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Abstract: We examine two dimensional properties of vortex shedding past elliptical cylinders through
numerical simulations. Specifically, we investigate the vortex formation length in the Reynolds
number regime 10 to 100 for elliptical bodies of aspect ratio in the range 0.4 to 1.4. Our computations
reveal that in the steady flow regime, the change in the vortex length follows a linear profile with
respect to the Reynolds number, while in the unsteady regime, the time averaged vortex length
decreases in an exponential manner with increasing Reynolds number. The transition in profile is
used to identify the critical Reynolds number which marks the bifurcation of the Karman vortex from
steady symmetric to the unsteady, asymmetric configuration. Additionally, relationships between the
vortex length and aspect ratio are also explored. The work presented here is an example of a module
that can be used in a project based learning course on computational fluid dynamics.

Keywords: vortex formation length; wake; vortex shedding

1. Introduction

Vortex development in a fluid’s flow is a highly nonlinear phenomenon which goes through
multiple bifurcations. This topic is rarely introduced in a serious manner in an undergraduate course on
fluids. However, there are simple ways to talk about vortex development by combining qualitative and
quantitative approaches that go beyond simply examining classical images or the use of sophisticated
particle image velocimetry (PIV) techniques. We introduce one such method of talking about the
physics of vortex development in this paper, which can be used in the form of a lesson plan for a
lecture or to motivate computational projects in more advanced classes in fluids. Student-centered
practices such as problem-based and project-based learning (PBL) are more commonly practiced in the
arts. Instructional methods related to PBL promote a more inductive approach to learning whereby
generalizations and abstractions follow from first understanding specific cases [1]. This approach
is in contrast to the deductive strategy taken in the sciences which is a more top-down approach
and a possible cause of alienation in several students. The concept of problem-based learning began
more than 30 years ago in the context of medical education. PBL has been defined as the “posing
of a complex problem to students to initiate the learning process” [2] and as “experiential learning
organized around the investigation and resolution of messy, real-world problems” [3]. PBL can be
implemented at various scales in a course with a focus from a “teacher to student-centered education
with process-oriented methods of learning” [4,5]. The recent popularity of project based learning
approach in physics and engineering education is based on research indicating the effectiveness of
PBL in enhancing student engagement [4,6,7]. Several recent educational papers have specifically
discussed the effectiveness of computational problems in fluid dynamics and the use of software such
as Comsol, among others, in improving classroom engagement [8–13]. The current paper is an attempt
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to present a similar example of a complex problem in fluid dynamics which is apt as a unit which can
be introduced as a project.

Flow past a circular cylinder is a very well studied problem in classical fluid mechanics.
While the creeping flow regime is completely understood and most related problems are approachable
analytically, the inertial regime contains several unanswered questions. The evolution of flow past a
cylinder is a particularly interesting and well studied problem [14]. The Reynolds number (Re = UL/ν,
where U and L represent the characteristic velocity and length respectivel, and ν refers to the dynamic
viscosity) has been shown to capture several critical changes in flow structure. The first of these happens
around Re = 5 [15], where the flow transitions from the creeping flow to one with a symmetric vortex
profile. A second flow bifurcation from the steady symmetric profile to a asymmetric unsteady vortex
occurs at around Re ≈ 47 [16] which lasts until about Re ≈ 150. Following the notation employed in
the recent literature [17], we identify these critical Reynolds numbers as Rec1 and Rec2, respectively.
We refer the readers to the paper by Faruquee et al. [17] who provide a thorough discussion of the
various historical experimental and numerical studies on this topic. The critical values referred to
above are sensitive to shape of the obstacle, aspect ratio (AR), blockage ratio of channel diameter to
channel width, roughness of the cylinder etc. but the qualitative aspects of the various transitions are
still maintained.

In this paper we are concerned with highlighting the dynamics of vortex formation, specifically
through an examination of the vortex length in a flow past an elliptical obstacle. Experimental
measurements of the length and width of wake vortices past cylinders have been discussed in the
literature [14,16,18–24]. The vortex length, usually denoted Lw, is defined as “the streamwise distance
between the confluence point (wake stagnation point) and the rear stagnation point of the cylinder” [17].
It is also, more commonly, defined as the distance between the rear stagnation point and the “point
downstream where the velocity fluctuation level has grown to a maximum” [14] (Figure 1 provides
a schematic explanation of this metric). Experiments and numerics indicate the relation between Lw

and maximum velocity fluctuation and the base pressure (at the rear of the obstacle) to be inversely
proportional [23,25,26]. Coutanceau and Bouard [27] put forth the linear equation Lw/d = 0.05 Re for
4.4 < Re < 40, which, in the steady, symmetric vortex regime, related the growth of the near wake
vortex as a function of Re.

The effect of AR, which is the ratio of the semi-minor (a) to semi-major (b) axis of the obstacle,
is also of interest in this study. Note that AR = a

b < 1 indicates an elongated body while, AR > 1
suggests a squat, flat object (such as disk in 3D). In two dimensions the shape itself is identical and
therefore the AR is reflective of the orientation of the body with respect to the oncoming flow. Hence
in 2D, we can describe AR < 1 as indicative of a high drag configuration where the entire length of the
body is perpendicular to the flow, while in the case of AR > 1, the body assumes a pefectly streamlined
position with the length of the body parallel to the flow. Recent numerical simulations [17] reveal
that Lw has a tendency to increase with increasing AR for Rec1 < Re < Rec2. However, for AR < 0.4,
the wake disappears. For Re = 40, Faruquee et al. [17] provide the following equation relating the
normalized vortex formation length to AR:

Lw

d
= 2.2(AR)2 + 0.5(AR)− 0.43 (1)

where d is the hydraulic diameter. This formula indicates a critical minimum AR of 0.34 below which
no symmetric vortex forms. This critical AR is sensitive to the Re and has been shown to increase with
decreasing Re Table 3 [17]. The calculations are in agreement with the experimental studies [27,28].
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Figure 1. This figure shows a visualization of the primary vortex region in a flow past an ellipsoidal
body. Based on past experimental work [24], the vortex length (denoted by the length of the bold red
line) is measured as the distance between the rear surface of the body and the “pinch-off” point where
the flow velocity vanishes.

In the rest of the paper we numerically investigate the vortex formation length for a class of
ellipse shaped obstacles in a flow in the range 10 < Re < 100 for various ARs. Our investigation goes
past Rec2 into the asymmetric, periodic vortex shedding regime. Section 2, discusses the numerical
method used and Section 3 elaborates the results of our computations and compares them with those
in the literature.

Vortex formation in flow past cylinders has been studied extensively for many practical
applications. Vortices form when fluids flow past obstacles at sufficiently high speeds and are therefore
of particular interest in various branches of engineering as they can pose a threat by inducing harmful
vibrations in aircrafts, buildings, and other structures. In the ensuing analysis, we determine the
length of the primary vortex region in the wake of an immersed body, since this region is most
influential in the dynamics of the body. More specifically, we examine 2D elliptical bodies of different
aspect ratio (henceforth denoted AR), which is a ratio of semi-major to semi-minor axis (oblate) and
semi-minor to semi-major (prolate). A total of thirteen different values of AR from 0.2 to 2.6, increasing
in increments of 0.2, have been considered. This simple numerical approach is a continuation of a
previous experiment conducted on a flow past a fixed cylinder in a flow tank, in which the vortex
length was determined by means of visualization and serves to elucidate a complex problem by simple
means, which we believe makes for an effective class project.

2. Methodology

We used COMSOL Multiphysics to model a 2D flow in a channel past a fixed cylinder.
The software uses a finite element method to solve the Navier–Stokes and incompressibility equations
given by

ρ

(
∂u
∂t

+ u · ∇u
)
− µ∇ · (∇u +∇Tu) +∇p = 0 (2)

∇ · u = 0. (3)
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Here, ρ is the density of the fluid, u = (ux, uy) is the divergence free flow field, t is time, µ is the
kinematic viscosity, and p is the pressure. The Reynolds number is defined as Re = Ud

ν , where U is
the far-field of free-stream velocity, ranging between 0.1–1 m/s, d is the characteristic length, which
in this case was 10−1 m and ν is the dynamic viscosity, taken to be 10−3 kg/m3. The solution to the
above flow equation yielded the velocity and pressure fields which were then utilized to identify the
vortex length for 10 < Re < 100 and ellipses of varying aspect ratios (AR is the ratio of minor axis to
major axis). The major and minor axes of the ellipses were chosen to conform to the desired values of
AR but with keeping the area of each ellipse the same as that of the cylinder. Table 1 summarizes the
important parameters used in the numerical computations.

Table 1. The table provides some important parameters for the numerical study. Note that the area of
the elliptical cylinders is always maintained at 0.0785 m2 in all calculations.

Channel Height Channel Length Cylinder Diameter Area of Cylinder AR Re

0.4 m 2.2 m 0.1 m 0.00785 m2 0.4–1.4 10–100

The problem of flow past a 2D cylinder is a well studied and benchmarked problem in
COMSOL [29]. A description of the code and the methodology of this standard problem can also
be found on the COMSOL website: comsol.com/model/download/449401/models.mph.cylinder_
flow.pdf. For the purposes of this work, this code was suitably adapted for the study of the elliptical
cylinder. The problem was solved using the FSI module in COMSOL which uses a PARADISO solver;
it was run for 5 s in increments of 0.01 s using a “fine” mesh consisting of 5662 elements. Convergence
tests were performed in a previous study [30,31] for a more complex problem involving 2D and 3D
elliptical cylinders with attached wings (or flexible fiber).

The dimensions and geometry of the problem studied here were similar to those used in our
previous studies [30]. We also verified our code for the case of flow past a circular cylinder with perfect
slip conditions along the top and bottom walls and no slip on the surface of the cylinder, to mimic
unbounded flow. Through this calculation we were able to obtain the critical bifurcation of around 47
where the flow transitions from steady to unsteady. This helped us to confirm that the metric used
to identify the critical Reynolds number was correct. In a classroom setting the relationship between
the Reynolds number and the Strouhal number would be appropriate as an additional validation
of the numerical scheme. The remaining computations were conducted in a bounded channel with
no-slip conditions on the channel walls and also on the surface of the ellipse. The various panels in
Figures 2 and 3 show some sample flow and pressure profiles based on our numerical simulations for
various Reynolds numbers.

Two different criteria were used to measure the length of the vortex depending on whether the
flow is steady or unsteady. For the steady case, since the flow does not vary in time (see the top panels
in Figure 4), the vortex region is symmetric about y = 0 and its length remains constant in time. In this
case, we examined the horizontal component of the velocity, ux, and of the pressure gradient, namely,
dp
dx as a function of x along y = 0. The border or separatrix of the primary vortex pair separates the
inner wake flow from the outer uniform flow. At the junction of the separatrix and y = 0, the two
flows are in opposing directions, the outer flow moving in the positive x while the wake flow moves
in the negative x direction. The point at which ux = 0 can therefore be defined as a critical point which
marks the end of the primary vortex region. The horizontal distance of this critical point from the rear
end of the cylinder is defined as the vortex length. To confirm this hypothesis, a second criterion was
also tested. We also observe that the pressure along y = 0 increases the fastest as we cross the critical
point. Therefore the vortex length can also be defined with respect to the maximum of the magnitude
of the pressure gradient. Since dp

dy is negligible, this collapses to the maximum of dp
dx along y = 0.

comsol.com/model/download/449401/models.mph.cylinder_flow.pdf
comsol.com/model/download/449401/models.mph.cylinder_flow.pdf
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(a) Streamlines of the flow in the steady regime (b) Pressure profile in the wake of the ellipse

Figure 2. Numerical simulations of the flow past elliptical objects of various ARs: steady flow.
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(a) Streamlines of the flow in the unsteady regime (b) Pressure profile in the wake of the ellipse

Figure 3. Numerical simulations of the flow past elliptical objects of various ARs: unsteady flow.
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Figure 4. The panels (a,b) show the position of the wake stagnation point in the case of steady flow,
while panels (c,d) show the periodically changing position of the stagnation point for the oscillating
flow regime.

In the case when flow becomes unsteady, the wake region oscillates in space and time (see the
bottom panels in Figure 4). The vortex region is asymmetric about y = 0 and moves in both spatial
directions x and y. In this case the critical point at a given time was defined by the maximum of
the magnitude of the pressure gradient, ∇p, which is a generalization of the criterion used in the
steady state case and the appropriate length is the time averaged vortex length over a period. We use
numerical interpolation to smooth the data and find our zeros and extremum.

3. Results and Discussion

The computations for the steady case show a monotonic increase in vortex length with increasing
Re, below a critical threshold, for all ARs (see for example, Figure 5). The rising trend is similar for
both criteria employed to measure the vortex length. When the flow becomes unsteady, the mean
vortex length is seen to decrease with increasing Re. The maximum vortex length can be associated
with the onset of a transition in stability as the flow bifurcates from steady to unsteady Karman
vortex. The Figure 5a–d show the mean change in vortex length versus Re for some sample cases
of flow past ellipses of AR 0.4, 0.8, 1.0, and 1.2. All graphs, show the same overall profile and the
turning point can be used to identify the critical Reynolds number, Rec which is sensitive to the AR
of the body. The Table 2 depicts the Lw/d versus Re profile for 10 < Re < 60, i.e., for flows that
generate a steady vortex, which is in keeping with the linear relationship proposed by Coutanceau and
Bouard [27]. The table shows the slopes of best fit lines for various ARs which appear to monotonically
decrease with increasing AR and are overall close to the value suggested in the literature. In the regime
60 < Re < 100, we use an exponential decaying function, Lw/d = AeαRe to fit the data. Table 2 also
shows the value of the exponent, α, along with the goodness of fit for various AR. As in the case of the
steady vortex, the dependence of the vortex formation length on Re is sensitive to AR. The missing
data for AR = 1.4 is due to the termination of our study at Re = 100; at this point the AR = 1.4 case
does not reveal an unsteady vortex. Table 3 also shows the average Lw/d for different AR and Re.
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Figure 5. The figures show the change in normalized vortex length, Lw/d, versus Re for AR = 0.4 in (a),
AR = 0.8 in (b), AR = 1.0 in (c) and AR = 1.2 in (d). The maximum point in each graph characterizes
the transition Re at which the flow changes from steady symmetric to unsteady asymmetric.

Table 2. This table shows the nature of the Lw vs. Re relationship in the two different flow regimes.
The first two rows provide the slope of the best line representing the changing value of Lw in the steady
wake. Rows three and four tabulate the exponentially decaying rate of Lw as a function of Re in the
unsteady, asymmetric wake.

AR = 0.4 AR = 0.6 AR = 0.8 AR = 1.0 AR = 1.2 AR = 1.4

Slope 0.108 0.095 0.082 0.068 0.059 0.046
R2 0.996 0.948 0.922 0.961 0.976 0.959

Exponent −0.024 −0.023 −0.020 −0.018 −0.034 -
R2 0.953 0.953 0.951 0.995 0.986 -

A particularly interesting relationship to investigate in this problem is that between the critical
Reynolds numbers, Rec and AR. The transitions from steady to unsteady wake are very sensitive to
the specific geometric characteristics of the cylinder. Figure 6 shows the critical Re for ARs ranging
between 0.4 and 1.4 estimated from using the velocity and pressure gradient criteria. The Rec vs. AR
curve shows a minimum at AR ≈ 0.6–0.7. Overall, for bodies with AR in the range 0.4–1.4, Rec appears
to lie in the range 55–95; for a cylinder our calculations show this critical value to lie at the accepted
value of Rec = 70. The more streamlined bodies show greater propensity to develop elongated primary
vortices. The equation:

Recrit = 79.46(AR)2 − 116.18(AR) + 100.26 (4)

captures the quadratic nature of the profile (with R2 value of 0.96) seen in Figure 6, obtained by fitting
the average of the two curves shown in the figure. This equation gives us valuable information about
the optimal geometry and its relationship with vortex formation. Engineers and designers wanting to
suppress disruptive osculations may find this equation particularly useful.
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Figure 6. The graph shows the variation of Recrit versus AR.

Table 3. The table shows the average values of the normalized vortex length Lw/d for various values
of AR and Re.

Re 10 20 30 40 50 60 70 84 88 92 96 100

AR Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d Lw/d

0.4 0.513 1 1.67 2.064 2.737 3.306 3.332 2.752 2.399 2.098 1.857 1.628
0.6 0.622 0.872 1.647 1.741 2.365 2.617 1.86 1.239 1.18 1.128 1.087 1.043
0.8 0.369 1.236 1.235 1.663 1.982 2.362 2.097 1.31 1.31 1.196 1.167 1.141
1 0.319 0.908 0.908 1.353 1.621 2.109 2.18 1.678 1.533 1.413 1.343 1.267
1.2 0.251 0.515 0.953 1.244 1.604 1.604 2.115 2.351 2.051 1.783 1.485 1.389
1.4 0.363 0.532 0.961 0.961 1.181 1.419 1.677 1.879 1.894 2.068 2.171 1.923

4. Conclusions

In summary, our overall computations and qualitative profiles are in agreement with previous
experimental results [24], where measurements of variations in vortex length were made through flow
visualization and imaging techniques of flow past various cylinders in a flow tank. These experiments
indicate a similar extremum in vortex length as a function of flow speed (Re) and AR. The central
contribution of this work lies in two consistent ways of defining the vortex formation length and the
observation of the vortex length dependence on Re, especially in the unsteady flow regime. Questions
for future investigation include extending the Re regime of the study and experimental verification
of the unsteady vortex formation length. Pedagogical treatments in the literature appear to focus
primarily on lower level courses in science and engineering. There is little discussion about the
teaching and learning of more advanced topics like fluid dynamics [32]. We believe that examples like
the ones presented here add value to the science of fluid dynamics in some capacity, but also to the
ways in which students can engage with difficult topics in fluid dynamics. Such a treatment lends
itself very well to a first serious course in fluids but also in more advanced courses where students
have greater proficiency in dealing with computational software like Comsol.
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