan 0.74 0.91 0.74 0.89 0.87 0.87 0.95 0.93

Covach 0.63 0.82 0.68 0.62 0.86 0.82 0.96 0.94

Ellen 0.39 0.48 0.76 0.63 0.81 0.77 0.95 0.93

Kagan 0.92 0.91 0.75 0.64 0.89 0.83 0.96 0.98

Kubinec 0.79 0.74 0.76 0.74 0.82 0.86 0.97 0.98

Oliver 0.49 0.50 0.68 0.73 0.79 0.64 0.95 0.95

Meyers 0.44 0.41 0.58 0.61 0.62 0.71 0.97 0.93

Stewart 0.49 0.58 0.65 0.69 0.71 0.76 0.97 0.94

Avg 0.61 0.63 0.69 0.70 0.80 0.79 0.95 0.94

Table 2: Average accuracy of each classifier on 10 repetition.

Classifier Accuracy (%)

SVM 64.91

Decision Tree 69.29

Random Forest 79.13

LSTM 94.07
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Accuracy vs. Epoch for the LSTM Model
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Figure 28: Training and development accuracies per epoch. The model is trained for 350

epochs with a batch size of 256 samples from one run for one subject - Almaram.
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Figure 29: The comparison of accuracy between di↵erent classifiers for 10 repetition.
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5.0 HUMAN IDENTIFICATION

5.1 Introduction

In the early chapters of this work, we discussed the objectives of this research, potential

applications, previous works done in the domain, and existing deep learning models for

approaching human motion analysis problems. In chapter 4, as the preliminary step of our

research, we focused on design and implementation of a deep learning model which is able

to e�ciently learn human motion representations from noisy motion sequences and further

authenticate individuals based on their motion signatures. The test results of the proposed

authentication model over a set of 10 speakers showed an average accuracy of 94.07%. While

the motion authentication model proposed in chapter 4 is very practical in many applications

to distinguish the user from others, but it still is not applicable to applications that requires

subject identification within a set of people.

For this purpose, in this chapter, as another step toward understanding human motion,

we intend to develop a deep learning framework to identify individuals based on their motion

patterns in videos. We use OpenPose to detect human body keypoints in visual sequences

collected from a Speaker-specific gesture dataset explained in section 4.2 and extract tem-

poral motion features between consecutive frames (see section 4.3 for more details). Motion

features are fed into a 3-layer LSTM network which outputs the probability distribution

vector corresponding to identities. We perform quantitative evaluations including compar-

ing with di↵erent conventional machine learning algorithms used for biometric identification

in similar works. Finally, we demonstrate that proposed framework outperforms other ap-

proaches by achieving the highest average accuracy of 92.62%.
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Motion-IDMotion-ID

Oliver Kagan Kubinec Ellen Stewart Angelica Covach Almaram ConanMeyers

Figure 30: General overview of Motion-ID. In this chapter, we present a deep learning

approach to identify 10 speakers from their motions in Youtube videos collected by [54].

Speakers poses are estimated utilizing [30] over a period of time in combination with an

LSTM recurrent neural network to predict speakers identities.

5.2 Architecture and Implementation Details

To address this problem, a recurrent neural network with LSTM cells is implemented

to find the long term dependencies in our data. The framework of the proposed model is

presented in Figure 31. Our model consists one input layer, three hidden layers and one

softmax considering that multi-layers RNNs can extract more rich motion features. For the

input layer, we used joints coordination combined with the �x and �y as a feature vector

of 132 (4 features for each 33 keypoints) dimension:

Fn = [x1, y1,�x1,�y1, ..., x132, y132,�x132,�y132]

where n demonstrates the index of frame in the video. �x and �y also correspond to the

motions related to keypoints between consecutive frames. The hidden layers include two
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regular layers with 256 LSTM cells with tanh activation function and one dropout layer with

0.5 rate to boost the performance of network. Furthermore, L2 regularization is applied to

our network to avoid overfitting. The output of the model is obtained from a softmax layer

(a dense layer with a softmax activation function), yielding a class probability distribution

corresponding to subjects identities.
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Figure 31: Architectural overview of Motion-ID network. OpenPose is used to de-

tect individuals’ pose over time. Motion features are calculated by the change in keypoints

coordination between consecutive frames. Given an input sequence of motions, the 3-layer

recurrent neural network with LSTM cells outputs the probability distribution vector corre-

sponding to identities.

To formulate the problem precisely, suppose F is the input motion sequence to our

network, and s = {s1, s2, ..., sn} represents n speakers considered in this study. The output

of proposed network would be an n-dimensional vector o = {o1, o2, ..., on} where oi = p(si|F )

- the possibility that the input sequence F belongs to speaker si - and they can be calculated

as:

p(si|F ) =
e
oi

Pn
k=1 e

ok
(5.1)
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where n represents the number of classes. Then the maximum possibility will be associated

to input sequence F as the final identity:

s = argmax{oi|1  i  n} (5.2)

The model is trained for 350 epochs with a batch size of 256 samples from one run.

The hyperparameters were chosen empirically according to which values yielded the best

results for the task. Finally, we use cross-entropy loss function to measure the error between

predictions and the true values and Adam optimization algorithm with the learning rate of

0.001 to enhance the fitting ability. We train and implement our networks using Lasagne on

an NVIDIA GPU TESLA K80.

5.3 Experiments

We compare our methods to several other conventional approaches described in section

4.4.1 including SVM, decision trees,and random forests. All the classifiers are trained in a

fully supervised way using 80% of time series data for training and 20% of them for validating

and testing. The percentages refer to hours. We show that our method successfully identifies

individuals based on their movement patterns and quantitatively outperforms baselines.

5.3.1 Quantitative Evaluation

As the performance of models might di↵er depending on the input sequence, we ran-

domly chose 360 test sequences with 10 second duration and compare our model to all other
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Table 3: Precision and Recall of four classification methods on a test set of 360 sequence.

Name
SVM Decision Tree Random Forest LSTM

Recall Precision Recall Precision Recall Precision Recall Precision

Almaram 0.77 0.73 0.74 0.72 0.81 0.85 0.91 0.91

Angelica 0.74 0.90 0.71 0.87 0.87 0.86 0.92 0.90

Conan 0.91 0.91 0.72 0.62 0.87 0.82 0.93 0.98

Coach 0.47 0.49 0.65 0.71 0.78 0.63 0.92 0.93

Ellen 0.40 0.62 0.71 0.76 0.80 0.86 0.91 0.90

Kagan 0.36 0.47 0.75 0.61 0.81 0.76 0.92 0.91

Kubinec 0.77 0.37 0.65 0.74 0.89 0.81 0.91 0.94

Oliver 0.42 0.40 0.57 0.58 0.61 0.70 0.94 0.90

Meyers 0.47 0.57 0.63 0.68 0.70 0.75 0.96 0.92

Stewart 0.61 0.81 0.66 0.60 0.85 0.81 0.94 0.94

Avg 0.59 0.62 0.67 0.68 0.79 0.78 0.92 0.92
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baselines. Table 4 represents the average accuracy obtained by each model. To evaluate the

average accuracy of each classifier, we ran 10 repetitions of the particular experiments on

a random selection of training and test sets. Table 3 demonstrates the precision and recall

obtained from the prediction of a single experiment with the same training and test set for

each classifier.

Table 4: Average accuracy of each classifier on 10 repetition.

Classifier Accuracy (%)

SVM 56.58

Decision Tree 64.13

Random Forest 77.38

LSTM 92.62

As shown in Table 4, among all conventional approaches considered in this study, SVM

performance was generally the lowest while Random Forest and Decision tree showed better

performance. However, they still were not able to di↵erentiate all speakers properly. The

proposed LSTM neural network outperformed other classifiers obtaining the highest average

accuracy of 92.62%.

Figure 32 displays the confusion matrix related to the proposed model. For every speaker

in the speaker-specific gesture dataset our model achieves accuracy over 92% with the least

accuracy of 90.8% for Almaram and the highest accuracy of 96.0% for Meyers. However,

di↵erentiating Ellen and Oliver resulted in the most confusion for our network.

To validate that the subjects are statistically discriminant, student’s t-test is applied.

The p-value calculated for our models is less than 0.05 representing the statistically signifi-

cance of this method. Figure 45 displays the distribution of the results achieved by di↵erent

classifiers. As shown, the LSTM achieved the superior results with a higher median and

accuracy over other classifiers.
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Figure 32: Speaker-specific gesture dataset confusion matrix calculated based on a test set

of 360 sequences. The proposed LSTM network achieves over 92% accuracy for each person

identification.

Figure 33: The comparison of accuracy between di↵erent classifiers for 10 trials each. LSTM

classifier is 3-layer with dropout and L2-regularization.
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We further test our model over di↵erent number of consecutive frames to evaluate ac-

curacy variation. The results are shown in figure 34. After a certain number of frames,

computational costs overweights the incremental accuracy as it gets saturated. In Speaker-

specific dataset, this number is around 150 frames where the model is capable to predict the

identity of the subjects with more than 90% accuracy.

Figure 34: The average accuracy vs numbers of test frames per speaker.

5.4 Conclusion

In this chapter, we focused on human identification based on body movements. Meaning

that given a sequence of body movements, we intend to relate the motion sequence to the

individual’s identity within a 10-person dataset (Speaker-specific gesture dataset). To this

purpose, our proposed method focuses on the design and implementation of a fully auto-

mated human identification network as the video dataset is not annotated and acquiring

human annotation for large amounts of video is not feasible. OpenPose is used to extract

33 2D skeletal body keypoints and motion features are calculated as of changes in x and y

coordinations of body joints in consecutive frames. We use recurrent neural network (RNN)

with LSTM to learn long-term dependencies within our data. Since multi-layers RNNs can
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extract more rich semantics features, we design three-layer LSTM to realize this task. In

the path of architecture design, we considered di↵erent classification methods and selected

LSTM as the most capable option due to its lower classification error and its capability

to detect long dependencies. The results demonstrate robust high accuracy of predictions,

confirming the strong link between human body motions and their identity. This approach

works with monochrome or RGB video stream and does not require custom hardware like

Lidar/Kinects, motion or EMG sensors on the body. The test results of our model over a

set of 10 speakers shows average identification accuracy of 92.62%.

Despite the strong performance of the proposed model, there are still some limitations.

This model is trained to predict the individual identity using 10 speakers in-the-wild footage

from Speaker-specific gesture. Although these 10 speakers are chosen from di↵erent back-

grounds to reduce any possible bias, the accuracy might vary with subjects, number of

subjects, or speech topics changing. Also, the current network presented in this chapter

requires high computational power and time to be trained which might cause some limita-

tions when it comes to potential applications. In future chapters, we will focus on addressing

these challenges, and introduce a generative probabilistic framework that is able to e�ciently

identify individuals based on their motion sequence in a low-computational power setting.
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6.0 ANALYZING THE FRAMEWORK ROBUSTNESS

In chapter 4 and 5, we proposed two deep learning framework that were successfully

able to authenticate and identify human based on their body movements. Although deep

neural networks showed superior performance in many applications of artificial intelligence

as well as biometric recognition, however, one of the discussions around vision-based deep

learning approaches is that the precision of outputs relies heavily on the image quality as

well as brightness change. Therefore, in real world setting, it is important to make sure that

small changes in input testing data, does not yield significant loss to the performance of the

framework.

The goal of this chapter is to discuss the robustness of our proposed motion recognition

framework in previous chapters to a set of disturbance that might impact the samples in

practice, such as random noises and brightness manipulations. We further compare our

results to one of state of the art deep learning facial recognition systems, DeepFace [153], as

a baseline to our work.

Since this work is one of the earliest steps in human authentication based on body

movements from visual data, and to the best of our knowledge, there is no baseline for

quantitative comparison of our robustness results, we compare our results to one of state

of the art deep learning facial recognition systems, DeepFace [153], as a baseline to our

work. DeepFace is lightweight face recognition framework implemented in Python that

already reached and passed the human level accuracy in face recognition and verification.

The accuracy reported for DeepFace on LFW dataset [66] for human verification equals to

97.35%. On our dataset, the obtained accuracy for DeepFace is equal to 96.92%.

We hope that this part of our study will contribute on shedding light on open research

challenges in the domain of deep learning models robustness.
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6.1 Random Noise

During the training process of a neural network, the goal is obtaining the best accuracy.

However, most of the time generalization ability of the neural network does matter, meaning

that how does the model performs on the unseen real-world dataset.

Majority of time, the model performance is satisfying. However, there are some situations

that the network is trained on a huge dataset and achieves state of the art training accuracy,

but once it is tested on real-world testing dataset, it doesn’t generalize well on new unseen

datasets. One of the main reasons in these cases is that the real-world testing data are

not clean as the training dataset. In this section we want to evaluate our proposed model

accuracy testing them with noisy dataset. The reason for such experiment to figure that

how the framework accuracy would be a↵ected in case of noisy data recorded by di↵erent

cameras.

For this purpose, we add Gaussian noise to our test dataset. Gaussian noise is a sta-

tistical noise with a Gaussian distribution probability function. The noise magnitude of

Gaussian noise is depending on the standard deviation (�) value. Figure 35 demonstrates

the image results after applying Gaussian noise with di↵erent � ranging from noise-free to

to � of 5.5.

Table 5 demonstrates the accuracy obtained by our framework versus Deep face once the

Gaussian noise is added to image inputs. The experiment is repeated with di↵erent Gaussian

standard deviation values as the amount of noise added is a configurable hyperparameter.

As can be seen, little noise has less e↵ect, whereas too much noise makes accuracy drop in

both networks. However, The overall accuracy drop in DeepFace is more compare to our

network when noises magnitude gets bigger. This could be explained as a result of missing

some facial information due to adding noise while pose information are still more detectable.
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σ = 1.0 σ = 1.5

σ = 2.0 σ = 2.5 σ = 3.0 σ = 3.5

σ = 4.0 σ = 4.5 σ = 5.0 σ = 5.5

σ = 0.5Original

Figure 35: Test images corrupted by Gaussian noise with di↵erent magnitude of � from 0 to

5.5.

Figure 36: Plot of accuracy changes with di↵erent noise level.
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Table 5: Quantitative comparison of di↵erent Gaussian noise level to input images, and

motion signals.

Noise Level Proposed Framework DeepFace

� = 0 - Original 0.9407 0.9692

� = 0.5 0.9384 0.9602

� = 1.0 0.9342 0.9493

� = 1.5 0.9294 0.9398

� = 2.0 0.9137 0.9223

� = 2.5 0.9011 0.9023

� = 3.0 0.8839 0.8834

� = 3.5 0.8327 0.8327

� = 4.0 0.8057 0.7923

� = 4.5 0.7562 0.7249

� = 5.0 0.6984 0.6529

� = 5.5 0.6137 0.5597

6.2 Brightness

In this section we intend to understand how lighting might impact the precision of our

framework. For this purpose, using Pillow (PIL) library in python, we adjust the bright-

ness of our testing dataset to generate augmented samples with di↵erent brightness levels.

Adjusting the brightness, increases or decreases the pixel value evenly across all channels

for the entire image to increase or decrease the brightness. The brightness can be adjusted

using enhance() method developed in Pillow library by changing the enhancer factor. While

a factor of 1 gives original image, making the factor towards 0 makes the image black, and
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factors greater than 1 brightens the image. Figure 37 demonstrates the darkened results

with enhancer factors of 0.25, 0.5, 0.75, and 1.0. Figure ?? shows the brightened samples

with enhancer factors of 1.5, 2.0, 2.5, 3.0, and 3.5.

Original

(i) (ii)

(iii) (iv)

Figure 37: Adjusting the brightness value by decreasing the pixel value evenly across all

channels for the entire image. The brightness level are from enhancer factors of (i) 1.0 which

is the original image, (ii) 0.75, (iii) 0.5, and (iv) 0.25. An enhancer factor 1 is the original

image while moving toward 0 darkens the image and an enhancer factor equal to 0 makes

the image black.

Figure 38 shows extracted pose in di↵erent lighting via OpenPose network. As can be

seen, the network is not a↵ected in samples with 0.75 and 0.5 lighting factor at all, while

in 0.25 lighting, the subjects left fingers are not correctly detected. In 0.1 lighting factor,

however, the OpenPose fails to detect more details (figure 40).

Figure 39 demonstrates the DeepFace performance on darkened test images with en-

hancer factor equal to 0.75, 0.5, and 0.25. In these lighting, DeepFace was able to success-

fully verify the subjects. We further move forward and compare our network performance to

DeepFace in lower lighting with enhancer factor equal to 0.1. Figure 40 shows the DeepFace

performance (left) vs OpenPose performance (right) on the darkened images. As shown in
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Original

0.5

0.75

0.25

Figure 38: OpenPose performance on darkened augmented image samples with enhancer

factors of 0.0 (original image), 0.75, 0.5, and 0.25.

Original 0.75

0.5 0.25

Figure 39: DeepFace performance on darkened augmented images with enhancer factor of

0.0 (original image), 0.75, 0.5, and 0.25.

this figure, DeepFace fails to detect the subject while OpenPose was able to not only detect

the subject but also detect some part of body pose.
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0.1 0.1

Figure 40: DeepFace (on the left) vs OpenPose (on the right) performance in brightness with

enhancer factor equal to 0.1.

Table 6: Average accuracies obtained in di↵erent brightness levels for the proposed frame-

work and DeepFace.

Brightness Proposed Framework DeepFace

1.0 - Original 0.9407 0.9692

0.75 0.9311 0.9604

0.5 0.8993 0.9398

0.25 0.8536 0.8813

0.10 0.7948 0.5829

Table 6 represent the accuracy obtained by our framework compared to DeepFace for

human verification in di↵erent lighting. As results plotted in figure 41 demonstrate, the

accuracy drops in both frameworks as brightness decrease. In brightness greater than 0.25

DeepFace slightly outperforms our framework accuracy. In lighting with enhancer factor

of 0.25, our framework accuracy drops by 8.71% while the DeepFace accuracy decreases by

8.79%. In lower brightness, our proposed framework is significantly performing better.
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Figure 41: Plot of accuracy changes with lighting for DeepFace verification and the proposed

motion verification framework.

We further evaluate our framework with brightened augmented samples to see how bright-

ening images would impact the network performance to authenticate subjects. Figure 42

demonstrates brightened test samples of di↵erent enhancer factors from 1.0 which is the

original image to 3.5. The accuracy obtained by each network on brightened test sets of

di↵erent enhancer factor are reported in table 7. As shown in figure 43, overall, the accuracy

in both networks drops as brightness level increases in test images. This might be due to

loosing some visual information and details when the pixel values get high.
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Figure 42: Increasing the brightness value by increasing the pixel value evenly across all

channels for the entire image. The brightness levels are from enhancer factors of (i) 1.0

which is the original image, (ii) 1.5, (iii) 2.0, (iv) 2.5, (v) 3.0, and (vi) 3.5.

Table 7: Average accuracy of each deep learning framework in di↵erent brightness levels.

Brightness Proposed Framework DeepFace

1.0 - Original 0.9407 0.9692

1.5 0.9482 0.9798

2.0 0.9273 0.9537

2.5 0.8449 0.8174

3.0 0.7623 0.7593

3.5 0.7137 0.6783
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Figure 43: Plot of accuracy changes with brightened images for DeepFace verification and

the proposed motion verification framework.

6.3 Conclusion

In chapter 4 we proposed a human authentication framework which is able to verify

individuals based on their body movements. In chapter 5, we implemented another frame-

work for human motion identification within a set of 10 gesturing speakers. Considering the

applications of such frameworks, in verification steps, the input videos might be noisy as a

result of using di↵erent cameras or might even be recorded in di↵erent lighting. To address

these concerns, in this chapter, we focused on evaluating the robustness of our framework

to inputs with di↵erent noise or brightness levels. The test images are added with di↵erent

levels of Gaussian noise, from noise-free, to � of {0.5, 1.0, 1.5, ..., 5.0, 5.5}. We compared

our results to the state of the art face recognition deep learning frame work, DeepFace, eval-

uated with the same testing set for the verification task. As the results show, the verification

accuracy of our framework drops by 1.5% when Gaussian noise with � = 1.0 while DeepFace

accuracy drops by 1.99% in the same experiment. With greater noise levels, both network

accuracy drops as the standard deviation of the Gaussian noise gets bigger. However, as
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results demonstrate our network accuracy is less a↵ected by noise compare to DeepFace.

We further evaluate our network performance with input samples from di↵erent bright-

ness levels. Our results report that as the light level decrease or increase in images, the

verification accuracy decreases in both frameworks. However, as results show, our network

is more robust to extreme light changes compared to DeepFace.

Analyzing the robustness of deep neural network is a vast domain focused by lots of

researcher. Since the concern of this manuscript is to provide a better understanding of

human motion from visual data and investigating its potential applications as a biometric

technique, we keep this chapter as simple as possible. In future chapters, we move forward

with the main goal of this research and introduce a generative probabilistic framework that

is able to e�ciently identify subjects based on their motions in low-computational power

setting.
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7.0 LEARNING EFFECTIVE AND EFFICIENT

In this chapter we aim to investigate the potential capability of human temporal motion

data as a non-cooperative method for on-device biometric authentication used in large scale.

We introduce a novel dataset of 267 in-the-wild footage of gesturing single-speakers all col-

lected from YouTube. We investigate di↵erent feature learning architectures for sequential

data and incorporate them in a lightweight probabilistic generative framework. Our results

shows that human body movements conveys valuable information about their identity that

could be used for authentication in di↵erent devices and applications.

7.1 Introduction

One of the obstacles in biometric studies is the di�culty of data collection due to practical

and legal limitations. Most of existing biometric studies are based on data collected in lab

environments that due to the self-consciousness of participants is not a good representation

of real world. The other challenge in existing biometric research is that they are mostly

built on deep learning approaches that require high computational power as well as a huge

amount of training data. Therefore, such biometric authentication/identification model is

not applicable on di↵erent setting.

In previous chapters, we used LSTM neural network for human authentication and iden-

tification based on their motion signatures. The accuracy obtained by proposed framework

was more that 94% for human authentication and more than 92% for human identification.

Although the architectures proposed in previous steps might be applicable on many services,

there are many limitations enforced by many other applications. For example, such frame-

work requires approximately five hours of individuals data on the cloud which could create

a privacy threat from the legal perspective. Thus, subject verification should be performed

on devices and this creates a challenge due to the limited processing power, storage, and

memory. Moreover, adaption of new individuals must be quick and based on a small sample
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of motion data which is not possible in a pure deep learning setting due to overfitting and

low generalization power of the trained model. Therefore, learning a discriminative model

per individual would not be easily feasible.

To address these challenges, we intend to propose a generative probabilistic frame-

work that is able to e�ciently learn the task-relevant features within the data in a low-

computational power setting and incorporate them to a probabilistic biometric model trained

using a limited amount of enrollment data. For this purpose, we start by exploring several

popular deep learning feature extraction architectures including convolutional and temporal

architectures. As the final step, using extracted features, we train a lightweight generative

biometric model based on Gaussian Mixture Model (GMM) which is able to authenticate

subjects based on their motion patterns.

7.2 Method Overview

The goal of this part of our research is to distinguish between the specific subject and

the imposters based on the limited amount of enrollment motion data extracted from video

inputs. For this purpose, the proposed framework is consisted of two main components:

– a feature extraction component that learns a collection of discriminative characteristics

for each individual.

– a probabilistic biometric model that takes the feature vector as the input and performs

the authentication task. For the purpose of this research, it is important to train a model

that is lightweight enough to be used for on-device authentication task.

In the following sections, we begin to introduce the human motion dataset. We further

discuss these two components to provide more details.

7.2.1 Human Motion Dataset

Training a UBM, requires a large sample of training data. In this work, we introduce

a large dataset consisted of 267 hours of data from 267 gesturing speaker with a diverse
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set of backgrounds. They cover a wide range of topics including science, entertainment,

personal lifestyle, religions, sports, and music. For the simplicity, all the videos in our

dataset are deliberately handpicked from YouTube as they involve one gesturing speaker in

a single camera setup. However, for multi-camera setups, out-of-the-box face recognition and

splitting techniques could be used to extract the intervals that contains only the speakers

in all frames, so the detected keypoints are visible (As the process performed in [10]). Our

final dataset contains approximately 96,000 intervals with an average length of 10.42 and a

standard deviation of 3.7 representing in-the-wild footage of the subjects.

Figure 44: Sample frames from our introduced dataset of 267 single speakers in single-camera

setups covering a wide range of topics.

In this experiment, we used OpenPose at a rate of 15 fps. 33 upper body keypoints

corresponding to nose, neck, shoulders, elbows, wrists, fingers, eyes and ears are extracted

as explained in chapter 4. Data from all 267 speakers are used for deep feature extraction as

well as training the universal background model. 10% of these sample speakers are randomly

selected as the validation set to tune the hyperparameters while 80% are used for training

and another 10% for testing.
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7.3 Feature Extraction

Feature learning is an important stage in our proposed framework since the performance

of such framework in real-time depends on the representational power of the extracted fea-

tures and the speed of feature extracting. These two typically contradict each other as the

speed of feature extracting decrease when the performance increase [116].

In recent years, a large number of studies proposed deep learning architecture for extract-

ing temporal features in sequential data. Two paradigms specifically have been dominating

this field with the goal of finding the balance between speed and representational power of

the feature learning process. 1-dimentional convolutional neural network that aggregates

the temporal statistics by temporal pooling and recurrent neural networks that explicitly

models the temporal dependencies. Another model which was popular in speech recognition

was consisted of short-term (ST) and long-term (LT) convolutional neural networks that are

capable of learning the temporal dependencies from short and long stream of data [60]. The

main challenge with each of these component is that the short term network fails to model

the context while it produce output at a high rate. The long-term architecture, on the other

hand, does not generalize to sequences of arbitrary length and su↵ers from a high degree of

temporal inertia while it is capable of learning the representation at di↵erent scale.

As many deep learning architecture has been proposed for feature extraction, [80] com-

pare these networks and propose a model that enhances the sequential data feature extraction

process. In their model, they combine both convolutional and recurrent layer in a way that

first they use few convolutional layers to extract features from data patches and then they

feed these features to a recurrent layer to model the temporal relations in the data. One ben-

efit of this method is that by using a pooling mechanism after convolutional layers, the input

vector to the recurrent layers will be shorten, therefore learning the temporal dependencies

will be performed on a smaller numbers of frames. The other benefit of their architecture

is that by applying more layers of computation they allow for more details in the feature

extraction process. They finally demonstrate that their proposed method outperforms both

traditional CNN and RNN as well as ST and LT architectures in the area of feature extraction

from sequential data.
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In this research, we evaluate the performance of LSTM architecture as well as a vanilla

RNN for the feature extraction task. We found it strongly beneficial to make the first

few layers convolutional to reduce the size of the input data resulting to a reduction in

computational load and complexity. Although the LSTM network discussed in chapter 4

obtained a satisfying accuracy to authenticate subjects, it is not e�cient in terms of speed

and model complexity. Feature extraction models are evaluated as a multi-class classification

problem. Later, the output layer is removed and the activations of the penultimate layer are

treated as the input to the probabilistic model discussed in section 7.4.1.

7.4 Biometric Model

It is important to emphasize that the methodological choices in this part our our research

are a↵ected by the specific constraints of its applications. For example, streaming the subject

data into cloud potentially brings up some privacy concerns that makes the authentication

task an impermissible threat. Therefore, the verification task must be doable on the device

which is challenging due to the limited processing power, storage, and memory. Moreover,

adaption of new individuals must be quick and based on a small sample of subject data

while this sample might not be the best representation of the subject’s motion signatures.

Therefore, the architecture discussed in previous chapters might not be applicable in di↵erent

settings as learning a separate model for each individual and fine-tuning them is hardly

feasible.

Instead, in this study, using Gaussian Mixture Models (GMMs), we create a universal

background model (UBM) to estimate a general data distribution in the dynamic motion

feature space. The UBM is trained o✏ine and prior to its use in devices using a large sample

of training data. Later, the client model could be adapted from the UBM (online) by only a

small sample of enrollment data from each subject. Both of these model then could be used

for a continuous real-time authentication based on a trust score achieved by the likelihood

test between them.

In the following sections, we will dive into more details regarding the process of the
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training a UBM, adaptation of the client models, and finding the proper trust score.

7.4.1 Universal Background Model

A Universal Background Model is a model mostly used in biometric authentication that

represents the general subject-independent characteristics. The UBM will be then used

against a subject-specific model with the specific characteristic to make a decision regarding

to verification process. In this study, the UBM is a person-independent Gaussian Mixture

Model trained using a large sample of pre-collected dataset. Having a person-specific GMM

model trained with motion samples from a specific person, a likelihood test is performed to

obtain the likelihood score between these two models.

To provide a better understanding of how the whole process works, we delay the discus-

sion around training the UBM and client-model and start with the likelihood-ration test.

7.4.1.1 Likelihood Ratio Test Given a motion sequence of Y, and the subject S, the

goal is to determine whether Y belongs to S or not. This could be written as a hypothesis

testing between:

H0 : Y is form subject S

H1 : Y is not form subject S

The likelihood ratio test is a statistical test that decides between two hypothesis based

on a calculated threshold ✓ and is only optimal when the likelihood functions are exactly

known. ✓ is the decision threshold for accepting or rejecting the H0. In practice, it could be

written as:

P (Y |H0)

P (Y |H1)

8
><

>:

� ✓ Accept H0

< ✓ Reject H0

(7.1)
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where P (Y |Hi), i = 0, 1 is the probability density function for hypothesis i, which evaluates

measurement M. It worth pointing out that when Hi is considered as the independent vari-

able, P (Y |Hi) is referred as the likelihood. In a verification system, the goal is to employ

techniques to calculate these two likelihood functions. In the context of human biomet-

ric authentication, this could be achieved by modeling the two likelihood of P (Y |H0) and

P (Y |H1). To calculate the likelihood of H0 and H1, let y = f(x(t)) 2 R
N be a vector of fea-

tures extracted from a raw sequence of motion vector which is performed using deep neural

network. This feature vector is used to compute the likelihood of H0 and H1. We repre-

sent H0 by a Gaussian Mixture Model denoted by ⇥S that characterizes the distribution of

features extracted from enrolment samples from subject S by a set ⇥ = {µi,⌃i, ⇡i}, where

µi denotes the mean, ⌃i is a covariance matrix, and ⇡i is a mixture weight and coe�cient.

The alternative hypothesis H1 would be the same, denoted by ⇥UBM that is a large GMM

representing the person-independent characteristics and is referred as UBM. The likelihood

ratio is then calculated as:

LR(y) =
P (y|⇥S)

P (y|⇥UBM)
(7.2)

7.4.1.2 UBM and the Subject Model While estimating a separate GMM for each

individual can be learned through the training dataset, it is suboptimal regarding the goal of

this part of our research which is minimizing the computations and shortening the training

process. Instead, in this research, we collect a large dataset of human body motion to learn

an unsupervised universal background model (UBM), which is then used to estimate the

client models through an online adaptation process.

Let y be the feature vector extracted from an unprocessed sample of data. We define

the UBM over these feature vectors as a weighted sum of M multi-dimensional Gaussian
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distributions with the mean µi, covariance matrix ⌃i, and mixture coe�cient of ⇡i:

P (y|⇥) =
MX

i=1

⇡iN(y;µi,⌃i) (7.3)

where the density function is defined as:

Ni(y) =
1p

(2⇡D)|⌃i|
exp

✓
�(y � µi)0⌃�1(y � µi)

2

◆
(7.4)

The UBM is estimated by using the Expectation Maximization (EM) algorithm. The

EM algorithm is specifically used for calculation of the probability distribution parameters

in a way that maximizes the likelihood of the feature vector over the large pre-collected

dataset. EM algorithm starts by placing Gaussians randomly in space by a random mean

and covariance, then for each data point, it figures out the probability of this point belong-

ing to each cluster (soft assignment). Later, the EM algorithm, use these probabilities to

re-estimate the mean and covariance and it iterates until it converges.

In order to learn the subject model P (y|⇥s), the probability distribution parameters are

adapted from the UBM by using Maximum A Posteriori(MAP) estimation. In fact the UBM

acts as a prior distribution over a large sample of pre-collected data, therefore the posterior

distribution of the enrolment sample could be calculated using Bayes’ theorem. To avoid

overfitting, weights and the co variance matrices are the same while MAP is used to estimate

the mean vector for a new subject. Therefore, learning subject model process is shrunk to

updating a subset of parameters related to the new subject. In other words, by having a set

of M enrollment samples by subject {yM}, the updates to a specific subject model is applied

by calculating the mean of each mixture component i:

E({yM}) = 1

ni

MX

m=1

P (i|ym)ym (7.5)
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Figure 45: The overview of proposed e�cient verification model using UBM; on the left is the

training person specific model and MAP adaptation; on the right is the threshold estimation

and testing pipeline.
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where ni is defined as:

ni =
MX

m=1

P (i|ym) (7.6)

and P (i|ym) is:

P (i|ym) =
⇡ipi(ym)PC
j=1 ⇡jpj(ym)

(7.7)

Using following formula, the mean of all components are updated:

µ̂i = ↵iEi({ym}) + (1� ↵i)µi (7.8)

where:

↵i =
ni

ni + r
(7.9)

r is a relevance factor that balances the subject model and the UBM and is obtained

empirically in our research (r = 3).

7.4.1.3 Subject Authentication via Scoring As mentioned in section 7.4.1.1, subject

authentication is performed by scoring the feature vector extracted from a given sample

sequence of data (Y = {ym}) against the UBM and the subject model. The threshold could

be defined as the log-likelihood ratio as:

⇤(Y ) = log p(Y |⇥S)� log p(Y |⇥UBM) (7.10)

Lastly, in order to avoid outlier issues the distribution of the authentic client and impos-

tors and draw a sharper client boundaries, zt-score normalization is performed [134]. Gen-

erally, score normalization aims to transform the distribution of the authentication scores to
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increase the decision threshold robustness [177]. Zero-normalization is used to normalize the

subject model by testing the it against a set of imposters samples resulting into an imposter

similarity score distribution. The imposter similarity score distribution is then used to calcu-

late the normalization parameters (mean and variance). These mean and standard deviation

are later used to normalize future incoming scores ⇥(Y ) via the normalization function bel-

low. The benefit of Z-norm is that the normalization parameters can be estimated o✏ine

during the training step [22]:

⇤z(Y |⇥S) =
⇥(Y )� µ(Z|⇥S)

�(Z|⇥S)
(7.11)

where Z is a set of imposter samples while Y is a given test sample. �(Z|⇥S) and µ(Z|⇥S)

are the normalization parameters.

The test normalization (⌧ -norm) [22] is another normalization method in which each test

sample is scored against a set of imposter distributions at the test time. ⌧ -norm normalizes

the score of test sample against the claimed model using bellow function:

⇤zt(Y ) =
⇥z(Y |⇥S)� µz(Z|⇥⌧ )

�z(Z|⇥⌧ )
(7.12)

The ⌧ -distributions (⇥⌧ ) are adapted from UBM via MAP-adaptation the same as subject

models, but using a di↵erent subset. The Z samples come from a part of train dataset that

has not been used for ⌧ -distributions [96].
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7.5 Experimental Results

To train the UBM, 128 mixture components were initialized with kmeans and trained

for 80 iterations. For learning subject models, MAP-adaptation is performed in 8 iterations

with the relevance factor being equal to 3. For score normalization, we randomly created

non-overlapping samples extracted from training set for the ⌧ -models as well as z-samples.

The ⌧ -models are adapted from UBM using MAP-adaptation. The hyper-parameters are

optimized based on the validation set.

We use the same training and testing data for the zt-score normalization process. From

non-overlapping subset of data, we create 200 t-models as well as 200 z-sequence, Each of

these t-models are trained using the UBM through a map-adaptation process. We then

optimize all of hyperparameters on the validation set.

In following sections, we evaluate our proposed authentication framework on our single-

speaker dataset introduced in section 7.2.1. Two rounds of evaluations are performed specif-

ically; the first round evaluates the is performance of the di↵erent feature learning archi-

tectures while the second round more focuses on the performance of the extracted features

as a part of a generative biometric model with the goal of authentication. Table 8 and 9

represents details regarding architectures used for the purpose of feature learning. All deep

networks implemented in this study are trained over an NVIDIA GPU TESLA K80.

7.5.1 Feature Learning Evaluation

We start by evaluating the feature extraction networks as a multi-class classification

problem where each class corresponds to one of 267 subjects in our dataset. In this step of

our evaluation the generative biometric model is not considered. To estimate the accuracy,

a softmax layer is used as the output layer that yields to a class probability distribution

corresponding to subjects identities. We selected the class with the highest probability as

the recognized identity.

Table 8 demonstrates the hyper parameters related to the long-term and short-term

convnet architectures. The long-term convnet is trained over 150 samples (one data stream)
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Table 8: Feedforward long-term (LT) convolutional architecture on the left, and feedforward

short-term (ST) convolutional architecture on the right.

LT Convnet ST Convnet

Layer Filter size/Units Pooling Filter size/Units Pooling

Input 10 × 15 × 134 - 3 × 15 × 134 -

Conv1 25 × 9 × 1 4 × 1 25 × 9 × 1 2 × 1

Conv2 25 × 9 × 1 2 × 1 25 × 9 × 1 1 × 1

Conv3 25 × 9 × 1 1 × 1 25 × 9 × 1 1 × 1

FCL1 1024 - 1024 -

FCL2 512 - 512 -

Output 267 - 267 -

Table 9: Conv-RNN sequential feature learning architecture on the left and Conv-LSTM

sequential feature learning architecture on the right.

Conv-RNN Conv-LSTM

Layer Filter size/Units Pooling Filter size/Units Pooling

Input 10 × 15 × 134 - 10 × 15 × 134 -

Conv1 25 × 7 × 1 2 × 1 25 × 7 × 1 2 × 1

Conv2 25 × 7 × 1 2 × 1 25 × 7 × 1 2 × 1

Conv3 25 × 7 × 1 1 × 1 25 × 7 × 1 1 × 1

Recurrent 512 RNN - 256 LSTM -

Output 267 - 267 -
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and the short-term architecture is trained over 45 samples. We distinguished convolutional

layer and fully connected layer by denoting them as Conv and FCL. Table 9 demonstrate

feature learning architectures via vanilla recurrent neural network and LSTM network both

combined with convolutional layers. We train all of these network using stochastic gradient

decent. We further use dropout for regularization on fully connected layers. For the loss

calculation, we use negative log likelihood function.

Table 10 demonstrates the classification accuracies obtained with architectures presented

in table 8 and 9. As the results show, among temporal models, the LSTM recurrent network

achieves the highest accuracy as the most e↵ective architecture. The vanilla RNN accuracy,

on the other hand, is lower compared to LSTM network but still higher that the accuracies

obtained by LT and ST convectional networks.

Table 10: Performance of feature learning architectures on single-speaker dataset.

Model Accuracy (%)

ST Convnet 57.84

LT Convnet 65.91

Conv-RNN 73.28

Conv-LSTM 79.64

7.5.2 Authentication UBM Evaluation

When it comes to binary authentication, classification accuracy is not capable of captur-

ing the balance between false rejection and false acceptance rates. Equal Error Rate (EER)

is a metric that describes when false rejection rate (FRR) and false acceptance rate (FAR)

are balanced and equal. As sensitivity increase, the FRR rise and the FAR drops. EER

is the intersection of these two lines and demonstrates the overall accuracy of a biometric

system. Using the validation set, we optimize the authentication model to have the minimal

86



EER [132]. Once the EER threshold (⇥EER) is obtained, we use it on our testing data to

evaluate the performance via Half Total Error Rate (HTER) that corresponds to the average

of both FAR and FRR errors on the test set:

HTER =
FAR(⇥EER) + FRR(⇥EER)

2
(7.13)

A lower ERR demonstrates a better performance of the model. For example an ERR

equal to 10% indicates that 90% of the time, the model authenticates subject correctly. Table

11 demonstrates the performance measurements of the proposed GMM-based authentication

model using di↵erent feature learning architectures on the single-speaker dataset. Results

obtained in this step are aligned well with the performance of feature extraction models,

showing that well-recognized features can e�ciently incorporate in a lightweight generative

framework.

Table 11: Performance metrics of the proposed GMM-based authentication model using

di↵erent feature learning architectures on the single-speaker dataset.

Model EER (%) HTER (%)

Raw features 37.85 44.27

ST Convnet 29.15 31.32

LT Convnet 26.91 28.26

Conv-RNN 19.82 20.18

Conv-LSTM 16.14 16.95

Conv-LSTM (zt-norm) 13.89 14.05

To compare the proposed generative probabilistic framework with a previous framework
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that includes fine-tuning a separate model for each individual in another setting that is not

enforced with applications limitations, we randomly selected 10 subjects from the validation

set. The output of the LSTM feature learning model was replaced with a binary classification

model (in this case a logistic regression). The average performance was already 3.2% lower

than the generative model. The reason behind such di↵erence could be explained in the

shade of overfitting and poor generalization of the traditional model. In a generative setting,

however, such challenge is handled when each subject’s model adopts the parameters from

the general probabilistic distribution. In other word, adapting some parameters from the

UBM while learning a subject generative model helps the model to keep the generality of

the UBM at the same time as it fits well to the training data specifically when the training

dataset is limited. Adapting parameters from UBM that has been trained based on a huge

amount of data provides more robustness for the subject model [159].

7.6 Conclusion

In this chapter, in response to challenges in biometric research such as low computa-

tional power and limited amount of training data in particular applications, we propose a

non-cooperative framework which is able to authenticate human motions. The proposed

framework framework includes three main component including a pose estimation machine,

a temporal feature extraction model, and a generative probabilistic model for the authen-

tication task. For pose estimation, we used OpenPose to extract body pose in each frame

with a rate 15 fps. For e�cient learning of dynamic features, we investigate several popular

feature extraction architectures including long-term (LT) and short-term convnets as well

as conv-RNN and conv-LSTM. Results show that among all architectures LSTM network

combined with few convolutional layers obtains the highest accuracy (79.64). For human au-

thentication task, we first used a probabilistic generative model to train a UBM o✏ine and

based on a large sample of single-speaker dataset. Each participant model is then adapted

from UBM via MAP-adaptation. Finally, the human authentication is performed by scoring

the extracted feature vector against the UBM. As the final step, we used zt-score normal-
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ization to reduce the overlap between di↵erent classes and compensate for inter-session and

inter-suject variations.

We use EER as a performance metric to evaluate our authentication framework. Our

results show an EER equal to 13.89 for our proposed framework, meaning that 86.11 of

the time the subject is verified correctly. Given the fact that the proposed framework does

not require high computational power and a huge amount of data to perform the on-device

learning of subjects model, the results obtained in this study look particularly promising and

we believe that this work can provide additional view for communities working on similar

problem. Moreover, the proposed framework in this chapter can be easily be extended to

multi-person authentication framework for specific applications.
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8.0 SUMMARY AND FUTURE WORK

The current manuscript sums up our years of contribution in academic research and we

are thrilled to walk the reader step-by-step through our findings and experiences. Now, we

would like to provide some closing remarks and once again highlight the contribution of our

work to shed light on some potential future research direction. For this final review, let us

walk through what we done and emphasise on some details.

– Part 1. Motion Authentication/Identification From Visual Input.

In the beginning stage of our study, we tackled the problem of human authentica-

tion/identification based on their motion pattern from visual inputs. In this context,

we demonstrate that motion features extracted from videos convey information that

can be considered as practical biometric cues for identification. We designed, imple-

mented, and optimized a fully automated deep learning framework to model human

body movements from visual inputs and authenticate/identify them based on their

motion series. Since the video inputs are not annotated and acquiring human pose

annotation for large data is not feasible, in this work, we take a data-driven approach

to learn visual data representation instead of hand-crafting features for each subject.

The proposed framework is consisted of a pose estimation machine, (OpenPose) and

a three layer LSTM neural network. OpenPose detects body keypoints in visual se-

quences from the Speaker-specific dataset. Having the pose extracted in each frame,

motion features are calculated between consecutive frames. Later, the LSTM recur-

rent neural network acts as the classifier to authenticate/identify individuals.

The key contribution of this part of our research is in design and implementation of

a temporal architecture that is able to model multiple temporal sequences. The test

results of our model over a set of 10 gesturing speakers obtained an average accuracy

of 92.62% for the human identification and 94.07% for human authentication.

Our model performance surpasses other conventional approaches including random

forest, decision tree, and SVM in both identification and authentication tasks. Our
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framework is specifically designed and developed for motion biometric recognition

while it could be applied to many other problems in computer vision.

– Part 2. Robustness Analysis.

The second stage of this study is dedicated to analyzing the robustness of proposed

authentication/identification framework. One of the discussions around vision-based

approaches is that the precision of outputs relies heavily on the image quality as well

as brightness changes. Therefore, it is important to make sure that the small changes

in the testing data, does not yield to a significant loss to the performance of the

network. For this purpose, we manipulated our test dataset to see how adding noise

and changes in brightness would impact the network accuracy. Since the framework

implemented in this work is the first automated motion recognition system capable

of authenticating individuals from visual inputs, we used DeepFace, the state of the

art vision-based face recognition framework as a baseline to our work to compare our

results.

As the first step to robustness evaluation, we added Gaussian noise with di↵erent

magnitude to our test dataset to see how our framework reacts. We started by

applying random Gaussian noise with the standard deviation of 0.5 to each RGB

channel of video frames and increased it by 0.5 step by stem till it gets to 5.5. Our

results demonstrate that our framework is more robust to noisy inputs as its total

changes in the accuracy are less in each experiment even though that both networks’

accuracies decrease when noise magnitudes gets bigger. In noise level with a � of 5.5,

our network surpasses DeepFace by 5.4%.

In the second step of our robustness analysis, we discussed how light changes would

impact the network performance by manipulating the brightness level in our test

dataset. We generated augmented test samples with enhancer factors ranging from 0

to 3.5 and calculated the accuracies for both our network and DeepFace to see how

di↵erent brightness levels would impact the performance. While an enhancer factor of

1.0 gives back the original image, moving toward 0.0 darkens the image and a factor

greater than 1.0 makes the image brighter. Such task is done by increasing/decreasing
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the pixel values evenly across all channel for the entire image. A factor of exactly 0.0

is a black image.

Our results show that both framework accuracies drop equally moving from enhancer

factor 1.0 to 0.25. However, in lower lighting with enhancer factor of 0.1 , our frame-

work performs significantly better and surpasses DeepFace accuracy by 21.19%. In

brightness levels with enhancer factor greater than 1.0, which are brightened images,

both network accuracies drops as a result of loosing some visual information due to

changes in pixel values. However, the overall drop in our network is 6% less compared

to DeepFace confirming the robustness of our network to brightness changes.

– Part 3. Learning E↵ective and E�cient.

In the final stage of this thesis, we address the challenges related to low computational

power and limited amount of training samples that are enforced by potential applica-

tions of our proposed framework. In devices with limited processing power, storage

and memory, it is important to make sure that the verification task is successfully

completed in a reasonable time. Moreover, the adaption of new individuals must be

based on a small sample of the subject data and needs to be quick.

For this purpose, we proposed an authentication framework consisting of a feature

learning network incorporated in a lightweight generative framework that allows learn-

ing the subject model directly on the device with a limited amount of training data.

For e�cient learning of dynamic features, we investigated several popular feature

extraction architectures and showed that among all those architectures, the LSTM

network combined with few convolutional layers obtains the highest accuracy. Using

a large sample of pre-collected dataset, we then trained a universal background model

o✏ine containing the user-independent characteristic. Each subject model was then

adapted from the UBM via MAP-adaptation process. Finally, the human authenti-

cation was performed by scoring the extracted feature vector against the UBM.

During this research, we brought up five main challenges unaddressed in previous studies.

We briefly go over these challenges and explain how we addressed them in the context of
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our research. The first challenge is that the most of previous studies are limited to lab-scale

data collection which is a poor representation of the real world due to subjects conscious-

ness. In our study, we use in-the-wild footage of subjects in which users are not aware of

the experiments at all. Moreover, all previous studies required an additional device such as

Kinect, wearable or radar sensors which are not practical for most real-world situations. We

conducted our framework based on video data from subjects, therefore it does not require

any additional hardware. To address challenges regarding the privacy threat, and limitations

such as processing power, storage, and memory, we introduced our lightweight generative

framework that is trained o✏ine based on a pool of subjects. In this framework, learning

the subject model is quick since their parameters are adapted from the universal background

model. Therefore, the training time is decrease by 90% which is crucial in industrial appli-

cations.

What’s done in this research is a promising step toward active biometric recognition

that does not require the direct communication and cooperation of subjects. For future

work, there are few di↵erent directions that can be explored. First of all, further analysis of

temporal feature learning for understanding di↵erent aspect of human motion characteristics

could be done particularly from a biometric point of view. Secondly, the motion pattern could

be considered in the context of specific applications such as games. Lastly, the proposed

approach in this research could be combined with other biometric recognition approach to

achieved the optimal accuracy. This area of research is fertile ground for further explorations

and finding new applications.

This concludes our study about human authentication based on their motion patterns.

There is an enormous amount of work could be done in this area, and we expect that it will

take many years for these system to be widely used in daily life systems.
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