
Geo-distributed Edge and Cloud Resource Management for Low-latency

Stream Processing

by

Jinlai Xu

M.S. in Software Engineering, China University of Geosciences, China, 2015

B.E. in Software Engineering, China University of Geosciences, China, 2012

Submitted to the Graduate Faculty of

the School of Computing and Information in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Jinlai Xu

It was defended on

November 23rd 2021

and approved by

Dr. Balaji Palanisamy, School of Computing and Information, University of Pittsburgh

Dr. David Tipper, School of Computing and Information, University of Pittsburgh

Dr. Amy Babay, School of Computing and Information, University of Pittsburgh

Dr. Qingyang Wang, School of Electrical Engineering and Computer Science, Louisiana State University

Dissertation Director: Dr. Balaji Palanisamy, School of Computing and Information, University of

Pittsburgh

ii

Copyright © by Jinlai Xu

2021

iii

Geo-distributed Edge and Cloud Resource Management for Low-latency Stream Processing

Jinlai Xu, PhD

University of Pittsburgh, 2021

The proliferation of Internet-of-Things (IoT) devices is rapidly increasing the demands for efficient pro-

cessing of low latency stream data generated close to the edge of the network. Edge Computing provides

a layer of infrastructure to fill latency gaps between the IoT devices and the back-end cloud computing in-

frastructure. A large number of IoT applications require continuous processing of data streams in real-time.

Edge computing-based stream processing techniques that carefully consider the heterogeneity of the com-

puting and network resources available in the geo-distributed infrastructure provide significant benefits in

optimizing the throughput and end-to-end latency of the data streams. Managing geo-distributed resources

operated by individual service providers raises new challenges in terms of effective global resource sharing

and achieving global efficiency in the resource allocation process.

In this dissertation, we present a distributed stream processing framework that optimizes the perfor-

mance of stream processing applications through a careful allocation of computing and network resources

available at the edge of the network. The proposed approach differentiates itself from the state-of-the-art

through its careful consideration of data locality and resource constraints during physical plan generation

and operator placement for the stream queries. Additionally, it considers co-flow dependencies that exist be-

tween the data streams to optimize the network resource allocation through an application-level rate control

mechanism. The proposed framework incorporates resilience through a cost-aware partial active replication

strategy that minimizes the recovery cost when applications incur failures. The framework employs a rein-

forcement learning-based online learning model for dynamically determining the level of parallelism to adapt

to changing workload conditions. The second dimension of this dissertation proposes a novel model for al-

locating computing resources in edge and cloud computing environments. In edge computing environments,

it allows service providers to establish resource sharing contracts with infrastructure providers apriori in a

latency-aware manner. In geo-distributed cloud environments, it allows cloud service providers to establish

resource sharing contracts with individual datacenters apriori for defined time intervals in a cost-aware man-

ner. Based on these mechanisms, we develop a decentralized implementation of the contract-based resource

allocation model for geo-distributed resources using Smart Contracts in Ethereum.

Keywords: resource management, stream processing, edge computing, resource sharing, cloud computing,

reinforcement learning, blockchain.

iv

Table of Contents

Preface . xiv

1.0 Introduction . 1

1.1 Overview of research thrusts . 3

1.1.1 Research Thrust 1: Optimizing stream processing applications in edge computing . . . 3

1.1.2 Research Thrust 2: Resource allocation and management for geo-distribu-ted edge and

cloud resources . 5

1.2 Chapters overview . 7

2.0 Related Work and Preliminaries . 8

2.1 Stream Processing in Edge Computing . 8

2.1.1 Stream Processing Engine . 8

2.1.2 Stream Processing Optimization . 8

2.1.3 Stream Processing Fault tolerance . 8

2.1.4 Elastic Stream Processing . 9

2.2 Geo-distributed Edge and Cloud Resource Management . 10

2.2.1 Resource Management for Geo-distributed Edge Resources 10

2.2.2 Resource Management for Geo-distributed Clouds . 10

2.2.3 Decentralized Resource Management for Geo-distributed Edge Resources 11

2.3 Preliminaries of Stream Processing . 11

3.0 Optimizing low-latency stream processing applications in Edge Computing 14

3.1 Background and preliminaries . 15

3.1.1 Bandwidth Bottleneck . 15

3.1.2 Computational Bottleneck . 16

3.2 Amnis: System Design . 17

3.2.1 Stream Processing Model . 18

3.2.2 Data Locality Aware Physical Plan Generation and Operator Placement 20

3.2.3 Load Aware Operator placement . 21

3.2.4 Coflow optimization . 22

3.3 Amnis: Techniques . 23

3.3.1 Data locality optimization . 24

3.3.1.1 Data locality aware physical plan generation 25

3.3.1.2 Data locality aware operator placement plan generation 26

3.3.2 Load aware operator placement optimization . 27

v

3.3.3 Coflow optimization . 29

3.4 Evaluation . 31

3.4.1 Implementation and experimental setup . 31

3.4.2 Applications . 32

3.4.3 Evaluation Results . 34

3.5 Discussion . 39

3.6 Summary . 40

4.0 Resilient Stream Processing in Edge Computing . 41

4.1 Background and Motivation . 41

4.2 System Design . 44

4.2.1 Resilient physical plan generation . 44

4.2.2 Scheduling and failure handling . 46

4.2.3 Recovery time estimation . 47

4.2.4 Failure prediction . 48

4.3 Resilient Stream processing . 49

4.3.1 Checkpoint . 49

4.3.2 Active Replication . 51

4.4 Evaluation . 52

4.4.1 Implementation and experimental setup . 52

4.4.2 Application . 53

4.4.3 Algorithm . 54

4.4.4 Experiment Results . 54

4.5 Summary and discussion . 57

5.0 Elastic Stream Processing in Edge Computing . 58

5.1 Problem Formulation . 58

5.1.1 Quality of Service Metrics . 60

5.1.2 Stream Processing Model . 61

5.2 Reinforcement Learning For Elastic Stream Processing . 62

5.2.1 A Markov Decision Process Formulation . 63

5.2.2 Model-based Reinforcement Learning . 63

5.3 Implementation . 68

5.4 Evaluation . 69

5.4.1 Experimental setup . 69

5.4.2 Application and Operator Placement . 70

5.4.3 Algorithms . 71

5.4.4 Simulation Experiment Results . 72

vi

5.4.5 Real Testbed Experiment Results . 74

5.4.6 Summary and discussion . 74

6.0 Latency-aware resource allocation and management mechanism for geo-distributed

edge resources . 76

6.1 Background & Motivation . 76

6.2 Zenith: System Architecture and Model . 78

6.2.1 System Architecture . 78

6.2.2 System Model . 79

6.2.2.1 Service Provider . 79

6.2.2.2 Edge Infrastructure Provider . 80

6.2.2.3 Regions Division . 80

6.2.2.4 Coordinator . 81

6.2.2.5 Contract Manager . 81

6.3 Zenith: Resource Allocation . 82

6.3.1 Contracts Establishment . 82

6.3.1.1 Utility of SPs . 82

6.3.1.2 Utility of EIPs . 83

6.3.1.3 Bidding Strategy . 83

6.3.2 Determining Winning Bids . 83

6.3.3 Provisioning . 85

6.4 Evaluation . 85

6.4.1 Setup . 85

6.4.2 Experiment Results . 86

6.4.2.1 Impact of No. of servers in MDCs . 86

6.4.2.2 Impact of No. of MDCs . 87

6.4.2.3 Impact of Response Time Constraints . 88

6.5 Summary and discussion . 88

7.0 Cost-aware resource allocation and management mechanism for geo-distributed cloud

resources . 90

7.1 Background & Motivation . 91

7.1.1 Stand-alone Clouds . 91

7.1.2 Federated Clouds with Complete Cooperation . 92

7.1.3 Contracts-based Resource Sharing . 92

7.2 System Model . 94

7.2.1 Cloud Service Provider . 94

7.2.2 Federation Coordinator . 95

vii

7.2.3 Contract Manager . 96

7.3 Resource Sharing Contracts Establishment . 96

7.3.1 Problem Description . 97

7.3.2 Proposed Bidding Strategy . 98

7.3.3 Winning Bids Decision . 100

7.3.4 Contracts Establishment Process . 100

7.4 Contracts-based Job Scheduling . 101

7.4.1 Job Scheduling Problem Model . 101

7.4.2 Contracts-based Job Scheduling Mechanisms . 103

7.4.2.1 Contracts cost-aware scheduling . 104

7.4.2.2 Contracts duration-aware scheduling . 104

7.4.2.3 Contracts duration-aware and cost-aware scheduling 105

7.5 Evaluation . 106

7.5.1 Setup . 106

7.5.1.1 Datacenters . 107

7.5.1.2 Real electricity price . 107

7.5.1.3 Workload . 107

7.5.1.4 Algorithms . 108

7.5.2 Experimental Results . 108

7.5.2.1 Impact of Number of Servers . 109

7.5.2.2 Impact of Number of Providers . 110

7.5.2.3 Impact of Prediction Errors . 111

7.5.2.4 Impact of Contract Intervals . 111

7.5.2.5 Fairness . 112

7.6 Summary and discussion . 113

8.0 Decentralized resource allocation and management mechanism for geo-distributed

edge and cloud resources . 114

8.1 Background and Motivation . 114

8.1.1 Edge Resource Sharing . 115

8.1.2 Blockchains and Smart Contracts . 117

8.2 Smart Contract-based Edge Resource Allocation . 118

8.2.1 System Architecture . 118

8.2.2 Decentralized Sealed Bid Double Auction Protocol . 120

8.2.3 Auction Algorithm . 124

8.2.4 Smart Contract Implementation . 125

8.2.5 Resource Contract . 126

viii

8.3 Evaluation . 127

8.3.1 Setup . 127

8.3.2 Methodology . 127

8.3.3 Smart Contract Performance . 128

8.3.4 Auction Performance . 130

8.4 Summary and discussion . 131

9.0 Conclusion and Future Work . 133

9.1 Conclusion . 133

9.2 Discussion and Future Work . 134

Appendix A. Mechanism Design . 138

Appendix B. Publication list . 140

Bibliography . 141

ix

List of Tables

3.1 Notations . 19

3.2 Testbed Setup . 32

5.1 Default Simulation Parameter Setup . 69

5.2 Default Parameter Setup for Real Testbed . 70

7.1 The status of the five providers in the contracts-based example 94

7.2 IBM server x3550 Xeon X5675 power consumption with different workload 102

7.3 Datacenters’ Default Configuration . 107

7.4 Compared Algorithms . 108

8.1 Auction Schedule Example for the resource usage in 15:00 - 16:00 9/30 125

8.2 Default Experiment Setting for each auction . 127

8.3 A breakdown of the gas costs in $ of the function calls . 130

x

List of Figures

1.1 An overview of research thrusts . 4

2.1 A Stream processing application example in Apache Storm . 11

2.2 Example DAGs and cluster . 12

3.1 Edge/Fog Computing architecture . 14

3.2 Scheduling example of DAG 1 . 15

3.3 Scheduling example of DAG 2 . 16

3.4 Amnis Optimization . 18

3.5 Coflow optimization example . 22

3.6 A data locality aware physical plan optimization . 24

3.7 A load aware operator placement optimization example . 29

3.8 A coflow optimization . 30

3.9 Testbed . 31

3.10 Q1 . 33

3.11 Q2 . 33

3.12 Q3 . 34

3.13 Q4 . 34

3.14 Success Rate Comparison with different input rates . 35

3.15 End-to-end latency comparison with different input rates . 35

3.16 Success Rate Comparison with different last hop bandwidth . 37

3.17 End-to-end latency comparison different last hop bandwidth . 37

3.18 Network Usage . 38

3.19 Throughput with different input rates . 38

3.20 Sustainable Throughput with different last hop bandwidths . 39

4.1 An example comparing the resilience unaware scheduling and the proposed approach 42

4.2 System Overview . 44

4.3 Resilient Physical Plan Example . 45

4.4 Accident Detection Application . 54

4.5 Throughput . 55

4.6 Latency . 55

4.7 Success rate . 56

4.8 Throughput . 56

4.9 Resource utilization . 56

xi

5.1 Elastic Stream Processing Framework . 59

5.2 Stream Processing Model . 61

5.3 System Architecture Overview . 67

5.4 NY Taxi Profitable Area Application . 70

5.5 Results of simulation with Synthetic Dataset (Poisson distribution) 71

5.6 Results of simulation with Synthetic Dataset (Pareto distribution (α = 2.0)) 72

5.7 Rewards of simulation on the New York taxi trace . 72

5.8 Evaluation of applicability for heterogeneous resources (Poisson distribution) 73

5.9 Evaluation of applicability for heterogeneous operators (Poisson distribution) 73

5.10 Real Testbed Results . 74

6.1 Resource allocation and management of Geo-distributed edge and cloud resources 77

6.2 Edge Computing Architecture . 78

6.3 An illustration of a WVD in Zenith with seven MDCs . 80

6.4 Impact of number of Servers per MDC . 86

6.5 Impact of number of MDCs . 87

6.6 Impact of latency constraints . 88

7.1 Electricity price trends of NationalGrid in 2015 . 90

7.2 Resource sharing mechanisms comparison . 91

7.3 Contracts-based cloud federation example of saving electricity cost and balance the workload . . 93

7.4 Evaluation results for a different number of servers per datacenter 109

7.5 Evaluation results for a different number of datacenters . 109

7.6 Evaluation results for different average errors of the workload predictions 111

7.7 Evaluation results for different inner intervals of the contracts 112

7.8 The gain or loss ratio of the profit for each individual CSP . 112

8.1 Overview . 115

8.2 Blockchain-based Edge Resource Sharing . 116

8.3 Regions . 118

8.4 Edge Resource Sharing Framework . 119

8.5 Decentralized Sealed Bid Double Auction Procedure . 120

8.6 Smart Contract Initial Parameters . 121

8.7 Gas cost of different number of bidders . 128

8.8 Gas cost of different number of bids . 128

8.9 Total gas cost comparison of different number of bids and different number of bidders 129

8.10 Gas cost of different participants . 129

8.11 Gas cost distribution of each function call . 130

8.12 Social welfare of different methods with different number of bids 131

xii

8.13 Social welfare of different methods with different number of containers per bid 131

8.14 Subsidy of different methods with different number of bids . 132

8.15 Subsidy of different methods with different number of containers per bid 132

xiii

Preface

When I started my PhD study at Pitt, I didn’t anticipate the uncertainties and unknowns along the

journey. All I expected was an incredible adventure and gradually I realized that PhD is such an exciting

journey! There are both highs and lows and all the sweetness and bitterness have made the past six years a

truly valuable experience for me to learn and grow. It would not have been possible for me to go through

this journey without all the help and support I received throughout.

First and foremost, I am immensely grateful to my advisor, Dr. Balaji Palanisamy, for his supervision. He

has been patiently mentoring me, directing my research, expanding my research vision, and encouraging me

to explore new research directions. He never hesitates to brainstorm ideas, provide constructive suggestions

and discuss research opportunities. How he communicates, discusses ideas and gives suggestions have set an

example of excellence as an advisor, researcher, and instructor.

I would like to thank the dissertation committee members, Dr. David Tipper, Dr. Amy Babay, and Dr.

Qingyang Wang for their insights and invaluable suggestions for future research directions in my dissertation.

Also, I want to thank Dr. James Joshi and Dr. Vladimir Zadorozhny for serving on my comprehensive

examination committee.

I would like to express my gratitude to Mr. Zhongwen Luo, who advised me through my undergraduate

and graduate study. He never hesitates to point out the weaknesses of your work and has set an excellent

example of researcher and instructor. I also want to thank Dr. Deze Zeng, and Dr. Hong Yao, who advised

my research project during my graduate study when I was a noob just starting to know the basics of research.

Next, I am grateful to my collaborators and co-authors over the years: Dr. Qingyang Wang, Dr. Heiko

Ludwig, Mr. Sandeep Gopisetty, Dr. Yuzhe Tang, Dr. S.D Madhu Kumar, Dr. Chao Li, Dr. Runhua Xu,

Mr. Jingzhe Wang. They have inspired me in several ways.

Also, I thank my internship mentor in industry, Dr. Benjamin Heintz from Facebook. He showed me

how much impact is possible by developing robust distributed systems with the intention to serve billions of

people. I want to thank all my friends and colleagues when I interned in Facebook. They have set a great

example of responsive and responsible engineers.

I am thankful to all the people I got to befriend with in LERSAIS and in the University of Pittsburgh.

In particular, I would like to extend my special gratitude to Chao and Runhua, who took extra time to help

me get familiar with the Pitt campus. We have had lunches and dinners together and they drove me to

different places when I didn’t have a car. I also want to thank all my other friends in Pittsburgh. You have

really made me feel like at home when we were all away from home.

Last but not least, I would like to express my endless gratitude to my family: my parents, Wenjin and

Hongying, for your unconditional love and perpetual support in my entire life; my grandfather, Shengjun,

for being strict when I seem to lose directions and for always encouraging me to aim high; my wife, Jiaojiao,

for always supporting me despite all the difficulties and uncertainties. This dissertation is dedicated to you.

xiv

1.0 Introduction

The proliferation of Internet-of-Things (IoT) devices is rapidly increasing the demands for efficient pro-

cessing of low latency stream data generated close to the edge of the IoT network. IHS Markit forecasts that

the number of IoT devices will increase to more than 125 billion by 2030[138]. Applications in the IoT era

have strong demands for low latency computing. For instance, telesurgery applications have a critical latency

requirement of 200 ms with less than 1 ms jitter [5][101]. Similarly, virtual reality applications (games) that

use head-tracked systems require latencies less than 16 ms to achieve perceptual stability [120]. Connected

autonomous vehicle applications (collision warning, autonomous driving, traffic efficiency, etc.) have latency

requirements between 10 ms to 100 ms [14]. In addition, in the era of Big Data, with data growing massively

in scale and velocity, geo-distributed cloud and edge computing provide effective solutions to process large

amounts of data in real-time.

Stream processing engines executing on edge computing resources is a promising approach to support low

latency big data processing. Stream data processing is an integral component of low-latency data analytic

systems and several open-source systems (e.g., Apache Kafka [134], Apache Storm[135], and Apache Flink

[133]) provide engines for efficient processing of data streams. These systems optimize the performance of

stream data processing for achieving high throughput and low (or bounded) response time (latency) for the

stream queries. However, these stream processing solutions are designed for cloud computing environments

where there is no scarcity of computing resources, and hence, they are not suitable for edge computing

environments that have resource and network bandwidth limitations. For example, the low-profile edge

devices (such as smart gateways placed near IoT devices) may not be able to handle the same workload as

regular servers in a cloud datacenter. In this dissertation, we present a distributed stream processing platform

that optimizes the resource allocation for stream queries by carefully considering the data locality and

resource constraints during physical plan generation and operator placement in edge computing environments

[160]. It includes the following novel features to facilitate a system-wide optimization of computing and

networking resource usage for processing large volumes of data streams near the edge. First, it employs

a novel data locality-aware approach to optimize the resource allocation for the stream queries executing

in resource-constrained edge computing environments. Second, the system schedules each operator of the

queries by carefully considering the dynamically varying load conditions and resource requirement for each

operation to further improve the query performance. Third, the system considers coflow [39] dependencies

which group the dependent network flows that exist in the stream processing application. It prioritizes

smaller coflows to complete first and increases the overall coflow completion rate which in turn improves

the overall efficiency of the network resource usage. In addition to the above three aspects, the distributed

stream processing platform also achieves system-wide fault tolerance while meeting the latency requirement

for applications in edge computing environments [159]. The proposed approach employs a novel resilient

1

physical plan generation for stream queries, which carefully considers the fault tolerance resource budget

and the risk of each operator in the query to partially actively replicate the high-risk operators to minimize

the recovery time when there is a failure. The proposed techniques also consider the placement of the backup

components (e.g. active replication) to further optimize the processing latency during recovery and reduce

the overhead of checkpointing delays. Finally, we propose a reinforcement learning(RL)-based approach that

learns how to dynamically scale the operations of the stream processing applications in an online fashion to

adapt to workload variations [156]. Based on the recent developments in RL algorithms, we model the DSP

scaling problem as a contextual Multi-Armed Bandit (MAB) problem, which is reduced from the original

Markov Decision Process (MDP). With the above simplification, the elastic parallelism configuration can be

efficiently solved using the state-of-art algorithms that work well on MAB problems [80]. It can automatically

achieve tradeoffs between exploring the solution space to find an optimal solution (exploration) and utilizing

the data gathered from the previous trials (exploitation). We investigate the use of LinUCB [80] algorithm

to dynamically decide the parallelism configuration during the execution of the DSP application that aims

to improve multiple QoS metrics including end-to-end latency upper bound, throughput and resource usage.

We further improve the sample efficiency of LinUCB using a model-based method which is based on a queuing

model simulation to pre-train the RL agent to improve the accuracy of the initial parameters.

Cloud Computing has been a cost-effective solution[76][74] to address computing needs, however, clouds

fail to meet low latency requirements of modern computing applications that demand strict guarantees

on response times. As large datacenters are often located at a longer distance from the source of data

generation, moving data to remote cloud datacenters may lead to high latency (response time) and as a

result, it cannot support latency-sensitive applications such as location-based augmented reality games,

real-time smart grid management and real-time navigation using wearables. The Edge/Fog Computing

model [21, 121, 87, 18, 6, 50, 143] provides an additional layer of computing infrastructure for storing and

processing data at the edge, allowing low latency applications to meet their response time requirements

effectively. There has been a few recent work [44, 1] addressing the resource management and resource

provisioning challenges in edge computing. A fundamental assumption in these solutions includes a tight

coupling of the management of the Edge Computing Infrastructures (ECIs) with the service management

performed by Service Providers (SPs). As a result, the computing resources present at the edge micro

datacenters (MDCs) are coupled and controlled directly by edge Service Providers (SPs). Such a coupled

model for management of ECIs by SPs significantly limits the cost-effectiveness and opportunities for latency-

optimized provisioning of edge infrastructure resources to applications [158]. When the management of the

Edge computing infrastructures is controlled by the SPs, it results in an increased infrastructure cost and a

decrease in the overall utilization of the system leading to poor cost-effectiveness. We propose a novel resource

allocation model for allocating computing resources in edge computing platforms that allows edge service

providers to establish resource sharing contracts with edge infrastructure providers apriori. It employs a

decoupled model where the management of ECIs is independent of that of the SPs and as a result, it

2

provides increased resource utilization and minimizes job execution latency. We also extend the contracts-

based resource sharing model for federated geo-distributed cloud environments that allows Cloud Service

Providers (CSPs) to establish resource sharing contracts with individual datacenters apriori for defined time

intervals in a cost-aware manner. Based on the established contracts, individual CSPs employ a contracts

cost and duration aware job scheduling and provisioning algorithm that enables jobs to complete and meet

their response time requirements while achieving both global resource allocation efficiency and local fairness

in the profit earned [155, 157]. We enhance the resilience of these proposed centralized resource allocation and

management mechanisms to prevent attacks by adversaries and system failures by designing a decentralized

implementation of the contract-based resource sharing model using the Smart Contracts in Ethereum.

In the rest of this chapter, we first outline the key research tasks of this dissertation and then briefly

present the organization of the remaining chapters.

1.1 Overview of research thrusts

This dissertation has two major research thrusts: (i) optimizing stream processing applications in edge

computing, and (ii) resource allocation and management for geo-distributed edge and cloud resources. With

the help of Figure 1.1, we discuss the research thrusts in detail.

1.1.1 Research Thrust 1: Optimizing stream processing applications in edge computing

This research thrust consists of three aspects of optimization for stream processing applications in edge

computing. It is organized as three sub thrusts.

Research Thrust 1.1: Optimizing low-latency stream processing applications in edge comput-

ing

This research thrust focuses on optimizing low-latency stream processing applications in edge computing.

Specifically, our objective is to minimize the end-to-end latency for the stream processing applications de-

ployed in edge computing environments by minimizing the impact of bottlenecks. To achieve this goal, we

consider various conditions that create bottlenecks in an edge computing environment. The data locality

optimization feature in our approach maximizes the data locality by placing the selective operators near the

source. We perform load optimization to avoid back-pressure to improve the overall latency by considering

the computational load of each operator and the resource capacity of each node to improve the overall per-

formance. Besides the above optimizations on scheduling, the proposed system also considers the coflows

[39] that capture the dependency between the flows waiting to be scheduled in the network. It may also

cause bottlenecks due to the flow dependency in the streams. The proposed optimization adjusts the stream

rates to optimize the bandwidth allocation in order to improve the coflow completion rate to enhance the

overall performance of the stream processing applications.

3

Cloud

Edge

Micro
Datacenters

Geo-distributed
Cloud Datacenters

Smart
Gateways

Things
Road

Accident!

Building Hospital Farm

Sensor

Car
Truck

Camera

Traffic
Light

Camera

Bus
Car

Infrastructure
Cost-aware Contract-based Geo-

distributed Federated Cloud

Latency-aware Edge Resource
Allocation and Management

2 3
0

4

source

filter

group-by

sink

Stream Processing Optimization
in Edge Computing

Stream Processing Application

Geo-distributed Infrastructure and Data Sources

• Low-latency
• Resilience
• Elasticity

Decentralized
Resource

Allocation and
Management
for Edge and

Cloud
Resources

1

Figure 1.1: An overview of research thrusts

Research Thrust 1.2: Resilient stream processing in edge computing

Fault tolerance is an important aspect of edge computing as many IoT applications require both high accu-

racy and timeliness of results. As edge infrastructures may include some unreliable devices and components

in a highly dynamic environment, failures are more of a norm than exception [81]. Thus, to support reli-

able delivery of low latency stream processing over edge computing, we need a highly fault-tolerant stream

processing solution that understands the properties of the edge computing environment for meeting both

the latency and fault tolerance requirements. Checkpointing[145] and replication [63] represent two classical

techniques for fault-tolerant stream processing. The idea behind replication is to withstand the failure by

using additional backup resources. The checkpointing mechanisms on the other hand periodically store the

state of the operators in persistent storage to create timestamped snapshots of the application. Hybrid

methods employ a combination of both checkpointing and replication. They are referred to as adaptive

checkpointing and replication techniques. Adaptive checkpoint and replications schemes have been proposed

in several domains [129, 89, 168, 142, 60, 128]. The goal of combining active replication and checkpoint

mechanisms is to achieve seamless recovery compared to pure checkpointing. While adaptive checkpointing

and replication is a promising approach, its application in edge computing is challenged in several aspects.

The heterogeneous nature of both physical nodes and the network components in an edge computing envi-

ronment significantly challenges. In this thrust, we develop a novel resilient stream processing framework

4

that achieves system-wide fault tolerance while meeting the latency requirement for the applications in the

edge computing environment. The proposed approach employs a novel resilient physical plan generation

for the stream queries, which carefully considers the fault tolerance resource budget and the risk of each

operator in the query to partially actively replicate the high-risk operators in order to minimize the recovery

time when there is a failure. The proposed techniques also consider the placement of the backup components

(e.g. active replication) to further optimize the processing latency during recovery and reduce the overhead

of checkpointing delays.

Research Thrust 1.3: Elastic stream processing in edge computing

In this thrust, we develop an elastic stream processing solution for edge computing. Elasticity in cloud

computing services has been widely studied in the past [28, 69, 59]. These techniques adapt to the workload

changes for different services (e.g., web services) by dynamically increasing or decreasing the number of

instances (or virtual machines) to serve the users. However, for the current state-of-art distributed stream

processing engines, adapting the number of tasks (parallelism) allocated to each operation needs to be

manually tuned and it requires a lot of try-and-error efforts as well as experience to do it. This is further

challenged by the heterogeneity of computing nodes and network resources in edge computing environments.

Recently, RL-based methods were developed in the distributed system domain to enhance heuristic-based

system optimization algorithms and provide more effective solutions to problems for which heuristic-based

solutions are less effective. However, applying RL methods in the systems domain incurs several challenges.

A key performance factor in effective RL-based methods is the sample efficiency of the method. Currently,

most RL methods are based on deep learning techniques that use deep neural networks (DNNs) to handle

the approximation of the environment dynamics and the reward distribution. The use of DNN enhances

the models to handle more complex conditions. However, most of the DNN-based RL algorithms require a

large amount of data to converge a good result which makes the optimization of the sample efficiency even

harder. Therefore, improving the sample efficiency is a critical problem when applying RL-based algorithms

for optimizing distributed systems management. In this thrust, we propose a reinforcement learning-based

mechanism to learn how to dynamically adapt the workload changes through an online learning model and

strategy. Compared to previous reinforcement learning-based methods that explore the solution space of

the problem by randomly sampling the possible solutions, the proposed online learning method is based on

LinUCB[80] as the base method and a predefined model of parallelism of each operation which improves the

sample efficiency and decreases the cost (time) to converge to a good parallelism configuration.

1.1.2 Research Thrust 2: Resource allocation and management for geo-distribu-ted edge and

cloud resources

In this thrust, we develop new mechanisms to efficiently allocate and manage geo-distributed edge and

cloud resources. It is organized as three sub thrusts.

5

Research Thrust 2.1: Latency-aware resource allocation and management for geo-distributed

edge resources

In this thrust, we propose a new resource allocation model for allocating edge computing resources that

allows edge service providers to establish resource sharing contracts with edge infrastructure providers apri-

ori. Based on the established contracts, service providers employ a latency-aware scheduling and resource

provisioning algorithm that enables tasks to complete and meet their latency requirements while achiev-

ing both global and local resource allocation efficiency and fairness. In contrast to existing solutions, our

proposed model decouples the infrastructure management from service management, enabling the ECIs to

be managed by Edge Infrastructure Providers (EIPs) independently of the service provisioning and service

management at the SPs. Such a decoupled model enables EIPs to join up to establish an Edge Computing

Infrastructure Federation (ECIF) to provide resources to the Edge Computing applications provisioned and

managed by the SPs. In addition, the model provides increased opportunities for resource consolidation and

utilization as the geo-distributed ECIs can be jointly managed and allocated to maximize application utility

and minimize cost. Specifically, we divide the geo-distributed locations into regions using Weighted Voronoi

Diagrams (WVD)[65] which reduces the complexity to find the nearest computational resources. Then, for

each region, based on the McAfee mechanism [90], we design auction mechanisms to let the ECIs and SPs

trade resources. It includes a latency-aware bid strategy designed for the SPs and a cost-aware bid strategy

designed for ECIs. Finally, the approach uses a latency-aware provisioning mechanism for the SPs to deploy

their services on the geo-distributed resources.

Research Thrust 2.2: Cost-aware resource allocation and management for geo-distributed

cloud resources

In this thrust, we propose a contracts-based resource sharing architecture for Cloud Service Providers

(CSPs) to share resources across globally geo-distributed datacenters. The proposed approach allows to es-

tablish resource sharing contracts with individual datacenters. Based on the established contracts, individual

CSPs employ a contracts cost and duration aware job scheduling and provisioning algorithm that enables

jobs to complete and meet their response time requirements while achieving both global resource allocation

efficiency and local fairness in the profit earned.

Research Thrust 2.3: Decentralized resource allocation and management for geo-distributed

edge and cloud resources

The centralized resource allocation and management mechanisms described in the previous two thrusts

may suffer from attacks by adversaries, system failures and their security is generally limited to a single

point of trust by the coordinator. On one hand, the adversaries can tamper with the bids or the contracts

to influence the integrity of both the bids and the generated contracts. On the other hand, the centralized

auction system is prone to Denial of Service (DoS) attacks and system failures. Also, in a centralized

mechanism, all participants need to trust the coordinator to handle the trading process which may not

be always possible in real world. In this thrust, we design a decentralized resource allocation and sharing

6

mechanism for supporting a decentralized trusted platform for infrastructure providers and service providers

to interact and trade resources.

1.2 Chapters overview

The rest of the dissertation is organized as follows: Chapter 2 discusses the related work. In Chapter 3,

the optimization for low-latency stream processing in edge computing is presented. In Chapter 4, we present

the techniques for resilient stream processing and in Chapter 5, we introduce our approach for elastic stream

processing in edge computing. In Chapter 6, we discuss the techniques to support latency-aware resource

allocation and management for geo-distributed edge. In Chapter 7, we discuss the proposed cost-aware

resource allocation and management for geo-distributed clouds. In Chapter 8, we present the techniques for

decentralized resource allocation for geo-distributed resources using smart contracts. Finally, we conclude

and discuss some future work directions in Chapter 9.

7

2.0 Related Work and Preliminaries

In this chapter, we discuss the related work and preliminaries. We begin with the discussion of existing

work on stream processing in edge computing. We then review the literature on resource management for

geo-distributed edge and cloud computing. Finally, we discuss the preliminaries of stream processing.

2.1 Stream Processing in Edge Computing

2.1.1 Stream Processing Engine

As modern stream applications have strong requirements on latency and throughput, stream processing

has gained considerable attention in recent years. Several open-source stream processing frameworks have

been developed recently. Key examples include Kafka[134], Flink[133], Storm[135]. There have also been

some efforts on developing stream processing engines for edge computing environments. For example, Edgent

[132] is an incubating project in Apache. It provides a runtime environment for implementing a real-time

data analytic system in the edge environment. Pisani et al. [113] proposed LMC that provides a runtime to

deploy light operators on embedded devices at the edge.

2.1.2 Stream Processing Optimization

Wang et al. [146] proposed an algorithm to optimize the service entity placement for social virtual reality

applications in edge computing by modeling and solving a combinatorial optimization problem considering

the activation, placement, proximity, and colocation costs. In [147], the authors discuss the edge server

placement problem in the Mobile Edge Computing environment for balancing the workloads of edge servers

and minimizing the access delay between the mobile users and edge servers. Mencagli et al. [95] proposed a

tool for supporting programmers during the design phase of data stream processing applications by modeling

the backpressure effects. Fu et al. [49] proposed an edge-friendly stream processing engine for multi-core

edge computing environments. Hiessl et al. [61] proposed a solution that extends an ILP (Integer Linear

Programming) model [33] to optimize the reconfiguration of the operator placement in the edge environment.

2.1.3 Stream Processing Fault tolerance

Fault tolerance is a well-studied topic in the context of cloud computing and Big Data processing. In

stream processing systems, fault tolerance mechanisms have primarily focused on developing two kinds

of solutions namely (i) checkpointing and relaying techniques [31, 124] that have low resource overhead

and higher recovery time and (ii) active replication techniques [63, 25] that incur high resource cost and

8

lower recovery time. These solutions do not optimize for latency and recovery time requirements that are

critical in edge-based IoT applications. Su and Zhou [128] proposed a hybrid solution employing both

checkpointing and active replication by selectively choosing the operators to be actively replicated using a

minimal completion tree. A key limitation of this approach is that the operators that are actively replicated

may not fail simultaneously which leads to higher resource usage cost. Heinze et al. [60] proposed an

adaptive mechanism that enables the operator to switch between active and reserved status. The adaptive

mechanism proposed by Upadhyaya et al. [142] provides fault tolerance for database queries by optimizing

recovery latency. The hybrid solution proposed by Zhang et al. [168] allows the operator to change from

passive backup to active replication when failure happens. Martin et al. [89] proposed an adaptive hybrid

mechanism, which can alternate between six fault tolerance schema based on user-defined recovery time and

cost. The adaptive hybrid mechanism for HPC systems proposed by Subasi et al. [129] selects partial tasks

to be replicated using active replication.

2.1.4 Elastic Stream Processing

There have been several efforts in recent years to achieve elastic stream processing in cloud computing

environments. To dynamically scale the application, several different approaches have been developed in-

cluding techniques for re-configuring the execution graphs of the application or adjusting the parallelism by

increasing the number of instances of certain operators. Cardellini et al.[34] proposed an elastic stream pro-

cessing framework based on an ILP(Integer Linear Programming) model to reconfigure the stream processing

application to make decisions on operator migration and scaling. Dhalion [48] provides a self-regulating ca-

pabilities on top of Twitter Heron that enables dynamic resource provisioning and auto-tuning for meeting

throughput SLOs. However, given the heterogeneous nature of edge computing systems, these techniques

may require substantial manual effort to tune the parameters to achieve a self-stabilizing status. There have

also been several efforts on developing techniques to manage stream processing applications using RL meth-

ods. For example, Li et al. [82] proposed a model-free method to schedule the stream processing application

based on an actor-critical RL method [98]. Ni et al. [104] developed a resource allocation mechanism based

on GCN(graph Convolution network)-based RL method to group operators to different nodes. However, the

above DNN-based method suffers from long training periods and low sampling efficiency and they need a

large amount of data to build the model. There have been several efforts on leveraging the traditional RL

method (such as Q-learning) to deal with the problem. For instance, Russo et al.[118] used the FA(Function

Approximation)-based TBVI (Trajectory Based Value Iteration) to improve the sample efficiency of the tra-

ditional RL methods (such as Q-learning) to make operator scaling decisions in heterogeneous environments.

9

2.2 Geo-distributed Edge and Cloud Resource Management

2.2.1 Resource Management for Geo-distributed Edge Resources

Edge Computing has gained significant attention from the distributed systems community in the recent

years. While the concept of edge and fog Computing is still in their early years of development, there has

been several notable research efforts on this emerging topic. Bonomi et al.[22] discuss the concept of fog

Computing and there has also been several other related developments in the broader area of edge and fog

computing. Such efforts include the development of Cloudlets[121] proposed by Satyanarayanan et al. and

the work on mobile edge computing [111] which is an extension of the effort on mobile cloud computing[78].

The primary benefit of edge computing comes from its ability to offer low latency computing resources on

the fly for applications that have strict latency requirements. Edge computing is also beneficial in situations

when a large number of small computing nodes need to deliver data to a cloud. Therefore applications such

as IoT (Internet-of-Things), AR (Augmented reality) and VR (Virtual reality) benefit the most from modern

edge computing solutions. There have been many research efforts studying the benefits of edge computing

in these areas. Satyanarayanan et al. present GigaSight[122], an Internet-scale repository of crowd-sourced

video content. Want et al.[148] discuss the technologies that enable IoT using edge computing. As the

field is still emerging, there has been only few efforts addressing the problem of resource allocation in edge

computing platforms. Aazam et al. [1] propose a model for SPs to estimate the amount of services for

each MDC in the edge computing platform. Do et al.[44] propose a system for allocating fog computing

resources to minimize the carbon footprint. The solution is based on a distributed algorithm that employs

the proximal algorithm and alternating direction method of multipliers(ADMM).

2.2.2 Resource Management for Geo-distributed Clouds

Existing literature [3, 114, 154, 163, 117, 57, 169] have focused on optimizing the performance of cloud

services in the Geo-distributed Cloud environment. This class of techniques builds Virtual Machines (VMs)

for users to use computing resources across geo-distributed datacenters as a single logical virtual cluster.

These techniques primarily optimize the data placement [3] [114], the latency of the services [114] [154][163] ,

the Quality of Service(QoS) [117] [57], the electricity cost [154] [169] across multiple datacenters. In the recent

past, cloud Federation has gained significant focus from the cloud computing research community. Most of

the works related to Cloud Federation primarily focus on two aspects: the first kind of research efforts focus on

the architecture and the system model for enabling and deploying federated clouds [115, 27, 35, 47, 100]; the

second class of existing work optimizes the performance of federated cloud through efficient job scheduling,

job migration and resource allocation [91, 92, 79, 154, 24]. Rochwerger et al.[115] proposed an architecture

called RESERVOIR to enable cloud providers to deal with each other in a P2P manner. Buyya et al.[27]

proposed a centralized architecture named InterCloud which provides a market for the CSPs or cloud brokers

10

DAG 1

source

groupby

sink

filter

Code segments

builder.setSpout("mqtt-source", mqtt-source);

builder.setBolt(“filter-operator", filter);

outputDeclarer.declare(

new Fields(“window_id”, “sensor_id”, “speeds”));

builder.setBolt(“groupby-operator", groupby);

…

builder.setBolt(“to-db", database_sink);
…

outputDeclarer.declare(

new Fields(“timestamp”, “sensor_id”, “speed”));

outputDeclarer.declare(

new Fields(“timestamp”, “sensor_id”, “speed”));…

Figure 2.1: A Stream processing application example in Apache Storm

to share their resources. In [35], Carlini et al. proposed a centralized architecture for achieving federated

cloud which provides single sign-on and both centralized and decentralized architecture for building the

federated cloud. Moreno et al.[100] proposed a cloud-broker-based architecture to support the management

of the federated cloud. In [47], Ferrer et al. proposed OPTIMIS which is a toolkit for implementing peer-to-

peer Cloud Federation provisioning. McGough et al. [91, 92] analyzed and optimized the power consumption

in a commercial framework for establishing Cloud Federations. In [79], Li et al. proposed a model which

makes it possible for one Cloud Federation to consider both the workload and the electricity price and

maximize the profit through an auction mechanism. Xu et al.[154] proposed a technique that combines the

alternating direction method of multipliers (ADMM) method with the problem of how to place the cloud

services with minimized electricity cost and latency to the client. In [24], Breitgand et al. proposed a method

that uses policy similar to contracts to optimize the service placement problem in federated clouds.

2.2.3 Decentralized Resource Management for Geo-distributed Edge Resources

There have been several efforts on decentralized auction-based mechanisms to allocate edge resources.

Zavodovski et al. [165] proposed DeCloud which uses blockchain for managing the auction using a weighted

matching mechanism. However, the algorithm is not tested on a real blockchain network to validate the

efficiency. Lin et al. [84] proposed a hierarchical real-time auction mechanism for allocating resources.

However, the real-time operation of this auction may not be possible in the public blockchain network or

may result in high transaction fees.

2.3 Preliminaries of Stream Processing

Many existing stream data processing systems such as Apache Storm [135] and Apache Flink [133]

represent stream queries as a directed acyclic graph (DAG) of stateful and stateless operators (Figure 2.1).

11

Smart

Gateway 1

Micro Datacenter

Smart

Gateway 2

DAG 2

DAG 1

source transform

sinkfilter

source groupby

sinkfilter
Latency: 20ms
Bandwidth: 2mbitMap

Figure 2.2: Example DAGs and cluster

In the DAG, the nodes represent the logic operators and the edges represent the streams of tuples between

the operators. Data tuples flow from source operators to sink operators as shown in the DAG in Figure 2.1.

The source operator and sink operator are responsible for generating the input streams and publishing the

results respectively. The other operators perform a variety of computation on the streams, ranging from

simple filtering to complex operations like grouping or joining streams in a time window. For example, in

Figure 2.1, we see a stream query job, which aggregates the car speeds in a smart city application. The

application has four operators and three streams connecting them, which first takes the car speed data

generated in the sensors distributed on the roads in a source operator, then filters the speeds in the filter

operator. It then groups the speed information by a time window using a groupby operator, and finally

stores the results into a database by a sink operator. The above DAG is typically generated from source

code written using the interfaces provided in a stream processing engine. We illustrate a JAVA code example

of an Apache Storm application in Figure 2.1 to explain how the DAG is generated.

Here, the builder is an object that handles the DAG configuration. The setSpout() function indicates

a source operator, and the setBolt() function defines the other kind of operators. The outputDeclarer is

an object that handles the definition of the output stream for each operator and the declare() function

takes a Fields object which defines the schema of the output stream. Thus, Apache Storm maps the

stream processing application to a DAG that has four nodes and three edges as shown in Figure 2.1. Each

operator sends and receives logically timestamped events (tuples) along directed edges. For example, in the

output definition of the source operator and filter operator, there is a “timestamp” field that represents the

generation time of the tuple (Figure 2.1).

After creating a DAG from the stream processing application, the stream processing engine schedules

the DAGs on the physical nodes. As shown in Figure 2.2, the scheduling can be simplified to mapping

the operators of the DAGs into each physical node controlled by the stream processing engine. Figure 2.2

shows an example edge computing environment consisting of one micro datacenter and two smart gateways

connected to the micro datacenter with a link latency of 20 milliseconds and bandwidth 2 megabits per second.

12

In the next chapter, we present the proposed optimization techniques for low-latency stream processing

applications in edge computing.

13

3.0 Optimizing low-latency stream processing applications in Edge Computing

In this chapter, we present Amnis, a distributed stream processing platform that optimizes the resource

allocation for stream queries by carefully considering the data locality and resource constraints during physi-

cal plan generation and operator placement in an edge computing environment. Amnis includes the following

novel features to facilitate a system-wide optimization of computing and networking resource usage for pro-

cessing large volumes of data streams near the edge. First, Amnis employs a novel data locality-aware

approach to optimize the resource allocation for the stream queries executing in resource-constrained edge

computing environments. Second, Amnis schedules each operator of the queries by carefully considering

the dynamically varying load conditions and resource requirement for each operation to further improve the

query performance. Finally, Amnis considers coflow [39] dependencies which group the dependent network

flows that exist in the stream processing application and prioritizes smaller coflows to complete first in order

to increase the overall coflow completion rate which in turn improves the overall efficiency of the network

resource usage. We evaluate Amnis by implementing a prototype on Apache Storm [135] using a real cluster

test-bed on CloudLab[45]. Our evaluation performed using a range of edge computing stream processing

applications shows that Amnis achieves more than 200X improvement on the end-to-end latency and as much

as 10X throughput compared to the state-of-the-art distributed stream processing engine, namely, Apache

Storm [135].

Data Center, Cloud
Global IoT analytics

Gateway
Edge stream processing

Things
Producing and consuming streams

Sensors

Distributed
Intelligence Edge

Hundreds

Millions

Billions

ActuatorsCity Hospital Farm

Micro Data Center
Local stream processing

ThousandsMDC MDC MDC

Gateway

Gateway

Gateway

Gateway Gateway

Figure 3.1: Edge/Fog Computing architecture

14

Smart
Gateway 1

Smart
Gateway 2

Worker 1Worker 2 Worker 3

Output
Queue filter group-by sinksource

>1000ms0.1ms

40ms

0.1ms 1ms

20ms

10ms0ms 0ms

Latency: > 1071.2ms

10K/s 1/100 1/10 10/s

Micro
Datacenter

Smart
Gateway 2

Worker 2 Worker 3

Output
Queuefilter group-by sinksource

0ms0.1ms 0.1ms 1ms 10ms0ms 0ms

Latency: ~ 31.2ms

10K/s 1/100 1/10 10/s

Micro
Datacenter

20ms

(a) (b)

Figure 3.2: Scheduling example of DAG 1: (a) Data locality unaware scheduling causes the link being

saturated, (b) Data locality aware optimization avoids the link being saturated

3.1 Background and preliminaries

As the number of IoT devices increases, large amounts of data get generated near the edge of the network

in real-time. Transferring such data to the cloud may lead to longer processing times and hence, it may

not be suitable for latency-sensitive IoT applications such as virtual reality (VR) and augmented reality

(AR) applications and applications for the smart city such as connected vehicles and intelligent online traffic

control[22].

Edge computing architecture: In a fog/edge computing architecture [22], we have different layers of

heterogeneous computational resources as shown in Figure 3.1. The cloud datacenter represents the remote

resources for storing the final results and it can be used for long term data storage and analysis. The micro

datacenters (MDCs) and the smart gateways which are deployed near the edge of the network are used for

processing the data locally and helping provide low latency computing to the IoT.

Scheduling: After creating a DAG, the stream processing engine schedules the DAGs on the physical nodes.

As shown in Figure 2.2, the scheduling can be simplified to mapping the operators of the DAGs into each

physical node controlled by the stream processing engine. In the scheduling phase, the stream processing

engine tries to optimize the placement for each operator to achieve a good or predictable performance.

However, any bottlenecks will cause performance degrading, which we will use two examples to illustrate in

the remaining section with the possible directions to solve the problems.

3.1.1 Bandwidth Bottleneck

If a default round-robin scheduling algorithm is used, the scheduling may produce the output shown in

Figure 3.2(a). In the example, the sink operator and source operator placements defined in the program are

located at the smart gateway 2 and the micro datacenter respectively. For the remaining two operators, the

15

Smart
Gateway 1

Smart
Gateway 2

Worker 1Worker 2 Worker 3

Output
Queue

filter transform sinksource

>1000ms0.1ms

40ms

0.1ms 2ms

20ms

1ms
0ms

0ms

Latency: > 1063.2ms

10K/s
1/10 1/1 1000/s

Micro
Datacenter

Smart
Gateway 2

Worker 2 Worker 3

Output
Queuefilter

transform
sinksource

0ms0.1ms 0.1ms
1ms 1ms0ms 0ms

Latency: ~ 22.2ms

10K/s 1/10 1/1 1000/s

Micro
Datacenter

20ms

Back-pressure (a) (b)

Figure 3.3: Scheduling example of DAG 2: (a) a load unaware scheduling which causes back-pressure, (b) a

load aware optimization which avoids back-pressure

scheduler randomly chooses smart gateway 1 and finds that it has two free slots to place the two operators.

Hence, the final operator placement is as shown in Figure 3.2(a). Here, the latency for each operation and

the queuing latency between the operators are shown (e.g., the computational latency for the sink operator

is 10ms). We can easily calculate the overall latency by adding the latency at each step from the source

operator to the sink operator. When the bandwidth is sufficient to transfer all the tuples between the source

and the filter, there are no bottlenecks and the tuples can be processed promptly along the DAG. It will

result in a latency of around 71.2ms though it is not shown in the figure, we can calculate it by not including

the 1000ms queuing latency in smart gateway 2. When the bandwidth is not sufficient to transfer all the

tuples from the source to the filter, the tuples will be queued in the smart gateway 2 which will result in a

much higher overall latency as shown in Figure 3.2(a). The latency will increase to more than 1000 ms due

to the bottleneck (i.e., insufficient bandwidth) and will continue to increase if the transfer rate cannot catch

up with the input rate.

However, when the data locality is considered in the scheduling, the filter operator which is both a

selective operation and the immediate downstream operator of the source operator will be moved closer to

the source operator in the smart gateway 2 and the group-by operator will be moved to the micro datacenter

as shown in Figure 3.2(b). With the above optimization, the bandwidth becomes sufficient and hence, the

overall latency is reduced significantly (around 31.2 ms).

3.1.2 Computational Bottleneck

The stream processing engines introduce a back-pressure mechanism to increase the availability of the

stream processing (e.g., the acker in Apache Storm [135], and the BufferPool used as a blocking queue

between the tasks in Apache Flink [133]). The back-pressure mechanism slows down the stream output rate

at the source operator (queuing the tuples) when any of the down-stream operators cannot process as fast as

16

the tuples emit from the source. This feature helps guarantee the availability by not dropping tuples when

there is a bottleneck but it will cause other issues when resources are constrained for example in the edge

computing environment. For example, in Figure 3.3(a), when the transform operator is placed on the smart

gateway 1 with the filter operator, the compute resource is not sufficient for the two operators and it causes

back-pressure as the transform operator cannot process the tuples as fast as they come in (1000 tuples/second

input rate but 500 tuples/second consuming rate). This will then cause the source operator to queue the

tuples that it emits, which may further continuously increase the overall latency (e.g., more than 1000 ms

latency in Figure 3.3(a) or may even cause out-of-memory (OOM) failure in smart gateway 2) due to the

overall throughput is lower than the input rate, which is bounded by the bottleneck operator. However, if we

adopt a load aware optimization as shown in Figure 3.3(b), the filter operator is moved to the smart gateway

2 and the transform operator is scheduled to the micro datacenter. Here the computational resources are

sufficient for the two operators and the transform operator can work twice as fast as in the previous scenario

and the transform operation can be done in 1 ms. Hence, there is no back-pressure (bottleneck) and the

latency is much lower (around 22.2 ms as shown in Figure 3.3(b)).

The design of the proposed edge-oriented stream processing engine, Amnis is motivated by the above-

mentioned observations that any bottlenecks that exist in the stream processing application may cause high

latency due to different reasons such as lack of data locality awareness and lack of load awareness. Amnis is

designed for resource-constrained edge computing environments to achieve low latency and high throughput

while simultaneously eliminating as many bottlenecks as possible. The data locality optimization in Amnis

maximizes the data locality by placing the selective operators near the source. The load optimization in

Amnis avoids back-pressure to improve the overall latency by considering the computational load of each

operator and the resource capacity of each node to improve the overall performance. Besides the above

optimizations on scheduling, Amnis also considers the coflows [39] which captures the dependency between

the flows waiting to be scheduled in the network, which may also cause bottleneck because of the flow

dependency in the streams. Amnis shapes the stream rates to optimize the bandwidth allocation in order to

improve the coflow completion rate to enhance the overall performance of the stream processing applications.

In the next section, we introduce the features of the Amnis system design.

3.2 Amnis: System Design

In this section, we present the stream processing optimization problem and illustrate how Amnis extends

the current distributed stream processing solutions (e.g. Apache Storm) to tackle the challenges in edge

computing environments. As discussed in Section 3.1, our objective is to minimize the end-to-end latency

for the stream processing applications in edge computing environments by minimizing the impact of the

bottlenecks. To achieve this goal, we consider various conditions that would create bottlenecks in an edge

computing environment.

17

1 2

DAG

1. Physical Plan
Optimization

11
1

Optimized Physical Plan

12

11

2

2. Operator
Placement

Workers

11

Workers

Smart Gateway 1

Smart Gateway 2

MDC 1

Workers

2

2

Network

3. Coflow
Scheduling

Events
From
Sources
Out of
System

source filter

Smart Gateway 2

Worker 1

Outbound
Rate

Control

0 3

01

02

3

3

01

02

source

filter

transform

sink

Figure 3.4: Amnis Optimization

3.2.1 Stream Processing Model

We assume that there are K stream processing applications deployed in the system. Each application k

is translated from the source code to a DAG (Figure 2.1), denoted as Gkdsp(V
k
dsp, E

k
dsp) (notations presented

in Table 3.1). Here, the vertices V kdsp represent the operators and the edges Ekdsp represent the streams.

As shown in Figure 3.4, we assume that the physical plan is generated from the DAG, Gkdsp, and it is also

represented as a graph, Gkphy(V kphy, E
k
phy). After the physical plan is generated from the original DAG, the

physical plan is scheduled on to the cluster in the operator placement step. The computational and network

resources in the cluster can be represented as a graph Gres(Vres, Eres). The vertices here are the computation

nodes e.g., smart gateways and micro datacenters, and the edges represent the network links between the

physical nodes. The operator placement plan can be seen as a map Xk = {xvi |i ∈ V kphy, v ∈ Vres}. If we

represent the operator as i ∈ V kphy, and the physical node in the cluster as v ∈ V kres, we can use xvi = 1 to

indicate that the operator i is placed on node v, vice versa.

As our objective is to improve the end-to-end latency of the stream processing application, it is important

to understand how the end-to-end latency is composed of in the stream processing context. Based on the

model proposed in [32], the end-to-end latency of a particular application can be modeled using the longest

path (cumulative sum of the latency from the source to the sink). We denote the paths between all the pairs

of sources and sinks as P k. Any ρk ∈ P k indicates a path from a source to a sink. The end-to-end latency

of an application k can be represented as:

lk(Gkphy, Gres, X
k) = max

ρk∈Pk
lkρ(Gkphy, Gres, X

k) (1)

18

Table 3.1: Notations

Gkdsp(V
k
dsp, E

k
dsp) DAG of applicationk i, j an operator

Gkphy(V kphy, E
k
phy) the physical plan of application k v, u a physical node

Gres(Vres, Eres) cluster topology Xk operator placement plan

xvi operator placement indicator P k pairs of sources and sinks

ρk path from a source to a sink lk end-to-end latency

lkρ latency on path ρk λi input rate of operator i
wi mean output tuple size of operator i θi selectivity of operator i
e(i,j) data volume of stream (i, j) Yi,j co-located Boolean indicator
ci(λi) resource requirement of operator i Ov resource capacity of node v
b a a windowed aggregator Db coflow of the aggregator b
Pb upstream operators of the aggregator b Rb rate controlling plan of the aggregator b
ψi input/output ratio of operator i a a source operator

Ska data sources of a source operator a k an application

lkρ(Gkphy, Gres, X
k) =

∑
v∈ρ

l(i,v)(G
k
phy, Gres, X

k) +
∑

(v,u)∈ρ

l(v,u)(G
k
phy, Gres, X

k) (2)

where l(i,v) is the computational latency of operator i when it is placed on node v, and lv,u is the network

latency (including the network transmission latency and the queuing latency) between node v and u when

there is a stream in the path ρ passes between them. For all the K applications, we assume they have the

same priorities and consider the optimization simultaneously.

Based on the analysis of the end-to-end latency above, we can see that there are two major components,

namely the computational latency caused by processing the tuples in the operator and the network latency

caused by transmitting the tuples between two connected operators when they are scheduled to different

nodes (when two operators are scheduled to the same node, we assume that the bandwidth between them

is large and it does not become a bottleneck). The computational latency is often tackled using load

balancing methods such as migrating the operator from a overloaded node to another idle node. The

network latency is much harder to improve directly in the edge computing environment. Optimizing data

locality is a promising direction to decrease the network utilization and the network latency. In addition,

coflow [39] optimization provides additional opportunities for optimizing the efficiency of the network usage

by considering the dependencies between the network flows.

Combining the examples illustrated in Section 3.1 and the above end-to-end latency model, we can see

that either the computational bottleneck or the network bottleneck can cause a path to become the longest

path, which influences the end-to-end latency and performance of an application. In Amnis, we propose a

three-phase optimization to deal with the two types of bottlenecks as shown in Figure 3.4:

Physical plan optimization: extends the user-defined DAG of the logic plan into an optimized physical

plan, which aims to optimize the data locality to decrease the potential network usage.

Operator placement optimization: decides the placement of the operators in the output of the physical

plan optimization on to the physical nodes to further optimize the data locality and balance the load,

19

Coflow scheduling optimization: takes the result of operator placements of multiple applications to

determine the output rate for each specific operator in order to reduce the overall impact of potential network

bottlenecks.

The overall correctness of Amnis is ensured if the individual objective in each individual phase is achieved.

In the remaining part of this section, we comprehensively explain the above-mentioned phases.

3.2.2 Data Locality Aware Physical Plan Generation and Operator Placement

As discussed above, the bottlenecks will influence the end-to-end latency and performance, and we use

data locality as a key criterion in generating the physical plan and placement of the operators.

Input: this phase takes as input the program of the stream processing application which is translated to a

DAG, Gkdsp.

Output: the data locality optimized physical plan, Gkphy, and the data locality optimized operator place-

ment, Xk.

Objective: We use data locality to guide the generation of the physical plan and the first part of the

operator placement. The objective of the data locality is to minimize the data volume transferred between

different nodes, which is widely studied in MapReduce frameworks [43]. To optimize the end-to-end latency

by considering the data locality, we borrow the terminology from the distributed batch processing related

works. We denote the average data volume of a stream (i, j) ∈ Ekphy (from operator i to operator j) as e(i,j)

and we model the input rate of operator i as a Poisson distribution with the arrival rate as λi. The average

tuple size has a distribution with a mean value wi, and the selectivity of i is θi and therefore, e(i, j) = λiwiθi.

Next, we define the network cost as follows when the operator placement is determined:

NCostk(Gkphy, Gres, X
k) =

∑
(i,j)∈Ek

phy

e(i,j)(1− Yi,j) (3)

Here, Yi,j is a co-located Boolean indicator, which is 1 when the downstream operator j of i is placed

on the same node of i, xvi = xvj = 1. Due to the resource limitation of the physical nodes, we cannot

place all the operators in a single node to reduce the network cost. Therefore, we design an algorithm

to group the operators to minimize the data volume transmitted between the groups. It is discussed in

detail in Section 3.3.1. However, there is a gap between optimizing the data locality by optimizing the

operator placement and the input DAG, which is the ability of moving the data source near the place where

the stream is generated. In a stream processing application, the source operator often subscribes multiple

streams from different Message Queuing Telemetry Transport (MQTT) [62] (a lightweight publish/subscribe

message transport service) services that provide similar stream sources and cannot be automatically split

and placed near the stream sources. It is critical that the optimization technique is capable of increasing data

locality by placing the source operator near the stream source and keeping the code simple for the users (e.g.,

define one logic source operator to fetch the streams from multiple sources by just mentioning the service

20

hosts and ports in one place). Amnis tackles this in the physical plan generation using an additional step.

When there is a source operator fetching multiple streams that hold the same schema, Amnis automatically

divides a logic source operator into multiple physical source operators, which can be mapped to the nodes

that are co-located or near the stream sources as shown in Figure 3.4. The above step provides an additional

benefit that the downstream stateless selective operators can be split and moved to co-locate with the source

operator to further improve the data locality. We discuss the details of these algorithms in Section 3.3.1.

Parallelism Configuration: as in Figure 3.4, the parallelism of each operator is decided also in physical

plan generation. The parallelism of the transform operator is set to be two in the example, which can

be done using many existing optimization techniques such as [34] which decide the number of replicas of

each operator by solving an ILP (Integer Linear Programming) problem. In our work, we assume that the

parallelism of each operator is already optimized and defined as a fixed number in the user’s program.

3.2.3 Load Aware Operator placement

By applying the data locality to both the physical plan and the operator placement plan, we reduce the

network usage of the application. However, the optimization does not consider the resource requirements

of the operators which may lead to overload the nodes. In this subsection, we discuss the load aware

optimization on the operator placement to deal with this issue.

Input: the physical plan, Gkphy and the operator placement plan Xk, from the output of the data locality

optimization and the topology of the cluster, Gres.

Output: the load aware optimized operator placement, Xk.

Objective: The data locality is already considered in the above subsection. In this subsection, we focus

on load balancing, which takes the output physical plan and operator placement from the data locality

optimization to re-balance the overloaded nodes by considering the resource requirement of each operator

and resource capacity of each node. As discussed in Section 3.1, the computational bottleneck (mostly caused

by overloading) may influence the end-to-end latency performance. To mitigate that, we need to consider

the load of each node to avoid overloading a node. We denote the resource capacity of a node v as Ov.

The minimal resource requirement of an operator i is ci(λi), which means that the operator needs at least

ci(λi) resource to process the tuples arriving based on a Poisson distribution with arrival rate λi. Both

the resource capacity of the node and the resource requirement of the operator are simplified from multiple

dimensions (CPU, Memory, etc.) to one dimension by identifying the dominant resource [52]. As most of

the stream processing operations (deserializing, filtering, mapping, etc.) are computationally intensive, we

assume that the default dominant resource is CPU and only for the operation which needs to maintain large

states (windowed aggregation, join, etc.), we set the dominant resource as Memory. We define a resource

constraint to ensure that the operator placement does not overload node v:∑
i∈V k

phy

ci(λi)x
v
i ≤ Ov (4)

21

Smart
Gateway 1

Micro
Datacenter

Smart
Gateway 2

Worker 1

…

…

Worker 2

Worker 1

…

Worker 1

Worker 2

Smart
Gateway 2

Worker 1

…

…

Worker 2

Worker 1

…

Worker 1

Worker 2

Time

Rate
1

0.5

Time

Rate
1

0.5

Smart
Gateway 1

Time

Rate
1

0.5

Time

Rate

1
0.5

(a) (b)

Micro
Datacenter

11

1

2

1

1

1 2

Barrier
Tuple

Stream
1 1

1

2

11

2

2 2

2 2

Figure 3.5: Coflow optimization example: (a) a coflow unaware fair sharing flow scheduling, (b) a coflow

aware flow scheduling

The basic idea of load aware operator placement is to take the output from the data locality aware opti-

mization and further detect the overloaded node by comparing the resource requirement of the operator and

the resource capacity of the node. Then, the operator placement plan is modified by moving some of the

operators from the overloaded node to the neighboring nodes with less utilization. We present the details of

this approach in Section 3.3.2.

3.2.4 Coflow optimization

After the operator placement is decided, Amnis performs another optimization to control the data flows

between the operators to shape the stream rates to improve the efficiency of using the network, which also

reduces the network latency.

Input: the physical plan of all the K applications submitted to the system, Gphy = {G1
phy, ..., G

k
phy, ...,

GKphy}, the topology of the cluster, Gres, and the operator placement plan for each application k, X =

{X1, ..., Xk, ..., XK}, from the output of the operator placement phase. In addition, the Coflow information

is analyzed for each application and gathered for each aggregator, D = {Db|∀b are aggregators}

Output: the rate controlling plan, R = {Rb|∀b are aggregators}.

Coflow: Before discussing the objective of the coflow scheduling, we first provide the definition of the coflow

in the stream processing context. For each application k, if there is a windowed aggregator b ∈ V kphy, and if

it needs to fetch the input from the upstream operators crossing the network, we use Pb = {1, 2, ..., p, ...} to

define the set of the upstream operators of the aggregator b. We also use a set Db = {e(1,b), e(2,b), ..., e(p,b), ...}

to indicate the coflow of the aggregator, which indicates that the completion of all the flows in Db refers to

the completion of the coflow. As mentioned in the previous section, ep,b indicates the average stream data

volume between the upstream operator p and operator b. If we want the upstream to arrive on time, we

need to at least allocate e(p,b) ∈ Db to all the corresponding streams between Pb and b to transmit the flows

22

so that it does not cause back-pressure. The reason why the coflow scheduling is needed is illustrated in

Figure 3.5. Two applications are deployed in the cluster. We assume that they have the same priorities and

latency requirements, and the computational of the operations do not lead to a bottleneck. In the example,

the bandwidth between the micro datacenter and the two smart gateways is limited to one tuple/second.

Application 1 is deployed on all the three nodes and Application 2 uses only smart gateway 1 and the micro

datacenter. The tuple rate of application 1 is one tuple/second between the smart gateway 1 and the micro

datacenter and one tuple per second between the smart gateway 2 and the micro datacenter. The tuple

rate of application 2 is one tuple/second between the smart gateway 1 and the micro datacenter. As shown

in Figure 3.5(a), if the bandwidth is allocated using a fair sharing (the default policy of TCP protocol)

mechanism, both application 1 and 2 are bottle-necked at the link between the smart gateway 1 and the

micro datacenter. Either of them builds the queue in both smart gateway 1 and the micro datacenter. This

is because, in the micro data center, there is an aggregator for both applications requiring to wait for all

the barriers to arrive in order to ensure the all tuples in the time window arrived to trigger the windowed

function. Barriers are synchronization signals [31] used in Storm and Flink. It is also called watermark [7].

In the example shown in Figure 3.5(a), application 1 needs to wait for the barriers from smart gateway 1 and

smart gateway 2 (noted as blue diamond 1 and 2) in order to trigger the processing function for a particular

time window. However, the bandwidth bottleneck between the smart gateway 1 and micro datacenter makes

the barrier from smart gateway 1 to be always later than the barrier from smart gateway 2, which builds the

queue on both the smart gateway 1 (because of bandwidth bottleneck) and the micro datacenter (because

of barrier synchronization).

Objective: In the coflow scheduling phase, Amnis targets the completion rate of the coflows to satisfy the

network requirement for the dependent flows to avoid back-pressure. Given the rate controlling plan, R, if

the coflow Db is satisfied, it means that the corresponding bandwidth allocation, rp >= e(p,b),∀e(p,b) ∈ Db.

If the coflow Db is satisfied, it is captured using Zb = 1, otherwise, Zb = 0. We can define the objective of

maximizing the coflow completion rate as:

max
∑
b

Zb (5)

In our approach, we prioritize the small coflows to satisfy their bandwidth requirements first to maximize

the coflow completion rate defined above. The detailed algorithm is presented in Section 3.3.3.

In the next section, we present the details of the techniques used in Amnis.

3.3 Amnis: Techniques

The proposed techniques in the Amnis system are organized along with three aspects: (i) Data-locality-

aware optimization for physical plan generation and operator placement, (ii) Load-aware optimization for

operator placement, and (iii) Coflow optimization for data rate control.

23

Smart
Gateway 2

Smart
Gateway 1

21

filter transform sinksource

Micro
Datacenter

30

(a) (b)
MQTT
Service

MQTT
Service

Database
Service

Smart
Gateway 2

Smart
Gateway 1

211
filter

transform sink

source

Micro
Datacenter

301

MQTT
Service

MQTT
Service

Database
Service

02 12

𝜓0 = 1 𝜓1 = 10 𝜓2 = 1 𝜓3 = 1

(c)

211
filter

transform sink

source

Micro
Datacenter

301

MQTT
Service

MQTT
Service

Database
Service

02 12
20K/s

10K/s

1K/s

3K/s

source filter

Smart
Gateway 2

Smart
Gateway 1

Figure 3.6: A data locality aware physical plan optimization: (a) the original DAG and the ψi of each oper-

ator, (b) an optimized physical plan calculated by Algorithm 1, (c) the operator placement plan calculated

by Algorithm 2 and 3.

3.3.1 Data locality optimization

As discussed in Section 3.2.2, we define the data locality objective as optimizing the network cost

NCost(Gkdsp, Gres, X
k). In this section, we present the detailed algorithms which aim to decrease the network

cost.

On one hand, to improve data locality, if we move the source operator and the selective operators (e.g.,

a filter operator) to the same node where the stream source comes from, the data locality can be improved

by reducing the bandwidth usage across the network. However, the source operator often fetches streams

from multiple sources as shown in Figure 3.6. Here, if we want to move the source operator near the stream

source, we need to first split the source operator to multiple operators, and each of them fetches only one

of the stream sources. It is worth noting that if the downstream operator can be moved to co-locate with

the source operator, it also needs to be split into multiple independent operators and each only connects to

one of the source operators. Here we only consider to split stateless operators as stateful operators need the

shuffling phase to ensure correctness. We discuss it in detail in Section 3.5. On the other hand, if we can

move the operator which increases the output size compared to the input (e.g., a join operator) to the same

node where the downstream operator is placed, it will further enhance the data locality at the downstream

side.

In Amnis, we classify each operator i based on its input/output ratio ψi to optimize both the physical

plan and the operator placement. We assume the input/output ratio can be obtained by profiling. It is

defined as:

ψi =

∑
p ep,i∑
j ei,j

(6)

where p is an upstream operator of i and j is a downstream operator of i. Operators are categorized

as one of the two types: (i) high input/output ratio (ψi > 1) operators, and (ii) low input/output ratio

24

(ψi ≤ 1) operators. For the operator with ψ > 1 (e.g., a filter operator that only allows the tuples meeting

the condition to pass), we first split the upstream source operator to bind with the stream source and then

split the operator with ψ > 1 to move the operator near the source operator to improve the data locality.

For the operator with ψi ≤ 1 (e.g., a join operator that joins a stream with a database table to produce the

output), we can move it near the downstream operator (e.g., a sink operator) to improve the data locality.

In the remaining part of this subsection, we will describe the details of the algorithms in two steps namely

(i) data locality aware physical plan generation that generates the optimized physical plan by improving the

data locality for the two kinds of operators, (ii) data locality aware operator placement plan generation that

generates the placement of the operators to the physical nodes based on its input/output ratio.

Algorithm 1: Data locality aware physical plan optimization for operators ψi > 1

Input : DAG: Gkdag(V
k
dag, E

k
dag);

Output: Optimized Physical Plan: Gkphy(V kphy, E
k
phy);

1 Initial: Gkphy = Gkdag;
2 A Queue Q = ∅;
3 for each source operator a do

4 Split each source operator a to its number of sources |Ska | as Ua = {a1, a2, ..., as, ..., a|Sk
a |};

5 Replace a as Ua in Gkphy;
6 For all the operators i such that i the neighbor of a: add a tuple (i, Ua) to Q;

7 while Q is not empty do
8 Pop a tuple (i, U) from Q;
9 if operator i is a stateless operator and ψi > 1 and i is not a sink operator then

10 Split i to |U | operators noted as Ui = {i1, i2, ..., is, ..., i|Sk
a |};

11 Set the upstream operator of each is to i′s ∈ U ;

12 Replace i as Ui in Gkphy;
13 For all the downstream operators i′ of operator i: add a tuple (i′, Ui) to Q;

3.3.1.1 Data locality aware physical plan generation

As discussed earlier, to optimize the data locality by modifying the physical plan, we need to place the

source operator and its downstream operators in the optimized physical plan near the stream sources. Based

on this intuition, we propose Algorithm 1. The algorithm starts from the source operators, and for each

source operator a, it first splits them into the operators set Ua that each operator as ∈ Ua binds with a

stream source s ∈ Ska , where Ska is the data source set of application k. Then, the downstream operators

are traversed by a breadth first search with the help of a queue Q. In the queue Q, each element contains

the operator number i and its upstream operator set U . For each downstream operator i, if ψi > 1 and the

operator is a stateless operator which can be split without shuffling the intermediate results (e.g., a filter

operator as shown in Figure 3.6), then operator i is split into an operator set Ui and each operator is ∈ Ui
binds with one of the source operator as ∈ Ua. The time complexity of the algorithm is determined by Loop

on line 7, which traverses the DAG by a breadth first method and the initial set is determined by the number

of source operators. It is O(|V kdag|2) and in the worst case, half of the operators are source operators.

25

An example is shown in Figure 3.6(a) and (b) with four operators in the input DAG. The algorithm

starts from the source operator, splits it into two and then traverses the DAG by a breadth first search. In

the next round, the filter operator meets the condition (ψi > 1) and is split into two as the upstream source

operator. The loop ends when it traverses to the transform operator which is ψi = 1. Finally, the physical

plan Gkphy(V kphy, E
k
phy) becomes the output.

Algorithm 2: Data locality aware operator placement for operators ψi > 1

Input : Optimized Physical Plan: Gkphy(V kphy, E
k
phy);

Cluster: Gres(Vres, Eres);

Output: Operators Placement: Xk = {xvi |i ∈ V kphy, v ∈ Vres};
1 Initiate: xvi = 0, ∀i, v;
2 A temporary queue Q;
3 for each source operator a do
4 For a single source operator as, we place it co-located with the source s, which is noted as

xvas = 1, v = Location(s);
5 For all the operators i such that i is the neighbor of a: add i to Q;

6 while Q is not empty do
7 Pop an operator i from Q;
8 if ψi > 1 then
9 Place each operator is co-located with as that xvis = 1, v = Location(s);

10 For all the downstream operator i′ of operator i: add i′ to Q;

3.3.1.2 Data locality aware operator placement plan generation

To improve the data locality by generating the operator placement plan, the source operator and its

downstream operators with ψ > 1 should be moved near the stream sources. The operator that increases

the data size (ψ ≤ 1) should be moved near the downstream operators. Based on the above intuition, we

divide the heuristics into two parts namely (i) for operators with ψ > 1, and (ii) for operators with ψ ≤ 1.

As shown in Algorithm 2, for the operators with ψi > 1, we bind the source operators to place each

split source operator to the node where the source service is placed. Then, the algorithm traverses the

downstream operators by a breadth first search with the help of a queue Q and tries to bind the operators

with the source by identifying if ψ > 1 and if it can benefit by moving close to the source. The time

complexity of the algorithm is determined by the second loop, which traverses the DAG by a breadth first

method and the initial set is determined by the number of source operators. We note that it is O(|V kdag|2)

and in the worst case, half of operators are source operators.

For the operators with ψ ≤ 1, placing them near the stream source may not improve the data locality

as the output stream rate does not decrease after the operation. Therefore, for these type of operators,

Amnis places them near the downstream operator (often a sink operator) to improve the data locality. As

shown in Algorithm 3, the operators are placed at the same node with the output service (e.g., a database)

to improve the downstream-side data locality using a breadth first search from the sink operator to the

upstream operators. If the operator has ψi ≤ 1, then the algorithm places the operator in the same node as

26

the sink operator. The time complexity of the algorithm is determined by the number of operators, which

is O(|V kdag|).

Algorithm 3: Data locality aware operator placement for operators ψi ≤ 1

Input : DAG: Gkphy(V kphy, E
k
phy);

Cluster: Gres(Vres, Eres);

Output: Operators Placement: Xk = {xvi |i ∈ V kphy, v ∈ Vres};
1 Initiate: a temporary queue Q;

2 Find the physical node v′ where the sink service of Gkphy places;
3 Add all the upstream operators i of the sink operator into Q;
4 while Q is not empty do
5 Pop an operator i from Q;
6 if ψi ≤ 1 then

7 Set xv
′
i = 1;

8 For all the upstream operator i′ of operator i: add i′ to Q;

We present an example of the data locality aware physical plan and operator placement optimization in

Figure 3.6. The figure illustrates the input DAG and the result of Algorithm 2 and 3. We can see in the DAG

that there are four operators: source, filter, transform, and sink. The stream rates and the input/output

ratios are noted on the edge and the node respectively. The physical plan is first generated by Algorithm 1

as shown in Figure 3.6(b). Then the operator placement plan is generated by taking the physical plan and

the cluster as input. It first goes through Algorithm 2 from the source operator, which co-locates the source

operators with its binding stream source (the source operator 01 is placed on smart gateway 1 and the source

operator 02 is placed on smart gateway 2). Then the algorithm identifies the selective downstream operators

(the filter operator with ψi > 1) to be placed on the same node as the corresponding source operator as

shown in Figure 3.6(c). After that, Algorithm 3 takes the output of the above steps as the input. The

algorithm starts from the sink operator and places it on the same node as the sink output service (e.g.,

a database service). Then, it performs a breadth first search of the upstream operators. The transform

operator is the next one and its input/output ratio is less than or equal to one and therefore, the operator is

placed on the same node where the sink operator is placed. After that, the algorithm outputs the operator

placement plan Xk = {xvi |i ∈ V kphy, v ∈ Vres}.

It is worth noting that after the data locality-aware physical plan generation and operator placement,

there may be some operators whose placement decisions are not yet made even if the user has already

optimized the stream processing application through some logic plan optimizations (e.g., predicate-pushdown

[16] that push the operators with high input/output ratio towards the source operator). Therefore, after the

data locality aware optimization, we use a network-aware operator placement [112] to decide the placement

for the other operators that are not marked in this step by providing them as the input of the load-aware

operator placement optimization in the next subsection.

3.3.2 Load aware operator placement optimization

As discussed in Section 3.2.3, the load aware operator placement takes the output from the data locality

27

optimization proposed in the above section to further make sure it satisfies the resource constraint.

We assume there is a preliminary operator placement Xk already calculated through the above steps

namely: (i) data locality aware optimization on the physical plan, (Algorithm 1), and (ii) data locality

aware optimization on the operator placement plan (Algorithm 2 and 3). As shown in Algorithm 4, it first

estimates the input rate λi for each operator. The input rate of each operator is calculated by a breadth

first search with the help of a queue Q from each source operator a to the sink operator in the line 3∼10 of

Algorithm 4. The output rate of each operator is calculated as the product of the input rate λi and the

selectivity θi. Then, as shown in the line 11∼17 of Algorithm 4, the total resource requirement of handling

the operations on each node is estimated as Cv and compared with the resource capacity Ov of the node v.

If the resource is not sufficient, we offload an operator which has the lowest impact of the data locality (the

operator has the minimal input/output ratio) to a neighbor node v′ which has the lowest resource congestion

(the resource requirement/capacity ratio).

Algorithm 4: Algorithm for optimizing the operator placement by load awareness

Input : Optimized Physical Plan: Gkphy(V kphy, E
k
phy);

Cluster: Gres(Vres, Eres);

Initial Operators Placement: Xk = {xvi |i ∈ V kphy, v ∈ Vres};
Estimated source rate: λs, ∀s ∈ Ska and ∀a
Output: Optimized Operator Placement: Xk′ = {xvi |i ∈ V kphy, v ∈ Vres};

1 Initial the input rate λi = 0, ∀i ∈ V kphy;
2 A temporary queue Q = ∅;
3 for each source operator a do

4 Initial the input rate of the source operator to λa =
∑Sk

a
s λs;

5 i = a;
6 while i is not sink operator do
7 for each downstream operator i′ of i do
8 λi′ = λi′ + λiθi;
9 Add i′ to Q;

10 Pop the first element of Q as i;

11 for each node v do

12 Calculate the total resource requirement: Cv =
∑
ci(λi), ∀i ∈ V kphy that xvi = 1;

13 while Ov < Cv do
14 Select an operator i = arg miniψi that i is not source or sink;
15 Select the neighbor v′ of v that v′ = arg minv Cv/Ov;

16 Offload i to v′ that xvi = 0 and xv
′
i = 1;

17 Update Cv and Cv′ ;

The neighborhood can be identified when the cluster starts by clustering in the latency space [112] or

other methods such as a predefined multi-tier network architecture as shown in Figure 3.1 (each node is

assigned to a tier and contains a parent and multiple children in the network). The placement plan is

changed by modifying xvi = 0 and xv
′

i = 1. The above step is repeated until the resource is sufficient on

node v. The time complexity of the algorithm is determined by the two iterations. For the first iteration

which is similar to the previous algorithms, the time complexity is O(|V kphy|2). For the second iteration, the

worst-case time complexity is O(|Vres|2 log |Vres|) when all the nodes are in the neighborhood and need to

offload operators. Hence, the overall time complexity becomes O(max{|V kphy|2, |Vres|2 log |Vres|}).

28

(a)

Smart
Gateway 2

Smart
Gateway 1

2

11

filter

transform sink

source

Micro
Datacenter

3

01

MQTT
Service

MQTT
Service

Database
Service

02 12
20K/s

10K/s
3K/s

source filter
Smart
Gateway 2

Smart
Gateway 1

2

11

filter

transform sink

source

Micro
Datacenter

3

01

MQTT
Service

MQTT
Service

Database
Service

02 12
20K/s

10K/s 3K/s

source filter

𝑐01 = 0.5

𝑂1 = 2

𝑂2 = 0.5

𝑐11 = 0.5

𝑐01 = 1 𝑐12 = 1

𝐶1 = 0.5 + 0.5 = 1

𝐶2 = 1 + 1 = 2

𝐶3 = 1.5 + 1 = 2.5
𝑂3 = 4

𝑐2 = 1.5 𝑐3 = 1

𝐶3 = 3.0

𝑂3 = 4

𝑐2 = 1.5 𝑐3 = 1

𝑐11 = 0.5

𝑂1 = 2

𝑂2 = 0.5

𝐶1 = 0.5

𝐶2 = 1 + 1 = 2

𝑐01 = 0.5

𝑐01 = 1 𝑐12 = 1

(b)

Figure 3.7: A load aware operator placement optimization example: (a) the data locality operator placement

result, (b) the load aware optimization result based on (a)

In Figure 3.7, we present an example illustrating the steps in Algorithm 4. In figure (a), the physical

plan and operator placement plan of the data locality optimization are given. Based on the optimized plan,

we calculate the input rate for each operator starting from the source operator (e.g for the sink operator

01), the input rate is initialized as ten thousand per second, and for source operator 02, the input rate is

twenty thousand per second. Then, the input rate is calculated through the graph one by one. Each output

rate is calculated as the product of the input rate and the selectivity. For example, the output ratio of

filter operator 11 is calculated by multiplying its input rate, ten thousand per second and the selectivity,

one tenth. The result is one thousand per second. With the input rate information, we then estimate the

resource requirement based on it (e.g., the resource requirement of the transform operator is 1.5 which is

based on the estimated input rate, three thousand per second, and the non-decreasing function ci(λi), which

can be estimated by a benchmark method). Then, the resource requirement for each node is calculated and

compared with the resource capacity. We can see that for the smart gateway 2, the resource is insufficient

and hence, we try to offload some operators. After applying the method described in the algorithm, we

choose the filter operator 11 and move it to the neighbor node in the micro datacenter which has the lowest

congestion ratio (2.5/4). The final result is shown in Figure 3.7(b).

It is worth noting that multiple applications can be optimized by Algorithm 4 simultaneously with the

physical plans and the initial operator placement plans calculated by the data locality aware algorithms as

the input. Then, for each application, the input rate is estimated by going through the line 3∼10. After

that, for each node, the offloading is calculated by the lines 11∼17, but all of the operators (which may

belong to multiple applications) are considered in the steps represented in line 12 and 14.

3.3.3 Coflow optimization

As discussed in Section 3.2.4, we define the objective of the coflow optimization as maximizing the coflow

29

(a)

01

2

11

3

4 5

Filter

Join Sink

Average

Counter

Source

02 12

2 3

Filter

Sum Sink

Source

01 11

FilterSource

02 12

FilterSource

Operator Placement Decision
And Flow Information

Smart
Gateway 2

Smart
Gateway 1

Micro
Datacenter

Fair Sharing Coflow-aware Scheduling

11

Filter

12

Filter

11

Filter

12

Filter

2

3

Average

Counter

2

Sum

… …

0.67 Mbit/s

……

11

Filter

12

Filter

11

Filter

12

Filter

2

3

Average

Counter

2

Sum
…

0.5 Mbit/s

…

…
…

(b) (c)

Figure 3.8: A coflow optimization: (a) the operator placement decision and flow information, (b) a flow

scheduling decision by a fair sharing mechanism, (c) the flow scheduling decision of our coflow aware opti-

mization

completion rate across all the applications deployed in the system. So in this section, we will propose

the detailed algorithm whose key idea is to prioritize the smaller coflows to make sure their bandwidth

requirements are satisfied and then the larger ones.

As shown in Algorithm 5, the proposed heuristic sorts the coflows by its size (the sum of the flow rates

in the coflow) and allocates the bandwidth to suit the coflow requirement one by one from the smallest

coflow. If any of the links cannot afford the allocation, we revoke the allocation, mark the current coflow as

unsatisfied, and continue to the next coflow. After all of the coflows are traversed, we allocate the bandwidth

to the remaining unsatisfied coflows by a fair sharing mechanism to equally allocate the remaining bandwidth

of each link to the flows bypassing it.

Algorithm 5: Algorithm for optimizing coflow scheduling with coflow awareness

Input : Optimized Physical Plans: Gphy = {G1
phy, ..., G

k
phy, ..., G

K
phy};

Cluster: Gres(Vres, Eres);

Operators Placement: Xk = {xvi |i ∈ V kdag, v ∈ Vres}, ∀k;
Coflow information: D = {Db|∀b are aggregators};
Output: Flow rate: Rb = {r1, r2, ..., rp, ...}, ∀b

1 Initial the link capacity link(v, v′) for every link in the cluster;
2 An unsatisfied coflow set F = ∅;
3 Sort D by the coflow size

∑
e(p,i)∈Db

dp for each coflow Db ∈ D;

4 for each Db from the smallest coflow do
5 Allocate the rate for each e(p,i) as rp = e(p,i);

6 Update the link capacity link(v, v′) = link(v, v′)− rp, for xvp = 1, and xv
′
b = 1;

7 if any of the above link(v, v′) <= 0 then
8 Revoke the above allocation and mark coflow Db as unsatisfied F = F ∪ {Db};

9 Set the rate for coflows in F by fair sharing the remaining capacity of each link;

The example shown in Figure 3.8 also illustrates the algorithm. There are two applications in which

operator placements are done. The link capacities between the gateways and the micro datacenter are

both 2 Mbit/s. If the bandwidth is allocated by a fair sharing mechanism as shown in Figure 3.8(b), all

30

Smart Gateways

Micro Datacenter

Mega Datacenter

Figure 3.9: Testbed

coflows cannot be completed on time and all of the three applications will be influenced by the back-pressure.

However, if we allocate the bandwidth by Algorithm 5, at least the second application can avoid the back-

pressure.

3.4 Evaluation

We evaluate Amnis using a set of stream processing applications in an edge computing experimental

testbed. The evaluation is designed to measure the performance improvement of Amnis for various stream

processing applications and compare its performance with the state-of-the-art.

3.4.1 Implementation and experimental setup

We implement Amnis on top of Apache Storm [135] (v2.0.0). Amnis can also be implemented on other

distributed stream processing engines such as the Apache Flink[133], Heron[77], etc. We chose Storm for

implementing Amnis due to its widespread use in data science applications [9] and Storm has the lowest overall

latency [38] among leading stream processing engines. We extend the DefaultResourceAwareScheduler1

(DRA) in Storm to implement our algorithms for the physical plan and operator placement optimizations.

The coflow optimization is enforced on each operator using an integrated rate controller implemented in the

IRichBolt class which is the base class for implementing many operators.

We deploy a testbed on CloudLab [45] with nodes organized in three tiers as shown in Figure 3.9 and

1http://storm.apache.org/releases/2.0.0/Resource_Aware_Scheduler_overview.html

31

http://storm.apache.org/releases/2.0.0/Resource_Aware_Scheduler_overview.html

Table 3.2: Testbed Setup

Nodes instance vCPU RAM(GB)
Mega Datacenter m1.2xlarge 16 32
Micro Datacenter m1.xlarge 8 16

Gateway m1.medium 2 4

Table 3.2. We use the cluster with ten m510 servers in the CloudLab cluster and simulate the three-tier

architecture on an Openstack 2 cluster, which is like the multi-tier experiment testbed in related works

[141, 42, 10]. The third tier contains fourteen m1.medium instances (2 vCPUs and 4 GB memory) that

act as the smart gateways with relatively low computing capacity corresponding to the leaf nodes of the

architecture, the second tier has five m1.xlarge instances (8 vCPUs and 16 GB memory), each of them

functions as a micro datacenter, and the first tier contains one m1.2xlarge instance (16 vCPUs and 32

GB memory) acting as the computing resource which is available in the mega datacenter. The network

bandwidth, latency and topology are configured by dividing virtual LAN s (local area networks) between

the nodes and adding policies to the ports of each node to enforce, which we apply by the Neutron module

provided by the OpenStack project and the traffic control (tc) tool in Linux.

The Amnis platform is deployed on the above-described testbed. We deploy the Storm Nimbus service

(acting as the master node) on the m1.2xlarge instance and one Storm Supervisor service (acting as the

worker node) on each node respectively. In the Storm setup, we increase the default number of slots from 4

to 8 for each Storm supervisor to enable the cluster to run more operators simultaneously on each node so

that we can deploy multiple applications on the cluster. The default network is set to be 2 Mbit/s bandwidth

in capacity with 20 ms latency between the gateways and micro datacenters, and the bandwidth capacity

is 100 Mbit/s with 50 ms latency between the mega datacenter and micro datacenters. In addition, in the

default setup of each application, we place a stream generator on each smart gateway to emulate the input

stream. The input stream comes from an MQTT service deployed on each smart gateway. The default

stream rate is set to be six hundred tuples per source (smart gateway) per second per application. We

enable the at-least-once semantic on the Storm cluster and the MQTT services, so that each tuple will be

processed at least once that contributes to the final result. With this feature, we do not take care of the

failure during the stream processing, because if a tuple that is being processed or transferred fails, the tuple

will be replayed or re-transmitted again.

3.4.2 Applications

To comprehensively evaluate Amnis, the stream processing engine simultaneously runs multiple stream

applications. We choose an application from vehicular networks using the Linear Road Benchmark [15], one

2https://www.openstack.org/software/

32

https://www.openstack.org/software/

Source Filter Aggregate DB Sink DB

Table

Group-by

ts car_id sensor_id speed

ts car_id sensor_id speed

ts car_id location count

ts car_ids location

0 1 2 3 4

Figure 3.10: Q1

Source
Aggregate

Join
DB

Sink

DB

Table

Filter

Filter

ts meter_id cons

ts meter_id cons_mean

ts meter_id cons

ts meter_ids cons_diff

ts meter_ids cons_diff

0

2

1

3 4 5

Figure 3.11: Q2

application for Smart Grid infrastructure, an application for a VR (virtual reality) Game and a smart city

application that calculates the profitability of each area for taxi cars on the road network. Each benchmark

contains various kinds of operators (filter, join, aggregate, etc.) with different computational complexities

and input/output ratios. The details are described as follows.

(Q1) Accident detection: The first application use case is to detect accidents in linear roads as shown in

Figure 3.10. The sensors gather the position and the speed of each car passing it. Then the sensor data is

filtered using the condition speed < ε, where ε is a small number indicating the error range of the sensor,

which has around a hundred to one input/output ratio. After that they are aggregated with car ID and time

window. When a car is detected to be not moving in a particular continuous time window, it is treated as

a broken car and the position will be reported to the next operation. After the detection of broken-down

cars, there is a group-by operator that performs group-by operations for the cars based on location which

also identifies whether there is more than one car broken in the same position. In the end, the position is

reported and stored in a database table.

(Q2) Anomaly detection: The second use case is to detect abnormality in Smart Grids as shown in

Figure 3.11. We change the long-term example described in [110] to a short-term one which detects anomaly

usage by comparing the windowed average usage and the instantaneous power consumption (which is sampled

one from one hundred metrics). When the consumption difference is larger than a threshold, then the

difference is reported to be stored into a database table.

(Q3) VR game: The third use case is to simulate a real-time VR game application that gathers the

information from multiple VR devices and updates the virtual world states as shown in Figure 3.12. There

are multiple players playing a VR game. The VR devices will send its current state (direction and position)

one hundred times per second to a filter which compares the current state with the previous state. If the

state difference is larger than a threshold, it passes the state to the next operation (the input/output ratio

is ten). The states are gathered and mapped to the virtual global coordinate.

(Q4) Profitable Areas: Last one is a taxi trace analysis application based on the dataset and requirement

provided in 2015 DEBS Grand Challenge 3. The goal of the application is to calculate the top ten profitability

3http://www.debs2015.org/call-grand-challenge.html

33

http://www.debs2015.org/call-grand-challenge.html

Source Filter Transform DB

Sink
DB

Table

ts user_id orient

ts user_id orient

ts user_id glob_orient

0 1 2 3

Figure 3.12: Q3

Source

Aggregate

Join
DB

Sink

DB

Table

Ranking
Counter

ts taxi_ride p_cell taxi_id

ts win_id p_cell profit

ts win_id cell count

ts win_id cell profitability

ts cell_1 profit_1 …p_ts d_ts p_cell d_cell taxi_id pay

0

2

1

3 4 5

Figure 3.13: Q4

areas by processing the taxi rides stream in real-time as shown in Figure 3.13. It first counts the taxi ride

and aggregates the profit for each area in each time window (in the default query, the window size is fifteen

minutes, which is set to be one second in the experiment). Then, it joins the above two streams to generate

profitability for each area and sorts the profitability of each area in real-time. Any time the ranking changes

or the time-window reaches, the updated ranking will be sent to the output. The emulated input stream is

sampled from the trace provided on the website and replicated corresponding to the input rate setup in the

experiment.

3.4.3 Evaluation Results

In our experiment analysis, different mechanisms are measured and compared: (i) Amnis which includes

all the proposed optimization features, (ii) SINK, a heuristic that tries to put all the operators co-located

with the sink operator, (iii) DRA, the original default resource-aware scheduler in Apache Storm that can

be seen as a round-robin algorithm which randomly chooses a physical node and puts as many operators

as possible until the computational resources are saturated and then, it randomly chooses another physical

node, (iv) Greedy First-Fit (GFF), a heuristic approach proposed in [103] that ranks the nodes using

a penalty function that considers the network latency and specifications of the node, the heuristic then

schedules the operators to the nodes based on the rank in a first-fit manner, and (v) Local Search (LS), an

approach proposed in [103] based on the above Greedy First-fit algorithm, it traverses the neighbor solutions

to get a local optimal solution, where the neighbor solution refers to the solution in which the difference

is only a single operator placement compared to the result of GFF. It is worth noting that except for

the SINK mechanism, all the other techniques assume that the operators’ resource requirement can be

determined as provided by the user (e.g., DRA needs the resource usage information of each operator to

be given as parameters) or by profiling. In addition, Amnis, GFF and LS also need the network topology

information. For all the mechanisms except SINK, the changes in the characteristics of the application or

the environment (cluster topology) need to be handled by re-configuring.

To compare the performance of the above algorithms, we set up two different scenarios: (i) we change

the input rate on the stream generator for all the applications to test the performance of the algorithms

in different workloads and (ii) we modify the last hop bandwidth (from the smart gateways to the Micro

34

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Q1

200 400 600 800 1000

Q2

200 400 600 800 1000

Q3

200 400 600 800 1000

Q4

0.0 0.2 0.4 0.6 0.8 1.0
input rate (tuples/second per source)

0.0
0.2
0.4
0.6
0.8
1.0

su
cc

es
s r

at
e

Amnis SINK DRA GFF LS

Figure 3.14: Success Rate Comparison with different input rates

200 400 600 800 1000
100
101
102
103
104
105

Q1

200 400 600 800 1000

Q2

200 400 600 800 1000

Q3

200 400 600 800 1000

Q4

0.0 0.2 0.4 0.6 0.8 1.0
input rate (tuples/second per source)

0.0

0.2

0.4

0.6

0.8

1.0

la
te

nc
y

(m
s)

Amnis SINK DRA GFF LS

Figure 3.15: End-to-end latency comparison with different input rates

Datacenters) to different values to test the performance under different network constraints. We measured

the general critical metrics to the stream processing applications: (i) latency-oriented success rate (maximal

100%, and higher is better), which is calculated based on the number of outputs that can be generated within

the deadline (one second in default setting), (ii) end-to-end latency (lower is better), which is calculated by

subtracting the output timestamp from the last input tuple which contributes to the output, (iii) bandwidth

usage (lower is better), which is the cumulative bandwidth usage during running, (iv) average throughput

(higher is better), which is calculated by the overall number of tuples processed dividing the experiment time,

and (v) sustainable throughput [70] (higher is better), which is the maximal input rate that the scheduled

physical plan can handle without incurring back-pressure. All the results shown in the figures are the average

of three runs. For each run, we initialize the four applications at the same time and warm them up for two

minutes. Then, we change the workload to the rate indicated in each experiment and gather the results for

ten seconds.

As shown in Figure 3.14, we measure the success rate of the stream processing queries. In the figure, we

can see that Amnis performs significantly better than the other algorithms for Q1 to Q3. In most settings,

Amnis obtains a nearly 100% success rate within the given deadline. When the input rate increases and when

other constraints are kept constant, the performance difference between Amnis and other methods increases

substantially. Only for Q1, the GFF and LS methods achieve 100% success rate when the input rate is 200

tuples per second per source. For Q2 and Q3, the success rate of the GFF and LS methods is less than 10%

35

in the conditions. For the other methods namely SINK and DRA, the performance is even worse and the

success rate is less than 10% for Q1, Q2, Q3. We see a different trend for Q4 as the aggregation window

size is one second and the latency is calculated based on the time interval between the generation time of

the last tuple in the time window and the output time of the final result, which causes the average latency

to be around one second. Here again, Amnis works better than the other methods and obtains nearly 100%

success rate under various conditions for Q1 to Q3 and obtains higher success rates for all the four queries

compared to the other methods.

In Figure 3.15, the latency measurements and their distribution (with 90% confidence interval) are shown

for different input rates. The y-axis in the figure is the end-to-end latency in ms and it is in log scale. We

can see that for Q1 to Q3, Amnis achieves an average latency of around 50 ms to 300 ms when the input rate

increases. Also, the 95% percentile latency is from 150 ms to 450 ms with increase in input rate. The other

methods have the average latency from one second to tens of seconds when the input rate increases from two

hundred per second to one thousand per second. GFF and LS get better results for Q1 than SINK and DRA

as GFF and LS consider the average distance between the nodes to decide the operator placement. The

average latency difference is as high as 200X when Amnis is compared with the other four methods for Q2 to

Q3. Even for Q1, the difference is significant when Amnis is compared with LS when the input rate is one

thousand tuples per second. The difference is about 84X (6056ms average latency for LS, and 72ms average

latency for Amnis). In addition, we can see that the latency distribution is more narrow when Amnis which

indicates that latency is more predictable and stable for Amnis compared with other methods. Here, we

note that the y-axis is in log scale and therefore, the same length in the higher position may indicate several

orders of magnitude difference in values. In addition, for Q4, SINK, DRA, GFF, and LS generate only three

or four outputs when the bandwidth is one Mbit/s because of the bottlenecked network bandwidth, which

are less than the normal cases that the number should be more than ten (at least one per second). However,

we calculate the success rate only from the output latency distribution which is the portion lower than the

threshold (one second in default setting) that we do not assume the number of outputs we should get to

calculate the success rate that cause the result here. Also for Q4, LS performs similar to Amnis across the

setups and GFF performs similar to Amnis when the bandwidth is larger than two Mbit/s.

In Figure 3.16, the results of the success rate for different last hop bandwidth (the bandwidth between

the smart gateways and the micro datacenters) is shown. Here, the deadline is set as one second. The

result is similar as above and Amnis reaches 100% success rate in almost all of the scenarios for Q1 to Q3.

For Q1, we can see that when the bandwidth increases, the success rate increases gradually to 100% for

GFF and LS methods. However, for Q2 and Q3, the success rate does not change significantly as these

two applications have higher computational resource requirements and the network is not the bottleneck for

these applications. For Q4, the success rate of Amnis is also near 100% when the bandwidth is more than 4

Mbit/s but the success rate ranges from 25% to 75% for GFF and LS which is still better than that of SINK

and DRA approaches. The latency measurements presented in Figure 3.17 show the same trends as the

36

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
Q1

1 2 3 4 5

Q2

1 2 3 4 5

Q3

1 2 3 4 5

Q4

0.0 0.2 0.4 0.6 0.8 1.0
bandwidth (Mbit/s)

0.0
0.2
0.4
0.6
0.8
1.0

su
cc

es
s r

at
e

Amnis SINK DRA GFF LS

Figure 3.16: Success Rate Comparison with different last hop bandwidth

1.0 2.0 3.0 4.0 5.0
100
101
102
103
104
105

Q1

1.0 2.0 3.0 4.0 5.0

Q2

1.0 2.0 3.0 4.0 5.0

Q3

1.0 2.0 3.0 4.0 5.0

Q4

0.0 0.2 0.4 0.6 0.8 1.0
bandwidth (Mbit/s)

0.0

0.2

0.4

0.6

0.8

1.0

la
te

nc
y

(m
s)

Amnis SINK DRA GFF LS

Figure 3.17: End-to-end latency comparison different last hop bandwidth

success rate and Amnis performs better than the other techniques. In the figure, we can see that the latency

is around 40 to 80 ms for Amnis for Q1, Q2, and Q3. However, for the other four methods, the latency is

as high as more than 20 seconds. For Q4, the latency is around one second for Amnis, GFF and LS but for

SINK and DRA, the latency is as high as more than 10 seconds. Based on the results in Figure 3.18, we

can infer the reasons behind these trends. The figure shows the cumulative bandwidth usage (sum of the

bandwidth usage during the experiments) for different bandwidth setup. The usage is gathered in each node

by a monitor thread in real time (one second per metric) when the experiment is running. The label 1e6

in the up left corner represents the scale of the y-axis, which also applies to Figure 3.19 and 3.20. We can

see that Amnis consumes somewhat similar network resources when the bandwidth is increased from one

Mbit/s to five. However, for the other four methods, the bandwidth consumption is about two times when

the bandwidth is increased from one Mbit/s to two, which shows that the bandwidth resource is saturated

by the other four methods but for Amnis, it is similar for different bandwidth setups. It shows that the

overall bandwidth utilization is minimized by the methods in Amnis.

Besides the above metrics, we also evaluate the overall throughput under the above two setups (different

input rates and last hop bandwidths). As shown in Figure 3.19, we evaluate the throughput with different

input rates. We add an optimal line in the figure that represents the throughput value which consumes the

37

1.0 2.0 3.0 4.0 5.0
bandwidth (Mbit/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

cu
m

ul
at

iv
e

ba
nd

wi
dt

h
us

ag
e

(K
B)

1e6
Amnis
SINK
DRA
GFF
LS

Figure 3.18: Network Usage

200 300 400 500 600 700 800 900 1000
input rate (tuples/second per source)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

)

1e4

Amnis
SINK
DRA
GFF
LS
Optimal

Figure 3.19: Throughput with different input rates

input without delay. In the figure, we can see that Amnis achieves very similar results as the optimal line.

However, the other four methods only get low throughput which has as much as 10X difference compared

with Amnis. In Figure 3.20, the results show the sustainable throughput for different bandwidth setups. The

sustainable throughput [70] for each method and each bandwidth setup is obtained by gradually increasing

the input rate and analyzing the latency distribution. If the latency is increased continuously during the

experiment, the current plan is not sustainable which also means that if the current input rate is kept the

same, the current method cannot handle it under the current physical plan and operator placement. For

Amnis, we reuse the plan in the default setup (the input rate is six hundred tuples per second and the last

hop bandwidth is two Mbit/s) to get the sustainable throughput. We can see that Amnis also performs

better than the other four methods in different setups. For Q1 to Q3, Amnis achieves around six thousand

tuples per second throughput with the optimized plan. For Q1, when the bandwidth is larger than three

Mbit/s, GFF and LS can achieve similar throughput as Amnis. For Q4, as it aggregates the tuples in a longer

time window (the back-pressure is active only when the processing cannot be completed in a time window),

the throughput of this application is similar to other mechanisms, which is around three thousand tuples

per second. From the above results, Amnis can get better results not only when the accurate application

information (e.g., how many tuples are coming to the application?) is given but also by employing various

Amnis methods with estimated information. Thus, the applications using the Amnis approach obtain good

throughout under various scenarios.

38

5

bandwidth (Mbit/s)

Figure 3.20: Sustainable Throughput with different last hop bandwidths

3.5 Discussion

In this section, we discuss the limitation and future research directions for Amnis.

Generalization and applicability. Our work assumes that the stream processing applications are de-

ployed directly by the distributed stream processing engine on multi-tier edge computing environments. The

challenges imposed by the difference in capabilities of resources present in various tiers represent the key

difference of edge computing scenarios compared to cloud computing environments [22, 158, 121]. Essen-

tially, our methods can work for many stream processing application scheduling contexts in multi-tier edge

computing environments. However, we assume that the control signal in the stream processing application

will not be the bottleneck. For example, if the stream processing application is deployed in a geo-distributed

edge computing environment, the synchronization of the state of the application (e.g., the back-pressure

signal) may become a problem or bottleneck. While this is not handled in our work, we believe that tackling

this challenge can be a promising direction for future work.

Profiling and reconfiguration. Our work assumes that the profiling and benchmark results are avail-

able for the stream processing applications. Our methods use these basic information of the applications

(e.g., the average input rate, the average processing time, the selectivity, and the resource usage) to make

informed decisions. While our model and methods can tolerate a certain amount of error, they make re-

quire reconfiguration of the application deployment to adapt to long-term changes, especially when there

are very significant changes in the environment (e.g., a long-term change in the input rate). Making op-

timized decisions on when and how to perform the reconfiguration is still an open problem. Future work

can focus on developing a framework to automate the reconfiguration process by adaptively learning the

environment and application characteristics (e.g. a reinforcement learning-enabled agent to automatically

develop reconfiguration strategies).

Data locality. Our work optimizes the data locality primarily by grouping the selective operators with the

source operators and by moving them to the data source (Section 3.3.1.1). We assume that the selective

operators are stateless so that we can arbitrarily split them with the same number of the corresponding

39

source operator. However, the selective operator can also be stateful as in the case of windowed maximal

and key-by sum operators. The reason we limit the applicability to the stateless operator is that the split

stateless operators do not need to consider the shuffling phase which needs to be correct (e.g., for key-by

sum, all the tuples belonging to a key needs to be processed by one of the downstream operators) and it

can be a bottleneck between the split source operators and the downstream operators. However, it is

also possible to automatically split the stateful operator to improve the data locality which we leave it as

future work. In addition, Our work does not assume any specific partition function to be used between two

connected operators. The partition function can influence the performance in some cases. For example, the

partition function can prefer the successor task which is placed locally with the current task to improve the

data locality. The optimization of the partition function has been widely studied in the distributed batch

processing domain [166], however, applying those methods in a heterogeneous edge computing environment

is still a challenge which can be a promising direction for future work.

3.6 Summary

In this chapter, we propose a novel stream query processing framework called Amnis that optimizes the

performance of the stream processing applications through a careful allocation of computational and network

resources available at the edge. The Amnis approach differentiates from the state-of-the-art through its

careful consideration of data locality and resource constraints during physical plan generation and operator

placement for the stream queries. Additionally, Amnis considers the coflow dependencies to optimize the

network resource allocation through an application-level rate control mechanism. We implement a prototype

of Amnis in Apache Storm. Our performance evaluation carried out in a real testbed demonstrates the

effectiveness and scalability of the Amnis approach. Our results show that the proposed techniques achieve

as much as 200X improvement on the end-to-end latency and 10X improvement on the overall throughput.

The optimizations discussed in this chapter help meet the performance requirements of low-latency stream

processing in heterogeneous edge computing environments. However, as edge infrastructures consist of several

unreliable devices and components in a highly dynamic environment, failures are more of a norm than

exception [81]. Thus, to support reliable delivery of low latency stream processing over edge computing, we

need a highly fault-tolerant stream processing solution that understands the properties of the edge computing

environment for meeting both the latency and fault tolerance requirements. In the next chapter, we propose

a novel resilient stream processing framework that achieves system-wide fault tolerance while meeting the

latency requirement for the applications.

40

4.0 Resilient Stream Processing in Edge Computing

In this chapter, we present a novel resilient stream processing framework that achieves system-wide fault

tolerance while meeting the latency requirement for the applications in the edge computing environment. The

proposed approach employs a novel resilient physical plan generation for the stream queries that carefully

considers the fault tolerance resource budget and the risk of each operator in the query to partially actively

replicate the high-risk operators in order to minimize the recovery time when there is a failure. The proposed

techniques also consider the placement of the backup components (e.g. active replication) to further optimize

the processing latency during recovery and reduce the overhead of checkpointing delays. We extensively

evaluate the performance of our techniques by implementing a prototype on Apache Storm [135] on a cluster

test-bed in CloudLab[45]. Our results demonstrate that the proposed approach is highly effective and scalable

while ensuring low latency and low-cost recovery for edge-based stream processing applications.

4.1 Background and Motivation

In this section, we discuss the state-of-art stream processing fault tolerance solutions and illustrate

the challenges in supporting resilient and fault tolerant stream processing in the edge computing. As the

number of IoT devices increases, large amounts of data get generated near the edge of the network in

real-time. Traditional cloud solutions for IoT may lead to long processing times and may not be suitable

for latency-sensitive IoT applications such as virtual reality (VR) applications (that require less than 16

milliseconds latency to achieve perceptual stability) [120], and applications for smart cities such as connected

vehicles (e.g., collision warning, autonomous driving and traffic efficiency with latency requirement around

10 to 100 milliseconds) [14] and intelligent online traffic control systems [22]. Stream processing in an edge

computing environment provides a promising approach to meet strict latency requirements while processing

huge amounts of data in real-time. Fault tolerance is an important aspect of edge computing as many

IoT applications require both high accuracy and timeliness of results. As edge infrastructures consist of

several unreliable devices and components in a highly dynamic environment, end-to-end failures are more of

a norm than exception [81]. Thus, to support reliable delivery of low latency stream processing over edge

computing, we need a highly fault-tolerant stream processing solution that understands the properties of the

edge computing environment for meeting both the latency and fault tolerance requirements.

Checkpointing[145] and replication [63] represent two classical techniques for fault tolerant stream pro-

cessing. The idea behind replication is to withstand the failure by using additional backup resources. Repli-

cation approaches include both active replication and standby replication. When there is a failure, the

backup resources will be used to handle the workload impacted due to the failure. The difference between

active replication and standby replication is that in active replication, both the primary and the replica run

41

Smart Gateway 1
Smart
Gateway 2

2

1

Worker 1 Worker 4

9

splitter counter

sinksource

Micro
Datacenter

30

Checkpoint
store

acker

Tuple Status

1,“stay foolish” processed

2,“stay hungry” processed

3,”stay foolish” unprocessed

… …

state

checkpoint time

“stay:1,foolish:1” 1

“stay:2,hungry:1,foolish:1” 2

4 4

3… 3

stay:3
hungry:1
foolish:2

4,”stay”,1
4,”hungry”,1

3,”stay:3,
hungry:1,
foolish:2”2′4 4

4,”stay”,1
4,”hungry”,1

stay:3
hungry:1
foolish:2

3
3,”stay:3,
hungry:1,
foolish:2”

Worker 2

replication

Worker 3

X

X

(a) Resilience Unaware

Smart
Gateway 1Smart

Gateway 2
2

1

Worker 3

Worker 1 Worker 4

9

splitter
counter

sinksource

Micro
Datacenter

30

Checkpoint
store

acker

Tuple Status

1,“stay foolish” processed

2,“stay hungry” processed

3,”stay foolish” processed

… …

state

checkpoint time

“stay:1,foolish:1” 1

“stay:2,hungry:1,foolish:1” 2

”stay:3,hungry:1,foolish:2” 3

4 4

4…

stay:3
hungry:1
foolish:2

4,”stay”,1
4,”hungry”,1

2′
5,”stay”,1
5,”foolish”,1

stay:4
hungry:2
foolish:2

3,”stay:3,
hungry:1,
foolish:2”

Worker 2

4

55

X

replication

Smart
Gateway 3

Worker 5

(b) Resilience Aware

Figure 4.1: An example comparing the resilience unaware scheduling and the proposed approach

simultaneously and process the same input and produce the output. However, in standby mechanisms, the

standby does not generate outputs. In hot standby mechanisms, the standby processes the tuples simul-

taneously similar to the primary but with cold standby, the standby only synchronizes the state with the

primary operator passively.

The checkpointing mechanisms on the other hand periodically store the state of the operators in persistent

storage to create timestamped snapshots of the application. Often, the checkpoint mechanism works with

the replay mechanism that caches the input tuples at the source operator (e.g. the source operator shown

in Figure 4.1). When there is a tuple failure or a timeout, the source operator re-sends the tuple to the

downstream operators for reprocessing. The replay mechanism tracks the processing status of each tuple

(e.g., the acker shown in Figure 4.1 is used to track this information). When a failure happens, the state

of the failed operator is restored and the unprocessed (unacknowledged) tuples are replayed as shown in the

example in Figure 4.1. As shown in Figure 4.1, the stream processing application has four operators, a source

operator which fetches the stream from the data provider outside of the system, a splitter that splits the

sentence into words, a counter that counts the words, and a sink that stores the result. It also includes fault

tolerance components namely the acker, the checkpoint store, and active replication of the counter operator.

Hybrid methods employ a combination of both checkpointing and replication. They are referred to

as adaptive checkpointing and replication techniques. Adaptive checkpoint and replications schemes have

been proposed in several domains [129, 89, 168, 142, 60, 128]. The goal of combining active replication

and checkpoint mechanisms is to achieve seamless recovery compared to pure checkpointing. When active

replication is applied correctly, the recovery time will be zero (the input of the failed operator is handled

by the replica). Combining active replication and checkpointing also decreases the resource overhead as it

significantly employs checkpointing that only needs a very limited resource (transferring and storing the

checkpoints as shown in Figure 4.1) compared to fully active replication that needs nearly twice the resource

usage of the original.

42

While adaptive checkpointing and replication is a promising approach, its application in edge computing

is challenged in several aspects. The heterogeneous nature of both physical nodes and the network compo-

nents in an edge computing environment significantly challenges the placement of the replicas that directly

influences the performance and cost. For example, in Figure 4.1b, if active replication of counter is placed

in a node far from the splitter and sink operators assuming a latency of 200ms between the smart gateway

3 and the micro datacenter, the latency to transmit the stream to the sink operator from the replica will

be very high. We note that it will not influence the performance in the fail-free condition as the application

will eliminate the duplicate results at the end and the output from the primary will be always generated

earlier than the output from the replica in this condition. However, when the primary counter operator

fails, the output of the active replication will become the valid output and it will dramatically influence the

latency that makes the results not useful as it may contain out of date information. For instance, let us

consider that the latency requirement is less than 200ms and the normal processing from the source to the

sink needs 100ms. In the fail-free condition, the latency requirement will be met. However, if the primary

operator fails, the output comes only from the replica during the recovery phase and a bad placement of the

replica can drastically increase the latency to more than 200ms which may violate the latency requirement

and make the results not useful.

Most current state-of-art distributed stream processing systems (e.g. Apache Flink [133], Apache Storm

[135]) optimize the performance of an application by placing the operators in a single worker (single process)

and in a single physical node or a set of adjacent physical nodes to improve the data locality by reducing

the overhead of copying or transmitting the data across the processes or nodes. Therefore, if the placement

mechanism is unaware of the fault tolerance mechanisms and requirements, the fault tolerance properties

achieved by the mechanisms may be poor. For example, in the worst case as shown in Figure 4.1a, when the

active replica is placed along with the primary operator in the same worker 3 (the dotted line in the figure

indicates the boundary of a worker), the active replica will also fail because of the influence of the primary

failure which makes the active replication scheme ineffective. While optimizing for performance and data

locality is important, careful decisions on where to place the backup resources (e.g. the active replication,

the checkpoint store) while closely considering their roles in the application is vital to achieving the desired

resilience properties. In the example shown in Figure 4.1b, we place the active replication in a different

node near the node where the primary is placed so that the failure of either will not influence each other.

Here, careful tradeoffs between data locality and minimizing correlated failure probabilities are essential to

ensuring both high resiliency and performance in terms of throughput and latency. In the next section, we

discuss the system design of our proposed fault tolerant stream processing mechanisms optimized for edge

computing environment.

43

1 2

Logic Plan

1 2

Resilient Physical Plan

1 2

0 3

0
3

ack
2′2′

cp

monitor

MDC 1Smart
Gateway 1

Smart
Gateway 2

Cluster Information

monitor

monitor

Failure
Prediction

Recovery Cost
Estimation

MDC 1
Smart
Gateway 1

Smart
Gateway 2

Preliminary Operator Placement

1 2

0 3

Resilience Aware
Scheduling

Figure 4.2: System Overview

4.2 System Design

The proposed fault tolerance mechanism for edge computing consists of two phases namely (i) resilient

physical plan generation, and (ii) resilience-aware scheduling and failure handling. In the resilient physical

plan generation (Figure 4.2), we decide the physical plan of the stream processing application by first

translating the user code into a logic plan and then, based on the preliminary operator placement result, we

add the necessary backup components (e.g. active replication, and checkpoint store) considering the recovery

cost for each operator. Then, when the physical plan is going to be deployed on the cluster, the system needs

to decide the placement of both the operators and the backup components and handle the failure when the

application fails.

Next, we discuss the details of various components (Figure 4.2) of the proposed resilient stream processing

system.

4.2.1 Resilient physical plan generation

A stream processing application can be represented as a Directed Acyclic Graph (DAG) which captures

the processing graph provided in the user-defined program. A logic plan illustrates the logic of the stream

processing application represented by the DAG. Thus, a logic plan consists of vertices and edges where the

vertices represent the operators defined by the user and the edges are the streams between the operators as

shown in Figure 4.2. We use the notation, Glogic(Vlogic, Elogic) to represent the logic plan. We note that the

logic plan is not the task graph directly deployed onto the cluster. A physical plan extends the logic plan

with more detailed configurations including the level of parallelism for each operator, the configuration for

the backup operators, etc. The resilient physical plan is represented as a graph Gphy(Vphy, Ephy). When

44

splitter
counter

sink

source

checkpoint
storeacker

active
replication

state

state

primary path

checkpoint

Interval: 10 seconds

splitter counter sinksource

Logic Plan

Resilient Physical Plan

checkpoint
source checkpoint stream

Figure 4.3: Resilient Physical Plan Example

generating the resilient physical plan, the system needs to decide several parameters including the operators

which are actively replicated.

We present an example in Figure 4.3, Besides the logic plan, the resilient physical plan generation includes

many other components: (i) the acker is an operator tracking whether the tuples have been completely

processed in the application, (ii) the checkpoint store provides the services to store the checkpoint in the

volatile memory or in the persistent storage, (iii) the state management for each stateful operator (e.g. the

counter operator) indicating the checkpoint mechanism and the parameters of the checkpoint mechanism

(e.g. the checkpoint interval), (iv) the fault tolerance mechanism for each operator. For example, the counter

operator is protected by both the active replication, the checkpoint mechanism and the event replaying

(the acker feedback loop). We denote the fault-tolerant physical plan including the backup components

as Vphy = Vlogic ∪ {ickstore, icksource} ∪ Vacker ∪ Vactive, where iacker ∈ Vacker is an acker operator in the

acker set, ickstore is the checkpoint store which can be a local database or a memory key-value store. Here

icksource is a source operator which is responsible for generating the checkpoint stream (signal) based on the

checkpoint interval configuration, which we will discuss the details about the checkpoint stream later, and

Vactive is a copy of the subset of Vlogic which defines the operator set that actively replicates the operators in

the logic plan. The details of how to configure the above components are described in Section 4.3. Also, in

the physical plan, the parallelism of each operator i can be decided by the user to determine how many tasks

will be run to process the input of an operator which directly influences the decision of active replication.

Here we use ik to indicate the k-th task of an operator i and the parallelism is denoted as Ki, a predefined

parameter.

The checkpoint stream is a fault tolerance component which will pass through all the operators in the logic

plan in the same sequence defined by the logic plan. When one of the operators receives the checkpoint tuple

(barrier), the stateless operator will forward it to the downstream operators, and the stateful operator will

45

halt the stream processing and perform the checkpointing by committing the current state to a checkpoint

store. The checkpoint stream is for synchronizing the state over the whole stream processing application to

ensure that the checkpointing is done across the application as an atomic operation. When the checkpoint

tuple (barrier) passes all the operators in the logic plan, an acknowledgment will be made by the acker to

inform the checkpoint source that the current checkpointing is done. Next, we discuss the notion of operator

and backup component placement and illustrate how the failure is handled by the backup components.

4.2.2 Scheduling and failure handling

After the resilient physical plan is determined, the system needs to decide the placement for each com-

ponent in the physical plan and handle the application. The scheduling decision can be illustrated as a

mapping between the physical plan graph Gphy and the cluster graph denoted by Gres(Vres, Eres) where the

Vres indicates the nodes in the cluster and Eres indicates the virtual links connecting them. An example

is shown in Figure 4.2 in which we have two smart gateways connecting a micro datacenter. Here, we use

i to represent the component in the physical plan that i ∈ Vphy and v to indicate the node in the cluster

that v ∈ Vres. We use cv to indicate the idle resource capacity of a node which is the full capacity sub-

tracting the resource usage on that. For the mapping between the physical plan and the cluster, we use

X = {xiv|i ∈ Vphy, v ∈ Vres} to indicate if xiv = 1 then the component i is deployed on node v, and vice

versa. After the physical plan is scheduled to the cluster, the stream processing runs continuously until it

is shutdown. When there is a failure in the state-of-art stream processing systems (e.g. Apache Flink [133],

Apache Storm [135]), the state of the application is typically backed up by checkpointing and the input data

is backed up using a replay mechanism. Thus during recovery, a few steps can restore the application to its

normal status. However, this process can be time consuming. The recovery time varies from application to

application but usually, it can be divided into two parts: (i) the time for detection of the fault and (ii) the

time for restoring the computation. For the first component, most distributed stream processing systems

use heartbeat [4] to detect task failures and node failures. The heartbeat is a kind of signal sent between the

monitor (e.g. a master node) and the monitored tasks. When there is a timeout of the heartbeat, the monitor

will assume that the monitored task has failed and will trigger the recovery mechanism (e.g. restarting the

fail task). For the second part, the application needs to recover from the failure in order to restore to the

state before the failure. In distributed stream processing systems, the state of the operator is restored by the

latest checkpoint and the tuples are replayed to gradually recover the state of the operator to the point before

the fail happens. Thus, with the above two delays, the application will not produce any output until all

the operators are synchronized to the state before the failure which will introduce high recovery latency and

processing latency. The latency can cause several issues including violating the user’s latency requirement

and in some cases, the peak workload during recovery may cause other operators to fail consecutively.

Active replication can be one of the most promising supplementary technique for the regular checkpoint-

ing-based fault tolerance. The primary and secondary (replica) will run at the same time to produce results

46

so that only when both fail simultaneously, it will cause failure of the application, otherwise the failure will

be seamlessly covered. There is no heartbeat detection latency and no restoring latency during the time of

failure and the the total recovery time for this mechanism becomes nearly zero for most conditions. However,

if we replicate all operators with active replications, it results in nearly twice the original resource usage cost

to handle the workload. Therefore, we need a mechanism to estimate the risk of each operator based on the

estimated recovery time and adopt cost-effective approach to selective replication.

4.2.3 Recovery time estimation

If the application is only backed up by the checkpoint mechanism or when the failed operator is not

replicated by active replication, the recovery time can be significant. We first estimate the recovery time

to obtain the risk of each operator to determine which operators need to be replicated. We note that the

recovery time contains two components namely (i) fault detection and (ii) computation restoring.

Fault detection time is determined by the heartbeat interval, the latency between the monitor and the

fail task and the configuration of the heartbeat timeout. We assume that the failed task is i and the monitor

task is m which can be either a node manager (e.g. supervisor in Apache Storm), a cluster master (e.g. the

nimbus in Apache Storm), or a cluster coordinator (e.g. a zookeeper cluster in Apache Storm). If the monitor

is a node manager, the failure of task i can be detected by the timeout of the heartbeat, which is denoted

as τhbtimeout (the timeout can be set by a parameter, for example it can be five seconds). Therefore, in the

worst case, the time to detect the fault can be the sum of τhbtimeout and the heartbeat interval (the fault

happens immediately after acknowledging the last heartbeat). As the heartbeat timeout is often significantly

larger than the heartbeat interval, we can ignore the heartbeat interval and only consider the influence of

the heartbeat timeout, τhbtimeout, in the recovery. If there is a node v failure, the time to detect the failure

needs to include the latency between the failed node and the monitor node which is denoted as l(v,m). The

second part namely the time to recover the computation is more challenging to estimate as it related to

many aspects including the length of the unacknowledged queue of the tuples, the size of the state, and the

average processing time of the fail operator.

When restoring the computation, the recovery time can be divided into three phases namely (i) restarting

the task and loading the program into memory, (ii) retrieving of the latest checkpoint from the checkpoint

store, and (iii) reprocessing the unacknowledged tuples to restore the computational state before the failure.

For the first component namely restarting and loading the program, we assume it is a constant time τrestart.

For the second part, the time to retrieve the checkpoint is noted as τcheckpoint(size(si)), which can be

determined by the size of the state size(si) where si denotes the latest state of an operator i, and the

latency between the operator and the checkpoint store, which is denoted as l(v, v′) where v is the node in

which operator i is placed, and v′ is the node where checkpoint store is placed. For the third part, we need

to know how many input tuples of operator i is not acknowledged yet. We assume that it is a function qi(λi)

denoting the input buffer of the unacknowledged tuples which is related to the input rate λi of operator

47

i. For each tuple, we need di to fully process it on average and we can estimate the replaying time as

τreplay = diqi(λi). With above mentioned steps, we can estimate the overall recovery time if the operator i

fails without an active replication by adding the detection time and the restoring time as shown below:

τi(X) = τhbtimeout + l(v,m) + τrestart

+τcheckpoint(size(si)) + l(v, v′) + τreplay
(7)

Based on the above recovery time estimation, we can estimate the risk of each operator with the operator

placement decision and optimize it further to either add more active replications or migrate some of the

operators to reduce the risk, which we will discuss the detail in Section 4.3. In the next subsection, we will

introduce the method we use to predict the failure, which is an important component to achieve an accurate

recovery cost estimation.

4.2.4 Failure prediction

Our method is based on the accurate prediction of the failure. We summarize the failure modes to include:

(i) tasks failures in which a specific task fails (e.g., due to memory issues), (ii) node failures in which a node

or the supervisor deployed on it fails causing all tasks running on it to fail, (iii) data failures which refer to

the loss of data that may occur due to data dropping on a congested network device or a communication

timeout due to a high latency network.

For the task and node failures, there are many related works [119] that predict such failures accurately

with close to 99% accuracy. There are also some recent efforts in the IoT domain [19] which predicts the

failure of the IoT devices. For the data loss, we do not handle it through active replication but through the

back-pressure and replaying techniques in stream processing [31] which we discuss in Section 4.3.

With the above observations, we can leverage the failure prediction to help us predict the risk of each

operator. We assume the failure probability is pi(t) for task i and pv(t) for a node v in a time-slot t. We

assume the node failure will cause all the tasks (operators) placed on it to fail. Thus, if a preliminary

operator placement X0 = {xiv|i ∈ Vlogic, v ∈ Vres} is determined as shown in Figure 4.2, we can combine the

respective task and node failure probabilities together to form a uniform failure probability ρi(t) = pi(t) +

pv(t)−pi(t)pv(t), that xvi = 1 with the assumption that the task failure and the node failure are independent

events. The failure probability may change due to the workload change or environment change but the

probability can be updated by the prediction algorithm before each time-slot using the monitors deployed

on each node as shown in Figure 4.2. Within each time-slot, we can decide a resilient physical plan based on

the risk estimated by the recovery time and the failure probability predicted by the prediction algorithms,

which consists of the original operators, their placement, fault tolerance components configuration, and the

placement of the components. We discuss its detail in the next section.

48

4.3 Resilient Stream processing

In this section, we describe the proposed algorithms for resilient stream processing in edge computing

that leverage both checkpointing and active replication techniques. We assume that the user can specify

a fault tolerance resource budget which can be the amount of the additional computational resources (e.g.

CPU, memory). We transform the budget to quantify the extra resources to be used to handle the fault (e.g.

the resource amount can be calculated using the resource unit price). Then the multi-dimension resource

amount (CPU, Memory, bandwidth, etc.) can be converted into a one-dimension amount using methods

such as the dominant resource described in [52]. We use C to denote the additional resources that can be

used to run the fault tolerance components (e.g. the checkpoint store and active replication).

With the budget configuration, the resilient physical plan can be generated by considering the risk and

failure probability of the operator to selectively replicate some of the operators which have higher recovery

costs (e.g. recovery time) and higher failure probabilities. Thus in the physical plan generation, we estimate

recovery cost by combining the risk (recovery time) with failure probability: ai(t,X) = τi(X)ρi(t) , which

can be also seen as the expectation of the recovery cost of the operator i in the time-slot t. For simplicity, we

assume that the basic physical plan which is directly generated from the logic plan Glogic and the operator

placement are already decided by parsing the user’s program and calculated by a scheduler. We use X0

to denote the original operator placement decision generated by the default scheduler (e.g. the default

resource aware scheduler in Apache Storm [135]). Our algorithm will use the determined operator placement

decision to further optimize the configuration and placement for the fault tolerance components. We note

that the placement of the operators can influence the performance of the stream processing application and

therefore, jointly optimizing the configuration and placement of both the operators and the fault tolerance

components can be an interesting direction of future research. In this chapter, we primarily focus on the

fault tolerance aspect and its influence on the applications. We divide the proposed fault tolerance solution

into two phases: (i) checkpoint related component configuration (ii) active replication related configuration.

For the checkpoint related component, we need to decide: (i) where to place the checkpoint store, (ii) how

many ackers we need to use to track the completion of each tuple and where to place them. For the active

replication, we need to decide: (i) which operators to be actively replicated, (ii) where to place these active

replications. In the rest of this section, we illustrate our proposed solutions to achieve fault tolerance in edge

computing environments by leveraging both checkpointing and active replication while carefully considering

the resource budget and latency requirement.

4.3.1 Checkpoint

The checkpointing mechanism periodically takes snapshots of the state of the whole stream processing

application, and when there is a failure, the checkpoints can be used to restore the state of the application

to a state before the failure happens. However, merely restoring the state is not sufficient to guarantee

49

the correctness of the processing as the input data that do not contribute to the restored state should be

replayed in order to make sure that they also contribute to the final output. We leverage two techniques here

to guarantee the correctness when failure happens: (i) checkpointing which includes the snapshot mechanism,

the state committing by the stateful operators, and the checkpoint storage, and (ii) input data replaying

which includes the tuple tracking mechanism and the replaying mechanism.

As we want to ensure that all the operators are backed up, we enable the checkpointing mechanism

across the application as the basic fault tolerance mechanism before applying the active replication. We

take the logic plan of the application Glogic(Vlogic, Elogic) and add the checkpointing related components

into it including a checkpoint store ickstore which is responsible for storing the checkpoints, a checkpoint

source icksource generating the stream to synchronize the snapshot status across the application, and a set

of ackers Vacker tracking the accomplishment of all the tuples. Besides, we need to decide the placement for

the above-mentioned components. As the checkpoint source only influences the snapshot step by generating

synchronization signals and tracking the checkpointing step, the influence of the placement of it is not very

significant. Here, we can simply collocate it with one of the source operators in the logic plan. For the

checkpoint store, we need to consider the network connectivity to all the stateful operators which commit

checkpoint information to it. If the operator fails without an active replication, it needs to communicate

with the checkpoint store to fetch the latest state promptly. Besides, the checkpoint will be committed to it

periodically from the stateful operators and therefore, we need to select a node which is in an appropriate

node in which all the stateful operators can commit the checkpoint to it without waiting a long time to

get the acknowledgment. In our work, we assume that one-node checkpoint store is capable of handling the

checkpoints of the stream processing application with a resource requirement cckstore. For the highly geo-

distributed application, we can employ geo-distributed key-value stores [167] to implement a more scalable

checkpoint store. We have the initial operator placement decision X0. We use Vstateful to denote the set of

all the stateful operators in the application and we can compute the objective function:

min

Vstateful∑
i

l(v, v′) that xiv = 1, xickstore

v′ = 1 (8)

The problem can be solved by traversing all the nodes and the computational complexity is O(|Vres|

|Vstateful|).

Next, for the acker which tracks the completion of each tuple, we need to determine the following: (i)

the minimal number of ackers that can handle the tracking of the application, (ii) the placement of the

ackers to minimize the gap between the accomplishment and the acknowledgment of the tuples, which in

turn minimizes the unnecessary replaying of the tuples when there is a failure. We assume that the capacity

of an acker is oacker with a resource requirement, cacker, which indicates that one acker can handle the

tracking of at most oacker tuples in a unit time. Therefore, the number of ackers can be calculated as

follows: |Vacker| =
∑Vlogic

i λi

oacker
. The placement can be also decided similar to the checkpoint store that we

50

need to minimize the weighted distance between the ackers and the operators:

min

Vacker∑
iacker

Vlogic∑
i

λil(v, v
′)

|Vacker|
that xiv = 1, xiacker

v′ = 1 (9)

To traverse all the combinations, the computational complexity ranges from O(|Vres||Vlogic|) to O(
(|Vres|
|Vacker|

)
|Vlogic|) which is determined by how many nodes are used for placing the ackers. The result of the above

problem composes of a placement decision of the checkpointing components, which we denote as Xcheckpoint

consisting of the placement of the checkpoint source, the checkpoint store, and the ackers.

4.3.2 Active Replication

The checkpointing mechanism backs up the application entirely by periodically snapshotting the state of

the whole application. However, the recovery time is significant if there is a failure. The restarting of the

failed task, the restoring of the state, and the replaying of the unacknowledged tuples incur significant time.

Therefore, we add the active replication to the operator which has a higher failure probability and a longer

estimated recovery time by considering the fault tolerance budget defined by the user.

Algorithm 6: Select and place active replication

Input : Logic plan: Glogic(Vlogic, Elogic);
Operator placement: X0;
Checkpoint Component placement: Xcheckpoint;
User fault tolerance budget for active replications: Cactive = C − cckstore − |Vacker|cacker;
Time-slot: t;
Output: Operator set to be replicated: Vactive;
Active replication placement: Xactive;

1 Initial the operator set Vactive = ∅ and placement Xactive = ∅;
2 Sort the operators in Vlogic by their risk ai(t,X) in a descending order;
3 for each operator i ∈ Vlogic do
4 if ci(λi) ≤ Cactive then
5 Vactive = Vactive ∪ {i};
6 Update Cactive = Cactive − ci(λi);

7 for each active replication i′ ∈ Vactive do
8 Get the node v which handles the primary operator i of the active replication i′;
9 Sort the neighbor nodes of v, v′ ∈ Vres by their distance l(v, v′) in an ascending order;

10 for each neighbor node v′ ∈ Vres do
11 if ci(λi) ≤ cv′ then

12 Xactive = Xactive ∪ {xv
′

i′ = 1};
13 Update cv′ = cv′ − ci(λi);
14 Break;

15 For the remaining replication which does not find a placement, we use a network-aware mechanism[112] to
place them;

There are two decisions we need to make when dealing with active replication: (i) which operators need

to be actively replicated, and (ii) where to place the active replication to minimize the latency when there

is a failure. For the selective active replication, we consider a user-defined budget C, which represents the

resource that can be used by the fault tolerance components. The resource requirement for each operator

51

is ci(λi), which is related to the input rate. We assume that the resource requirement is a non-decreasing

function of the input rate λi. We also assume that active replication replicates the method of the primary

operator exactly the same way so that the resource requirement of the active replication of an operator i

is the same, which is also ci(λi). The active replication selection method is shown in Algorithm 6 line 1-6.

We can see that the algorithm selects the operators to be replicated based on the initial operator placement

decision X0 and based on their recovery cost until we reach the fault tolerance budget. The output is the

operator set which is selected to be actively replicated, Vactive. The computation complexity is determined

by the sorting, which is O(|Vlogic| log |Vlogic|). After the active replicated operators are selected, we need

to decide the placement of them to also minimize the latency during failure. Instead of understanding

all the operators in the application to estimate the performance and schedule the active replication, we

assume that the physical plan and the original placement X0 already meet the service level agreement (SLA)

with the user and thus, we focus on how to minimize the performance (especially latency) gap between

the fail-free condition and fault condition. In Algorithm 6 line 7-15, we illustrate the detail of our proposed

algorithm to place the active replications. The problem is solved by placing the replication to the node which

is the nearest capable neighbor of the primary operator to minimize the influence of the network latency

and other impacts on the active replication when there is a failure. The method fetches the placement

information of the primary operator and tries to place the replication in one of the neighbors. It is worth

noting that the neighbor information can be obtained by clustering the nodes in a latency space [112] or

by a predefined cluster architecture as used in our experiments. The algorithm traverses the neighbors in

the increasing order of distance (network latency) until there is enough capacity in a node to place the

replication. The computation complexity is determined by the outer loop and sorting and the complexity is

O(|Vactive||Vres| log |Vres|).

4.4 Evaluation

We evaluate our fault-tolerant stream processing system in an edge computing experimental testbed.

The evaluation is designed to measure the performance improvement of our method in comparison with

both the baseline and state-of-art solutions. In the evaluation, we study the influence of the fault tolerance

component placement and analyze the performance impact of using checkpointing as the only fault tolerance

mechanism. Finally, we study the overhead of applying various fault tolerance solutions.

4.4.1 Implementation and experimental setup

We implement the system on top of Apache Storm [135] (v2.0.0). It can also be implemented on other

distributed stream processing engines such as the Apache Flink[133]. We extend DefaultResourceAwareSched-

uler(DRA) in Storm to implement our algorithms for the physical plan and scheduling optimizations. The

52

physical plan generation and the scheduling decision is implemented outside of the scheduler. The scheduler

takes the physical plan and the scheduling decision as input and based on them to schedule the tasks.

We deploy a testbed on CloudLab [45] with nodes organized in three tiers. We use the cluster with ten

m510 servers in the CloudLab cluster and simulate the three-tier architecture on an Openstack [125] cluster.

The third tier contains fourteen m1.medium instances (2 vCPUs and 4 GB memory) that act as the smart

gateways with relatively low computing capacity corresponding to the leaf nodes of the architecture. The

second tier has five m1.xlarge instances (8 vCPUs and 16 GB memory) and each of them functions as a

micro datacenter. The first tier contains one m1.2xlarge instance (16 vCPUs and 32 GB memory) acting

as the computing resource used in the cloud datacenter. The network bandwidth, latency and topology are

configured by dividing virtual LAN s (local area networks) between the nodes and adding policies to the

ports of each node to enforce. We use the Neutron module provided by the OpenStack project and the

traffic control (tc) tool in Linux to simulate.

We deploy the Storm Nimbus service (acting as the master node) on the m1.2xlarge instance and one

Storm Supervisor service (acting as the slave node) on each node respectively. For the checkpoint store, we

use a single node Redis service. The default network is set to be 100 Mbit/s bandwidth in capacity with

20 ms latency between the gateways and micro datacenters, and the bandwidth capacity is 100 Mbit/s with

50 ms latency between the cloud datacenter and micro datacenters. We also place a stream generator on

each smart gateway to emulate the input stream. The input stream comes to an MQTT (Message Queuing

Telemetry Transport) [62] service deployed on each smart gateway. The default stream rate is set to be 100

tuples per source (smart gateway) per second (which is 1400 tuples per second in total).

4.4.2 Application

The application we use in the experiment is to detect accidents in linear roads as shown in Figure 4.4.

The sensors gather the position and the speed of each car passing them. Then the sensor data is filtered

using the condition speed < ε, where ε is a small number indicating the error range of the sensor. After that

they are aggregated by the location ID and time window. When a car is detected to be not moving in a

particular continuous time window, it is treated as a broken car and the position will be reported to the next

operation. In the end, the position is reported and stored in a database table. We implement the application

based on the API provided by Apache Storm. For the windowed aggregator in the application, we enable

the window persistence so that the tuples in every window will be stored in the checkpoint store periodically.

The timeout parameter for tracking the completion of the tuple is set to be 5s. To generally accept the out

of order tuples, we enable the lag parameter in the windowed aggregator as one second (the default setting

is zero which means the lag tuples will be dropped immediately), which means that the out of order tuple

can be accepted in a one second time window, otherwise it will be dropped. We set the window size to one

second and the default fault tolerance budget to 10% of the original application. The default parallelism of

the filter operator is set to be 14 which is as same as the number of the sources and the parallelism of the

53

Sensors

Source Filter Aggregate DB Sink

DB Tablefilter the car
with speed<=𝜖

aggregate the car
location by
tumbling windows

ts car_id sensor_id speed

ts car_id sensor_id speed

win_id location car_ids

Figure 4.4: Accident Detection Application

aggregator is set to be 2.

For each experiment, we run the application and the stream generators for one minute and let the

application run another thirty seconds to let it fully process the input. The tuples which are not processed

in the additional thirty seconds are considered as failed tuples.

4.4.3 Algorithm

We compare our methods in different combinations. We divide the proposed method into two parts: (i)

Resilient Physical Plan Generation (RPPG) and (ii) Resilience-Aware Scheduling (RAS). For the physical

plan generation, we compare with: (i) ck-only, which only applies the checkpoint to achieve fault tolerance,

and (ii) full-rep, which applies full active replication to protect all of the operators. For the scheduling

optimization, we compare RAS with DRA which is the default scheduler Apache Storm uses as described

above.

4.4.4 Experiment Results

We first evaluate the performance to compare fail-free and fixed failure conditions as shown in Figure 4.5.

We can see that when there is no failure, the throughput fluctuates near the input rate for all the four

mechanisms. However, when we inject a failure at the 30s, we can see the difference as shown in Figure 4.5b.

The ck-only+DRA mechanism has a throughput gap after the failure injection as the primary needs time

to recover from the failure. After the recovery is done within about 10 seconds, the throughput gradually

becomes normal. For the RPPG+DRA mechanism, it uses our proposed mechanism to generate the physical

plan but uses the DRA to schedule the tasks. Here, we can see that there is also a drop after the failure but

the throughput is about half of the input rate unlike ck-only+DRA that does not output anything during

the recovery. As RPPG+DRA replicates some of the operators and the scheduling places the primary and

replication on one node, the failure of the primary influences some of the replications (if they are placed

in one worker). For full-rep+DRA and RPPG+RAS, the throughput does not change significantly during

the primary recovering from failure. In this experiment, we can see that applying only the adaptive fault

54

0 10 20 30 40 50 60
source_ts

0

500

1000

1500

2000

2500

3000

3500

th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

) ck-only+DRA
full-rep+DRA

FCA+DRA
FCA+FTCAS

(a) Fail-free condition

0 10 20 30 40 50 60
time (s)

0

500

1000

1500

2000

2500

3000

3500

th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

) ck-only+DRA
full-rep+DRA

RPPG+DRA
RPPG+RAS

(b) Fault condition (fail injected at 30s)

Figure 4.5: Throughput

700 1400 2100 2800
rate (tuples/second)

0

5000

10000

15000

20000

25000

30000

35000

la
te

nc
y

(m
s)

ck-only+DRA
full-rep+DRA

RPPG+DRA
RPPG+RAS

(a) Overall

700 1400 2100 2800
rate (tuples/second)

0

5000

10000

15000

20000

25000

30000

35000

la
te

nc
y

(m
s)

ck-only+DRA
full-rep+DRA

RPPG+DRA
RPPG+RAS

(b) During Recovery

Figure 4.6: Latency

tolerance does not solve the problem entirely. We also need to place the components appropriately to avoid

the influence of the correlated failures to further decrease the influence of the failure on the application.

Next, we evaluate the latency of the application by applying the same four mechanisms. We change the

input rates in these experiments as shown in Figure 4.6. The bars illustrate the average latency and the ticks

represent the 90% confidence interval of the latency. We can see that our method RPPG+RAS performs

similar to full-rep+DRA including the overall runtime which average latency is around 2.5 seconds as shown

in Figure 4.6a. However, the ck-only+DRA performs similar with RPPG+DRA that gets around or higher

than 5 seconds latency. When comparing the latency during recovery, the difference becomes larger as shown

in Figure 4.6b. We can see that the average latency during recovery is all increased to more than 5 seconds

for the mechanisms except RPPG+RAS even for the full-rep+DRA. The reason is that the bad placement

of the replication influences the effectiveness of the application when there is a fail. This experiment shows

the priority of our method in the latency metric that our method achieves both lower latency and higher

stability comparing with the other three mechanisms whenever considering the latency distribution in overall

runtime or only during recovery.

In addition, we compare success rates in Figure 4.7. We observe that the result is similar to the one shown

55

700 1400 2100 2800
rate (tuples/second)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

ck-only+DRA
full-rep+DRA
RPPG+DRA
RPPG+RAS

Figure 4.7: Success rate

700 1400 2100 2800
rate (tuples/second)

0

500

1000

1500

2000

2500

3000

3500

th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

) ck-only+DRA
full-rep+DRA
RPPG+DRA
RPPG+RAS

Figure 4.8: Throughput

700 1400 2100 2800
rate (tuples/second)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

cu
m

ul
at

iv
e

cp
u

ut
iliz

at
io

n
(c

or
es

)

ck-only+DRA
full-rep+DRA
RPPG+DRA
RPPG+RAS

(a) CPU

700 1400 2100 2800
rate (tuples/second)

0

2000

4000

6000

8000

10000

cu
m

ul
at

iv
e

m
em

or
y

ut
iliz

at
io

n
(M

B)

ck-only+DRA
full-rep+DRA
RPPG+DRA
RPPG+RAS

(b) Memory

700 1400 2100 2800
rate (tuples/second)

0
200
400
600
800

1000
1200
1400

cu
m

ul
at

iv
e

ne
tw

or
k

ut
iliz

at
io

n
(M

b)

ck-only+DRA
full-rep+DRA
RPPG+DRA
RPPG+RAS

(c) Network

Figure 4.9: Resource utilization

in Figure 4.5. When there is a failure, our methods RPPG+RAS and full-rep+DRA are not influenced and

hence, they obtain 100% success rate for different input rates. Here, RPPG+DRA obtains only around 95%

success rate which is higher than the checkpoint only mechanism that has around 80% success rate.

Next, we compare the throughput of the mechanisms in Figure 4.8 when the input rate increases. We

can see that RPPG+RAS and full-rep+DRA achieve similar throughput when input rate increases and it

matches the input rate. However, the RPPG+DRA and ck-only+DRA achieve lower throughput than the

input rate which may lead to either loss of data or delayed output.

Finally, we evaluate the resource utilization of the four mechanisms as shown in Figure 4.9. We can see

that full-rep+DRA uses significantly more resources than the other three techniques. The CPU resource

utilization shown in Figure 4.9a increases from 12.5 cores to 19 cores when the input rate increases. The

rest of the techniques are similar to each other with CPU utilization ranging from around 10 cores to around

13.5 cores. Overall, the CPU resource usage is as high as 40% more than the other three mechanisms for

full-rep+DRA. The result is similar in memory and network usage as shown in Figure 4.9b and 4.9c. In this

experiment, we can see that full replication uses more resources than our method in all the CPU, memory,

and network usages. Comparing our method RPPG+RAS to the ck-only+DRA and RPPG+DRA, the CPU

usage is similar but the network usage is higher as RAS schedules the active replications to different nodes

56

which increases the network usage but decreases the influence of correlated failures.

In summary, the proposed method, RPPG+RAS combines the consideration of both generating an

appropriate resilient physical plan to cover the operators with using less resources than the full replication

and also the application’s latency requirement to achieve similar latency when recovery from fail with better

performance during fail comparing with RPPG+DRA which only optimizes the physical plan but lacking

the consideration of the optimization of the scheduling.

4.5 Summary and discussion

Edge computing provides a promising approach for efficient processing of low latency stream data gen-

erated close to the edge of the network. Although current distributed stream processing systems offer some

form of fault tolerance, existing schemes are not optimized for edge computing environments where appli-

cations have strict latency and recovery time requirements. In this chapter, we present a novel resilient

stream processing framework that achieves system-wide fault tolerance while meeting the latency require-

ment for edge-based applications. The proposed approach employs a novel resilient physical plan generation

for stream queries and optimizes the placement of operators to minimize the processing latency during

recovery and reduce the overhead of checkpointing delays. The proposed techniques are evaluated by imple-

menting a prototype in Apache Storm [135] and the results demonstrate the effectiveness and scalability of

the approach.

This chapter and the previous chapter discussed techniques to improve the fault tolerance and perfor-

mance of the stream processing application in edge environments using off-line optimizations for physical

plan generation and scheduling of the operators. However, in scenarios where there are changes in the work-

load distribution or the environment, profiling-based off-line mechanisms may be less efficient. To address

this issue, in the next chapter, we proposed a mechanism to dynamically configure the parallelism of the

stream processing applications to meet the workload demands based on a model-based reinforcement learning

method.

57

5.0 Elastic Stream Processing in Edge Computing

In this chapter, we proposed a reinforcement learning-based method which achieves elasticity for stream

processing applications deployed at the edge by automatically tuning the applications to meet the perfor-

mance requirements. The proposed approach adopts a learning model to configure the parallelism of the

operators in the stream processing application using a reinforcement learning(RL) method. We model the

elastic control problem as a Markov Decision Process(MDP) and solve it by reducing it to a contextual Multi-

Armed Bandit(MAB) problem. The techniques proposed in our work uses Upper Confidence Bound(UCB)-

based methods to improve the sample efficiency in comparison to traditional random exploration methods

such as the ε-greedy method. It achieves a significantly improved rate of convergence compared to other

RL methods through its innovative use of MAB methods to deal with the tradeoff between exploration and

exploitation. In addition, the use of model-based pre-training results in substantially improved performance

by initializing the model with appropriate and well-tuned parameters. The proposed techniques are eval-

uated using realistic and synthetic workloads through both simulation and real testbed experiments. The

experiment results demonstrate the effectiveness of the proposed approach compared to standard methods

in terms of cumulative reward and convergence speed.

5.1 Problem Formulation

DSP applications are often long-running and can experience variable workloads. Additionally, the highly

dynamic edge computing environments may change the working conditions of the applications requiring

operators to be migrated between nodes with different capacities due to failures or mobility requirements.

To bound the performance of the applications within an acceptable range, it is important to design an elastic

parallelism configuration algorithm to adapt to the changes in the dynamic edge computing environment. In

this section, we first explain the terminologies used in modeling the elastic parallelism configuration problem.

Logic Plan: we assume that there is a stream processing application submitted to the system. The code

of the application is translated into a Directed Acyclic Graph (DAG) denoted as Gdag(Vdag, Edag) shown as

the logic plan in Figure 5.1. Here, the vertices Vdag represent the operators and the edges Edag represent

the streams connecting the operators. We use i ∈ Vdag to denote operator i in the application.

Cluster: we assume that the resources of the cluster are also organized as a graph, Gres

(Vres, Eres), where Vres denotes nodes in the cluster, and Eres indicates the virtual links connecting the

nodes. As shown in Figure 5.1, in the edge computing environment, there are multiple tiers of resources such

as the micro datacenters (MDCs) and the smart gateways which are deployed near the edge of the network

that are used for processing the data locally to provide low latency computing to the applications. Thus, it is

58

1 2

Logic Plan

0 3

monitor

MDC 1Smart
Gateway 1

Smart
Gateway 2

Cluster

monitor

monitor

MDC 1
Smart
Gateway 1

Smart
Gateway 2

Preliminary Operator Placement

1 2

0 3

MDC 1
Smart
Gateway 1

Smart
Gateway 2

Dynamic Running Environment

1 2

0 3

21

0 3

Controller

Agent
Environment

InterfaceMonitor AgentMonitor

Figure 5.1: Elastic Stream Processing Framework

natural to consider the edge computing as a heterogeneous environment with highly dynamic changes in the

execution environment. We simplify the physical resources as virtual nodes in the graph, Gres. For example,

if a node v represents a micro data center (MDC), we group its resource capacity as Cv by considering all

the resources we can use in an MDC as a virtual node.

Preliminary Operator Placement: the operator placement is a map between the operator, i ∈ Vdag, and

the node, v ∈ Vres, in the cluster. We assume that the operator placement for stream processing application

is already provided as shown in Figure 5.1. It is denoted as a map X0 = {xvi |i ∈ Vdag, v ∈ Vres}. For each

operator i ∈ Vdag, when it is placed on node v ∈ Vres, then xvi = 1. It is worth noting that, in the current

state-of-art DSP engines (such as Apache Storm, and Flink), one operator can be replicated to multiple

instances (tasks) and the instances (tasks) of the operator can be placed on different nodes. We assume that

each operator is placed on one node as it simplifies the representation complexity of the model. Additionally,

if the operator placement needs to be reconfigured to fit the working environment changes, we can treat the

reconfiguration as a new submission as it does not affect the performance of the parallelism configuration

algorithm.

Elastic Parallelism Configuration: the objective of configuring the parallelism is to change the number

of instances of the operator to optimize one or multiple QoS requirements of the application. We need to

decide the parallelism of each operator i, which is noted as ki ∈ [1,Kmax], where Kmax is an upper bound

for the parallelism. Therefore, the number of possible parallelism configurations is Kmax
|Vdag| for configuring

the whole application, if all the operators have the max parallelism as Kmax. The parallelism determines

the number of threads running for the instances of the operator, which is not directly related to the number

of tasks provisioned for an operator. We discuss this in detail in Section 5.3. The configuration can be either

static which is fixed when the application is submitted to the engine or dynamic that can be changed when

59

the application is running. In this work, we deal with the dynamic parallelism configuration problem and

we present the detailed solution in Section 5.2.

5.1.1 Quality of Service Metrics

The objective of the parallelism configuration can be decided by the user in terms of QoS requirements.

As most of the stream processing applications need to handle the incoming data under acceptable latency,

the goal of the parallelism configuration can be to minimize the response time while reducing the resource

cost and minimizing the gap between the throughput and the arrival rate to avoid back-pressure[77].

End-to-end latency upper bound: we assume the end-to-end latency of the application is primarily

composed of computational or queuing latency. If the network latency or other latency e.g., the I/O latency

caused by memory swapping, are significant in an application, we rely on other techniques to optimize the

application first before deploying in the edge computing environment [112, 34], [36]. In order to make ensure

the end-to-end latency is bounded by a user defined target, we traverse the path in the application’s DAG

to get the estimated end-to-end latency upper bound. We first define the path as a sequence of operators,

starting at a source and ending at a sink, as p ∈ P , where P denotes all the paths in the application. We

can estimate the latency upper bound (not tight) of the application as the longest path in the DAG:

l̄dag = max
p∈P

∑
i∈p

l̄i (10)

where l̄i is the latency upper bound when passing one of the instances of an operator i.

Throughput: in stream processing applications, the throughput requirement is typically defined by match-

ing the processing rate of the application to the arrival rate. If the processing rate is larger than the arrival

rate, the application will not incur a back-pressure [77], which will influence the performance of the appli-

cation and may increase the resource usage (e.g., the memory usage for caching the unprocessed tuples).

Therefore, to evaluate the throughput performance, we use the queue length, noted as ω, which is widely used

in the queuing model to represent the state of the queue. It also captures the gap between the throughput

and the arrival rate in the long run, which is easy to monitor in the stream processing engine.

Resource usage: for the resource usage, we can directly use the parallelism configuration to estimate,

which is ki for the operator i. With an increase in parallelism, there will be more threads allocated to the

operator so that the resource usage will increase. Thus, parallelism can be used as the representation of the

resource usage.

Reconfiguration cost: as we change the parallelism configuration when the stream processing application

is running, it is important to consider the reconfiguration cost if the parallelism is changed (e.g., the operator

needs to be restarted to apply the parallelism change). However, most of the previous works assume a static

reconfiguration cost [34], which is a constant cost related to the downtime. This kind of measurements is not

accurate due to the correlation between the reconfiguration downtime and other metrics such as latency and

throughput. The downtime caused by the reconfiguration will lead to a peak latency and throughput after

60

1

Operator

1

0

1

0

Upstream Downstream

2
Input

Queue

Output

Queue

Dispatcher

𝜆𝑖
𝜓𝑖𝜆𝑖

Input

Queue

Input

Queue

𝜇𝑖
… …

Worker

Output

Queue

Output

Queue

Figure 5.2: Stream Processing Model

the downtime. Therefore in this work, we do not include the reconfiguration cost in the objective. Instead,

we include the downtime influence in the other metrics such as the end-to-end latency and throughput.

5.1.2 Stream Processing Model

With the notion of parallelism configuration and the QoS metrics defined above, we represent the stream

processing model used to estimate the relationship between the decision (parallelism configuration) and

requirements (QoS metrics) based on the queuing model of an operator and the message passing model of

the stream processing application. The discussion will guide the later RL method design in Section 5.2.

As discussed in Chapter 1, the highly dynamic workload and the heterogeneous resources make it very

difficult to predict the environment dynamics when the stream processing application is deployed in the edge

computing environment. However, it is important to extract the invariant from the dynamics for human

operators to understand the problem and the condition of the whole system to debug potential problems.

Based on the intuition above, we adopt the model from queuing theory and choose the M/M/1 queue (can

also be extended to G/G/1 based on distribution information) to model the characteristics of the operator.

For each operator i, as shown in Figure 5.2, we assume that the instances of it do not share the input

and output queues which can be treated as an M/M/1 queue. An M/M/1 queue can be described as two

variables, λi, µi and one state ωi, where λi is the arrival rate, µi is the service rate, and ωi is the queue

length. Based on the theory of M/M/1 queue [127], we can get the response time distribution (which is noted

as latency in our work) and the throughput with closed-form formulations. When the queue is stable, which

means µi > λi, the queue length will not grow infinitely. Without losing generality, we analyze the latency

upper bound here as an example. The 95th percentile of latency can be calculated from the cumulative

distribution of an exponential distribution Exp(µi − λi) as follows:

l̄i =
ln 20

µi − λi
(11)

Similarly, the other metrics can be also represented as closed-form formulations. For example, the average

latency is 1/(µi−λi). If the arrival rate and service rate distributions (G/G/1 queue) are given, Equation 11

61

can be modified correspondingly to represent the upper bound (95th percentile) of the latency using the

cumulative distribution function. In addition, we added a variable, ψi, to enhance the queuing model, which

represents the selectivity of the operator i, so that we can get the output rate as ψiλi if µi > λi as shown in

Figure 5.2.

After introducing the queuing model of a single operator, we now move to the model to estimate the

performance of an application. As described in the beginning of this section, we assume that the application

is organized as a DAG, Gdag(Vdag, Edag), where each vertex i ∈ Vdag represents an operator and each

edge (i, j) ∈ Edag represents a stream. The tuples transmitted between two operators will be partitioned

by a default shuffling function, or a user-defined partitioning function, which calculates the index of the

downstream instance that the tuple will go to. In the message passing model, instead of composing the

overall latency from source to sink as shown in Equation 10, we break down the latency caused on one

operator and based on that, we set the target latency from the overall latency requirement. With the split

objective, for each operator, the performance can be tuned without taking into consideration the other

operators or the overall application. Here, we just use a simple heuristic to decide the maximum latency

target of each operator proportional to its contribution to the overall latency:

l̄maxi =
l̄i
l̄dag

l̄max (12)

where l̄max is the upper bound latency of the overall application set by the user. If the profiling information

is not available or not possible to obtain, we can use other heuristics such as evenly dividing the latency

upper bound into the sub-objective of each operator with the given number of stages in the DAG. We leave

the dynamic orchestration of the sub-objectives of the application’s objective by gathering more information

from executing the application as one of our future works. For the other metrics, such as throughput, we

can monitor the input rate and processing rate for an operator and the throughput sub-objective can be

directly obtained from the local information (e.g., queue length) of a particular operator so that we can

rely on the local information to optimize the throughput. Therefore in the RL algorithm, we only need to

focus on tuning the parallelism for one operator with the given sub-objective. The usage of sub-objective

can decrease the complexity of the parallelism configuration problem, which we will discuss in details in

Section 5.2.2.

In the next section, we present the details of the proposed model-based RL method based on the above

model to automatically decide the parallelism in a dynamic and heterogeneous edge computing environment.

5.2 Reinforcement Learning For Elastic Stream Processing

We structure the elastic parallelism configuration as a Markov Decision Process (MDP) that represents

an RL agent’s decision-making process when performing the parallelism decision. We then reduce the MDP

to a contextual MAB problem and apply LinUCB with a model-based pre-training.

62

5.2.1 A Markov Decision Process Formulation

The problem of continuously configuring the parallelism of the stream processing applications in an edge

computing environment can be naturally modelled as an MDP. Formally, an MDP algorithm proceeds in

discrete time steps, t = 1, 2, 3, ...:

(i) The algorithm observes the current DSP application state st, which is a set of metrics gathered from any

monitor threads running out of the system (e.g., node utilization, network usage) or the metrics reported by

the application itself (e.g., latency, throughput, queue length as described in Section 5.1.1).

(ii) Based on observed reward in the previous steps, the algorithm chooses an action kt ∈ A, where A is the

overall action space, and receives reward rkt , whose expectation depends on both the state st and the action

kt. In the parallelism configuration process, each action is composed by the parallelism configuration of all

the operators, which can be noted as kt = {kt,i|i ∈ Vdag}.

(iii) The algorithm improves its state-action-selection strategy with the new observations, (st,kt, rkt
, st+1).

We choose the Finite-horizon undiscounted return [37] as the objective of the MDP, which can be noted as:

T∑
t=0

rkt
(st, st+1) (13)

where, T is the number of continuous time steps considered in the objective. It is a cumulative measure of

the undiscounted rewards in a predefined T time steps. As shown in the equation, compared to the infinite

discounted reward, the finite undiscounted reward treats each time step equally. This fits the objective of

the parallelism configuration that aims to maximize the utility uniformly among time steps. It also fits well

into the contextual MAB problem which we discuss in the next subsection.

5.2.2 Model-based Reinforcement Learning

As discussed in Chapter 1, the traditional RL methods based on q-value tables or other methods need a

large number of data points to converge. The deep reinforcement learning methods use DNN to improve the

convergence rate but they also need a lot of efforts either to tune the hyperparameters to tradeoff between

expressivity and the convergence rate or to gather enough data to feed into the neural networks, which may

be costly or even not possible in some conditions. In addition, the incomprehensible and nonadjustable deep

neural model is the major barrier for those kinds of models to be practical in system operations [96]. In

our work, we use LinUCB [80] that assumes a linear relationship between the state and the reward, and

is proved to be effective under the contextual MAB assumptions even when the process is non-stationary.

The LinUCB method fits into the parallelism configuration problem well based on our two observations:

(i) the parallelism configuration MDP (defined in Section 5.2.1) can be reduced to a contextual MAB, and

(ii) we can define the reward function with a linear relationship between the reward and the parallelism

configuration or most of the common objectives (e.g., latency, throughput) are linear (or can be transformed

to be linear) to the parallelism configuration. Next, we discuss the above two observations in detail.

63

The major difference between the MDP and the contextual MAB is based on whether the agent considers

the state transitions to make the decision. From the theory of M/M/1 queue [127], we can see that for each

time step, the state transition is only dependent on the arrival rate λ, the service rate µ, and the initial

state of the time step, ω, which is the initial length of the queue. Therefore, if we have the above variables

in a particular state, we can get the state transition probability for any possible states in the next time

steps. If the distributions of the arrival process and service process are stationary, the reward (determined

by any QoS metrics) can be determined by the current state and action regardless of the trajectory of the

previous states. It also means that the decision of the action can be made based on the current state instead

of the trajectory. The above observation is intuitive when there is only one operator. If there are multiple

connected operators organized as a DAG, the problem is significantly more complex. However, instead of

connecting the queuing model of each operator to build a queuing network, we can break the objective

(reward) function of the overall application using a heuristic (as discussed in Section 5.1.2) based on the

message passing model to the individual objective (reward) for each operator so that for each operator, we

can safely use the LinUCB algorithm to fit the queuing model with the given objectives and also reduce the

possible action space for the RL method (from exponential to linear).

For the second observation namely, the linear relationship between the state and the reward, we begin

analyzing it using a single queuing model. To keep it simple, we omit the time step notation t in the following

discussion. If we have an operator i, it has only one instance. We then have the arrival rate λi, the service

rate µi (for one instance), and the queue length ωi. We assume the relationship between the parallelism

setup and the speedup of the operator by comparing a single parallelism condition that obeys Gustafson’s

law[58] with a parameter ρi that defines the portion of the operation that can benefit from increasing the

resource usage. Here µi(ki, ρi) is the estimated service rate when the parallelism is ki and the parallel portion

is ρi, which can be estimated by:

µi(ki, ρi) = (1− ρi + ρiki)µi (14)

Without losing generality, we estimate the latency (response time) distribution in the time step as an

example, which can be an exponential distribution of Exp(µi(ki, ρi)− λi) plus an estimated upper bound of

the processing time of the queuing tuples ωiExp(µi(ki, ρi)) (not tight). Therefore, the latency upper bound

can be estimated as combining Equation 11:

l̄i(λi, µi, ωi) =
ln 20

µi(ki, ρi)− λi
+ ωi

ln 20

µi(ki, ρi)
(15)

With the given parallel portion ρi and the average processing rate µi, the overall processing rate of the

operator i with ki instances is proportional to the number of instances, ki. If throughput is part of the

reward, it will have a linear relationship with the parallelism. For latency, in Equation 15, the operator

will start at a state when the queue length is zero, ωi = 0, and the first part of the equation is inversely

proportional to the processing rate if the arrival rate λi is fixed. Therefore, through a simple transformation

(e.g., set x1 = 1/(µi(ki, ρi) − λi)), we can refer to a linear relationship between the latency upper bound

64

and the parallelism. For the other metrics such as throughput, queue length, and resource utilization, we

can also analyze the relationship between the parallelism and obtain similar results for a particular operator.

Through similar simple transformations, the linear relationship between the metrics (which represent the

states in RL methods) and the parallelism (number of instances) can be obtained.

Based on the two observations, we apply LinUCB as an RL agent to decide the parallelism configuration

for an operator and pass the messages between the connected operators in the DAG. Using the notation

of Section 5.2.1, we assume that the expected reward of an action (parallelism configuration) is linear in

its d-dimensional state st,ki with some unknown coefficient vector θ∗ki . Therefore, the linear relationship

between the reward and the state can be described as:

E[rt,ki |st,ki] = s>t,kiθ
∗
a (16)

As described in LinUCB[80], it uses a ridge regression to fit the linear model with the training data to get

an estimate of the coefficients θ̂ki for each action ki of each time step t. We omit the detailed steps of the

LinUCB algorithm and we refer the interested readers to the original paper [80]. Here, we only discuss the

action selection policy of LinUCB, which can be represented as:

kt,i = arg max
ki∈[1,Kmax]

(
s>t,ki θ̂a + α

√
s>t,ki(D

>
ki

Dki + Id)−1st,ki

)
(17)

where α is a constant, Dki is a design matrix of dimension m× d at time step t, whose rows correspond to

m training inputs (states), and Id is a d× d identity matrix. From the above equation, we can see that the

action selection of LinUCB considers both the current knowledge we obtained from the previous trials in

s>t,ki θ̂a and the uncertainty (UCB) of the action-reward distribution in the second part of Equation 17. This

is the reason why LinUCB has the ability to tradeoff between the exploration and exploitation.

With the above analysis, we can see that if LinUCB is directly used to set the parallelism for one operator,

it can be efficient as the uncertainty of the operator can be captured by the linear model (e.g., the parallel

portion, the base processing rate). However, on one hand, it has a cold start phase which needs multiple

rounds to get enough data for each possible action to reach a reasonable performance level. On the other

hand, in a stream processing DAG, the operators are connected to each other and the overall performance

of the application may vary due to different bottlenecks. Given the DAG, it is a challenging problem to

determine how to relate the overall performance of the application to the metrics of every operator in

it. Therefore, instead of directly optimizing the overall application, we use the objective function split as

discussed in Section 5.1.2 to only deal with the optimization for one operator for each RL agent. In addition,

we use the queuing model-based simulation to validate the configuration to set the initial parameters for

the LinUCB model. The simulation also gives additional benefits. On one hand, we can assume different

distributions for the arrival rate and service rate that can support arbitrary G/G/1 queuing models, which

is evaluated in the experiment in Section 5.4. On the other hand, the simulator can work in different modes

to either generate a lot of synthetic data to directly feed into the model or interact with the RL agent as

a simulation environment, which can fit into more RL algorithms. In the simulation, instead of trying all

65

Algorithm 7: Model-based LinUCB pre-train

1 Procedure pretrain(Gdag) → Θ
2 q is initialed as an empty queue ;
3 O are sources of Gdag (in-degrees are zero) ;
4 for o ∈ O do
5 q.append((o, λo)) ;

6 while q is not empty do
7 i, λi = q.pop() ;
8 θi = train(i, λi) add trained parameters θi to output Θ ;
9 for all downstream operators i′ of i do

10 λi′ = λi′ + ψλi ;
11 remove edge (i, i′) from Gdag ;
12 if indegree(i′) == 0 then
13 q.append((i′, λ′i)) ;

14 Procedure train(i, λi) → θi
15 initial the model parameters θi ;
16 while not terminate and not converge do
17 kt,i = selection(θi, st−1,ki) by Equation 17 ;
18 rst,kt,i , st,ki = simulate(λi, µi, kt,i) ;

19 θi = updateLinUCB(θi, rst,ki , st,ki , kt,i) ;
20 reset operator i’s state to initial state ;

the combinations of the parallelism configuration of the operators at the same time, we gradually train the

model for each operator by a topological order [67] of the DAG to ensure that the upstream operators’

configuration is fixed before the downstream operator’s model is trained. The simulation process is shown

in Algorithm 7. The reward function for each operator i is defined by using the Simple Additive Weighting

(SAW) technique [162]:

ri(st,ki) = wlatr
lat
i + wquer

que
i + wresr

res
i (18)

where st,ki is the state of time slot t with parallelism as ki, and rlati , rquei , rresi are the reward function

for latency, throughput, and resource usage based on the application’s requirements. To balance the opti-

mization for latency, queue length (gaps between throughput and input rate) and resource usage, we add

wlat, wque, wres as the weights for each component and wlat + wque + wres = 1. For different requirements,

the reward function can be set in different forms. For example, if the application requires deadline-awareness

and has a strict latency bound, we can set rlati = −1 when l̄i ≥ lmaxi , otherwise, it is zero. If the ap-

plication’s utility is linear to the latency, we can set rlati = − l̄i
lmax
i

, which decreases when the latency is

increasing. Without losing generality, we define the reward function by setting rlati = −1 if l̄i ≥ lmaxi else

zero, rquei = −1 if ωi ≥ ωmaxi else zero, and rresi = − ki
kmax
i

. In the definition above, both the latency and

throughput penalties have a bounded reward. The reward of resource usage is linear in terms of the number

of instances running. To eliminate the impact of the state transition that the model has experienced through

a previous bad selected action (e.g., a bad parallelism configuration may put too many tuples waiting for

processing and hence, the continuous states will be influenced), we reset the state of the simulation each

66

0 1 2

3Topology

Master Node

Coordinator

Slave Node

Slave Node

Slave Node

Slave Node

…

Engine ControllerSlave Node

Worker

Worker

Executor

Task

Task

…

Executor

…

Worker

Receive Q Outbound Q
Controller

Monitor
Monitor

Environment

RL
agent

Su
p

er
vi

so
r

RL
agent

Model-based
Simulation

Pretrain

Loop

Interaction

Loop

Change

Configuration

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Figure 5.3: System Architecture Overview

time when we update the model with one parallelism configuration in line 20 of Algorithm 7. Therefore, for

each sample of the model, the state of the operator will start from the same initial state so that each sample

will not be influenced by the previous sample’s state.

In the real environment, we first apply the trained parameters to each model as shown in Algorithm 8.

Then, for each operator, the controller decides the parallelism from the metrics gathered from the system

similar to the steps in the pre-train iteration. The heterogeneity is captured by the linear model in LinUCB. If

the operator is migrated from one node to another, it only influences the processing rate distribution µi (when

the other latencies are already appropriately optimized). We evaluate this experimentally in Section 5.4.

In the next section, the implementation is discussed for the above methods in a real-world DSP engine.

Algorithm 8: MBLinUCB

1 Procedure MBLinUCB(Gdag)
2 initial the model parameters for each operator i ∈ Vdag, θi ;
3 Θ = pretrain(Gdag) ;
4 decide initial k0 = {k0,i|i ∈ Vdag} from Θ ;
5 Submit Gdag with k0 to stream processing engine ;
6 while Gdag not terminate do
7 gather metrics in the time slot t as st = {st,ki |i ∈ V dag} ;
8 for each operator i do
9 θi = updateLinUCB(θi, rst,ki

, st,ki , kt−1,i) ;

10 kt,i = selection(θi, st,ki) by Equation 17 ;
11 if kt,i 6= kt−1,i then
12 Submit parallelism change ki,t to stream processing engine ;

67

5.3 Implementation

We implement a prototype of the proposed method using Apache Storm (v2.0.0) [135]. Though the

proposed algorithms can be implemented on other DSP engines such as Apache Flink[133], we chose Apache

Storm for implementation due to its widespread use in data science applications [9] and Storm has the lowest

overall latency [38] among the leading stream processing engines. We use Apache Storm to deploy the DSP

application which runs on the distributed worker nodes managed by the Storm framework. In Storm, the

DSP application can be represented as a DAG topology that is used to schedule and optimize the application.

However, when we actually deploy the application, it has an execution plan which can be seen as an extension

of the DAG topology. The execution plan replaces each operator with its tasks. A task represents an instance

of an operator and is in charge of a partition of the incoming tuples of the operator. In addition, one or

more tasks are grouped into executors, implemented as threads as shown in Figure 5.3. Storm can process a

large amount of tuples in parallel by running multiple executors. The executors are handled by the worker

process in Storm, which is a Java process acting as a container, which configures a number of parameters

including the maximum heap memory that can be used. The parallelism is configured by the number of

executors allocated to an operator. When the number of the executors reaches the number of tasks, the

operator gets its maximum parallelism. The number of executors can be re-configured without restarting

the application (but the executors need to be restarted to redistribute the tasks) by the re-balancing tool

provided by Storm.

The implementation of our algorithms in Storm is straightforward. As illustrated in Figure 5.3, we

implement a centralized controller of the application in python. The controller is implemented using the

gym environment [26] interface which can be directly used on most of the RL libraries. The interface requires

the environment to provide several functionalities, which include step(), reset(), close(), etc. Here,

the most important interface is the step() interface, which takes in the action for the time step and returns

a four-tuple including the observation (state), the immediate reward, the end of episode signal, and the

auxiliary diagnostic information. Based on the above interface, we implement the DSP controller to control

the parallelism configuration based on the action the algorithms calculated in each time step. Additionally,

the controller also takes the responsibility of monitoring the status of the DSP application by capturing the

metrics from the output of the application, each physical node, and each instance of the operators.

By wrapping the controller of the application, we extended the algorithm (LinUCB) in RLlib[83] to

implement the proposed algorithms, which can directly use the gym environment to interact with the DSP

application (shown as interaction loop in Figure 5.3). Therefore, when the DSP application is submitted,

a controller is created and based on the algorithm chosen for configuring the parallelism, an RL agent (or

multiple RL agents) is created and attached to the controller. Additionally, the pre-training also implemented

the same gym environment interface, which can directly interact with the RL agent. Using our MBLinUCB

method, we tune the parallelism for each operator using a specific RL agent and hence, it is possible to

68

Table 5.1: Default Simulation Parameter Setup

Kmax 64 wlat, wque, wres
1
3

Average input rate 100 tuples/s l̄max 1000 ms

µi 10 tuples/s Time step interval 10 s

distribute the agent to be attached with the operator to make the decision. In that way, the agent does not

need to be placed together with the controller and can be distributed to anywhere near the operator to make

the decision without significantly degrading performance.

5.4 Evaluation

We evaluate the proposed techniques compared to several state-of-art RL methods. We use both sim-

ulation and real testbed experiments to study the behavior of the RL algorithms when they are used in

optimizing the parallelism configuration of DSP applications.

5.4.1 Experimental setup

We describe the experimental setup for the simulation environment and real test-bed environment sepa-

rately.

For the simulation environment, we implement a DSP application simulator by extending the queue and

load balancing environments provided in Park project [88] and make it compatible with the gym environment

as discussed in Section 5.3. The default setup of the simulation is shown in Table 5.1. In the simulation

experiment, we test three different datasets: (i) a synthetic Poisson distribution dataset with default arrival

rate λ = 100/s, (ii) a synthetic Pareto distribution dataset with the shape parameter α = 2.0 and the

scale parameter xm = 50 (so that the average input rate is also 100 tuples/s in default from the Pareto

distribution), and (iii) a trace-driven dataset, which is made available by Chris Whong [149] that contains

information about the activity of the New York City taxis. Each data point in the dataset corresponds to

a taxi trip including the timestamp and location for both the pick-up and drop-off events. As the data is

too sparse (around three hundred tuples per minute) to be used in stream processing experiments, we speed

up the input rate of the dataset by sixty times, which means that the tuples arriving in one minute in the

original dataset will arrive in one second in the experiment.

In the real testbed experiments, we implement the DSP application for the 2015 DEBS Grand Challenge

(http://www.debs2015.org/call-grand-challenge.html) to calculate the most profitable areas for each

time window. The dataset used is the New York City taxis mentioned above and the data rate is also sped

up by sixty times. We deploy a testbed on CloudLab [45] with nodes organized in three tiers. We use

the cluster with ten xl170 servers in the CloudLab cluster and simulate the three-tier architecture on an

69

http://www.debs2015.org/call-grand-challenge.html

Source/

Mapper

Profit

Join

DB

Sink

DB

Table

Ranking
Count

ts taxi_ride p_cell taxi_id

ts win_id p_cell profit

ts win_id cell count

ts win_id cell profitability

ts cell_1 profit_1 …p_ts d_ts p_cell d_cell taxi_id pay

0

3

2

4 5 6

1
Taxi

Figure 5.4: NY Taxi Profitable Area Application

Table 5.2: Default Parameter Setup for Real Testbed

Kmax 8 wlat, wque, wres
1
3

Average input rate 4500 tuples/s l̄max 2000 ms

Time step interval 60 s

Openstack cluster. The third tier contains fourteen m1.medium instances (2 vCPUs and 4 GB memory)

that act as the smart gateways with relatively low computing capacity corresponding to the leaf nodes of

the architecture. The second tier has five m1.xlarge instances (8 vCPUs and 16 GB memory) and each of

them functions as a micro datacenter. The first tier contains one m1.2xlarge instance (16 vCPUs and 32 GB

memory) acting as the computing resource used in the cloud datacenter. The network bandwidth, latency

and topology are configured by dividing virtual LAN s (local area networks) between the nodes and adding

policies to the ports of each node to enforce using the Neutron module of OpenStack and the traffic control

(tc) tool in Linux to simulate.

We deploy the Storm Nimbus service (acting as the master node) on a m1.2xlarge instance and one

Storm Supervisor service (acting as the slave node) on each node respectively. For the checkpoint store,

we use a single node Redis service placed on the master node. The default network is set to be 100 Mb

bandwidth in capacity with 20 ms latency between the gateways and micro datacenters, and the bandwidth

capacity is 100 Mb with 50 ms latency between the cloud datacenter and micro datacenters. We also place a

stream generator on each smart gateway to emulate the input stream. The input stream comes to an MQTT

(Message Queuing Telemetry Transport) service deployed on each smart gateway. The dataset is replicated

and replayed on each smart gateway and the average input rate is around 4500 tuples/s overall. The default

parameters used in the real testbed experiments are listed in Table 5.2.

5.4.2 Application and Operator Placement

To comprehensively evaluate the proposed algorithm, we choose a smart city application that ranks the

profitability of the areas for taxis in New York city. As shown in Figure 5.4, there are seven operators: (i)

70

0 5000 10000 15000 20000 25000 30000
timestep

0.7

0.6

0.5

0.4

0.3

re
wa

rd
 p

er
 ti

m
es

te
p

PPO
A3C
DQN
LinUCB
MBLinUCB

(a) Reward

0 5000 10000 15000 20000 25000 30000
timestep

400

600

800

1000

1200

1400

95
th

 p
er

ce
nt

ile
 la

te
nc

y(
m

s) PPO
A3C
DQN
LinUCB
MBLinUCB

(b) 95th percentile Latency

0 5000 10000 15000 20000 25000 30000
timestep

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

th
ro

ug
hp

ut
(tu

pl
es

/s
)

PPO
A3C
DQN
LinUCB
MBLinUCB

(c) Throughput

Figure 5.5: Results of simulation with Synthetic Dataset (Poisson distribution)

source and mapper, which consume the input stream from the MQTT service and transform the raw tuple

to the data type that can be understood by the system, (ii) taxi aggregator, which aggregates the trips by

the taxi IDs in time windows, (iii) taxi counter, which counts the number of taxis in a particular area in time

windows, (iv) profit aggregator, which aggregates the profits by the pickup area in time windows, (v) joiner,

which joins the profit and number of taxis to calculate the profitability of a particular area, (vi) ranking,

which sorts the profitability of the area, (vii) sink, which stores the results of the most profitable areas into

a database for further usage. We have optimized the placement of the application by placing each operator

to one of the three tiers based on its selectivity. The data source which consumes the input tuples from

the MQTT services are placed at the same node (one of the gateways) where the MQTT service is placed.

The heavy load aggregators are placed in the micro data centers. The join, ranking and sink operators are

placed in the mega datacenter. It is worth noting that because of the windowed aggregators (taxi and profit

aggregators) handling most of the workloads, only those two operators are possible to be the bottlenecks in

the overall stream processing application. So in the real testbed experiments, we only consider the scale up

of those two operators.

5.4.3 Algorithms

In our experiment evaluation, different mechanisms are measured and compared: (i) PPO, which is a

policy gradient method for RL[123], (ii) A3C, which is the asynchronous version of the actor-critic methods

[98], (iii) DQN, which is a method based on DNN to learn the policy by Q-learning [99], (iv) LinUCB,

which is a MAB method based on a linear model to approximate the reward distribution and it uses UCB

to select the action [80], and (v) MBLinUCB, which is the method proposed in this work. All the methods

use the default hyper-parameters configured in RLlib. For the proposed method, we generate ten thousand

data points to initialize the parameters in the linear models in the MBLinUCB method as described in

Section 5.2.

71

0 5000 10000 15000 20000 25000 30000
timestep

0.32

0.31

0.30

0.29

0.28

0.27

re
wa

rd
 p

er
 ti

m
es

te
p

PPO
A3C
DQN
LinUCB
MBLinUCB

(a) Reward

0 5000 10000 15000 20000 25000 30000
timestep

750

1000

1250

1500

1750

2000

2250

2500

95
th

 p
er

ce
nt

ile
 la

te
nc

y(
m

s)

PPO
A3C
DQN
LinUCB
MBLinUCB

(b) 95th percentile Latency

0 5000 10000 15000 20000 25000 30000
timestep

80

85

90

95

100

th
ro

ug
hp

ut
(tu

pl
es

/s
)

PPO
A3C
DQN
LinUCB
MBLinUCB

(c) Throughput

Figure 5.6: Results of simulation with Synthetic Dataset (Pareto distribution (α = 2.0))

0 20000 40000 60000 80000 100000
timestep

0.38

0.36

0.34

0.32

0.30

0.28

re
wa

rd
 p

er
 ti

m
es

te
p

PPO
A3C
DQN
LinUCB
MBLinUCB

Figure 5.7: Rewards of simulation on the New York taxi trace

5.4.4 Simulation Experiment Results

We first evaluate the performance of the algorithms in the simulation environment. As shown in Fig-

ure 5.5, we compare the algorithms with a synthetic Poisson distribution workload. We can see that our

method converges faster than the other methods and it only needs three thousand time-steps to reach an

average reward of -0.3. It also starts from a relatively good initial position above -0.4 compared to -0.5 in

the LinUCB method. With respect to latency and throughput metrics, our method and LinUCB perform

better than the others. However, the latency performance of MBLinUCB converges from one thousand mil-

liseconds, which is much higher than the LinUCB method. As the MBLinUCB initializes its linear model

with the data generated from the environment model, it starts from a configuration which just meets the

upper bound latency requirement (1000ms) with the minimum parallelism needed.

As shown in Figure 5.6, we compare the algorithms with another synthetic workload from a Pareto

distribution (for each time slot, the input rate is sampled from a Pareto distribution). The workload is used

to test the performance of the algorithms in conditions when the workload has significant fluctuations while

executing the application. In Figure 5.6, we can see similar results as in Figure 5.5. The proposed method

performs better than the other methods. We note that even LinUCB does not converge to a good result as

MBLinUCB does but with enough iterations (around thirty thousand timesteps), A3C can get similar results

72

0 10 20 30 40 50
episode (1000 timesteps per episode)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

re
wa

rd
 p

er
 ti

m
es

te
p

max reward
op-5

op-20
op-100

op-10
LinUCB-op-10

(a) Reward

0 10 20 30 40 50
episode (1000 timesteps per episode)

0

10

20

30

40

50

60

70

80

ac
tio

n

max action
op-5

op-20
op-100

op-10
LinUCB-op-10

(b) Action (parallelism)

Figure 5.8: Evaluation of applicability for heterogeneous resources (Poisson distribution)

0 10 20 30 40 50
episode (1000 timesteps per episode)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

re
wa

rd
 p

er
 ti

m
es

te
p

max reward
pp-50

pp-75
pp-90

pp-99
LinUCB-pp-99

(a) Reward

0 10 20 30 40 50
episode (1000 timesteps per episode)

0

10

20

30

40

50

60

70

80

ac
tio

n

max action
pp-50

pp-75
pp-90

pp-99
LinUCB-pp-99

(b) Action (parallelism)

Figure 5.9: Evaluation of applicability for heterogeneous operators (Poisson distribution)

as MBLinUCB. This is expected as A3C uses the actor-critic method to improve the sample efficiency so

that it performs better than the other RL methods that also rely on DNN.

In the next set of experiments, we study the performance of the algorithms using a real trace as shown

in Figure 5.7. We can see that our method converges to an average reward greater than -0.3 in less than

twenty thousand time steps. However, LinUCB needs more than sixty thousand time steps, and the other

methods require even more time steps.

In the next two sets of experiments shown in Figure 5.8 and Figure 5.9, we evaluate the impact of

heterogeneity in the available resources and operators. As we can see in Figure 5.8a, for different operator

processing rates which may get influenced by the characteristics of the operator or the power of the underline

server, MBLinUCB can converge to a good reward range within a few episodes. We can see that LinUCB

converges to a lower reward when the service rate is ten compared to when MBLinUCB is used (noted as

op-10 in the figure). The above results can be explained by comparing the results in Figure 5.8b. We can

see that all the conditions converge to a small range of actions at the end of 50 episodes. However, compared

to MBLinUCB, LinUCB converges to a larger number of parallelism so that it has a higher resource usage

penalty so as a lower reward compared to our method. As shown in Figure 5.9a, we can see similar results

73

10 20 30 40 50
time (minute)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

re
wa

rd
 p

er
 ti

m
es

te
p

max reward
LinUCB
MBLinUCB

(a) Reward

10 20 30 40 50
time (minute)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

95
th

 p
er

ce
nt

ile
 la

te
nc

y
(s

)

latency bound
LinUCB
MBLinUCB

(b) 95th percentile latency

Figure 5.10: Real Testbed Results

that within different operator parallelism portions (i.e., how many percentiles of the operator’s processing

can be parallelized), our mechanism can converge within a limited number of episodes. We also note that

LinUCB converges to a lower reward with larger parallelism as shown in Figure 5.9b.

5.4.5 Real Testbed Experiment Results

We evaluate the performance of LinUCB and our method in the real testbed with a real stream processing

application and a real dataset. As shown in Figure 5.10a, we can see that the proposed method converges

faster as it has a better initial configuration. It only takes fifteen time steps (each one minute) to reach

a reward more than -0.3. For the latency analysis, we illustrate the latency upper bound (95th percentile

of the latency distribution) in Figure 5.10b. As shown in the results, we can see that our method starts

from a latency which already meets the requirements (the latency upper bound is less than two seconds)

and is stable during the experiments. However, the original LinUCB method starts from a very high latency

(more than five seconds and we cut the latency metric to five seconds if it is larger than that) and then it

gradually improves the average latency upper bound to three seconds. Our MBLinUCB already meets the

latency bound requirements at the initial state and tries to improve it by exploring the possible parallelism

configurations in the real environment.

5.4.6 Summary and discussion

In this chapter, we proposed a learning framework achieves elasticity for stream processing applications

deployed at the edge by automatically tuning the application to meet the Quality of Service requirements.

The method adopts a reinforcement learning (RL) method to configure the parallelism of the operators in

the stream processing application. We model the elastic parallelism configuration for stream processing

in edge computing as a Markov Decision Process (MDP), which is then reduced to a contextual Multi-

Armed Bandit (MAB) problem. Using the Upper Confidence Bound(UCB)-based RL method, the proposed

74

approach significantly improves the sample efficiency and the convergence rate compared to traditional

random exploration methods. In addition, the use of model-based pre-training in the proposed approach

results in substantially improved performance by initializing the model with appropriate and well-tuned

parameters. The proposed techniques are evaluated using realistic workloads through both simulation and

real testbed experiments. The experiment results demonstrate the effectiveness of the proposed approach in

terms of cumulative reward and convergence speed.

In the next chapter, we will present the resource allocation and management mechanism for geo-distributed

resources.

75

6.0 Latency-aware resource allocation and management mechanism for geo-distributed edge

resources

In the previous three chapters, we have presented three aspects of optimization for stream processing

applications deployed in edge computing environments in the platform layer. As we discussed before, it is

also important to manage the geo-distributed resources provided in the infrastructure layer to cooperate with

the platform layer (e.g., stream processing engines) to achieve low-latency stream processing. In this chapter

and the next two chapters, we focus on resource allocation and management aspects of geo-distributed edge

and cloud computing resources (Figure 6.1).

In this chapter, we propose Zenith, a new resource allocation model for allocating computing resources in

an edge computing platform that allows edge service providers to establish resource sharing contracts with

edge infrastructure providers apriori.

Concretely, this chapter makes the following contributions: first, we propose Zenith, a decoupled resource

allocation model that manages the allocation of computing resources distributed at the edges independent

of the service provisioning management performed at the service provider end. Second based on the model,

we develop an auction-based resource sharing contract establishment and allocation mechanism that ensures

truthfulness and utility-maximization for both the EIPs (Edge Infrastructure Providers) and SPs (Service

Providers). Third, we develop a latency-aware task scheduling mechanism that allocates the resources com-

mitted in the contracts to specific jobs in the workloads. Finally, we evaluate the proposed techniques

through extensive experiments that demonstrate the effectiveness, scalability, and performance of the pro-

posed model.

The remainder of this chapter is organized as follows. Section 6.1 provides a background of various existing

edge computing solutions and motivates the proposed resource allocation model. In Section 6.2, we present

the Zenith architecture for decoupled resource management and introduce the system model. In Section 6.3,

we present the proposed resource allocation framework that comprises of the contract establishment process

and the task scheduling mechanism. Section 6.4 presents the performance evaluation of Zenith through

extensive experiments. We conclude in Section 6.5.

6.1 Background & Motivation

There has been an increasing growth in modern low-latency computing applications using wearables and

IoT technologies that include (i) augmented reality applications [107], (ii) real-time traffic control systems

[72] that require low-latency responses to avoid potential collisions, (iii) real-time smart grid management

systems [126] that aggregate data from geo-distributed sensors and control the grid in real time. Though

76

Cloud

Edge

Micro
Datacenters

Geo-distributed
Cloud Datacenters

Smart
Things

Infrastructure
Cost-aware Contract-based Geo-

distributed Federated Cloud
Geo-distributed Infrastructure and Data Sources

Decentralized
Resource

Allocation and
Management
for Edge and

Cloud
Resources

Region 𝑟6

Region 𝑟3

Region 𝑟2

Region 𝑟5

Region 𝑟7

Region 𝑟1

Region 𝑟4

MDC 𝑑1 MDC 𝑑2

MDC 𝑑4

MDC 𝑑3 MDC 𝑑5

MDC 𝑑7MDC 𝑑6

Request

Latency-aware Edge Resource
Allocation and Management

Figure 6.1: Resource allocation and management of Geo-distributed edge and cloud resources

Cloud Computing has been a very cost-effective solution[76][74] to several computing needs, clouds fail to

meet low latency requirements of modern computing applications that demand strict guarantees on response

times. Edge Computing [87, 18, 6, 50] complements the backend computing provided by clouds to fill the

critical latency gaps between the endpoints and the Cloud.

To achieve efficient processing at the edge, smart gateways [2] and Micro DataCenters(MDCs) [55] are

two key methods proposed in the literature. A smart gateway is a device which is placed at the edge of the

network near the sensors. It provides a platform for the edge applications to intermediately operate the data

from the endpoints to the Cloud or directly respond to the requests from the endpoint applications. A Micro

Datacenter (MDC) is a data center which has a small number of resources and located close to the edge of

the network to support Edge Computing services. MDCs are densely geo-distributed to provide a low and

predictable latency infrastructure to the end-point applications. Compared to smart gateways, MDCs are

obviously more powerful and contain more number of servers and they possess higher computing capacity

than smart gateways.

In this chapter, we consider MDCs as the main source of computational resources in the edge computing

platform and the goal of the MDCs is to support low latency applications at the edge, enabling them to

meet stronger guarantees on response time. To effectively manage and leverage MDCs in an edge computing

platform, there are several key challenges that need to be addressed. For instance, an effective resource

management of MDCs should address (i) how to provision the application containers[109, 66] to serve jobs

to maximize the utility of the services and (ii) how to schedule workloads on the application containers to

both cover the demands and satisfy the latency constraints. While edge computing as a research area is

77

Cloud

Core Network

Field Area Network and
Micro Datacenters

Smart Things

APP

VM

APP

VM
APP

VM

APP

VM
APP

VM

APP

VM

APP

VM
Cloud
Application

Edge
Application

End-point
Application

Figure 6.2: Edge Computing Architecture

emerging fast, there are a few prior efforts that discuss the above challenges[44, 1]. A fundamental assumption

in these solutions includes a tight coupling of the management of the Edge Computing Infrastructures(ECIs)

with that of service management by Service Providers(SPs), which means that the computational resources

present at the edge MDCs are coupled and controlled directly by edge Service Providers(SPs). We argue

that such a coupled model for management of Edge Computing Infrastructures (ECIs) by Service Providers

(SPs) significantly limits the cost-effectiveness and the opportunities for latency-optimized provisioning of

edge infrastructure resource to applications.

In contrast to existing solutions, our proposed model, Zenith decouples the infrastructure management

from service management, enabling the ECIs to be managed by EIPs independently of the service provisioning

and service management at the SPs. Such a decoupled model enables EIPs to join up to establish an

Edge Computing Infrastructure Federation(ECIF) to provide resources to the Edge Computing applications

provisioned and managed by the SPs. In addition, the model provides increased opportunities for resource

consolidation and utilization as the geo-distributed ECIs can be jointly managed and allocated to maximize

application utility and minimize cost. In the next section, we introduce the architectural details of Zenith

and present its system model.

6.2 Zenith: System Architecture and Model

We introduce the system architecture and describe the individual components of the Zenith system model.

6.2.1 System Architecture

As shown in Figure 6.2, the proposed system uses a layered architecture [22]. In the bottom layer, the

smart things represent the end devices (e.g. sensors, smart phones) that act as the endpoints in the Edge

78

Computing platform. The field area network layer is the layer where MDCs and the Edge Computing services

are placed. The core network layer provides the back bone of the wide area network connecting the field

area networks at the edge with the cloud’s large-scale datacenters that may be located at a farther distance

from the local field area network. In the resource allocation model of Zenith, the service management and

the infrastructure management are decoupled. In other words, the service management is handled by the

Service Provider(SP) that determines the provisioning decisions such as (i) where to place the containers

to meet the latency requirements of the services, (ii) how many tasks in the workload are scheduled to

a single container and (iii) increasing the number of containers to support the oncoming workloads. The

infrastructure management is performed by the Edge Infrastructure Provider(EIP) which invests and operates

the infrastructures for supporting the services placed at the edges. The EIPs are federated to set up an Edge

Computing Infrastructure Federation(ECIF) which provides a resource market for the SPs wanting to deploy

edge computing services at the edge. Each EIP manages several adhoc MDCs which can be densely geo-

distributed. The resources of MDCs are leased or provisioned on-demand to SPs by agreeing on a contract

agreement between the EIPs and SPs. The contract may include the duties and rights between the EIP

managing the resource and the SP that uses the resources.

6.2.2 System Model

We next describe the system model for Zenith in five steps: first, we describe the features of the Service

Providers(SPs) that provide Edge Computing services. Next, we represent the features of Edge Infrastructure

Providers(EIPs) which provide infrastructure services for Edge Computing. We then illustrate the region

division process for simplifying the resource discovery problems. After that, the agreements and the respon-

sibilities of the coordinator are presented and finally, we discuss the role of the contract manager which is

part of the Zenith model to manage the resource sharing contracts that are agreed between the EIPs and

SPs.

6.2.2.1 Service Provider

We consider there are N SPs that require edge computing infrastructure to support their services. For

simplicity, we assume that for each SP i ∈ [1, N], it only runs one service. This model can be easily extended

to one SP running multiple services with additional small changes. For each service, there is a quantifiable

service demand of the SPs in each geographic region for every discrete time slot of a day.

The application container[109, 66](a configured VM integrated with the service software) has several

requirements such as CPU consumption, memory size, network bandwidth and latency requirement. We use

the workload demand to estimate the required number of the application containers to service the workload.

Therefore, when the demand increases, the SPs begin to start adding more containers to serve the workload.

79

Region 𝑟𝑟6

Region 𝑟𝑟3

Region 𝑟𝑟2

Region 𝑟𝑟5

Region 𝑟𝑟7

Region 𝑟𝑟1

Region 𝑟𝑟4

MDC 𝑑𝑑1 MDC 𝑑𝑑2

MDC 𝑑𝑑4

MDC 𝑑𝑑3 MDC 𝑑𝑑5

MDC 𝑑𝑑7MDC 𝑑𝑑6

Request

Figure 6.3: An illustration of a WVD in Zenith with seven MDCs

6.2.2.2 Edge Infrastructure Provider

Each EIP handles a large number of highly geo-distributed Micro DataCenters (MDCs) and each MDC

is operated by one EIP. We assume each MDC d ∈ [1, R] has several servers for the infrastructure service.

It has a server list Md which contains all the servers controlled by the MDC d. The capacity of one server

m ∈Md(τ) is Cmd . For simplicity, we assume that every container consumes equal resources for running the

application service. The capacity for one server, Cmd can be also represented as the number of containers

which can be run on the server.

6.2.2.3 Regions Division

The problem of choosing the right MDCs to minimize the latency for every end-point and every Edge

Computing service in the geographic map is intractable:

Theorem 1. The placement decision of which MDCs should host which edge computing application in order

to maximize utility in terms of response time and bandwidth is NP-hard.

Proof. In order to show that the problem is NP-Hard, we first simplify the problem by assuming that each

MDC can only run one container and each SP only needs to place several containers to some of the MDCs

and we show that the simplified version is NP- Hard. Here, the optimization problem is to minimize the

response time (latency) between the edge containers to the end-users. We can map the containers and users

as the facilities and the MDCs as the locations in a Quadratic Assignment Problem (QAP)[86] which is

shown to be an NP-Hard problem. As the simplified problem is a QAP problem which is intractable, the

original container placement decision problem is also NP-Hard.

For solving the problem, we use Weighted Voronoi Diagrams (WVD)[65] a technique widely used in GIS,

sensor networks and wireless networks[93] for making placement decisions to maximize the utility function.

80

The use of Weighted Voronoi Diagram (WVD) simplifies the latency minimizing problem to a map division

problem which can be solved by buiding the WVD in a polynomial time. In the example shown in Figure 6.3,

the geo-location is divided into seven regions by the WVD generating algorithm with the seven MDCs as

the sites in WVD. With default condition that all the sites have equal weights, the polygon of each region

divides the map and all the positions in the polygon are close to the site of the region. Therefore, for each

smart thing, the nearest MDC which can serve its request at the edge is located in the region where the

smart thing belongs to. This method simplifies the model, especially the process of estimating the latency

to the end users by dividing the map into several regions and registering an area to one region. The Voronoi

Diagrams are predetermined by considering the location of the MDCs as the sites and the expected workload

of the services. The weight for each MDC can be calculated as the ratio of the capacity of the MDC to the

historical workload amount in the nearby area (e.g., an area within 30-mile radius). Thus, a micro datacenter

which has a higher workload pressure in the adjacent area will handle a smaller region in the WVD.

We assume that the predetermined WVD divides the map into R sub-regions. Each region r ∈ [1, R] only

contains one MDC and the nearest MDC for every position in region r is the MDC d = r in that region. We

also assume that the expected workload distribution for each time slot τ is λri (τ) for SP i in the region r. The

workload distribution contains all the workloads coming from the region. We use λpi (τ) ∈ λri (τ) to represent

the workload coming from a particular position p in region r. As we primarily consider the workload which

needs real-time serving, λpi (τ) is often the upper bound of the workload during the time slot τ from position

p.

6.2.2.4 Coordinator

The coordinator is a third-party service which is trusted by the EIPs and SPs in the system and it is

responsible for providing a platform for the EIPs to trade resources with the SPs. There is an agreement

which is committed with the coordinator before EIPs and SPs join the federation. The agreement stipulates

the rights and duties of the three parties, the coordinator, the SPs and the EIPs.

6.2.2.5 Contract Manager

The contract manager is a component associated with both the SP and EIP to manage the resource

sharing contracts agreed by them. Its responsibility is to manage the resource sharing contracts and observe

the contracts’ status. For the SP which buys resources, it must pay for the contract and has the right to

observe the performance of the resource that is allocated to it. For the EIP which sells resources, it must

guarantee the performance of the resources which are leased to the buyers. It collects the payments from the

buyers. The contract is an agreement between the SP and the EIP to lease resources from the EIP’s MDC

which is effective in a particular time period with a particular constraint such as latency and availability.

81

6.3 Zenith: Resource Allocation

In this section, we present the proposed resource allocation techniques for EIPs and SPs to establish

relationships(contracts) with each other and discuss the job scheduling technique employed in Zenith.

6.3.1 Contracts Establishment

The key idea behind the contract establishment process is to match the demands (e.g. workload and

revenue) of the SPs and the supplies(e.g. capacity and operating cost) of the MDCs. The SPs want to

maximize their utility of serving the customer with a better quality of service to potentially gain more

profits. The MDCs want to maximize their utility (revenue) by renting their servers to more SPs and the

SPs who can pay more.

For the sake of model simplicity, in this subsection, we only model the resource sharing problem for one

MDC though the model is generic to be extended to the scenarios where there are multiple MDCs. As

the WVD algorithm divides the map into several regions, the problem of finding the MDC with the lowest

latency is transformed into a problem of determining which region a smart thing belongs to. In each region,

every SP estimates the workload in that region based on historical workload information and statistical

prediction. It then bids for the resource for running the application containers for serving the workload in

that region. The bid is decided by the workload demand, λri (τ), the latency requirement and the estimated

utility that the SP can gain from running the service in the MDC for serving the customers.

6.3.1.1 Utility of SPs

First, we model the utility of the SP to run the service on the edge. Here, we consider services having

higher requirements for latency such as location-based augmented reality games[107] and intelligent traffic

light control [164]. The utility of the SP can be expressed by the gain in changing the execution of the

real-time service from the cloud to the edge, which we represent by the function:

upi (τ) = f(lpd(τ))− f(lpi(τ)) (19)

where f(x) is a function which estimates the utility that can be obtained by providing the service with a

latency x. It can be approximated by an affine utility function which translates the user-perceived crite-

rion(latency) into utility(e.g., revenue), f(x) = −ax+b where a and b are the parameters in the affine utility

function and lpd(τ) represents the latency between the position p where the workload comes from and the

MDC d in time slot τ . Here lpi(τ) represents the latency between the mega datacenter of SP i and the

position p.

82

6.3.1.2 Utility of EIPs

For the EFIP, its objective is to earn higher revenue by providing the infrastructure to SPs. So the utility

for the EFIP is obviously the profit that it can obtain by renting the resource to the SPs. For each MDC,

the utility function ud(τ) can be defined as the profit of selling the resource:

ud(τ) =

Md∑
m

(Cmd ∗ πsd(τ)− Costmd (τ)) (20)

where πsd(τ) is the sell price in time slot τ for MDC d, Costmd (τ) is the fluctuating operating cost of server

m in MDC d in time slot τ .

6.3.1.3 Bidding Strategy

For SP, the bidding strategy is to bid by the true value that the SP believes for the resources, which

is represented by the utility function we discussed above. The bid can be represented as < bpi (τ), λpi (τ) >,

where bpi (τ) represents the bid price for each position the workload comes from. The bid price bpi (τ) can be

estimated by the utility of SP i in time slot τ for running the service on the edge instead of on the cloud.

So the bid price for each position p can be calculated as bpi (τ) = upi (τ).

For MDC, the sell bid is set to the operating cost, which means if the bid wins, the MDC can at least

break even the cost. The sell bid can be represented as sd(τ) = Costd(τ), where Costd(τ) represents the

operating cost of running one application container for MDC d in time slot τ .

6.3.2 Determining Winning Bids

After designing the bidding strategy of the SPs and MDCs, we next design our algorithm for determining

the winning bids as shown in Algorithm 9. The winning bids decision algorithm is based on the McAfee

mechanism[90]. It guarantees truthfulness (Definition 2) and budget balance for the auction. Truthfulness

provides a huge benefit for designing the auction which simplifies the bidding strategies for all the partic-

ipants. If the auction mechanism satisfies truthfulness, it ensures that the strategy which bids with the

true value is the dominant strategy among all the other strategies. The budget balance is a feature which

guarantees that the auctioneer will not subsidize for the auction, which means the payment from the buyers

is always more than the payment to the sellers. The decision of the auction is indicated by a set of indicators,

Xr(τ). The buying bid bpi (τ)’s indicator is set to be xpi (τ) = 1 if bid bpi (τ) wins. The time complexity of the

winner deciding algorithm can be shown as O(|B(τ)| log |B(τ)|) as the computation complexity is determined

by the initial sorting of the bids, which is heavier than the computation deciding the winning bids which has

the computation complexity O(|B(τ)).

Next, we present the proposed contracts establishing algorithm based on the winning bids decision (Al-

gorithm 9). The basic idea behind the resource sharing auction framework is to maximize the utility for the

83

Algorithm 9: Algorithm for winners selection

Input : MDC #: d;
Buy bids: B(τ) = {< bp11 (τ), λp11 (τ) >,< bp21 (τ), λp21 (τ) >, ..., < bp12 (τ), λp12 (τ) >, ...};
Operating Cost: Costd(τ)
Output: Clearing Buying Price: πbd(τ) Clearing Selling Price: πsd(τ);
Auction decision: Xr(τ) = {< xp11 (τ) >,< xp21 (τ) >, ..., < xp12 (τ) >, ...};

1 Sort B(τ) in descending order by the bid price per container: b̄pi (τ) = bpi (τ)/λpi (τ);
2 Initially, set current buy price b as b̄ri (τ) as the first bid (highest price) in B(τ). number of trading

containers h = 0, bid index i = 1;
3 while b ≥ Costd(τ) do

4 if h+ λpi (τ) is larger than the capacity of MDC,
∑Md
m Cmd , or i+ 1 is equal to the size of the number of

buy bids: break;
5 b = bpi (τ);
6 h+ = λpi (τ);
7 i+ +;

8 ρ = (bpi+1(τ) + Costd(τ))/2 ;
9 if bpi (τ) ≥ ρ ≥ Costd(τ) then

10 All the first i buyers win with price per container:;

11 πds (τ) = πdb (τ) = ρ;

12 else

13 All the first i− 1 buyers win with buy price per container: πdb (τ) = bdi (τ);

14 The sell price per container is πds (τ) = Costd(τ);

MDCs as well as for the EIPs and the SPs in a fair manner. As discussed earlier, the objective of SPs is to

increase their profit by maximizing the utility of serving the customer with better service. The EIPs want

to provide more edge computing resources to the SPs to increase the revenue. The auction process for a

given slot τ can be presented as three steps. In Step 1, The SPs estimate the workload for each position in

every region r to get the estimated workload, λpi (τ). They send buy bids, < bpi (τ), λpi (τ) >, where the bid

price bpi (τ) is estimated from the utility it can gain from providing the service on the edge in region r, to

the coordinator. In Step 2, the coordinator decides the winning bids using the Algorithm 9 for every region

r. Each winner establishes a resource sharing contract with the owner of the MDC d. Finally in Step 3, if

the auction is cleared without the MDC d selling all the resources, the MDC d will attend the next round

of the auction. In the next round of the auction, if SP i has the workload that is not satisfied, it sends the

buy bids < bpi (τ), λpi (τ) > where p ∈ r to randomly choose an adjacent region r′ of region r. For the MDCs

which have remaining available resources, the process operates the next round of auction from Step 1 until

all the buy bids are satisfied or all the resources of MDCs are allocated.

The above sequence of steps is operated for each time slot τ = 1 to τ = T where T is the maxi-

mum time slot for consideration. The result of the auction establishes the utility-maximizing contracts

between the SPs and MDCs for the effective time slot from τ = 1 to τ = T . After the previous steps,

each SP has a set of contracts established with the EIPs. The contracts are denoted by Contractri (τ) =

{Contractd1i (τ), Contractd2i (τ), ...} for serving the workload λpi (τ) ∈ λri (τ), where d1, d2, ... are the index of

the MDCs, Contractd1i (τ) =< πdb (τ), πds (τ), Cdi (τ) > is the contract which is established by SP i with MDC

84

d for effective in time slot τ , where πdb (τ) is the clear buying price for the contract, πdb (τ) is the clear selling

price for the contract and Cdi (τ) is the capacity of the resources in the contract.

6.3.3 Provisioning

The contracts establishment algorithm solves the problem of allocating the resources for each SPs in

a utility-maximizing manner. After the establishment of the contracts, the SPs hold resources which are

densely geo-distributed at the edge of the network. The provisioning process is required for each SP to

schedule the tasks to the containers on the MDCs to handle the requests of its services at the edge. The

provisioning algorithm here decides how to place tasks on the containers in the MDCs of the established

contracts in a contracts-aware manner.

In the provisioning process, the SP needs to react for the workload changes in a real-time manner. A

reactive provisioning and task scheduling algorithm is needed to place the tasks on the application containers

and decide the placement of the application containers to the right MDCs which can both optimize the cost

of using the resource and the service performance that can potentially increase the application experience

to the user. Our task scheduling algorithm aims at minimizing the network latency between the end nodes

and the MDCs where the application container is hosted.

6.4 Evaluation

We experimentally evaluate the effectiveness of Zenith in terms of job response times, success rate of

meeting response time guarantees and resource utilization levels at the edge micro datacenters.

6.4.1 Setup

The simulation uses a geographic map of 3000 miles *3000 miles size and randomly chooses locations

from the map to place the MDCs. The WVD (Weighted Voronoi Diagram) is generated from the map with

the locations of the MDCs as the sites. The latency used in the experiments is estimated using the distance-

based model presented in [54]. This linear model estimates the latency based on the distance between the

two points.

We consider that each region contains one micro data center and each MDC has 1000 servers in the

default setting. The server has the same performance as that of the IBM server x3550 (2 x [Xeon X5675

3067 MHz, 6 cores], 16GB). Each server hosts up to 5 application containers at a given time. The location of

the MDC is randomly chosen, and the timezone of the MDC is determined by the location. The geographic

map area is divided into four time zones evenly to simulate the time-varying aspect of the dynamic electricity

pricing. The electricity price is generated based on the hourly real-time electricity price from [139]. We use

85

 0

 5

 10

 15

 20

 25

 30

 200 400 600 800 1000 1200 1400 1600 1800 2000

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

of servers per MDC

Zenith
CEC
Cloud

(a) Response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

u
ti
liz

a
ti
o

n

of servers per MDC

Zenith
CEC
Cloud

(b) Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 200 400 600 800 1000 1200 1400 1600 1800 2000

s
u

c
c
e

s
s
 r

a
te

of servers per MDC

Zenith
CEC
Cloud

(c) Success Rate

Figure 6.4: Impact of number of Servers per MDC

the distribution of the data in 2015 from NationalGrid’s hourly electricity price to simulate the fluctuation

of the real electricity market.

The default workload generates job requests of low-latency data processing tasks (of 100 bytes in size)

and the container running at the MDC processes the request. The distribution of the workload is uniform

throughout the map for the default setting. We consider that all workloads are response time sensitive,

which means that if the response time exceeds the constraint, the task is considered to be a failed task. The

default response time constraint is 30ms. We compare Zenith with two candidate mechanisms: (i) Coupled

Edge Computing (CEC) mechanism, in which each MDC is owned by one of the SPs and the workload to

the MDCs comes only from the SP that owns the MDC; (ii) conventional cloud-based (Cloud) solution in

which the workload is processed at the large-scale datacenters placed on the left and right ends of the map.

6.4.2 Experiment Results

To evaluate the performance efficiency of Zenith, we perform three sets of experiments: first, we study

the impact of the number of servers in MDCs on the average response time of tasks, the average utilization

at the MDCs and the overall success rate of the tasks. Second, we study the impact of the number of MDCs

in the geographic map. Finally, we analyze the impact of different response time constraints on the perceived

performance efficiency.

6.4.2.1 Impact of No. of servers in MDCs

In this experiment, we compare the performance of the mechanisms with different number of servers

in each MDC. The number of servers per MDC is increased from 200 to 2000 in the evaluation. For the

Cloud-based mechanism, the total number of servers present in the two large-scale datacenters are increased

in such a way that they have the same number of total servers as the total number of servers in all MDCs.

As shown in Figure 6.4a, the y-axis is the average response time of the tasks. The x-axis is the number of

servers per MDC. We find that with the increased ability to share resources among MDCs, Zenith achieves

86

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80 100 120 140 160 180 200

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

of MDCs

Zenith
CEC
Cloud

(a) Response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160 180 200

u
ti
li
z
a

ti
o

n

of MDCs

Zenith

CEC

Cloud

(b) Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100 120 140 160 180 200

s
u

c
c
e

s
s
 r

a
te

of MDCs

Zenith

CEC

Cloud

(c) Success Rate

Figure 6.5: Impact of number of MDCs

the best result compared to CEC and Cloud mechanisms even when the number of servers is low. As shown

in Figure 6.4b, Zenith, in general, can achieve higher utilization of the MDCs except when the resources

are scarce such as when one MDC only handles 200 servers. In Figure 6.4c, we observe that the success

rate of the tasks increases with increasing the number of servers. In addition, the success rates of CEC

and Cloud schemes do not reach 100%. This is due to the fact that even when the resources are available,

these schemes suffer from reduced proximity between the tasks and the MDCs assigned to them. Here, the

response time constraints cannot be met with the nearest datacenters. From the above experiments, we

can see that Zenith performs significantly better than CEC and Cloud mechanisms with respect to response

time, resource utilization and success rate.

6.4.2.2 Impact of No. of MDCs

We next study the performance of Zenith with different number of MDCs present in the geographic map.

The number of MDCs is increased from 20 to 200. For the CEC mechanism, the MDCs are divided into 10

even groups such that each group is owned by one SP. As shown in Figure 6.5a, the x-axis is the number

of MDCs. We find that the response time decreases from 20ms to about 10ms for Zenith as increasing the

number of MDCs decrease the average distance between the endpoints and the MDCs which results in a

decrease in response time. For the CEC mechanism also, the response time decreases from around 21ms to

about 18ms. Here, we note that the Cloud-based mechanism is not influenced by the number of MDCs as

the placement of the large-scale datacenters are fixed. In Figure 6.5b, we compare the resource utilization

levels at the MDCs and we find that Zenith achieves higher utilization than CEC and Cloud mechanisms. As

shown in Figure 6.5c, the success rate increases with increasing the number of MDCs. Here, Zenith performs

significantly better than the two other mechanisms.

87

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

response time constraint (ms)

Zenith
CEC
Cloud

(a) Response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

u
ti
liz

a
ti
o

n

response time constraint (ms)

Zenith
CEC
Cloud

(b) Utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70 80 90 100

s
u

c
c
e

s
s
 r

a
te

response time constraint (ms)

Zenith
CEC
Cloud

(c) Success Rate

Figure 6.6: Impact of latency constraints

6.4.2.3 Impact of Response Time Constraints

Finally, we study the performance of Zenith to analyze the impact of different response time constraints.

In this experiment, we increase the mean response constraint from 10ms to 100ms. As shown in Figure 6.6a,

the x-axis is the response time constraint. The obtained response time increases for all the three mechanisms

as increasing the response time constraint provides additional flexibility for task scheduling to satisfy more

workloads with longer distance which results in an increase in the obtained response time. In Figure 6.6b, the

utilization of all the three mechanisms are compared and we find that it increases with an easier response

time constraint. For the Cloud mechanism, when the response time constraint increases significantly, it

also achieves similar performance as Zenith and CEC. This is due to the fact that when the response time

constraint is relaxed, a cloud solution allows the tasks to be transferred and executed in remotely located

large-scale datacenters leading to a higher success rate. Figure 6.6c shows that the success rate increases

with extending the limitations of the response time constraints. Here the Cloud solution also attains 100%

success rate as Zenith and CEC. From the above experiments, we observe that Zenith performs significantly

better than CEC and Cloud when the response time constraints are significant.

6.5 Summary and discussion

In this chapter, we propose Zenith, a resource allocation model for allocating computing resources in an

edge computing platform. In contrast to conventional solutions, Zenith employs a new decoupled architec-

ture in which the infrastructure management at the Edge Computing Infrastructures (ECIs) is performed

independent of the service provisioning and service management performed by the service providers (SPs).

Based on the proposed model, we present an auction-based mechanism for resource contract establishment

and a latency-aware scheduling technique that maximizes the utility for both EIPs and SPs. The proposed

techniques are evaluated through extensive experiments that demonstrate the effectiveness, scalability and

performance efficiency of the proposed model.

88

In this chapter, we addressed the problem of allocating and managing edge computing resources for

edge infrastructure providers to enable them provide resources to the service providers in a latency-aware

manner. Similar to edge computing environments, geo-distributed clouds can also benefit from resource

sharing among providers to increase utility. In the next chapter, we propose a resource allocation and

management mechanism for geo-distributed clouds that allows cloud service providers to trade computing

resources in geo-distributed datacenters in a cost-aware manner.

89

7.0 Cost-aware resource allocation and management mechanism for geo-distributed cloud

resources

In this chapter, we propose a contracts-based resource sharing model for federated geo-distributed clouds

that allows Cloud Service Providers (CSPs) to establish resource sharing contracts with individual data-

centers apriori for defined time intervals during a 24 hour time period. Concretely, this chapter makes the

following contributions: first, we develop the proposed contracts-based resource sharing model and present

an optimal contract establishment algorithm that produces the optimal design of resource sharing contracts

considering the size and type of resources in each resource sharing contract. Second, we develop an auction-

based contract allocation mechanism that ensures both fairness and revenue maximization for the individual

datacenter providers. Third, we develop a suite of job scheduling and contracts-based resource provisioning

algorithms that leverage the established contracts for each CSP and minimizes the resource usage cost of in-

dividual CSPs. We evaluate the proposed techniques through extensive experiments using realistic workloads

generated using the SHARCNET cluster trace. The experiments demonstrate the effectiveness, scalability

and resource sharing fairness of the proposed model.

The remainder of this chapter is organized as follows. Section 7.1 provides a background of various

resource sharing models for geo-distributed clouds and motivates the proposed contracts-based model. In

Section 7.2, we develop the proposed contracts-based resource allocation system model. In Section 7.3,

we present new techniques for optimal contracts designing and allocation. In Section 7.4, we present our

proposed contracts-based job scheduling techniques. Section 7.5 evaluates the performance of the contracts-

based resource allocation mechanisms in comparison with conventional complete cooperation geo-distributed

clouds using real-world datacenter workload traces. We conclude in Section 7.6.

0

50

100

150

200

1... 2015 4... 2015 7... 2015 10... 2015 1... 2016
Date

El
ec

tri
ci

ty
 p

ric
e

($
)

"Price" Average Price Price at 19:00pm

Figure 7.1: Electricity price trends of NationalGrid in 2015

90

CSP5

CSP1

CSP2

CSP4 CSP3

(a) No resource sharing between the
CSPs

CSP5

CSP1

CSP2

CSP4 CSP3

(b) Completely cooperating resource
sharing

CSP5

CSP1

CSP2

CSP4 CSP3

(c) Contracts-based resource sharing

Figure 7.2: Resource sharing mechanisms comparison

7.1 Background & Motivation

In this section, we briefly review the background concepts related to various models of operating a

geo-distributed cloud and discuss their merits and demerits.

7.1.1 Stand-alone Clouds

Conventional cloud computing models (e.g., Amazon EC2[12] and Google Cloud[137]) use a single dat-

acenter or a set of datacenters jointly managed by a single CSP. Thus, the CSPs do not cooperate with

each other and do not aim at optimizing resource allocation and cost across multiple CSPs (Figure 7.2a).

Despite resulting in sub-optimal resource allocation and resource management, this centralized single-site

resource management model has the benefit of easier resource management as each datacenter is managed

independently of each other, providing higher autonomy and control for individual datacenters. Even though

this “stand-alone” datacenter management may result in locally optimized resource management at individ-

ual datacenters, such an approach can be largely sub-optimal with respect to global resource management

considering all datacenter resources jointly in a federated geo-distributed cloud environment. As an example,

Figure 7.1 shows the dynamic electricity pricing from the NationalGrid[139] data in 2015. We observe that

besides the notable long-term (e.g., one year) fluctuations, there are significant short-term price variations

even on a single day: the highest per-day pricing on one given day can be as much as six times the lowest price

observed on the same day. Thus, “stand-alone” clouds that have neither complete nor partial co-operation

with each other can operate very sub-optimally forcing individual datacenters to run workloads locally at

higher electricity prices even though resources for which may be available at remote datacenters at a possibly

lower electricity cost.

91

7.1.2 Federated Clouds with Complete Cooperation

In the literature, several techniques for global management geo-distributed datacenters have been pro-

posed. These mechanisms can be classified into two broad categories:

Virtual Geo-distributed Clusters: This class of techniques builds Virtual Machines (VMs) for users to use

computing resources across the geo-distributed datacenters as a single virtual cluster. There are several works

focusing on optimizing the performance in the geo-distributed environment [3, 114, 154, 163, 117, 57, 169].

Here, the datacenters are treated as one single virtual entity and having a single centralized cloud manager

makes it easier to schedule the jobs and place data to achieve the overall goal. The cloud manager obtains

the global information of the jobs and the individual workload requirements of each datacenter to balance

the load and schedule the jobs.

Federated Cloud: Federated clouds provide a platform for the CSPs to share computing resources with

each other. Each CSP is assumed to manage its datacenters autonomously. There is a centralized Cloud

Exchange Institution that obtains all infrastructure information from the datacenters and provides the plat-

form for the CSPs to discover the resources from the members of the federated cloud [35] [27]. The key

objective for the CSPs is to share their resources on the federated cloud platform to maximize their resource

utilization and increase the success rate of meeting the SLAs for the jobs.

We illustrate these two types of global resource management mechanisms in Figure 7.2b and we refer to

this model as federated clouds with complete cooperation. This model enables the free use of the resources

through a centralized broker such that all the resources in the geo-distributed datacenters can be used by

all the other members participating in the system. However, this model suffers from a few key drawbacks,

which include (i) lack of fairness in revenue earned by competing CSPs, i.e., since the global resource

optimization objective of this approach does not lead to locally optimized profits for individual datacenters,

the individual profit of each datacenter may be even lower than the profits they can get by operating stand-

alone and (ii) limited scalability - as it is difficult for all the geo-distributed datacenters to globally synchronize

the information necessary for sharing, provisioning and allocating resources in a real-time manner for job

scheduling can be a significant challenge.

7.1.3 Contracts-based Resource Sharing

In this chapter, we propose a new contracts-based resource sharing architecture for the CSPs to share

resources across globally geo-distributed datacenters. The demerits of the complete cooperation model lead

us to a more flexible and limited sharing mechanism that provides a controlled cost-aware resource sharing

opportunity. Thus, the contracts-based resource sharing model finds suitable tradeoffs between traditional

clouds without federation and that with complete cooperation as illustrated in Figure 7.2. The figure shows

three different architectures for a geo-distributed cloud of five CSPs. Here, the edges represent the usage of

resources among the CSPs. As illustrated in Figure 7.2a, none of the five CSPs can use others’ resources

92

CSP5 CSP2
CSP5 lends 9K servers to
CSP2 to balance the workloads

50K
servers

40K
servers

9K Servers
in contract

41K
workload

52K
workload

Current capacity: 52K
Cover the 52K workload

CSP3

30K
servers

15K
workload

3K Servers
in contract

CSP3 lends 3K servers to
CSP2 to balance the workloads

40

30 30

(a) Balance the workload

CSP4

CSP1

6K servers
CSP3->CSP1

30K
servers

30K
servers

9K Servers
in contract

21K
workload

15K
workload

CSP3

30K
servers 15K

workload

9K servers
CSP4->CSP1

6K Servers
in contract

CSP1’s electricity cost
per unit workload:
(9K*30+6K*40)/15K
=34
Operation Cost saving:

(100-34)/100=66%

3040

100

(b) Decrease the operating cost

Figure 7.3: Contracts-based cloud federation example of saving electricity cost and balance the workload

when there is no federation. However, in Figure 7.2b, we find that there is a complete graph showing that

every CSP can use every other’s resources with complete co-operation. In Figure 7.2c, there are only six

edges between the CSPs representing a partial graph. Here, each CSP does not share resources with every

other CSP in the federation. Each edge represents a contract between the CSPs to share resources.

The proposed contracts-based resource sharing mechanism is based on resource sharing contracts that

are established between the CSPs after negotiations. The resource sharing contracts could be signed by the

CSPs stipulating the rights and duties of the CSPs to share the committed resources during the time duration

and the negotiated price in the contract. For the contracts-based resource sharing mechanism, the CSPs

design and trade the resource sharing contracts with each other. Thus, the contract may be predetermined

and established apriori before the effective time. The establishment of contracts involves two key challenges

namely (i) how to design and build contracts that can maximize individual profit of the CSP and (ii) how

to schedule jobs to maximize the utility of using the contracts.

Figure 7.3 and Table 7.1 present an example scenario to illustrate the key benefits of using a contracts-

based resource sharing mechanism namely (i) balancing the workload, (ii) minimizing the operating cost and

(iii) increased resource utilization:

Balancing the workload: In the example shown in Figure 7.3a, CSP2 has overcapacity workload and

needs 52K servers to meet the workload requirements. However, it has only 40K servers. Therefore, under

normal operations, it has to either delay some jobs in the workload or drop them entirely. Alternately, in

the contracts-based federated cloud model, CSP2 borrows 9K servers from CSP5 and 3K servers from CSP3

to meet workload requirements of 52K servers. As we can see, this not only increases the revenue for CSP2

but also for the other CSPs participating in the contracts-based resource sharing.

93

Table 7.1: The status of the five providers in the contracts-based example

CSP1 CSP2 CSP3 CSP4 CSP5

Electricity Price 100 30 40 30 30

of Servers 30,000 40,000 30,000 30,000 50,000

Require # of Servers 15,000 52,000 15,000 21,000 41,000

Minimizing operating cost: In Figure 7.3b, CSP1 experiences an increased electricity cost requiring to

spend $100 per megawatt per hour. Even though it has the similar workload amount as CSP4 and CSP3,

it uses contractual relationships to borrow 9K servers from CSP4 and 6K servers from CSP3 respectively.

This minimizes the operating cost and saves up to 66% in operating cost for CSP1.

Increased resource utilization: Figure 7.3 also illustrates that some CSPs that have idle resources share

their resources with other CSPs (e.g., CSP 3,4,5). Thus, contracts-based resource sharing results in an

increased utilization of the computing resources in the datacenter infrastructures.

As discussed above, we find that contracts-based resource sharing has additional potential and flexibility

to achieve a more efficient resource allocation while increasing the profit and minimizing the cost for each

individual datacenter. In this chapter, we model the problem formally, analyze and develop algorithms for

contract establishment and job scheduling to efficiently and profitably share resources between CSPs.

7.2 System Model

In this section, we describe the system model for the proposed contracts-based federated geo-distributed

cloud model. We discuss it in three steps: first, we describe the features of the CSPs that participate

in the cloud federation process. We then discuss the agreements and the responsibilities of the federation

coordinator and finally, we discuss the role of the contract manager that manages the resource sharing

contracts agreed between the CSPs.

7.2.1 Cloud Service Provider

CSPs offer a variety of cloud computing services to the customers. We primarily consider CSPs offering

Infrastructure as a Service (IaaS) [94] that provide customers with various computing resources such as VMs

and virtual disk space to store and process their data. The providers may offer different types of VMs with

different Quality of Service (QoS) guarantees and the VMs may be priced differently. The QoS provided by

the VMs may depend on how many CPU cores are present in the VMs, memory, network and other resources

that are guaranteed in the period of time when the resources are provided to the user. The price is set by the

CSP which provides the service based on the QoS provided by the VM type, the Service Level Agreement

(SLA) and the market demand and supply.

94

The provider charges the customers on-demand based on the length of the running time and the price

of the VM type. The profit of the CSP is determined by the charges provided by the customers, the

operating cost and the penalty for violating the SLA. The operating cost which varies with the time includes

the electricity cost, management cost and cost for maintenance. The penalty is paid by the CSP to the

customers to compensate their loss in case of violating the SLA. For example, in Amazon Elastic Compute

Cloud(Amazon EC2)[12], the SLA stipulates that if the monthly uptime of the service is less than 99.95%

and greater than 99.0%, Amazon EC2 will pay 10% of the charge of using the service back to the users’

account and 30% if the uptime is fallen to less than 99.0% [12].

Every CSP has limited resources to serve the users.To handle the overcapacity workload that cannot

be serviced within the CSP’s own datacenter, the CSPs can engage in a federation process to share idle

resources and handle overcapacity requests. The negotiating steps are done by a trusted third party which

we refer to as the Federation Coordinator.

7.2.2 Federation Coordinator

The federation coordinator is a third-party service which is trusted by the CSPs in the federated cloud

and it is responsible for providing a platform for the CSPs to trade computing resources with each other.

There is an agreement signed with the coordinator before the CSP joins the federation. The agreement

stipulates the rights and duties of the coordinator and the CSP. The coordinator follows the optimized

contract establishment process proposed and discussed in Section 7.3 to establish the contracts between the

CSPs.

When building the contracts, each CSP sends its demand and supply to the coordinator to compare with

the demands and supplies from others. The demand and supply information may have private information

of the CSPs and hence the agreement also stipulates the privacy policy for the coordinator which determines

to which degree the coordinator can publish or share the information submitted by the CSPs. All the CSPs

are autonomous and have their own customers. Each CSP has its own utility (which can be estimated

approximately by the profit) and each CSP wants to increase the utility after participating in the federation.

Under this condition, the problem contains both the cooperating and competing aspects with multiple

participants which cannot be solved by the methods that assume that all resource allocation decisions are

handled with a central objective of global resource optimization. So in this scenario, auction mechanisms

that are widely studied in Game Theory are most suitable. Auctions allow the participants to both cooperate

and compete[30]. The essence of the auction is to match the supply and demand at both sides which fit

the characters of the problem intuitively. The coordinator uses an auction-based mechanism to match the

demands and supplies of the CSPs. The auction ends with a set of results which contains the winning

decisions and the market clearance prices. Based on the results, the coordinator establishes the contracts.

95

7.2.3 Contract Manager

The contract manager manages the resource sharing contracts agreed by the CSPs. The contract is an

agreement between the CSPs which stipulates the rights and duties of both sides, the buyer and the seller

in the contract.

An actual resource sharing contract contains the following four information: (i) the buyer and the seller

of the resource in the contract, (ii) effective time of the contract which controls the starting and ending time

of the contract, (iii) the resource type and quantity in the contract and (iv) agreed resource price. In our

work, we use dedicated resources as the unit of trading in the contracts. A dedicated resource is a collection

of servers which is hardware isolated from the other resources in the datacenter. Examples of such resources

include IBM Bluemix Dedicated Cloud [64] and Amazon EC2 Dedicated Instances[11]. The pricing model

used for the contracts consists of two components namely (i) the reservation price that is paid when the two

sides establish the contract and (ii) the usage price which is paid when the resources in the contract are

actually used. The usage price is paid according to the usage amount and time of the resource. The contract

can also include the SLA which provides more guarantees for the performance of the resource included in the

contract. Other constraints that can be included in the contract include the location constraints of placing

the jobs, the business policies and security requirements.

In the next section, we present the proposed mechanisms for establishing resource sharing contracts.

7.3 Resource Sharing Contracts Establishment

We design an auction-based mechanism for establishing resource sharing contracts as the nature of the

contract establishment problems naturally fits the auction mechanism. Some key features such as truth-

fulness(Definition 2) and budget balance of the auctioning protocol are highly desirable and essential for

solving the contract establishment problem. Truthfulness or “strategy-proofness” is a feature provided by

many auction mechanisms such as VCG mechanism[106] and McAfee mechanism[90] and it ensures that the

participants of the auction can maximize its utility only by bidding with the true value which he/she values

the goods in the auction. This feature simplifies the problem by narrowing down the choices of the partic-

ipants. The budget balance feature guarantees that the payment from the buyers is equal to or more than

the payment to the sellers. This feature guarantees that the coordinator will not subsidize in the auction.

As discussed above, we choose to design the proposed auction mechanism based on McAfee mechanism

as it inherently guarantees both truthfulness and budget-balance. In the McAfee mechanism, the selling price

and the buying price are determined separately which helps to keep the auction truthful and budget-balanced.

Even though having separate selling and buying prices makes the trade efficiency sub-optimal, it is necessary

to design a truthful auction mechanism. As the uniqueness-of-prices theorem [105] implies, this subsidy

problem (the auctioneer need to subsidize the auction) is inevitable - any truthful mechanism that optimizes

96

the social welfare will have the same prices (up to a function independent of the bid prices of each bidder).

If we want to keep the mechanism truthful while not having to subsidize the trade, we must compromise

on efficiency and implement a less-than-optimal social welfare function [150]. The McAfee mechanism is

designed based on the above theorem which has a bounded trade efficiency loss, 1/min(|B|, |S|) where B is

the set of buy bids and S is the set of sell bids, but maintains both truthfulness and budget-balance.

We design the framework of the contracts establishment process in three parts: first we model the problem

of establishing the resource sharing contracts into an auction; second we develop the strategy for the CSP

to bid in the auction; third we design the auction algorithm which determines winning bids and the market

clearance prices. Finally, we design the iterative process of building the contracts, which is based on the

proposed auction algorithm.

7.3.1 Problem Description

We first model the contracts establishment problem as a sealed-bid double auction problem. In a sealed-

bid double auction[106], there are three kinds of participants: first are the buyers who have the demands for

the goods; second are the sellers that can supply the goods; the third is the auctioneer which is responsible

for conducting the auction. In the contracts establishment problem, the CSPs can act as both buyers and

sellers based on their demands and supplies. The coordinator of the federated cloud, a trusted third party

acts as the auctioneer. The traded goods in the auction are the rights to use a certain amount of cloud

resource in a certain period of time (time slot). We use dedicated resource types [11] [64] to represent a

cloud resource. The dedicated resources can be considered as bundles of servers isolated from other resources

in the data center. It is defined by k ∈ {1, 2, ...,K}. Each type-k resource may contain several servers which

can be represented by a list Dk and each server d ∈ Dk has a capacity V dk and the overall capacity of a

type-k resource is Vk =
∑
d∈Dk

V dk . We note that the resource types are sorted by the resource capacity

which means that if k1 > k2, Vk1 > Vk2 .

We consider a federated cloud with N individual CSPs. The contracts establishing problem is formulated

using discrete time slots τ . The cloud datacenters are located in geo-distributed locations and each of them

is controlled by one CSP. We assume each CSP i ∈ [1, N] has only one datacenter for simplicity. We assume

that each datacenter has several types of servers. It has a server list Mi(τ) which contains all the servers

controlled by the CSP i in time slot τ . The server list can be modified in each time slot τ by adding or

removing the servers which are controlled by the cloud manager of the CSP. These operations simplify the

representation of the resource which is changed every time slot with different contracts signed in each time

slot. The capacity of each server m ∈ Mi(τ) is Cmi . Therefore, the capacity of CSP i in time slot τ can be

represented by Ci(τ) =
∑
m∈Mi(τ) C

m
i . Each CSP serves its customers by providing resources for running

their computationally-intensive jobs. The job requests are sent to the CSP, which are pushed into a job

queue. The jobs in the queue are processed according to a FCFS (First Come First Served) service policy.

We assume that the demand for each time slot τ is λi(τ) for CSP i which can be determined by predicting

97

the upcoming workloads through mechanisms such as ARIMA [29] or Hidden Markov Modeling (HMM) [71].

The profit earned by the CSPs is determined by the difference between payments from the users and the

operating cost and the penalty. The payments are related to the demand λi(τ) and we use %i to denote the

unit price for one unit resource (for example, one VM with one EC2 Compute Unit (ECU) and one-gigabyte

memory in Amazon EC2[136] can be a unit resource). Therefore, the capacity for each server Cmi and V dk

can also represent the number of unit resources that can be run on the server. We use Costki (τ) to denote

the operating cost of CSP i for the type-k dedicated resource.

The problem of establishing the contracts in each time slot τ for each type-k dedicated resource can be

represented as a double auction in which each CSP decides the sell bid (ask prices), ski (τ), for each type-k

dedicated resource in time slot τ and buy bid, bki (τ), based on the valuation of the resources and the expected

utility. For simplicity, in the rest of the chapter, we use the term sell bid to indicate the minimal price that the

sellers expect in order to sell their resources. The coordinator base on the bids to decide the pairs of winning

bids. Here Xb(τ) = {xb1(τ), xb2(τ), ...}k (if xbi = 1 means bi wins and vice versa) denotes the buy bids result

and Xs(τ) = {xs1(τ), xs2(τ), ...}k denotes the sell bids result. The resource sharing contracts establishment

problem is solved by the auction. The resource sharing contract represents the following information: (i) the

effective time of the contract determined by τ , (ii) the two sides of the contract determined by matching the

bidders of the winning bids. We use index i to denote the seller’s index and j to denote the buyer’s index,

(iii) the selling and buying price of the contract represented by πks (τ) and πkb (τ), (iv) the resource type and

quantity represented by k and Dk. The contract is denoted by Contrkij(τ) =< πks (τ), πkb (τ), Dk >. The

optimal solution for establishing the contracts maximize every CSP’s utility after attending the auction. We

first propose the suggested bidding strategy and we discuss the utility function of the CSPs participating in

the auction.

7.3.2 Proposed Bidding Strategy

As discussed previously, in our model, each provider participates in the federated cloud to potentially

increase its profit. We design the bidding strategy for the CSPs to ensure that the CSPs increase their profits

through their participation in the federated cloud. Before we design the bidding strategy for the provider,

we first discuss the utility function of the providers. The utility of participating in the auction is defined

based on the profit a CSP can gain from running the jobs on the resources in the contracts and the profit it

can gain from selling its local resources to other CSPs in the contract.

First, we define the utility function using the profit a provider i can get from renting type-k dedicated

resources from others:

uki (τ) = %i max{min{Res(λi(τ))− Ci(τ), Vk}, 0} − πkb (τ) (21)

where Res() is a function that calculates the resource from the service demand.

98

Then, if the demand is under capacity but the operating cost is higher, the CSP can also participate in

the auction to increase the utility from running jobs on other CSPs’ resources. In this condition, the utility

function is:

uki (τ) = Costki (τ)− πkb (τ) (22)

There is only one condition in which the CSP wants to sell their resource to others: the demand is notably

less than the capacity of the available resources. In this condition, the utility function of the CSP which

wants to provide type-k dedicated resources to others can be represented by:

uki (τ) = πks (τ)− Costki (τ) (23)

When participating in the auction, provider i needs to consider the utility it can gain from the auction.

For the potential seller who has idle resources, it wants to increase its profit by increasing the utilization of

the idle resources. For the potential buyer, it also wants to increase its profit by either serving the demand

which is over the capacity of the local resource or decreasing the operating cost by outsourcing the jobs to

the other lower cost resource in the contracts.

From the above discussion, we can get the bidding strategy for the CSPs. For the potential seller, it only

needs to estimate the usage of the resource and match the idle resource into one type of dedicated resource

and set the bid price by the operating cost. For the potential buyer, it has a mixed strategy: if the predicted

service demand is over the capacity of the current servers in the server list, it bids by the profit it can get

from serving the overcapacity demand; otherwise, it bids by the operating cost instead.

From the above bidding strategies’ discussion, provider i that has idle servers matching type-k dedicated

resources can set the selling price by the operating cost:

ski (τ) =

Cost
k
i (τ) if Res(λi(τ)) > Ci(τ)− Vkand Dk ⊂Mi(τ)

NULL otherwise

(24)

where “NULL” represents a null bid. Here, we note that the condition, Dk ⊂ Mi(τ), checks whether the

available server list, Mi(τ), contains the type-k resource, Dk, or not.

The buyer who wants to buy type-k dedicated resource will bid in two conditions: first, the predicted

demand is above the current capacity; second, the operating cost is relatively high in the time slot τ . So the

bidding strategy is a combination of two separate strategies:

bki (τ) =

%i min{Res(λi(τ))− Ci(τ), Vk} if Res(λi(τ)) > Ci(τ)

Costki (τ) otherwise

(25)

It is worth noting that as shown in the above strategies, when there are idle resources, the CSP will set

the buy bid with its operating cost regardless of whether it needs the resources or not. We can understand

this condition from two aspects: if the CSP does not bid when it has idle resources, it will always get zero

utility in this round of auction; instead, if the CSP bids with the operating cost, it will at least get zero

utility, which will become the dominant strategy for the CSP.

99

While above suggested bidding strategy provides a basic methodology to estimate the benefits CSPs can

obtain from participating in the auction, we note that the bidding strategy can be extended with additional

requirements for CSPs (e.g., reliability requirements, scheduling policy constraints, data locality constraints,

etc.,) to further customize the bidding process.

7.3.3 Winning Bids Decision

In this subsection, we present the proposed algorithm for determining the winning bids. As mentioned

earlier, the proposed auction algorithm (Algorithm 10.) guarantees both truthfulness and budget balance

properties.

The winner decision algorithm for the auction is based on the McAfee mechanism which both guarantees

truthfulness and budget balance. The decision of the auction is indicated by two sets of indicators, Xb(τ)

and Xs(τ). The buying bid bh’s indicator is set to be xsh = 1 if bid bh wins. For the selling bid, it is the

same as for the buying bid. We note that the time complexity of Algorithm 10 is O(N logN). Here the key

Algorithm 10: Algorithm for the double auction to choose winners for one type of dedicated

resource
Input : Type of the dedicated resource : k;

Buy bids: Bk(τ) = {b1(τ), b2(τ), ...}k;

Sell bids: Sk(τ) = {s1(τ), s2(τ), ...}k;

Output: Clearing Buying Price: πks (τ) Clearing Selling Price: πkb (τ);

Auction decision: Xb(τ) = {xb1(τ), xb2(τ), ...}k;

Xs(τ) = {xs1(τ), xs2(τ), ...}k
1 Sort B(τ) in descending order by bi(τ) and S(τ) in ascending order by si(τ);
2 Initially, set current buying price b as bk as the first bid (highest price) in Bk(t) and current selling price s as

sk as the first bid (lowest price) in Sk(t). current bid indicator h = 0;
3 while b ≥ s do
4 s = si(τ);
5 b = bi(τ);
6 h = h+ 1;

7 if h is larger than the size of Bk(τ) or Sk(τ) break;

8 ρ = (bh+1 + sh+1)/2;
9 if bh ≥ ρ ≥ sh then

10 All the first h buyers and first h sellers win with price:;

11 πks (τ) = πkb (τ) = ρ;

12 else

13 All the first h− 1 sellers win with selling price: πks (τ) = sh;

14 All the first h− 1 buyers win with buying price: πkb (τ) = bh;

time-consuming operation is the initial sorting operation.

7.3.4 Contracts Establishment Process

In this subsection, we discuss the overall process for building the contracts based on the auction algorithm.

We illustrate it as a sequence of procedural steps:

Step.1 Begin the auction from k = K that represents the CSP with the largest amount of resources. The auction

begins at time slot τ = 1.

100

Step.2 CSPs send the bids to the coordinator of the federation using the strategy described above.

Step.3 The coordinator decides the winners by the algorithm as shown in Algorithm 10.

Step.4 The winning bids build the contracts one to one in the order of the sell and buy bids. Each winning

buyer adds the servers in the dedicated resource into the server list Mi(τ) in time slot τ . Each winning

seller also updates the server list Mi(τ) by removing the servers from the list.

Step.5 The losing bids of the type-k dedicated resource are sent back to the CSP. The CSP will separate it into

several bids which may be used in the auctions for the smaller types of dedicated resource. These bids

also obey the strategies defined in Subsection 7.3.2.

Step.6 For the next smaller type-{k−1} dedicated resource, the CSPs execute the above steps from Step.2 until

the smallest type dedicated resource is reached.

Step.7 The CSPs execute the above steps from Step.1 for the next time slot τ + 1 until the last contract time

slot τ = T is reached;

We note that the optimized contract provides the CSPs with a set of available remote resources in a

cost-efficient manner. However, the individual CSP needs to employ intelligent job scheduling techniques

that understand the cost implications of the underlying contract structure to leverage the remote resources

available to the CSPs effectively. We discuss them in the next section.

7.4 Contracts-based Job Scheduling

In this section, we first formulate the contracts-based job scheduling problem and then propose our

mechanisms to schedule jobs using the extended resources provided to the CSPs through the resource sharing

contracts.

7.4.1 Job Scheduling Problem Model

We model the scheduling problem for each CSP that participates in the federated cloud. We note that

in the scheduling model, the time slot indicated by t can be a very short time interval. It can be several

orders of magnitude shorter than the time slot for establishing the contracts which is represented by τ . We

introduce two new terms, tbeginτ and tendτ , to indicate the beginning and end of the interval of the contract

time slot τ during job scheduling. All the jobs come to a CSP enter into an FIFO queue. The arriving rate

in time slot t is denoted as ri(t) for provider i. The queue is updated every time slot:

Qi(t+ 1) = max{Qi(t)− Ui(t) + ri(t)−Ai(t), 0} (26)

where Ui(t) is the set of scheduled jobs in time slot t, Ai(t) is the set of the jobs which are dropped because

of violating the SLA or other failures in time slot t. The queue is only updated at the beginning of the time

slot.

101

Table 7.2: IBM server x3550 Xeon X5675 power consumption with different workload

Workload 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Power Consumption(Watts) 58.4 98 109 118 128 140 153 170 189 205 222

In addition, there is a constraint that the amount of the used resources of the running jobs cannot exceed

the current capacity of the CSPs. We use the notations below to represent the running jobs.

Zi(t+ 1) = Zi(t) + Ui(t)− Fi(t) (27)

where Zi(t) is the running jobs’ set at time slot t, Ui(t) is the scheduled jobs in time slot t, Fi(t) is the

finished or failed jobs in the running jobs set in time slot t. Here the capacity constraint is:

Res(Zi(t)) ≤
Mi(τ)∑
m

Cmi , ∀t ∈ [tbeginτ , tendτ] (28)

where Res(Zi(t)) represents the estimated resources that all the running jobs need for CSP i in time slot t.

The resource list Mi(τ) is updated at the beginning of every contract time slot τ .

The actual benefits a CSP i can get from the contract is obtained as:

Contracti(t) = (

K∑
k

πks (τ)xksi(τ)−
K∑
k

πkb (τ)xkbi(τ))/(tendτ − tbeginτ + 1), ∀t ∈ [tbeginτ , tendτ] (29)

where πks (t) is the clearing selling price for the contracts in time slot t ∈ [tbeginτ , tendτ] for the type-k dedicated

resource.

The actual cost of the electricity consumption is calculated by the consumption of each server in time

slot t. For each server, the electricity consumption can be approximated by a linear model[20] as illustrated

in Table 7.2. For each server m ∈ [1,Mi], the electricity consumption in time slot t is calculated as:

Emi (t) =

ξ
m
i +

ψm
i ∗u

m
i (t)

Cm
i

if server m is on

0 otherwise

(30)

where ξmi and ψmi are the parameters in the linear model for estimating the electricity cost of the server, umi

is the utilization of server m in time slot t. Therefore the actual electricity cost for CSP i can be calculated

as:

Electricityi(t) = PUEi ∗
Mi∑
m

Emi (t) ∗ δi(t) (31)

where PUEi is the Power Usage Effectiveness (PUE) of CSP i, δi(t) is the electricity price for the time slot

t for CSP i.

We note that the profit is approximately proportional to the resource consumption of running jobs.

Therefore this is another objective for the provider to maximize:

102

Incomei(t) = %i ∗Res(Zi(t)) (32)

Finally, we note that there is a penalty of violating the SLA of the jobs. The penalty can be estimated

as:

Penaltyi(t) =
∑

p∈Qi(t)

ϑi ∗ %i ∗ γp if violates p’s SLA (33)

where ϑi is the parameter of the penalty which is determined in the SLA for violating the SLA, γp is the

resource usage of job p.

Considering all the objectives and constraints together, we can obtain the objective for the CSP i as:

max lim
T→∞

T−1∑
t=0

Incomei(t)− Electricityi(t)− Penaltyi(t) + Contracti(t),

∀i ∈ [1, N]

s.t. Constrains (26)− (28)

(34)

We note that the above-mentioned scheduling problem can be reduced to a bin packing problem. However,

bin packing problems are shown to be NP-hard [51]. Thus, we need to resort to heuristic techniques to achieve

a scalable solution. We describe them in the next subsection.

7.4.2 Contracts-based Job Scheduling Mechanisms

We propose a set of heuristic scheduling mechanisms to schedule jobs across the geo-distributed clouds

based on the resource sharing contracts. We develop two mechanisms to optimize the scheduling decision

based on the contracts: one is to use the contracts in a cost-aware manner; another is to schedule the job

with minimal live migrations by understanding the duration of the contracts.

The objective of the CSPs in the job scheduling technique is to schedule the jobs to maximize the utility

of using the contracts. The utility of using the contracts consists of two parts namely the payment for

successfully completing the jobs and the cost of using the contracts. As optimizing the number of completed

jobs is an NP-hard problem, we use the basic real-time FCFS service policy and first-fit scheduling algorithm

as the preliminary approach. We then extend the basic scheduling algorithm to optimize the cost of using

the contracts. We note that the cost of using the contracts can be separated into two components namely

(i) the cost to use the contracts, which is decided by the price and (ii) the additional cost which occurs when

using the contracts such as the job migrating cost and the penalty of violating the contracts.

Concretely, we propose three schemes. While the contracts cost-aware scheduling (ConBCA) adopts a

lowest cost resource (resources in the contract or local datacenter) first policy to minimize the cost of using

the contracts, the contracts duration-aware scheduling (ConBConA) considers the duration of the contracts

in order to minimize the number and cost of live migrations. The contracts duration-aware and cost-aware

scheduling (ConBCAConA) simultaneously aims to minimize both the cost of using the contracts as well as

the number of live migrations based on contracts duration.

103

7.4.2.1 Contracts cost-aware scheduling

In the contracts cost-aware scheduling approach, the CSPs cooperate with each other based on the

established contracts to maximize their profit. In an intuitive scheduling policy, the providers may choose

only to use the contracts when the local resource is not sufficient to meet the workload demands, which we

refer to as contracts-based local first (ConBLF) scheduling mechanism. The disadvantage of this mechanism

is that if the local operating cost is higher than some of the negotiated price in the contracts, the contracts

become poorly utilized. An alternate intuitive scheduling policy may approach the scheduling problem in

the opposite manner which is the contracts first contracts-based scheduling mechanism. This scheme also

has shortcomings, the cost of the contracts may be higher than the local resource in some scenarios, in which

cases, the contracts-based remote resource may only be used when the local resources are exhausted.

The above discussion provides the intuition behind the contracts-based cost-aware (ConBCA) scheduling

algorithm. The provider can estimate the unit cost compared with the local unit operating cost. It may use

the contract which has a lower cost than the local operating cost first. It may then use the local resources.

The contracts which have a higher cost than the local operating cost are used only when the previous two

kinds of resources are exhausted. The detailed algorithm is illustrated in Algorithm 11.

7.4.2.2 Contracts duration-aware scheduling

For maximizing the utility of using the contracts, another aspect to consider is how to increase the

utilization of the contracts and avoid violating the contracts. An example of contract violation includes

using the resources in the contracts beyond the effective time. When the contract is near the end of effective

time, the jobs which are not already finished should be moved to other places that have resources to continue

the jobs. Therefore, we have another cost which occurs in this condition. This cost represents the cost of

migrating the jobs when the contract ends but the jobs are not finished already. Furthermore, for providing

a more continuous service, most of the jobs should be moved using a seamless live migration method [40] that

incurs minimal or no impact on the performance of the job. Live migration is a way of migrating the VMs

which minimize the down-time of the VM. This mechanism iteratively copies the dirty memory to the remote

server and moves the job to the server in a short down-time. However, the migrating operation is expensive

and may consume network bandwidth between the two geo-distributed datacenters and the CPU resources

on both servers. Therefore, the provider should avoid the migrating process by carefully understanding the

duration of the contracts. We call this scheme as the contracts-based contracts duration-aware mechanism

(ConBConA).

The provider needs to minimize the probability of live migrating the jobs when the contract is near

expiration time. If the expected finish time of the job is beyond the expiration time of the contract, the job

should not be scheduled to the datacenter unless the benefit of running outside is more than the migration

cost.

104

We model the probability of migrating the job as follows. The remaining time from the expected finish

time of each job p in time slot t can be calculated as:

tremainp = tendτ − (t+ lp) (35)

Where tendτ represents the end time of the contract, t is the starting time of job p which is indicated by the

current time slot t, lp is the expected length of job p.

We assume that the probability of migrating is inversely proportional to the remaining time from the

expected end time to the expiration time of current effective contract. The possibility of migrating can be

estimated by the above remaining time of the job p:

Pr(zp = 1) = α ∗ 1

tremainp

(36)

where zp = 1 is an indicator that indicates whether the job needs to be live migrated, Pr(zp = 1) is the

probability that the job needs to be live migrated, α is a parameter. The probability that the job needs to be

migrated live is inversely proportional to the remaining time from end of the job to the contract expiration

time.

The migration cost can be estimated by a function which is related to the dirty rate and the size of

memory. We use the equation in [85] to estimate the migration cost:

Migrationp(t) =

0, p is scheduled locally

(ηSize(vp) + ι)Pr(zp = 1), otherwise

(37)

where η, ι is the parameter in the live migrating cost estimating model, Size(vp) is the estimated live

migration size of the job p which can be calculated by the algorithm in [85]. The actual size of migrating

is related to the kind of jobs running on the VM. This function calculates the migrating cost if the job is

scheduled in time slot t to the contract.

As shown above, we use a simplified live migration model to calculate the migration cost. For a more

accurate estimation of the migration cost, the migration model may be replaced with other sophisticated

models such as [8] that considers the migration bandwidth and the page dirty rate, [23] which considers

the bandwidth waste of in-band migration and the downtime of the job or [152] which optimizes the live

migration cost on a Wide Area Network (WAN). Thus, the key idea behind the contracts-based contracts

duration-aware scheduling algorithm is to minimize the possible cost of having to migrate the tasks.

7.4.2.3 Contracts duration-aware and cost-aware scheduling

Considering the two mechanisms discussed above, we develop a new mechanism for scheduling the jobs

with the features of both contracts duration-aware and cost-aware scheduling with using the contracts (Con-

BCAConA).

105

In this approach, the provider first sorts all the contracts by their unit buying price and separates them

into two sets: lower cost contracts which has lower cost than the local resource; higher cost contracts which

has higher cost than the local resource which is only used when the workload is beyond the capacity of the

previous two sets of resources.

In every time slot t, the provider schedules the tasks by considering the utility of finishing the task p:

upi (t) = %iRes(p) ∗ lp −Migrationp(t)− Costpi (38)

where Res(p) is the resource task p needs, Costpi is the operating cost depending on whether the job runs

locally (calculated by the local operating cost) or on the remote contract resources (calculated by the buying

price).

The scheduler needs to maximize the outsourcing profit and minimize the cost of using the contracts and

live migrating the jobs as shown in Algorithm 11. For each time slot t, the time complexity of the scheduling

Algorithm 11: Algorithm of Scheduling the jobs based on contracts

1 Separate the contracts in time slot τ into two set: Contractslow and Contractshigh;

2 foreach Scheduling time slot t ∈ [tbeginτ , tendτ] do
3 if job p can be scheduled to Contrj ∈ Contractslow then
4 Schedule the job p which Pr(zp = 1) ≤ ε with Contrj ;

5 else
6 if Job p can be scheduled to local resource then
7 Schedule the job p to the local resource

8 else
9 Schedule the job p which Pr(zp = 1) ≤ ε with Contrj ∈ Contractshigh;

Algorithm 11 is determined by the number of jobs |P | so that the time complexity is O(|P |).

7.5 Evaluation

In this section, we present our experimental study on the performance of the proposed contracts-based

resource management techniques.

7.5.1 Setup

We implement the simulator and the proposed algorithms in JAVA and the simulator runs with a global

virtual clock. We log the status of all the servers in the CSPs for each virtual second which includes the

available resources, the job status (submitted, running or finished) information, and the performance metrics

of the jobs. We run all the experiments on an Intel i5-3210M Machine with 8GB memory.

106

Table 7.3: Datacenters’ Default Configuration

of providers 25 # of servers / provider 300

Cores per server 6 MIPS per Core 3067

Memory per Server 16 GB Bandwidth per Server 1 GB

PUE 1.2 Contract Interval 4 hours

Prepaid ratio 0.5 Maximal response time 3600

7.5.1.1 Datacenters

We consider that each provider has one datacenter in our evaluation and we use the default configuration

shown in Table 7.3 for each datacenter. The default server has the same performance as the IBM server

x3550 (2 x [Xeon X5675 3067 MHz, 6 cores], 16GB). The different power consumption of the server from

[20] is shown in Table 7.2. The locations of the datacenters are chosen from Amazon’s AWS datacenters’

locations with the timezone and location from [136]. The price model uses the AWS EC2 On-Demand price

model [13]. The actually model is given by: β0 +β1 ∗ECU+β2 ∗Memory, and from the linear regression, we

get β0 = 0.0005884, β1 = 0.0093460, β2 = 0.0076067. Here, one ECU equals 1000 MIPS (Million Instructions

Per Second) in our definition.

7.5.1.2 Real electricity price

The electricity price is generated based on the hourly real-time electricity price from [139]. We obtained

the distribution of the data in 2015 from NationalGrid’s hourly electricity price and the distribution includes

two type of features: one is auto-correlation which means that the electricity price’s trend has very high

possibility to be similar in a period of observation; another is the burstiness, which indicates that the

electricity price can fluctuate significantly in a short period. In our simulation, we use the distribution of the

electricity price and randomly choose each day’s price from it by shifting the time based on the datacenters’

time zones.

7.5.1.3 Workload

We conduct the experiments using a real-world workload trace from the online Parallel Workload Archive

(PWA) repository [46]. We choose the SHARCNET clusters’ trace from the archive as it is a computational-

intensive High-performance Computing (HPC) workload trace logged in real clusters. The trace is for a

duration of thirteen months (From Dec. 2005 to Jan. 2007) with 1,195,242 independent jobs[73, 116]. As

suggested by the publisher of PWA, we do not use the entire SHARCNET trace as the configuration of the

clusters has changed during the duration of the trace. Instead, as recommended, we extract a two-day (From

Dec. 1st to Dec. 2ed) period that does not contain cluster configuration changes. For our simulation, we

have extracted the following information from the trace: the job submitted time, the job running time, the

requested number of CPUs, the requested size of memory and the utilization of CPUs. In order to keep

107

Table 7.4: Compared Algorithms

Algorithm Description
Use Con-
tracts

Cost-
aware

Contracts
duration-aware

NF No Federation

ConBLF Contracts-based Local First
√

ConBCA Contracts-based Cost-aware
√ √

ConBConA Contracts-based Contracts duration-aware
√ √

ConBCAConA
Contracts-based Contracts cost-aware and
duration-aware

√ √ √

RT Real Time complete cooperation

the workload same in every sub-experiment, we have used two different methods to generate the workloads.

Except for the evaluation of testing the impact of number of providers in Section 7.5.2.2, in other scenarios,

all the jobs in the workload are replicated in each provider so as to keep the same amount of jobs in each

sub-evaluation. For the evaluation of the different number of providers, we have replicated the extracted

trace 25 times that corresponds to half of the maximum number of providers in the evaluation and we have

randomly assigned the jobs to the CSPs so as to maintain the same amount of jobs in each sub-evaluation.

We set the dedicated resources in the simulation using a set of hierarchical categories having 256, 128, 64,

32, 16, 8, 4 servers respectively. By default, we assume an accurate prediction of the workload at each CSPs.

For evaluating under conditions of erroneous predictions, we dedicate a separate set of experiments to test

the performance of our algorithms under various levels of errors in workload prediction.

7.5.1.4 Algorithms

The reference algorithms include: (i) no federation (NF), which does not share any resources and workload

with others and the scheduler tries the best effort to minimize the electricity cost; (ii) contracts-based

scheduling algorithm using the local resource first (ConBLF); (iii) contracts-based scheduling algorithm

with contracts cost-aware (ConBCA) scheduling; (iv) contracts-based contracts duration-aware scheduling

algorithm that avoids live migration (ConBConA); (v) contracts-based contracts cost-aware and duration-

aware scheduling (ConBCAConA); (vi) the last candidate approach for comparison is the unrealistic method

which uses a greedy algorithm (filling the jobs to the datacenter with lowest operating cost by the FCFS

policy) to optimize the operating cost across all the datacenters without considering the local datacenter’s

profit. We refer to it as real-time complete cooperation scheduling (RT). The summary of the algorithms is

shown in Table 7.4.

7.5.2 Experimental Results

For illustrating the performance of our contracts-based algorithms, we complete five sets of experiments:

first, we study the impact of increasing the number of servers in the datacenters; second, our experiment

108

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

100 200 300 400 500a
v
e
ra

g
e
 n

o
rm

a
liz

e
d

 e
le

c
tr

ic
it
y

 c
o
s
t

o
f

s
u
c
c
e

s
s
fu

l
jo

b
s

 c
o
m

p
a
re

d
 w

it
h
 N

o
 F

e
d

e
ra

ti
o

n

of servers per data center

ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(a) Electricity Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450 500

s
u
c
c
e
s
s
 r

a
te

of servers per data center

NF
ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(b) Success Rate

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 150 200 250 300 350 400 450 500

a
v
e
ra

g
e
 s

e
rv

e
r

u
ti
liz

a
ti
o

n

of servers per data center

NF
ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(c) Average Server Utiliza-
tion

 0

 5000

 10000

 15000

 20000

 25000

 30000

 100 150 200 250 300 350 400 450 500

#
 o

f
liv

e
 m

ig
ra

ti
o
n

 t
im

e
s

of servers per data center

ConBLF
ConBCA
ConBConA
ConBCAConA

(d) Number of Live Migra-
tions

Figure 7.4: Evaluation results for a different number of servers per datacenter

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 20 30 40 50a
v
e
ra

g
e
 n

o
rm

a
liz

e
d

 e
le

c
tr

ic
it
y

 c
o
s
t
o
f
s
u
c
c
e

s
s
fu

l
jo

b
s

 c
o
m

p
a
re

d
 w

it
h
 N

o
 F

e
d

e
ra

ti
o

n

of providers

ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(a) Electricity Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

s
u
c
c
e
s
s
 r

a
te

of providers

NF
ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(b) Success Rate

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50
a
v
e
ra

g
e
 s

e
rv

e
r

u
ti
liz

a
ti
o

n
of providers

NF
ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(c) Average Server Utiliza-
tion

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45 50

#
 o

f
liv

e
 m

ig
ra

ti
o
n

 t
im

e
s

of providers

ConBLF
ConBCA
ConBConA
ConBCAConA

(d) Number of Live Migra-
tions

Figure 7.5: Evaluation results for a different number of datacenters

analyses the impact when the number of datacenters is increased; third, we add different amount of errors

to the prediction of the workloads and study its impact; fourth, we test the influence of different contract

intervals on the performance; finally, we evaluate the fairness of our algorithm compared to global optimiza-

tion approaches that do not consider local profits of the individual datacenters. For each set of the first four

experiments, we measure the electricity cost per successful job, the success rate, the average server utilization

and the number of job live migrations.

7.5.2.1 Impact of Number of Servers

We first test the performance of our mechanisms using different number of servers per datacenter. The

number of servers increases from 100 to 500 per datacenter in the evaluation. As shown in Figure 7.4a,

the y-axis is the normalized electricity cost per successful job compared with NF. The x-axis is the number

of servers per datacenter. We observe that with the ability to share resources in the cloud federation, the

electricity cost compared with no federation has been optimized from about 10% to 40% as the number of

servers increase. ConBCA achieves the best result and it is close to that of RT. This is due to the fact

that if the provider does not need to consider violating the contracts or the cost of live migrations, it can

send all the jobs to the lower cost contracts it holds. As this will increase the utilization of the low cost

contracts, it can potentially decrease the operating cost per successful job. In Figure 7.4b, we observe that

the success rate increases with increase in the number of servers. The priority of sharing the resources

109

are mainly reflected when the resources are scarce. Thus, if the resource is scarcer, the difference can be

larger. In Figure 7.4c, we can observe that our contracts-based mechanism and the RT mechanism obtain

better results (around 2%) as the sharing mechanism makes the workload more balanced in the providers

which increases the utilization of the servers. In Figure 7.4d, we observe that the techniques that avoid live

migration (ConACB and ConACAConB) achieve the best result. The cost-aware algorithm performs poorly

as it uses the contracts regardless of the effective time of the contracts. ConBLF which is the local resource

first mechanism also does not perform well (near 8K live migrations when the number of servers is 100) as it

ignores the length of the contract. ConBLF performs better than the ConBCA when the number of servers

is increased as ConBLF uses local resource first strategy. Therefore, if the resource is available, the usage of

the contracts will decrease and the number of live migrations will be decreased as well.

Overall, we can deduce that contracts-based algorithm performs significantly better than the NF scheme

with respect to operating cost and success rate. Live migration is avoided when using contracts duration-aware

mechanisms (ConBConA and ConBCAConA) and the performance of our contracts-based mechanisms is

close to that of the RT method in most of the measurements.

7.5.2.2 Impact of Number of Providers

We next evaluate the performance of our mechanisms to study the impact of different number of service

providers in the federated cloud. The number of providers is increased from 10 to 50. As shown in Figure

7.5a, the y-axis is the normalized electricity cost per successful job compared with no federation. The x-axis

is the number of providers which remains unchanged in this set of evaluation. We can observe that the

electricity cost compared with no federation has been optimized from about 10% to 20% in the proposed

schemes. This result is similar to the previous experiment. Here, ConBCA optimizes the electricity cost very

significantly compared to the other contracts-based algorithms when the resources are sufficiently available

in the federation. As shown in Figure 7.5b, the success rate also increases with increase in the number of

providers. Thus, all contracts-based algorithms perform better than NF with more than 20% improvements.

Also, the contracts-based algorithms perform similarly to RT when the number of providers is more than

20. The utilization levels measured in Figure 7.5c also show a similar trend as previous experiments. We

can see that when the number of providers is increased, the number of live migrations of ConBLF and

ConBCA are decreased. The reason is that when the resources are available and when the number of jobs

submitted to each datacenter is decreased, the number of live migrations also decrease. From the above

experiments, we can conclude that contracts-based algorithm performs better than the NF in operating cost

and success rate. Live migration is avoided when using contracts duration-aware mechanisms (ConBConA

and ConBCAConA). Most of the measurements of our contracts-based mechanisms are close to the RT.

110

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 20 30 40 50a
v
e
ra

g
e
 n

o
rm

a
liz

e
d

 e
le

c
tr

ic
it
y

 c
o
s
t

o
f

s
u
c
c
e

s
s
fu

l
jo

b
s

 c
o
m

p
a
re

d
 w

it
h
 N

o
 F

e
d

e
ra

ti
o

n

prediction error (%)

ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(a) Electricity Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

s
u
c
c
e
s
s
 r

a
te

prediction error (%)

NF
ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(b) Success Rate

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45 50

a
v
e
ra

g
e
 s

e
rv

e
r

u
ti
liz

a
ti
o

n

prediction error (%)

NF
ConBLF
ConBCA
ConBConA
ConBCAConA
RT

(c) Average Server Utiliza-
tion

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45 50

#
 o

f
liv

e
 m

ig
ra

ti
o
n

 t
im

e
s

prediction error (%)

ConBLF
ConBCA
ConBConA
ConBCAConA

(d) Number of Live Migra-
tions

Figure 7.6: Evaluation results for different average errors of the workload predictions

7.5.2.3 Impact of Prediction Errors

We next evaluate the performance of our mechanisms using different proportions of prediction error added

to the demand and workload prediction. We use a white noise[153] to introduce the error in the predicted

values. The amount of error introduced is increased from 10% to 50% in the experiment. All the other

settings are kept as shown in the default configuration Table 7.3. As shown in Figure 7.6a, the y-axis is the

same as the previous evaluations. The x-axis is the average percentage of prediction errors. The electricity

cost compared with no federation has been optimized from about 10% to 15% regardless of the prediction

errors. The result shows that the prediction errors do not influence the result significantly(2% with 50%

added error) as the error only influences the contract trading volume. The resources are traded between

the providers with the true value. As only the volume is influenced insignificantly by the added error, it

does not have a significant impact on the outcome. In Figure 7.6b, we also observe that the success rate

is not influenced much (less than 1% variance) by the prediction error. We find a similar trend with the

measurements on utilization and live migrations in Figure 7.6c and Figure 7.6d respectively. From the above

experiments we can deduce that the prediction error does not influence our algorithm significantly and hence

the proposed techniques are robust under a wide range of errors in the workload prediction.

7.5.2.4 Impact of Contract Intervals

Next, we test the performance of our mechanisms with different duration of contract intervals. The

contract interval is set to five values (1, 2, 4, 8 and 12 hours). As shown in Figure 7.7a, the x-axis is the

contract interval. We can see that the contract interval does not influence the operating cost significantly. But

when the contract interval increases, the normalized electricity price is also increased considerably between

3% to 5% except for ConBCA. ConBCA is influenced more and has an increase of 16%. This is because

with a longer interval, the evaluation accuracy of the true values for each time slot will decrease which will

influence the contracts establishment process. However, the influence is not very significant. In Figure 7.7b,

we observe that the success rate is not influenced significantly by the contract intervals and in Figure 7.7c,

we note that the average utilization of the running servers also does not change significantly. As shown in

111

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 12a
v
e
ra

g
e
 n

o
rm

a
liz

e
d

 e
le

c
tr

ic
it
y

 c
o
s
t

o
f

s
u
c
c
e

s
s
fu

l
ta

s
k
s

 c
o
m

p
a
re

d
 w

it
h
 N

o
 F

e
d

e
ra

ti
o

n

contract interval (hour)

ConBLF
ConBCA
ConBConA
ConBCAConA

(a) Electricity Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 12

s
u
c
c
e
s
s
 r

a
te

contract interval (hour)

NF
ConBLF
ConBCA
ConBConA
ConBCAConA

(b) Success Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 12

a
v
e
ra

g
e
 s

e
rv

e
r

u
ti
liz

a
ti
o

n

contract interval (hour)

NF
ConBLF
ConBCA
ConBConA
ConBCAConA

(c) Average Server Utiliza-
tion

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 4 8 12

#
 o

f
liv

e
 m

ig
ra

ti
o
n

 t
im

e
s

contract interval (hour)

NF
ConBLF
ConBCA
ConBConA
ConBCAConA

(d) Number of Live Migra-
tions

Figure 7.7: Evaluation results for different inner intervals of the contracts

-1

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

g
a
in

 o
r

lo
s
s
 r

a
ti
o
 o

f
th

e
 p

ro
fi
t

 c
o
m

p
a
re

d
 w

it
h
 n

o
 f
e
d
e
ra

ti
o
n

CSP #

ConBLF
ConBCA
ConBConA
ConBCAConA
RT

Figure 7.8: The gain or loss ratio of the profit for each individual CSP

Figure 7.7d, the number of live migrations decreases when the contract interval increases(for LFConB, from

12K to 0.6K; for ConBCA, from 52K to 1K) as the longer effective time decreases the probability of live

migrations. The contracts duration-aware mechanisms (ConBConA and ConBCAConA) also perform better

here.

Overall, from the above experiment, we can see that the contract interval influences the number of live

migration and electricity cost. With an increase in the contract interval, the normalized electricity cost is

slightly increased and the number of live migrations is decreased.

7.5.2.5 Fairness

In this set of experiment, we evaluate the fairness of the proposed schemes by comparing the individual

profit of each CSP. The result is observed with the setup of 100 servers per datacenters. We use the default

setting for the other experiment parameters. As shown in Figure 7.8, the y-axis is the gain or loss ratio

of the normalized profit which is the difference between the profit that can be earned using the federated

cloud and the profit that can be earned otherwise when operating alone. When the number is larger than

0, it means that the provider earns more using the federated cloud than when it operates alone and vice

versa. The x-axis represents the index for each CSP. From the figure, we can see that, when the federated

cloud is operated using the real-time complete cooperation mechanism, there are six CSPs (CSP4, 5, 6, 8,

112

13, 22) of the total 25 CSPs losing profits compared with the profits they can earn when operating alone.

The contracts-based mechanisms perform significantly better than operating alone except for CSP10 which

gets a very minimal decrease (less than 4%) compared to the profit that it can earn from operating alone.

From the observations above, we can see that the real-time complete cooperation mechanism globally

optimizes the operating cost but results in several CSPs losing profits. In contrast, the proposed contracts-

based mechanisms perform better than the real-time complete cooperation mechanism and achieve higher

fairness with most of the CSPs obtaining higher profits when participating in the federation.

7.6 Summary and discussion

In this chapter, we proposed a contracts-based mechanism for resource sharing between CSPs in a fed-

erated cloud. Compared with previous work in this area, our proposed approach considers both the global

cost minimization as well as the local profit maximization of each individual datacenters participating in

the federation process. We developed an auction-based mechanism for contract establishment and a suite of

contracts cost-aware and duration-aware scheduling techniques that maximize the local profits of the CSPs

while meeting the individual job requirements. We evaluated the performance of the proposed approach using

a trace-driven simulation study with realistic workload traces and electricity pricing. The contracts-based

solution achieves good performance and performs significantly better than the traditional model in terms

of fairness in local profits while achieving similar operational costs and success rate properties as existing

methods.

While the techniques presented in this chapter assume a centralized approach, in the next chapter, a

decentralized implementation of allocating resources in geo-distributed environments is presented.

113

8.0 Decentralized resource allocation and management mechanism for geo-distributed edge

and cloud resources

In this chapter, we propose, design and implement a decentralized platform for allocating geo-distributed

edge resources. We first propose a decoupled decentralized resource allocation model that manages the

allocation of computing resources distributed at the edges to the service providers that have application

demand to use those resources. Then, we propose a sealed bid double auction protocol based on decentralized

smart contracts with a two-phase sealed bidding and revealing mechanism. Next, we develop a decentralized

auction-based resource sharing contract establishment and allocation mechanism that ensures truthfulness

and utility-maximization for the providers. Finally, we implement a prototype of the proposed model on

a real blockchain test bed and our extensive experiments demonstrate the effectiveness, scalability and

performance efficiency of the proposed approach.

8.1 Background and Motivation

In the Internet of Things (IoT) era, the demands for low-latency computing for latency-sensitive applica-

tions (e.g., location-based augmented reality games, real-time smart grid management, real-time navigation)

has been growing rapidly. Edge Computing provides an additional layer of infrastructure to fill latency gaps

between the IoT devices and the back-end cloud computing infrastructure.

In current edge computing models, we have service providers that provide geo-distributed cloud infras-

tructure or edge computing infrastructure as a service. For example, Google Espresso [161] supports low

latency content delivery around the world with more than one hundred points-of-presence (PoPs). Microsoft

deployed more than one hundred data centers (DCs) that can serve 140 countries around the world [97].

Current models also include cloud services that are extended to support edge computing. For instance, Ama-

zon Greengrass[131] supports Amazon Lambda [130] and other AWS services on the edge devices and Azure

IoT Edge [17] extends the Azure cloud services to the edge devices. Current models operate by restricting

each service provider to only utilize their own edge infrastructure resources for providing service. It creates

a strong barrier between the providers and makes the infrastructure investment not only inefficient but also

redundant.

Sharing edge infrastructure has significant benefits to optimizing resource usage cost and meeting strict

latency requirements. Geo-distributed edge infrastructures that cooperate together to optimize resource

allocation can build a seamless geo-distributed edge federation platform to provide infrastructure to a wide

range of edge computing applications (e.g. virtual reality, smart city, big data analytic) that have strict

latency and bandwidth requirements.

114

Things

Sensors ActuatorsCity Hospital Farm

Edge Infrastructure

Cloud Infrastructure

APP

VM
APP

VM

APP

VM
APP

VM

APP

VM

APP

VM

Edge
Application

Smart
Contract
(Auctioneer)

Blockchain

Cloud
Application

Service Provider

Sell Bid

Buy Bid

Resource
Contract

Edge Infra
Provider

Edge Infra
Provider

Figure 8.1: Overview

In this work, we design a decentralized mechanism which enables resource sharing among the service

providers and the edge infrastructure providers (Figure 8.1). The proposed approach implements a long-term

persistent resource sharing scheme at the edge using decentralized blockchain networks. In the remaining part

of this section, we describe the background of edge resource sharing and blockchain-based smart contracts.

8.1.1 Edge Resource Sharing

We assume that the resources are organized in a layered architecture [22] where the edge infrastructure

acts as the middle layer between the cloud infrastructure and the smart things as shown in Figure 8.1. The

dense geo-distributed edge infrastructure includes the micro datacenters (MDCs) and the smart gateways

placed at the edge of the network which are located one hop from the end devices. We model the edge

resource sharing platform similar to the model described in [158] (Chapter 6). The platform includes (i)

potential buyers namely service providers (SPs) who are responsible to provide services directly to the end

users and want to lease edge resources on demand to increase their revenues, and (ii) potential sellers namely

edge infrastructure providers (EIP) who operate either the MDCs or the smart gateways that support multi-

tenant resource allocation by running containers.

To model the resource sharing problem at the edge, we assume that there are |N | SPs that require edge

computing infrastructure to support their services. For simplicity, we assume that for each SP i ∈ N , where

N is the set of the SPs, there is a quantifiable service demand of the SPs in each geographic region for every

discrete time slot of a day. The resource requirement is represented by the application container [109, 66]

(a configured virtual machine integrated with the service software), which has several requirements such as

CPU consumption, memory size, network bandwidth and latency requirement. We use λpi (τ) to represent

the workload coming from a particular location p in time slot τ for SP i as shown in Figure 8.3. We assume

115

Previous Block Hash

Miner

Miner

Miner

Miner

Miner

MinerMiner

Miner

B
lo

ck
ch

ai
n

 N
et

w
o

rk

Blockchain

Block

Transaction Hash Root

State Hash Root Receipt Hash Root

Timestamp Nonce

Difficulty …

B
lo

ck
 h

ea
d

e
r

Block Body (Transactions)

Other Transactions

Smart Contract Record auction.bid()

Smart Contract Record auction.reveal()
…

Block nBlock n-1 Block n+1

Smart Contract(Auctioneer)

SealedBidDoubleAuction.vy
@version ^0.2.15
@external
@payable
def bid(_blindedBid: bytes32,

_weight: uint256):
@external
def reveal(…):
@external
def clearMarket():
@external
def withdraw():

Edge Infra
Provider

Edge Infra
Provider

Service Provider

APP

VM

APP

VM
APP

VM

APP

VM

Edge Infrastructure

Service Provider

ValueState

Resource
Contracts

Figure 8.2: Blockchain-based Edge Resource Sharing

that there are several EIPs and each of them handles a large number of highly geo-distributed MDCs and

smart gateways that represent the edge computing resources. We assume that each MDC or smart gateway

can act as a virtual node d ∈ D, which can support the deployment of several containers. For simplicity, we

assume that every container consumes equal amount of resources for running the application service. The

capacity of the overall node is denoted as Cd and it represents the number of containers that can be run on

the node. The final resource allocation decision can be simplified as a mapping between the edge resources

Cd,∀d ∈ D, and the workloads, λpi (τ),∀i ∈ N , which decides the actual node that run the containers to

serve the corresponding workloads from a location p. The decision problem is NP-hard [158] (Chapter 6)

and in this work, we simplify the problem by first delineating non-overlapping regions and then dividing

the continuous sharing time into non-overlapping time slots (e.g., one hour). Thus, each trade (auction) is

handled for a particular region r ∈ R and for a particular time slot τ , which allows the problem to be solved

using the proposed auction mechanism (Section 8.2.3).

The key challenges of the edge resource sharing problem are two folds: (i) the geo-distributed nature

and the distributed ownership of the edge infrastructure make it hard to centralize the resource allocation

decision and (ii) the competitive relationship between the EIPs and the SPs make it challenging to guarantee

efficiency and fairness. To tackle these challenges, we employ blockchain-based smart contracts to deploy

a truthful auction that automatically processes the bids from the potential buyers and sellers to generate

resource contracts between them guaranteeing both efficiency, fairness, and decentralization at the same

time.

116

8.1.2 Blockchains and Smart Contracts

Blockchain is a distributed ledger that stores transaction records as a chain of blocks maintained by a

set of miners in the decentralized blockchain network (Figure 8.2). The miners mine the blocks to include

the transactions to form the blockchain for the state in which all miners reach an agreement through a

consensus protocol (e.g., proof-of-work (PoW), or proof-of-stake (PoS)). The architecture of blockchain

makes it possible to achieve decentralization, integrity, auditablility, transparency and high availability at

the same time. Smart contracts are built on top of blockchain and they allow user-defined programs to be

executed on the blockchain. More specifically, the smart contract can be treated as a program deployed on

the blockchain network, which resides at a specific address (generated when deploying) on the blockchain,

including algorithms (functions within a contract) and data (the state of the smart contract) as shown in

Figure 8.2. To interact with smart contracts, there are two ways: (i) retrieving the state or data from the

smart contracts which can be directly restored from the blockchain data without sending transactions, and (ii)

change the state of the smart contracts which require calling the functions of the smart contract by sending

transactions and the execution is completed after the transaction is included in the blockchain network.

Ethereum is well-known blockchain network that supports smart contracts. Ether is the cryptocurrency used

on Ethereum. It is held in and can be transferred between accounts including externally owned accounts

(EOAs) and contract accounts (CAs). An EOA is determined by a unique public-private key pair owned by

an individual who can use the private key to sign the transactions sent from the account. CAs are different

than EOAs. Each CA does not have a key pair and is associated with a deployed smart contract that is

activated (deployed) by an EOA. To execute the smart contract, the EOA that deploys a new smart contract

or calls a function of a deployed smart contract needs to pay Gas [151] included in the transaction. Gas

can be exchanged from Ether. A transaction in Ethereum is a build-in instruction signed by an EOA. Each

transaction specifies several information including the sender’s address, the receiver’s address and data (e.g.,

smart contract bytecode, and a function call with the arguments). Each function call and its input are

included in the transaction so that the output can be verified by multiple miners with the same input and

the given program. The correctness can be guaranteed by the miners and the consensus protocol of the

blockchain.

In this work, the proposed resource sharing (auction) protocol is enforced without trusted third-parties

using smart contracts. Additionally, the proposed truthful auction is designed to guarantee that the bidders

will bid with their true valuation on the goods and thus, it will reduce the complexity of the auction algorithm.

The resource contracts that are persistent and distributed on the blockchain can be used for assessment,

billing, and auditing. To cooperate with the geo-distributed utility-aware task scheduling, the edge resource

sharing platform can be seamlessly integrated with the existing utility-aware cloud platform to handle a wide

range of applications with different requirements.

117

Request

Base
Station

PoP

Base
Station

Edge Node

Base
Station

PoP

PoP

PoP

Figure 8.3: Regions

8.2 Smart Contract-based Edge Resource Allocation

We design the proposed edge resource sharing platform using blockchain-based smart contracts. The

blockchain acts as the decentralized ledger that stores the trade information (e.g., when and where the

resource is shared), and the procedure (smart contracts) of the trade between the buyers and sellers trans-

parently for all the participants.

8.2.1 System Architecture

The architecture of the proposed edge resource sharing platform is shown in Figure 8.2. The basic

functionality of the platform is to match the supply and demand of the edge resources based on the auction

algorithm deployed in the smart contracts. To make the process decentralized, we employ blockchain-based

smart contracts to act as the auctioneer.

As shown in Figure 8.2, we can see that the decentralized consensus and mining of the new blocks

are controlled by the miners connected to the blockchain network. Any node can download the client of

the blockchain network and be a miner of the network. The public blockchain can be audited by anyone

who participates in the blockchain network and accepts the broadcast. The blockchain is established by a

sequence of blocks, each of them is generated by the consensus mechanism and connected to its parent block

by its hash value. The block stores all the information related to the state changes of the blockchain (e.g.,

transactions between accounts, and modifications of values in the smart contracts) in their block body as

records of transactions. The smart contracts deployed on the blockchain can achieve automatic execution of

the algorithms and guarantee the correctness of transactions. In the proposed system, we assume that there

are four types of entities namely the service providers (SPs), Edge Infrastructure Providers (EIPs) discussed

in Section 8.1, Region Coordinators, and smart contracts as shown in Figure 8.4.

118

Region Coordinator
Region CoordinatorRegion Coordinator

Smart Contract (Auctioneer)
Smart Contract (Auctioneer)

Smart Contract (Auctioneer)

Resource
Contract

bid() Function

Service Provider

Utility Estimate

Contract Manage

Container Provision

Service Provider

Utility Estimate

Contract Manage

Container Provision

Service Provider

Utility Estimate

Contract Manage

Container Provision

Edge Infrastructure Provider

Micro DataCenter

Cost Estimate

Resource Manage

Contract Manage

Micro DataCenter

Cost Estimate

Resource Manage

Micro DataCenter

Cost Estimate

Resource Manage

Edge Infrastructure Provider

Micro DataCenter

Cost Estimate

Resource Manage

Contract Manage

Micro DataCenter

Cost Estimate

Resource Manage

Micro DataCenter

Cost Estimate

Resource Manage

Edge Infrastructure Provider

Contract Manage

Edge Node

Cost Estimate

Resource Manage

Edge Node

Cost Estimate

Resource Manage

Edge Node

Cost Estimate

Resource Manage

Sealed Buy Bids Sealed Sell Bids

reveal() Function

Blockchain Gateway

Blockchain Gateway

Real Buy Bids Real Sell Bids
determine() Function

𝑟, 𝜏

Create smart contract

Determine winning bids

𝑟

𝑑

𝑖

Figure 8.4: Edge Resource Sharing Framework

We use the notion of divided regions to reduce the complexity of matching the latency or location

requirement of the edge application to the resources available in a certain area. We assume that the map

corresponding to the geographic area is divided into |R| sub-regions, where R is the set of all the regions.

The region division can be generated by negotiation between the EIPs and SPs, which can either be based

on the location of base stations, Point of presences (PoPs) of Internet Service Providers (ISPs) or based on

administrative divisions (e.g., counties) as shown in Figure 8.3. Each region r ∈ R only includes a specific

area and there is no overlap between the regions. We also assume that the expected workload distribution

for each time slot τ is λri (τ) for SP i in the region r. The workload distribution contains all the workloads

coming from the region. We use λpi (τ) to represent the workload coming from a particular position p in region

r. As we primarily consider the workload which needs real-time service, λpi (τ) is often the upper bound of

the workload during the time slot τ from position p. In each region, there can be multiple nodes that serve as

the infrastructure. We use Er to represent the list of nodes which serves in region r. In addition, the nodes

that serve in one region can guarantee the lowest possible latency of placing the services of the SPs with

an average latency, lr, as they either directly connect to the PoP or base station of the region, which is one

hop from the end devices that send the requests. With the above assumptions, the edge nodes can be either

micro datacenters (MDCs), smart gateways, or mega datacenters that satisfy the placement requirement for

a certain region.

We use smart contracts to run the resource trading between the SPs and the EIPs in each region. The

smart contract acts as the trusted third party that uses the predefined auction algorithm to decide the

winning bids and establish the resource contracts. However, as we need both the resource buyers (SPs)

and the sellers (EIPs) to bid in the (double) auction, both of them are not suitable to create or handle

the smart contract as the owner. Therefore, we assume that there is a region coordinator for each region.

119

Smart Contract EIP SPCoordinator

construct()

ask()

bid()

determine()

withdraw()

withdraw()

co
n

stru
ct

b
id

reveal()

reveal()

reveal
d

eterm
in

e
w

ith
d

raw

address

valid?

valid?

resource contracts

Phases

Time

𝑇1

verify

verify

balance

balance

𝑇2

𝑇3

𝑇4
resource contracts

Figure 8.5: Decentralized Sealed Bid Double Auction Procedure

The coordinator creates the smart contract for the auctions based on the rules (e.g., when the participants

can bid, and what is the time duration for the resource contracts for a particular auction). It notifies the

participants the information of the smart contract (e.g., address, and interfaces), monitors the smart contract

and calls the function of the smart contract to determine the winning bids. The coordinator is the owner

of the smart contract and the cost of running the smart contract is paid either by registering the auction or

from the subsidy of the auction.

The auction algorithm and the status is published in the smart contract. The participants and the

coordinator can audit the status of the smart contract from the blockchain data. The smart contract acts

as the auctioneer and runs the auction automatically from the predefined auction algorithm and decides

the winning bids. Then, based on the policy, the resource contracts are established and recorded in the

blockchain for further accounting and auditing when the resources are used.

8.2.2 Decentralized Sealed Bid Double Auction Protocol

In this section, we present the proposed resource allocation techniques for EIPs and SPs to establish

relationships (resource contracts) with each other and explain how smart contracts help in this process.

We design a sealed bid double auction using smart contracts on the blockchain that enables the EIPs and

the SPs to bid in the auction with their sealed bids. We assume that for each region r and each time slot τ ,

there is an auction that decides which EIP and SP pairs trade with each other. We note that all participants

and the coordinator can interact with the blockchain network using blockchain gateway services such as

120

@version ^0.2.15

SealedBidDoubleAuction.vy

struct Bid:

bidder: address

blindedBid: bytes32

deposit: uint256

weight: uint256

value: uint256

...

Auction parameters

coordinator: public(address)

biddingEnd: public(uint256)

revealEnd: public(uint256)

...

State of the bids

asks: public(HashMap[address , Bid[MAX_BIDS]])

bids: public(HashMap[address , Bid[MAX_BIDS]])

askCounts: public(HashMap[address , uint256])

bidCounts: public(HashMap[address , uint256])

validAsks: public(Bid[MAX_CONTRACTS])

validAskCount: public(uint256)

validBids: public(Bid[MAX_CONTRACTS])

validBidCount: public(uint256)

Allowed refund map (withdraw or payment)

pendingReturns: public(HashMap[address , uint256])

Figure 8.6: Smart Contract Initial Parameters

Infura 1. We assume that each EIP and SP have at least a client that is responsible to interact with the

region coordinators, resource management, and the smart contracts to control the process of evaluating the

resource valuation. They interact with the smart contract (auctioneer) and record and report the established

resource contracts to the internal resource management for resource allocation and task scheduling.

The auction procedure consists of five phases as shown in Figure 8.5:

Smart Contract Creation

Input: region id r, resource sharing time slot τ , region coordinator account raddr

Output: smart contract address z
Before time T1, for each region r and each time slot τ :

1. The region coordinator creates the smart contract by calling z = raddr.deploy(Z, T1, T2, T3, r, τ), where
Z is the class definition of the resource sharing auction.

2. The region coordinator waits for the transaction to be included in the blockchain network and gathers
the address z for the smart contract.

3. The region coordinator broadcasts the smart contract tuple < z, r, τ > to all the participants registered.

Phase 1. Construct: includes the registration and smart contract creation. Before the auction smart

contract is created, all the EIPs and SPs that want to participate need to register their accounts to the

region coordinator through the steps shown below. The region coordinator will also record the account

information. We use the notations T1, T2, T3, T4 to represent the end time of the first four phases (construct,

bid, reveal, and determine) as shown in Figure 8.5. When handling the creation of the smart contract,

1https://infura.io/

121

https://infura.io/

the region coordinator will obey the rules of phase periods. For example, for the construct phase, the

region coordinator will call the construct function of the smart contract before T1. It is worth noting that

T1, T4 are enforced by the auction protocol which needs to obey the region coordinator but T2, T3 can be

enforced directly by the smart contract which is included in the program of the smart contract. Based on

the negotiated time slot length of the edge resource sharing period (for example, in an one hour period),

the region coordinator creates a smart contract for each resource sharing period. Several parameters are

initialed together with the smart contract as shown in Figure 8.6. It written in Vyper [68] to include the

details. We define a Bid structure at the beginning of the smart contract and we initialize the map between

the sellers and the sell bids (asks), the map between the buyers and the buy bids (bids) and the counts of

them. After the smart contract for the auction is created, the region coordinator will get an address for the

smart contract. Then, both the address and other related information (e.g., region id, and time slot) are

broadcasted to all the participants.

Bid Procedure

Input: smart contract address z, bid value b, weight c, SP account iaddr

After time T1, before time T2:

1. SP i generates the blinded bid β = hash(b, c, α) with a randomly generated secret α.
2. SP i decides a deposit value, which is γ = b ∗ c+ random(b ∗ c).
3. SP i uses its registered account iaddr to send the bids by interacting with the smart contract z by calling

z.bid(β, c, {”from” : iaddr, ”value” : γ}), where the entries in the brackets describe the corresponding
entries included in the transaction.

4. The smart contract z records the blinded bid information as a tuple, < β, c, iaddr, γ >.
5. SP i waits for the transactions to be verified and included in the blockchain network. Then, it record the

bid in the local bid array Bi including tuples of the true bids, < b, c, α >.

Phase 2. Bid: After the auction smart contract is broadcasted to all the participants, the participant can

fetch the auction calendar (e.g., when the participants can bid, and reveal) from the smart contract. It is

as mentioned above as noted by T1, T2, T3. When the bidding period is started, all the participants who

registered can bid to the smart contract. For each bid, the EIP or SP sends the bid by interacting with the

smart contract by sending a transaction including the function for bidding, the blinded bid (hash value of

the entire bid with a randomly generated secret), the number of containers requested or available, and the

deposit to the smart contract. We omit the procedure for the seller (EIPs) to place their sell bids (asks) as

it is similar to the bid procedure shown below. The deposit of the sell bid (ask) will be used to guarantee

that the resources are preserved for the resource contracts during the effective time slot.

Phase 3. Reveal: in the reveal phase, the participant needs to interact with the smart contract to reveal

the bids they sent by sending the real bid to be verified by the smart contract. The bid value, weight and

secret will be sent to the smart contract for verification. If the stored hash value matches the hash value

of the above tuple, the bid is valid and will be reserved for the auction. Otherwise the bid will be removed

and the corresponding deposit will be appended to the withdraw fund list. We omit the procedure for the

seller (EIPs) to reveal their sell bids (asks) as it is similar to the reveal procedure of the buyers (SPs) shown

122

below. It is worth noting that, in the reveal phase, it is possible for the bidders to cancel the previous bids

by sending a wrong bid value to the smart contract in the corresponding bid entry. Therefore, we do not

implement the cancellation functionality in the smart contract and we leave it to the client to implement it.

As only the bidder has the private key to sign its own bids, the authentication of the blockchain network

can make sure that the denial of service attack (e.g., send the wrong bids to the smart contract to cancel

others bids) is hard to conduct.

Reveal Procedure

Input: smart contract address z, bid array Bi, SP account iaddr,
After time T2, before time T3:

1. SP i sends the bid array Bi where each entry includes the bid value b, weight c, secret α of the bid, to
the smart contract for verification by calling z.reveal(Bi, {”from” : iaddr}).

2. Smart contract z verifies each bid by the blinded bid hash β placed in the bid phase. If the buy bid
matches the hash value and the deposit is larger than the total bid value (γ ≥ b ∗ c), it will be appended
to the valid buy bid array, B, stored in the smart contract shown as an array validBids in Figure 8.6.

Phase 4. Determine: In the winner determination phase, the auctioneer (smart contract) decides the

winning bids. For simplicity, we omit the region id r and time slot τ in the following discussion. We use a

binary notation xb to denote whether the buy bid b wins or not (xb = 1 wins, and vice versa). Similarly,

xs denotes whether the sell bid (ask), s, wins or not. We denote the buy price as πb and sell price as πs.

Similarly, we denote the auction result as two sets, Xs = {xs|s ∈ S} and Xb = {xb|b ∈ B}. Each entry

of the set determines the decision of one sell or buy bid in the auction. Besides the winners, the algorithm

also sets the map (shown as pendingReturns in Figure 8.6) between the bidders and the pending withdraw

amounts that determines how much fund can be withdrawn for each bidder including the bid deposit of the

fail bids and the overvalued deposit of the winning bids. The resource contracts are also established in this

phase based on the results of the auction. Each of them can be denoted as a tuple < i,D,C, τ, πb, πs >,

where D is the list of sellers (edge nodes) that provides the resources to SP i in the resource contract and

C is the array of the number of containers provided by each seller.

Winner Determination Procedure

Input: smart contract address z
After time T3, before time T4:

1. The region coordinator calls z.determine(), the predefined auction algorithm, in the smart contract to
decide the winning bids, which is discussed in Section 8.2.3. The decision Xb and Xs are stored in the
smart contract along with the initial resource contracts.

Phase 5. Withdraw: After the auction is closed and the resource contracts are established, the participants

can withdraw their remaining funds (e.g., the excess value deposit and the deposit of the fail bids) from the

smart contract.

123

Withdraw Procedure

Input: smart contract address z, bidder’s account a
For each bidder (either EIP or SP):

1. The bidder calls z.withdraw() with its account a.
2. Smart Contract z verifies the available withdraw amount pendingReturns[a] defined in Figure 8.6. If

pendingReturns[a]>0, the fund will be sent back to account a and set pendingReturns[a]=0 to avoid
double withdrawal.

8.2.3 Auction Algorithm

From the Myerson–Satterthwaite theorem [102], we can see that there are no auction algorithms that can

satisfy all of the four auction properties at the same time namely: (i) Individual Rationality (Definition 3),

which means that no participants should lose from bidding in the auction, (ii) Weak Balanced Budget

(Definition 5), which means that the auctioneer will not subsidize the auction, (iii) Truthfulness (Definition 2)

that ensures that bidding with true valuation is the dominant strategy of all the bidders and (iv) Economic

efficiency (Definition 6) ensures that the good should be finally allocated to the bidder who values it the most.

However, there are auction algorithms that can satisfy three of the properties with a bounded loss on the

remaining one. McAfee mechanism[90] can satisfy individual rationality, weak balanced budget, truthfulness

with a bounded loss of economic efficiency (1/min(|B|, |S|) in our problem). In our work, we use the McAfee

mechanism in the auction design. The truthfulness property guarantees that for the participants whose

objectives are to maximize their utilities, the dominant bidding strategy is to bid by their true valuation.

Based on the above assumption, we first define the utility of the SP and EIP.

Utility of Service Provider: We model the utility of the SP to run the service at the edge. Here, we

consider services having higher requirements for latency such as location-based augmented reality games[107]

and intelligent traffic light control [164]. The utility gain of the SP can be expressed by the gain in changing

the execution of the real-time service from the cloud to the edge which can be represented by the function:

vpi (τ) = f(lr)− f(lpi(τ)) (39)

where f(l) is a function which estimates the utility that can be obtained by providing the service with a

latency l. We assume that the function is a non-increasing function related to the latency which means that

when the latency is increased, the utility will decrease. Here lpi(τ) represents the latency between the mega

datacenter of SP i and the position p. We note that the utility gain can be also modeled by other criteria

such as the bandwidth cost (e.g., when moving an aggregator operator to the edge to reduce the overall

bandwidth cost of moving the data to the cloud).

Utility of Edge Infrastructure Provider For the EIP, its objective is to earn higher revenue by providing

the infrastructure to SPs. Therefore, the utility for the EIP is obviously the profit that it can obtain by

renting the resource to the SPs. The true valuation of the resource for the EIP can be defined using the

124

Table 8.1: Auction Schedule Example for the resource usage in 15:00 - 16:00 9/30

Phase Time Participants/Executor

Auction creation 0:00 9/29 coordinator

Bid 0:00-16:00 9/29 EIPs and SPs

Reveal 16:00-23:00 9/29 EIPs and SPs

Determine 23:00-23:59 9/29 coordinator

Withdraw after 23:59 9/29 Everyone

operating cost of the resources. For each node, the unit operating cost function Costd(τ) can be defined as

the ratio of the sum of the operating cost of each server and the capacity of the node:

Costd(τ) =

∑Md

m Costmd (τ)

Cd
(40)

where Costmd (τ) is the fluctuating operating cost of server m in node d in time slot τ . To determine the

winning bids, we extend the McAfee mechanism [90] by allowing each bid to contain both the unit price and

the number of containers at the same time. The group bidding method can save a significant amount of cost

when the auction is running on the smart contract.

The auction algorithm is shown in Algorithm 12. As we can see, the time complexity is O(max(|B|log|B|,

|S|log|S|)). We omit the region id r and the time slot τ in the algorithm definition. In the algorithm, we

can see that the buy bids and sell bids (asks) are sorted in their natural ordering (ascending order for sell

bids and descending order for buy bids). Then, we find the break-even index by accumulating either from

the buy bids or sell bids (asks) by counting the number of containers. When the break-even index is found

(the next buy bid price is lower than the next sell bid price), the supply is filled (all the possible containers

are sold) or we meet the end of the bid array. Then based on the McAfee mechanism, we decide the winning

bids and the final selling and buying prices.

8.2.4 Smart Contract Implementation

We implement the smart contract by Vyper [68], which can run on any blockchains that support Ethereum

Virtual Machine (EVM) (such as Ethereum, Hyperledger Fabric, etc.). Our choice of using Vyper is due

to its security, auditability and being predictable by implicitly limiting the features of the language such as

recursive function calls, which may lead to unpredictable results when interacting with the smart contract.

As Vyper does not support the dynamic array, we set the size of all the arrays that appear in the smart

contract as 64. Limiting the number of bids can decrease the cost of establishing the smart contract and

running the functions.

As our resource contracts can be established before the Service Providers actually use the resources, it

provides adequate time for the coordinator to conduct the auction. As shown in Table 8.1, the auction can

be handled a day ahead and the two phases can be scheduled with in certain time ranges. As the time

125

Algorithm 12: Algorithm for determining the winning bids

1 Procedure determine(B,S) → πs, πb, Xs, Xb
2 sort B in descending order by the bid price ;
3 re-index B as B = {bi, ci|i ∈ [1, |B|]} ;
4 sort S in ascending order by the bid price ;
5 re-index S as S = {sj , cj |j ∈ [1, |S|]} ;
6 set the overall supply Cr =

∑
d∈Er

Cd ;

7 set current buy price b as the first bid (highest price) in B ;
8 set the sell price s as the first sell bid (lowest ask) in S ;
9 set number of buying containers h = 0, and selling containers k = 0 ;

10 set current index i = 1, j = 1 ;
11 while True do
12 if h ≥ Cr then
13 h = Cr ;
14 break ;

15 else if i+ 1 > |B| or j + 1 > |S| or bi+1 < sj+1 then
16 break ;
17 if h > k then
18 s = sj , k+ = cj , xj = 1 ;
19 j + + ;

20 else
21 b = bi, h+ = ci, xi = 1 ;
22 i+ + ;

23 ρ = (bi+1 + sj+1)/2 ;
24 if b ≥ ρ ≥ s then
25 πs = πb = ρ ;

26 else
27 xi = 0, xj = 0 ;
28 πb = bi ;
29 πs = sj ;

range is sufficient for each participant to interact with the smart contract and to wait for the transaction to

be included in a block, and verify the transaction, the gas price can be set with a low priority fee or even

without setting the priority fee to save the overall cost.

8.2.5 Resource Contract

After the auction is cleared, the resource contracts for time slot τ are established. The length of the

time slot τ can be negotiated by the EIPs and SPs to determine an appropriate granularity for the resource

allocation by considering both low-cost (e.g., the cost of running the auction on the smart contract) and

efficiency for placing services (e.g., minimizing the migration when the resource contracts are expired). We

assume the length of the time slot is one hour, and the auction will be handled on the previous day when

the resource will be used. We present an example in Table 8.1. After the winning bids are determined, the

resource contracts are built between the EIP and SP pairs one by one, and the buyer i, the sellers D (the

nodes provide the resources), the buying price πb, selling price πs, the array of the number of containers C

(each determines the resources provided by an edge node), and effective time slot τ are recorded either in

the auction smart contract (e.g., by a smart contract event) or in a new smart contract that can track the

126

Table 8.2: Default Experiment Setting for each auction

of EIPs 6 # of bids (total) 30

of SPs 6 # of containers per bid 100

PUE 1.2 electricity cost/operating cost 10%

gas price 20 gwei gas limit (per block) 30M

resource usage on the run. The client of each EIP and SP will monitor the resource contract record in the

smart contract to negotiate the resource allocation and gather the payment or provision the tasks.

8.3 Evaluation

In this section, we present the experimental evaluation of the proposed smart contract-based resource

allocation implemented and deployed on the real testbed, Rinkeby[140].

8.3.1 Setup

In the experiment evaluation, we focus on testing the performance of the algorithms when they are

implemented in a smart contract and deployed on the real testbed, Rinkeby. We assume that in each

region, multiple EIPs participate as sellers, multiple SPs participate as buyers and a coordinator handles the

coordination. For each auction, we keep the default setting as shown in Table 8.2. We estimate the power

consumption using a real server model that has the same performance as that of the IBM server x3550 (2 x

[Xeon X5675 3067 MHz, 6 cores], 16GB) [20]. Each server hosts up to 5 service containers at a given time.

The electricity price is generated based on the hourly real-time electricity price from NationalGrid’s dataset

[139]. We use the distribution of the data in 2015 from NationalGrid’s hourly electricity price to simulate

the fluctuation of the real electricity market. We also set the energy cost to 10% of the overall operating cost

[75] and the Power Usage Effectiveness (PUE) is 1.2. For the utility model of the service provider, we choose

a base rate similar to that of the a1.large instance (2 vCPUs and 4 GB memory) of Amazon EC2, which is

$0.05 per hour usage. The linear growth of utility is based on the utility gain of the latency improvement

which is in the 1-100 range.

8.3.2 Methodology

In our experiments, we evaluate two kinds of performance: (i) the performance of the smart contract

which includes the gas cost of different scenarios and participants and function calls, (ii) the performance of

the auction algorithms in comparison to other baselines. The evaluation metrics are defined as follows:

Gas cost: is the measurement of the cost of smart contracts. It is measured by the EVM which executes the

127

4 8 12 16 20

number of bidders
0.0

0.5

1.0

1.5

2.0

2.5

ga
s c

os
t

×107

construct
bid

reveal
determine

withdraw

Figure 8.7: Gas cost of different number of bidders

10 20 30 40 50

number of bids
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ga
s c

os
t

×107

construct
bid

reveal
determine

withdraw

Figure 8.8: Gas cost of different number of bids

function and each assembly operation (opcode) has a fixed gas cost based on its expected execution time.

Social Welfare: is a metric used to evaluate the performance of the auction. The social welfare can be

calculated as the sum of the true valuation of the winners. The social welfare measures the efficiency of the

auction. It is maximized if the goods are allocated to the buyers who value them the most.

Subsidy: is the difference between the payment from the buyers and the payment given to the sellers. The

subsidy is generated based on the auction algorithms. As discussed in the definition, when it is negative,

the auctioneer can gather fees from the auction, and when it is positive, the auctioneer needs to subsidize

the trade to make up the difference.

8.3.3 Smart Contract Performance

As shown in Figure 8.7, we evaluate the gas cost with different number of bidders (sellers and buyers). The

default number of bids is 30 as shown in Table 8.2 and the bids are evenly distributed to each bidder using

a simple round robin algorithm. We illustrate the breakdown of the gas cost in five phases: (i) construct,

in which the coordinator creates the smart contract, (ii) bid, in which the participants bid, (iii) reveal,

in which the participants reveal the sealed bid, (iv) determine, in which the smart contract determines

the winning bids by the auction algorithm, and (v) withdraw, in which the coordinator and participants

128

10 20 30 40 50
number of bids

4
8

12
16

20
nu

m
be

r o
f b

id
de

rs

1.0

1.5

2.0

ga
s

co
st

×10
7

Figure 8.9: Total gas cost comparison of different number of bids and different number of bidders

M
DC

01

M
DC

02

M
DC

03

M
DC

04

M
DC

05

M
DC

06

SP
01

SP
02

SP
03

SP
04

SP
05

SP
06

co
or

di
na

to
r

participants

0

2

4

6

8

ga
s c

os
t

×106

construct
bid

reveal
determine

withdraw

Figure 8.10: Gas cost of different participants

withdraw their funds. As shown in the results, we can see that when there are more participants, the overall

gas cost has only a small increase and it only influences the reveal and withdraw phases as it increases the

number of reveal and withdraw function calls. In Figure 8.8, the impact of the number of bids is evaluated.

The setup is similar to the above experiment and we fixed the number of bidders to 12. We can see that

with increasing the number of bids, the gas cost increases significantly especially for the bid, reveal and

determine phases. The reason is that the number of bids influence the time complexity of each function call

in the three phases. The influence of the number of bidders and bids are illustrated in Figure 8.9. We can

get similar conclusion that the overall number of bids influences the gas cost much more than the number

of bidders.

We also evaluate the gas cost for different participants and function calls in Figure 8.10 and 8.11. As

shown in Figure 8.10, we can see that most of the gas cost is paid by the coordinator and the participants

only pay gas cost when they bid or reveal the bids. As we design the auction mechanism based on McAfee

mechanism, the coordinator has the opportunity to get payment from the auction and the participants can

also pay management fees to the coordinator to cover such cost. In Figure 8.11, we observe similar results

that show that construct and determine phases cost most of the gas. As shown in Table 8.3, we convert the

gas cost to real ether cost using the price listed in July 2021 (1 ether=$1787). As we can see, the coordinator

129

construct bid reveal determine withdraw
function call

0

1

2

3

4

5

ga
s c

os
t

×106

Figure 8.11: Gas cost distribution of each function call

Table 8.3: A breakdown of the gas costs in $ of the function calls using the conversion rate of 1 ether=$1787

and the gas price of 20 gwei (1 gwei = 10−9 ether) as listed in July 2021

function gas cost cost in $
mean min 25% 50% 75% max mean

construct 3400175 3400175 3400175 3400175 3400175 3400175 121.52

bid 126469 120002 120026 120056 137126 137156 4.52

reveal 433973 207976 218673 355149 491625 1873449 15.51

determine 3284284 1457251 2371536 3318685 4291935 5273596 117.38

withdraw 26899 23458 23458 28465 28465 28465 0.96

needs to pay nearly 240 dollars to complete one auction, which is relatively high for the current market but

there are many alternatives that can decrease the cost. For example, the coordinators can build a private

blockchain (e.g., by using Hyperledger Fabric or Ethereum 2.0) to decrease the operating cost of running the

smart contract. Each bidder may need to pay $4.5 for one bid and $15.5 for revealing all the bids (linear to

the number of bids) on average. The withdrawal only needs less than $1.

8.3.4 Auction Performance

In this experiment, we test the performance of different auction algorithms, in terms of social welfare

and subsidy. We compare the following auction algorithms:

McAfee [90]: is the auction mechanism we use in our method. It guarantees both truthfulness and weak

balanced budget at the same time.

OPT: is a straightforward auction mechanism that always chooses the highest buy bids and lowest sell bids

to trade. It is named as optimal single price omniscient (OPT) [53]. It can always guarantee balanced budge

but not truthfulness.

VCG: is a well-known auction mechanism [144, 41, 56] which guarantees truthfulness but not balanced

budget.

130

10 20 30 40 50

number of bids
0

1000

2000

3000

4000

5000

6000

7000

so
cia

l w
el

fa
re

Mcafee
OPT
VCG

Figure 8.12: Social welfare of different methods with different number of bids

20 40 60 80 10
0

number of containers per bid

0
500

1000
1500
2000
2500
3000
3500
4000

so
cia

l w
el

fa
re

Mcafee
OPT
VCG

Figure 8.13: Social welfare of different methods with different number of containers per bid

In Figure 8.12, we evaluate the social welfare of the above three auction algorithms with different number

of bids. We can see that all of the three methods have similar social welfare in different setups. From the

theoretic aspect, only Mcafee may lose social welfare in the second condition (as shown in Algorithm 12) and

because the bids are evenly distributed, the probability of the occurrence of the second condition is low. The

result is similar when we increase the number of containers being traded in each bid as shown in Figure 8.13.

When the subsidy is considered in the evaluation (Figure 8.14 and 8.15), we can see that VCG will suffer

from positive subsidy and the coordinator needs to subsidize the trade. However, Mcafee mechanism has

weak balanced budget and the subsidy can be only negative. It means that this can be one possible way for

the coordinator to gather fees and mitigate the operating cost of running the smart contracts. OPT always

has balanced budget and the subsidy is always zero.

8.4 Summary and discussion

In this chapter, we propose a blockchain-based auction for allocating computing resources in an edge

computing platform that allows service providers to establish resource sharing contracts with edge infras-

131

10 20 30 40 50

number of bids

1400
1200
1000

800
600
400
200

0
200

su
bs

id
y

Mcafee
OPT
VCG

Figure 8.14: Subsidy of different methods with different number of bids

20 40 60 80 10
0

number of containers per bid

300

200

100

0

100

su
bs

id
y

Mcafee
OPT
VCG

Figure 8.15: Subsidy of different methods with different number of containers per bid

tructure providers apriori using smart contracts in Ethereum. The decentralized auction protocol makes the

trust decentralized on the blockchain network, which reliefs the concern on both the centralized auction and

the single point of failure. We implement a prototype of the proposed model on a real blockchain test bed

and our extensive experiments demonstrate the effectiveness, scalability and performance efficiency of the

proposed approach.

While the decentralized resource sharing mechanism is designed for the geo-distributed edge environment,

we note that the idea can be applied in geo-distributed clouds as well. Based on the geo-distributed cloud

resource sharing model discussed in Chapter 7, we can modify the smart contract defined in Section 8.2

to implement the auction procedure for geo-distributed clouds designed in Chapter 7 so that all cloud

service providers can place buy bids and sell bids (asks) and the smart contract can act as the decentralized

auctioneer to establish the resource contracts.

132

9.0 Conclusion and Future Work

9.1 Conclusion

In this dissertation, we study the optimization of stream processing applications in geo-distributed edge

and cloud environments by considering key challenges in both the data processing (platform) layer and the

infrastructure management layer.

In the first part of the dissertation (Chapter 3, 4, and 5), we present a distributed stream process-

ing platform that optimizes the resource allocation of heterogeneous edge computing resources along three

dimensions. Specifically, in Chapter 3, we present Amnis, a distributed stream processing platform that

optimizes the resource allocation for stream queries by carefully considering the data locality and resource

constraints during physical plan generation and operator placement in edge computing environments. Amnis

closely considers physical plan generation while optimizing distributed stream processing. The physical plan

generation in combination with data locality optimization in Amnis enables data locality-aware operator

placement that optimizes the placement of operators near the data sources. The coflow optimization fea-

ture in Amnis further increases the utilization of the network by scheduling the flows by considering the

dependencies that exist between them. The results demonstrate the performance of Amnis in terms of both

end-to-end latency and throughput compared to previous techniques. In Chapter 4, we extend Amnis to

address fault tolerance in edge-based stream processing. We present a novel resilient stream processing

framework to achieve system-wide fault tolerance while meeting the latency requirement for the applications

in the edge computing environment. The proposed approach employs both checkpointing-based data repli-

cation and active replication techniques to seamlessly handle the failure while considering the heterogeneous

nature of hardware and software components in edge-based stream processing applications. The heterogene-

ity challenges the placement and execution of operators that have higher recovery cost expectations than the

others. We use the recovery cost estimate to place the active replication in order to reduce both the latency

during failures and the fault tolerance cost (e.g., adding duplicate operators). The results demonstrate that

our methods find an effective tradeoff between full replication and checkpointing-only mechanisms to achieve

low recovery cost (latency) with a bounded fault tolerance budget. In Chapter 5, we further extend the

stream processing optimization to incorporate elastic scaling using a reinforcement learning-based method.

The proposed method automatically tunes the edge-based stream processing applications to meet the perfor-

mance requirements. The model-based reinforcement learning method handles the uncertainty of the stream

processing application by considering the variation in the workload and processing rate dynamics. The dy-

namic parallelism configuration problem is modeled as a Markov Decision Process (MDP) and it is solved

by reducing it to a contextual Multi-Armed Bandit (MAB) problem using the well-studied LinUCB method.

The model-based LinUCB further enhances the pre-train performance by adapting arbitrary G/G/1 queues

133

with the distribution information gathered from the historical information and improves the initial states

of the reinforcement learning model. The experiment results demonstrate the effectiveness of the proposed

approach compared to standard methods in terms of cumulative reward and convergence speed. Thus, in the

first part of this dissertation summarized above, we extend the current state-of-the-art distributed stream

processing engines to adapt to heterogeneous edge environments and the proposed techniques achieve low-

latency fault-tolerant elastic stream processing by intelligently optimizing the physical plan, the placement

of the operators and automatically deciding the parallelism of the operators.

In the second part of this dissertation Chapter 6, 7, and 8, we propose a set of resource management

and resource sharing mechanisms to efficiently allocate edge computing resources in a geo-distributed en-

vironment. Specifically, in Chapter 6, we propose Zenith, a new resource allocation model for allocating

computing resources in an edge computing platform that allows edge service providers to establish resource

sharing contracts with edge infrastructure providers apriori. The edge resource sharing platform is im-

plemented based on the McAfee mechanism to establish resource contracts between the service providers

(SPs) and the edge infrastructure providers (EIPs). Truthfulness, individual rationality and balanced bud-

get properties of McAfee mechanism simplify the design of the auction and the proposed bidding strategies

(utility optimization) for the SPs and EIPs. In Chapter 7, we extend the auction model to geo-distributed

cloud environments through a contracts-based resource sharing model that allows Cloud Service Providers

(CSPs) to establish resource sharing contracts with individual datacenters apriori for defined time intervals

during a 24 hour time period. In Chapter 8, a decentralized platform for sharing geo-distributed edge and

cloud resources among multiple entities is proposed. It employs an auction mechanism that is designed and

implemented using blockchain-based smart contracts to carry out a decentralized sealed bid double auction

between the infrastructure providers and service providers. Thus, the second part of the dissertation focuses

on optimizing the utility of the providers by establishing a resource sharing platform to increase the efficiency

of resource usage by either sharing the infrastructure or shifting the peak loads. The proposed techniques

based on the theory of mechanism design make it possible for competitors to cooperate and increase the

overall social welfare of the system in a decentralized manner.

9.2 Discussion and Future Work

We believe that the outcome of this dissertation would contribute to extending the scope of stream

processing applications in geo-distributed edge and cloud computing environments. We briefly discuss a list

of possible future directions of our work.

• Automating the optimization for stream processing applications deployed in edge computing environ-

ments is more challenging than doing it in cloud environments. This is due to not only the nature of

heterogeneous edge resources (computing resources, network resources and topologies, etc.) but also the

134

nature of the requirements in edge-based stream processing applications (e.g., different requirements,

different memory or CPU utilization features, and different hardware requirements). In this dissertation,

we deal with some of the key challenges including data locality, fault tolerance and elasticity. There are

several promising directions to explore in stream processing using heterogeneous resources for edge-based

applications. We summarize them below:

– In our work, we assume that the control signal in the stream processing application will not be the

bottleneck. For example, if the stream processing application is deployed in a geo-distributed edge

computing environment, the synchronization of the state of the application (e.g., the back-pressure

signal) may become a bottleneck. While this is not handled in our work, we believe that tackling

this challenge can be a promising direction for future work.

– Our elastic stream processing work (Chapter 5) only deals with the parallelism reconfiguration in

an online manner. However, there are many other decisions that can be made within an online

algorithm including operator placement, network flows and scheduling in a heterogeneous edge

environment. Future work can focus on developing a framework to automate the reconfiguration

process by adaptively learning the environment and application characteristics.

– Our work (Chapter 3) optimizes the data locality primarily by grouping the selective operators with

the source operators and by moving them to the data source (Section 3.3.1.1). We assume that

the selective operators are stateless so that we can arbitrarily split them with the same number of

the corresponding source operator. We note that the selective operator can also be stateful as in

the case of windowed maximal and key-by sum operators. The reason we limit the applicability

to the stateless operator is that the split stateless operators do not need to consider the shuffling

phase which needs to be correct (e.g., for key-by sum, all the tuples belonging to a key needs to be

processed by one of the instances of the downstream operators) and it can be a bottleneck between

the split source operators and the downstream operators. However, it is possible to automatically

split the stateful operator to improve the data locality which we leave it as future work.

– Our work does not assume any specific partition function to be used between two connected opera-

tors. The partition function can influence the performance in some cases. For example, the partition

function can prefer the successor task which is placed locally with the current task to improve the

data locality. The optimization of the partition function has been widely studied in the distributed

batch processing domain [166], however, applying those methods in a heterogeneous edge computing

environment is still a challenge which can be an interesting direction of future work.

– In Chapter 4, we deal with the fault tolerance problem for edge-based stream processing applica-

tions using a hybrid recovery cost-aware mechanism. The work considers both the failure rate of

the physical nodes and the recovery cost of the operators to decide the active replications. The

mechanism acts in a proactive way which predicts the failure and adds the replication beforehand.

However, it works better if the prediction is accurate. Maximizing the accuracy of predicting failures

135

in heterogeneous edge environments is still an open problem and the techniques need to consider

both the computing and network heterogeneity at the same time.

• For geo-distributed resource management and resource sharing, we discussed how to fairly share the

resources between different entities in a utility-aware manner. Both the centralized (Chapter 6 and 7)

and the decentralized approaches (Chapter 8) are based on several key assumptions. We identify the

following future directions of work to extend it further:

– We assume that participants will participate the auction by obeying the rules. If the assumption

does not hold (e.g., an attacker can disrupt the auction procedures by making false bids or the

participants may collude with each other), the fairness or truthfulness properties of the auction

may not be valid. Designing a collusion-resistant auction protocol for sharing resources can be a

promising direction in which any out-of-order behaviors can be detected or prevented and can be

penalized by the system.

– In the trading procedure, we assume that all the participants obey the resource contracts established

in the auction. It may be violated. The utility-aware penalty can be used to mitigate the loss when

the contractor violates the resource contracts. For example, the infrastructure provider does not

reserve enough resources for the resource contracts and hence, the penalty can be paid to mitigate

the loss of the buyer. It is also a promising direction to automate and enforce the resource contracts

on the blockchain network and use the off-chain verification techniques (e.g., zero-knowledge proof)

to ensure that the resource contracts are executed correctly.

– In the auction mechanism design, we assume that there are sufficient number of participants in each

auction (i.e., no monopoly) to ensure an effective trading. In real environments, it is possible that in

an area, there is only one edge infrastructure provider or service provider who controls most of the

market. In such cases, we can rely on traditional auction mechanisms in which only one side, either

the buyers or the sellers, bid in the auction. Vickrey auction mechanism is an example of this kind

of auction [144]. We note that if both the service and infrastructure markets are a monopoly, our

mechanism may not work. To avoid such situations, it is important to maintain an active market

that encourages adequate competition and avoids monopoly. Addressing market environments with

monopolies is a limitation of the proposed approach and it is an interesting future direction of work.

– In the utility estimation during resource allocation, we assume that the migration cost is not sig-

nificant in Chapter 7 and we do not consider it in Chapter 6 and 8. However, the migration cost

may be significant in some cases with data-intensive batch workloads. We note that the migration

cost can be included in the utility estimation in the model proposed in Section 6.3 and Section 8.2.

As the service providers know which region the application will migrate to, it is possible to include

the migration cost in the utility estimation when determining the bid value. For the geo-distributed

cloud environments (Chapter 7), it is relatively hard to accurately estimate the migration cost as

the service may be migrated to any geo-distributed datacenters. We leave this as future work.

136

– For the techniques presented in Chapter 6, 7, and 8, we assume that all the participants have the

ability to estimate the utility (e.g., operating cost) to make sure that the trade is efficient. However,

the estimation may not be accurate and may have some errors. We have conducted an experiment in

Section 7.5.2.3 to evaluate the influence of the prediction errors. It demonstrates that the resource

contracts-based resource sharing mechanism can tolerate some prediction error. However, if the

utility estimation is not accurate, it may lead to a loss of revenue for the participants. Future work

may address how to accurately estimate the utility with zero or very low prediction error.

137

Appendix A Mechanism Design

In this chapter, we first introduce the basic notations used to discuss the mechanism design, which is

primarily used to design the auction algorithms. We assume in an auction, there are n bidders that want to

bid in the auction and each bidder i ∈ N bids with their bid value, bi. Here N denotes the set of bidders

N = {1, 2, ..., n} The bids are represented by a vector ~b = {b1, b2, ..., bn}. Each bidder has a true valuation

of the good, which is private to the bidder, represented by ~v = {v1, v2, ..., vn}. Depending on the bidding

strategy, the bid may be equal or not equal to the real valuation of the good for the bidder. The outcome of

the auction is determined by the auction mechanism which can be represented by a vector ~x = {x1, x2, ..., xn}

where xi is a binary indicator that indicates whether the bid bi wins or not. The payments are represented

by ~p = {p1, p2, ..., pn} where pi is the payment of bidder i to buy the good in the auction. The objective

of each bidder is to maximize the per-bidder utility which can be represented by using the following utility

function:

ui = (vi − pi)xi (41)

where ui is the utility of bidder i.

We next introduce Dominant Strategy [108] from game theory that forms a fundamental solution concept

for auction mechanism designs.

Definition 1. (Dominant Strategy) Strategy si is a bidder i’s dominant strategy in a game, if for any

strategy s′i 6= si and any other bidders’ strategy profile s−i,

ui(si, s−i) ≥ ui(s′i, s−i). (42)

The concept of dominant strategy is related to truthfulness. In an auction, truthfulness means that revealing

truthful information is the dominant strategy for every bidder.

Definition 2. (Truthfulness) “Truthfulness” is also called as strategy-proof or incentive compatibility in

auction literature. In game theory, an asymmetric game where players have private information is said to be

strategy-proof (SP) if it is a weakly-dominant strategy for every player to reveal his/her private information.

If an auction mechanism is truthful, then the bidders will tend to bid with their true valuation of the

products. This is a powerful feature for auction mechanism design as it ensures that both the buyers and

sellers can get maximum utility from the auction without cheating.

Formally, we can define the truthfulness property as

E[ui(si, s−i)] ≥ E[ui(s
′
i, s−i)]

where the ui is the utility of bidder i, si is the strategy that bidder i bids with the true value of the

product. Here s−i represents the strategies for the bidders other than bidder i and s′i represents a strategy

138

other than si. The function illustrates that the strategy that bids with the true value will give the bidder

the highest utility compared to any other strategies. If this function is true for all the bidders, it ensures

that the auction mechanism is truthful.

In auction mechanism design, there is another property called Individual Rationality guaranteeing that

every bidder will not lose utility in the auction. It is defined as below:

Definition 3. (Individual Rationality) An auction is individual rational if and only if ui ≥ 0 holds for every

bidder i ∈ N .

There are also two other properties of the mechanism design called Balanced Budget and Economic

Efficiency defined as follows:

Definition 4. (Strong Balanced Budget) An auction is Strong Balanced Budget if and only if
∑
pi∈~p pi =∑

ρj∈~ρ ρj

where ρj is the payment paid to the seller j. The definition defined above shows that the strong balanced

budget guarantees that all the payments from the buyers go to the sellers (which is often discussed in double

auction where both the buyers and sellers can bid) and nothing is left for the auctioneer. There is another

property called weak balanced budget which is defined as follows:

Definition 5. (Weak Balanced Budget) An auction is Weak Balanced Budget if and only if
∑
pi∈~p pi ≥∑

ρj∈~ρ ρj

which means that the auctioneer may gain from the auction by gathering fees from the difference between

the payments from the buyers and the payments paid to the sellers.

The economic efficiency is also an important property in the mechanism design:

Definition 6. (Economic efficiency) An auction has Economic efficiency if and only if
∑
vi∈~v vixi is maxi-

mized.

which means that the social welfare is maximized such that the goods of the auction go to the bidder

who value them most.

139

Appendix B Publication list

Papers contributing to this dissertation:

• Jinlai Xu, and Balaji Palanisamy. “Cost-aware resource management for federated clouds using resource

sharing contracts.” In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), IEEE,

2017.

• Jinlai Xu, Balaji Palanisamy, Heiko Ludwig, and Qingyang Wang. “Zenith: Utility-aware resource

allocation for edge computing.” In 2017 IEEE international conference on edge computing (EDGE),

IEEE, 2017.

• Jinlai Xu, and Balaji Palanisamy. ”Optimized contract-based model for resource allocation in federated

geo-distributed clouds.” IEEE Transactions on Services Computing (TSC), IEEE, 2021.

• Jinlai Xu, Balaji Palanisamy, Qingyang Wang. “Resilient Stream Processing in Edge Computing.“ In

21st IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid), IEEE,

2021.

• Jinlai Xu, Balaji Palanisamy, “Model-based reinforcement learning for elastic stream processing in edge

computing”, In 28th IEEE International Conference on High Performance Computing, Data, and Ana-

lytics (HiPC) (accepted), IEEE, 2021.

• Jinlai Xu, Balaji Palanisamy, Qingyang Wang, Heiko Ludwig, and Sandeep Gopisetty. “Amnis: Opti-

mized Stream Processing for Edge Computing.“ Journal of Parallel and Distributed Computing (JPDC),

2022.

Other papers during my PhD study:

• Jinlai Xu, Balaji Palanisamy, Yuzhe Tang, and SD Madhu Kumar. “PADS: Privacy-preserving auction

design for allocating dynamically priced cloud resources.” In 2017 IEEE 3rd International Conference on

Collaboration and Internet Computing (CIC), IEEE, 2017.

• Jingzhe Wang, Balaji Palanisamy, and Jinlai Xu. “Sustainability-aware Resource Provisioning in Data

Centers.” In 2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC),

IEEE, 2020.

• Chao Li, Balaji Palanisamy, Runhua Xu, Jinlai Xu and Jingzhe Wang. “SteemOps: Extracting and

Analyzing Key Operations in Steemit Blockchain-based Social Media Platform.” In Proc. of 11th ACM

Conference on Data and Application Security and Privacy (CODASPY), 2021.

140

Bibliography

[1] Mohammad Aazam and Eui-Nam Huh. Fog computing micro datacenter based dynamic resource
estimation and pricing model for iot. In Advanced Information Networking and Applications (AINA),
2015 IEEE 29th International Conference on, pages 687–694. IEEE, 2015.

[2] Mohammad Aazam, Pham Phuoc Hung, and Eui-Nam Huh. Smart gateway based communication
for cloud of things. In Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
2014 IEEE Ninth International Conference on, pages 1–6. IEEE, 2014.

[3] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and Harbinder Bhogan.
Volley: Automated data placement for geo-distributed cloud services. In NSDI, pages 17–32, 2010.

[4] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A timeout-free failure detector
for quiescent reliable communication. In International Workshop on Distributed Algorithms, pages
126–140. Springer, 1997.

[5] Abdul Ahad, Mohammad Tahir, and Kok-Lim Alvin Yau. 5g-based smart healthcare network: Archi-
tecture, taxonomy, challenges and future research directions. IEEE Access, 7:100747–100762, 2019.

[6] Arif Ahmed and Ejaz Ahmed. A survey on mobile edge computing. In Intelligent Systems and Control
(ISCO), 2016 10th International Conference on, pages 1–8. IEEE, 2016.

[7] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam
McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: fault-tolerant stream processing
at internet scale. Proceedings of the VLDB Endowment, 6(11):1033–1044, 2013.

[8] Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W Moore, and Andy Hopper. Predicting
the performance of virtual machine migration. In Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2010 IEEE International Symposium on, pages 37–46.
IEEE, 2010.

[9] Rachel Allen and Michael Li. Ranking popular distributed computing packages for data science.
Accessed November. 2, 2020.

[10] Gayashan Amarasinghe, Marcos D de Assunçao, Aaron Harwood, and Shanika Karunasekera. A
data stream processing optimisation framework for edge computing applications. In 2018 IEEE 21st
International Symposium on Real-Time Distributed Computing (ISORC), pages 91–98. IEEE, 2018.

[11] Amazon. Amazon EC2 Dedicated Instances. https://aws.amazon.com/ec2/purchasing-
options/dedicated-instances/. Accessed Nov. 11, 2016.

[12] Amazon. AWS Amazon EC2. https://aws.amazon.com. Accessed Jan. 4, 2016.

[13] Amazon. AWS Amazon EC2 On-demand Pricing. Accessed Jan. 4, 2016.

141

[14] Zubair Amjad, Axel Sikora, Benoit Hilt, and Jean-Philippe Lauffenburger. Low latency v2x ap-
plications and network requirements: Performance evaluation. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 220–225. IEEE, 2018.

[15] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey, Esther Ryvkina,
Michael Stonebraker, and Richard Tibbetts. Linear road: a stream data management benchmark.
In Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pages
480–491. VLDB Endowment, 2004.

[16] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley, Xiangrui
Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. Spark sql: Relational data processing in
spark. In Proceedings of the 2015 ACM SIGMOD international conference on management of data,
pages 1383–1394, 2015.

[17] Azure. Azure iot edge. https://azure.microsoft.com/en-us/services/iot-edge/. Accessed Oct. 14, 2021.

[18] Michael Till Beck, Martin Werner, Sebastian Feld, and S Schimper. Mobile edge computing: A
taxonomy. In Proc. of the Sixth International Conference on Advances in Future Internet. Citeseer,
2014.

[19] Viacheslav Belenko, Valery Chernenko, Vasiliy Krundyshev, and Maxim Kalinin. Data-driven failure
analysis for the cyber physical infrastructures. In 2019 IEEE International Conference on Industrial
Cyber Physical Systems (ICPS), pages 1–5. IEEE, 2019.

[20] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms and adaptive heuris-
tics for energy and performance efficient dynamic consolidation of virtual machines in cloud data
centers. Concurrency and Computation: Practice and Experience, 24(13):1397–1420, 2012.

[21] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing: A platform
for internet of things and analytics. In Big Data and Internet of Things: A Roadmap for Smart
Environments, pages 169–186. Springer, 2014.

[22] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role in the
internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing,
pages 13–16. ACM, 2012.

[23] David Breitgand, Gilad Kutiel, and Danny Raz. Cost-aware live migration of services in the cloud.
In SYSTOR, 2010.

[24] David Breitgand, A Marashini, and Johan Tordsson. Policy-driven service placement optimization in
federated clouds. IBM Research Division, Tech. Rep, 9:11–15, 2011.

[25] Andrey Brito, Christof Fetzer, and Pascal Felber. Multithreading-enabled active replication for event
stream processing operators. In 2009 28th IEEE International Symposium on Reliable Distributed
Systems, pages 22–31. IEEE, 2009.

[26] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

142

[27] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Intercloud: Utility-oriented federation
of cloud computing environments for scaling of application services. In International Conference on
Algorithms and Architectures for Parallel Processing, pages 13–31. Springer, 2010.

[28] Miguel Caballer, Carlos De Alfonso, Fernando Alvarruiz, and GermáN Moltó. Ec3: Elastic cloud
computing cluster. Journal of Computer and System Sciences, 79(8):1341–1351, 2013.

[29] Rodrigo N Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar Buyya. Workload prediction
using arima model and its impact on cloud applications’ qos. IEEE Transactions on Cloud Computing,
3(4):449–458, 2015.

[30] Colin Camerer. Behavioral game theory: Experiments in strategic interaction. Princeton University
Press, 2003.

[31] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas.
Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[32] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli. Optimal operator
placement for distributed stream processing applications. In Proceedings of the 10th ACM Interna-
tional Conference on Distributed and Event-based Systems, pages 69–80. ACM, 2016.

[33] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli. Optimal operator repli-
cation and placement for distributed stream processing systems. ACM SIGMETRICS Performance
Evaluation Review, 44(4):11–22, 2017.

[34] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo Russo. Optimal op-
erator deployment and replication for elastic distributed data stream processing. Concurrency and
Computation: Practice and Experience, 30(9):e4334, 2018.

[35] Emanuele Carlini, Massimo Coppola, Patrizio Dazzi, Laura Ricci, and Giacomo Righetti. Cloud
federations in contrail. In European Conference on Parallel Processing, pages 159–168. Springer,
2011.

[36] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch. Integrating
scale out and fault tolerance in stream processing using operator state management. In Proceedings
of the 2013 ACM SIGMOD international conference on Management of data, pages 725–736, 2013.

[37] Hyeong Soo Chang, Michael C Fu, Jiaqiao Hu, and Steven I Marcus. An adaptive sampling algorithm
for solving markov decision processes. Operations Research, 53(1):126–139, 2005.

[38] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark Holderbaugh,
Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry Peng, et al. Benchmarking streaming
computation engines: Storm, flink and spark streaming. In 2016 IEEE international parallel and
distributed processing symposium workshops (IPDPSW), pages 1789–1792. IEEE, 2016.

[39] Mosharaf Chowdhury and Ion Stoica. Coflow: a networking abstraction for cluster applications. In
HotNets, pages 31–36, 2012.

143

[40] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian
Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation-Volume 2, pages 273–286. USENIX
Association, 2005.

[41] Edward H Clarke. Multipart pricing of public goods. Public choice, 11(1):17–33, 1971.

[42] Alexandre da Silva Veith, Marcos Dias de Assuncao, and Laurent Lefevre. Latency-aware place-
ment of data stream analytics on edge computing. In International Conference on Service-Oriented
Computing, pages 215–229. Springer, 2018.

[43] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Com-
munications of the ACM, 51(1):107–113, 2008.

[44] Cuong T Do, Nguyen H Tran, Chuan Pham, Md Golam Rabiul Alam, Jae Hyeok Son, and
Choong Seon Hong. A proximal algorithm for joint resource allocation and minimizing carbon foot-
print in geo-distributed fog computing. In Information Networking (ICOIN), 2015 International
Conference on, pages 324–329. IEEE, 2015.

[45] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh
Mishra. The design and operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 1–14, July 2019.

[46] Dror Feitelson. Logs of real parallel workloads. http://www.cs.huji.ac.il/labs/parallel/workload/.
Accessed Aug. 29, 2017.

[47] Ana Juan Ferrer, Francisco HernáNdez, Johan Tordsson, Erik Elmroth, Ahmed Ali-Eldin, Csilla
Zsigri, RaüL Sirvent, Jordi Guitart, Rosa M Badia, Karim Djemame, et al. Optimis: A holistic
approach to cloud service provisioning. Future Generation Computer Systems, 28(1):66–77, 2012.

[48] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ramasamy. Dhalion:
self-regulating stream processing in heron. Proceedings of the VLDB Endowment, 10(12):1825–1836,
2017.

[49] Xinwei Fu, Talha Ghaffar, James C Davis, and Dongyoon Lee. Edgewise: a better stream processing
engine for the edge. In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference, pages 929–945, 2019.

[50] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo Higashino, Adriana
Iamnitchi, Marinho Barcellos, Pascal Felber, and Etienne Riviere. Edge-centric computing: Vision
and challenges. ACM SIGCOMM Computer Communication Review, 45(5):37–42, 2015.

[51] Michael R Gary and David S Johnson. Computers and intractability: A guide to the theory of
np-completeness, 1979.

144

[52] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica.
Dominant resource fairness: Fair allocation of multiple resource types. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation, NSDI’11, page 323–336,
USA, 2011. USENIX Association.

[53] Andrew V Goldberg and Jason D Hartline. Competitiveness via consensus. In SODA, volume 3,
pages 215–222, 2003.

[54] Rohitha Goonatilake and Rafic A Bachnak. Modeling latency in a network distribution. Network and
Communication Technologies, 1(2):1, 2012.

[55] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel. The cost of a cloud: research
problems in data center networks. ACM SIGCOMM computer communication review, 39(1):68–73,
2008.

[56] Theodore Groves. Incentives in teams. Econometrica: Journal of the Econometric Society, pages
617–631, 1973.

[57] Lin Gu, Deze Zeng, Peng Li, and Song Guo. Cost minimization for big data processing in geo-
distributed data centers. IEEE Transactions on Emerging Topics in Computing, 2(3):314–323, 2014.

[58] John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 31(5):532–533, 1988.

[59] Sijin He, Li Guo, and Yike Guo. Real time elastic cloud management for limited resources. In 2011
IEEE 4th International Conference on Cloud Computing, pages 622–629. IEEE, 2011.

[60] Thomas Heinze, Mariam Zia, Robert Krahn, Zbigniew Jerzak, and Christof Fetzer. An adaptive repli-
cation scheme for elastic data stream processing systems. In Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, pages 150–161, 2015.

[61] Thomas Hiessl, Vasileios Karagiannis, Christoph Hochreiner, Stefan Schulte, and Matteo Nardelli.
Optimal placement of stream processing operators in the fog. In 2019 IEEE 3rd International Con-
ference on Fog and Edge Computing (ICFEC), pages 1–10. IEEE, 2019.

[62] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. Mqtt-s—a publish/subscribe protocol for
wireless sensor networks. In 2008 3rd International Conference on Communication Systems Software
and Middleware and Workshops (COMSWARE’08), pages 791–798. IEEE, 2008.

[63] Jeong-Hyon Hwang, Sanghoon Cha, Uǧur Cetintemel, and Stan Zdonik. Borealis-r: a replication-
transparent stream processing system for wide-area monitoring applications. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, pages 1303–1306, 2008.

[64] IBM. Bluemix Dedicated. Accessed Nov. 7, 2016.

[65] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and random-
ization to variance-based k-clustering. In Proceedings of the tenth annual symposium on Computational
geometry, pages 332–339. ACM, 1994.

145

[66] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim, Wong Ming Tat, Shari-
pah Setapa, Jing Yuan Luke, and Ong Hong Hoe. Evaluation of docker as edge computing platform.
In Open Systems (ICOS), 2015 IEEE Confernece on, pages 130–135. IEEE, 2015.

[67] Arthur B Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–562,
1962.

[68] Mudabbir Kaleem, Anastasia Mavridou, and Aron Laszka. Vyper: A security comparison with solidity
based on common vulnerabilities. In 2020 2nd Conference on Blockchain Research & Applications for
Innovative Networks and Services (BRAINS), pages 107–111. IEEE, 2020.

[69] Chuanqi Kan. Docloud: An elastic cloud platform for web applications based on docker. In 2016
18th international conference on advanced communication technology (ICACT), pages 478–483. IEEE,
2016.

[70] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri Heiskanen, and
Volker Markl. Benchmarking distributed stream data processing systems. In 2018 IEEE 34th Inter-
national Conference on Data Engineering (ICDE), pages 1507–1518. IEEE, 2018.

[71] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload characterization and prediction
in the cloud: A multiple time series approach. In Network Operations and Management Symposium
(NOMS), 2012 IEEE, pages 1287–1294. IEEE, 2012.

[72] Rob Kitchin. The real-time city? big data and smart urbanism. GeoJournal, 79(1):1–14, 2014.

[73] Dalibor Klusáček and Hana Rudová. Alea 2: job scheduling simulator. In Proceedings of the 3rd
International ICST Conference on Simulation Tools and Techniques, page 61. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), 2010.

[74] Derrick Kondo, Bahman Javadi, Paul Malecot, Franck Cappello, and David P Anderson. Cost-benefit
analysis of cloud computing versus desktop grids. In Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1–12. IEEE, 2009.

[75] Jonathan Koomey, Kenneth Brill, Pitt Turner, John Stanley, and Bruce Taylor. A simple model for
determining true total cost of ownership for data centers. Uptime Institute White Paper, Version,
2:2007, 2007.

[76] Parul Kudtarkar, Todd F DeLuca, Vincent A Fusaro, Peter J Tonellato, and Dennis P Wall. Cost-
effective cloud computing: a case study using the comparative genomics tool, roundup. Evolutionary
Bioinformatics, 6:197, 2010.

[77] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mit-
tal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter heron: Stream processing at
scale. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
pages 239–250, 2015.

[78] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users: Can offloading computation
save energy? Computer, 43(4):51–56, 2010.

146

[79] Hongxing Li, Chuan Wu, Zongpeng Li, and Francis CM Lau. Profit-maximizing virtual machine
trading in a federation of selfish clouds. In 2013 Proceedings IEEE INFOCOM, pages 25–29. IEEE,
2013.

[80] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on
World wide web, pages 661–670, 2010.

[81] Lixing Li, Zhi Jin, Ge Li, Liwei Zheng, and Qiang Wei. Modeling and analyzing the reliability and
cost of service composition in the iot: A probabilistic approach. In 2012 IEEE 19th International
Conference on Web Services, pages 584–591. IEEE, 2012.

[82] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. Model-free control for distributed stream data
processing using deep reinforcement learning. Proceedings of the VLDB Endowment, 11(6):705–718,
2018.

[83] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning. In
International Conference on Machine Learning, pages 3053–3062. PMLR, 2018.

[84] Hui Lin, Zetao Yang, Zicong Hong, Shenghui Li, and Wuhui Chen. Smart contract-based hierarchical
auction mechanism for edge computing in blockchain-empowered iot. In 2020 IEEE 21st International
Symposium on” A World of Wireless, Mobile and Multimedia Networks”(WoWMoM), pages 147–156.
IEEE, 2020.

[85] Haikun Liu, Hai Jin, Cheng-Zhong Xu, and Xiaofei Liao. Performance and energy modeling for live
migration of virtual machines. Cluster computing, 16(2):249–264, 2013.

[86] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-Netto, Peter Hahn, and
Tania Querido. A survey for the quadratic assignment problem. European journal of operational
research, 176(2):657–690, 2007.

[87] Tom H Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin Sun. Fog computing:
Focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815, 2015.

[88] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang, Ryan
Marcus, Ravichandra Addanki, Mehrdad Khani Shirkoohi, Songtao He, et al. Park: An open platform
for learning-augmented computer systems. Advances in Neural Information Processing Systems 32
(NIPS 2019), 2019.

[89] André Martin, Tiaraju Smaneoto, Tobias Dietze, Andrey Brito, and Christof Fetzer. User-constraint
and self-adaptive fault tolerance for event stream processing systems. In 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 462–473. IEEE, 2015.

[90] R Preston McAfee. A dominant strategy double auction. Journal of economic Theory, 56(2):434–450,
1992.

147

[91] A Stephen McGough, Clive Gerrard, Paul Haldane, Dave Sharples, Dan Swan, Paul Robinson, Sindre
Hamlander, and Stuart Wheater. Intelligent power management over large clusters. In Proceedings of
the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference
on Cyber, Physical and Social Computing, pages 88–95. IEEE Computer Society, 2010.

[92] A Stephen McGough, Clive Gerrard, Jonathan Noble, Paul Robinson, and Stuart Wheater. Analysis
of power-saving techniques over a large multi-use cluster. In Dependable, Autonomic and Secure
Computing (DASC), 2011 IEEE Ninth International Conference on, pages 364–371. IEEE, 2011.

[93] Seapahn Meguerdichian, Farinaz Koushanfar, Gang Qu, and Miodrag Potkonjak. Exposure in wireless
ad-hoc sensor networks. In Proceedings of the 7th annual international conference on Mobile computing
and networking, pages 139–150. ACM, 2001.

[94] Peter Mell and Tim Grance. The nist definition of cloud computing. National Institute of Science
and Technology, Special Publication, 800:145, 2011.

[95] Gabriele Mencagli, Patrizio Dazzi, and Nicolò Tonci. Spinstreams: a static optimization tool for
data stream processing applications. In Proceedings of the 19th International Middleware Conference,
pages 66–79, 2018.

[96] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and Hongxin Hu. Interpreting deep
learning-based networking systems. In Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies, architectures, and protocols
for computer communication, pages 154–171, 2020.

[97] Microsoft. Azure regions. Accessed Oct. 23, 2017.

[98] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937. PMLR, 2016.

[99] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[100] Rafael Moreno-Vozmediano, Rubén S Montero, and Ignacio M Llorente. Iaas cloud architecture:
From virtualized datacenters to federated cloud infrastructures. Computer, 45(12):65–72, 2012.

[101] Thaha Muhammed, Rashid Mehmood, Aiiad Albeshri, and Iyad Katib. Ubehealth: a personal-
ized ubiquitous cloud and edge-enabled networked healthcare system for smart cities. IEEE Access,
6:32258–32285, 2018.

[102] Roger B Myerson and Mark A Satterthwaite. Efficient mechanisms for bilateral trading. Journal of
economic theory, 29(2):265–281, 1983.

[103] Matteo Nardelli, Valeria Cardellini, Vincenzo Grassi, and Francesco LO PRESTI. Efficient operator
placement for distributed data stream processing applications. IEEE Transactions on Parallel and
Distributed Systems, 2019.

148

[104] Xiang Ni, Jing Li, Mo Yu, Wang Zhou, and Kun-Lung Wu. Generalizable resource allocation in
stream processing via deep reinforcement learning. In The Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 857–864. AAAI Press, 2020.

[105] Noam Nisan et al. Introduction to mechanism design (for computer scientists). Algorithmic game
theory, 9:209–242, 2007.

[106] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic game theory, vol-
ume 1. Cambridge University Press Cambridge, 2007.

[107] Soh K Ong and Andrew Yeh Chris Nee. Virtual and augmented reality applications in manufacturing.
Springer Science & Business Media, 2013.

[108] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

[109] Claus Pahl and Brian Lee. Containers and clusters for edge cloud architectures–a technology review.
In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on, pages
379–386. IEEE, 2015.

[110] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. Genealog: Fine-grained
data streaming provenance at the edge. In Proceedings of the 19th International Middleware Confer-
ence, pages 227–238. ACM, 2018.

[111] Milan Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal, et al. Mobile-edge computing
introductory technical white paper. White Paper, Mobile-edge Computing (MEC) industry initiative,
2014.

[112] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh, and Margo
Seltzer. Network-aware operator placement for stream-processing systems. In 22nd International
Conference on Data Engineering (ICDE’06), pages 49–49. IEEE, 2006.

[113] F. Pisani, J. R. Brunetta, V. M. d. Rosario, and E. Borin. Beyond the fog: Bringing cross-platform
code execution to constrained iot devices. In 2017 29th International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD), pages 17–24, Oct 2017.

[114] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya Akella, Paramvir Bahl,
and Ion Stoica. Low latency geo-distributed data analytics. ACM SIGCOMM Computer Communi-
cation Review, 45(4):421–434, 2015.

[115] Benny Rochwerger, David Breitgand, Eliezer Levy, Alex Galis, Kenneth Nagin, Ignacio M Llorente,
Ruben Montero, Yaron Wolfsthal, Erik Elmroth, Juan Caceres, et al. The reservoir model and
architecture for open federated cloud computing. IBM Journal of Research and Development, 53(4):4–
1, 2009.

149

[116] Ivan Rodero, Francesc Guim, and Julita Corbalan. Evaluation of coordinated grid scheduling strate-
gies. In High Performance Computing and Communications, 2009. HPCC’09. 11th IEEE Interna-
tional Conference on, pages 1–10. IEEE, 2009.

[117] Heejun Roh, Cheoulhoon Jung, Wonjun Lee, and Ding-Zhu Du. Resource pricing game in geo-
distributed clouds. In INFOCOM, 2013 Proceedings IEEE, pages 1519–1527. IEEE, 2013.

[118] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. Reinforcement learning based
policies for elastic stream processing on heterogeneous resources. In Proceedings of the 13th ACM
International Conference on Distributed and Event-based Systems, pages 31–42, 2019.

[119] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction methods. ACM
Computing Surveys (CSUR), 42(3):1–42, 2010.

[120] Mahadev Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39, 2017.

[121] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter, and Padmanabhan
Pillai. Cloudlets: at the leading edge of mobile-cloud convergence. In Mobile Computing, Applications
and Services (MobiCASE), 2014 6th International Conference on, pages 1–9. IEEE, 2014.

[122] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha,
Wenlu Hu, and Brandon Amos. Edge analytics in the internet of things. IEEE Pervasive Computing,
14(2):24–31, 2015.

[123] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[124] Zoe Sebepou and Kostas Magoutis. Cec: Continuous eventual checkpointing for data stream process-
ing operators. In 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks
(DSN), pages 145–156. IEEE, 2011.

[125] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: toward an open-source solu-
tion for cloud computing. International Journal of Computer Applications, 55(3):38–42, 2012.

[126] Pierluigi Siano. Demand response and smart grids—a survey. Renewable and Sustainable Energy
Reviews, 30:461–478, 2014.

[127] William J Stewart. Probability, Markov chains, queues, and simulation. Princeton university press,
2009.

[128] Li Su and Yongluan Zhou. Passive and partially active fault tolerance for massively parallel stream
processing engines. IEEE Transactions on Knowledge and Data Engineering, 31(1):32–45, 2017.

[129] Omer Subasi, Osman Unsal, and Sriram Krishnamoorthy. Automatic risk-based selective redundancy
for fault-tolerant task-parallel hpc applications. In Proceedings of the Third International Workshop
on Extreme Scale Programming Models and Middleware, pages 1–8, 2017.

150

[130] Amazon. AWS Lambda. https://aws.amazon.com/lambda/. Accessed Oct. 14, 2021.

[131] Amazon AWS. AWS IoT Greengrass. https://aws.amazon.com/
greengrass/. Accessed Oct. 14, 2021.

[132] Apache Edgent. Apache edgent. http://edgent.apache.org/. Accessed April. 12, 2018.

[133] Apache Flink. Apache flink. Accessed August 24, 2020.

[134] Apache Kafka. Apache kafka. https://kafka.apache.org/. Accessed April. 12, 2018.

[135] Apache Storm. Apache storm. Accessed August 24, 2020.

[136] AWS. AWS Regional Data Centers mapping. https://github.com/turnkeylinux/aws-datacenters. Ac-
cessed Jan. 4, 2016.

[137] Google Cloud. Google Cloud. Accessed Oct. 27, 2021.

[138] IHS Markit. The internet of things: A movement, not a market.
https://ihsmarkit.com/Info/1017/Internet-of-things.html. Accessed November. 2, 2020.

[139] National Grid. Large General TOU. Accessed Jan. 4, 2016.

[140] Rinkeby Ethereum Testnet. Rinkeby: Ethereum Testnet. https://www.rinkeby.io/#stats. Accessed
Nov. 14, 2021.

[141] Liang Tong, Yong Li, and Wei Gao. A hierarchical edge cloud architecture for mobile computing. In
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communica-
tions, pages 1–9. IEEE, 2016.

[142] Prasang Upadhyaya, YongChul Kwon, and Magdalena Balazinska. A latency and fault-tolerance
optimizer for online parallel query plans. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 241–252, 2011.

[143] Luis M Vaquero and Luis Rodero-Merino. Finding your way in the fog: Towards a comprehensive
definition of fog computing. ACM SIGCOMM Computer Communication Review, 44(5):27–32, 2014.

[144] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of
finance, 16(1):8–37, 1961.

[145] Huayong Wang, Li-Shiuan Peh, Emmanouil Koukoumidis, Shao Tao, and Mun Choon Chan. Me-
teor shower: A reliable stream processing system for commodity data centers. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, pages 1180–1191. IEEE, 2012.

[146] Lin Wang, Lei Jiao, Ting He, Jun Li, and Max Mühlhäuser. Service entity placement for social virtual
reality applications in edge computing. In Proc. INFOCOM, 2018.

151

[147] Shangguang Wang, Yali Zhao, Jinlinag Xu, Jie Yuan, and Ching-Hsien Hsu. Edge server placement
in mobile edge computing. Journal of Parallel and Distributed Computing, 2018.

[148] Roy Want, Bill N Schilit, and Scott Jenson. Enabling the internet of things. Computer, 48(1):28–35,
2015.

[149] Chris Whong. Foiling nyc’s taxi trip data. FOILing NYCs Taxi Trip Data. Np, 18, 2014.

[150] Wikipedia. Double auction. https://en.wikipedia.org/wiki/Double auction. Accessed Aug. 29, 2017.

[151] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project
yellow paper, 151(2014):1–32, 2014.

[152] Timothy Wood, K. K. Ramakrishnan, Prashant Shenoy, Jacobus Van der Merwe, Jinho Hwang,
Guyue Liu, and Lucas Chaufournier. Cloudnet: Dynamic pooling of cloud resources by live wan
migration of virtual machines. IEEE/ACM Transactions on Networking, 23(5):1568–1583, 2015.

[153] Yongwei Wu, Kai Hwang, Yulai Yuan, and Weiming Zheng. Adaptive workload prediction of grid per-
formance in confidence windows. IEEE Transactions on Parallel and Distributed Systems, 21(7):925–
938, 2010.

[154] Hong Xu and Baochun Li. Joint request mapping and response routing for geo-distributed cloud
services. In INFOCOM, 2013 Proceedings IEEE, pages 854–862. IEEE, 2013.

[155] Jinlai Xu and Balaji Palanisamy. Cost-aware resource management for federated clouds using resource
sharing contracts. In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pages
238–245. IEEE, 2017.

[156] Jinlai Xu and Balaji Palanisamy. Model-based reinforcement learning for elastic stream processing in
edge computing. to appear in 28th IEEE International Conference on High Performance Computing,
Data, and Analytics (HiPC), 2021.

[157] Jinlai Xu and Balaji Palanisamy. Optimized contract-based model for resource allocation in federated
geo-distributed clouds. IEEE Transactions on Services Computing, 14(2):530–543, 2021.

[158] Jinlai Xu, Balaji Palanisamy, Heiko Ludwig, and Qingyang Wang. Zenith: Utility-aware resource
allocation for edge computing. In 2017 IEEE international conference on edge computing (EDGE),
pages 47–54. IEEE, 2017.

[159] Jinlai Xu, Balaji Palanisamy, and Qingyang Wang. Resilient stream processing in edge comput-
ing. In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), pages 504–513. IEEE, 2021.

[160] Jinlai Xu, Balaji Palanisamy, Qingyang Wang, Heiko Ludwig, and Sandeep Gopisetty. Amnis: Opti-
mized stream processing for edge computing. Journal of Parallel and Distributed Computing, 160:49–
64, 2022.

152

[161] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holliman, Gary Baldus,
Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain, et al. Taking the edge off with espresso:
Scale, reliability and programmability for global internet peering. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 432–445. ACM, 2017.

[162] K Paul Yoon and Ching-Lai Hwang. Multiple attribute decision making: an introduction. Sage
publications, 1995.

[163] Boyang Yu and Jianping Pan. Location-aware associated data placement for geo-distributed data-
intensive applications. In 2015 IEEE Conference on Computer Communications (INFOCOM), pages
603–611. IEEE, 2015.

[164] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and Michele Zorzi. Internet of
things for smart cities. IEEE Internet of Things journal, 1(1):22–32, 2014.

[165] Aleksandr Zavodovski, Suzan Bayhan, Nitinder Mohan, Pengyuan Zhou, Walter Wong, and Jussi
Kangasharju. Decloud: Truthful decentralized double auction for edge clouds. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), pages 2157–2167. IEEE, 2019.

[166] Wanxin Zhang, Dongsheng Li, Ying Xu, and Yiming Zhang. Shuffle-efficient distributed locality
sensitive hashing on spark. In 2016 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 766–767. IEEE, 2016.

[167] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and Jinyang Li. Trans-
action chains: achieving serializability with low latency in geo-distributed storage systems. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 276–291,
2013.

[168] Zhe Zhang, Yu Gu, Fan Ye, Hao Yang, Minkyong Kim, Hui Lei, and Zhen Liu. A hybrid approach
to high availability in stream processing systems. In 2010 IEEE 30th International Conference on
Distributed Computing Systems, pages 138–148. IEEE, 2010.

[169] Zhi Zhou, Fangming Liu, Yong Xu, Ruolan Zou, Hong Xu, John CS Lui, and Hai Jin. Carbon-aware
load balancing for geo-distributed cloud services. In 2013 IEEE 21st International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunication Systems, pages 232–241.
IEEE, 2013.

153

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	3.1. Notations
	3.2. Testbed Setup
	5.1. Default Simulation Parameter Setup
	5.2. Default Parameter Setup for Real Testbed
	7.1. The status of the five providers in the contracts-based example
	7.2. IBM server x3550 Xeon X5675 power consumption with different workload
	7.3. Datacenters' Default Configuration
	7.4. Compared Algorithms
	8.1. Auction Schedule Example for the resource usage in 15:00 - 16:00 9/30
	8.2. Default Experiment Setting for each auction
	8.3. A breakdown of the gas costs in $ of the function calls

	List of Figures
	1.1. An overview of research thrusts
	2.1. A Stream processing application example in Apache Storm
	2.2. Example DAGs and cluster
	3.1. Edge/Fog Computing architecture
	3.2. Scheduling example of DAG 1
	3.3. Scheduling example of DAG 2
	3.4. Amnis Optimization
	3.5. Coflow optimization example
	3.6. A data locality aware physical plan optimization
	3.7. A load aware operator placement optimization example
	3.8. A coflow optimization
	3.9. Testbed
	3.10. Q1
	3.11. Q2
	3.12. Q3
	3.13. Q4
	3.14. Success Rate Comparison with different input rates
	3.15. End-to-end latency comparison with different input rates
	3.16. Success Rate Comparison with different last hop bandwidth
	3.17. End-to-end latency comparison different last hop bandwidth
	3.18. Network Usage
	3.19. Throughput with different input rates
	3.20. Sustainable Throughput with different last hop bandwidths
	4.1. An example comparing the resilience unaware scheduling and the proposed approach
	4.2. System Overview
	4.3. Resilient Physical Plan Example
	4.4. Accident Detection Application
	4.5. Throughput
	4.6. Latency
	4.7. Success rate
	4.8. Throughput
	4.9. Resource utilization
	5.1. Elastic Stream Processing Framework
	5.2. Stream Processing Model
	5.3. System Architecture Overview
	5.4. NY Taxi Profitable Area Application
	5.5. Results of simulation with Synthetic Dataset (Poisson distribution)
	5.6. Results of simulation with Synthetic Dataset (Pareto distribution (=2.0))
	5.7. Rewards of simulation on the New York taxi trace
	5.8. Evaluation of applicability for heterogeneous resources (Poisson distribution)
	5.9. Evaluation of applicability for heterogeneous operators (Poisson distribution)
	5.10. Real Testbed Results
	6.1. Resource allocation and management of Geo-distributed edge and cloud resources
	6.2. Edge Computing Architecture
	6.3. An illustration of a WVD in Zenith with seven MDCs
	6.4. Impact of number of Servers per MDC
	6.5. Impact of number of MDCs
	6.6. Impact of latency constraints
	7.1. Electricity price trends of NationalGrid in 2015
	7.2. Resource sharing mechanisms comparison
	7.3. Contracts-based cloud federation example of saving electricity cost and balance the workload
	7.4. Evaluation results for a different number of servers per datacenter
	7.5. Evaluation results for a different number of datacenters
	7.6. Evaluation results for different average errors of the workload predictions
	7.7. Evaluation results for different inner intervals of the contracts
	7.8. The gain or loss ratio of the profit for each individual CSP
	8.1. Overview
	8.2. Blockchain-based Edge Resource Sharing
	8.3. Regions
	8.4. Edge Resource Sharing Framework
	8.5. Decentralized Sealed Bid Double Auction Procedure
	8.6. Smart Contract Initial Parameters
	8.7. Gas cost of different number of bidders
	8.8. Gas cost of different number of bids
	8.9. Total gas cost comparison of different number of bids and different number of bidders
	8.10. Gas cost of different participants
	8.11. Gas cost distribution of each function call
	8.12. Social welfare of different methods with different number of bids
	8.13. Social welfare of different methods with different number of containers per bid
	8.14. Subsidy of different methods with different number of bids
	8.15. Subsidy of different methods with different number of containers per bid

	Preface
	1.0 Introduction
	1.1 Overview of research thrusts
	1.1.1 Research Thrust 1: Optimizing stream processing applications in edge computing
	1.1.2 Research Thrust 2: Resource allocation and management for geo-distribu-ted edge and cloud resources

	1.2 Chapters overview

	2.0 Related Work and Preliminaries
	2.1 Stream Processing in Edge Computing
	2.1.1 Stream Processing Engine
	2.1.2 Stream Processing Optimization
	2.1.3 Stream Processing Fault tolerance
	2.1.4 Elastic Stream Processing

	2.2 Geo-distributed Edge and Cloud Resource Management
	2.2.1 Resource Management for Geo-distributed Edge Resources
	2.2.2 Resource Management for Geo-distributed Clouds
	2.2.3 Decentralized Resource Management for Geo-distributed Edge Resources

	2.3 Preliminaries of Stream Processing

	3.0 Optimizing low-latency stream processing applications in Edge Computing
	3.1 Background and preliminaries
	3.1.1 Bandwidth Bottleneck
	3.1.2 Computational Bottleneck

	3.2 Amnis: System Design
	3.2.1 Stream Processing Model
	3.2.2 Data Locality Aware Physical Plan Generation and Operator Placement
	3.2.3 Load Aware Operator placement
	3.2.4 Coflow optimization

	3.3 Amnis: Techniques
	3.3.1 Data locality optimization
	3.3.1.1 Data locality aware physical plan generation
	3.3.1.2 Data locality aware operator placement plan generation

	3.3.2 Load aware operator placement optimization
	3.3.3 Coflow optimization

	3.4 Evaluation
	3.4.1 Implementation and experimental setup
	3.4.2 Applications
	3.4.3 Evaluation Results

	3.5 Discussion
	3.6 Summary

	4.0 Resilient Stream Processing in Edge Computing
	4.1 Background and Motivation
	4.2 System Design
	4.2.1 Resilient physical plan generation
	4.2.2 Scheduling and failure handling
	4.2.3 Recovery time estimation
	4.2.4 Failure prediction

	4.3 Resilient Stream processing
	4.3.1 Checkpoint
	4.3.2 Active Replication

	4.4 Evaluation
	4.4.1 Implementation and experimental setup
	4.4.2 Application
	4.4.3 Algorithm
	4.4.4 Experiment Results

	4.5 Summary and discussion

	5.0 Elastic Stream Processing in Edge Computing
	5.1 Problem Formulation
	5.1.1 Quality of Service Metrics
	5.1.2 Stream Processing Model

	5.2 Reinforcement Learning For Elastic Stream Processing
	5.2.1 A Markov Decision Process Formulation
	5.2.2 Model-based Reinforcement Learning

	5.3 Implementation
	5.4 Evaluation
	5.4.1 Experimental setup
	5.4.2 Application and Operator Placement
	5.4.3 Algorithms
	5.4.4 Simulation Experiment Results
	5.4.5 Real Testbed Experiment Results
	5.4.6 Summary and discussion

	6.0 Latency-aware resource allocation and management mechanism for geo-distributed edge resources
	6.1 Background & Motivation
	6.2 Zenith: System Architecture and Model
	6.2.1 System Architecture
	6.2.2 System Model
	6.2.2.1 Service Provider
	6.2.2.2 Edge Infrastructure Provider
	6.2.2.3 Regions Division
	6.2.2.4 Coordinator
	6.2.2.5 Contract Manager

	6.3 Zenith: Resource Allocation
	6.3.1 Contracts Establishment
	6.3.1.1 Utility of SPs
	6.3.1.2 Utility of EIPs
	6.3.1.3 Bidding Strategy

	6.3.2 Determining Winning Bids
	6.3.3 Provisioning

	6.4 Evaluation
	6.4.1 Setup
	6.4.2 Experiment Results
	6.4.2.1 Impact of No. of servers in MDCs
	6.4.2.2 Impact of No. of MDCs
	6.4.2.3 Impact of Response Time Constraints

	6.5 Summary and discussion

	7.0 Cost-aware resource allocation and management mechanism for geo-distributed cloud resources
	7.1 Background & Motivation
	7.1.1 Stand-alone Clouds
	7.1.2 Federated Clouds with Complete Cooperation
	7.1.3 Contracts-based Resource Sharing

	7.2 System Model
	7.2.1 Cloud Service Provider
	7.2.2 Federation Coordinator
	7.2.3 Contract Manager

	7.3 Resource Sharing Contracts Establishment
	7.3.1 Problem Description
	7.3.2 Proposed Bidding Strategy
	7.3.3 Winning Bids Decision
	7.3.4 Contracts Establishment Process

	7.4 Contracts-based Job Scheduling
	7.4.1 Job Scheduling Problem Model
	7.4.2 Contracts-based Job Scheduling Mechanisms
	7.4.2.1 Contracts cost-aware scheduling
	7.4.2.2 Contracts duration-aware scheduling
	7.4.2.3 Contracts duration-aware and cost-aware scheduling

	7.5 Evaluation
	7.5.1 Setup
	7.5.1.1 Datacenters
	7.5.1.2 Real electricity price
	7.5.1.3 Workload
	7.5.1.4 Algorithms

	7.5.2 Experimental Results
	7.5.2.1 Impact of Number of Servers
	7.5.2.2 Impact of Number of Providers
	7.5.2.3 Impact of Prediction Errors
	7.5.2.4 Impact of Contract Intervals
	7.5.2.5 Fairness

	7.6 Summary and discussion

	8.0 Decentralized resource allocation and management mechanism for geo-distributed edge and cloud resources
	8.1 Background and Motivation
	8.1.1 Edge Resource Sharing
	8.1.2 Blockchains and Smart Contracts

	8.2 Smart Contract-based Edge Resource Allocation
	8.2.1 System Architecture
	8.2.2 Decentralized Sealed Bid Double Auction Protocol
	8.2.3 Auction Algorithm
	8.2.4 Smart Contract Implementation
	8.2.5 Resource Contract

	8.3 Evaluation
	8.3.1 Setup
	8.3.2 Methodology
	8.3.3 Smart Contract Performance
	8.3.4 Auction Performance

	8.4 Summary and discussion

	9.0 Conclusion and Future Work
	9.1 Conclusion
	9.2 Discussion and Future Work

	Appendix A. Mechanism Design
	Appendix B. Publication list
	Bibliography

