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Inducing Sets: A New Perspective for Ancestral Graph Markov Models

Bryan Andrews, PhD

University of Pittsburgh, 2022

Directed acyclic graphs (DAGs) and their corresponding Markov models have become

widely studied and applied in the fields of statistics and causality. The simple directed

structure of these models facilitates systematic learning procedures and provides an inter-

pretable representation for causal relationships. However, DAGs are ill-equipped to handle

latent variables without explicitly invoking them. This manifests as a lack of stability1 un-

der marginalization and conditioning and a disparity between statistically and causally valid

models. Meanwhile, latent confounding and selection effects occur with some regularity in

many domains. The family of maximal ancestral graphs (MAGs) extends the family of DAGs

by implicitly taking latent variables into account. In fact, the family of MAGs constitutes the

smallest superset of the family of DAGs that is stable under marginalization and condition-

ing. Accordingly, MAGs and their corresponding Markov models—ancestral graph Markov

models—provide a natural choice for statistical and causal modeling in systems with latent

confounding and selection effects.

In this work we introduce inducing sets as a new perspective for reasoning about ancestral

graph Markov models. In particular, we derive and study m-connecting sets which are a

special case of inducing sets and provide an alternative representation for MAGs. We show

that m-connecting sets admit a characterization of Markov equivalence for MAGs and a

factorization criterion equivalent to the global Markov property for directed MAGs. Using

the factorization criterion, we formulate a consistent probabilistic score with a closed-form

for the Markov models of directed MAGs. Ultimately, we design a local causal discovery

algorithm called the ancestral probability (AP) procedure which estimates the posterior

probabilities of ancestral relationships. We evaluate the AP procedure on synthetically

generated data and a real data set measuring airborne pollutants, cardiovascular health, and

respiratory health.

1A graphical family is stable under marginalization and conditioning if the corresponding set of induced
independence models is closed under marginalization and conditioning; see Section 3.4.
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3.3 The Möbius function of a poset P = P({a, b, c}) ordered by inclusion—the first and
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2.0 Introduction

The formulation and analysis of causal models enables the study of causal relationships,

which has provided essential insights in many research areas such as economics, environmen-

tal science, and medicine. Randomized experiments where a hypothesized cause is manip-

ulated independently of a hypothesized effect are the gold standard for discovering causal

relationships. However, in many domains, these experiments are often infeasible, unethical,

or prohibitively expensive. Consequently, there is a growing interest in developing methods

for causal inference and discovery without the need for experimentation—methods that work

with any available experimental data and the plethora of non-experimental data. One such

approach utilizes the dual interpretation of graphical Markov models as statistical and causal

models.

2.1 Motivation

Graphical Markov models are probabilistic models that leverage conditional indepen-

dence for modeling and inference. In a graphical Markov model, a graph induces an inde-

pendence model comprised of conditional independence statements represented in a prob-

ability measure—vertices correspond to random variables and absent edges coincide with

conditional independence statements. The independence model can be characterized by a

graphical separation criterion in conjunction with the global Markov property or a prob-

abilistic factorization criterion—both characterizations may be exploited for modeling and

inference. The notions of a conditional independence statement and an independence model

are made rigorous in Section 3.1.

In recent years, graphical Markov models have become widely applied in the fields of

statistics and causality [35, 45, 46, 50]. At the forefront of these methods are Bayesian net-

works, whose independence models are induced by directed acyclic graphs (DAGs) [16, 44,

58]. The popularity of Bayesian networks is in part due to their comprehensive theory, which
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includes the d -separation criterion and the recursive factorization criterion. The d -separation

criterion in conjunction with the DAG component of a Bayesian network graphically en-

codes conditional independence statements represented in the probabilistic component of

the Bayesian network. Equivalently, the recursive factorization criterion in conjunction with

the DAG component of a Bayesian network algebraically encodes conditional independence

statements represented in the probabilistic component of the Bayesian network. Both char-

acterizations of the independence model induced by the DAG component of a Bayesian net-

work facilitate systematic learning procedures. Indeed, there are an abundance of algorithms

capable of learning these models from data [13, 14, 64, 86].

t

Treatment

h

General
Health

e

Side
Effect

r

Recovery

s
Selection

Figure 2.1: A causal DAG representing a randomized experiment for an ineffective drug with

unpleasant side effects. Colored vertices represent selection effects [65].

As an example, suppose the DAG depicted in Figure 2.1 induces an independence model

comprised of conditional independence statements represented in a probability measure P .

Using the d -separation criterion and the global Markov property, the following conditional

independence statements are represented in P and graphically encoded by the DAG:

r ⊥⊥ {e, s, t} | h [P ] s ⊥⊥ {h, r, t} | e [P ] t ⊥⊥ {h, r} [P ].

This notation is defined in Section 3.1 and attributed to Dawid [17]. Furthermore, the

recursive factorization induced by the DAG algebraically encodes the same set of condi-

tional independence statements. The recursive factorization criterion is characterized by the
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equivalence of the density admitted by a probability measure with the product of conditional

densities defined as a variable conditioned on its parents in the graph. If P is dominated by a

σ-finite product measure ν and admits density f(x), then the following recursive factorization

holds almost everywhere:

f(x) = fs|e(x) fr|h(x) fe|ht(x) fh(x) ft(x) for ν-a.e. x ∈ X.

This notation is defined in Section 3.1.

Causal assumptions connect the structural component of a graphical Markov model to

causal relationships [79]. These assumptions can be interpreted as an appeal to Occam’s

razor—if the true causal model is contained within a family of graphs, then the causal

model is a graph that encodes only conditional independence statements represented in the

probability measure whose corresponding Markov model has minimal complexity. A causal

Bayesian network is a Bayesian network whose independence model is induced by a DAG,

whose edges express all the causal relationships and only the causal relationships. These

models admit the dual interpretation of graphical Markov models as statistical and causal

models. Causal Bayesian networks provide researchers with a means to calculate the effects

of intervention without the need for experimentation [51, 59] and have been widely applied

in many domains [22, 40, 49, 72, 77].

Unfortunately, the simplicity and theoretical convenience of DAGs comes at the cost of

representation power. The set of independence models induced by the family of DAGs is

insufficient to represent systems with latent variables without explicitly invoking them. This

limitation manifests statistically as a lack of stability under marginalization and condition-

ing, and causally as a disparity between statistically and causally valid models. Stability

under marginalization and conditioning is discussed in Section 3.4. To emphasize this point,

consider the following example taken from [65] and attributed to Chris Meek:

The graph [Figure 2.1] represents a randomized [experiment] of an ineffective drug with

unpleasant side-effects. Patients are randomly assigned to the treatment or control group

[ t ]. Those in the treatment group suffer unpleasant side-effects [ e ], the severity of which is

influenced by the patient’s general level of health [h ], with sicker patients suffering worse

side-effects. Those patients who suffer sufficiently severe side-effects are likely to drop out
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of the study. The selection variable [ s ] records whether or not a patient remains in the

study, thus for all those remaining in the study [ s = stay in ]. Since unhealthy patients who

are taking the drug are more likely to drop out, those patients in the treatment group who

remain in the study tend to be healthier than those in the control group. Finally health

status [h ] influences how rapidly the patient recovers [ r ] [65, p.234].

In this example, näıvely comparing the recovery times of the patients remaining in the

treatment group against the patients in the control group leads to the incorrect conclusion

that the drug is beneficial. The perceived effect is due to the bias towards a good general

level of health in the treatment group. Since the remaining patients in the treatment group

tend to be healthier, they also tend to recover more quickly. Furthermore, if the patient’s

general level of health is allowed to act as a latent confounder, then researchers will be unable

to identify this relationship as spurious.

t

Treatment

r

Recovery

i.

t

Treatment

r

Recovery

ii.

t

Treatment

r

Recovery

iii.

Figure 2.2: DAGs representing a randomized experiment for an ineffective drug with un-

pleasant side effects: (i) a DAG with a valid casual interpretation, but an invalid statistical

interpretation; (ii, iii) DAGs with valid statistical interpretations, but invalid causal inter-

pretations.

Figure 2.2 depicts all possible DAGs over the variables for treatment and recovery—the

variables for side effect, general health, and selection are latent. The DAG in (i) is the only

valid causal model; it expresses the fact that neither treatment nor recovery cause the other.

However, it also implies that treatment and recovery are independent of each other which is

false. The DAGs in (ii, iii) correctly imply the dependence between treatment and recovery,

but express incorrect causal relationships. Consequently, the family of DAGs is inadequate

to represent this example without explicitly invoking the latent variables.
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The ubiquity of latent variables necessitates methods capable of dealing with their sub-

tleties. DAGs can model latent variables if the latent variables are explicitly invoked and

treated as missing data. However, this approach results in a myriad of problems: there are

an infinite number of DAGs with latent variables to consider for each independence model; a

DAG with latent variables can encode non-conditional independence constraints; the param-

eters of a Bayesian network corresponding to a DAG with latent variables are often not fully

identifiable; and assumptions about latent variables of a DAG and their parameterization in

the corresponding Bayesian network can have a profound impact on modeling and inference

including a loss of model smoothness [32, 33, 68, 76, 90].

A more elegant approach is to use a graphical family that is stable under marginalization

and conditioning. These families are usually comprised of mixed graphs which are named

for the mixture of edge types that they contain: directed, bi-directed, and undirected. Max-

imal ancestral graphs (MAGs) make up one such family. A thorough treatment of graphical

families stable under marginalization and conditioning is given by [73] and discussed in Sec-

tion 3.4. The set of independence models induced by the family of MAGs is a superset of

the set of independence models induced by DAGs. Accordingly, MAGs can represent all

(and only) independence models obtained through marginalization and conditioning of the

independence models induced by DAGs [70]. This is of interest because graphical Markov

models can represent latent confounding as the marginalization of latent variables and selec-

tion effects as the conditioning of latent variables—conditioning on latent variables applies

a selection effect [4, 79].
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t e r
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Figure 2.3: Marginalization: (i) a DAG with vertices {e, h, r, s, t}; (ii) a MAG corresponding

to the marginalization of h. Grayed vertices represent latent variables to be marginalized.

Figure 2.3 depicts an example of marginalization in a DAG where the grayed vertices of

the DAG in (i) are the variables to be marginalized—the MAG in (ii) is the resulting graph.

The marginalization of h induces a dependence between e and r which corresponds to the

bi-directed edge between them. Generally, latent confounding is represented with bi-directed

edges.

t

h

e r

s

i.

t h r

ii.

Figure 2.4: Conditioning: (i) a DAG with vertices {e, h, r, s, t}; (ii) a MAG corresponding

to the marginalization of e and conditioning of s. Grayed vertices represent latent variables

to be marginalized and colored vertices represent latent variables to be conditioned on.

Figure 2.4 depicts an example of conditioning in a DAG where the grayed vertices of

the DAG in (i) are the variables to be marginalized and the colored vertices of the DAG
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in (ii) are the variables to be conditioned on—the MAG in (ii) is the resulting graph. The

conditioning of s induces a dependence between h and t which corresponds to the undirected

edge between them. Generally, selection effects are represented with undirected edges.

t

h

e r

s

i.

t r

ii.

Figure 2.5: Marginalization and conditioning: (i) a DAG with vertices {e, h, r, s, t}; (ii) a

MAG corresponding to the marginalization of h and e and conditioning of s. Grayed vertices

represent latent variables to be marginalized and colored vertices represent latent variables

to be conditioned on.

Figure 2.5 depicts an example of marginalization and conditioning in a DAG where the

grayed vertices of the DAG in (i) are the variables to be marginalized and the colored vertices

of the DAG in (ii) are the variables to be conditioned on—the MAG in (ii) is the resulting

graph. The marginalization of t and conditioning of s induces a dependence between r and

t which corresponds to the directed edge between them. The MAG in (ii) is statistically

and causally valid, however, the causal interpretation of the edges of a MAG is slightly

different from the causal interpretation of the edges of a DAG. The MAG in (ii) expresses

that the variable for treatment is either a causal ancestor of the variable for recovery or a

causal ancestor of a selection variable. In actuality, treatment is an ancestor of the selection

variable. The general causal interpretation of MAGs is given in Section 3.3.

Ancestral graph Markov models are graphical Markov models whose independence mod-

els are induced by MAGs. Similar to Bayesian networks, Ancestral graph Markov models

can sometimes provide researchers with a means to calculate the effects of intervention with-

out the need for experimentation [62, 92]. Additionally, ancestral graph Markov models are
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equipped with the m-separation criterion [70, 66] and the heads and tails factorization cri-

terion [67, 30]. The heads and tails factorization criterion consists of multiple factorizations

for marginal densities admitted by a probability measure and only applies to ancestral graph

Markov models whose independence models are induced by directed MAGs—MAGs with no

undirected edges. The factorization criterion can be extended to all ancestral graph Markov

models by factoring the part of the model corresponding to the undirected section of the

MAG using the factorization criterion for undirected graph Markov models. These charac-

terizations may be exploited for modeling and inference, but the system of factorizations

given by the heads and tails factorization criterion does not readily admit a closed-form

objective function for model selection—a closed-form objective function for the model selec-

tion of MAGs is a key topic discussed in this dissertation. MAGs and their properties are

discussed in Section 3.3.

Graphs are not the only mathematical object used to encode conditional independence.

Imsetal Markov models use structural imsets, short for integer-valued multiset, rather than

graphs to encode the conditional independence statements represented in a probability mea-

sure. Structural imsets are equipped with an analogue to graphical separation criteria and

a product formula which can be used as a factorization criterion. Additionally, the family

of structural imsets induces a richer set of independence models [83]. Unfortunately, they

lack an intuitive interpretation and as a consequently their literature is largely theoretical.

Structural imsets and their properties are discussed in Section 3.5.

T ∅ {h} {r} {t} {h, r} {h, t} {r, t} {h, r, t}

u(T )
[

0 1 0 0 −1 −1 0 1
]>

Figure 2.6: A structural imset which induced the same independence model as the MAG in

Figure 2.4 (ii).

Figure 2.6 depicts a structural imset which induced the same independence model as the

10



MAG in Figure 2.4 (ii). The imset is a column vector whose elements correspond to subsets

of variables, but may also be thought of as a function u : P({h, r, t}) → Z mapping the

power set of {h, r, t} to the integers. This representation has theoretical merits, but does

not lend itself to an intuitive interpretation, causal or otherwise. Nevertheless, structural

imsets have been successfully applied as a framework for DAG learning [37, 84, 85, 86]. To

our knowledge, an analogous application for learning MAGs does not exist and is a key topic

discussed in this dissertation.

This dissertation introduces inducing sets as a new perspective for reasoning about ances-

tral graph Markov models. Using this new perspective, we give an alternative representation

for MAGs called m-connecting sets and provide a novel factorization grounded in the the-

ory of structural imsets. Accordingly, we utilize preexisting theoretical machinery from the

literature of MAGs graphs and structural imsets and form new connections between them

in the process. To demonstrate the effectiveness of this new perspective, we show how the

factorization admits a closed-form estimate of the posterior probability of a model; this al-

lows ancestral graph Markov models to be compared, ranked, and averaged. Ultimately, we

develop and evaluate the ancestral probability (AP) procedure for computing the posterior

probabilities of ancestral relations among pairs of variables.

2.2 Outline

This dissertation is organized as follows. Chapter 3 introduces general background in-

formation, concepts useful for the study of ancestral graphs, and alternative independence

models. Chapter 4 introduces inducing sets and m-connecting sets as a special case of in-

ducing sets. Additionally, we review related prior work and we prove that the independence

models induced by MAGs may be characterized by m-connecting sets and their factoriza-

tion. Chapter 5 discusses curved exponential families and derives conditions under which

Lee and Hastie probability measures are curved exponential families subject to an indepen-

dence model induced by a directed MAG. Chapter 6 develops and evaluates a probabilistic

score and the ancestral probability (AP) procedure, which performs Bayesian local causal
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discovery on directed MAGs. An implementation of the AP algorithm is run on synthetically

generated data and a real data set measuring airborne pollutants, cardiovascular health, and

respiratory health. Lastly, the dissertation closes with Chapter 7 which summarizes and

discusses the main results and provides suggestions for future work.
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3.0 Background and Related Work

Throughout this dissertation we use the following conventions: upper case symbols,

such as A and B, denote sets; juxtapositions of upper case letters, such as AB = A ∪ B,

denote unions; and lower case symbols, such as a and b, denote set elements or singletons.

Occasionally in figures and subscripts the juxtaposition of lower case letters, such as ab =

{a, b}, denote sets. With a few exceptions that will be noted later, upper case letter in a

sans-serif font, such as A and B denote sets of sets.

The symbol V denotes a non-empty set of variables—or a set of vertices in the graphical

context—that indexes a non-empty finite collection of random variables (Xa)a∈V with sample

spaces (Xa)a∈V . These spaces may be finite discrete spaces or finite-dimensional continuous

spaces. Given a subset A ⊆ V , define XA ≡ (Xa)a∈A and XA ≡ ×a∈A(Xa). Furthermore,

denote the fixed elements of XA by xA. Lastly, let XV ≡ X, XV ≡ X, and xV ≡ x.

The following symbols are reserved for sets of numbers: R denotes the real numbers,

Q denotes the rational numbers, and Z denotes the integers. Furthermore, Q+ denotes the

non-negative rational numbers, and Z+ denotes the non-negative integers. The symbol is

reserved for S|n|++ is the set of |n| × |n| symmetric positive definite matrices. The symbol ∅

is reserved for the empty set and the symbol P is reserved for the power set. Furthermore,

the subset of the power set bounded by l, u ∈ Z+ (l ≤ u) is defined as follows:

Pul (V ) ≡ {T ⊆ V ; l ≤ |T | ≤ u}.

Lastly, let Pl(V ) ≡ P
|V |
l (V ) and Pu(V ) ≡ Pu0(V ).

3.1 Conditional Independence

Central to this dissertation are mathematical objects that represent sets of conditional

independence statements, called independence models. Conditional independence usually

refers to probabilistic conditional independence, that is, conditional independence state-
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ments that hold in a probability measure. In this dissertation we use the term conditional

independence statement more generally, for instance, conditional independence statements

that hold in a graph correspond to separations in that graph; see Section 3.3.2. Mathematical

objects that induce independence models include but are not limited to probability measures,

mixed graphs, and structural imsets. Let the symbol O denote an abstract mathematical

object that represents conditional independence statements.

Definition (conditional independence statement). Let V be a non-empty set of variables

with disjoint subsets A,B,C ⊆ V . A conditional independence statement over V is a state-

ment of the form “A is conditionally independent of B given C.” Every conditional inde-

pendence statement over V corresponds to a disjoint triple of the form 〈A,B | C〉 and should

be understood with respect to a mathematical object. For a mathematical object O over V ,

if 〈A,B | C〉 is represented in O, then we write A ⊥⊥ B | C [O ].

The punctuation of a triple anticipates the intended role for each set. The two former

components are independent sets while the third component, written after the vertical bar, is

the conditioning set. The corresponding conditional independence statement is elementary

when the two former sets are singletons and semi-elementary otherwise. The set of all

disjoint triples over V is denoted by T(V ). Formally, an independence model is defined as

follows.

Definition (independence model). Let V be a non-empty set of variables and O be a mathe-

matical object over V . The independence model I(O) induced by O is a set of disjoint triples

defined as follows:

I(O) ≡ {〈A,B | C〉 ∈ T(V ) ; A ⊥⊥ B | C [O ]} .

Let V be a non-empty set of variables and O be a mathematical object over V . Classes

of independence models may be characterized axiomatically as follows. The independence

model I(O) is called a semi-graphoid whenever conditions (i - v) hold for every collection of

disjoint sets A,B,C,D ⊆ V :

i. triviality A ⊥⊥ ∅ | C [O ];

ii. symmetry A ⊥⊥ B | C [O ] ⇒ B ⊥⊥ A | C [O ];
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iii. decomposition A ⊥⊥ BD | C [O ] ⇒ A ⊥⊥ D | C [O ];

iv. weak union A ⊥⊥ BD | C [O ] ⇒ A ⊥⊥ B | CD [O ];

v. contraction A ⊥⊥ B | CD [O ] and A ⊥⊥ D | C [O ] ⇒ A ⊥⊥ BD | C [O ].

Furthermore, I(O) is called a graphoid whenever conditions (i - vi) hold for every collection

of disjoint sets A,B,C,D ⊆ V :

vi. intersection A ⊥⊥ B | CD [O ] and A ⊥⊥ D | BC [O ] ⇒ A ⊥⊥ BD | C [O ].

Lastly, I(O) is called a compositional graphoid whenever conditions (i - vii) hold for every

collection of disjoint sets A,B,C,D ⊆ V :

vii. composition A ⊥⊥ B | C [O ] and A ⊥⊥ D | C [O ] ⇒ A ⊥⊥ BD | C [O ].

3.1.1 Probabilistic Conditional Independence

The most common independence models are induced by probability measures. Let V

be a non-empty set of variables with disjoint subsets A,B,C ⊆ V . Furthermore, let X be

a collection of random variables indexed by V with probability measure P dominated by

σ-finite product measure ν. We say 〈A,B | C〉 is represented in P and write A ⊥⊥ B | C [P ]

if for every measurable subset T ⊆ XA:

P (XA ∈ T | XBC = xBC) = P (XA ∈ T | XC = xC) for P -a.e. x ∈ X. (3.1)

In Equation 3.1, P (XA ∈ T | XBC) does not depend on the value of B. Intuitively, this

conveys that B provides no additional information about A when the value of C is known.

Probabilistic conditional independence is a mathematical formalization of this notion of

irrelevance [17, 46]. If P admits density f(x) with respect to ν, then we may define the

following equivalent definitions of conditional independence:

A ⊥⊥ B | C [P ] ⇔ fA|BC(x) = fA|C(x) for P -a.e. x ∈ X (3.2)

and for some real-valued functions g : XAC → R and h : XBC → R

A ⊥⊥ B | C [P ] ⇔ fABC(x) = g(x)h(x) for P -a.e. x ∈ X. (3.3)
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The independence model induced by P is denoted by I(P ). Furthermore, every independence

model defined by a probability measure is a semi-graphoid.

Proposition 3.1.1 (Lemma 2.1 [83]). Let P be a probability measure. The induced inde-

pendence model I(P ) is a semi-graphoid.

3.2 Partially Ordered Sets

The notion of a partially ordered set provides a principled way to order the vertices of

an ancestral graph and is required to define the Möbius inversion. Ancestral graphs are

discussed in Section 3.3 and the importance of the Möbius inversion becomes apparent when

we are able to understand log f as a linear combination of interaction information rates; see

Chapter 4 for details. Unless otherwise specified, the symbol P denotes a finite partially

ordered set. Furthermore, the elements of P may be sets—hence our choice of notation. In

this dissertation all partially ordered sets are finite.

Definition (partial order). A partial order is a binary relation ≤ over a set P such that

≤ is reflexive, antisymmetric, and transitive. That is, for every collection of mathematical

objects A,B,C ∈ P:

i. reflexivity A ≤ A;

ii. antisymmetry A ≤ B and B ≤ A ⇒ A = B;

iii. transitivity A ≤ B and B ≤ C ⇒ A ≤ C.

Definition (partially ordered set). A partially ordered set, poset for short, is a set P with a

partial order ≤. A pair of mathematical objects A,B ∈ P are comparable if A ≤ B or B ≤ A

and incomparable otherwise. If every pair of elements is comparable, then ≤ is a total order

and P is a totally ordered set.

The canonical poset used throughout this dissertation is defined by the power set of a

non-empty set of variables V ordered by inclusion:

A ≤ B ⇔ A ⊆ B for all A,B ⊆ V.
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Figure 3.1 depicts the Hasse diagram for the poset P = P({a, b, c}) ordered by inclusion.

Vertices represent the elements of P where vertices appearing higher in the diagram have

greater cardinality than vertices appearing lower in the diagram and edges connect sets to

their maximal subsets—or minimal supersets.

{a, b, c}

{b, c}{a, c}{a, b}

{c}{b}{a}

∅

Figure 3.1: The Hasse diagram for a poset P = P({a, b, c}) ordered by inclusion.

Let P be a poset with partial order ≤ and consider a pair of mathematical objects

A,B ∈ P. The join of A and B, denoted A ∨ B, is their supremum. Similarly, the meet

of A and B, denoted A ∧ B, is their infimum. In general, the join and meet of a pair of

mathematical objects might not exist. Figure 3.1 illustrates the concepts of join and meet.

In the poset:

• {a, b, c} and {a, c} have join {a, b, c}∨{a, c} = {a, b, c} and meet {a, b, c}∧{a, c} = {a, c};
• {a, b} and {b, c} have join {a, b} ∨ {b, c} = {a, b, c} and meet {a, b} ∧ {b, c} = {b};
• {a} and {c} have join {a} ∨ {c} = {a, c} and meet {a} ∧ {c} = ∅.

In the poset defined by the power set of a non-empty set of variables ordered by inclusion,

join and meet behave identically to union and intersection respectively.

In general a Hasse diagram graphically represents a finite posets where vertices corre-

spond to elements of the poset where vertices appearing higher in the diagram appear later
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in the partial order. Edges connect vertices to their maximal non-trivial join—or minimal

non-trivial meet.

Definition (lattice). Let P be a poset with partial order ≤. If every pair of elements a, b ∈ P

has a unique join a ∨ b ∈ P and meet a ∧ b ∈ P, then P is a lattice.

The poset ordered by inclusion in Figure 3.1 illustrates the concept of a lattice. Further-

more, any totally ordered set is a lattice. Let P be a lattice with partial order ≤. We adopt

the notation for ceiling and floor to denote the join and meet of a subset A ⊆ P in a lattice:

dAe≤ ≡
∨
a∈A

a bAc≤ ≡
∧
a∈A

a

If ≤ is a total order, then these operations return the first and last elements of the set

respectively. If the partial order is not specified, we adopt the order for the canonical poset.

Figure 3.1 illustrates the concepts of ceiling and floor:

• if A = {{a}, {b}, {c}}, then dAe = {a, b, c} and bAc = ∅;

• if A = {{a}, {a, b}, {a, b, c}}, then dAe = {a, b, c} and bAc = {a}.

3.2.1 Möbius Inversion

Two useful functions for analyzing a poset P are the zeta function and the Möbius

function. Let V be a non-empty set of variables and P = P(V ) be a poset ordered by

inclusion. The zeta function ζP : P× P→ {0, 1} is defined as follows:

ζP(B,A) =

 0 B 6⊆ A;

1 B ⊆ A.

The Möbius function µP : P× P→ Z is defined as follows:

µP(B,A) =

 0 B 6⊆ A;

−1|A\B| B ⊆ A.

These functions may be thought of as matrices because the posets we consider are finite.

Abusing notation, we interpret ζP and µP as matrices where the first and second arguments
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of these functions act as the row and column indices respectively. Under this interpretation,

the Möbius function is the inverse of the zeta function in the sense that µP = ζ−1
P .

ζP ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}



∅ 1 1 1 1 1 1 1 1

{a} 0 1 0 0 1 1 0 1

{b} 0 0 1 0 1 0 1 1

{c} 0 0 0 1 0 1 1 1

{a, b} 0 0 0 0 1 0 0 1

{a, c} 0 0 0 0 0 1 0 1

{b, c} 0 0 0 0 0 0 1 1

{a, b, c} 0 0 0 0 0 0 0 1

Figure 3.2: The zeta function of a poset P = P({a, b, c}) ordered by inclusion—the first and

second arguments of the zeta function act as row and column indices respectively.

Figure 3.2 depicts the zeta function ζP as a matrix for the poset P depicted in Figure

3.1. Notice that the matrix is invertible—it is an upper triangular matrix with non-zero

entries on the main diagonal. In general, the rows and columns of the matrix corresponding

to the zeta function of a poset can be rearranged in this manner. Accordingly, the matrix

corresponding to the zeta function is invertible.
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µP ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}



∅ 1 −1 −1 −1 1 1 1 −1

{a} 0 1 0 0 −1 −1 0 1

{b} 0 0 1 0 −1 0 −1 1

{c} 0 0 0 1 0 −1 −1 1

{a, b} 0 0 0 0 1 0 0 −1

{a, c} 0 0 0 0 0 1 0 −1

{b, c} 0 0 0 0 0 0 1 −1

{a, b, c} 0 0 0 0 0 0 0 1

Figure 3.3: The Möbius function of a poset P = P({a, b, c}) ordered by inclusion—the first

and second arguments of the Möbius function act as row and column indices respectively.

Figure 3.3 depicts the Möbius function µP as a matrix for the poset P depicted in Figure

3.1. Again, notice that µP is invertible—it is an upper triangular matrix with non-zero

entries on the main diagonal. We encourage the reader to check that the matrices depicted

in Figures 3.2 and 3.3 are indeed inverses of each other. This relation holds in general and

provides an intuition for the so called Möbius inversion. In what follows, we provide two

Characterizations of the Möbius inversion—we will use both later in this document.

Proposition 3.2.1 (Proposition 2 [71]). Let P be a poset and g : P→ R and h : P→ R be

real-valued functions. The following expressions imply each other :

i. g(A) =
∑

B∈P h(B)µP(B,A) for all A ∈ P;

ii. h(A) =
∑

B∈P g(B) ζP(B,A) for all A ∈ P.

Alternatively, if we abuse notation and treat g and h as column vectors, then the Möbius

inversion states that g = µPh ⇔ h = ζPg. If V is a non-empty set of variables and P = P(V )

is a poset ordered by inclusion, then the Möbius inversion simplifies to the following equivalent
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statements:

i. g(A) =
∑

B⊆A(−1)|A\B| h(B) for all A ⊆ V ;

ii. h(A) =
∑

B⊆A g(B) for all A ⊆ V .

Corollary 3.2.1 (Corollary 1 [71]). Let P be a poset and g : P → R and h : P → R be

real-valued functions. The following expressions imply each other:

i. g(A) =
∑

B∈P µP(A,B)h(B) for all A ∈ P;

ii. h(A) =
∑

B∈P ζP(A,B) g(B) for all A ∈ P.

Alternatively, if we abuse notation and view g and h as column vectors then the corollary

states that g = µ>Ph ⇔ h = ζ>P g. If V is a non-empty set of variables and P = P(V ) is a

poset ordered by inclusion, then the corollary simplifies to the following equivalent statements:

i. g(A) =
∑

B⊆V (A⊆B)(−1)|B\A| h(B) for all A ⊆ V ;

ii. h(A) =
∑

B⊆V (A⊆B) g(B) for all A ⊆ V .

T g(T ) T h(T )







∅ 0 ∅ 0

{a} 0
ζP−→ {a} 0

{b} 0 {b} 0

{c} 1 {c} 0

{a, b} 0 {a, b} 1

{a, c} −1 {a, c} 0

{b, c} −1
µP←− {b, c} 0

{a, b, c} 1 {a, b, c} 1

Figure 3.4: An application of the zeta and Möbius functions of a poset P = P({a, b, c})
ordered by inclusion.
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Figure 3.4 depicts an application of the Möbius inversion with respect to a poset P =

P({a, b, c}) ordered by inclusion. If g : P → R and h : P → R are real-valued functions

satisfying Proposition 3.2.1, then the zeta function depicted in Figure 3.2 applied to g results

in h and the Möbius function depicted in Figure 3.3 applied to h results in g; Figure 3.4

gives an example.

3.3 Ancestral Graphs

A common theme throughout this dissertation is the use of mixed graphs as independence

models. This section introduces several families of mixed graphs, including directed acyclic

graphs, acyclic directed mixed graphs, and maximal ancestral graphs.

3.3.1 Preliminaries

Definition (mixed graph). A mixed graph G = (V,E) is an ordered pair consisting of a vertex

set and an edge set respectively. The edge set contains a mixture of directed, bi-directed,

and undirected edges which connect pairs of vertices in the vertex set such that no pair of

vertices is connected by more than one edge of the same type.

Definition (characteristics of mixed graphs). A few characteristics used to further refine

the definition of a mixed graph are defined as follows:

• a mixed graph is loopless if no edge connects a vertex to itself;

• a mixed graph has multiple edges if more than one edge connects any pair of vertices;

• a mixed graph is simple if it is loopless and does not have multiple edges;

• a mixed graph is directed if it does not contain any undirected edges;

• a mixed graph is acyclic if it does not contain any directed cycles—a sequence of com-

monly oriented edges that starts and ends with the same vertex.

As a point of clarification, a directed graph is a mixed graph that only contains directed

edges, whereas a directed mixed graph can additionally contain bi-directed edges.
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Definition (paths in mixed graphs). Let G = (V,E) be a mixed graph. The notion of a path

and a few related concepts are defined as follows:

• a path π = 〈v1, . . . , vm〉 is a sequence of m > 1 distinct vertices where an edge connects

vi and vi+1 for all 1 ≤ i < m;

• the endpoints of a path π = 〈v1, . . . , vm〉 are the first and last vertices {v1, vm};
• a triple is a path π = 〈v1, v2, v3〉 with three vertices and is unshielded if no edge connects

its endpoints v1 and v3;

• a collider on π = 〈v1, . . . , vm〉 (m ≥ 3) is a vertex vi (1 < i < m) such that:

vi−1


→
→
↔

 vi


←
↔
↔

 vi+1

and is unshielded if no edge connects vi−1 and vi+1.

Paths are sometimes defined as sequences of distinct edges linked by shared endpoints,

however, in this dissertation, the notion of a path is only considered within simple mixed

graphs where the two definitions are equivalent.

A directed acyclic graph (DAG) is a simple directed graph that is acyclic. The family of

DAGs is of primary importance because it is both a subfamily and a constructor of mixed

graphs. Section 3.4.2 details how DAGs construct mixed graphs through a process called

latent projection. The two most prevalent families of mixed graphs that can be constructed

by a latent projection process are acyclic directed mixed graphs (ADMGs) and maximal

ancestral graph (MAGs). ADMGs are relatively easy to understand syntactically, while

MAGs are generally more convenient to work with theoretically. The families of ADMGs

and directed MAGs are equivalent with respect to representing conditional independence

statements. The family of directed MAGs is a subfamily of ADMGs so results on ADMGs

apply to directed MAGs, but not the other way around. Accordingly, prior work on both

families will be referenced throughout this dissertation, but MAGs will be the primary family

of mixed graphs discussed.
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a b

i.

a b

ii.

a b

iii.

Figure 3.5: Mixed graphs with vertices {a, b}: (i) a mixed graph with a loop a− a and

multiple edges a←→ b; (ii) a acyclic directed loopless mixed graph with multiple edges a↔→ b;

(iii) a simple acyclic directed graph.

Figure 3.5 illustrates several characteristics of mixed graphs. The mixed graphs in (ii)

and (iii) are loopless and the mixed graph in (iii) is simple. Furthermore, the mixed graph

in (i) contains a directed cycle a→ b→ a, the mixed graph in (ii) is an ADMG, and the

mixed graph in (iii) is a DAG. Note that the multiple edges a←→ b and the bi-directed

edge a↔ b are not semantically equivalent. All families of mixed graphs discussed within

this dissertation are loopless. Accordingly, from this point on, the terms mixed graph and

loopless mixed graph will be used synonymously.

We utilize standard familial terminology from the vernacular of graphical models. Let

G = (V,E) be a mixed graph. For a vertex a ∈ V :

paG(a) ≡ {b ; b→ a in G}

chG(a) ≡ {b ; b← a in G}

spG(a) ≡ {b ; b↔ a in G}

neG(a) ≡ {b ; b− a in G}

are the parents, children, spouses, and neighbors of a respectively. If any of the above edges

are present in G, then a and b are adjacent. Similarly:

anG(a) ≡ {b ; b→ · · · → a in G or a = b}

deG(a) ≡ {b ; b← · · · ← a in G or a = b}

disG(a) ≡ {b ; b↔ · · · ↔ a in G or a = b}
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antG(a) ≡ {b ;


b→ · · · → a

b− · · · → a

b− · · · − a

 in G or a = b}

are the ancestors, descendants, district, and anterior vertices of a respectively. These

functions are applied to sets disjunctively, that is, applying one to a set of vertices is the

union of the operation applied to each vertex in the set. For example, a set of vertices A ⊆ V

has the following parents and ancestors:

paG(A) ≡
⋃
a∈A

paG(a) anG(A) ≡
⋃
a∈A

anG(a).

We use inclusive definitions of these functions: a ∈ anG(A), a ∈ deG(A), and a ∈ disG(A)

for all a ∈ A. These operators are not always defined this way—we define them as such

for theoretical convenience. Notably, the definitions for parents, children, spouses, and

neighbors are not inclusive, however, having inclusive versions will be useful later. We define

the inclusive versions of these functions as follows: pa+
G , ch+

G , sp
+
G , ne+

G .

a b

c d e

Figure 3.6: A mixed graph with vertices {a, b, c, d, e}.

Figure 3.6 illustrates concepts of parents, children, neighbors, and spouses. In the graph,

the non-trivial relations are as follows:

• c has parents {a}, d has parents {b}, and e has parents {c};
• a has children {c}, b has children {d}, and c has children {e};
• a has neighbors {b}, and b has neighbors {a};
• c has spouses {d}, d has spouses {c, e}, and e has spouses {d}.
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Similarly, Figure 3.6 illustrates concepts of ancestors, descendants, and districts. In the

graph, the non-trivial relations are as follows:

• c has ancestors {a, c}, d has ancestors {b, d}, and e has ancestors {a, c, e};
• a has descendants {a, c, e}, b has descendants {b, d}, and c has descendants {c, e};
• a has anterior vertices {a, b}, b has anterior vertices {a, b}, c has anterior vertices {a, b, c},
d has anterior vertices {a, b, d}, and e has anterior vertices {a, b, c, e};

• {a}, {b}, and {c, d, e} form districts.

We now have a sufficient set of graphical concepts to define the ancestral graphs and are

one step closer to defining MAGs.

Definition (ancestral graph). Let G = (V,E) be a simple mixed graph. G is ancestral if for

all vertices a ∈ V :

i. chG(a) ∩ anG(a) = ∅;

ii. spG(a) ∩ anG(a) = ∅;

iii. paG(a) ∪ spG(a) 6= ∅ ⇒ neG(a) = ∅.

Criteria (i) states that ancestral graphs cannot have directed cycles and criteria (ii)

states that ancestral graphs cannot have almost-directed cycles—a sequence of commonly

oriented edges that starts and ends with vertices connected by a bi-directed edge. Criteria

(iii) states that ancestral graphs cannot have a directed arrowhead pointed into a vertex

that is connected to another vertex with an undirected edge. Accordingly, ancestral graphs

have clearly defined directed and undirected parts. This notion can be made rigorous using

the graphical concept of a subgraph.

Two important graphical concepts used throughout this dissertation are anterior and

ancestral sets.

Definition (anterior set). Let G = (V,E) be a mixed graph containing a set A ⊆ V . A is

anterior if antG(A) = A, in other words, A contains all its own anterior vertices. The set of

all anterior sets in G is denoted by A(G).

Definition (ancestral set). Let G = (V,E) be a mixed graph containing a set A ⊆ V . A is

ancestral if anG(A) = A, in other words, A contains all its own ancestors. Notably, if G is
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directed, then A(G) is the set of all ancestral sets in G.

Definition (subgraph of mixed graphs). Let G = (V,E) and G′ = (V,E) be mixed graphs.

If V ′ ⊆ V and E ′ ⊆ E, then G′ is a subgraph of G—of particular interest:

• the directed subgraph of G, denoted by dir(G) = (V ′, E ′) where V ′ = {a ∈ V ; paG(a) ∪
chG(a) ∪ spG(a) 6= ∅} and E ′ = {e ∈ E ; e is a directed or bi-directed edge}

• the undirected subgraph of G, denoted by un(G) = (V ′, E ′) where V ′ = {a ∈ V ; paG(a) ∪
spG(a) = ∅} and E ′ = {e ∈ E ; e is an undirected edge};

• the induced subgraph of G over A ⊆ V , denoted by GA = (A,E ′) where E ′ = {e ∈
E ; e connects two members of A}.

a b

c d e

i.

a b

ii.

Figure 3.7: Subgraphs of the graph in Figure 3.6: (i) the directed subgraph; (ii) the undi-

rected subgraph.

a

c d e

i.

a b

d e

ii.

Figure 3.8: Induced subgraphs of the graph in Figure 3.6: (i) the induced subgraph over

{a, c, d, e}; (ii) the induced subgraph over {a, b, d, e}.
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Proposition 3.3.1 (Proposition 3.5 [70]). Let G be an ancestral graph. If G′ is a subgraph

of G, then G′ is an ancestral graph.

As noted earlier, DAGs are not stable under marginalization and conditioning, however,

ancestral graphs are stable under marginalization and conditioning. For any DAG with latent

confounding and selection effects, there is an ancestral graph over the measured variables

alone that represents the conditional independence and ancestral relations entailed by the

original DAG; in the case of a causal DAG, the ancestral relations are causal. The edges of

a causal ancestral graph may be interpreted causally as follows:

• a→ b means that a is a cause of b or some selection variable, but b is not a cause of a

or any selection variable;

• a↔ b means that a is not a cause of b or any selection variable, and b is not a cause of

a or any selection variable;

• a− b means that a is a cause of b or some selection variable, and b is a cause of a or

some selection variable.

3.3.2 Graphical Conditional Independence

Graphical separation criteria define the notion of graphical conditional independence.

In this dissertation, we use the so called m-separation criterion for mixed graphs, which

naturally extends the well known d -separation criterion for directed graphs [58, 70, 74].

Given a DAG with latent confounding and selection effects, inducing paths characterize

when two vertices cannot be not graphically separated conditioned on any set of vertices

that corresponds to a set of measured variables. Throughout this dissertation, the symbols

L and S denote sets of latent confounding and selection effects (and their corresponding

vertices) respectively.

Definition (inducing path). Let G = (V,E) be an ancestral graph containing vertices a, b ∈
V (a 6= b) and disjoint sets L, S ⊆ V \ {a, b}. A path π between a and b is inducing relative

to 〈L, S〉 if the following hold:

i. every non-endpoint on π is a member of L or a collider;

ii. every collider on π is an ancestor of a, b, or s ∈ S.
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If L = S = ∅, then π is a primitive inducing path.

Looking ahead, Figure 3.10 gives an example of a primitive inducing path. The path

〈a, c, d, b〉 is primitively inducing in both graphs, but a and b are only adjacent in (ii). In

the literature, inducing paths have only been defined for ancestral graphs, but it is likely the

case that they can be extended to all families of mixed graphs discussed in section 3.4.

In Section 3.4, we review how a DAG with latent confounding and selection effects may

be represented as a loopless mixed graph derived by the marginalization and conditioning

of that DAG. In the case of a loopless mixed graph, graphical conditional independence is

characterized by m-connecting paths and m-separation.

Definition (m-connecting path). Let G = (V,E) be a mixed graph containing vertices

a, b ∈ V (a 6= b) and a subset C ⊆ V \ {a, b}. A path π between a and b is m-connecting

relative to C if the following hold:

i. every non-collider on π is not a member of C;

ii. every collider on π is an ancestor of a, b, or c ∈ C.

Definition (m-separation). Let G = (V,E) be an mixed graph containing disjoint sets

A,B,C ⊆ V . If for every a ∈ A and b ∈ B no m-connecting path exists between a and b

relative to C, then A and B are m-separated by C.

Let G = (V,E) be a mixed graph containing disjoint sets A,B,C ⊆ V . We say 〈A,B | C〉
is represented in G by mseparation and write A ⊥⊥mB | C [G ] if A and B are m-separated

by C. The independence model induced by G is denoted Im(G).
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a b

c

d

e

Figure 3.9: An ancestral graph with vertices {a, b, c, d, e}.

Figure 3.9 illustrates the concepts of inducing paths, m-connecting paths, and m-separation.

In the graph:

• 〈a, b, c, d〉 is an inducing path relative to 〈{c}, {b}〉 and relative to 〈{c}, {e}〉;
• 〈a, b, c, d〉 is an m-connecting path relative to {b} and relative to {e};
• 〈a, b, c, d〉 is not m-connecting relative to {c}, {b, c}, or {c, e} because a and d are m-

separated by {c}, {b, c}, and {c, e} respectively.

Additionally, m-connecting and inducing paths in ancestral graphs are related by the follow-

ing proposition.

Proposition 3.3.2 (Theorem 4.2 [70]). Let G = (V,E) be an ancestral graph containing

vertices a, b ∈ V (a 6= b) and disjoint sets L, S ⊂ V \ {a, b}. The following are equivalent :

i. there exists an inducing path between a and b relative to 〈L, S〉;
ii. a and b are not m-separated by C for all S ⊂ C ⊆ V \ L (a, b 6∈ C).

Occasionally, it is useful to have an alternative separation criterion for the simplification

of proofs. Accordingly, we define the augmented graph and m∗-separation criterion for

ancestral graphs.

Definition (collider-connecting path). Let G = (V,E) be a mixed graph containing vertices

a, b ∈ V . A path π between a and b is a collider-connecting path if every non-endpoint vertex

on π is a collider.
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Let G = (V,E) be a mixed graph containing a vertex a ∈ V . The non-trivial collider-

connecting vertices of a are the vertices connected to a by collider-connecting paths. Let

G = (V,E) be a mixed graph. For a vertex a ∈ V ,

colG(a) ≡ neG(a) ∪ pa+
G (disG(ch+

G (a)))

are the collider-connecting vertices of a. We define this function to be conjunctive when

applied to sets, that is, by definition applying the collider-connecting function to a set of

vertices is the intersection of the operation applied to each vertex in the set. For example,

a set of vertices A ⊆ V has collider-connecting vertices:

colG(A) ≡
⋂
a∈A

colG(a).

Definition (augmented graph). Let G = (V,E) be a mixed graph. The augmented graph,

denoted G′ = aug(G), is the undirected graph over the same vertices such that neG′(a) =

colG(a) for all a ∈ V .

Definition (m∗-separation). Let G = (V,E) be an ancestral graph containing disjoint sets

A,B,C ⊆ V and D = antG(ABC). If for every a ∈ A and b ∈ B no m-connecting path

exists between a and b relative to C in aug(GD), then A and B are m∗-separated by C in G.

Let G = (V,E) be a mixed graph containing disjoint sets A,B,C ⊆ V . We say 〈A,B | C〉
is represented in G by m∗-separation and write A ⊥⊥m∗B | C [G ] if A and B are m∗-separated

by C. The independence model induced by G is denoted Im∗(G).

Theorem 3.3.1 (Theorem 3.18 [70]). If G is an ancestral graph, then Im∗(G) = Im(G).

Since the two separation criterion are equivalent we drop the identifying subscript in

the relevant notation. The following corollary is a direct consequence of the equivalence of

m∗-separation and m-separation.

Corollary 3.3.1. If G is an ancestral graph, then I(G) =
⋃
A∈A(G) I(aug(GA)).

Proof. This directly follows from the definition of m∗-separation and Theorem 3.3.1.

Lastly, we note that an induced independence model defined by a mixed graph and

m-separation, including ancestral graphs, is compositional graphoid.
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Proposition 3.3.3 (Theorem 1 [74]). If G is a mixed graph, then the induced independence

model I(G) is a compositional graphoid.

3.3.3 Markov Properties

Formally, ancestral graph Markov models are characterized by the m-separation criterion

in conjunction with the global Markov property.

Definition (global Markov property). Let G = (V,E) be a mixed graph and P be a proba-

bility measure over V . P satisfies the global Markov property for G if the following holds for

all disjoint triples 〈A,B | C〉 ∈ T(V ):

A ⊥⊥ B | C [G ] ⇒ A ⊥⊥ B | C [P ].

Alternatively, P satisfies the global Markov property for G if:

I(G) ⊆ I(P ).

However, it is often the case that many of the conditional independence statements

characterized by the global Markov property are redundant—implied by the semi-graphoid

axiom and other conditional independence statements. Accordingly, for many graphical

families, the global Markov property is often reduced to simpler Markov properties, such

as the ordered local Markov property for ADMGs. In what follows, we introduce concepts

needed to define the ordered local Markov property.

Definition (collider-connecting set). Let G = (V,E) be a mixed graph containing a set

A ⊆ V . A is collider-connecting if A ⊆ colG(A). That is, there exists a collider path between

a and b for all a, b ∈ A (a 6= b).

Let G = (V,E) be a mixed graph containing a vertex b ∈ V . The set of collider-connecting

vertices for b has special property:

b ⊥⊥ a | colG(b) \ b [G ] for all a ∈ V \ colG(b)

That is colG(b) \ b is the set that renders b independent of all other vertices in the
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graph. In many cases, this special property is what allows simplified Markov properties to

be constructed. In general this set is called a Markov blanket and the set consisting of a

vertex and its Markov blanket is called a closure. Accordingly, the Markov blanket and

closure for ADMGs are defined as follows:

mbG(b) ≡ colG(b) \ b clG(b) ≡ colG(b)

The global Markov property can also be simplified by using the concept of a consistent

order.

Definition (consistent order). Let G = (V,E) be an ADMG. A total order ≤ over V is

consistent with G if:

a ≤ b ⇒ b 6∈ anG(a) \ a for all a, b ∈ V.

Definition (preceding vertices). Let G = (V,E) be an ADMG containing a vertex b ∈ V

and ≤ be a total order consistent with G. The preceding vertices of b with respect to ≤ are

defined as follows:

pre≤G (b) ≡ {a ∈ V ; a ≤ b}.

The concepts of a Markov blanket and a closure can be redefined with respect to a

consistent order which directly leads to the ordered local Markov property.

mb≤G (b) ≡ mbG(b) ∩ pre≤G (b) cl≤G (b) ≡ clG(b) ∩ pre≤G (b)

Definition (ordered local Markov property). Let G = (V,E) be an ADMG, ≤ be a total

order consistent with G, and P be a probability measure over V . If for every vertex b ∈ V
and ancestral set A ∈ A(G) where b ∈ A ⊆ pre≤G (b):

b ⊥⊥ A \ cl≤GA(b) | mb≤GA(b) [P ]

then P satisfies the ordered local Markov property for G with respect to ≤.

Theorem 3.3.2 (Theorem 2 [66]). Let G = (V,E) be an ADMG, ≤ be a total order consistent

with G, and P be a probability measure over V . The following are equivalent :
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i. P satisfies the global Markov property for G;

ii. P satisfies the ordered local Markov property for G with respect to ≤.

Lastly we introduce the augmented pairwise Markov property for ancestral graphs. This

criterion extends the pairwise Markov property for undirected graphs using graph augmen-

tation; see Lauritzen [46] for more details.

Definition (augmented pairwise Markov property). Let G = (V,E) be an ancestral graph

and P be a probability measure over V . If for every anterior set A ∈ A(G) and pair of

vertices a, b ∈ A where a 6∈ ne+
aug(GA)(b):

a ⊥⊥ b | A \ {a, b} [P ]

then P satisfies the augmented pairwise Markov property for G.

Richardson and Spirtes introduced the pairwise Markov property for MAGs which also

extends the pairwise Markov property for undirected graphs [70]. Sadeghi showed that their

pairwise Markov property is equivalent to the global Markov property for compositional

graphoids [74]. We show that the augmented pairwise Markov property is equivalent to the

global Markov property for graphoids using a classic result for undirected graphs.

Theorem 3.3.3 (Theorem 1 [60]). Let G = (V,E) be an undirected graph and P be a

probability measure over V . If I(P ) is a graphoid, then the following are equivalent :

i. a ⊥⊥ b | V \ {a, b} [P ] for all a, b ∈ V (a 6∈ ne+
G (b));

ii. A ⊥⊥ B | C [P ] for all 〈A,B | C〉 ∈ I(G).

Theorem 3.3.4. Let G = (V,E) be an ancestral graph and P be a probability measure over

V . If I(P ) is a graphoid, then the following are equivalent :

i. P satisfies the global Markov property for G;

ii. P satisfies the augmented pairwise Markov property.

Proof. (i ⇒ ii): Let A ∈ A(G) be an anterior set and a, b ∈ A (a 6= b). By Corollary 3.3.1
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and the antecedent:

a ⊥⊥ b | A \ {a, b} [ aug(GA) ] ⇒ a ⊥⊥ b | A \ {a, b} [G ]

⇒ a ⊥⊥ b | A \ {a, b} [P ].

(i⇐ ii): Let A,B,C ⊆ V be disjoint sets and D = antG(ABC). By the antecedent:

a ⊥⊥ b | D \ {a, b} [ aug(GD) ] ⇒ a ⊥⊥ b | D \ {a, b} [P ] for all a, b ∈ D (a 6= b).

Accordingly, by Corollary 3.3.1 and Theorem 3.3.3:

A ⊥⊥ B | C [G ] ⇒ A ⊥⊥ B | C [ aug(GD) ]

⇒ A ⊥⊥ B | C [P ].

3.3.4 Maximality

Definition (maximal). Let G = (V,E) be an ancestral graph. G is maximal if for all a, b ∈ V
(a 6= b) the following are equivalent:

i. a and b are adjacent;

ii. there exists a primitive inducing path between a and b;

iii. a and b are not m-separated by C for all C ⊆ V \ {a, b}.

Proposition 3.3.2 implies that (ii) and (iii) are equivalent; they are included here to provide

alternative definitions of maximal.

A maximal ancestral graph (MAG) is an ancestral graph that is maximal. MAGs are

maximal in the sense that no additional edges can be added to the graph without changing the

independence model. Furthermore, any non-maximal ancestral graph can be made maximal

by adding bi-directed edges. Intuitively, the definition of maximality for ancestral graphs in

(iii) may be applied to other families of mixed graphs which utilize m-separation.

35
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c d
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a b

c d
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Figure 3.10: Ancestral graphs with vertices {a, b, c, d}: (i) a non-maximal ancestral graph;

(ii) a maximal ancestral graph.

Figure 3.10 illustrates the concept of maximality. The ancestral graph in (i) depicts a

graph that is not maximal and the ancestral graph in (ii) depicts a graph that is maximal.

In general, the presence of a bi-directed edge in a MAG corresponds to one or more latent

confounders on a path between the endpoints of the bi-directed edge. However, it does not

necessarily mean that there is a latent confounder between the endpoints. For example, in

(i) and (ii) there could be a latent confounder between a and c. In this case the bi-directed

edge between a and b in (ii) could be induced exclusively by the confounded path between

a and b mediated by c.

Theorem 3.3.5 (Theorem 5.1 [70]). Let G = (V,E) be an ancestral graph. Then there

exists a unique maximal ancestral graph formed by adding bi-directed edges to G such that

the independence model does not change.

Accordingly, every DAG is maximal and the family of DAGs is a subset of the family

of MAGs. Additionally, transforming an ancestral graph into a MAG does not affect the

ancestral relations—only bi-directed edges are added. In Chapter 4 we work with MAGs

rather than ancestral graphs to develop the theory in this dissertation because they are

theoretically simpler and retain the statistical and causal properties of the corresponding

ancestral graphs.

Proposition 3.3.4. Let G = (V,E) be a MAG:

• the directed subgraph dir(G) is a MAG;
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• the undirected subgraph un(G) is a MAG;

• the induced subgraph GA is a MAG for all anterior sets A ∈ A(G).

Proof. By Proposition 3.3.1, subgraphs of G are ancestral. The proposition is proven by first

showing that GA is maximal and then noting that dir(G) and un(G) are induced subgraphs

of MAGs.

Suppose there is a primitive inducing path π in GA such that the endpoint are not

adjacent. By the definition of induced subgraph, the endpoint are also not adjacent in G.

Furthermore, since any path in GA exists in G, π is also a primitive inducing in G. This is a

contradiction because G is maximal. Accordingly, GA is maximal.

In the case of the directed subgraph dir(G), consider the subgraph of G where the undi-

rected edges have been removed G′ = (V,E ′). Notably, dir(G) is an induced subgraph of G′.

Suppose there is a primitive inducing path π in G′ such that the endpoint are not adjacent.

By the definition of primitive inducing path, every non-endpoint on π is a collider. Further-

more, since removing an undirected edge can only destroy non-colliders, π is also primitively

inducing in G. This is a contradiction because G is maximal. Accordingly, G′ are dir(G) are

maximal. In the case of the undirected subgraph un(G), un(G) is an induced subgraph of G.

Accordingly, un(G) is maximal.

3.3.5 Factorization

For a probability measure P , the global Markov property implies that the conditional

independence statements represented in a graph are represented in P . Equivalently, some

graphical families admit well-known factorizations that algebraically imply that the condi-

tional independence statements represented in a graph are represented in P . For instance,

DAGs provide a well known recursive factorization.

Let G = (V,E) be a DAG. Furthermore, let X be a collection of random variables indexed

by V with probability measure P that admits density f(x) with respect to dominating σ-

finite product measure ν. P satisfies the global Markov property with respect to G if and

only if

f(x) =
∏
v∈V

fv|paG (v)(x) for ν-a.e. x ∈ X.
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A similar factorization was developed by Evans and Richardson for ADMGs [30, 67].

However, the factorization developed by Evans and Richardson requires multiple equations.

In Chapter 4 we develop an alternative to Evans and Richardson’s factorization that only

requires a single equation.

a b c d

i.

a b

c d

ii.

Figure 3.11: ADMGs with vertices {a, b, c, d}.

In order to state Richardson’s factorization criterion for ADMGs, we must first introduce

a few additional concepts. Let G = (V,E) be a mixed graph. For a vertex a ∈ V and a

subset B ⊆ V

barG(B) ≡ {b ∈ B ; B ∩ deG(b) = b}

is the barren subset of B.

Definition (barren set). Let G = (V,E) be an ADMG containing a set B ⊆ V . B is barren

if B = barG(B). That is, B is barren if it does not contain any non-trivial descendants.

Richardson’s factorization criterion for ADMGs utilizes a partition function that par-

titions the variables into sets called heads. The factorization criterion is a product over

conditional density terms comprised of heads conditioned on their corresponding tails.

Definition (head). Let G = (V,E) be an ADMG containing a set H ⊆ V (H 6= ∅). H is

a head if it is barren in G and contained within a single district of GanG (H). The set of all

heads in G is denoted by H(G).

Definition (tail). Let G = (V,E) be an ADMG. For a head H ∈ H(G), the tail of H is the

set

tailG(H) ≡ T \H ∪ paG(T ) where T = disGanG (H)
(H).

38



Let G = (V,E) be an ADMG and ≤ be the partial order

H ≤ H ′ ⇔ H ⊆ anG(H ′) for all H,H ′ ∈ H(G).

Heads partition the variables with the help of two functions: ΠG : P(V ) → P(H(G)) which

is such that ΠG(A) returns the set of heads that are subsets of A and maximal with respect

to ≤; and ΨG : P(V )→ P(V ) which is such that ΦG(A) returns the elements of A which are

not contained in a set in ΠG(A):

ΠG(A) ≡ {H ∈ H(G) ; H ⊆ A and H 6≤ H ′ for all H ′ ⊆ A (H 6= H ′)};

ΨG(A) ≡ A \
⋃

B∈ΠG (A)

B.

For a subset A ⊆ V , recursively define the partition function:

[A ]G ≡

 ∅ A = ∅;

ΠG(A) ∪ [Ψ(A)]G A 6= ∅,

where square brackets denote the partition function. The partition function removes maximal

sets from A, and is recursively applied again to what remains.

Theorem 3.3.6 (Theorem 4.12 [30]). Let G = (V,E) be an ADMG. Furthermore, let X be

a collection of random variables indexed by V with probability measure P that admits density

f(x) with respect to dominating σ-finite product measure ν. P satisfies the global Markov

property with respect to G if and only if for every ancestral set A ∈ A(G),

fA(x) =
∏

H∈[A]G

fH|tailG (H)(x) for ν-a.e. x ∈ X.
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H {a} {b} {c} {d}
T ∅ {a} {b} {a, b, c}

{a}

{b}

{c}

{d}

Figure 3.12: The heads and tails for the ADMG illustrated in Figure 3.11 (i) and the Hasse

diagram for the corresponding poset over the ADMG’s heads.

Figure 3.12 depicts the heads and tails for the ADMG illustrated in Figure 3.11 (i) and

the posets and partial order. Accordingly, a probability measure obeys the global Markov

property with respect to the graph if and only if it factors as:

fabcd(x) = fd|abc(x) fc|b(x) fb|a(x) fa(x) for ν-a.e. x ∈ X

fabc(x) = fc|b(x) fb|a(x) fa(x) for ν-a.e. x ∈ X

fab(x) = fb|a(x) fa(x) for ν-a.e. x ∈ X

H {a} {b} {c} {d} {a, d} {b, c}
T ∅ ∅ {a} {b} {b} {a}

{a} {b}

{c} {d}

{b, c} {a, d}

Figure 3.13: The heads and tails for the ADMG illustrated in Figure 3.11 (ii) and the Hasse

diagram for the corresponding poset over the ADMG’s heads.
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Figure 3.13 depicts the heads and tails for the ADMG illustrated in Figure 3.11 (ii) and

the posets and partial order. Accordingly, a probability measure obeys the global Markov

property with respect to the graph if and only if is factors as:

fabcd(x) = fad|b(x) fbc|a(x) for ν-a.e. x ∈ X;

fabc(x) = fbc|a(x) fa(x) for ν-a.e. x ∈ X;

fabd(x) = fad|b(x) fb(x) for ν-a.e. x ∈ X;

fab(x) = fa(x) fb(x) for ν-a.e. x ∈ X;

fac(x) = fc|a(x) fa(x) for ν-a.e. x ∈ X;

fbd(x) = fd|b(x) fb(x) for ν-a.e. x ∈ X.

Note that both the factorization characterized by Evans and Richardson and the factor-

ization presented in this proposal are equivalent to the global Markov property and therefore

equivalent to each other. The key difference is that the factorization characterized by Evans

and Richardson requires an equation for every non-empty ancestral subset of variables, while

the factorization presented in this proposal only requires a single equation.

3.3.6 Markov Equivalence

Multiple graphs representing the same independence model is made rigorous by the

notion of Markov equivalence.

Definition (Markov equivalence). Let G = (V,E) and G′ = (V,E ′) be mixed graphs. G and

G′ are Markov equivalent if I(G) = I(G′):

A ⊥⊥ B | C [G ] ⇔ A ⊥⊥ B | C [G′ ] for all 〈A,B | C〉 ∈ T(V ).

As noted above, there exists a unique MAG for every ancestral graph with the same

independence model. Accordingly, Markov equivalence is usually discussed in terms of MAGs

rather than ancestral graphs. Furthermore, the set of MAGs that form a Markov equivalence

class may be graphically summarized using a maximally informative partial ancestral graph
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(PAG). A maximally informative PAG is not a mixed graph, but a graph that summarizes

a set of mixed graphs. In addition to the standard set of edges used by mixed graphs,

maximally informative PAGs also include edges with circle edge marks to denote ambiguity—

the edge mark varies among the summarized graphs.

a b

c d e

i.

a b

c d e

a b

c d e

a b

c d e

a b

c d e

a b

c d e

a b

c d e

ii.

Figure 3.14: A Markov equivalence class of MAGs with vertices {a, b, c, d, e}: (i) a maximally

informative PAG; (ii) a set of Markov equivalent MAGs.

Definition (maximally informative partial ancestral graph). A maximally informative PAG

is a graph used to summarize the Markov equivalence class of a MAG and contains at most

one of six possible edge types {→,↔,−, ◦−◦, ◦→,−◦} between every pair of vertices.

If G is a MAG, then the maximally informative PAG [G] for G is a graph with the same

adjacencies as G. Furthermore, every non-circle edge mark in [G] occurs in every member of

G’s Markov equivalence class and every circle edge mark in [G] corresponds to an edge mark

that varies among the members of G’s Markov equivalence class.
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a b1 b2 . . . bk

c

d

Figure 3.15: The general form of a discriminating path.

The concept of a discriminating path partly characterizes whether two MAGs belong to

the same Markov equivalence class. Figure 3.15 depicts the general form of a discriminating

path, where asterisks are used to denote edge marks that may either be an arrowhead or a

tail.

Definition (discriminating path). Let G = (V,E) be a MAG with a path π = 〈a, b1, . . . , bk, c, d〉
(k ≥ 1). We say π is a discriminating path for c if:

i. a and d are not adjacent;

ii. bi is a collider on π for all 1 ≤ i ≤ k;

iii. bi is a parent of d for all 1 ≤ i ≤ k.

Theorem 3.3.7 (Theorem 1 [81]). Let G and G′ be MAGs. G and G′ are Markov equivalent

if and only if:

i. G and G′ have the same adjacencies;

ii. G and G′ have the same unshielded colliders;

iii. if π = 〈a, b1, . . . , bk, c, d〉 (k ≥ 1) is a discriminating path for c in G and G′, then c is a

collider on π in G if and only if it is a collider on π in G′.

Definition (parametrizing sets). The parametrizing set of G, denoted by S(G) is defined as

follows:

S(G) ≡ {HT ; H ∈ H(G) and T ⊆ tailG(H)}.

This definition is extended from directed MAGs to all MAGs by adding all cliques of the

undirected subgraph to the set. The undirected subgraph is the graph with the same vertices
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where all directed and bi-directed edges have been removed. A clique is a complete subset

of the graph, that is, every vertex in the subset is connected to every other vertex in the

subset. The following results hold:

Proposition 3.3.5 (Proposition 3.3 [38]). Let G = (V,E) be a MAG containing a set N ⊆ V .

N 6∈ S(G) if and only if there exist a, b ∈ N (a 6= b) and C ⊆ V (N ⊆ C) such that a and b

are m-separated by C \ {a, b}.

Proposition 3.3.6 (Proposition 3.4 [38]). For a MAG G, we have

i. any two vertices a and b are adjacent in G if and only if {a, b} ∈ S(G);

ii. for any unshielded triple 〈a, b, c〉 in G, {a, b, c} ∈ S(G) if and only if b is a collider on the

triple 〈a, b, c〉;
iii. if π forms a discriminating path for b with endpoints a and c in G then {a, b, c} ∈ S(G)

if and only if b is a collider on π.

Theorem 3.3.8 (Theorem 3.2 [38]). Let G and G′ be MAGs. G and G′ are Markov equivalent

if and only if S(G) = S(G′).

Hu and Evans refine the set of parametrizing sets by specifying a subset that is particu-

larly useful for efficient calculation of Markov equivalence.

S̃(G) ≡ {T ∈ S(G) ; 1 ≤ |P2
2(T ) ∩ S(G)| ≤ 2 ≤ |T | ≤ 3}

Corollary 3.3.2 (Corollary 3.2.1 [38]). Let G and G′ be MAGs. G and G′ are Markov

equivalent if and only if S̃(G) = S̃(G′).

3.4 Stable Mixed Graphs

Suppose that the causal relationships of a system of variables can be correctly represented

by a DAG. If only some variables are measured and others are latent or measured selection

bias, then the system of variables can be represented by the marginalization and conditioning

of the DAG respectively. Accordingly, we often refer to the marginalization set as L and the

conditioning set as S. In some cases, we consider marginals and conditionals of the graph
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for theoretical purposes. That is, when we refer to a latent or selection variable, we may be

referring to a variable that has been marginalized or conditioned on.

Families of stable mixed graphs are families that are closed under this process of marginal-

ization and conditioning. Since marginalization and conditioning can correspond to latent

confounding and selection effects, these families of graphs are quite useful for modeling. If

a graphical family is not stable under marginalization and conditioning, then dealing with

latent confounding and selection effects can be more difficult; see the example in Chapter 2.

DAGs make up an important family of graphs. In particular, Bayesian networks, which

are graphical Markov models that use DAGs, have been applied with much success across

many domains. However, when a subset of variables in a DAG are latent, independence

models induced by DAGs are generally insufficient to encode the complete set of conditional

independence statements represented in the probability measure of a Markov model. Latent

confounding variables and selection bias are treated as marginalization and conditioning

respectively. Accordingly, this shortcoming manifests statistically as a lack of stability under

marginalization and conditioning.

In this section, we discuss previous works on mixed graphs that capture the modified

independence structure of a DAG after marginalization over unobserved variables and con-

ditioning on selection variables using the m-separation criterion. These include ribbonless,

summary, and ancestral graphs. Ribbonless graphs were introduced in order to straight-

forwardly deal with the problem of finding a superset of the family of DAGs that is stable

under marginalization and conditioning while summary graphs extend ADMGs to include

undirected edges.

Definition (summary graph). Let G = (V,E) be a mixed graph. G is a summary graph if

for every a ∈ V :

i. chG(a) ∩ anG(a) = ∅;

ii. paG(a) ∪ spG(a) 6= ∅ ⇒ neG(a) = ∅.

The family of summary graphs extends the family of ancestral graphs. In particular,

summary graphs are loopless rather than simple—summary graphs can contain multiple

edges. Additionally, criterion (ii) of ancestral graphs has been removed—summary graphs
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can contain almost directed cycles. Figure 3.16 illustrates an example of a summary graph

that is not an ancestral graph.

Definition (ribbonless graph [73]). Let G = (V,E) be a mixed graph. G is a ribbonless

graph if for every triple 〈a, b, c〉 in G where:
a→ b← c

a↔ b↔ c

a→ b↔ c

 in G and


a− c
a↔ c

a→ c

 not in G;

for all vertices d ∈ deG(b):

i. chG(d) ∩ anG(d) = ∅;

ii. neG(d) = ∅.

The family of ribbonless graphs extends the family of a summary graphs. In particular,

the criteria of summary graphs are only required hold for descendants of colliders with a

special form. Figure 3.16 illustrates an example of a ribbonless graph that is not a summary

graph.
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a b c d

ii.
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iii.
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iv.

Figure 3.16: Stable mixed graphs: (i) a DAG with latent and selection variables; (ii) the

projected ribbonless graph; (iii) the projected summary graph; (iv) the projected ancestral

graph. All graphs encode the same independence model over the measured variables using

m-separation.

Accordingly, the graphical families discussed in this dissertation form a hierarchy. This

hierarchy is further expanded through the application of “directed” and “maximal” modifiers.

• RG Ribbonless Graph;

• SG Summary Graph;

• AnG Ancestral Graph;

• MAG Maximal Ancestral Graph;

• UG Undirected Graph.

• ADMG Acyclic Directed Mixed Graph;

• DAnG Directed Ancestral Graph;

• DMAG Directed Maximal Ancestral Graph;

• DAG Directed Acyclic Graph;

Ribbonless, summary, and ancestral graphs are stable under marginalization and condi-

tioning and their directed counterparts are stable under marginalization; see the top right

of Figure 3.17.

In what follows, we use F to denote a family of graphs. Furthermore, we use F(V ) to
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denote a family of graphs over vertex set V .

FRG

FSG

FAnG

FMAG

FADMG

FDAnG

FDMAG

FDAG

FUG

I(FRG)
I(FSG)
I(FAnG)
I(FMAG)

I(FADMG)
I(FDAnG)
I(FDMAG)

I(FUG)

I(FDAG)

i. ii.

Figure 3.17: Hasse diagrams for posets of graphical families: (i) families of stable mixed

graphs and DAGs ordered by inclusion; (ii) independence models of the families of stable

mixed graphs and DAGs ordered by inclusion.

Figure 3.17 (i) depicts a Hasse diagram for a poset of graphical families ordered by

inclusion—the colored sections indicate families that induce the same independence models

as before. Figure 3.17 (ii) depicts a Hasse diagram for the poset of independence models

induced by the families of graphs ordered by inclusion.

3.4.1 Marginalization and Conditioning

Let I be an independence model over a non-empty set of variables V with a subset L ⊆ V .

The resulting independence model after marginalizing L out of I, denoted α(I, L,∅), is the
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subset of disjoint triples that do not involve any members of L:

α(I, L,∅) ≡ {〈A,B | C〉 ∈ T(V \ L) ; 〈A,B | C〉 ∈ I}.

If I captures the conditional independence statements represented in a probability measure

P , then α(I, L,∅) returns the set of conditional independence relations after marginalizing

L out of P . The symbol L is used because latent variables represent one context in which

marginalization may occur.

While the various families of stable mixed graphs are all stable under marginalization

and conditioning, they were developed for different purposes. In this dissertation we will

identify their differences based on the causal relationships and amount of information that

they can represent. Since the maximal modifier primarily exists for statistical convenience

and the directed modifier is used for cases where there is no conditioning, we discuss the

families of ribbonless graphs, summary graphs, and ancestral graphs

In general, families of stable mixed graphs use the various edges types of mixed graphs

as follows: directed edges identify dependence due to causal ancestry; bi-directed identify

dependence due to marginalization or latent confounding; and undirected edges identify

dependence due to conditioning or selection effects. The families of stable mixed graphs

differ in how they resolve conflicts of multiple sources of dependence. Figure 3.16 provides

a visual aid for the following comparison.

The family of ribbonless graphs is the most general family of stable mixed graphs. Rib-

bonless graphs include all edges that apply to a given pair of vertices. Accordingly, ribbonless

graphs can have up to three edges (directed, bi-directed, and undirected) between a pair of

vertices. For this reason, they are able to encode constraints beyond conditional indepen-

dence constraints, however, to our knowledge, the extent of these constraints has not been

studied. Note that ribbonless graphs can encode any form of constraint encoded by sum-

mary graphs. An algorithm to construct ribbonless graphs by latent projection is detailed

in Algorithm 8.

The family of summary graphs lies between ribbonless graphs and ancestral graphs in

terms of complexity. Summary graphs give priority to undirected edges and include all edges

that apply otherwise for a given pair of vertices. Accordingly, summary graphs can have up
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to two edges (directed and bi-directed) between a pair of vertices. For this reason they are

able to encode constraints beyond conditional independence constraints. These constraints

have been studied in some detail [29, 76, 90]. An algorithm to construct summary graphs

by latent projection is detailed in Algorithm 9.

The family of ancestral graphs is the simplest family of stable mixed graphs. Ancestral

graphs give first priority to undirected edges, second priority to directed edges, and third

priority to bi-directed edges for a given pair of vertices. Accordingly, ancestral graphs can

have up to a single edge between a pair of vertices. Due to their simplicity, ancestral graphs

only represent condition independence constraints. An algorithm to construct MAGs by

latent projection is detailed in Algorithm 10.

Let I be an independence model over a non-empty set of variables V with a subset

S ⊆ V . The resulting independence model after conditioning I on S, denoted α(I,∅, S), is

the subset of disjoint triples defined as follows:

α(I,∅, S) ≡ {〈A,B | C〉 ∈ T(V \ S) ; 〈A,B | CS〉 ∈ I}.

If I captures the conditional independence statements represented in a probability measure

P , then α(I,∅, S) returns the set of conditional independence relations after conditioning P

on S. The symbol S is used because selection bias represent one context in which conditioning

may occur.

Combining these definitions, we obtain:

α(I, L, S) ≡ {〈A,B | C〉 ∈ T(V \ LS) ; 〈A,B | CS〉 ∈ I}.

If I captures the conditional independence statements represented in a probability measure

P , then α(I, L, S) returns the set of conditional independence relations after marginalizing

L out of P and conditioning P on S.

3.4.2 Latent Projections

We may apply the marginalization and conditioning operations directly to graphs using

the concept of latent projection. Although the concept of latent projection was introduced
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by Pearl and Verma [61], Sadeghi provides the most complete treatment of latent projection

[73]. Consider a family of graphs F. If for every graph G = (V,E) ∈ F and disjoint

sets L, S ⊆ V there is a graph G′ ∈ F such that I(G′) = α(I(G), L,∅), then F is stable

under marginalization, and if there is a graph G′ ∈ F such that I(G′) = α(I(G),∅, S), then

F is stable under conditioning. Furthermore, we call F stable under marginalization and

conditioning if there is a graph G′ such that I(G′) = α(I(G), L, S). Below, we define an

algorithm for the latent projections of ancestral graphs. Additional algorithms for the latent

projections of ribbonless, summary, and ancestral graphs are provided in Appendix B.1

Let G = (V,E) be a MAG such that V contains disjoint subsets L, S ⊂ V . The resulting

graph after marginalizing L out of G and conditioning G on S, denoted αAG(G;L, S), is a

graph over the set of vertices V \LS, and edges specified as follows: For all distinct vertices

a, b ∈ V \ LS where there exists an inducing path between a and b relative to 〈L, S〉

if


a ∈ antG(b ∪ S) and b 6∈ antG(a ∪ S)

a 6∈ antG(b ∪ S) and b 6∈ antG(a ∪ S)

a ∈ antG(b ∪ S) and b ∈ antG(a ∪ S)

 then


a→ b

a↔ b

a− b

 in αAG(G;L, S).

That is, αAG(G;L, S) is a graph containing vertices V \ LS and edges between vertices

that are m-connecting in G given all subsets containing the members of S and no members of

L. Furthermore, an edge between two distinct vertices a, b ∈ V \LS will have an arrowhead

at a if and only if a is not an ancestor of b or s ∈ S in G, and a tail otherwise.

Richardson and Spirtes showed that latent projection has several nice properties.

Theorem 3.4.1 (Theorem 4.18 [70]). If G = (V,E) is a MAG containing disjoint sets

L, S ⊆ V , then:

α(I(G);L, S)) = I(αAG(G;L, S))

In words, the independence model corresponding to the transformed graph is the in-

dependence model obtained by marginalizing and conditioning the independence model of

the original graph Additionally, the latent projection procedure defined by Richardson and

Spirtes and has several nice properties.

Corollary 3.4.1 (Corollary 4.19 [70]). If G = (V,E) is a MAG containing disjoint sets
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L, S ⊆ V , then αAG(G;L, S) is a MAG.

Theorem 3.4.2 (Theorem 4.18 [70]). If G = (V,E) is a MAG containing disjoint sets

L1, L2, S1, S2 ⊆ V , then:

αAG(αAG(G;L1, S1);L2, S2) = αAG(G;L1 ∪ L2, S1 ∪ S2)

Furthermore, the family of directed MAGs represents DAG under marginalization, that

is, directed MAGs are capable of representing latent confounding.

Proposition 3.4.1 (Proposition 4.13 [70]). If G is an ancestral graph which contains no

undirected edges, then neither does α(G, L,∅).

Let G = (V,E) be a MAG containing an anterior set A ∈ A(G). Next we note the induced

subgraph GA and the latent projection α(G;V \A,∅) are related—namely that they are the

same. First, note two useful results about the anterior relationships in ancestral graphs and

their marginals.

Corollary 3.4.2 (Corollary 3.10 [70]). Let G = (V,E) and G′ = (V,E ′) are ancestral graphs

with the same adjacencies. If for all a, b ∈ V , adjacent in G and G′, a ∈ antG(b) ⇔ a ∈
antG′(b), then G = G′.

Corollary 3.4.3 (Corollary 4.8 [70]). In an ancestral graph G = (V,E) if a ∈ V \ L then

antG(a) \ L = antα(G;L,∅)(a).

We now show that induced subgraphs on anterior sets are the marginals over the same

vertices.

Proposition 3.4.2. Let G = (V,E) be a MAG containing sets A,L ⊆ V that partition V .

If A ∈ A(G) is an anterior set, then:

GA = α(G;L,∅).

Proof. By construction, for all a, b ∈ A adjacent in GA and G, a ∈ antGA(b) if and only if

a ∈ antG(b). By Corollary 3.4.3, for all a, b ∈ A adjacent in GA and α(g;L,∅), a ∈ antGA(b)

if and only if a ∈ antα(G;L,∅)(b). What remains to be shown is that they have the same

adjacencies.
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Take two arbitrary vertices that are not latent. We need to show that they are adjacent in

GA if and only if they are adjacent in α(G;L,∅). By definition, there is an edge in α(G;L,∅)

if and only if there is an inducing path in G with respect to 〈L,∅〉. Therefore, we show that

there is an edge in GA if and only if there is an inducing path in G with respect to 〈L,∅〉.
In other words, there is a primitive inducing path in GA if and only if there is an inducing

path in G with respect to 〈L,∅〉.
Every (primitive inducing) path in GA is in G by construction. Since these paths do not

include L, they are inducing in G with respect to 〈L,∅〉.
Suppose that there is an inducing path with respect to 〈L,∅〉 in G that is not a primitive

inducing path in GA. Then there is a non-collider in L on the path. Since L is a non-collider,

it is anterior to either an endpoint or a collider on the path. Since collider on the path are

ancestors of the endpoints by definition, the vertex must be anterior to an endpoint. This is

a contradiction because a, b ∈ A ∈ A(G).

By Corollary 3.4.2, GA = α(G;L,∅).

3.5 Alternative Independence Models

In this dissertation, we consider several mathematical objects apart from probability

measures and graphs that induce independence models. In this section, we discuss integer-

valued multisets, multiinformation, and supermodular functions as alternative mathematical

objects that induce independence models. In this section, we introduce these objects and

their relevant properties. In particular, this work relies heavily on the theory of integer-

valued multisets or imset for short; see Studený [83] for more details.

Definition (integer-valued multiset). Let V be a non-empty set of variables. An integer-

valued multiset over V is an integer-valued function u: P(V ) → Z or, alternatively, an

element of ZP(V ).

Basic operations with imsets—summation, subtraction, and multiplication by an integer—
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are defined coordinate-wise. Besides basic operations with imsets, an operation of a scalar

product of a real-valued function m : P(V )→ R and an imset u over V defined by

u>m ≡
∑

T∈P(V )

u(T )m(T )

is used. A simple example of an imset is the identifier of a set A ⊆ V denoted by δA and

defined as follows:

δA(T ) ≡

 1 T = A;

0 T ⊆ V, T 6= A.

We generalize the concept of the identifier to sets of sets. The identifier of a set of sets

A ⊆ P(V ) is denoted by δA and defined as follows:

δA(T ) ≡

 1 T ∈ A;

0 T ⊆ V, T 6∈ A.

3.5.1 Elementary and Semi-elementary Imsets

Elementary and semi-elementary conditional independence statements can be expressed

as imsets of the same name. This becomes clear in the following sections on supermodular

functions and structural imsets.

Definition (elementary imset). Let V be a non-empty set of variables and 〈a, b | C〉 ∈ T(V )

be a disjoint triple over V . The corresponding elementary imset over V is an imset defined

by the formula:

u〈a,b|C〉 ≡ δab∪C + δC − δa∪C − δb∪C .
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T ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}

u〈a,b|c〉(T )
[

0 0 0 1 0 −1 −1 1
]>

Figure 3.18: An elementary imset: u〈a,b|c〉.

1

{a,b,c}

−1
{b,c}

−1
{a,c}

0

{a,b}

1

{c}
0

{b}
0

{a}

0

∅

Figure 3.19: The Hasse diagram for an elementary imset: u〈a,b|c〉.

Definition (semi-elementary imset). Let V be a non-empty set of variables and 〈A,B | C〉 ∈
T(V ) be a disjoint triple over V . The corresponding semi-elementary imset u〈A,B|C〉 is defined

by the formula:

u〈A,B|C〉 ≡ δABC + δC − δAC − δBC .

Proposition 3.5.1 (Proposition 4.2 [83]). Every semi-elementary imset is a linear combi-

nation of elementary imsets with non-negative integer coefficients.
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3.5.2 Multiinformation

Supermodular functions, in particular the multiinformation of a probability measure, are

essential concepts for the theory of imsetal Markov models as they connect semi-elementary

imsets to probabilistic conditional independence.

Definition (supermodular function). Let V be a non-empty set of variables. A function

m : P(V )→ R is a supermodular function over V if

m(A ∪ B) +m(A ∩ B) ≥ m(A) +m(B) for all A,B ⊆ V.

Definition (multiinformation). Let V be a non-empty set of variables containing a subset

A ⊆ V . Furthermore, let X be a collection of random variables indexed by V with probability

measure P that admits density f(x) with respect to dominating σ-finite product measure ν.

The multiinformation of P is a real-valued function mP : P(V )→ [0,∞) that is the relative

entropy of P with respect to the product of its one-dimensional marginals:

mP (A) ≡


∫
x∈XA

log
[

fA(x)∏
a∈A fa(x)

]
dP (x) A 6= ∅;

0 A = ∅.

In the field of information theory, the above integral is an instance of Kullback-Liebler

divergence or relative entropy. Other terms for multiinformation in the literature include

total correlation, dependency tightness, and entaxy [83]. The following corollary gives a

nice intuition for elementary and semi-elementary imsets can be used in conjunction with

multiinformation to define probabilistic conditional independence.

Proposition 3.5.2 (Corollary 2.2 [83]). Let V be a non-empty set of variables and P be a

probability measure over V . If P has finite multiinformation mP , then mP is a non-negative

supermodular function that satisfies

mP (A) = 0 whenever A ⊆ V (|A| ≤ 1).

That is,

mP (ABC) +mP (C)−mP (AC)−mP (BC) ≥ 0 for all 〈A,B | C〉 ∈ T(V ).
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These two conditions imply mP (A) ≤ mP (B) whenever A ⊆ B ⊆ V . Moreover, for every

〈A,B | C〉 ∈ T(V )

mP (ABC) +mP (C)−mP (AC)−mP (BC) = 0 ⇔ A ⊥⊥ B | C [P ].

3.5.3 Structural Imsets as Independence Models

Definition (structural imset). Let V be a non-empty set of variables and u be an imset

over V . The imset u is structural if it is a linear combination of elementary imsets with

non-negative rational coefficients:

u ≡
∑

〈A,B|C〉∈T(V )

k〈A,B|C〉 u〈A,B|C〉 for some k〈A,B|C〉 ∈ Q+.

One says that a disjoint triple 〈A,B | C〉 ∈ T(V ) is represented in a structural imset u

over V and writes A ⊥⊥ B | C [u ] if there exists k ∈ Q+ such that u−k u〈A,B|C〉 is a structural

imset over V . The class of represented triples then defines the (conditional independence)

model induced by u:

I(u) ≡ {〈A,B | C〉 ∈ T(V ) ; A ⊥⊥ B | C [u ]}.

Unlike the previously discussed families of mixed graphs which induce compositional

graphoid independence models, structural imsets induce semi-graphoid independence models.

Proposition 3.5.3 (Lemma 4.6 [83]). A structural imset over V induces a semi-graphoid

over V .

The primary advantage of structural imsets is their representation power. In fact, struc-

tural imsets can represent the independence model of any probability measure with finite

multiinformation [83]. Structural imsets are closely related to supermodular functions.

Proposition 3.5.4 (Proposition 5.1 [83]). Let V be a non-empty set of variables. A function

m : P(V )→ R is supermodular if and only if any of the following three conditions holds :

i. u>m ≥ 0 for every structural imset u over V ;

ii. u>m ≥ 0 for every semi-elementary imset u over V ;
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iii. u>m ≥ 0 for every elementary imset u over V .

We now give a factorization using of structural imsets.

Theorem 3.5.1 (Theorem 4.1 [83]). Let V be a non-empty set of variables and u be a

structural imset over V . Furthermore, let X be a collection of random variables indexed by

V with probability measure P that admits density f(x) with respect to dominating σ-finite

product measure ν. If P has finite multiinformation mP , then the following are equivalent :

i. log f(x) = log f(x)−∑T∈P(V ) u(T ) log fT (x) for P -a.e. x ∈ X;

ii. u>mP = 0;

iii. A ⊥⊥ B | C [u ] ⇒ A ⊥⊥ B | C [P ] for every 〈A,B | C〉 ∈ T(V ).

Of course, along with their representation power comes complexity that makes practical

use difficult. For that purpose, standard and characteristic imsets were developed.

3.5.4 Characteristic Imsets as Independence Models

Let V be a non-empty set of variables and P = P(V ) be a poset ordered by inclusion.
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G

a

b

c

T 1− cG(T ) T uG(T )







∅ 0 ∅ 0

{a} 0
µP−→ {a} 0

{b} 0 {b} 1

{c} 0 {c} 0

{a, b} 0 {a, b} −1

{a, c} 1 {a, c} 0

{b, c} 0
ζP←− {b, c} −1

{a, b, c} 1 {a, b, c} 1

Figure 3.20: A DAG with vertices {a, b, c} and an application of the zeta and Möbius func-

tion of a poset P = P(V ) ordered by inclusion as a transition between the standard and

characteristic imsets of the DAG.

Definition (standard imset). Let G = (V,E) be a DAG. The corresponding standard imset

uG over V is defined as follows:

uG ≡ δV − δ∅ +
∑
a∈V

(δpaG (a) − δpa+
G

(a)).

Proposition 3.5.5 (Lemma 7.1 [83]). Let G = (V,E) be a DAG with standard imset uG. uG

is a structural imset where I(uG) = I(G).

Definition (characteristic imset). Let G = (V,E) be a DAG with standard imset uG . The

corresponding characteristic imset is defined as follows:

cG(A) ≡ 1−
∑

A⊆T⊆V

uG(T ) for all A ⊆ V (|A| ≥ 2).

Note that characteristic imsets are not defined on the empty set or singletons. However,

if we let cG(A) = 1 for all A ⊆ V (|A| ≤ 1), then by the Möbius inversion:
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i. uG(A) =
∑

B⊆V (A⊆B)(−1)|B\A| (1− cG(B)) for all A ⊆ V ;

ii. 1− cG(A) =
∑

B⊆V (A⊆B) uG(B) for all A ⊆ V .

Accordingly, the following corollary follows from Theorem 3.5.1, Proposition 3.5.5, and

Corollary 3.2.1.

Corollary 3.5.1. Let G = (V,E) be a DAG with standard imset uG and characteristic imset

cG. Let P = P(V ) be a poset ordered by inclusion. Furthermore, let X be a collection of

random variables indexed by V with probability measure P that admits density f(x) with

respect to dominating σ-finite product measure ν. If P has finite multiinformation mP , then

the following are equivalent :

i. log f(x) =
∑

T∈P(V ) µPcG(T ) log fT (x) for P -a.e. x ∈ X;

ii. u>GmP = 0;

iii. A ⊥⊥ B | C [G ] ⇒ A ⊥⊥ B | C [P ] for every 〈A,B | C〉 ∈ T(V ).

See [37, 87] for more details.

Proposition 3.5.6 (Theorem 1 [37, 87]). Let G = (V,E) be a DAG and ≤ be a total order

consistent with G. For all A ⊆ V (|A| ≥ 2):

i. cG(A) ∈ {0, 1};
ii. cG(A) = 1 ⇔ A ⊆ pa+

G (dAe≤).

It follows that two DAGs G and G′ are Markov equivalent if and only if cG = cG′ .

There has been extensive work toward applying imsets to the problem of DAG learning

[37, 83, 84, 85, 86, 87]. However, imsets have not been applied to learning maximal ancestral

graphs. We explore this topic in Chapter 6.
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4.0 Inducing Sets

In this chapter we introduce a new perspective for reasoning about ancestral graph

Markov models, which is the primary contribution of this dissertation. Accordingly, we

define the novel concept of an inducing set and the concept of an m-connecting set as a

special case. While this chapter primarily focuses on ancestral graphs, especially those that

are maximal, many of the forthcoming results may be applied to any family of stable mixed

graphs. As we have seen earlier, all families of stable mixed graphs induce the same family

of independence models; the focus on ancestral graphs is largely for theoretical convenience.

Definition (inducing set). Let G = (V,E) be an ancestral graph containing disjoint sets

M,L, S ⊆ V (M 6= ∅). M is an inducing set relative to 〈L, S〉 for G if one of the following

hold:

i. M is a singleton;

ii. there exists an inducing path between a and b relative to 〈L,MS \ {a, b}〉 for all a, b ∈M
(a 6= b).

If L = S = ∅, then M is a primitive inducing set.

Proposition 3.3.2 allows us to equivalently define a primitive inducing set in terms of

m-connecting paths. Therefore, we adopt the term m-connecting set in place of primitive

inducing set.

Definition (m-connecting set). Let G = (V,E) be an ancestral graph containing a set

M ⊆ V (M 6= ∅). M is an m-connecting set for G if one of the following hold:

i. M is a singleton;

ii. there exists an inducing path between a and b relative to 〈∅,M \ {a, b}〉 for all a, b ∈M
(a 6= b);

iii. a and b are not m-separated by C for all a, b ∈M (a 6= b) and all M ⊆ C ⊆ V (a, b 6∈ C).

Proposition 3.3.2 implies that (ii) and (iii) are equivalent; they are included here to provide

alternative definitions of m-connecting set.
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Note that the concept of an m-connecting set can be extended to any family of stable

mixed graphs using (iii). Let G = (V,E) be a MAG. The set of all m-connecting sets for G

is denoted by M(G). Furthermore, the set of non-m-connecting sets for G are defined as the

complement excluding the empty set and denoted by N(G) = P1(V ) \M(G).

G M(G)

i. a b c {ab, bc, a, b, c}

ii. a b c {abc, ab, bc, a, b, c}

iii. a b c d
{abcd, abc, bcd, ab,
bc, cd, a, b, c, d}

iv. a b c d
{abcd, abc, acd, bcd, ab,
bc, bd, cd, a, b, c, d}

v.

a b

c d

{ab, ac, bd, cd, a, b, c, d}

vi.

a b

c d

{abcd, abc, abd, acd, bcd,
ab, ac, bd, cd, a, b, c, d}

Figure 4.1: An illustration of various MAGs G and their corresponding m-connecting sets

M(G).
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G M(G)

i.

a b

c d

{abcd, abc, abd, acd,
bcd, ab, ac, ad, bc,
bd, cd, a, b, c, d}

ii.

a b

c d

{abcd, abc, abd, acd,
bcd, ab, ac, ad, bc,
bd, cd, a, b, c, d}

Figure 4.2: A comparison of two Markov equivalent ancestral graphs that are (i) not max-

imal and (ii) maximal, along with their corresponding m-connecting sets M(G); their m-

connecting sets are identical.

We make the following connection between m-connecting sets and collider-connecting

sets. Lemma 4.0.1 shows that the set of maximal m-connecting sets and maximal collider-

connecting sets are the same.

Lemma 4.0.1. Let G = (V,E) be a MAG containing a set M ⊆ V . For the following

conditions i⇒ ii:

i. M is an m-connecting set for G;

ii. M is a collider-connecting set.

Furthermore, the following are equivalent:

iii. M is a maximal m-connecting set for G;

iv. M is a maximal collider-connecting set.

Proof. (i⇒ ii): If M is m-connecting for G, then suppose by way of contradiction that M

is not collider-connecting. M not collider-connecting: There exist vertices a, b ∈ M (a 6= b)

such that a and b are not collider-connecting. M m-connecting for G: inducing path πab

between a and b relative to 〈L = ∅,M \ {a, b}〉. a and b are not collider-connecting: πab is
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not collider-connecting. There exists a non-collider v ∈ V on πab such that v 6∈ L; this is a

contradiction. It follows that M is collider-connecting.

(iii ⇒ ii): This directly follows from that facts that every maximal m-connecting set is

m-connecting and that every m-connecting set is collider-connecting.

(i ⇐ iv): If M is a maximal collider-connecting set, then for all a, b ∈ M (a 6= b) there

exists a collider-connecting path πab between a and b such that every vertex on πab is a

member of M . It follows that every πab is inducing relative to 〈∅,M \ {a, b}〉. Therefore,

M is m-connecting for G.

(iii ⇔ iv): We have that if M is a maximal m-connecting set for G, then M is collider-

connecting and that if M is a maximal collider-connecting set, then M is a maximal m-

connecting set.

If M is a maximal m-connecting set, then M is a collider-connecting set. Suppose by

way of contradiction that M is not a maximal collider-connecting set. It follows that there is

a proper maximal collider-connecting superset of M . But every maximal collider-connecting

set is m-connecting, so the super set is also m-connecting; this is a contradiction.

If M is a maximal collider-connecting set, then M is an m-connecting set. Suppose by

way of contradiction that M is not a maximal m-connecting set. It follows that there is

a proper maximal m-connecting superset of M . But every maximal m-connecting set is

collider-connecting, so the super set is also collider-connecting; this is a contradiction.

Accordingly, M is a maximal m-connecting set if and only if M is a maximal collider-

connecting set.

4.1 Equivalence

In this section, we show that m-connecting sets may be used as an alternative repre-

sentation of Markov equivalence for ancestral graphs. It follows that m-connecting sets

equivalently characterize the independence models of ancestral graphs. We also show how
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these sets relate to characteristic imsets and parametrizing sets.

4.1.1 Characterization of Markov Equivalence

Theorem 3.3.7 characterizes Markov equivalence using adjacencies, unshielded colliders,

and colliders at the end of discriminating paths. Accordingly, the forthcoming three lemmas

address each of these points. Lemma 4.1.1 details the relation between m-connecting sets

and adjacencies, Lemma 4.1.2 details the relation between m-connecting sets and unshielded

colliders, and Lemma 4.1.3 details the relation between m-connecting sets and the colliders

at the end of discriminating paths.

Lemma 4.1.1. Let G = (V,E) be a MAG containing vertices a, b ∈ V . The following are

equivalent :

i. a and b are adjacent ;

ii. Mab ≡ {a, b} is m-connecting.

Proof. (i⇒ ii): If a and b are adjacent, then there is a primitive inducing path between a

and b because G is maximal. Therefore, Mab is m-connecting.

(i⇐ ii): If Mab is m-connecting set, then there is a primitive inducing path between a and

b. Therefore, a and b are adjacent because G is maximal.

Lemma 4.1.2. Let G = (V,E) be a MAG with an unshielded triple 〈a, b, c〉. The following

are equivalent :

i. b is a collider on 〈a, b, c〉;
ii. Mabc ≡ {a, b, c} is m-connecting.

Proof. (i⇒ ii): If b is a collider on 〈a, b, c〉, then:

• 〈a, b〉 is an inducing path between a and b relative to 〈∅, c〉: a ∗→ b;

• 〈a, b, c〉 is an inducing path between a and c relative to 〈∅, b〉: a ∗→ b←∗ c;
• 〈b, c〉 is an inducing path between b and c relative to 〈∅, a〉: b←∗ c.
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Therefore, Mabc is m-connecting.

(i⇐ ii): If Mabc is m-connecting but a and c are not adjacent, then there exists an inducing

path π between a and c relative to 〈∅, b〉 that is not inducing relative to 〈∅,∅〉. Accordingly,

every collider on π is an ancestor of a, b, or c. However, there exists a collider v ∈ V on π

that is not an ancestor of a or c, otherwise, π would be inducing relative to 〈∅,∅〉. It follows

that v is an ancestor of b and that b is not an ancestor of a or c; if b was an ancestor of a or

c, then v would also be an ancestor of a or c. Therefore, b is a collider on 〈a, b, c〉.

Lemma 4.1.3. Let G = (V,E) be a MAG with a discriminating path 〈a, b1, . . . , bk, c, d〉
(k ≥ 1) for c. The following are equivalent :

i. c is a collider on 〈bk, c, d〉;
ii. Macd ≡ {a, c, d} is m-connecting.

Proof. (i⇒ ii): If c is a collider on 〈bk, c, d〉, then:

• 〈a, b1, . . . , bk, c, d〉 is an inducing path between a and d relative to 〈∅, c〉:
a ∗→ b1 ↔ · · · ↔ bk ↔ c↔ d where bi → d for all 1 ≤ i ≤ k—every collider on the path

is an ancestor of {c, d};
• 〈a, b1, . . . , bk, c〉 is an inducing path between a and c relative to 〈∅, d〉:
a ∗→ b1 ↔ · · · ↔ bk ↔ c where bi → d for all 1 ≤ i ≤ k—every collider on the path is an

ancestor of d;

• 〈c, d〉 is an inducing path between c and d relative to 〈∅, a〉: c↔ d.

Therefore, Macd is m-connecting.

(i⇐ ii): If Macd is m-connecting but a and d are not adjacent, then there exists an inducing

path π between a and d relative to 〈∅, c〉 that is not inducing relative to 〈∅,∅〉. Accordingly,

every collider on π is an ancestor of a, c, or d. However, there exists a collider v ∈ V on π

that is not an ancestor of a or d, otherwise π would be inducing relative to 〈∅,∅〉. It follows

that v is an ancestor of c and that c is not an ancestor of a or d; if c was an ancestor of a or

d, then v would also be an ancestor of a or d. Similarly, c is not an ancestor of bk since bk is

a parent of d. Therefore, c is a collider on 〈bk, c, d〉.
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Accordingly, in conjunction with Theorem 3.3.7, the preceding three lemmas may be

used to characterize Markov equivalence.

Theorem 4.1.1. Let G = (V,E) and G′ = (V,E ′) be MAGs. The following are equivalent :

i. G and G′ are Markov equivalent ;

ii. G and G′ have the same m-connecting sets.

Proof. (i⇒ ii): If G and G′ are Markov equivalent, then they have the same m-separations.

It follows from the definition of m-connecting set (iv) that G and G′ have the same m-

connecting sets.

(i ⇐ ii): Lemma 4.1.1 implies that G and G′ have the same adjacencies and, accordingly,

the same unshielded triples. Lemma 4.1.2 implies that G and G′ have the same unshielded

colliders. Lemma 4.1.3 implies that if π forms a discriminating path for b in G and G′, then

b is a collider on π in G if and only if it is a collider on π in G′. Theorem 3.3.7 implies that

G and G′ are Markov equivalent.

An interesting takeaway is that the induced independence model of a MAG may be

characterized by its m-connecting sets of cardinality two and three. Additionally, the sets

of cardinality three can be further refined to those that have at least one and at most

two subsets of cardinality two that are m-connecting. This is an important result used

for quickly defining Markov equivalence with parametrizing sets [38]. This characterization

of equivalence may be straightforwardly extended to any family of stable mixed graphs by

noting that all families of stable mixed graphs induce the same family of independence models

[73, 74]. Since the m-connecting sets of a graph can be defined directly from the induced

independence model of the graph the result is immediate.

4.2 Relation to Other Work

In this section, we discuss how the ideas presented in this dissertation relate to previous

works. Similar ideas have been explore independently by other authors.
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4.2.1 Parametrizing Sets and Characteristic Imsets

Hu and Evan’s work on parametrizing sets [38] is closely related our work on m-connecting

sets. These sets were developed concurrently with this work and published during the synthe-

sis of this dissertation. Parametrizing sets are identical to m-connecting sets, but are defined

using the heads and tails of an ADMG explicitly for the purpose of characterizing Markov

equivalence. Additionally, for those familiar with the work of Hu and Evans, Lemmas 4.1.1,

4.1.2, and 4.1.3 achieve the same result as Proposition 3.4 in [38].

Proposition 4.2.1. Let G = (V,E) be a MAG containing a set M ⊆ V . The following are

equivalent :

i. M is m-connecting for G;

ii. M is a parametrizing set of G.

Proof. The proof directly follows from Proposition 3.3.5.

Studený et al.’s work on characteristic imsets [87, 37] is closely related to our work on

m-connecting sets. These imsets have only been defined for independence models induced by

DAGs, but for these models m-connecting sets and characteristic imsets are nearly identical.

To facilitate this comparison, note that a set of sets can be represented by an identifier imset

for that set of sets. With this, the only difference is that characteristic imsets are not defined

for singletons; singletons are trivially m-connecting.

Proposition 4.2.2. Let G = (V,E) be a DAG containing a set M ⊆ V (|M | ≥ 2) and ≤ be

a total order consistent with G. The following are equivalent :

i. M is an m-connecting set for G;

ii. the characteristic imset cG(M) = 1.

Proof. (i⇒ ii): If M is m-connecting, then by Lemma 4.0.1 M is a collider-connecting set.

In a DAG this is only possible if M \ dMe≤ ⊆ paG(dMe≤). Therefore, by Proposition 3.5.6

cG(M) = 1.

(i ⇐ ii): If cG(M) = 1, then by Proposition 3.5.6 M \ dMe≤ ⊆ paG(dMe≤). Accordingly,

there exist m-connecting paths between the members of M \ dMe≤ and dMe≤. Further-
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more, there exist m-connecting paths between all members of M \ dMe≤ relative to dMe≤.

Therefore, M ∈M(G).

4.2.2 The Causal Inference Algorithm

The causal inference (CI) algorithm recovers a PAG G that represents a Markov equiva-

lence class of MAGs by querying a conditional independence oracle I [79]; the CI algorithm is

detailed in Appendix B.2. Algorithm 1 outlines a modified version of the CI algorithm that

replaces the queries to a conditional independence oracle with queries to an m-connecting set

oracle M. This modification directly follows from Lemmas 4.1.1, 4.1.2, and 4.1.3. Algorithm

1 provides a procedure to reconstruct a MAG up to its Markov equivalence class from its

m-connecting sets.

Algorithm 1: Causal Inference from M-connecting Sets CIM(M)

Input: m-connecting sets: M

Output: partial ancestral graph: G

1 Let G = (V,E) where E = {a ◦−◦ b | a, b ∈ V } ;

2 foreach edge a ◦−◦ b ∈ E do

3 if {a, b} 6∈M then

4 Remove a ◦−◦ b from E ;

5 end

6 end

7 foreach unshielded triple 〈a, b, c〉 in G do

8 Rule 0: If {a, b, c} ∈M, then orient it as a collider a ∗→ b←∗ c ;

9 end

10 repeat

11 Rule 1: If a ∗→ b ◦−∗ c, and a and c are not adjacent, then orient the triple as

a ∗→ b→ c ;

12 Rule 2: If a→ b ∗→ c or a ∗→ b→ c, and a ∗−◦ c, then orient a ∗−◦ c as a ◦→ c ;

13 Rule 3: If a ∗→ b←∗ c, a ∗−◦ d ◦−∗ c, a and c are not adjacent, and d ∗−◦ b, then

orient d ∗−◦ b as d ∗→ b ;

14 Rule 4: If 〈a, . . . , b, c, d〉 is a discriminating path from a to d for c and c ◦−∗ d,

then: if {a, c, d} 6∈M, then orient c ◦−∗ d as c→ d; otherwise orient the triple

〈b, c, d〉 as b↔ c↔ d ;

15 until Rules 1 - 4 no longer apply;
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4.3 Factorization

In this section we present one of the main results of this dissertation: a factorization

criterion for the log density of a probability measure. The factorization criterion is derived

from the m-connecting sets of a directed MAG for a probability measure and is equivalent

to the probability measure satisfying the global Markov property with respect to that MAG.

The general proof strategy uses an algorithm to construct the primary and secondary imsets

out of the non-m-connecting sets; see Algorithm 3. Applying the Möbius inversion to the

primary imset yields a structural imset that induces the same independence model as the

directed MAG. The secondary imset is incorporated into the factorization as an adjustment

term. Ultimately we show: (i) the factorization criterion holding implies that the dot product

of the structural imset with the multiinformation of the probability measure equals zero; (ii)

the dot product of the structural imset with the multiinformation of the probability measure

equaling zero implies that the global Markov property holds; and (iii) the global Markov

property holding implies that the factorization criterion holds.

To facilitate the forthcoming discussion, we define several new terms. Let V be a non-

empty set of variables. Furthermore, let X be a collection of random variables indexed by

V with probability measure P that admits density f(x) with respect to dominating σ-finite

product measure ν. We define a function φA : XA → R as a linear combination of log density

terms motivated by the Möbius inversion.

φA(x) =
∑
B⊆A

(−1)|A\B| log fB(x) log fA(x) =
∑
B⊆A

φB(x)

The expectation of φA(x) with respect to P has been previously studied in the field of

information theory by several researchers including McGill, who coined the term interaction

information [53]. Accordingly, we call φA(x) the interaction information rate.

We provide an analogous term for a non-empty set of sets. Let A ⊆ P(V ) be a set of

sets:

φA(x) ≡
∑
T∈A

φT (x)

We define the following case for sets of sets and shorthand for the corresponding φ term. Let
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A,B ⊆ V (A 6= ∅) be disjoint sets:

MA|B ≡
⋃

T⊆AB
A⊆T

{T} φA|B(x) ≡ φMA|B(x) δA|B ≡ δMA|B

Similar to above, we call φA|B(x) the conditional interaction information rate.

φA|B(x) =
∑
T⊆AB
A⊆T

φT (x)

=
∑
T⊆AB
B⊆T

(−1)|AB\T | log fT (x)

Another case is when the set of sets corresponds to a semi-elementary imset that has

been transformed by the Möbius inversion. Let A,B,C ⊆ V (AB 6= ∅) be disjoint sets.

NA,B|C ≡
⋃

T⊆ABC
T 6⊆AC
T 6⊆BC

{T} φA,B|C(x) ≡ φNA,B|C (x) δA,B|C ≡ δNA,B|C

The expectation of φA,B|C(x) with respect to P is the well-known information theoretic

concept of mutual information. Accordingly, we call φA,B|C(x) the mutual information rate.

The mutual information rate corresponds to the imsets constructed by Algorithm 3.

Additionally, these terms are closely related to conditional independence. Let A,B,C ⊆ V

(AB 6= ∅) be disjoint sets.

φA,B|C(x) =
∑

T⊆ABC
T 6⊆AC
T 6⊆BC

φT (x)

=
∑

T⊆ABC

φT (x) +
∑
T⊆C

φT (x)−
∑
T⊆AC

φT (x)−
∑
T⊆BC

φT (x)

= log fABC(x) + log fC(x)− log fAC(x)− log fBC(x).

A ⊥⊥ B | C [P ] ⇔ φA,B|C(x) = 0 for P -a.e. x ∈ X (4.1)

71



This relation can be expressed more generally using imsets. Let P = P(V ) be a poset

ordered by inclusion and note that ζPδA =
∑

T⊆A δT .

δA,B|C =
∑

T⊆ABC
T 6⊆AC
T 6⊆BC

δT

=
∑

T⊆ABC

δT +
∑
T⊆C

δT −
∑
T⊆AC

δT −
∑
T⊆BC

δT

= ζPδABC + ζPδC − ζPδAC − ζPδBC
= ζP [δABC + δC − δAC − δBC ]

= ζPu〈A,B|C〉.

Accordingly,

u〈A,B|C〉 = µPδA,B|C .

A ⊥⊥ B | C [P ] ⇔ (µPδA,B|C)>mP = 0 (4.2)

The non-m-connecting set terms constructed by the Algorithm 3 are exactly the non-

m-connecting sets for a directed MAG, and we use their correspondence to conditional

independence in a probability measure to show the equivalence between the factorization

and the global Markov property.

4.3.1 Preliminaries

To facilitate the forthcoming proofs, we introduce the concept of constrained subsets.

Definition (constrained subsets). Let V be a non-empty set of variables containing sets

A,B ⊆ V . Let R ⊆ P(V ) be a set of sets. The subset operator applied to A with respect to

B constrained by R, denoted by A ⊆R B, is the conjunction:

i. A ⊆ B;

ii. A ∈ R.

Let b ∈ V be a variable. The subset operator applied to A with respect to B constrained by

b, denoted by A ⊆b B, is the conjunction:
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i. A ⊆ B;

ii. b ∈ A.

The subset operator applied to A with respect to B constrained by R and b, denoted by

A ⊆bR B, is the conjunction:

i. A ⊆ B;

ii. b ∈ A ∈ R.

Additionally, a maximal constrained subset, denoted by A ∈ dBebR, is a maximal set satisfying

A ⊆bR B.

Proposition 4.3.1 shows that the induced subgraph of a MAG over an anterior set is a

MAG and induces an independence subset over the shared variables.

Proposition 4.3.1. Let G = (V,E) be a MAG containing a set A ⊆ V . If A is an anterior

set, then the induced subgraph GA is a MAG and:

I(GA) = {〈A,B | C〉 ∈ T(A) ; 〈A,B | C〉 ∈ I(G)}.

Proof. By Proposition 3.3.4, GA is a MAG and by Proposition 3.4.2 I(GA) = {〈A,B | C〉 ∈
T(A) ; 〈A,B | C〉 ∈ I(G)}.

Corollary 4.3.1. Let G = (V,E) be a directed MAG containing a set A ⊆ V . If A is an

ancestral set, then the induced subgraph GA is a directed MAG and:

I(GA) = {〈A,B | C〉 ∈ T(A) ; 〈A,B | C〉 ∈ I(G)}.

Proof. The proof immediately follows from Propositions 3.4.1 and 4.3.1.

Lemma 4.3.1 shows that the m-connecting sets of the induced subgraph of a MAG over

an anterior set is the induced set of m-connecting sets. That is, for an ancestral subset

A ⊆ V , M(GA) is the set of m-connecting sets containing every m-connecting set present in

M(G) over the members of A.

Lemma 4.3.1. Let G = (V,E) be a MAG containing an anterior subset A ⊆ V . If M ⊆ A,

then the following are equivalent:
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i. M is m-connecting for G;

ii. M is m-connecting for GA.

Proof. The proof immediately follows from Proposition 3.4.2 and the definitions of marginal-

ization and m-connecting set.

Lemma 4.3.2 shows that barren vertices have a unique maximal collider-connecting set.

Lemma 4.3.2. Let G = (V,E) be a directed MAG containing a vertex b ∈ barG(V ). There

is exactly one maximal collider-connecting set containing b.

Proof. Let A,C ∈ dV ebcolG (b) be maximal collider-connecting sets containing b and note

that |A| = |C|. If |A| = |C| = 1, then A = C = {b} and there is exactly one maximal

collider-connecting set.

If |A| = |C| > 1, then for all a ∈ A (a 6= b) and all c ∈ C (c 6= b), there exists a collider

path πab between a and b and a collider path πbc between b and c. In what follows, we show

that a and c are collider-connecting; if a = c this is trivial.

Construct a path πac as follows. Traverse πab from a to b until reaching a vertex v ∈ V
such that v is on πbc. Let πav be the subpath of πab between a and v. Similarly, traverse πbc

from v to c . let πvc be the subpath of πbc between v and c. Then πac is the path formed by

concatenating πav and πvc.

If v = b, then v is a collider on πac since b ∈ barG(V ). If v 6= b, then v is a collider on πab

and πbc. It follows that v is a collider on πac. Therefore a and c are collider-connecting. Since

every a ∈ A and c ∈ C are collider-connecting, A = C and there is exactly one maximal

collider-connecting set containing v.

Corollary 4.3.2 shows that barren vertices have a unique maximal m-connecting set. It

is worth noting that the unique maximal m-connecting set of a vertex is also the unique

maximal collider-connecting set for that vertex.

Corollary 4.3.2. Let G = (V,E) be a directed MAG containing a vertex b ∈ barG(V ). There

is exactly one maximal m-connecting set containing b.

Proof. The proof immediately follows from Lemmas 4.0.1 and 4.3.2.
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Lemma 4.3.3 shows that m-connecting sets may be characterized by the existence of

inducing paths between a barren vertex and the other vertices in the set.

Lemma 4.3.3. Let G = (V,E) be a directed MAG containing a set M ⊆ V and let L = V \M .

If b ∈ barG(M), then the following are equivalent :

i. there exists an inducing path between a and b relative to 〈L,M \ {a, b}〉 for all a ∈M \ b;
ii. M is m-connecting for G.

Proof. (i⇒ ii): Suppose by way of contradiction that M is not m-connecting for G. Then

there exists a, c ∈M \ b (a 6= c) such that there is no inducing path between a and c relative

to 〈L,M \ {a, c}〉. However, there exists an inducing path πab between a and b relative

to 〈L,M \ {a, b}〉 and an inducing path πbc between b and c relative to 〈L,M \ {b, c}〉.
Construct the path πac by traversing πab from a to b until reaching some d ∈ πbc then

traversing πbc from d to c.

Note the status of every non-endpoint vertex on πac. In particular, check if each non-

endpoint vertex is a non-collider on πac and member of L, a collider on πac and an ancestor

of M , or neither. By construction, every non-endpoint vertex on πac has the same status

as on πab and πbc except for d. Therefore, all non-endpoint vertices other than d satisfy the

criteria required for πac to be inducing relative to 〈L,M \ {a, c}〉.
Accordingly, we consider the possible scenarios for d. If d = b, then d is a collider on πac

and a trivial ancestor of M since b ∈ barG(M). If d 6= b is a non-collider on πac, then d is a

non-collider on πab or πbc and d ∈ L. If d 6= b is a collider on πac and d is a collider on πab

or πbc, then d ∈ anG(M). If d is a collider on πac and a non-collider on πab and πbc, then d is

an ancestor of a, c, or a collider on πac; accordingly d ∈ anG(M).

Therefore, d satisfies the criteria required for πac to be inducing relative to 〈L,M \ {a, c}〉.
The path πac is inducing for 〈L,M \ {a, c}〉; this is a contradiction.

(i⇐ ii): This is trivial by the definition of m-connecting set.

Algorithm 3 uses a helper algorithm to construct pairs of m-connecting and non-m-

connecting sets; see Algorithm 2.
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Algorithm 2: Pairs(G, b)

Input: directed MAG: G = (V,E), barren vertex: b ∈ barG(V )

Output: ordered lists: MG,b, NG,b

1 Initialize ordered lists MG,b = 〈〉 and NG,b = 〈〉;
2 Let R = {N ; N ⊆bN(G) V } ;

3 repeat

4 Pick N ∈ dV ebR and M ∈ dNebM(G) ;

5 Append N to NG,b and M to MG,b ;

6 foreach T ⊆ N do

7 if b ∈ T and T 6⊆M then

8 Remove T from R ;

9 end

10 end

11 until R = ∅;

Algorithm 2 requires several new concepts. Accordingly, we define the following notation.

Let G = (V,E) be a directed MAG, P = P(V ) be a poset ordered by inclusion, and b ∈
barG(V ) be a barren vertex. Additionally, we use MG,b and NG,b to define the ordered lists

output by Algorithm 2. These are ordered lists of m-connecting, non-m-connecting sets

respectively:

MG,b = 〈MG,b
1 , . . . ,MG,b

n 〉 NG,b = 〈NG,b
1 , . . . , NG,b

n 〉

where n = |MG,b|.
Additionally, we define the restricted universe of sets with respect to NG,b

i and b:

UG,b
i ≡

⋃
T⊆NG,b

i
b∈T

{T}.

We simplify notation and use NG,b
i,i to define sets of sets that corresponds to the conditional

independence statement b ⊥⊥ NG,b
i \ MG,b

i | MG,b
i \ b. Let A = b, B = NG,b

i \ MG,b
i , and
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C = MG,b
i \ b, then

ABC = (NG,b
i \MG,b

i ) ∪ (MG,b
i \ b) ∪ b

= NG,b
i

AC = (MG,b
i \ b) ∪ b

= MG,b
i

BC = (NG,b
i \MG,b

i ) ∪ (MG,b
i \ b)

= NG,b
i \ b.

Therefore, define

NG,b
i,i ≡

⋃
T∈UG,b

i

T 6⊆MG,b
i

{T} =
⋃

T⊆NG,b
i

b∈T
T 6⊆MG,b

i

{T} =
⋃

T⊆ABC
T 6⊆AC
T 6⊆BC

{T}.

Accordingly

δA,B|C = δNG,b
i,i

and u〈A,B|C〉 = µPδNG,b
i,i
.

Lemma 4.3.4 states that the non-m-connecting sets constructed at each step of Algorithm

3 are the non-m-connecting sets containing b that have not yet been accounted for in N(G).

Lemma 4.3.4. Let G = (V,E) be a directed MAG containing vertex b ∈ V with preceding

vertices R = pre≤G (b) and ancestral set A ∈ A(G) such that b ∈ A ⊆ R. If MGA,b,NGA,b =

Pairs(GA, b) are the ordered lists constructed by Algorithm 2, then

n⋃
i=1

NGA,b
i,i = {T ⊆bN(G) A}.

Proof. By Corollary 4.3.1 GA is a directed MAG and by Lemma 4.3.1 {T ⊆N(G),b A} =

{T ⊆N(GA),b A}. Let T ⊆N(GA),b A be a non-m-connecting subset of A containing b and

suppose by way of contradiction that T 6∈ NGA,b
i,i for any 1 ≤ i ≤ n.

Note that T ⊆ NGA,b
i for some 1 ≤ i ≤ n since NGA,b

1 = A. Pick i such that T ⊆ NGA,b
i .

If T 6⊆ MGA,b
i , then T ∈ NGA,b

i,i ; this is a contradiction. Otherwise, there exists T ⊆ NGA,b
j ⊂

MGA,b
i for some NGA,b

j ∈ NGA,b by maximality. Repeat this logic until T ∈ NGA,b
j,j or MGA,b

j

has no maximal non-m-connecting subsets; the latter is a contradiction.

Thus, there exists 1 ≤ i ≤ n such that T ∈ NGA,b
i,i and

⋃n
i=1 N

GA,b
i,i = {T ⊆N(G),b A}.
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Let G = (V,E) be a directed MAG and ≤ be a total order consistent with G. Accordingly,

the set of sets N(G) is the set of all non-m-connecting sets for G and the imset δN(G) is the

identifier of N(G). Algorithm 3 characterizes δN(G) as a linear combination of imsets whose

Möbius inversions are semi-elementary imsets. Two new imsets are subsequently constructed

from the linear combination imsets—one is the sum of the (absolute) positive components

and the other is the sum of the (absolute) negative components. We call these imsets the

primary and secondary imsets respectively. It follows that the Möbius inversion of the newly

constructed imsets are structural imsets and induce semi-graphoids. Notably, the primary

imset induces the same independence model as G but is not part of the factorization, while

the secondary imset induces a strict independence subset but is part of the factorization.

Algorithm 3 begins by defining a set R as the set of all variables V . As the algorithm

loops, variables are removed one at a time and R contains the remaining variables. A vertex

b is selected to be removed from the remaining vertices R where b is the last vertex according

to ≤. Algorithm 2 is called to construct ordered lists MG,b and NG,b. The ordered lists MG,b

and NG,b contain m-connecting and non-m-connecting sets respectively; all sets contain b.

By Corollary 4.3.2, each set NG,b
i in NG,b has exactly one unique maximal m-connecting

subset MG,b
i that contains b. Accordingly, we construct pairs of non-m-connecting and m-

connecting sets by adding MG,b
i and NG,b

i terms to MG,b and NG,b respectively where each

NG,b
i is paired with the corresponding MG,b

i .

In each loop on Algorithm 2, we pick a maximal non-m-connecting set NG,b
i that contains

b from R and the previously described pairing process is repeated. All subsets of NG,b
i and

supersets of MG,b
i are removed from R.

New m-connecting and non-m-connecting sets are added to MG,b and NG,b respectively

using this process until R does not contain any more sets. At this point, the pairs for b

and R have been extracted and Algorithm 2 returns MG,b and NG,b. In general the NG,b
i

terms are subsets of vertices containing b and the MG,b
i terms are the closure of b within the

corresponding NG,b
i , that is, b ⊥⊥ NG,b

i \MG,b
i | MG,b

i \ b [G
NG,b
i

]—this is shown in Lemma

4.3.5.

Additionally, Lemma 4.3.1 implies b ⊥⊥ NG,b
i \MG,b

i | MG,b
i \ b [G ]. These conditional

independence statements are represented by the NG,b
i,i imsets and by Lemma 4.3.4 their union

78



is equivalent to the non-m-connecting sets of GR that contain b, that is, δ{T∈N(GR) ; b∈T}. Using

the principle of inclusion and exclusion, we define the union in terms of the sum of positive

and negative intersection terms represented by the NG,b
J,K imsets. These positive and negative

terms reflect the conditional independence statements used in the definition of the ordered

local Markov property. Once these components have been accounted for in the imsets, b is

removed from R and the process of constructing pairs begins again with a new b and R.

When R = ∅, the algorithm is complete.
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Algorithm 3: Non-m-connecting Sets as Imsets NSI(G,≤)

Input: directed MAG: G = (V,E), total order consistent with G: ≤
Output: imsets: u≤,+

N(G), u
≤,−
N(G)

1 Initialize imsets u≤,+
N(G): P(V )→ 0 and u≤,−

N(G): P(V )→ 0 ;

2 Let R = V ;

3 repeat

4 Let b = dRe≤ ;

5 Let MGR,b,NGR,b = Pairs(GR, b) ;

6 Initialize lists A = 〈〉 and B = 〈〉 ;

7 foreach J ⊆ {1, . . . , |MGR,b|} do

8 foreach K ⊆ J where K 6= ∅ do

9 if NGR,b
J,K 6= ∅ then

10 if |J \K| mod 2 = 0 and NGR,b
J,K 6∈ B then

11 Append NGR,b
J,K to A ;

12 else if |J \K| mod 2 = 0 and NGR,b
J,K ∈ B then

13 Remove NGR,b
J,K from B ;

14 else if |J \K| mod 2 = 1 and NGR,b
J,K 6∈ A then

15 Append NGR,b
J,K to B ;

16 else if |J \K| mod 2 = 1 and NGR,b
J,K ∈ A then

17 Remove NGR,b
J,K from A ;

18 end

19 end

20 end

21 end

22 foreach N ∈ A do

23 u≤,+
N(G) = u≤,+

N(G) + δN ;

24 end

25 foreach N ∈ B do

26 u≤,−
N(G) = u≤,−

N(G) + δN ;

27 end

28 Remove b from R ;

29 until R = ∅;

Algorithms 3 require several new concepts. Accordingly, we define the following notation.

Let G = (V,E) be a directed MAG, P = P(V ) be a poset ordered by inclusion, and b ∈
barG(V ) be a barren vertex. Additionally, we use MG,b and NG,b to define the ordered lists
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output by Algorithm 2. We expand this notation to intersection terms as follows:

MG,b
K ≡

⋂
k∈K

MG,b
k NG,b

J ≡
⋂
j∈J

NG,b
j UG,b

J ≡
⋃

T⊆NG,b
J

b∈T

{T} MG,b
J,K ≡MG,b

K ∩ NG,b
J .

We simplify notation and use NG,b
J,K to define sets of sets which correspond to the condi-

tional independence statement b ⊥⊥ NG,r
J \MG,b

J,K | MG,b
J,K \ b. If A = b, B = NG,b

J \MG,b
J,K , and

C = MG,b
J,K \ b, then

ABC = (NG,b
J \MG,b

J,K) ∪ (MG,b
J,K \ b) ∪ b

= NG,b
J

AC = (MG,b
J,K \ b) ∪ b

= MG,b
J,K

BC = (NG,b
J \MG,b

J,K) ∪ (MG,b
J,K \ b)

= NG,b
J \ b.

Therefore, define

NG,b
J,K ≡

⋃
T∈UG,b

J

T 6⊆MG,b
J,K

{T} =
⋃

T⊆NG,b
J

b∈T
T 6⊆MG,b

J,K

{T} =
⋃

T⊆ABC
T 6⊆AC
T 6⊆BC

{T}.

Accordingly

δA,B|C = δNG,b
J,K

= δ
b,NG,b

J \MG,b
J,K |M

G,b
J,K\b

and µPδNG,b
J,K

= u〈b,NG,b
J \MG,b

J,K |M
G,b
J,K\b〉

.

Now we show that the output of Algorithm 3 characterize the set identifier for the non-

m-connecting sets; Appendix B.3 shows that Algorithm 3 does not necessarily give the most

efficient solution.

Definition (inclusion/exclusion for imsets [91]). Let V be a non-empty set of variables and

N1, . . . , Nn ⊆ P(V ) be n sets of sets. The concept of inclusion/exclusion is extended to

imsets as follows:

δ⋃n
i=1 Ni

=
∑

J⊆{1,...,n}
J 6=∅

(−1)|J |−1 δ⋂
j∈J Nj

.
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Several applications of De Morgan’s laws gives an alternative form as follows:

δ⋂n
i=1 Ni

=
∑

J⊆{1,...,n}
J 6=∅

(−1)|J |−1 δ⋃
j∈J Nj

.

Proposition 4.3.2. If G = (V,E) be a directed MAG, ≤ be a total order consistent with G,

P = P(V ) be a poset ordered by inclusion, then:

δN(GR) =
∑
b∈V

δ{T⊆b
N(GR)

GR} = u≤,+
N(GR) − u

≤,−
N(GR)

where R = pre≤G (b) for all b ∈ V .

Proof. Let G = (V,E) be a directed MAG, ≤ be a total order consistent with G, P =

P(V ) be a poset ordered by inclusion, and Rb = pre≤G (b). Furthermore, let MGR,b,NGR,b =

Pairs(GR, b):

MGR,b = 〈MGR,b
1 , . . . ,MGR,b

nb
〉 NGR,b = 〈NGR,b

1 , . . . , NGR,b
nb
〉

where nb = |MGR,b|.

δ{T⊆b
N(GR)

R} = δ⋃n
i=1 N

GR,b
i,i

(Lemma 4.3.4)

= δ⋃n
i=1

⋃ T∈UGR,b
i

T 6⊆MGR,b
i

{T}


=

∑
J⊆{1,...,nb}

J 6=∅

(−1)|J |−1 δ

⋂
j∈J

⋃ T∈UGR,b
j

T 6⊆MGR,b
j

{T}


(inclusion/exclusion)

=
∑

J⊆{1,...,nb}
J 6=∅

(−1)|J |−1 δ

⋂
j∈J

⋃ T∈UGR,b

J

T 6⊆MGR,b
j

{T}


(UGR,b

j → UGR,b
J )

=
∑

J⊆{1,...,nb}
J 6=∅

(−1)|J |−1
∑
K⊆J
K 6=∅

(−1)|K|−1 δ⋃
k∈K

⋃ T∈UGR,b

J

T 6⊆MGR,b

k

{T}


(inclusion/exclusion)
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=
∑

J⊆{1,...,nb}
J 6=∅

∑
K⊆J
K 6=∅

(−1)|J\K| δ⋃
k∈K

⋃ T∈UGR,b

J

T 6⊆MGR,b

k

{T}


=

∑
J⊆{1,...,nb}

J 6=∅

∑
K⊆J
K 6=∅

(−1)|J\K| δ⋃
k∈K

UGR,b

J \
⋃
T∈UGR,b

J

T⊆MGR,b

k

{T}


(complement)

=
∑

J⊆{1,...,nb}
J 6=∅

∑
K⊆J
K 6=∅

(−1)|J\K| δ

U
GR,b

J \

⋂k∈K ⋃
T∈UGR,b

J

T⊆MGR,b

k

{T}


(De Morgan’s law)

=
∑

J⊆{1,...,nb}
J 6=∅

∑
K⊆J
K 6=∅

(−1)|J\K| δ

U
GR,b

J \

⋂k∈K ⋃
T∈UGR,b

J

T⊆MGR,b

J,K

{T}


(MGR,b

k →MGR,b
J,K )

=
∑

J⊆{1,...,nb}
J 6=∅

∑
K⊆J
K 6=∅

(−1)|J\K| δ

U
GR,b

J \

⋃ T∈UGR,b

J

T⊆MGR,b

J,K

{T}


=

∑
J⊆{1,...,nb}

J 6=∅

∑
K⊆J
K 6=∅

(−1)|J\K| δ⋃
T∈UGR,b

J

T 6⊆MGR,b

J,K

{T} (complement)

=
∑

J⊆{1,...,nb}
J 6=∅

∑
K⊆J
K 6=∅

(−1)|J\K| δ
N
GR,b

J,K

Accordingly,

δN(GR) =
∑
b∈V

δ{T⊆b
N(GR)

GR}

=
∑
b∈V

∑
J⊆{1,...,nb}

J 6=∅

∑
K⊆J
K 6=∅

(−1)|J\K| δ
N
GR,b

J,K

= u≤,+
N(GR) − u

≤,−
N(GR)

where R = pre≤G (b) for all b ∈ V .

In what follows, we give an illustrative example of Algorithm 3. Figure 4.3 depicts a

directed MAG G = (V,E), its m-connecting sets M(G), and its non-m-connecting sets N(G).

Consider the total order ≤ over V such that e ≤ a ≤ d ≤ b ≤ c.
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G

e ≤ a ≤ d ≤ b ≤ c

M(G)

{abcde, bcde, abcd, abc,
bcd, cde, ab, bc, cd,
de, a, b, c, d, e}

N(G)

{abce, abde, acde, abd, abe,
acd, ace, ade, bce, bde,
ac, ad, ae, bd, be, ce}

a

b c d

e

Figure 4.3: A directed MAG with vertices {a, b, c, d, e} and the corresponding m-connecting

and non-m-connecting sets for the directed MAG.

Run Pairs(Gabcde, c) to construct ordered lists NGabcde,c = 〈{a, b, c, e}, {a, c, d, e}〉 and

MGabcde,c = 〈{a, b, c}, {c, d, e}〉.
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NGabcde,c = 〈{a, b, c, e}, {a, c, d, e}〉
MGabcde,c = 〈{a, b, c}, {c, d, e}〉

NGabcde,c
1,1 = {N ∈ N(G) ; δc,e|ab(N) = 1} = {abce, ace, bce, ce}

NGabcde,c
2,2 = {N ∈ N(G) ; δc,a|de(N) = 1} = {acde, ace, acd, ac}

{a, b, c, d, e}

{a, b, c, d} {a, b, c, e} {a, c, d, e} {b, c, d, e}

{a, b, c} {a, c, d} {a, c, e} {b, c, d} {b, c, e} {c, d, e}

{a, c} {b, c} {c, d} {c, e}

{c}

Figure 4.4: A visualization of Pairs(Gabcde, c) applied to the directed MAG in Figure 4.3

and the corresponding base conditional terms.

The intersection terms are as follows—these terms correspond to intersections over mem-

bers of NGabcde,c indexed by the loop on line 7 of Algorithm 3.

Intersection Terms:

NGabcde,c
1 = {a, b, c, e} MGabcde,c

1 = {a, b, c}

NGabcde,c
2 = {a, c, d, e} MGabcde,c

2 = {c, d, e}

NGabcde,c
12 = {a, c, e} MGabcde,c

12 = {c}

The conditional terms are as follows—these terms correspond to those appended and

removed on lines 11, 13, 15, and 17.
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Conditional Terms:

NGabcde,c
1,1 = {N ∈ N(G) ; δc,e|ab(N) = 1}

NGabcde,c
2,2 = {N ∈ N(G) ; δc,a|cd(N) = 1}

NGabcde,c
12,1 = {N ∈ N(G) ; δc,e|a(N) = 1}

NGabcde,c
12,2 = {N ∈ N(G) ; δc,a|e(N) = 1}

NGabcde,c
12,12 = {N ∈ N(G) ; δc,ae(N) = 1}

The positive and negative conditional terms are as follows—the positive terms are on

the left and correspond to the list A in Algorithm 3 and the negative terms are on the right

and correspond to the list B in Algorithm 3.

Positive Conditional Terms:

NGabcde,c
1,1 = {N ∈ N(G) ; δc,e|ab(N) = 1}

NGabcde,c
2,2 = {N ∈ N(G) ; δc,a|de(N) = 1}

NGabcde,c
12,12 = {N ∈ N(G) ; δc,ae(N) = 1}

Negative Conditional Terms:

NGabcde,c
12,1 = {N ∈ N(G) ; δc,e|a(N) = 1}

NGabcde,c
12,2 = {N ∈ N(G) ; δc,a|e(N) = 1}

Accordingly, the non-m-connecting set terms added on lines 23 and 26 of Algorithm 3 are

as follows—these imsets represent all non-m-connecting subsets of {a, b, c, d, e} that contain

c.

δ{T⊆c
N(G)
{a,b,c,d,e}} = δc,e|ab+ δc,a|de+ δc,ae − δc,e|a− δc,a|e

= [δabce + δace + δbce + δce] + [δacde + δacd + δace + δac]

+ [δace + δac + δce]− [δace + δce]− [δace + δac]

Run Pairs(Gabde, b) to construct ordered lists NGabde,b = 〈{a, b, d, e}〉 and MGabde,b =

〈{a, b}〉.
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NGabde,b = 〈{a, b, d, e}〉
MGabde,b = 〈{a, b}〉

NGabde,b
1,1 = {N ∈ N(G) ; δb,de|a(N) = 1} = {abde, abd, abe, bde, bd, be}

{a, b, d, e}

{a, b, d} {b, d, e}{a, b, e}

{a, b} {b, d} {b, e}

{b}

Figure 4.5: A visualization of Pairs(Gabde, b) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows—these terms correspond to intersections over mem-

bers of NGabde,b indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

NGabde,b
1 = {a, b, d, e} MGabde,b

1 = {a, b} NGabde,b
1,1 = {N ∈ N(G) ; δb,de|a(N) = 1}

Accordingly, the non-m-connecting set terms added on lines 23 and 26 of Algorithm 3 are

as follows—these imsets represent all non-m-connecting subsets of {a, b, d, e} that contain b.

δ{T⊆b
N(G)
{a,b,d,e}} = δb,de|a

= [δabde + δabd + δabe + δbde + δbd + δbe]

Run Pairs(Gade, d) to construct ordered lists NGade,d = 〈{a, d, e}〉 and MGade,d = 〈{d, e}〉.
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NGade,d = 〈{a, d, e}〉
MGade,d = 〈{d, e}〉

NGade,d
1,1 = {N ∈ N(G) ; δd,a|e(N) = 1} = {ade, ad}

{a, d, e}

{a, d} {d, e}

{d}

Figure 4.6: A visualization of Pairs(Gade, d) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows—these terms correspond to intersections over mem-

bers of NGade,d indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

NGade,d
1 = {a, d, e} MGade,d

1 = {d, e} NGade,d
1,1 = {N ∈ N(G) ; δd,a|e(N) = 1}

Accordingly, the non-m-connecting set terms added on lines 23 and 26 of Algorithm 3

are as follows—these imsets represent all non-m-connecting subsets of {a, d, e} that contain

d.

δ{T⊆d
N(G)
{a,d,e}} = δd,a|e

= [δade + δad]

Run Pairs(Gae, a) to construct ordered lists NGae,a = 〈{a, e}〉 and MGae,a = 〈{a}〉.
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NGae,a = 〈{a, e}〉
MGae,a = 〈{a}〉

NGae,a
1,1 = {N ∈ N(G) ; δa,e(N) = 1} = {ae}

{a, e}

{a}

Figure 4.7: A visualization of Pairs(Gae, a) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows—these terms correspond to intersections over mem-

bers of NGae,a indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

NGae,a
1 = {a, e} MGae,a

1 = {a} NGae,a
1,1 = {N ∈ N(G) ; δa,e(N) = 1}

Accordingly, the non-m-connecting set terms added on lines 23 and 26 of Algorithm 3

are as follows—these imsets represent all non-m-connecting subsets of {a, e} that contain a.

δ{T⊆a
N(G)
{a,e}} = δae

Run Pairs(Ge, e) to construct ordered lists NGe,e = 〈〉 and MGe,e = 〈〉.
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NGe,e = 〈〉
MGe,e = 〈〉

{e}

Figure 4.8: A visualization of Pairs(Ge,e) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

There are no intersection terms. Accordingly, the non-m-connecting set terms added on

lines 23 and 26 of Algorithm 3 are as follows (there are none)—these imsets represent all

non-m-connecting subsets of {e} that contain e.

Combining the results from all the iterations of the procedure, we get

u≤,+
N(G) = δc,e|ab+ δc,a|de+ δc,ae+ δb,de|a+ δd,a|e+ δa,e

u≤,−
N(G) = δc,e|a+ δc,a|e

or

u≤,+
N(G) = [δabce + δace + δbce + δce] + [δacde + δacd + δace + δac] + [δace + δac + δce]

+ [δabde + δabd + δabe + δbde + δbd + δbe] + [δade + δad] + δae

u≤,−
N(G) = [δace + δce] + [δace + δac]

where the linear combination contains all the non-m-connecting set terms.

Let V be a non-empty set of variables and P = P(V ) be a poset ordered by inclusion.

Applying the Möbius inversion, we get

µPu
≤,+
N(G) = u〈c,e|ab〉 + u〈c,a|de〉 + u〈c,ae〉 + u〈b,de|a〉 + u〈d,a|e〉 + u〈a,e〉

µPu
≤,−
N(G) = u〈c,e|a〉 + u〈c,a|e〉
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or

µPu
≤,+
N(G) = [δabce + δab − δabc − δabe] + [δacde + δde − δade − δcde] + [δace − δae − δc]

+ [δabde + δa − δade − δab] + [δade + δe − δae + δde] + [δae − δa − δe]

µPu
≤,−
N(G) = [δace + δa − δac − δae] + [δace + δe − δae − δce]

Clearly µPu
≤,+
N(G) and µPu

≤,−
N(G) are structural imsets.

4.3.2 Factorization Implies Markov

In this section, we provide the necessary lemmas to prove that if the factorization pre-

sented in Section 4.3.4 holds, then the global Markov property holds. However, in order

to do so we first introduce the concept of a minimal latent set. The minimal latent set is

defined as follows. Let G = (V,E) be an ADMG such that A ∈ A(G) is an ancestral set and

b = dAe≤ with preceding vertices R = pre≤G (b):

ml≤G (A) ≡ spGR
(disGA(b)) \ disGA(b).

Let L = V \A be the set of latent variables. Intuitively, ml≤G (A) defines the minimal subset

of latent vertices Lmin ⊆ L for which every member is automatically added to the ordered

Markov blanket and order closure when added to A:

mb≤G l∪A(b) ≡ l ∪ mb≤GA(b) for all l ∈ Lmin;

cl≤G l∪A(b) ≡ l ∪ cl≤GA(b) for all l ∈ Lmin.

This concept was originally introduced by Richardson to construct maximal ancestral sets

and is made rigorous in Lemma 5 of [66]. These sets were used to simplify the set of

conditional independence statements required to characterize independence models induced

by ADMGs [66].
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G

a b

c d e

f g

a ≤ b ≤ c ≤ d ≤ f ≤ g ≤ e

A ⊆eA(G) {a, b, c, d, e, f, g}

bA = e

RA = {a, b, c, d, e, f, g}

LA = RA \ A

MRA = {b, c, d, e}

bA ⊥⊥ RA \ (bA ∪ LA) |MA \ bA [GA ]

a b

c d e

MA

f g

LA ∈ {fg, f, g,∅}

a b

c

Lmin
A

d e

MA

f g

LA ∈ {cfg, cf}

a b

c d

Lmin
A

e

MA

f g

LA ∈ {abcdfg, abcdf, abcdg,

bcdfg, abcd, abdg, bcdf,

bcdg, cdfg, abd, bdf, bdg,

cdf, dfg, bd, df, dg, d}

Figure 4.9: An illustration of the minimal latent sets.

Figure 4.9 illustrates the minimal latent set for an ADMG G = (V,E) and ancestral

set e ∈ A ∈ A(G). Let bA = dAe≤ with preceding vertices RA = pre≤G (bA), LA = RA \ A,

MA = colGA(bA), and Lmin
A = ml≤G (A). All possible sets for LA are listed and partitioned by

MA at the bottom of the figure. In particular, MA is the closure of bA with respect to A.

The minimal latent set Lmin
A is the minimal subset of LA intersected with MRA = colGRA (bA)

for each partition. Note that Lmin
A need not be one of the possible sets of LA; see Figure 4.9
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when Lmin
A = {c} and LA ∈ {{c, f, g}, {c, f}}.

Lemma 4.3.5 uses the concept of a minimal latent set to extract conditional independence

statements from a directed MAG.

Lemma 4.3.5. Let G = (V,E) be a directed MAG, P = P(V ) be the poset ordered by

inclusion, ≤ be a total order consistent with G, and u≤,+
N(G), u

≤,−
N(G) = NSI(G,≤) be the imsets

constructed by Algorithm 3. If G contains a vertex b ∈ V with preceding vertices R = pre≤G (b),

then for M = colGR(b):

b ⊥⊥ R \M |M \ b [µPu
≤,+
N(G) ].

Furthermore, if G contains an ancestral set A ∈ A(G) such that b ∈ A ⊆ R, then for

L = ml≤G (A), N = M \ L, and MA = colGA(b):

b ⊥⊥ N \MA |MA \ b [µPu
≤,+
N(G) ].

Proof. By Corollary 4.3.1 GR is a directed MAG.

By Proposition 3.5.3 the independence model induced by a structural imset is a semi-

graphoid. Accordingly, we may apply the semi-graphoid axioms.

Let MGR,b and NGR,b be the ordered lists constructed by Algorithm 2 and let n be their

cardinality. The structural imset µPu
≤,+
N(G) is constructed as the sum over a set of semi-

elementary imsets including the semi-elementary imsets defined as µPδNGR,b
i,i

for 1 ≤ i ≤ n.

Accordingly

b ⊥⊥ NGR,b
i \MGR,b

i |MGR,b
i \ b [µPu

≤,+
N(G) ].

By construction NGR,b
1 = R and by Lemma 4.0.1 MGR,b

1 = M , therefore

b ⊥⊥ R \M |M \ b [µPu
≤,+
N(G) ].

Note MA ⊆ N ⊆ M (because N ⊆ M only removes latent vertices). By Lemma 4.0.1

MA ∈ dNebM(GR).

If L = ∅, then MA = N = M (because MA = M). Accordingly N \MA = ∅ and by

semi-graphoid axiom of triviality

b ⊥⊥ N \MA |MA \ b [µPu
≤,+
N(G) ].
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If L 6= ∅, then assume by way of contradiction that N is not a maximal non-m-connecting

superset of MA. But if we add a member of L to N , then we change MA. Therefore, N is

maximal and NGR,b
i = N and MGR,b

i = MA for some 1 ≤ i ≤ n. Accordingly

b ⊥⊥ N \MA |MA \ b [µPu
≤,+
N(G) ].

We now extend the ideas of Lemma 4.3.5 to incorporate the conditional independence

statements required by the ordered local Markov property. Let G = (V,E) be a directed

MAG, ≤ be a total order consistent with G, and A ∈ A(G) be an ancestral set where

bA = dAe≤, RA = pre≤G (bA). Let MA = colG(bA), MRA = colGRA (bA), Lmin
A = ml≤G (A) and

NA = MRA \ Lmin
A . Furthermore, let LA = RA \ A be the latent set with respect to A.

Let BA = bA ∪ Lmin
A be the union of the barren vertex bA in GRA with the minimal

latent set Lmin
A . Let CA = MRA \ BA be the ordered Markov blanket of the barren vertex

bA excluding the set of minimal latent set Lmin
A . Let DA = deGRA (Lmin

A ) \ Lmin
A be the proper

descendants of the set of minimal latent set Lmin
A contained in the set of preceding variables

RA with respect to the barren vertex bA and the total order ≤. Let FA = RA \MRADA be

the variables in the set of preceding variables RA with respect to the barren vertex bA and

the total order ≤ that have not already been assigned to a set. Accordingly, BA, CA, DA,

and FA partition RA. Ultimately, we show that BA ⊥⊥ FA | CA [uPu
≤,+
N(G) ].
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RA

A MRA LA FA

NA BA DA

MA CA Lmin
A

bA

Figure 4.10: The Hasse diagram for the poset over sets ordered by inclusion.

Intuitively, the sets in Figure 4.10 are:

A ∈ A(G) an ancestral set;

bA = dAe≤ the last vertex in A with respect to ≤;

RA = pre≤G (bA) the preceding vertices of bA with respect to ≤;

MA = colGA(bA) the maximal m-connecting set with respect to A and b;

MRA = colGRA (bA) the maximal m-connecting set with respect to RA and b;

LA = RA \ A the latent set with respect to A;

Lmin
A = ml≤G (A) the minimal latent set with respect to A and ≤;

NA = MRA \ Lmin
A the maximal non-m-connecting subset of MRA ;

BA = bA ∪ Lmin
A the independent set containing b;

CA = MRA \BA the conditioning set;

DA = deGRA (Lmin
A ) \ Lmin

A the set to be dropped;

FA = RA \MRADA the independent set not containing bA.

95



RA

A

LA

RA

BA CA

DA FA

MRA

Lmin
A

NA

MRA

BA CA

NA

bA

CA

BA

bA

Lmin
A

Figure 4.11: An illustration of how various sets interact and partition each other.

FA

A \NA

LA \MRA
DA

NA \ bA

NA \MA

MA \ bA

A

MA

A \MA

Figure 4.12: An illustration of how various sets interact and partition each other.
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CA = NA \ bA because NA ⊆MRA :

CA = MRA \BA

= MRA \ (bA ∪ Lmin
A ) (B = bA ∪ Lmin

A )

= (MRA \ bA) ∩ (MRA \ Lmin
A ) (distributive property)

= MRA \ bA ∩ NA (NA = MRA \ Lmin
A )

= NA \ bA (MRA ∩ NA = NA)

RA = ALA because A ⊆ RA:

RA = (RA ∩ A) ∪ LA (LA = RA \ A)

= ALA (RA ∩ A = A)

MRA = NAL
min
A because Lmin

A = ml≤G (A) ⊆ colGRA (bA) = MRA :

MRA = NA ∪ (MRA ∩ Lmin
A ) (NA = MRA \ Lmin

A )

= NAL
min
A (MRA ∩ Lmin

A = Lmin
A )

In order to facilitate the forthcoming proof we define a few alternative relations. FA =

(A \ NA) ∪ (LA \MRADA) because LA ∩ A = ∅ and Lmin
A DA ⊆ LA. Note that DA ⊆ LA

because DA = deG(Lmin
A ) and A is an ancestral set.

FA = RA \MRADA

= RA \ (MRADA ∪ (LA ∩ A)) (LA ∩ A = ∅)

= RA \ (MRADALA ∩ MRADAA) (distributive property)

= ALA \ (NAL
min
A DALA ∩ MRADAA) (change notation)

= ALA \ (NALA ∩ MRADAA) (Lmin
A DA ⊆ LA)

= (ALA \NALA) ∪ (ALA \MRADAA) (distributive property)

= (A \NA) ∪ (LA \MRADA) (simplify differences)

NA \ bA = (NA \MA) ∪ (MA \ bA) because bA ∈ MA ⊆ NA. Note that MA ⊆ NA because
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MA ⊆MRA and MA ∩ LA = ∅.

NA \ bA = NA \ (MA ∩ bA) (bA = MA ∩ bA)

= NA \ ((MA ∩ bA) ∪ (MA ∩ (NA \MA))) (MA ∩ (NA \MA) = ∅)

= NA \ (MA ∩ (bA ∪ (NA \MA))) (distributive property)

= (NA \MA) ∪ (NA \ (bA ∪ (NA \MA))) (distributive property)

= (NA \MA) ∪ ((NA \ bA) ∩ (NA \ (NA \MA))) (distributive property)

= (NA \MA) ∪ ((NA \ bA) ∩ (NA ∩ MA)) (NA \ (NA \MA) = NA ∩ MA)

= (NA \MA) ∪ ((NA \ bA) ∩ MA) (NA ∩ MA = MA)

= (NA \MA) ∪ (MA \ bA) ((NA \ bA) ∩ MA = MA \ bA)

A \MA ⊆ (A \NA) ∪ (NA \MA) because MA ⊆ NA:

A \MA = A \ (NA ∩ MA) (MA = NA ∩ MA)

= A \ ((NA ∩ MA) ∪ (NA ∩ (A \NA))) (NA ∩ (A \NA) = ∅)

= A \ (NA ∩ (MA ∪ (A \NA))) (distributive property)

= (A \NA) ∪ (A \ (MA ∪ (A \NA))) (distributive property)

= (A \NA) ∪ ((A \MA) ∩ (A \ (A \NA))) (distributive property)

= (A \NA) ∪ ((A \MA) ∩ (A ∩ NA)) (A \ (A \NA) = A ∩ NA)

⊆ (A \NA) ∪ ((A \MA) ∩ NA) (A ∩ NA ⊆ NA)

= (A \NA) ∪ (NA \MA) ((A \MA) ∩ NA = NA \MA)

Algorithm 4 outlines a generalized process to extract conditional independence state-

ments from a directed MAG. The conditional independence statements are used to construct

a structural imset whose induced independence model is a subset of the induced indepen-

dence model of the graph and a subset of the independence model induced by the output of

Algorithm 3. Furthermore, the conditional independence statements required by the ordered

local Markov property are represented in the constructed imset. This is a key result for the

formulation of the factorization presented in Section 4.3.4.
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Algorithm 4: Ordered Local Markov Property OLMP(G,≤, A)

Input: directed MAG: G = (V,E), total order consistent with G: ≤,

ancestral set: A ∈ A(G)

Output: structural imset: uA
1 Let bA = dAe≤, RA = pre≤G (bA), MRA = colGRA (bA), Lmin

A = ml≤G (A),

NA = MRA \ Lmin
A ;

2 Let BA = bA ∪ Lmin
A , CA = MRA \BA, DA = deGRA (Lmin

A ) \ Lmin
A ,

FA = RA \MRADA ;

3 Initialize imset uA : P(V )→ 0 ;

4 Let i = 1, rAi = bBAc≤, RA
i = pre≤G (rAi ) ;

5 repeat

6 Let BA
i = BA ∩ RA

i , CA
i = CA ∩ RA

i , DA
i = DA ∩ RA

i , FA
i = FA ∩ RA

i ;

7 if rAi ∈ disGRA (bA) then

8 Let MA
i = colG

RA
i

(rAi ) ;
9 uA = uA + u〈rAi ,RAi \MA

i |MA
i \rAi 〉 // Lemma 4.3.5 ;

10 uA = uA + u〈rAi ,FAi |BAi CAi \rAi 〉 // decomposition and weak union ;

11 if rAi ∈ CA then

12 uA = uA + u〈rAi ∪BAi ,FAi |CAi−1〉 // contraction ;

13 end

14 else if rAi ∈ CAFA then

15 Let A′ = RA
i \DA;

16 uA = uA + OLMP(G,≤, A′) // recursive call ;

17 uA = uA + u〈BAi ,rAi |CAi FAi \rAi 〉 // decomposition and weak union;

18 if rAi ∈ CA then

19 uA = uA + u〈BAi ,rAi ∪FA1 |CAi−1〉 // contraction ;

20 end

21 end

22 uA = uA + u〈BAi ,FAi |CAi 〉 // weak union or contraction ;

23 if rAi 6= bA then

24 Let i = i+ 1, rAi = bRA \RA
i−1c≤, RA

i = pre≤G (rAi ) ;

25 end

26 until rAi = bA;

27 Let MA = colGA(bA) ;

28 uA = uA + u〈bA,A\NA|NA\bA〉 // decomposition ;

29 uA = uA + u〈bA,NA\MA|MA\bA〉 // Lemma 4.3.5 ;

30 uA = uA + u〈bA,A\MA|MA\bA〉 // contraction ;

Applications of the symmetry semi-graphoid axiom are not noted in the algorithm.
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In the following series of figures, we give an illustrative example of the steps of Algorithm

4. Let G = (V,E) be a directed MAG, ≤ be a total order consistent with G, and A1, A2 ∈
A(G) be ancestral sets. Additionally, let P = P(V ) be the poset ordered by inclusion.

We construct the structural imset uA1 by adding semi-elementary imsets to uA1 throughout

Algorithm 4. Note that uA1 is guaranteed to be structural since it is constructed as a linear

combination of semi-elementary imsets to uA1 with positive integral coefficients.

G

a b

c d e

f g

a ≤ b ≤ c ≤ d ≤ f ≤ g ≤ e

A1 = {a, b, d, e, g}

bA1 = e

RA1 = {a, b, c, d, e, f, g}

uA1 : P(RA1)→ 0

a b

c d e

f g

MRA1

a b

c d e

f g

Lmin
A1

NA1

a b

c d e

f g

FA1

BA1

CA1

DA1

Figure 4.13: An illustration of the setup of OLMP(G,≤,A1) (step i).

Figure 4.13 initializes many of the sets used throughout the example for OLMP(G,≤,A1).
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A1 = {a, b, d, e, g}
R
A1
1︷ ︸︸ ︷

a ≤ b ≤ c︸︷︷︸
r
A1
1

≤
L
A1
1︷ ︸︸ ︷

d ≤ f ≤ g ≤ e

a b

c d e

f g

FA1
1 CA1

1

BA1
1

a b

c d e

f g

MA1
1

rA1
1 ∈ disGRA1

(bA1) \ CA1

uA1 = uA1 + u〈c,ab|∅〉 + u〈c,a|b〉 + u〈c,a|b〉

Figure 4.14: An illustration of OLMP(G,≤,A1) (step ii).

Figure 4.14 depicts the first step of OLMP(G,≤,A1) where rA1
1 = c, RA1

1 = {a, b, c}, and

MA1
1 = {c}. Note that rA1

1 ∈ disGRA1
(bA1) \ CA1 . Semi-elementary imsets corresponding to

the following conditional independence statements are added to uA1 :

line 9 : rA1
1 ⊥⊥ RA1

1 \MA1
1 |MA1

1 \ rA1
1 [µPu

≤,+
N(G) ]

line 10 : rA1
1 ⊥⊥ FA1

1 | BA1
1 CA1

1 [µPu
≤,+
N(G) ]

line 22 : BA1
1 ⊥⊥ FA1

1 | CA1
1 [µPu

≤,+
N(G) ]

Instantiating the sets:

line 9 : c ⊥⊥ ab | ∅ [µPu
≤,+
N(G) ] (Lemma 4.3.5)

line 10 : c ⊥⊥ a | b [µPu
≤,+
N(G) ] (weak union—(line 9))

line 22 : c ⊥⊥ a | b [µPu
≤,+
N(G) ] (line 10)
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A1 = {a, b, d, e, g}
R
A1
2︷ ︸︸ ︷

a ≤ b ≤ c ≤ d︸︷︷︸
r
A1
2

≤
L
A1
2︷ ︸︸ ︷

f ≤ g ≤ e

a b

c d e

f g

FA1
2 CA1

2

BA1
2

a b

c d e

f g

MA1
2

rA1
2 ∈ CA1 ∩ disGRA1

(bA1)

uA1 = uA1 + u〈d,a|bc〉 + u〈d,a|bc〉 + u〈cd,a|b〉 + u〈c,a|bd〉

Figure 4.15: An illustration of OLMP(G,≤,A1) (step iii).

Figure 4.15 depicts the step of OLMP(G,≤,A1) where rA1
2 = d, RA1

2 = {a, b, c, d}, and

MA1
2 = {b, c, d}. Note that rA1

2 ∈ CA1 ∩ disGRA1
(bA1) and CA1

1 = CA1
2 \ rA1

2 . Semi-elementary

imsets corresponding to the following conditional independence statements are added to uA1 :

line 9 : rA1
2 ⊥⊥ RA1

2 \MA1
2 |MA1

2 \ rA1
2 [µPu

≤,+
N(G) ]

line 10 : rA1
2 ⊥⊥ FA1

2 | BA1
2 CA1

2 [µPu
≤,+
N(G) ]

line 12 : rA1
2 ∪ BA1

2 ⊥⊥ FA1
2 | CA1

1 [µPu
≤,+
N(G) ]

line 22 : BA1
2 ⊥⊥ FA1

2 | CA1
2 [µPu

≤,+
N(G) ]
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Instantiating the sets:

line 9 : d ⊥⊥ a | bc [µPu
≤,+
N(G) ] (Lemma 4.3.5)

line 10 : d ⊥⊥ a | bc [µPu
≤,+
N(G) ] (line 9)

line 12a : c ⊥⊥ a | b [µPu
≤,+
N(G) ] (previous step—(step ii))

line 12b : cd ⊥⊥ a | b [µPu
≤,+
N(G) ] (contraction—(line 10 + line 12a))

line 22 : c ⊥⊥ a | bd [µPu
≤,+
N(G) ] (weak union—(line 12b))

A1 = {a, b, d, e, g}
R
A1
3︷ ︸︸ ︷

a ≤ b ≤ c ≤ d ≤ f︸︷︷︸
r
A1
3

≤
L
A1
3︷ ︸︸ ︷

g ≤ e

a b

c d e

f g

FA1
3 CA1

3

BA1
3

DA1
3

a b

c d e

f g

MA1
3

rA1
3 6∈ CA1FA1 ∪ disGRA1

(bA)

uA1 = uA1 + u〈c,a|bd〉

Figure 4.16: An illustration of OLMP(G,≤,A1) (step iv).

Figure 4.16 depicts the step of OLMP(G,≤,A1) where rA1
3 = f , RA1

3 = {a, b, c, d, f},
and MA1

3 = {c, f}. Note that rA1
3 6∈ CA1FA1 ∪ disGRA1

(bA). A semi-elementary imset

corresponding to the following conditional independence statement is added to uA1 :

line 22 : BA1
3 ⊥⊥ FA1

3 | CA1
3 [µPu

≤,+
N(G) ]
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Instantiating the sets:

line 22a : c ⊥⊥ a | bd [µPu
≤,+
N(G) ] (previous step—(step iii))

line 22b : c ⊥⊥ a | bd [µPu
≤,+
N(G) ] (line 22a)

A1 = {a, b, d, e, g}
R
A1
4︷ ︸︸ ︷

a ≤ b ≤ c ≤ d ≤ f ≤ g︸︷︷︸
r
A1
4

≤
L
A1
4︷︸︸︷
e

a b

c d e

f g

FA1
4 CA1

4

BA1
4

DA1
4

a b

c d e

f g

MA1
4

rA1
4 ∈ FA1 \ disGRA1

(bA1)

A2 = {a, b, c, d, g}

uA1 = uA1 + OLMP(G,≤, A2)

Figure 4.17: An illustration of OLMP(G,≤,A1) (step v).

Figure 4.17 depicts the step of OLMP(G,≤,A1) where rA1
4 = g, RA1

4 = {a, b, c, d, f, g},
and MA1

4 = {c, f, g}. Note that rA1
4 ∈ FA1 \ disGRA1

(bA1). Algorithm 4 performs a recursive

call with A2 = {a, b, c, d, g}.
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G

a b

c d e

f g

a ≤ b ≤ c ≤ d ≤ f ≤ g ≤ e

A2 = {a, b, c, d, g}

bA2 = g

RA2 = {a, b, c, d, f, g}

uA2 : P(RA2)→ 0

a b

c d e

f g

MRA2

a b

c d e

f g

NA2

Lmin
A2

a b

c d e

f g

FA2

CA2

BA2

Figure 4.18: An illustration of the setup of OLMP(G,≤,A2) (step vi).

Figure 4.18 initializes many of the sets used throughout the example for OLMP(G,≤,A2).
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A2 = {a, b, c, d, g}
R
A2
1︷ ︸︸ ︷

a ≤ b ≤ c ≤ d ≤ f︸︷︷︸
r
A2
1

≤
L
A2
1︷ ︸︸ ︷

g ≤ e

a b

c d e

f g

FA2
1

CA2
1

BA2
1

a b

c d e

f g

MA2
1

rA2
1 ∈ disGRA2

(bA2) \ CA2

uA2 = uA2 + u〈f,abd|c〉 + u〈f,abd|c〉 + u〈f,abd|c〉

Figure 4.19: An illustration of OLMP(G,≤,A2) (step vii).

Figure 4.19 depicts the first step of OLMP(G,≤,A2) where rA2
1 = f , RA2

1 = {a, b, c, d, f},
andMA2

1 = {c, f}. Note that rA2
1 ∈ disGRA2

(bA2)\CA2 . Semi-elementary imsets corresponding

to the following conditional independence statements are added to uA2 :

line 9 : rA2
1 ⊥⊥ RA2

1 \MA2
1 |MA2

1 \ rA2
1 [µPu

≤,+
N(G) ]

line 10 : rA2
1 ⊥⊥ FA2

1 | BA2
1 CA2

1 [µPu
≤,+
N(G) ]

line 22 : BA2
1 ⊥⊥ FA2

1 | CA2
1 [µPu

≤,+
N(G) ]

Instantiating the sets:

line 9 : f ⊥⊥ abd | c [µPu
≤,+
N(G) ] (Lemma 4.3.5)

line 10 : f ⊥⊥ abd | c [µPu
≤,+
N(G) ] (line 9)

line 22 : f ⊥⊥ abd | c [µPu
≤,+
N(G) ] (line 10)
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A2 = {a, b, c, d, g}
R
A2
2︷ ︸︸ ︷

a ≤ b ≤ c ≤ d ≤ f ≤ g︸︷︷︸
r
A2
2 = bA2

≤
L
A2
2︷︸︸︷
e

a b

c d e

f g

FA2
2

CA2
2

BA2
2

a b

c d e

f g

MA2
2

rA2
2 ∈ disGRA2

(bA2) \ CA2

uA2 = uA2 + u〈g,abd|cf〉 + u〈g,abd|cf〉 + u〈fg,abd|c〉

Figure 4.20: An illustration of OLMP(G,≤,A2) (step viii).

Figure 4.20 depicts the step of OLMP(G,≤,A2) where rA2
2 = g, RA2

2 = {a, b, c, d, f, g},
and MA2

2 = {c, f, g}. Note that rA2
2 ∈ disGRA2

(bA2) \ CA2 . Semi-elementary imsets corre-

sponding to the following conditional independence statements are added to uA2 :

line 9 : rA2
2 ⊥⊥ RA2

2 \MA2
2 |MA2

2 \ rA2
2 [µPu

≤,+
N(G) ]

line 10 : rA2
2 ⊥⊥ FA2

2 | BA2
2 CA2

2 [µPu
≤,+
N(G) ]

line 22 : BA2
2 ⊥⊥ FA2

2 | CA2
2 [µPu

≤,+
N(G) ]

Instantiating the sets:

line 9 : g ⊥⊥ abd | cf [µPu
≤,+
N(G) ] (Lemma 4.3.5)

line 10 : g ⊥⊥ abd | cf [µPu
≤,+
N(G) ]. (line 9)

line 22a : f ⊥⊥ abd | c [µPu
≤,+
N(G) ] (previous step—(step vii))

line 22b : fg ⊥⊥ abd | c [µPu
≤,+
N(G) ] (contraction—(line 10 + line 22a))
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Since R2 = bA2 , the main loop of OLMP(G,≤,A2) is done.

A2 = {a, b, c, d, g}

bA2 = e

a b

c d e

f g

NA2

MA2

uA2 = uA2 + u〈g,abd|c〉 + u〈g,c|∅〉 + u〈g,abcd|∅〉

Figure 4.21: An illustration of OLMP(G,≤,A2) (step ix ).

Figure 4.21 depicts the step of OLMP(G,≤,A2) after completing the main loop. Semi-

elementary imsets corresponding to the following conditional independence statements are

added to uA2 :

line 28 : bA2 ⊥⊥ A2 \NA2 | NA2 \ bA2 [µPu
≤,+
N(G) ]

line 29 : bA2 ⊥⊥ NA2 \MA2 |MA2 \ bA2 [µPu
≤,+
N(G) ]

line 30 : bA2 ⊥⊥ A2 \MA2 |MA2 \ bA2 [µPu
≤,+
N(G) ]

Instantiating the sets:

line 28a : fg ⊥⊥ abd | c [µPu
≤,+
N(G) ] (previous step—(step viii))

line 28b : g ⊥⊥ abd | c [µPu
≤,+
N(G) ] (decomposition—(line 28a))

line 29 : g ⊥⊥ c | ∅ [µPu
≤,+
N(G) ] (Lemma 4.3.5)

line 30 : g ⊥⊥ abcd | ∅ [µPu
≤,+
N(G) ] (contraction—(line 28b + line 29))
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A1 = {a, b, d, e, g}
R
A1
4︷ ︸︸ ︷

a ≤ b ≤ c ≤ d ≤ f ≤ g︸︷︷︸
r
A1
4

≤
L
A1
4︷︸︸︷
e

a b

c d e

f g

FA1
4 CA1

4

BA1
4

DA1
4

a b

c d e

f g

MA1
4

rA1
4 ∈ FA1 \ disGRA1

(bA1)

uA1 = uA1 + OLMP(G,≤, A2)

uA1 = uA1 + u〈c,g|abd〉 + u〈c,ag|bd〉

Figure 4.22: An illustration of OLMP(G,≤,A1) (step x ).

Figure 4.22 depicts the step of OLMP(G,≤,A1) where rA1
4 = g, RA1

4 = {a, b, c, d, f, g},
and MA1

4 = {c, f, g}. Algorithm 4 returns to this step after a recursive call. Note that

rA1
4 ∈ FA1 \ disGRA1

(bA1). Semi-elementary imsets corresponding to the following conditional

independence statements are added to uA1 :

line 17 : BA1
4 ⊥⊥ rA1

4 | CA1
4 FA1

4 \ rA1
4 [µPu

≤,+
N(G) ]

line 22 : BA1
4 ⊥⊥ FA1

4 | CA1
4 [µPu

≤,+
N(G) ]
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Instantiating the sets:

line 17a : abcd ⊥⊥ g | ∅ [µPu
≤,+
N(G) ] (recursive call—(step ix ))

line 17b : c ⊥⊥ g | abd [µPu
≤,+
N(G) ] (weak union—(line 17a)

line 22a : c ⊥⊥ a | bd [µPu
≤,+
N(G) ] (previous step—(step iv))

line 22b : c ⊥⊥ ag | bd [µPu
≤,+
N(G) ] (contraction—(line 17b + line 22a))

A1 = {a, b, d, e, g}
R
A1
5︷ ︸︸ ︷

a ≤ b ≤ c ≤ d ≤ f ≤ g ≤ e︸︷︷︸
r
A1
5 = bA1

a b

c d e

f g

FA1
5 CA1

5

BA1
5

DA1
5

a b

c d e

f g

MA1
5

rA1
5 ∈ disGRA1

(bA1) \ CA1

uA1 = uA1 + u〈e,afg|bcd〉 + u〈e,ag|bcd〉 + u〈ce,ag|bd〉

Figure 4.23: An illustration of OLMP(G,≤,A1) (step xi).

Figure 4.23 depicts the step of OLMP(G,≤,A1) where rA1
5 = e, RA1

5 = {a, b, c, d, e, f, g},
and MA1

5 = {b, c, d, e}. Note that rA1
5 ∈ disGRA1

(bA1) \ CA1 . Semi-elementary imsets corre-

sponding to the following conditional independence statements are added to uA1 :

line 9 : rA1
5 ⊥⊥ RA1

5 \MA1
5 |MA1

5 \ rA1
5 [µPu

≤,+
N(G) ]

line 10 : rA1
5 ⊥⊥ FA1

5 | BA1
5 CA1

5 \ rA1
5 [µPu

≤,+
N(G) ]

line 22 : BA1
5 ⊥⊥ FA1

5 | CA1
5 [µPu

≤,+
N(G) ]
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Instantiating the sets:

line 9 : e ⊥⊥ afg | bcd [µPu
≤,+
N(G) ] (Lemma 4.3.5)

line 10 : e ⊥⊥ ag | bcd [µPu
≤,+
N(G) ] (decomposition—(line 9))

line 22a : c ⊥⊥ ag | bd [µPu
≤,+
N(G) ] (previous step—(step x ))

line 22b : ce ⊥⊥ ag | bd [µPu
≤,+
N(G) ] (contraction—(line 10 + line 22a))

Since r5 = bA1 , the main loop of OLMP(G,≤,A1) is done.

A1 = {a, b, d, e, g}

bA1 = e

a b

c d e

f g

NA1

MA1

uA1 = uA1 + u〈e,ag|bd〉 + u〈e,∅|bd〉 + u〈e,ag|bd〉

Figure 4.24: An illustration of OLMP(G,≤,A1) (step xii).

Figure 4.24 depicts the step of OLMP(G,≤,A1) after completing the main loop. Semi-

elementary imsets corresponding to the following conditional independence statements are

added to uA1 :

line 28 : bA1 ⊥⊥ A1 \NA1 | NA1 \ bA1 [µPu
≤,+
N(G) ]

line 29 : bA1 ⊥⊥ NA1 \MA1 |MA1 \ bA1 [µPu
≤,+
N(G) ]

line 30 : bA1 ⊥⊥ A1 \MA1 |MA1 \ bA1 [µPu
≤,+
N(G) ]
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Instantiating the sets:

line 28a : ce ⊥⊥ ag | bd [µPu
≤,+
N(G) ] (previous step—(step xi))

line 28b : e ⊥⊥ ag | bd [µPu
≤,+
N(G) ] (decomposition—(line 28a))

line 29 : e ⊥⊥ ∅ | bd [µPu
≤,+
N(G) ] (Lemma 4.3.5)

line 30 : e ⊥⊥ ag | bd [µPu
≤,+
N(G) ] (line 28b)

Lemma 4.3.6. Let G = (V,E) be a directed MAG and ≤ be a total order consistent with

G. Let A ∈ A(G) and b = dAe≤ with preceding vertices R = pre≤G (b). Let r ∈ R and

R′ = pre≤G (r). If r ∈ disGR(b), then:

colGR′ (r) ⊆ colGR(b).

If r 6∈ disGR(b), and B = b ∪ ml≤G (A):

colGR′ (r) ∩ B = ∅.

Proof. Note that GR′ is a subgraph of GR so any vertices and paths in GR′ are in GR. Pick

vertex a ∈ colGR′ (r) and path πar in GR′ between a and r such that πar is a collider-connecting

path. Furthermore, r = dR′e≤ so πar must have an arrowhead directed into r.

For the first statement, we show that a ∈ colGR(b). Since r ∈ disGR(b), there is a path πbr

in GR between b and r consisting entirely of bi-directed edges. Accordingly, the composition

of πar from a to r with πbr from r to b is a collider-connecting path between a and b in GR.

It follows that colGR′ (r) ⊆ colGR(b).

For the second statement, we show that if a ∈ B, then r ∈ disGR(b); this is the contrapos-

itive statement. Since a ∈ B, there is a path πab in GR between a and b consisting entirely

of bi-directed edges. Accordingly, the composition of πab from b to a with πar from a to r is

a collider-connecting path between b and r in GR. It follows that colGR′ (r) ∩ B = ∅

Lemma 4.3.7. Let G = (V,E) be a directed MAG, P = P(V ) be the poset ordered by

inclusion, ≤ be a total order consistent with G, and u≤,+
N(G), u

≤,−
N(G) = NSI(G,≤) be the imsets

constructed by Algorithm 3. If A ∈ A(G) is an ancestral set and uA = OLMP(G,≤, A) is

the imset constructed by Algorithm 4, then uA is a structural imset and I(uA) ⊆ I(µPu
≤,+
N(G)).
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Furthermore, if bA = dAe≤ and MA = colGA(bA), then:

bA ⊥⊥ A \MA |MA \ bA [uA ].

Proof. Since uA is defined as the sum of semi-elementary imsets, uA is a structural imset.

Additionally, bA ⊥⊥ A \MA |MA \ bA [uA ] by line 30. Consider the recursive call on line 16:

Note that A′ is ancestral because it is defined as an ancestral set minus a set that contains

all of its descendants. Let bA′ = dA′e≤ and RA′ = pre≤G (bA′) and note that RA′ ⊂ RA.

Accordingly, each time the algorithm is called recursively, the set of preceding variables is

smaller. Since these sets are finite, Algorithm 4 is guaranteed to terminate.

We show that the conditional independence statement represented by semi-elementary

imset added to uA are either represented in µPu
≤,+
N(G) by Lemma 4.3.5 or implied by preexisting

conditional independence statements represented in u. Accordingly, I(uA) ⊆ I(µPu
≤,+
N(G)).

Let RA = pre≤G (bA), MRA = colGRA (bA), Lmin
A = ml≤G (A), NA = MRA \ Lmin

A , and LA =

RA \A. Let BA = bA ∪ Lmin
A , CA = MRA \BA, DA = deGRA (Lmin

A )\Lmin
A , FA = RA \MRADA.

We proceed by induction. For the base case, let rA1 = bBAc≤, RA
1 = pre≤G (rA1 ), and

MA
1 = colG

RA1

(rA1 ). Let BA
1 = BA ∩ RA

1 , CA
1 = CA ∩ RA

1 , DA
1 = DA ∩ RA

1 , and FA
1 = FA ∩ RA

1

be the sets constrained to the set of variables RA
1 . Note that rA1 ∈ disG

RA
i

(bA). By Lemma

4.3.5,

rA1 ⊥⊥ RA
1 \MA

1 |MA
1 \ rA1 [µPu

≤,+
N(G) ].

Thus line 9 is satisfied. By changing notation,

rA1 ⊥⊥ BA
1 C

A
1 D

A
1 F

A
1 \MA

1 |MA
1 \ rA1 [µPu

≤,+
N(G) ].

By Lemma 4.3.6 MA
1 ⊆ BA

1 C
A
1 . By the decomposition and weak union semi-graphoid axioms,

rA1 ⊥⊥ FA
1 | BA

1 C
A
1 \ rA1 [µPu

≤,+
N(G) ].

Thus line 10 is satisfied. Noting that BA
1 = rA1 ,

BA
1 ⊥⊥ FA

1 | CA
1 [µPu

≤,+
N(G) ].
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Thus line 22 is satisfied.

Let rAi = bRA \ RA
i−1c≤, RA

i = pre≤G (rAi ), and MA
i = colG

RA
i

(rAi ). Let BA
i = BA ∩ RA

i ,

CA
i = CA ∩ RA

i , DA
i = DA ∩ RA

i , and FA
i = FA ∩ RA

i be the sets constrained to the set of

variables RA
i . By the inductive hypothesis:

BA
i−1 ⊥⊥ FA

i−1 | CA
i−1 [µPu

≤,+
N(G) ].

If rAi ∈ disG
RA
i

(bA), then by Lemma 4.3.5,

rAi ⊥⊥ RA
i \MRAi

|MRAi
\ rAi [µPu

≤,+
N(G) ].

Thus line 9 is satisfied. By changing notation,

rAi ⊥⊥ BA
i C

A
i D

A
i F

A
i \MA

i |MA
i \ rAi [µPu

≤,+
N(G) ].

By Lemma 4.3.6 MA
i ⊆ BA

i C
A
i . By the decomposition and weak union semi-graphoid axioms,

rAi ⊥⊥ FA
i | BA

i C
A
i \ rAi [µPu

≤,+
N(G) ].

Thus line 10 is satisfied.

If rAi ∈ BA, then BA
i = rAi ∪ BA

i−1, CA
i = CA

i−1, DA
i = DA

i−1, and FA
i = FA

i−1. By changing

notation,

rAi ⊥⊥ FA
i | BA

i−1C
A
i [µPu

≤,+
N(G) ].

By changing the notation of the inductive hypothesis,

BA
i−1 ⊥⊥ FA

i | CA
i [µPu

≤,+
N(G) ].

By the symmetry and contraction semi-graphoid axioms,

BA
i ⊥⊥ FA

i | CA
i [µPu

≤,+
N(G) ].

Thus line 22 is satisfied.
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If rAi ∈ CA, then BA
i = BA

i−1, CA
i = rAi ∪ CA

i−1, DA
i = DA

i−1, and FA
i = FA

i−1. By changing

notation,

rAi ⊥⊥ FA
i | BA

i C
A
i−1 [µPu

≤,+
N(G) ].

By changing the notation of the inductive hypothesis,

BA
i ⊥⊥ FA

i | CA
i−1 [µPu

≤,+
N(G) ].

By the symmetry and contraction semi-graphoid axioms,

rAi ∪ BA
i ⊥⊥ FA

i | CA
i−1 [µPu

≤,+
N(G) ].

Thus line 12 satisfies the lemma. By the symmetry and weak union semi-graphoid axioms,

BA
i ⊥⊥ FA

i | CA
i [µPu

≤,+
N(G) ].

Thus line 22 is satisfied.

Else if rAi ∈ CAFA, then let A′ = RA
i \ DA, bA′ = dA′e≤, and MA′ = colGA′ (bA′). Note

that A′ is ancestral because it is defined as an ancestral set minus a set that contains all of

its descendants. Note that bA′ = rAi . Since we show that all other lines are satisfied and

Algorithm 4 terminates, lines 16 is satisfied. Accordingly,

bA′ ⊥⊥ A′ \MA′ |MA′ \ bA′ [µPu
≤,+
N(G) ].

By changing notation,

rAi ⊥⊥ BA
i C

A
i F

A
i \MA′ |MA′ \ rAi [µPu

≤,+
N(G) ].

By Lemma 4.3.6 MA′ ⊆ CA
i F

A
i . By the symmetry, decomposition, and weak union semi-

graphoid axioms,

BA
i ⊥⊥ rAi | CA

i F
A
i \ rAi [µPu

≤,+
N(G) ].

Thus line 17 is satisfied.

If rAi ∈ FA, then BA
i = BA

i−1, CA
i = CA

i−1, DA
i = DA

i−1, and FA
i = rAi ∪ FA

i−1. By changing

115



notation,

BA
i ⊥⊥ rAi | CA

i F
A
i−1 [µPu

≤,+
N(G) ].

By changing the notation of the inductive hypothesis,

BA
i ⊥⊥ FA

i−1 | CA
i [µPu

≤,+
N(G) ].

By the contraction semi-graphoid axiom,

BA
i ⊥⊥ FA

i | CA
i [µPu

≤,+
N(G) ].

Thus line 22 is satisfied.

If rAi ∈ CA, then BA
i = BA

i−1, CA
i = rAi ∪ CA

i−1, DA
i = DA

i−1, and FA
i = FA

i−1. By changing

notation,

BA
i ⊥⊥ rAi | CA

i−1F
A
i [µPu

≤,+
N(G) ].

By changing the notation of the inductive hypothesis,

BA
i ⊥⊥ FA

i | CA
i−1 [µPu

≤,+
N(G) ].

By the contraction semi-graphoid axiom,

BA
i ⊥⊥ rAi ∪ FA

i | CA
i−1 [µPu

≤,+
N(G) ].

Thus line 19 is satisfied. By the weak union semi-graphoid axiom,

BA
i ⊥⊥ FA

i | CA
i [µPu

≤,+
N(G) ].

Thus line 22 is satisfied.

If rAi ∈ DA, then BA
i = BA

i−1, CA
i = CA

i−1 D
A
i = rAi ∪ DA

i−1, and FA
i = FA

i−1. By changing

the notation of the inductive hypothesis,

BA
i ⊥⊥ FA

i | CA
i [µPu

≤,+
N(G) ].

Thus line 22 is satisfied.
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Accordingly,

BA ⊥⊥ FA | CA [µPu
≤,+
N(G) ].

Note that BA = bA ∪ Lmin
A , CA = NA \bA, and FA ⊆ (A\NA) ∪ (LA \MRADA). By changing

notation and the decomposition semi-graphoid axiom,

b ∪ Lmin
A ⊥⊥ (A \NA) ∪ (LA \MRADA) | NA \ bA [µPu

≤,+
N(G) ].

By the symmetry and decomposition semi-graphoid axioms,

bA ⊥⊥ A \NA | NA \ bA [µPu
≤,+
N(G) ].

Thus line 28 is satisfied. Note that NA\bA = (NA\MA) ∪ (MA\bA) because bA ∈MA ⊆ NA.

By expanding notation,

bA ⊥⊥ A \NA | (NA \MA) ∪ (MA \ b) [µPu
≤,+
N(G) ]

By Lemma 4.3.5,

bA ⊥⊥ NA \MA |MA \ bA [µPu
≤,+
N(G) ].

Thus line 29 is satisfied. By the contraction and decomposition semi-graphoid axioms,

bA ⊥⊥ (A \NA) ∪ (NA \MA) |MA \ bA [µPu
≤,+
N(G) ].

Note that A \ MA ⊆ (A \ NA) ∪ (NA \ MA) because MA ⊆ NA. By the decomposition

semi-graphoid axiom,

bA ⊥⊥ A \MA |MA \ bA [µPu
≤,+
N(G) ].

Thus line 30 is satisfied.

Corollary 4.3.3. Let G = (V,E) be a directed MAG, P = P(V ) be the poset ordered by

inclusion, and ≤ be a total order consistent with G. If b ∈ V and A ∈ A(G) such that

b ∈ A ⊆ pre≤G (b), then

b ⊥⊥ A \ clGA(b) | mbGA(b) [µPu
≤,+
N(G) ]

where µPu
≤,+
N(G) is the structural imset derived by applying the Möbius inversion to the primary

imset constructed by Algorithm 3.
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Proof. The proof follows from the definitions of Markov blanket and closure and above

lemmas and corollaries.

4.3.3 Markov Implies Factorization

In this section, we provide the necessary lemmas to prove that if the global Markov

property holds, then the factorization presented in Section 4.3.4 holds. The intuition for

Lemma 4.3.8 is given by the ordered local Markov property. In what follows, b is a barren

vertex and M \ b is its Markov blanket with respect to the set N .

Lemma 4.3.8. Let G = (V,E) be a directed MAG containing a set N ⊆ V (N 6= ∅). If

b ∈ barG(N) and M ∈ dNebM(G), then:

b ⊥⊥ N \M |M \ b [G ].

Proof. By Proposition 3.3.3 the induced independence model I(G) is a compositional graphoid.

Accordingly, graphoid axioms (i - vi) may be applied. Consider the cases where N is m-

connecting and not m-connecting.

If N is m-connecting, then by maximally M = N . By the triviality graphoid axiom

b ⊥⊥ N \M |M \ b [G ].

If N is not m-connecting, then M ⊂ N . Pick a vertex a ∈ N \M and let Na = M ∪ a.

By maximally Na is non-m-connecting. By Lemma 4.3.3, since b ∈ barG(N), no inducing

path exists between a and b relative to 〈V \Na,M \ b〉. By Proposition 3.3.2 if no inducing

path exists between a and b relative to 〈V \Na,M \ b〉, then a and b are m-separated by C

for some M \ b ⊆ C ⊆ Na (a, b 6∈ C). According

b ⊥⊥ a |M \ b [G ] for all a ∈ N \M.

By the composition graphoid axiom

b ⊥⊥ N \M |M \ b [G ].
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Lemma 4.3.9. Let G = (V,E) be a directed MAG and ≤ be a total order consistent with G.

Furthermore, let X be a collection of random variables indexed by V with probability measure

P that admits density f(x) with respect to dominating σ-finite product measure ν. If P has

finite multiinformation mP and satisfies the global Markov property for G, then:∑
N∈P(V )

u≤,+
N(G)(N)φN(x) = 0 for P -a.e x ∈ X

and ∑
N∈P(V )

u≤,−
N(G)(N)φN(x) = 0 for P -a.e x ∈ X

where u≤,+
N(G) and u≤,−

N(G) are the imsets constructed by Algorithm 3.

Proof. Pick a variable b ∈ V and let R = pre≤G (b). By Corollary 4.3.1 the induced subgraph

GR is a directed MAG and I(GR) ⊆ I(G). By Proposition 3.3.3 the induced independence

model I(GR) is a compositional graphoid. Accordingly, graphoid axioms (i - vi) may be

applied. Run Pair(GR, b) = NGR,b,MGR,b, n. Pick J ⊆ {1, . . . , n} and let M ∈ dNG,b
J ebM(G).

Note that

M ⊆ NG,b
J ⊆ NG,b

i for all i ∈ J.

By maximality, since M ⊆ NG,b
i and MG,b

i ∈ dNG,b
i ebM(G) for all i ∈ J ,

M ⊆MG,b
i for all i ∈ J.

Accordingly,

M ⊆MG,b
J,K for all K ⊆ J.

By Lemma 4.3.8

b ⊥⊥ NG,b
J \M |M \ b [GR ].

By the weak union graphoid axiom

b ⊥⊥ NG,b
J \MG,b

J,K |MG,b
J,K \ b [GR ] for all K ⊆ J.

Therefore, since I(GR) ⊆ I(G) and P satisfies the global Markov property for G,

b ⊥⊥ NG,b
J \MG,b

J,K |MG,b
J,K \ b [P ] for all K ⊆ J.
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By Equation 3.2, since the imsets constructed by Algorithm 3 are constructed as sums over

NG,b
J,K terms:

∑
N∈P(V )

u≤,+
N(G)(N)φN(x) = 0 for P -a.e x ∈ X

and ∑
N∈P(V )

u≤,−
N(G)(N)φN(x) = 0 for P -a.e x ∈ X.

4.3.4 Formalization and Alternatives

In this section, we present the factorization and several alternatives. Notably, while the

factorizations presented in this chapter are defined from probability measures with finite

multiinformation, a similar proof could be given for positive measures.

Theorem 4.3.1. Let G = (V,E) be a directed MAG, P = P(V ) be a poset ordered by

inclusion, and ≤ be a total order consistent with G. Furthermore, let X be a collection of

random variables indexed by V with probability measure P that admits density f(x) with

respect to dominating σ-finite product measure ν. If P has finite multiinformation mP , then

the following are equivalent:

i. log f(x) =
∑

M∈M(G) φM(x)−∑N∈P(V ) u
≤,−
N(G)(N)φN(x) for P -a.e. x ∈ X;

ii. (µPu
≤,+
N(G))

>mP = 0;

iii. A ⊥⊥ B | C [G ] ⇒ A ⊥⊥ B | C [P ] for every 〈A,B | C〉 ∈ T(V );

where u≤,+
N(G) and u≤,−

N(G) are the imsets constructed by Algorithm 3.

Proof. (i⇒ ii): By the Möbius inversion

log f(x) =
∑

T∈P(V )

φT (x)

=
∑

M∈M(G)

φM(x) +
∑

N∈P(V )

δN(G)(N)φN(x)

=
∑

M∈M(G)

φM(x) +
∑

N∈P(V )

u≤,+
N(G)(N)φN(x)−

∑
N∈P(V )

u≤,−
N(G)(N)φN(x).
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By the antecedent

log f(x) =
∑

M∈M(G)

φM(x)−
∑

N∈P(V )

u≤,−
N(G)(N)φN(x) for P -a.e. x ∈ X.

Therefore ∑
N∈P(V )

u≤,+
N(G)(N)φN(x) = 0 for P -a.e. x ∈ X.

By integrating with respect to P∫
x∈X

∑
N∈P(V )

u≤,+
N(G)(N)φN(x) dP (x) =

∑
N∈P(V )

u≤,+
N(G)(N)

∫
x∈X

φN(x) dP (x)

=
∑

N∈P(V )

u≤,+
N(G)(N)

∑
T⊆N

µP(N, T )

∫
x∈X

log fT (x) dP (x)

=
∑

N∈P(V )

u≤,+
N(G)(N)

∑
T⊆N

µP(N, T )mP (T )

= (µPu
≤,+
N(G))

>mP .

Accordingly

(µPu
≤,+
N(G))

>mP = 0.

(ii⇒ iii): By Corollary 4.3.3, if b ∈ V and A ∈ A(G) such that b ∈ A ⊆ pre≤G (b), then

b ⊥⊥ A \ clGA(b) | mbGA(b) [µPu
≤,+
N(G) ].

By Theorem 3.5.1 and the antecedent, if b ∈ V and A ∈ A(G) such that b ∈ A ⊆ pre≤G (b),

then

b ⊥⊥ A \ clGA(b) | mbGA(b) [P ].

By Theorem 3.3.2

A ⊥⊥ B | C [G ] ⇒ A ⊥⊥ B | C [P ] for every 〈A,B | C〉 ∈ T(V ).
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(i⇐ iii): By the Möbius inversion and Lemma 4.3.9

log f(x) =
∑

T∈P(V )

φT (x)

=
∑

M∈M(G)

φM(x) +
∑

N∈N(G)

φN(x)

=
∑

M∈M(G)

φM(x) +
∑

N∈N(G)

u≤,+
N(G)(N)φN(x)−

∑
N∈N(G)

u≤,−
N(G)(N)φN(x)

=
∑

M∈M(G)

φM(x)−
∑

N∈N(G)

u≤,−
N(G)(N)φN(x) for P -a.e. x ∈ X.

In general, we refer to i of Theorem 3.5.1 as the factorization which we may alternatively

characterize and with a structural imset:

log f(x) =
∑

M∈M(G)

φM(x)−
∑

N∈N(G)

u≤,−
N(G)(N)φN(x)

=
∑

N∈P(V )

(δM(G)(N)− u≤,−
N(G)(N))φN(x)

=
∑

N∈P(V )

(1− u≤,+
N(G)(N))φN(x)

= log f(x)−
∑

N∈N(G)

u≤,+
N(G)(N)φN(x)

and with heads and tails:

log f(x) =
∑

M∈M(G)

φM(x)−
∑

N∈N(G)

u≤,−
N(G)(N)φN(x)

=
∑

H∈H(G)

φH|tailG (H)(x)−
∑

N∈N(G)

u≤,−
N(G)(N)φN(x)
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and with conditional densities:

log f(x) =
∑

M∈M(G)

φM(x)−
∑

N∈N(G)

u≤,−
N(G)(N)φN(x)

=
∑
b∈V

∑
N⊆cl≤

G
(b)

b∈N

(δM(G)(N)− u≤,−
N(G)(N))φN(x)

=
∑
b∈V

∑
N⊆cl≤

G
(b)

b∈N

(1− u≤,+
N(G)(N))φN(x)

=
∑
b∈V

[
log f

b|mb≤
G

(b)
(x)−

∑
N⊆cl≤

G
(b)

b∈N

u≤,+
N(G)(N)φN(x)

]

The last alternative has a nice intuition using a special case of unfaithful DAGs [11]

which we call dominating DAGs.

Definition (dominating DAG). Let G = (V,E) be a directed MAG with consistent total

order ≤. The dominating DAG G′ = dom(G,≤) is the DAG over the same vertices such that

paG′(b) = mb≤G (b) for all b ∈ V .

Accordingly, the last alternative can be expressed as an adjusted version of the recursive

factorization for the dominating DAG:

log f(x) =
∑
b∈V

[
log fb|padom(G,≤)(b)(x)−

∑
N⊆pa+

dom(G,≤)
(b)

b∈N

u≤,+
N(G)(N)φN(x)

]
.

Appendix B.4 show that while it may be the case that the factorization does not need

an adjustment term, our current proof strategy is insufficient.

4.3.5 Worked-out Examples

The first equality is the originally posed factorization, the second equality is the second

alternative, and the third equality is the third alternative. The last line of the first two

equalities makes up the adjustment term and the last line of the third equality includes

terms required to construct a Markov DAG factorization in addition to the adjustment

term.
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Figure 4.3 where e ≤ a ≤ d ≤ b ≤ c:

log f(x) = φabcde(x) + φbcde(x) + φabcd(x) + φabc(x) + φbcd(x) + φcde(x) + φab(x)

+ φbc(x) + φcd(x) + φde(x) + φa(x) + φb(x) + φc(x) + φd(x) + φe(x)

− φace(x)− φce(x)− φace(x)− φac(x)

= φbcd|ae(x) + φbc|a(x) + φcd|e(x) + φb|a(x) + φd|e(x) + φa(x) + φc(x) + φe(x)

− φc,e|a(x)− φc,a|e(x)

= log fc|abde(x) + log fb|a(x) + log fd|e(x) + log fa(x) + log fe(x)

− φc,e|ab(x)− φc,a|de(x)− φc,ae(x)

For directed MAGs with five vertices or fewer, no adjustment term is needed if the correct

total order is chosen. That means that we can simplify the factorization for small graphs;

this is worked out exhaustively in Appendix C. However, it also illuminates the fact that the

factorization gives different decompositions for different total orders. Theorem 4.3.1 implies

that if the result holds for any total order consistent with G, then the result must hold for

all total orders consistent with G.

Figure 3.11 (i) where a ≤ b ≤ c ≤ d:

log f(x) = φabcd(x) + φabd(x) + φacd(x) + φbcd(x) + φab(x) + φad(x)

+ φbc(x) + φbd(x) + φcd(x) + φa(x) + φb(x) + φc(x) + φd(x)

= φd|abc(x) + φc|b(x) + φb|a(x) + φa(x)

= log fd|abc(x) + log fc|b(x) + log fb|a(x) + log fa(x)

Figure 3.11 (ii) where a ≤ b ≤ c ≤ d:

log f(x) = φabc(x) + φabd(x) + φac(x) + φad(x) + φbc(x)

+ φbd(x) + φa(x) + φb(x) + φc(x) + φd(x)

= φad|b(x) + φbc|a(x) + φd|b(x) + φc|a(x) + φb(x) + φa(x)

= log fd|ab(x) + log fc|ab(x) + log fb(x) + log fa(x)
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Figure 4.1 (i) where a ≤ b ≤ c:

log f(x) = φab(x) + φbc(x) + φa(x) + φb(x) + φc(x)

= φc|b(x) + φb|a(x) + φa(x)

= log fc|b(x) + log fb|a(x) + log fa(x)

Figure 4.1 (ii) where a ≤ c ≤ b:

log f(x) = φabc(x) + φab(x) + φbc(x) + φa(x) + φb(x) + φc(x)

= φb|ac(x) + φc(x) + φa(x)

= log fb|ac(x) + log fc(x) + log fa(x)

Figure 4.1 (iii) where a ≤ d ≤ b ≤ c:

log f(x) = φabcd(x) + φabc(x) + φbcd(x) + φab(x) + φbc(x)

+ φcd(x) + φa(x) + φb(x) + φc(x) + φd(x)

= φbc|ad(x) + φc|d(x) + φb|a(x) + φd(x) + φa(x)

= log fc|abd(x) + log fb|a(x) + log fd(x) + log fa(x)

− φa,c|d(x)

Figure 4.1 (iv) where a ≤ c ≤ b ≤ d:

log f(x) = φabcd(x) + φabc(x) + φacd(x) + φbcd(x) + φab(x) + φbc(x)

+ φbd(x) + φcd(x) + φa(x) + φb(x) + φc(x) + φd(x)

= φcd|ab(x) + φbc|a(x) + φd|b(x) + φb|a(x) + φc(x) + φa(x)

= log fd|abc(x) + log fb|ac(x) + log fc(x) + log fa(x)

− φa,d|b(x)
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Figure 4.1 (vi) where a ≤ b ≤ c ≤ d:

log f(x) = φabcd(x) + φabc(x) + φabd(x) + φacd(x) + φbcd(x) + φab(x)

+ φac(x) + φbd(x) + φcd(x) + φa(x) + φb(x) + φc(x) + φd(x)

= φabcd(x) + φabc(x) + φabd(x) + φacd(x) + φbcd(x) + φab(x)

+ φac(x) + φbd(x) + φcd(x) + φa(x) + φb(x) + φc(x) + φd(x)

= log fd|abc(x) + log fc|ab(x) + log fb(x) + log fa(x)

− φc,d(x)

In the following chapter we discuss curved exponential families and apply the factoriza-

tion to these families in order to develop probabilistic score for learning ancestral relation-

ships.
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5.0 MAG Curved Exponential Families

In this chapter we discuss exponential families whose independence models are described

by MAGs—ancestral graph Markov models. Exponential families are attributed to Darmois,

Koopman, and Pitman, who independently published the following defining theoretical re-

sult. The Darmois-Koopman-Pitman theorem states that a probability measure belongs to

an exponential family if and only if the dimension of the sufficient statistic for data drawn

from that probability measure is independent of the sample size of the data [1, 6]. Another

defining theoretical result for exponential families was discovered in Bayesian statistics and

states that a probability measure belongs to an exponential family if and only if that proba-

bility measure has a conjugate prior [34]. For these reasons, exponential families have found

wide application in probabilistic graphical models [45].

Definition (exponential family). An exponential family is a family of probability measures

that admit densities with respect to σ-finite measure ν proportional to:

f(x | θ) ∝ exp
[
θ>t(x)− ψ(θ)

]
where θ ∈ Θ ≡ {θ ∈ Rk ;

∫
x∈X exp

[
θ>t(x)

]
dν(x) < ∞} is the natural parameter of dimen-

sion k, t(x) is the sufficient statistic, and ψ(θ) ≡
∫
x∈X exp

[
θ>t(x)

]
dν(x) is the cumulant

function.

When the natural parameter space is an open set, the exponential family is regular.

Furthermore, a minimal exponential family is an exponential family where the components

of the sufficient statistics t(x) are linearly independent. We are interested in minimal regular

exponential families whose natural parameter spaces are constrained to smooth manifolds—

curved exponential families.

Definition (curved exponential family). A curved exponential family is a minimal regular

exponential family whose natural parameter space is constrained to a manifold characterized

by a smooth bijective function called a diffeomorphism Φ : Θ→ Rk−m ×Rm for 1 ≤ m ≤ k.
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Accordingly, a curved exponential family is defined as follows:

FEF ≡ {Pθ ∈ FEF ; Φ(θ)> = [ η, C ]}

where C is constant. For more details about exponential families and curved exponential

families see [5, 43].

Let Pθ be an exponential family with natural parameter space Θ. One way to constrain

the natural parameter space of an exponential family is to restrict the members of the family

to probability measures whose induced independence models are subsets of a prespecified

independence model:

FEF(I) ≡ {Pθ ∈ FEF ; I = I(Pθ)}.

If the predefined independence model is induced by a MAG G, then the result is an family

of ancestral graph Markov models:

FEF(G) ≡ {Pθ ∈ FEF ; I(G) = I(Pθ)}.

We denote the parameter space constrained by an independence model I(O) as ΘO. However,

not all exponential families constrained by independence models induced by MAGs are curved

exponential families. In this chapter, we discuss curved exponential families constrained by

the independence models induced by MAGs. The families discussed include the following:

• CG Conditional Gaussian;

• LH Lee and Hastie;

• M Multinomial;

• G Gaussian.
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FEF

FCG

FLH FM

FG

Figure 5.1: The Hasse diagram for the poset over families of probability measures ordered

by inclusion.

Figure 5.1 depicts a Hasse diagram for a poset of families of probability measures ordered

by inclusion—the colored section indicates families that are known to be curved exponential

families when restricted by a MAG and the uncolored section indicates families that require

additional restrictions to be curved exponential families. In particular, diffeomorphisms

were given for Gaussian probability measures by Spirites et al. [82, 70] and for multinomial

probability measures by Evans and Richardson [30].

In the forthcoming sections, we discuss conditional Gaussian, Gaussian, and Lee and

Hastie probability measures respectively. Notably, conditional Gaussian and Lee and Hastie

probability measures constrained by independence models induced by MAGs have not been

shown to be curved exponential families. We provide an additional condition for MAGs

such that Lee and Hastie probability measures constrained by independence models induced

by MAGs satisfying the condition are curved exponential families. An analogous proof for

conditional Gaussian is outside the scope of this dissertation.
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5.1 Conditional Gaussian Probability Measures

The family of conditional Gaussian probability measures is the most general exponential

family of probability measures discussed in this dissertation. In fact, the other families we

discuss are subfamilies of conditional Gaussian probability measures. Conditional Gaussian

probability measures where studied in detail by Lauritzen [46] and model mixtures of con-

tinuous and discrete variables where the conditional distribution of the continuous variables

given the discrete variables is Gaussian. Following Lauritzen’s notation, we use Γ to denote

continuous variables and ∆ to denote discrete variables.

Let V be a non-empty set of variables partitioned by sets Γ,∆ ∈ V which denote the

continuous and discrete variables respectively. Let g(x∆) : x∆ → R, h(x∆) : x∆ → R|Γ|, and

K(x∆) : x∆ → S|Γ|++. A conditional Gaussian probability measure is a probability measure

whose density has the following form:

f(x | θ) ∝ exp

[
g(x∆) + h(x∆)>xΓ −

1

2
x>ΓK(x∆)xΓ

]
.

Furthermore, if K(x∆) is constant, then the probability measure is a homogeneous condi-

tional Gaussian probability measure. Let

g∗(x∆) = g(x∆) +
1

2
h(x∆)>K(x∆)h(x∆) ξΓ(x∆) = K(x∆)>h(x∆).

The density of a conditional Gaussian probability measure can be put in a form where in

the cases of only continuous or discrete variables, the probability measure is Gaussian or

multinomial respectively

f(x | θ) ∝
[
g∗(x∆)− 1

2
(xΓ − ξΓ(x∆))>K(x∆)(xΓ − ξΓ(x∆))

]
.

For more details about conditional Gaussian probability measures see [46].

Notably, our prior assumption about multiinformation hold for this family of probability

measures.

Proposition 5.1.1 (Corollary 4.1 [83]). Let V be a non-empty set of variables and X be a

non-empty collection of random variables indexed by V with probability measure Pθ dominated
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by σ-finite product measure ν. If Pθ is a conditional Gaussian probability measure over V ,

then Pθ has finite multiinformation.

However, current theoretical results cannot guarantee that families of conditional Gaus-

sian probability measures restricted by the independence models of MAGs are curved expo-

nential families. This is due to the fact that conditional Gaussian probability measure are

not closed under marginalization.

5.1.1 Conditional Gaussian Marginalization Condition

Unfortunately, while conditional Gaussian probability measures are closed under condi-

tioning, they are not closed under marginalization. Lauritzen accounted for this by defining

the concept of a weak marginal. Intuitively, a weak marginal is the conditional Gaussian

probability measure over a marginal set of variables that is as close as possible to the actual

marginal.

Definition (weak marginal). Let V be a non-empty set of variables containing a set A ⊆
V . Furthermore, let X be a collection of random variables indexed by V with conditional

Gaussian probability measure Pθ that admits density f(x | θ) with respect to dominating

σ-finite product measure ν. Lastly, denote the density of the weak marginal with respect to

A as f[A]. As mentioned above, the weak marginal is “close” to the actual marginal in the

following sense. If fA is a conditional Gaussian density, then f[A] = fA, otherwise f[A] is the

conditional Gaussian distribution that minimizes:

inf
θ∈Θ

∫
x∈X

log

[
fA(x | θ)
f[A](x | θ)

]
dPθ(x).

In the field of information theory, the above integral is the Kullback-Liebler divergence

or relative entropy of the weak marginal with respect to the actual marginal. To be clear,

fA(x | θ) is the actual marginal of a conditional Gaussian density but not necessarily a

conditional Gaussian density. On the other hand, f[A](x | θ) is the weak marginal of a

conditional Gaussian density and a conditional Gaussian density.

It turns out that conditional Gaussian probability measures are closed under marginal-

ization subject to the following condition.
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Definition (conditional Gaussian marginalization condition). Let V be a non-empty set of

variables partitioned by sets Γ,∆ ⊆ V which denote the continuous and discrete variables

respectively. Furthermore, let P be a conditional Gaussian probability measure that admits

density f with respect to σ-finite product measure ν. If A,L ⊆ V such that L = V \A, then

fA is conditional Gaussian if and only if:

A ∩ Γ ⊥⊥ L ∩ ∆ | A ∩ ∆ [P ].

That is, the continuous variables in the margin are independent of the marginalized discrete

variables given the discrete variables in the margin. Accordingly, this condition characterizes

when an actual marginal and a weak marginal are equivalent [31, 46].

We call this the conditional Gaussian MAG condition (CGMC) because conditional Gaus-

sian probability measures whose induced independence models are subsets of MAGs that

satisfy this condition are curved exponential families. This result is not proven here, but

should be straightforward to prove using the analogous proofs for multinomial and Gaussian

probability measures. Notably, there are MAGs that do not satisfy this condition that are

Markov equivalent to a MAG that does satisfy this condition

If P is a conditional Gaussian probability measure whose independence model is re-

stricted by I(G), then the following is a necessary and sufficient condition for P to satisfy

the conditional Gaussian marginalization condition with respect to the ancestral set of the

directed subgraph.

Definition (conditional Gaussian MAG condition). Let G = (V,E) be a MAG whose ver-

tices are partitioned by sets Γ,∆ ⊆ V which denote the continuous and discrete vertices

respectively. If there exists G′ ∈ [G] and G′′ = dir(G′) such that:

HT 6⊆ ∆ ⇒ H ⊆ Γ

for all H ∈ H(G′′) and T = tailG′′(H), then G satisfies the conditional Gaussian MAG

condition (CGMC).

Proposition 5.1.2. Let G = (V,E) be a MAG whose vertices are partitioned by sets Γ,∆ ⊆
V which denote the continuous and discrete vertices respectively. If dir(G) = G′ = (V ′, E ′),
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then following are equivalent :

i. HT 6⊆ ∆ ⇒ H ⊆ Γ for all H ∈ H(G′) and T = tailG′(H);

ii. A ∩ Γ ⊥⊥ L ∩ ∆ | A ∩ ∆ [G′ ] for all A ∈ A(G′) and L = V ′ \ A.

Proof. (i⇒ ii):

By the antecedent, the descendants of continuous variables must also be continuous and

the districts are either completely continuous or completely discrete.

Let A ∈ A(G) and L = V ′ \A. If A ∩ Γ = ∅, then A ∩ Γ ⊥⊥ L ∩ ∆ | A ∩ ∆ [G ] by the

triviality semi-graphoid axiom.

If A ∩ Γ 6= ∅, then let a ∈ A ∩ Γ and B = V ′\deG′(L ∩ Γ). By definition a ⊥⊥ B\clG′B(a) |
mbG′B

(a) [G′B ].

The district must be continuous by the antecedent: disG′B(a) ⊆ A ∩ Γ. Since A is

ancestral, all the districts parents must be in A as well. All the district’s descendants must

be continuous by the antecedent and accordingly, in B if not latent. If not latent, then in A

and because A is ancestral, their parents are in A. Therefore, mbG′B
(a) ⊆ A \ a.

By the antecedent and since the continuous descendants are continuous, L ∩ ∆ ⊆ B.

Since mbG′B
(a) ⊆ A \ a and a ∈ A, L ∩ ∆ ⊆ B \ clG′B(a).

By the weak union semi-graphoid axiom, a ⊥⊥ L ∩ ∆ | A \a [G′B ]. By Proposition 3.4.2,

I(G′B) ⊆ I(G′). By the intersection semi-graphoid axiom, A ∩ Γ ⊥⊥ L ∩ ∆ | A ∩ ∆ [G ].

(i⇐ ii):

Assume by way of contradiction that there exists H ∈ H(G′) such that HT ∩ Γ 6= ∅ and

H ∩ ∆ 6= ∅ where T = tailG′(H) and A ∩ Γ ⊥⊥ L ∩ ∆ | A ∩ ∆ [G′ ] for all A ∈ A(G′). Let

B = H ∩ ∆ and A = anG′(HT \B). a ∈ HT ∩ Γ and b ∈ B such that a and b are adjacent in

G′. Therefore, a 6⊥⊥ b | A ∩ ∆ [G ] by maximally. Accordingly, A ∩ Γ 6⊥⊥ L ∩ ∆ | A ∩ ∆ [G′ ].

This is a contradiction.

We conjecture that the CGMC defines exactly the set of MAGs that describe the indepen-

dence models of conditional Gaussian probability measures. That is, conditional Gaussian

probability measures cannot represent the same set of conditional independence statements
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as a directed MAG that does not satisfy the marginalization condition—it is parametrically

impossible.

Conjecture 5.1.1. Let G = (V,E) be a MAG whose variables are partitioned by sets Γ,∆ ⊆
V which denote the continuous and discrete variables respectively and let Pθ be a conditional

Gaussian probability measure. If G does not satisfy the CGMC and I(Pθ) ⊆ I(G), then there

exists a, b ∈ Γ and C ∈ V \ {a, b} where deG(a) ∩ deG(b) ∩ ∆ 6= ∅ such that:

i. a ⊥⊥ b | C [G ];

ii. a 6⊥⊥ b | C [Pθ ].

5.2 Gaussian Probability Measures

5.2.1 Gaussian Parameterization

In this section, we detail the parameterization of MAGs for Gaussian probability mea-

sures, discussed in detail by Richardson and Spirtes [70]. Let G = (V,E) be a MAG. Define

D = chG(V )∪ spG(V ) and U = V \D as the directed and undirected vertices of G respectively.

• Define Λ(G) ⊆ S|U |++ to be the set of matrices (Λ)ab
a,b∈V

= λab that satisfy:

(Λ)ab
a,b∈V

≡ λab ∈

 R a ∈ ne+
G (b);

{0} otherwise.

• Define Ω(G) ⊆ S|D|++ to be the set of matrices (Ω)ab
a,b∈V

= ωab that satisfy:

(Ω)ab
a,b∈V

≡ ωab ∈

 R a ∈ sp+
G (b);

{0} otherwise.
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• Define B(G) ⊆ R|V |×|V | to be the set of matrices (B)ab
a,b∈V

= βab that satisfy:

(B)ab
a,b∈V

≡ βab ∈

 R a ∈ chG(b);

{0} otherwise.

• Define µ(G) ≡ R|V | to be the set of real numbers.

The parameterization of G given by the diffeomorphism Φ−1
G : Λ×Ω×B×µ→ ΘG is defined

as follows:

Φ−1
G (Λ,Ω, B, µ) =

 µ>K

−1
2
vec(K)>


where

K = (I −B)>

Λ−1 0

0 Ω

−1

(I −B)

and I is the |V |× |V | identity matrix. Accordingly, the family of Gaussian MAG probability

measures is a curved exponential family characterized by the inverse diffeomorphism ΦG .

Proposition 5.2.1 (Theorem 8.23 [70]). For a MAG G = (V,E), FG(G) is a curved expo-

nential family, with dimension 2|V |+ |E|.

Furthermore, these curved exponential families correspond exactly to the independence

models induced by the corresponding directed MAG.

Proposition 5.2.2 (Theorem 8.14 [70]). Let G be a MAG. If FG(G) is the family of Gaussian

probability measures parameterized by G and FG(I(G)) is the family of Gaussian probability

measures constrained by I(G), then

FG(G) = FG(I(G)).

Conveniently, all the parameters used to define the diffeomorphism have meaningful

interpretations:

• K and µ are the precision matrix mean vector respectively;

• βab corresponds to the coefficient of b in the regression of a on its parents paG(a);

• ωab corresponds to the covariance between the residuals of a regressed on its parents
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paG(a) and the residuals of b regressed on its parents paG(b);

• λab corresponds to an edge potential in un(G).

In Section 5.3, we repurpose Richardson and Spirtes parameterization for the family of Lee

and Hastie probability measures.

5.3 Lee and Hastie Probability Measures

In this section, we consider a subfamily of conditional Gaussian probability measures first

characterized by Lee and Hastie [47]—Accordingly, we call these measures Lee and Hastie

probability measures. Raghu et al. provide a summary of methods developed to learn

Markov equivalence classes of MAGs [63] on data generated from Lee and Hastie probability

measures.

The family of Lee and Hastie probability measures is the special case of the family of

homogeneous conditional Gaussian probability measures. The covariance matrix is constant

for different values of the discrete variables and the discrete variables factorize as a pairwise

discrete Markov random field (MRF). When the independence model of a probability measure

is described by an undirected graph, that model is called a Markov random field; see [45] for

details on pairwise MRFs.

We give a diffeomorphism to show that Lee and Hastie probability measures whose

independence models are restricted by MAGs are curved exponential families. However, we

first describe a transformation to facilitate the discussion of the diffeomorphism and provide

an additional condition for Lee and Hastie probability measures to be curved exponential

families.

5.3.1 Binary Transformation

We show that the family of Lee and Hastie probability measures is an exponential family

using the following transformation. Let V be a non-empty set of variables partitioned by sets

Γ,∆ ⊆ V which denote the continuous and discrete variables respectively. Furthermore, let

136



X be a collection of random variables indexed by V with conditional Gaussian probability

measure Pθ that admits density f(x | θ) with respect to dominating σ-finite product measure

ν. Accordingly, X = XΓ × X∆ where XΓ ⊆ R|Γ| and X∆ ⊆ Z|∆|+ .

V

a b c

xa xb xc

7.9 1 3.8

0.2 3 4.8

3.9 4 0.5

2.2 2 7.3

7.9 2 0.2

3.9 1 9.7

0.3 4 9.8

z(G)−→

z(x)−→

W

(a, 1)

(b, 1)

(b, 2)

(b, 3)

(c, 1)

x(a,1) x(b,1) x(b,2) x(b,3) x(c,1)

7.9 1 0 0 3.8

0.2 0 0 1 4.8

3.9 0 0 0 0.5

2.2 0 1 0 7.3

7.9 0 1 0 0.2

3.9 1 0 0 9.7

0.3 0 0 0 9.8

Figure 5.2: An illustration of the binary transformation

Define the binary transformation of V with respect to A ⊆ V as follows:

zA(V ) ≡ WA = {a ∈ A× Z+ ; a2 ≤ |a1|}

where subscripts are used to index the first or second part of a transformed variable and |w1|
equals the number of non-redundant categories for discrete random variables and one for

continuous variables. Define the binary transformation of x with respect to A as a function
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zA : X→ R|WA∩Γ| × {0, 1}|WA∩∆|:

(zA(x))a
a∈WA

≡ za =

xa1 a1 ∈ Γ

δxa1 ,a2 a1 ∈ ∆

where δxa1 ,a2 is the Kronecker delta. Additionally, we define a corresponding transformation

for directed MAGs.

Algorithm 5: Binary Transformation z(G)

Input: MAG: G = (V,E)

Output: MAG: G′ = (W,F )

1 W = {a ∈ V × Z+ ; a2 ≤ |a1|} ;

2 F = ∅ ;

3 foreach a, b ∈ W (a 6= b) do

4 if a1 ← b1 in G then

5 Add a← b to F ;

6 else if a1 ↔ b1 in G then

7 Add a↔ b to F ;

8 else if a1 − b1 in G then

9 Add a− b to F ;

10 end

11 end

We show that the transformed graph is a directed MAG which has the same conditional

independence relationships.

Proposition 5.3.1. Let G = (V,E) be a MAG. If z(G) = (W,F ) is the transformed graph,

then z(G) is a MAG and

A ⊥⊥ B | C [G ] ⇔ WA ⊥⊥ WB | WC [ z(G) ]

Proof. By construction, z(G) is a ancestral graph. We consider the contrapositive for the

double implication.

If A 6⊥⊥ B | C [G ], then there is an m-connecting path π between a ∈ A and b ∈ B

relative to C in G. Construct π′ in z(G) by replacing each vertex v ∈ π with w ∈ z(v). By

construction, π′ is an m-connecting path between a′ ∈ WA and b′ ∈ WB relative to WC in
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z(G). Accordingly WA 6⊥⊥ WB | WC [ z(G) ].

If WA 6⊥⊥ WB | WC [G ], then there is an m-connecting path π′ between a ∈ WA and

b ∈ WB relative to WC in z(G). Construct π′ in G by replacing each vertex w ∈ π with

v = w1. If any w ∈ π appears more than once, then remove all vertices the between the first

and last occurrence of w and the last occurrence of w. By construction, π′ is an m-connecting

path between a′ ∈ A and b′ ∈ B relative to C in G. Accordingly A 6⊥⊥ B | C [G ].

Accordingly, z(G) is an ancestral graph and A ⊥⊥ B | C [G ] ⇔ WA ⊥⊥ WB | WC [ z(G) ];

maximality follows from the maximality of G.

5.3.2 Lee and Hastie MAG condition

Lee and Hastie probability measures require an additional condition for MAGs such that

Lee and Hastie probability measures constrained by independence models induced by MAGs

satisfying the condition are curved exponential families.

Definition (Lee and Hastie MAG condition). Let V be a non-empty set of variables par-

titioned by sets Γ,∆ ⊆ V which denote the continuous and discrete variables respectively.

Furthermore, let A,B,C ⊆ V be disjoint sets and D ⊆ ∆ \ AB. G satisfies the Lee and

Hastie MAG condition (LHMC) if:

i. G satisfies the CGMC;

ii. A ⊥⊥ B | C [G ] ⇒ A ⊥⊥ B | CD [G ] for all 〈A,B | C〉 ∈ T(V ) and D ⊆ ∆ \ AB.

If conditioning on a set of discrete variables induces dependence between two other sets

of variables, then marginalizing the same set of discrete variables will result in a mixture of

two or more marginal Lee and Hastie densities and induce the same dependency.

An intuition for this comes from the similarity between Lee and Hastie and Gaussian

probability measures. Figure 5.3 illustrates the case where two continuous variables cause a

discrete variable that otherwise have no relation. In this case we would expect to see that

the continuous variables are marginally independent, however, this is not the case. The light

gray points give the marginal of the Gaussian probability measure with the same parameter-

ization. Accordingly, the Lee and Hastie probability measure appears similar to a Gaussian
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Figure 5.3: Lee and Hastie probability measures and violations of the marginalization con-

dition. The contours give three standard deviations and the solid black line gives the first

principal component.

probability measure subject to a selection effect. This selection effect induces a marginal

dependence between the two continuous parents, which would otherwise be marginally in-

dependent.

Accordingly, the LHMC ensures that these induced dependencies do not occur. Graph-

ically, this implies that the discrete variables are contained within the undirected subgraph

of MAGs.

5.3.3 Lee and Hastie Parameterization

Let G = (V,E) be a directed MAG satisfying the LHMC whose variables are partitioned

by sets Γ,∆ ⊆ V which denote the continuous and discrete variables respectively, and let

z(G) = (W,F ) be the transformed directed MAG. Define D = chz(G)(W ) ∪ spz(G)(W ) and

U = W \ D as the directed and undirected vertices of z(G) respectively. Furthermore,

X be a collection of random variables indexed by V . We redefine Richardson and Spirtes

parameterization of G for Lee and Hastie probability measures as follows:
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• Define Λ(G) ⊆ S|U |++ to be the set of matrices (Λ)ab
a,b∈U

≡ λab that satisfy:

(Λ)ab
a,b∈U

≡ λab ∈


R a = b and a1 ∈ Γ or a1 ∈ neG(b1);

{1} a = b and a1 ∈ ∆;

{0} otherwise.

• Define Ω(G) ⊆ S|D|++ to be the set of matrices (Ω)ab
a,b∈D

≡ ωab that satisfy:

(Ω)ab
a,b∈D

≡ ωab ∈

 R a1 ∈ sp+
G (b1);

{0} otherwise.

• Define B(G) ⊆ R|W |×|W | to be the set of matrices (B)ab
a,b∈W

≡ βab that satisfy:

(B)ab
a,b∈W

≡ βab ∈

 R a1 ∈ chG(b1);

{0} otherwise.

• Define µ(G) ≡ R|W | to be the set of real numbers.

The parameterization of G given by the diffeomorphism Φ−1
G : Λ × Ω × B × µ → ΘG is

defined as follows:

Φ−1
G (Λ,Ω, B, µ) ≡

 µ>K

−1
2
vec(K)>


where

K ≡ (I −B)>

Λ−1 0

0 Ω

−1

(I −B)

and I is the |W | × |W | identity matrix. A parameterization is maximal if for all a, b ∈ V :

a1 ∈ ne+
G (b1) ⇒ λab 6= 0;

a1 ∈ sp+
G (b1) ⇒ ωab 6= 0;

a1 ∈ chG(b1) ⇒ βab 6= 0.

We show the family of Lee and Hastie MAG probability measures is a curved exponential
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family characterized by the inverse diffeomorphism ΦG . The parameterization given by Lee

and Hastie differs from the parameterization given here and we have not verified that the two

are equivalent. Notably, the parameterization given by Lee and Hastie uses more parameters,

so it is possible that they describe a more general family of probability measures. However,

the parameterization given by Lee and Hastie is not minimal, so it is also possible that our

parameterization is a minimal characterization of the same family of probability measures.

5.3.4 Lee and Hastie as Curved Exponential Families

Let z ≡ z(x) and zA ≡ zA(x). Lee and Hastie probability measures form an exponential

family as follows:

θ> ≡
[
µ>K −1

2
vec(K)>

]
t(x) ≡

 z

vec(zz>)


where vec(A) is the vectorization of matrix A into a column vector. In what follows, we show

that Lee and Hastie probability measures are conditional Gaussian probability measures.

We abuse notation and use the following shorthand µA = µWA
and KAB = KWAWB

for all

A,B ∈ V .

θ>t(x) = µ>Kz − 1

2
vec(K)>vec(zz>)

= µ>Kz − 1

2
z>K z

= z>ΓKΓΓµΓ + z>ΓKΓ∆µ∆ + µ>ΓKΓ∆z∆ + µ>∆K∆∆z∆ −
1

2
z>ΓKΓΓzΓ − z>ΓKΓ∆z∆ −

1

2
z>∆K∆∆z∆

= µ>ΓKΓ∆z∆ −
1

2
z>∆K∆∆z∆ + µ>∆K∆∆z∆ + (KΓΓµΓ +KΓ∆(µ∆ − z∆))>zΓ −

1

2
z>ΓKΓΓzΓ

= g(z∆) + h(z∆)>zΓ −
1

2
z>ΓKΓΓzΓ

Accordingly,

g(z∆) = µ>ΓKΓ∆z∆ −
1

2
z>∆K∆∆z∆ + µ>∆K∆∆z∆ h(z∆) = KΓΓµΓ +KΓ∆(µ∆ − z∆).
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Therefore

g∗(z∆) = g(z∆) +
1

2
h(z∆)>K−1

ΓΓh(z∆)

= µ>ΓKΓ∆z∆ −
1

2
z>∆K∆∆z∆ + µ>∆K∆∆z∆

+
1

2
(KΓΓµΓ +KΓ∆(µ∆ − z∆))>K−1

ΓΓ (KΓΓµΓ +KΓ∆(µ∆ − z∆))

= −1

2
z>∆K∆∆z∆ + µ>∆K∆∆z∆ +

1

2
µ>ΓKΓΓµΓ + µ>ΓKΓ∆µ∆

+
1

2
µ>∆K∆ΓK

−1
ΓΓKΓ∆µ∆ − µ>∆K∆ΓK

−1
ΓΓKΓ∆z∆ +

1

2
z>∆K∆ΓK

−1
ΓΓKΓ∆z∆

= −1

2
z>∆(K∆∆ −K∆ΓK

−1
ΓΓKΓ∆)z∆ + µ>∆(K∆∆ −K∆ΓK

−1
ΓΓKΓ∆)z∆

+
1

2
µ>ΓKΓΓµΓ + µ>ΓKΓ∆µ∆ +

1

2
µ>∆K∆∆µ∆ −

1

2
µ>∆(K∆∆ −K∆ΓK

−1
ΓΓKΓ∆)µ∆

= −1

2
z>∆Σ−1

∆∆z∆ + µ>∆Σ−1
∆∆z∆ +

1

2
(µ>K µ− µ>∆Σ−1

∆∆µ∆)

where Σ is the covariance matrix and the transformation Σ−1
AA = KAA − KABK

−1
BBKBA is

given in Bishop [10] and

ξΓ(z∆) = K−1
ΓΓh(z∆)

= µΓ +K−1
ΓΓKΓ∆(µ∆ − z∆).

Accordingly, a Lee and Hastie density is proportional to the following:

f(x | θ) ∝ exp

g∗(z∆)︸ ︷︷ ︸
MRF

−1

2
(zΓ − ξΓ(z∆))>KΓΓ(zΓ − ξΓ(z∆))︸ ︷︷ ︸

mean shifted Gaussian


Notably, the pairwise edge potentials and the pairwise MRF should be associated with the

undirected augmented graph rather than the original directed MAG.

Proposition 5.3.2. Let G = (V,E) be a directed MAG satisfying the LHMC. If Φ−1
G :

Λ×Ω×B× µ→ ΘG is the diffeomorphism corresponding to the parameterization of G, then

Φ−1
G is a bijection.

Proof. Φ−1
G is surjective by construction, therefore we show that Φ−1

G is injective.

If D = chz(G)(W ) ∪ spz(G)(W ) and U = W \D are the directed and undirected vertices
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of z(G) respectively, then:

f(x | θ) ∝ exp

[
− 1

2
z>UΣ−1

UUzU + µ>UΣ−1
UUzU +

1

2
(µ>K µ− µ>UΣ−1

UUµU)

− 1

2
(zD − ξD(zU))>KDD(zD − ξD(zU))

]
.

Notably, D ⊆ z(Γ) and Σ−1
UU = Λ and the directed part of a Lee and Hastie probability

measure is Gaussian. Accordingly, we check the undirected non-constant part of Lee and

Hastie probability measures. If A = U ∩ ∆ and B = U ∩ Γ, then:

−1

2
z>UΣ−1

UUzU + µ>UΣ−1
UUzU = −1

2
z>UΛzU + µ>UΛzU

= −1

2
z>AΛAAzA − z>AΛABzB −

1

2
z>BΛBBzB

+ µ>AΛAAzA + µ>AΛABzB + µ>BΛBAzA + µ>BΛBBzB

=
∑
a∈A

∑
a′∈A

−1

2
λaa′za′za −

∑
a∈A

∑
b∈B

λabzazb +
∑
b∈B

∑
b′∈B

−1

2
λbb′zbzb′

+
∑
a∈A

[ ∑
a′∈A\za1

λaa′µa′ +
∑
b∈B

λabµb

]
za +

∑
b∈B

[∑
a∈A

λabµa +
∑
b∈B

λbb′µb′

]
zb

=
∑
a∈A

∑
a′∈A\za1

−1

2
λaa′za′za −

∑
a∈A

∑
b∈B

λabzazb +
∑
b∈B

∑
b′∈B

−1

2
λbb′zbzb′

+
∑
a∈A

[ ∑
a′∈A\za1

λaa′µa′ +
∑
b∈B

λabµb + µa −
1

2

]
za +

∑
b∈B

[∑
a∈A

λabµa +
∑
b∈B

λbb′µb′

]
zb.

The first three terms are edge potentials, where the lambda terms are non-zero if and

only if the two corresponding vertices are adjacent. Accordingly, every unique value of the

lambda terms results in a different probability measure. The last two terms are vertex

potentials. Therefore, for fixed lambda terms, every unique value of the mu terms results in

a different probability measure. It follows that the diffeomorphism is a bijection.

The Lee and Hastie family of probability measures uses the same parameterization as the

Gaussian family of probability measures after transforming the variables. Thus, by applying

the transformation to both the variables and the graph, we have that Lee and Hastie directed

MAG probability measures are curved exponential families.

Corollary 5.3.1. If G = (V,E) is a directed MAG and z(G) = (W,F ) be the transformed

144



directed MAG, then FLH(G) is a curved exponential family with dimension |W |+ |Γ|+ |F |.

Proof. The proof follows from Proposition 5.2.1 because Lee and Hastie exponential Families

and Gaussian exponential families use the same diffeomorphism.

Proposition 5.3.3 (Proposition 3.1 [46]). Let X be a collection of random variables and Pθ

be a probability measure on X that admits density f(x) with respect to dominating σ-finite

product measure ν. If f(x) > 0 is positive for all x ∈ X, then I(Pθ) is a graphoid.

Lemma 5.3.1. Let X be a collection of random variables and Pθ be a probability measure

on X that admits density f(x) with respect to dominating σ-finite product measure ν. If Pθ

is a Lee and Hastie probability measure, then I(Pθ) is a graphoid.

Proof. This directly follows from Proposition 5.3.3 and the well-known fact that the density

admitted by a Gaussian probability measure is positive.

Proposition 5.3.4 (Lemma 8.17 [70]). If K is a precision matrix parameterized by a MAG

G = (V,E), and a, b ∈ V are not adjacent in aug(G) then (K)ab = 0.

Lemma 5.3.2. Let G = (V,E) be a directed MAG and Pθ be a Lee and Hastie probability

measure over V . If θ is maximal parameterization with respect to G, then for all disjoint

A,B,C ⊆ V where anG(ABC) = V

A ⊥⊥ B | C [G ] ⇔ A ⊥⊥ B | C [Pθ ].

Proof. Let G = (V,E) be a directed MAG and X be a collection of random variables indexed

by V with probability measure Pθ that admits density f(x | θ) with respect to dominating σ-

finite product measure ν. We note that G and z(G) have the same conditional independence

relationships by Proposition 5.3.1 and apply the Proposition 5.3.4. Let A,B,C ⊆ V be three

sets that partition V . Let D = AB and define r = z−µ as the residual of z given the mean.

We use the shorthand KWAWA
= KAA.

log f(x | θ) ∝ −1

2
r>CKCCrC − r>CKCDrD −

1

2
r>DKDDrD
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r>CKCCrC =
∑
c∈C

∑
c′∈C

Kcc′ rc rc′

r>CKCDrD =
∑
c∈C

∑
d∈D

Kcd rc rd

=
∑
a∈A

∑
c∈C

Kac ra rc +
∑
b∈B

∑
c∈C

Kbc rb rc

r>DKDDrD =
∑
d∈D

∑
d′∈D

Kdd′ rd rd′

=
∑
a∈A

∑
a′∈A

Kaa′ ra ra′ +
∑
a∈A

∑
b∈B

Kab ra rb +
∑
b∈B

∑
b′∈B

Kbb′ rb rb′

log f(x | θ) ∝− 1

2

∑
a∈A

∑
a′∈A

Kaa′ ra ra′ −
∑
a∈A

∑
c∈C

Kac ra rc

− 1

2

∑
b∈B

∑
b′∈B

Kbb′ rb rb′ −
∑
b∈B

∑
c∈C

Kbc rb rc

− 1

2

∑
c∈C

∑
c′∈C

Kcc′ rc rc′ −
1

2

∑
a∈A

∑
b∈B

Kab ra rb

Let a ∈ A and b ∈ B be variables. From the equation above, we see that f(x | θ) can

be split into a function of {a} ∪ C and a function of {b} ∪ C if and only if Ka,b = 0. This

occurs if and only if a and b are not adjacent in aug(z(G)). Furthermore, f(x | θ) can be

split into a function of {a} ∪ C and a function of {b} ∪ C if and only if a ⊥⊥ b | C [Pθ ].

Accordingly, a ⊥⊥ b | C [Pθ ] if and only if Ka,b = 0.

Theorem 5.3.1. Let G be a directed MAG satisfying the LHMC. If FLH(G) is the family of

Lee and Hastie probability measures parameterized by G and FLH(I(G) is the family of Lee

and Hastie probability measures constrained by I(G), then

FLH(G) = FLH(I(G)).

Proof. This follows from the LHMC, Theorem 3.3.4, and Lemmas 5.3.1 and 5.3.2.

146



6.0 Scoring Criterion and Applications

In this chapter we discuss an application of the factorization derived in the Section 4.3.

In particular, we formulate a consistent probabilistic score with a closed-form solution for

exponential families whose independence models are described by directed MAGs—directed

ancestral graph Markov models. The families discussed in this dissertation are subfamilies of

conditional Gaussian probability measures and include the families of Gaussian probability

measures and multinomial probability measures.

The consistent probabilistic score developed in this chapter is formulated by employing

an approximation of the maximum log-likelihood with respect to a directed MAG in the well

known Bayesian information criterion (BIC). Notably, the BIC using the exact maximum

log-likelihood with respect to a directed MAG also provides a consistent probabilistic score,

however, the resulting score does not always have a closed-form solution for the families of

probability measures considered in this dissertation. Furthermore, calculation of the exact

maximum log-likelihood with respect to a MAG requires the development of family specific

solvers—solvers have been developed for Gaussian and multinomial directed ancestral graph

Markov models [20, 30]. In contrast, the approximate maximum log-likelihood calculation

developed in this chapter only requires knowledge of the unconstrained probability density.

We compare the ability of the exact and approximate probabilistic scores to recover the

correct Markov equivalence class for Gaussian directed ancestral graph Markov models and

report run times.

Historically, methods that optimize a score for directed MAG Markov equivalence class

recovery have not seen much development due to theoretical complications. Instead, directed

MAG Markov equivalence class recovery has been done by the fast causal inference (FCI)

algorithm and its variants. These methods rely on a series of conditional independence

tests in order to learn a Markov equivalence class; this approach readily handles latent

variables. Accordingly, there is an abundance of FCI variants in the literature [57, 63, 80, 93].

However, in these approaches, errors made by conditional independence tests can propagate,

compound, and result in poor overall performance. Furthermore, these methods give no
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indication of how much better the best Markov equivalence class is compared to the next

best Markov equivalence class [78]. These issues are non-existent in methods that optimize

a score, which motivates their development.

Indeed, in the past five years there has been an influx of methods capable of learning

directed MAGs by optimizing a score. These methods include: a method that searches over

causal orders [8], a continuous optimization method [9], an integer programming method

[12], a method that scores conditional independence statements [41, 42], steepest ascent hill

climbing methods [56, 88], and a method that uses an independence-based subroutine to

determine local structures [89]. The majority of these methods use the exact score described

above and are therefore candidates for the approximate score. By switching out the exact

score for the approximate score, these methods gain flexibility and computational efficiency.

Additionally, Appendix B.5 shows the similarity between one of these methods and our

score. We compare the probabilistic scores against the FCI algorithm and two of its variants

to compare the performance of a score based approach to a constraint based approach.

Ultimately, we design a local causal discovery algorithm called the ancestral probability

(AP) procedure, which estimates the posterior probabilities of ancestral relationships using

the probabilistic score developed in this chapter. The idea of local causal discovery, originally

formulated by Cooper as a constraint based approach and later extended to score based

methods by Mani [15, 52], focus on local subsets of variables in order to efficiently target

specific causal relationships. We evaluate the AP procedure on synthetically generated data

and a real data set measuring airborne pollutants, cardiovascular health, and respiratory

health.

6.1 Asymptotic Behavior of Directed MAG Curved Exponential Families

In this section, we formulate a consistent probabilistic score with a closed-form for curved

exponential families whose independence models are described by directed MAGs. We in-

vestigate the theoretical and empirical asymptotic behavior of curved exponential families

subject to the parametric constraints of independence models induced by directed MAG. We
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compare the ability of the probabilistic score to recover the correct Markov equivalence class

against the well-known FCI algorithm and two of it variants.

6.1.1 Theoretical Evaluation

Let G = (V,E) be a directed MAG. Furthermore, let X be a collection of random

variables indexed by V with probability measure Pθ that admits density f(x | θ) with

respect to dominating σ-finite product measure ν. Throughout this section, let Pθ belong to

a curved exponential family with parameter space Θ and x1, . . . , xn
iid∼ f(x | θ). It will be

useful to review preexisting theoretical results. Define log-likelihood as follows:

`(θ̂ | x1, . . . , xn) ≡
n∑
i=1

log f(xi | θ̂)

where θ̂ ∈ Θ. Berks proved strong consistency for the maximum likelihood parameter

estimates of exponential families under mild regularity conditions [7]. If θ ∈ ΘG , then:

θ̂mle
G,n

a.s.−→ θ.

Therefore, by the continuous mapping theorem:

`(θ̂mle
G,n | x1, . . . xn)

a.s.−→ `(θ | x1, . . . xn).

Haughton provides a computationally efficient approximation of marginal likelihood for

curved exponential families called the Bayesian information criterion (BIC) using the maxi-

mum likelihood and a parameter penalty [36, 75]:

BIC(G, x1, . . . , xn) ≡ `(θ̂mle
G,n | x1, . . . , xn)− |ΘG |

2
log(n)

and approximates the log marginal likelihood up to a constant under mild regularity condi-

tions:

log Pr(x1, . . . , xn | G) = log

∫
θ∈ΘG

n∏
i=1

f(xi | θ) dν(θ)

= BIC(G, x1, . . . , xn) +Op(1).
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Notably, Pθ satisfies the global Markov condition with respect to a directed MAG G if and

only if θ ∈ ΘG . The BIC is a consistent score for model selection.

Proposition 6.1.1 (Proposition 1.2 [36]). Let G = (V,E) and G′ = (V,E ′) be directed

MAGs. Furthermore, let X be a collection of random variables indexed by V with probability

measure Pθ that admits density f(x | θ) with respect to dominating σ-finite product measure

ν. If x1, . . . , xn
iid∼ f(x | θ) and either θ ∈ (ΘG′ \ΘG) or (ΘG ∩ ΘG′) with |ΘG′| < |ΘG |, then:

lim
n→∞

Pr(BIC(G, x1, . . . , xn) < BIC(G′, x1, . . . , xn)) = 1

where ΘG′ ⊆ ΘG if I(G) ⊆ I(G′).

The BIC has a closed-form solution for the curved exponential families when the pa-

rameter space is constrained by an independence model induced by a DAG. Unfortunately,

this is not always the case when the parameter space is constrained by an independence

model induced by a directed MAG. We develop an approximation for the BIC that has a

closed-form solution in both cases.

Let G′ = dom(G,≤) and define an approximate log-likelihood using the factorization with

respect to G and ≤:

ˆ̀≤
G (θ̂ | x1, . . . , xn) ≡

∑
b∈V

[ n∑
i=1

log fb|paG′ (b)
(xi | θ̂) −

∑
N⊆pa+

G′ (b)

b∈N

u≤,+
N(G)(N)

n∑
i=1

φN(xi | θ̂)
]

Accordingly, we define the following score which approximates the BIC:

ˆBIC(G,≤, x1, . . . , xn) ≡ ˆ̀≤
G (θ̂mle

G′,n | x1, . . . , xn)− |ΘG |
2

log(n).

which simplifies to BIC if G is a DAG and has nice asymptotic properties.

Proposition 6.1.2. Let G = (V,E) and G′ = (V,E ′) be directed MAGs and ≤ and ≤′ be total

orders consistent with G and G′ respectively. Furthermore, let X be a collection of random

variables indexed by V with probability measure Pθ that admits density f(x | θ) with respect

to dominating σ-finite product measure ν.
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If x1, . . . , xn
iid∼ f(x | θ) and θ ∈ ΘG′ \ΘG, then:

lim
n→∞

1

n

∣∣∣ ˆBIC(G′,≤′, x1, . . . , xn)− ˆBIC(G,≤, x1, . . . , xn)
∣∣∣ = (µPu

≤,+
N(G))

>mPθ .

If x1, . . . , xn
iid∼ f(x | θ) and θ ∈ ΘG ∩ ΘG′ with |ΘG| < |ΘG′ |, then:

lim
n→∞

1

log n

∣∣∣ ˆBIC(G′,≤′, x1, . . . , xn)− ˆBIC(G,≤, x1, . . . , xn)
∣∣∣ =
|ΘG| − |ΘG′ |

2
.

Proof. Let G′′ = dom(G,≤). If x1, . . . , xn
iid∼ f(x | θ) and θ ∈ ΘG′ \ΘG , then:

lim
n→∞

1

n

∣∣∣ ˆBIC(G′,≤′ x1, . . . , xn)− ˆBIC(G,≤, x1, . . . , xn)
∣∣∣

= lim
n→∞

1

n
`(θ̂mle

G′,n | x1, . . . , xn)− lim
n→∞

1

n
ˆ̀≤
G (θ̂mle

G′′,n | x1, . . . , xn)− lim
n→∞

|ΘG′ | − |ΘG |
2n

log(n)

= (µPδP(V ))
>mPθ − (µPδM(G) − µPu

≤,−
N(G))

>mPθ

= (µPu
≤,+
N(G))

>mPθ .

If x1, . . . , xn
iid∼ f(x | θ) and θ ∈ ΘG ∩ ΘG′ with |ΘG| < |ΘG′|, then:

lim
n→∞

1

log n

∣∣∣ ˆBIC(G′,≤′, x1, . . . , xn)− ˆBIC(G,≤, x1, . . . , xn)
∣∣∣

= lim
n→∞

1

log n

[
`(θ̂mle

G′,n | x1, . . . , xn)− ˆ̀≤
G (θ̂mle

G′′,n | x1, . . . , xn)
]
− |ΘG′| − |ΘG |

2

=
|ΘG | − |Θ|2||

2
.

The approximate BIC is a consistent score for model selection.

Corollary 6.1.1. Let G = (V,E) and G′ = (V,E ′) be directed MAGs and ≤ and ≤′ be total

orders consistent with G and G′ respectively. Furthermore, let X be a collection of random

variables indexed by V with probability measure Pθ that admits density f(x | θ) with respect

to dominating σ-finite product measure ν. If x1, . . . , xn
iid∼ f(x | θ) and either θ ∈ (ΘG′ \ΘG)

or (ΘG ∩ ΘG′) with |ΘG′ | < |ΘG|, then:

lim
n→∞

Pr( ˆBIC(G,≤, x1, . . . , xn) < ˆBIC(G′,≤′, x1, . . . , xn)) = 1

where ΘG′ ⊆ ΘG if I(G) ⊆ I(G′).
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Proof. The proof directly follows from Proposition 6.1.2.

In what follows, we reason about the asymptotic properties of the approximate BIC and

its relation to the marginal likelihood. We first note the following result.

Proposition 6.1.3 (Theorem 1 [18]). Let G = (V,E) be a directed MAG. Furthermore, let

X be a collection of random variables indexed by V with probability measure Pθ that admits

density f(x | θ) with respect to dominating σ-finite product measure ν. If x1, . . . , xn
iid∼ f(x |

θ), then:

lim
n→∞

log

∫
θ̂∈ΘG

∏n
i=1 f(xi | θ̂) dν(θ)∏n
i=1 f(xi | θ) = − lim

n→∞
n inf
θ̂∈ΘG

∫
x∈X

log

[
f(x | θ)
f(x | θ̂)

]
dPθ(x) +Op(n

1
2 )

where inf θ̂∈ΘG

∫
x∈X log

[
f(x|θ)
f(x|θ̂)

]
dPθ(x) = 0 if and only if θ ∈ ΘG.

Theorem 6.1.1. Let G = (V,E) and G′ = (V,E ′) be directed MAGs and ≤ and ≤′ be total

orders consistent with G and G′ respectively. Furthermore, let X be a collection of random

variables indexed by V with probability measure Pθ that admits density f(x | θ) with respect

to dominating σ-finite product measure ν.

If x1, . . . , xn
iid∼ f(x | θ) and θ ∈ ΘG, then:

ˆBIC(G,≤, x1, . . . , xn) = BIC(G, x1, . . . , xn) almost surely.

If x1, . . . , xn
iid∼ f(x | θ) and θ ∈ ΘG′ \ΘG, then:

lim
n→∞

∣∣∣Pr(x1, . . . , xn | G)− exp ˆBIC(G,≤ x1, . . . , xn)
∣∣∣

exp ˆBIC(G′,≤′, x1, . . . , xn)
= Op(exp−n)

Proof. If θ ∈ ΘG , then ˆBIC(G,≤, x1, . . . , xn) = BIC(G, x1, . . . , xn) almost surely by the

continuous mapping theorem and strong consistency of the maximum likelihood estimate. If

θ ∈ ΘG′ \ΘG , then:

lim
n→∞

log

∣∣∣Pr(x1, . . . , xn | G)− exp ˆBIC(G,≤, x1, . . . , xn)
∣∣∣

exp ˆBIC(G′,≤′, x1, . . . , xn)

≤ lim
n→∞

log
max

[
Pr(x1, . . . , xn | G), exp ˆBIC(G,≤, x1, . . . , xn)

]
exp ˆBIC(G′,≤′, x1, . . . , xn)

.
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If exp ˆBIC(G,≤, x1, . . . , xn) > Pr(x1, . . . , xn | G), then the results directly follows from

Proposition 6.1.2. If Pr(x1, . . . , xn | G) > exp ˆBIC(G,≤, x1, . . . , xn), then the result directly

follows from Proposition 6.1.3.

Accordingly, the BIC and approximate BIC are equal almost surely when the probability

measure is Markov with respect to the directed MAG. Furthermore, the difference between

the log marginal likelihood and approximate BIC tends towards zero exponentially when

the probability measure is not Markov with respect to the directed MAG relative to the

approximate BIC for a directed MAG that is Markov with respect to the probability measure.

6.1.2 Empirical Evaluation

We supplement the theoretical evaluation with an empirical evaluation on synthetic data

simulated from Gaussian densities as follows:

Algorithm 6: Simulate(G, n)

Input: directed MAG: G, number of instances: n

Output: data: x1, . . . xn

1 repeat

2 Ω = (ωab) where ωab ∼
{Uniform [−0.7,−0.3] ∪ [0.3, 0.7] if a↔ b in G

Uniform [1.0, 3.0] if i = j in G

0 otherwise

;

3 until Ω is positive-definite;

4 B = (βab) where βab ∼
{Uniform [−0.7,−0.3] ∪ [0.3, 0.7] if a← b in G

0 otherwise
;

5 Σ = (I −B)−1 Ω (I −B)−> ;

6 x1, . . . xn ∼ Gaussian(0,Σ, n) ;

We compare our log-likelihood approximation against the maximum log-likelihood. The

maximum log-likelihood is calculated using an R implementation of the iterative condi-

tional fitting (ICF) procedure: https://CRAN.R-project.org/package=ggm [20]. Notably,

ICF optimizes the likelihood for curved exponential families constrained MAG independence

models, however, this space is not guaranteed to be convex. Accordingly, ICF does not

necessarily converge to the MLE—in practice rarely converges to something other than then
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MLE [21]. Furthermore, we are using a general implementation of ICF and not one that

was designed to be efficient in this scenario. For comparison purposes, the approximate

and exact negative log-likelihoods are shifted so that their smallest values are equal to 1.

Notably, the smallest log-likelihoods always correspond to the saturated model, which is the

same for both the approximate and exact methods. Accordingly, both methods are shifted

by the same amount. The shifted negative log-likelihoods are compared on a log scale and

each equivalence class is marked according to whether or not it is Markov with respect to

the probability measure. Additional comparisons are given in Appendix B.6.

We use ˆBIC to exhaustively rank all directed MAG Markov equivalence classes. His-

tograms show the distribution of the MEC of the data generating graph in the ranking.

That is, each bin represents the number of times the MEC of the true graph ranked ac-

cording to the number associated with the bin. Notably, there are 248 possible positions in

the ranking for the four-variable case and 24,259 possible positions in the ranking for the

five-variable case. Accordingly, we enumerate all possible positions in the ranking on a log

scale. Histograms for the exact BIC are given in Appendix B.7.

Finally, three causal discovery algorithms, FCI [80, 93], FCI max [63], and GFCI [57],

were applied to the same data with several standard parameter settings for comparison. The

reported number for each algorithm is the proportion of times that the Markov equivalence

class of the true graph was returned; the numbers may be directly compared to the first bin

of the corresponding histogram.

• FCI is a two stage search algorithm that attempts to recover the maximally informative

PAG for a directed MAG from data using tests of conditional independence. The first

stage starts with a completely connected graph and uses tests to determine which adja-

cencies to remove from the PAG. The second stage uses tests to determine invariant edge

marks among the graphs in the equivalence class and orients them in the PAG [80, 93].

See Algorithm 11 for details. We use Fisher’s Z test with alpha levels of 0.01 and 0.001

for testing conditional independence.

• FCImax uses a maximum probability-based search technique in the edge orientation stage

of FCI to determine which conditioning sets of variables are most likely to provide cor-

rect conditional independence statements. This approach has been shown to improve
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performance, but requires significantly more tests [63]. We use Fisher’s Z test with alpha

levels of 0.01 and 0.001 for testing conditional independence.

• GFCI optimizes a probabilistic score over DAGs using a greedy hill climbing approach

and then runs FCI using the maximal DAG as a starting point rather than a completely

connected graph [57]. We use BIC as a probabilistic score and Fisher’s Z test with alpha

levels of 0.01 and 0.001 for testing conditional independence. GFCI1 uses standard BIC

and GFCI2 using a variant of BIC where the parameter penalty has been doubled.

For all experiments, we simulate data sets of 500, 5,000 and 50,000 instances. We run

experiments for 7 prespecified graphs, 4 of which have 4 vertices and 3 of which have 5

vertices, and random graphs. The random graph cases include graphs with 4 vertices and

between 0 and 3 edges, graphs with 4 vertices and between 4 and 6 edge, graphs with 5

vertices and between 0 and 5 edges, and graphs with 5 vertices and between 6 and 10 edges.

For each case, we run 1,000 repetitions. Each repetition has a unique parameterization

and in the random graph cases, have unique graphs as well—barring random repeats. All

experiments were run on a system with the following hardware:

• Memory: 7.7 GiB

• Processor: Intel® CoreTM i5-5200U CPU @ 2.20GHz × 4

We perform paired z-tests to give an indication for whether the differences in performance

are real. Statistical significance at an alpha level of 0.05 is reported as either an overline if

ˆBIC is better or an underline if the alternative method is better. Note that there are no

reported cases where ˆBIC and BIC are statistically significant at an alpha level of 0.05. In

general, we find that the approximation for BIC performs well with low sample sizes and

performs favorably compared to the other algorithms.
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BIC ˆBIC FCI FCImax GFCI1 GFCI2

α-level - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.472 0.464 0.087 0.02 0.265 0.202 0.617 0.617 0.471 0.471

n = 5,000 0.866 0.864 0.669 0.584 0.784 0.773 0.927 0.929 0.926 0.926

n = 50,000 0.962 0.961 0.866 0.864 0.921 0.935 0.981 0.981 0.979 0.979

Figure 6.1: An evaluation of the approximate log-likelihood and BIC for the specified directed

MAG with n = {500, 5,000, 50,000}. The approximate and exact shifted negative log-

likelihoods are compared for a random parameterization. The approximate BIC ranking

of the data generating MEC amongst all MECs is shown using histograms. The rate of

recovery for the data generating MEC given by the highest scoring approximate BIC score

is compared against several other state-of-the-art algorithms. Statistical significance at an

alpha level of 0.05 is reported as either an overline if ˆBIC is better or an underline if the

alternative method is better.
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Figure 6.1 the prespecified graph is the simplest example showing that there may be no

total order over the districts of a MAG. Notably, the prespecified graph is Markov equivalent

to a DAG which perhaps explains the performance of GFCI—GFCI reduces to a state-of-the-

art score based procedure in this case. The approximate log-likelihood closely aligns with

the exact log-likelihood with clear separation of Markov versus not Markov as n → ∞; the

approximate BIC performs nearly identically to BIC and consistently ranks the correct MEC

in the top 10 with the ranking converging to a point-mass in the first bin as n → ∞; the

top ranked approximate BIC model performs worse than GFCI, but better than the other

methods in MEC recovery.
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α-level - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.749 0.749 0.862 0.755 0.698 0.621 0.37 0.345 0.16 0.161

n = 5,000 0.967 0.966 0.986 0.998 0.966 0.978 0.922 0.927 0.829 0.83

n = 50,000 0.997 0.997 0.988 1.0 0.988 1.0 0.995 1.0 0.994 0.999

Figure 6.2: An evaluation of the approximate log-likelihood and BIC for the specified directed

MAG with n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05 is

reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.

Figure 6.2 the prespecified graph is a MAG from the simplest MEC that does not contain

a DAG in graphs with four vertices. The approximate log-likelihood closely aligns with the
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exact log-likelihood with clear separation of Markov versus not Markov as n → ∞; the

approximate BIC performs nearly identically to BIC and consistently ranks the correct MEC

in the top 10 with the ranking converging to a point-mass in the first bin as n→∞; the top

ranked approximate BIC model performs worse than FCI, about the same as FCImax, and

better than GFCI with low sample sizes and about the same otherwise in MEC recovery.
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n = 5,000 0.764 0.763 0.348 0.247 0.348 0.247 0.549 0.49 0.499 0.466

n = 50,000 0.941 0.943 0.832 0.787 0.832 0.787 0.861 0.862 0.844 0.843

Figure 6.3: An evaluation of the approximate log-likelihood and BIC for the specified directed

MAG with n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05 is

reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.

Figure 6.3 the prespecified graph is the simplest example of a discriminating path in
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graphs with four vertices. The approximate log-likelihood closely aligns with the exact log-

likelihood with clear separation of Markov versus not Markov as n → ∞; the approximate

BIC performs nearly identically to BIC and consistently ranks the correct MEC in the top

10 with the ranking converging to a point-mass in the first bin as n → ∞; the top ranked

approximate BIC model performs better than the other methods in MEC recovery.
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n = 5,000 0.746 0.749 0.978 0.997 0.744 0.75 0.568 0.578 0.501 0.51

n = 50,000 0.928 0.927 0.985 0.996 0.92 0.927 0.775 0.779 0.711 0.715

Figure 6.4: An evaluation of the approximate log-likelihood and BIC for the specified directed

MAG with n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05 is

reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.
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In general, FCI tends to overestimate colliders and GFCI tends to underestimate colliders.

Figure 6.4 the prespecified graph is a bi-directed four-cycle, which perhaps explains the poor

performance of GFCI. The approximate log-likelihood closely aligns with the exact log-

likelihood with clear separation of Markov versus not Markov as n → ∞; the approximate

BIC performs nearly identically to BIC and consistently ranks the correct MEC in the top

10 with the ranking converging to a point-mass in the first bin as n → ∞; the top ranked

approximate BIC model performs worse than FCI, about the same as FCImax, and better

than GFCI in MEC recovery.

Random Directed MAGs with |V | = 4 and |E| ∈ [0, 3]
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n = 500 0.81 0.809 0.694 0.564 0.793 0.732 0.78 0.777 0.704 0.704

n = 5,000 0.977 0.977 0.975 0.983 0.968 0.985 0.973 0.978 0.947 0.947

n = 50,000 0.993 0.993 0.977 0.997 0.977 0.996 0.993 0.994 0.996 0.997

Figure 6.5: An evaluation of the approximate BIC for random directed MAGs with specified

edge ranges and n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05

is reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.

Figure 6.5 the approximate BIC performs nearly identically to BIC and consistently

ranks the correct MEC in the top 10 with the ranking converging to a point-mass in the
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first bin as n→∞; the top ranked approximate BIC model performs better than the other

methods with low sample size and about the same otherwise in MEC recovery.

Random Directed MAGs with |V | = 4 and |E| ∈ [4, 6]
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n = 500 0.41 0.41 0.237 0.125 0.305 0.226 0.153 0.194 0.238 0.147

n = 5,000 0.801 0.803 0.693 0.624 0.707 0.662 0.582 0.637 0.666 0.574

n = 50,000 0.941 0.939 0.875 0.861 0.873 0.867 0.851 0.863 0.864 0.851

Figure 6.6: An evaluation of the approximate BIC for random directed MAGs with specified

edge ranges and n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05

is reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.

Figure 6.6 the approximate BIC performs nearly identically to BIC and consistently

ranks the correct MEC in the top 10 with the ranking converging to a point-mass in the

first bin as n→∞; the top ranked approximate BIC model performs better than the other

methods in MEC recovery.
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BIC ˆBIC

sample size n = 500 n = 5,000 n = 50,000 n = 500 n = 5,000 n = 50,000

Figure 6.1 0.65 (0.18) 0.65 (0.17) 0.65 (0.18) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.2 0.57 (0.04) 0.57 (0.04) 0.56 (0.04) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.3 0.58 (0.05) 0.58 (0.05) 0.58 (0.05) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.4 0.56 (0.04) 0.56 (0.04) 0.56 (0.04) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.5 0.55 (0.03) 0.54 (0.03) 0.54 (0.03) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.6 0.57 (0.04) 0.57 (0.04) 0.57 (0.03) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Table 6.1: Mean run time for graphs (std in parentheses) with 4 vertices in seconds with two

decimal places of precision for BIC and ˆBIC. Statistical significance at an alpha level of 0.05

is reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.

Takes approximately 5% of the run time or two orders of magnitude. As a point of

reference, the time to compute the sample covariance in these experiments generally took

between 2 and 5 milliseconds.
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Figure 6.7: An evaluation of the approximate log-likelihood and BIC for the specified directed

MAG with n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05 is

reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.

Figure 6.7 the prespecified graph is a MAG from a MEC with five vertices that does not
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contain a DAG. The approximate log-likelihood closely aligns with the exact log-likelihood

with clear separation of Markov versus not Markov as n→∞; the approximate BIC performs

nearly identically to BIC and consistently ranks the correct MEC in the top 10 with the

ranking converging to a point-mass in the first bin as n → ∞; the top ranked approximate

BIC model performs worse than FCI, about the same as FCImax, and better than GFCI with

low sample sizes and about the same otherwise in MEC recovery. In this case, FCI does well

because it is general biased towards bi-directed edges.
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Figure 6.8: An evaluation of the approximate log-likelihood and BIC for the specified directed

MAG with n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05 is

reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.
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Figure 6.8 the prespecified graph contains a discriminating path of length five in graphs

with five vertices. The approximate log-likelihood closely aligns with the exact log-likelihood

with poor separation of Markov versus not Markov, but tending towards good separation as

n→∞; the approximate BIC performs nearly identically to BIC and consistently ranks the

correct MEC in the top 100 with the ranking converging to a point-mass in the first bin as

n→∞; the top ranked approximate BIC model performs better than the other methods in

MEC
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Figure 6.9: An evaluation of the approximate log-likelihood and BIC for the specified directed

MAG with n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05 is

reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.
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Figure 6.9 the prespecified graph is a bi-directed five-cycle which perhaps explains the

poor performance of GFCI. The approximate log-likelihood closely aligns with the exact log-

likelihood with clear separation of Markov versus not Markov as n → ∞; the approximate

BIC performs nearly identically to BIC and consistently ranks the correct MEC in the top

10 with the ranking converging to a point-mass in the first bin as n → ∞; the top ranked

approximate BIC model performs worse than FCI, about the same as FCImax, and better

than GFCI in MEC recovery.

Random Directed MAGs with |V | = 5 and |E| ∈ [0, 5]
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n = 500 0.57 0.58 0.495 0.273 0.16 0.398 0.338 0.349 0.324 0.258 0.252

n = 5,000 0.9 0.88 0.871 0.776 0.741 0.788 0.78 0.741 0.732 0.676 0.671

n = 50,000 0.99 0.99 0.966 0.919 0.915 0.92 0.919 0.904 0.9 0.893 0.888

Figure 6.10: An evaluation of the approximate BIC for random directed MAGs with specified

edge ranges and n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05

is reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.

Figure 6.10 the approximate BIC performs nearly identically to BIC and consistently

ranks the correct MEC in the top 10 with the ranking converging to a point-mass in the
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first bin as n→∞; the top ranked approximate BIC model performs better than the other

methods in MEC recovery.

Random Directed MAGs with |V | = 5 and |E| ∈ [6, 10]
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n = 5,000 0.61 0.59 0.603 0.311 0.243 0.354 0.319 0.297 0.261 0.238 0.216

n = 50,000 0.9 0.91 0.865 0.665 0.617 0.687 0.671 0.641 0.622 0.595 0.579

Figure 6.11: An evaluation of the approximate BIC for random directed MAGs with specified

edge ranges and n = {500, 5,000, 50,000}. Statistical significance at an alpha level of 0.05

is reported as either an overline if ˆBIC is better or an underline if the alternative method is

better.

Figure 6.11 the approximate BIC performs nearly identically to BIC and consistently

ranks the correct MEC in the top 100 with the ranking converging to a point-mass in the

first bin as n→∞; the top ranked approximate BIC model performs better than the other

methods in MEC recovery.
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BIC ˆBIC

sample size n = 500 n = 5,000 n = 50,000 n = 500 n = 5,000 n = 50,000

Figure 6.7 74.6 (5.8) 72.8 (5.7) 71.9 (5.8) 0.64 (0.02) 0.63 (0.01) 0.63 (0.01)

Figure 6.8 81.3 (8.5) 80.9 (8.1) 80.8 (8.4) 0.64 (0.06) 0.63 (0.06) 0.63 (0.07)

Figure 6.9 72.1 (5.0) 71.1 (4.5) 70.7 (5.1) 0.67 (0.07) 0.64 (0.04) 0.65 (0.06)

Figure 6.10 77.7 (7.5) 76.5 (7.8) 75.5 (7.7) 0.32 (0.1) 0.29 (0.07) 0.28 (0.03)

Figure 6.11 80.9 (10.5) 80.3 (10.1) 80.3 (10.4) 0.26 (0.01) 0.26 (0.01) 0.26 (0.01)

Table 6.2: Mean run time for graphs (std in parentheses) with 5 vertices in seconds with one

decimal place of precision for BIC and two decimal places of precision for ˆBIC (100 reps).

Takes approximately 1% of the run time or two orders of magnitude. The time of

covariance calculation generally took between 2 and 5 milliseconds.

Overall, the top ranked approximate BIC model performs best or second best and gen-

erally performs better with low samples sizes and more complicated graphs.

6.2 Ancestral Probabilities

In this section, we formulate and analyze a Bayesian local causal discovery algorithm.

The algorithm computes the probabilities of ancestral relationships between pairs of vari-

ables among a local subset of variables. We call this algorithm the Ancestral Probabilities

(AP) procedure. The AP procedure is motivated by the following situation. Suppose we

have a data set x1, . . . , xn that contains variables a and b. We might ask: “what is the

probability that a causes b?” The AP procedure computes this probability, denoted a→ b,
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by marginalizing over all possible directed MAGS:

Pr( a→ b | x1, . . . , xn) =
∑
G

Pr(G|x1, . . . , xn) δanG (b)(a)

=
∑
G

Pr(x1, . . . , xn | G) Pr(G)∑
G′ Pr(x1, . . . , xn | G′) Pr(G′)

δanG (b)(a)

=

∑
G Pr(x1, . . . , xn | G) Pr(G) δanG (b)(a)∑

G′ Pr(x1, . . . , xn | G′) Pr(G′)
.

This formulation for the marginal probability of causal relationship first occurred in [52].

This algorithm is intractable for systems with more than five variables, however, because

directed MAGs are closed under marginalization, we may calculate the probability that a

causes b with any subset of the variables containing a and b. As an example, consider the

trivial case where the subset of chosen variables is {a, b}. In this case, the algorithm would

only have two calculations to make, a adjacent to b and a not adjacent to b. While we have

accomplished a tremendous gain in computational efficiency, we have traded too much and

the output is less interesting. Thus, this algorithm must balance computational efficiency

with information loss.

We assume that the data for the local subset of variables is distributed according to a

curved exponential family. Furthermore, we assume a uniform prior over MECs and directed

MAGs within each MEC. We make the following standard assumptions.

Assumption (Causal Markov Property). If G = (V,E) is the causal MAG for a collection

of random variables indexed by V with probability measure P , then

I(G) ⊆ I(P ).

Assumption (Causal Faithfulness Property). If G = (V,E) is the causal MAG for a collec-

tion of random variables indexed by V with probability measure P , then

I(P ) ⊆ I(G).

The AP procedure is then defined as follows:
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Algorithm 7: Ancestral Probabilities AP (x1, . . . , xn,Pr(G))

Input: data: x1, . . . , xn, prior: Pr(G)

Output: mapping: Probs

1 Probs = {} ;

2 foreach a, b ∈ V do

3 Probs[a, b] = 0 ;

4 end

5 norm = 0 ;

6 foreach G ∈ FDMAG(V ) do

7 Pick a total order ≤ consistent with G ;

8 foreach a, b ∈ V do

9 if a ∈ anG(b) then

10 Probs[a, b] = Probs[a, b] + exp{ ˆBIC(G,≤, x1, . . . , xn)}Pr(G) ;

11 end

12 end

13 norm = norm + exp{ ˆBIC(G,≤, x1, . . . , xn)}Pr(G) ;

14 end

15 foreach a, b ∈ V do

16 Probs[a, b] = Probs[a, b]/norm ;

17 end

Additional constraints, such as the CLHMC must be applied by the user as background

knowledge.

6.2.1 Synthetic Examples and Background Knowledge

In this section, we evaluate the effectiveness of the AP procedure with and without the

background knowledge that one variable is exogenous with respect to the other variables on

1,000 synthetic data sets of 500, 5,000 and 50,000 instances. The synthetic data sets are

generated by passing a directed MAG drawn uniformly from the set of all directed MAGs with

four vertices to Algorithm 6 which uses an implicit order over the variables during simulation.

The background knowledge is generated by noting that the first variables in the implicit order

is exogenous with respect to the other variables. However, the background knowledge is not

guaranteed to be helpful. Indeed, it could be the case that the designated exogenous variables

are disconnected from the other variables. In this case, while the background knowledge is
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correct, it is not helpful in refined the data generating MEC. See [3] for details on how

background knowledge refines a MEC.

In what follows, we evaluate the correctness of the AP procedure with and without

knowledge using precision recall curves and receiver operator curves. We also report the

area under these curves respectively. Notably, given the true Markov equivalence class, the

probability of getting an ancestral relation correct could be less than 0.5.
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Figure 6.12: Precision recall curves for ancestral relationships with and without background

knowledge.

Receiver Operator Curves
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Figure 6.13: Receiver operator curves for ancestral relationships with and without back-

ground knowledge.
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Figures 6.12 and 6.13 plot the precision recall and receiver operator curves respec-

tively. In addition, the areas under the curves are tabulated. We plot the curves for

n = {500, 5,000, 50,000}. Additionally, we plot a curve where every directed MAG in the

true MEC is given equal probability as a theoretical limit on performance. We observe that

as the sample size increase, we approach this theoretical limit. This behavior persists with

the incorporation of background knowledge; however, there is a positive shift in the overall

performance with the incorporation of background knowledge.

In what follows, we evaluate the calibration of the AP procedure with and without

knowledge using calibration curves, also known as reliability diagrams [19, 55]. We also

report the expected calibration error [54].

Calibration Curves
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Figure 6.14: Calibration curves for ancestral relationships with and without background

knowledge.

Figure 6.14 plots the calibration the AP procedure for n = {500, 5,000, 50,000}; more

detailed figures are given in Appendix B.8. The calibration of a probabilistic algorithm

evaluate the algorithm’s ability to output meaningful probabilities. In this case, we plot

the reliability curves for the ancestral probabilities output by the AP procedure. The MEC

report the theoretical limit, that is, the theoretical performance given infinite data. We

observe that the predicted probabilities generally underestimate the true probabilities, but

as n → ∞ the predicted and true probabilities tend towards a closer correspondence. This
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behavior persists with the incorporation of background knowledge.

Background knowledge helps with reliability and calibration in low sample sizes. Note

that the prior used in the algorithm over directed MAGs in a MECs matches the correspond-

ing prior used to generate the data. As long as these priors are consistent, we can expect to

achieve performance similar to what was achieved in this simulation study. Notably, we do

not have to assume that every directed MAG within a MEC is equally likely.

6.2.2 Airborne Pollutants’ Effect on Health

In this section we evaluate the AP procedure on a real data set measuring airborne

pollutants, cardiovascular health, and respiratory health. We joined local air composition

data from the Environmental Protection Agency (EPA) with clinical data from the University

of Pittsburgh Medical Center (UPMC) at the zip code-month level.

Measurements for 160 airborne pollutants were collected from air-monitoring stations

in greater Pittsburgh area in 2015. These measurements were used to curate a data set of

monthly zip code averages for the airborne pollutants—the measurements of each pollutant

from stations within a 10-kilometer radius of the geographical center of each zip code were

averaged over the course of a month. We selected a subset of 19 pollutants to analyze based

on data sufficiency and a brief literature review. These data were obtained from Drs. Chirag

Patel and Chirag Lakhani.

Positive and negative cases of cardiovascular disease and respiratory disease were col-

lected from UPMC hospitals and outpatient facilities using the ICD9/ICD10 codes from

patient visits in 2015. These cases were used to curate a data set of monthly zip code aver-

ages for the occurrence of the two diseases—the presence of each disease during patient visits

for patients living within each zip code were averaged over the course of a month. There

were a total of 2,068,999 patient-visit records in 2015, of which 500,448 were positive for

cardiovascular disease and 262,221 were positive for respiratory disease.

After joining the two data sets, the resulting data set contained variables for zip code,

month, cardiovascular disease prevalence, respiratory disease prevalence, and 19 airborne

pollutant averages. We applied the AP procedure to this data in order to evaluate our
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algorithm and investigate the effects of airborne pollutants on cardiovascular health and

respiratory health. This research was performed under the auspices of Study PRO18020279,

which was approved by the University of Pittsburgh Institutional Review Board; all data

were de-identified.

Limitations of this study include:

• only analyzed data from the greater Pittsburgh area in 2015;

• only analyzed data from the UPMC hospital system;

• utilized an overly broad categorization of disease;

• utilized a temporal granularity based on the month.

In the following analysis, we modeled the data using Lee and Hastie probability measures.

Notably, we did not check the appropriateness of these probability measures. However, we

did apply the background knowledge that month is exogenous with respect to the other

variables—month is not caused by or confounded with the other variables [3]. Since month

is the only discrete variable, the background knowledge entails the CLHMC. Accordingly,

the graphical Markov models considered are members of curved exponential families.

Additional data wrangling was performed as follows. If the number of patients visits

used to calculate disease prevalence for an instance was less than 30, the record was removed

from the analysis because the estimated may be unreliable. The values for zip code and

month uniquely identify an instance of the data set because the data were only collected for

one year. We removed zip code from the analysis to remove the possibility of determinism.

We chose to remove zip code over month because the data were all collected from the greater

Pittsburgh area, so we surmised that a temporal factor would have a more significant impact

on the other variables than a spatial factor.

Using the AP procedure described above with the degenerate Gaussian approximation of

the Lee and Hastie model [2], we independently analyzed the data for each pollutant against

the variables for month, cardiovascular disease prevalence, and respiratory disease prevalence.

In addition to the background knowledge that zip code and month are exogenous with

respect to the other variables, we applied the background knowledge that airborne pollution

is not cause by disease prevalence. During the analysis, we performed bootstrapping at the
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patient-visit level. Notably, the instances of the data set are at the zip code level and the

airborne pollutant averages are unrelated to patient visits. In practice, we recalculated the

prevalence of cardiovascular disease and respiratory disease by resampling the positive and

negative cases of the diseases for each zip code and month. The data set was bootstrapped

accordingly 1000 times in order to provide confidence intervals. The original data set was

included in this analysis.
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Figure 6.15: A comparison of two hypotheses for the underlying causal model: (i) the air-

borne pollutant is a cause of cardiovascular disease and respiratory disease; (ii) the airborne

pollutant is confounded with cardiovascular disease and respiratory disease.

Figure 6.15 gives an intuition for how the AP procedure can recover causal informa-

tion from the data. The figure compares two hypotheses for the underlying causal model:

(i) the airborne pollutant is a cause of cardiovascular disease and respiratory disease; (ii)

the airborne pollutant is confounded with cardiovascular disease and respiratory disease. A

difference in represented conditional independence statements and m-connecting sets is illus-
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trated. The difference in represented conditional independence statements is accounted for

by the additional m-connecting sets. Accordingly, are the relationships causal or confounded

boils down to if the inclusion of these additional m-connecting sets increase the approximate

log-likelihood.

With two exceptions, the airborne pollutants examined are regulated by the National

Ambient Air Quality Standards (NAAQS) or the National Emission Standards for Hazardous

Air Pollutants (NESHAP). These standards were set by the clean air act.

With one exception, the EPA provides a comprehensive assessment of the causal rela-

tionships between the NAAQS airborne pollutants, cardiovascular disease, and respiratory

disease [23, 24, 25, 26, 27, 28]. Notably, the EPA’s analysis of Lead does not provide an

assessment of causality for respiratory disease, so we postpone its analysis. In Tables 6.3 and

6.4, we tabulate the results of the analysis on the NAAQS airborne pollutants. In the tables,

mean probabilities and 95% bootstrap confidence intervals are reported for each causal re-

lationship along with the EPA’s assessment of evidence for a short-term causal relationship

using the following scale:

• 1: causal relationship;

• 2: likely to be a causal relationship;

• 3: suggestive of, but not sufficient to infer, a causal relationship;

• 4: inadequate to infer a causal relationship;

• 5: not likely to be a causal relationship.
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Air Pollutant Pollutant → Cardiovascular EPA Assessment of Causality

Carbon Monoxide 0.931 (0.65, 1.0) 2: likely to be causal

Nitric Oxide 0.098 (0.0, 0.55) 3: suggestive of being causal

Nitrogen Dioxide 0.021 (0.0, 0.14) 3: suggestive of being causal

Oxides of Nitrogen 0.028 (0.0, 0.21) 3: suggestive of being causal

Ozone 0.87 (0.45, 1.0) 3: suggestive of being causal

Particulate Matter 2.5 µm 0.057 (0.0, 0.31) 1: causal

Particulate Matter 10 µm 0.392 (0.08, 0.86) 3: suggestive of being causal

Sulfur Dioxide 0.101 (0.0, 0.35) 4: inadequate to infer causal

Table 6.3: NAAQS airborne pollutants and cardiovascular disease results.

Air Pollutant Pollutant → Respiratory EPA Assessment of Causality

Carbon Monoxide 0.041 (0.0,0.26) 3: suggestive of being causal

Nitric Oxide 0.984 (0.88, 1.0) 1: causal

Nitrogen Dioxide 0.997 (0.98, 1.0) 1: causal

Oxides of Nitrogen 0.996 (0.98, 1.0) 1: causal

Ozone 0.558 (0.27, 0.81) 1: causal

Particulate Matter 2.5 µm 0.002 (0.0, 0.02) 2: likely to be causal

Particulate Matter 10 µm 0.187 (0.01, 0.57) 3: suggestive of being causal

Sulfur Dioxide 0.592 (0.15, 0.98) 1: causal

Table 6.4: NAAQS airborne pollutants and respiratory disease results.

The results of the causal analysis agree with many of the results of the EPA assessments

of short-term causality for the NAAQS airborne pollutants. In general, the AP procedure

assigned high confidence to causal relationships that the EPA assessed to be 1 or 2 and low

confidence to causal relationships that the EPA assessed to be 3 or 4 with a few notable

exceptions. The EPA assesses ozone as suggestive of being a cause of cardiovascular disease,
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whereas our analysis yielded a high probability of 0.87 (0.45 to 1.0). These results are

consistent with the EPA’s assessment for ozone, but are more confident than expected.

The EPA assesses ozone and sulfur dioxide as being a cause of respiratory disease, whereas

our analysis yielded modest probabilities of 0.558 (0.27 to 0.81) and 0.592 (0.15 to 0.98)

respectively. These results are consistent with the EPA’s assessments of ozone and sulfur

dioxide, but lack confidence. This is consistent with the earlier simulated results. The EPA

assesses particulate matter 2.5 µm as being a cause of cardiovascular disease and likely of

being a cause of respiratory disease, whereas our analysis yielded near zero probabilities

0.057 (0.0, 0.31) and 0.002 (0.0 to 0.02) respectively. These results are inconsistent with the

EPA’s assessments of particulate matter 2.5 µm and suggest a confounded relationship; see

Appendix B.9.

The National Emission Standards for Hazardous Air Pollutants (NESHAP) are emission

standards set by the EPA for airborne pollutants associated with an increase in serious illness

or death.

Air Pollutant Poll → Cardio Poll → Resp Poll ↔ Cardio Poll ↔ Resp

Acrolein 0.0 (0.0, 0.01) 0.96 (0.56, 1.0) 1.0 (0.99, 1.0) 0.01 (0.0, 0.05)

Arsenic 0.09 (0.0, 0.4) 0.11 (0.0, 0.36) 0.65 (0.04, 1.0) 0.39 (0.02, 0.99)

Cadmium 0.29 (0.02, 0.77) 0.2 (0.04, 0.44) 0.34 (0.03, 0.94) 0.31 (0.03, 0.88)

Chromium 0.23 (0.09, 0.41) 0.31 (0.11, 0.72) 0.44 (0.13, 0.87) 0.2 (0.05, 0.66)

Lead PM10 0.1 (0.0, 0.63) 0.52 (0.15, 0.92) 0.9 (0.36, 1.0) 0.18 (0.02, 0.72)

Lead PM2.5 0.08 (0.0, 0.35) 0.12 (0.0, 0.38) 0.74 (0.06, 1.0) 0.29 (0.02, 0.98)

Manganese 0.25 (0.01, 0.72) 0.27 (0.04, 0.68) 0.39 (0.06, 0.96) 0.27 (0.03, 0.87)

Nickle 0.21 (0.01, 0.44) 0.54 (0.15, 0.93) 0.44 (0.09, 0.96) 0.23 (0.03, 0.78)

Table 6.5: NESHAP Airborne Pollutants

The analyses for airborne acrolein, lead, and nickle supports causal relationships with

respiratory disease. The analyses for airborne acrolein, arsenic, and lead supported supports

confounded relationships with cardiovascular disease. The analyses for airborne cadmium,

chromium, and manganese were inconclusive. For the most part, our analysis is consistent
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with these listings, however, in other reports the EPA classifies Lead as a cause of cardio-

vascular disease. Furthermore, in the inconclusive case, the AP procedure could still find a

result supporting of these listing given more data or covariates.

Air Pollutant Poll → Cardio Poll → Resp Poll ↔ Cardio Poll ↔ Resp

Acetone 0.15 (0.03, 0.27) 0.38 (0.17, 0.5) 0.06 (0.0, 0.24) 0.37 (0.12, 0.5)

Methyl Ethyl Ketone 0.33 (0.16, 0.46) 0.37 (0.17, 0.49) 0.05 (0.0, 0.19) 0.33 (0.09, 0.49)

Methyl Isobutyl Ketone 0.01 (0.0, 0.07) 0.15 (0.05, 0.4) 0.98 (0.83, 1.0) 0.03 (0.01, 0.16)

Table 6.6: Exceptions to NESHAP Airborne Pollutants

The analysis for airborne methyl isobutyl ketone supports a confounded relationship

with cardiovascular disease, while the analyses for airborne acetone and methyl ethyl ketone

were inconclusive. Furthermore, methyl isobutyl ketone is under review for delisting, while

acetone and methyl ethyl ketone are currently not listed. Our analysis is consistent with

these non-listings.
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7.0 Discussion and Future Work

This dissertation introduces inducing sets as a new perspective for reasoning about an-

cestral graph Markov models. In particular, we derive and study m-connecting sets, which

are a special case of inducing sets that provide an alternative representation for MAGs. We

show that m-connecting sets admit a characterization of Markov equivalence for MAGs and

a factorization criterion equivalent to the global Markov property for directed MAGs.

Using the factorization criterion, we formulate a consistent probabilistic score with a

closed-form for exponential families whose independence models are described by directed

MAGs—directed ancestral graph Markov models. Ultimately, we design a local causal

discovery algorithm called the ancestral probability (AP) procedure, which estimates the

posterior probabilities of ancestral relationships. An analysis of synthetically generated

data and a real data set measuring airborne pollutants, cardiovascular health, and respi-

ratory health suggests that score-based causal discovery can be an effective tool for real-

world problems. The code for running the AP algorithm is publicly available on GitHub:

https://github.com/bja43/agMm.

7.1 Discussion

This work lies at the intersection of three other bodies of work: Sadeghi and Lauritzens

work on stable mixed graphs, Studený’s imsets, Richardson and Evans work on ADMGs.

In general, inducing sets provide a set-based framework for reasoning about models formed

from marginalization and conditioning of DAG models. These are stable mixed graphs and

their equivalence classes may be represented by m-connecting sets. Using m-connecting sets,

we can derive structural imsets, a most general framework for representing independence

models, that represent the same set of conditional independence statements. With these

structural imsets, we formulate a factorization similar to Richardson and Evans—which lead

to the development of parametrizing sets—but which only requires a single equation to be
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equivalent to the global Markov property.

7.2 Future Work

There are many promising future research direction for inducing sets. A few that we

hope to explore are as follows:

• Develop a more comprehensive theory about m-connecting sets. How can we characterize

the conditional independent statements represented in a set of m-connecting sets directly

from the set of sets?

• There is known redundancy in m-connecting sets, that is, we only need a subset of the

m-connecting sets to fully characterize the independence model induced by a MAG. Can

we develop a set of logical implications to derive the full set of m-connecting sets from

the minimally sufficient subset of m-connecting sets?

• Extend the concept of inducing path to the fixing operation of Richardson et al. in order

to define inducing sets with respect to a set of latent confounding variables, a set of

selection variables, and a set of fixed variables. This has ramifications in intervention

effect estimation, as well as extending these methods to nested Markov models [69].

• Derive a new adjustment term for the undirected part of the MAGs to extend our fac-

torization results to general MAGs.

• The adjustment terms provide a list of parametric constraints and naturally fit into the

framework of Lagrange multipliers. Can we derive an algorithm to fit the maximum

likelihood estimate using Lagrange multipliers?

• Can we develop a branch and bound algorithm to extend the AP procedure to larger

MAGs by considering MAGs within a factor of optimal [48]?

• Can we use m-connecting sets to generate a non-parametric score [39] for MAGs?

• Can we use m-connecting sets to construct a greedy algorithm for MEC recovery [13]?

Additionally, can we extend Meek’s conjecture (proved by Chickering) to MAGs?
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Appendix A List of Notation

A.1 General Terms

• ⇒,⇐,⇔ symbols for logical implication

• ∈, 6∈ symbols for set inclusion

• ⊆,⊂, 6⊆, 6⊂ symbols for subset

• ∪,∩ symbols for set union and intersection

• \ symbol for set difference

• > symbol for matrix transpose

• | | symbol for set cardinality and absolute value

• 〈 〉 syntax for a sequence or list

• { } syntax for a set

• vec function for matrix vectorization

A.2 Sets of Numbers

• R the set of real numbers

• Q the set of rational numbers

• Q+ the set of non-negative rational numbers

• Z the set of integers

• Z+ the set of non-negative integers

• Sn++ the set of n× n symmetric positive definite matrices

A.3 General Sets

• A,B,C, . . . symbols for sets of sets 13
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• A,B,C, . . . symbols for sets 13

• a, b, c, . . . symbols for set elements or singletons 13

• ∅ symbol for empty set 13

• P,Pul function for (bounded) power set 13

A.4 Generic Set Symbols

• V generic symbol for a non-empty set of variables/vertices

• L generic symbol for a set of latent confounding variables/vertices

• S generic symbol for a set of latent selection variables/vertices

• M generic symbol for an m-connecting set of variables/vertices

• N generic symbol for a non-m-connecting set of variables/vertices

• Γ generic symbol for the continuous variables/vertices

• ∆ generic symbol for the discrete variables/vertices

• W generic symbol for the transformed variables/vertices

A.5 Probability Measures

• X generic symbol for a collection of random variables 13

• X generic symbol for a sample space 13

• x generic symbol for a fixed instance of the sample space 13

• f symbol for probability density 13

• fA symbol for marginal probability density 13

• fA|B symbol for conditional probability density 13

• P symbol for probability measure 15

• ν symbol for dominating measure 15

• mP symbol for multiinformation of P 56
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A.6 Independence Models

• 〈 , | 〉 syntax for a disjoint triple 14

• ⊥⊥ symbol for independence 14

• T function for disjoint triples 14

• I function for independence models 14

A.7 Partially Ordered Sets

• ≤ symbol for partial order 16

• P generic symbol for a poset 16

• ∨ ∧ symbols for set join and meet 17

• ζP symbol for zeta function 18

• µP symbol for Möbius function 18

A.8 General Graph Terms

• G symbol for a mixed graph 22

• π generic symbol for a path 22

• GA symbol for an induced subgraph with respect to A 27

• dg function for directed subgraph 27

• ug function for undirected subgraph 27

• [G ] function for a maximally informative partial ancestral graph 42

• dom function for dominating DAG 123
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A.9 Functions of Vertices

• paG , pa+
G function for (inclusive) parents in G 24

• chG , ch+
G function for (inclusive) children in G 24

• spG , sp
+
G function for (inclusive) spouses in G 24

• neG , ne+
G function for (inclusive) neighbors in G 24

• anG function for ancestors in G 25

• deG function for descendants in G 25

• disG function for district in G 25

• antG function for anterior vertices in G 25

• coG function for collider-connecting vertices in G 31

• pre≤G function for preceding vertices in G with respect to ≤ 33

• mbG ,mb≤G function for Markov blankets in G (with respect to ≤) 33

• clG , cl≤G function for closures in G (with respect to ≤) 33

• baG function for barren sets in G 38

• tailG function for tails in G 38

• ml≤G function for minimal latent sets in G with respect to ≤ 91

A.10 Functions on Graphs

• A function for anterior/ancestral sets 26

• H function for heads 38

• S, S̃ functions for parametrizing sets 44

• M function for m-connecting sets 62

• N function for the non-m-connecting sets 62
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A.11 Evans’ Partitioning Terms

• ΠG function for maximal heads 39

• ΨG function for relative complement of maximal heads 39

• [ ]G syntax for a head partition function with respect to G 39

A.12 Interaction Terms

• φA symbol for interaction information rate 70

• φA|B symbol for conditional interaction information rate 70

• φA,B|C symbol for mutual information rate 70

• δA|B symbol for the identifier for conditional interaction information sets 70

• δA,B|C symbol for the identifier for mutual information sets 70

A.13 Stable Mixed Graphs

• F symbol for a family of graphs 48

• α function for marginalization and conditioning 48

A.14 Constrained Subsets

• ⊆R symbol for subsets constrained to sets in R 72

• ⊆b symbol for subsets constrained to sets containing b 72

• ⊆bR symbol for subsets constrained to sets in R containing b 72

• d ebR symbol for maximal subsets constrained to sets in R containing b 72
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A.15 Integer-valued Multisets

• u symbol for an imset 53

• δA symbol for the identifier for a set/set of sets 54

• u〈a,b|C〉 symbol for an elementary imset 54

• u〈A,B|C〉 symbol for a semi-elementary imset 55

• uG symbol for a standard imset 59

• cG symbol for a characteristic imset 59

• u≤,+
N(G) primary imset constructed by Algorithm 3 80

• u≤,−
N(G) secondary imset constructed by Algorithm 3 80

A.16 Non-m-connecting Sets as Imsets

• MG,b the list of m-connecting sets constructed by Algorithm 2 76

• NG,b the list of non-m-connecting sets constructed by Algorithm 2 76

• MG,b
K ,NG,b

J ,MG,b
J,K symbol for an intersection set of sets 76

• UG,b
i ,UG,b

J symbol for a restricted universal set of sets 76

• NG,b
i,i ,N

G,b
J,K symbol for a conditional set of sets 76

A.17 Curved Exponential Families

• θ symbol for natural parameters 127

• Θ symbol for parameter space 127

• t symbol for sufficient statistic 127

• ψ symbol for cumulant function 127

• Φ symbol for diffeomorphism 127

• F symbol for family of probability measures 128
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A.18 Parameterization

• z symbol for binary transformation 137

• Λ function for undirected edge parameters 134

• Ω function for bi-directed edge parameters 134

• B function for directed edge parameters 134

• µ function for mean parameters 134

• K symbol for precision matrix 135

• Σ symbol for covariance matrix 143
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Appendix B Additional Background, Examples, and Results

B.1 Latent Projections

In what follows, we outline algorithms for latent projection of ribbonless graphs to rib-

bonless, summary, and ancestral graphs.
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Algorithm 8: αRG(G, L, S)

Input: ribbonless graph: G = (V,E), disjoint sets L, S ⊆ V

Output: ribbonless graph: G′

1 Set G′ = G ;

2 foreach l ∈ L do

3 foreach triple 〈a, l, b〉 in G where a, b ∈ V \ LS do

4 if


a→ l→ b

a− l→ b

a− l↔ b

 in G and a→ b not in G′ then

5 Add a→ b to G′;

6 end

7 if

{
a← l→ b

a↔ l→ b

}
in G and a↔ b not in G′ then

8 Add a↔ b to G′;

9 end

10 if

{
a→ l − b
a− l − b

}
in G and a− b not in G′ then

11 Add a− b to G′;

12 end

13 end

14 Remove l from G′;

15 end

16 foreach s ∈ S do

17 foreach triple 〈a, s′, b〉 in G where a, b ∈ V \ LS and s′ ∈ anG(S) do

18 if a→ s′ ↔ b in G and a→ b not in G′ then

19 Add a→ b to G′;

20 end

21 if a↔ s′ ↔ b in G and a↔ b not in G′ then

22 Add a↔ b to G′;

23 end

24 if a→ s′ ← b in G and a− b not in G′ then

25 Add a− b to G′;

26 end

27 end

28 Remove s from G′;

29 end
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Algorithm 9: αSG(G, L, S)

Input: ribbonless graph: G = (V,E), disjoint sets L, S ⊆ V

Output: summary graph: G′

1 Set G′ = αRG(G, L, S) ;

2 foreach s′ ∈ anG(S) \ S do

3 foreach a ∈ paG′(s
′) do

4 Remove a→ s′ from G′ ;

5 if a− s′ not in G′ then

6 Add a− s′ to G′ ;

7 end

8 end

9 foreach a ∈ spG′(s
′) do

10 Remove a↔ s′ from G′ ;

11 if a− s′ not in G′ then

12 Add a− s′ to G′ ;

13 end

14 end

15 end

Algorithm 10: αAG(G, L, S)

Input: ribbonless graph: G = (V,E), disjoint sets L, S ⊆ V

Output: ancestral graph: G′

1 Set G′ = αSG(G, L, S) ;

2 foreach triple 〈a, b, c〉 in G′ where a, c ∈ V \ LS and b ∈ anG′(c) do

3 if a→ b↔ c in G′ and a→ c not in G′ then

4 Add a→ c to G′ ;

5 end

6 if a↔ b↔ c in G′ and a↔ c not in G′ then

7 Add a↔ c to G′ ;

8 end

9 if a↔ c in G′ and a ∈ anG′(c) then

10 Remove a↔ c from G′ ;

11 if a→ c not in G′ then

12 Add a→ c to G′ ;

13 end

14 end

15 end
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B.2 The Causal Inference Algorithm

In what follows, we outline the causal inference (CI) algorithm [79]. The CI algorithm

recovers a PAG G that represents a Markov equivalence class of MAGs by querying a condi-

tional independence oracle I

Algorithm 11: Causal Inference CI(I)

Input: independence model: I

Output: partial ancestral graph: G

1 Let G = (V,E) where E = {a ◦−◦ b | a, b ∈ V } and initialize Sep = [ ] ;

2 foreach edge a ◦−◦ b ∈ E do

3 if there exists Z ⊆ V \ {a, b} such that 〈a, b | Z〉 ∈ I then

4 Remove a ◦−◦ b from E ;

5 Append 〈a, b | Z〉 and 〈b, a | Z〉 to Sep ;

6 end

7 end

8 foreach unshielded triple 〈a, b, c〉 in G do

9 Rule 0: If 〈a, c | Z ∪ b〉 6∈ Sep for all Z ⊆ V \ {a, c}, then orient it as a collider

a ∗→ b←∗ c ;

10 end

11 repeat

12 Rule 1: If a ∗→ b ◦−∗ c, and a and c are not adjacent, then orient the triple as

a ∗→ b→ c ;

13 Rule 2: If a→ b ∗→ c or a ∗→ b→ c, and a ∗−◦ c, then orient a ∗−◦ c as a ◦→ c ;

14 Rule 3: If a ∗→ b←∗ c, a ∗−◦ d ◦−∗ c, a and c are not adjacent, and d ∗−◦ b, then

orient d ∗−◦ b as d ∗→ b ;

15 Rule 4: If 〈a, . . . , b, c, d〉 is a discriminating path from a to d for c and c ◦−∗ d,

then: if there exists Z ⊆ V \ {a, d} such that 〈a, d | Z ∪ c〉 ∈ Sep, then orient

c ◦−∗ d as c→ d; otherwise orient the triple 〈b, c, d〉 as b↔ c↔ d ;

16 until Rules 1 - 4 no longer apply;

B.3 NSI Finds Non-minimal Solutions

The following example shows a shortcoming of Algorithm 3. If there exists a grouping

of the non-m-connecting set terms such that no adjustment is necessary, Algorithm 3 is not
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guaranteed to find it. Furthermore, in the given example, there exists no total order for

which Algorithm 3 finds such a grouping. We leave the poof of the latter to the reader.

Let G = (V,E) be a directed MAG where V = {a, b, c, d, e} and E = {a↔ b, b↔ c,

c↔ d, d↔ e, e↔ a}. In other words, G is a bi-directed five-cycle. Furthermore, let ≤
be the total order where a ≤ b ≤ c ≤ d ≤ e and note that ≤ is consistent with G. The

corresponding m-connecting and non-m-connecting set are:

M(G)

{abcde, abcd, abce, abde, acde,
bcde, abc, abe, ade, bcd, cde,

ab, ae, bc, cd, de, a, b, c, d, d}

N(G)

{abd, acd, ace, bce, bde,
ac, ad, bd, be, ce}

Using imsets, we construct the following groupings of the non-m-connecting sets:

δN(G) = [δabd + δad] + [δacd + δac] + [δace + δce] + [δbce + δbe] + [δbde + δbd]

which simplifies to:

δN(G) = δNa,d|b + δNa,c|d + δNc,e|a + δNb,e|c + δNb,d|e

However, Algorithm 3 constructs the following groupings of the non-m-connecting sets:

δN(G) = [δace + δce] + [δbce + δbe + δce] + [δbde + δbe] + [δabd + δad + δbd] + [δacd + δad]

− δce − δbe − δad

which simplifies to:

δNN(G)
= δNc,e|a + δNbc,e + δNb,e|d + δNab,d + δNa,d|c

− δNc,e − δNb,e − δNa,d

In what follows, we trace through Algorithm 3 to prove that it returns what we claim.

Run Pairs(G, e):

MG,e = {ae, e, de} NG,e = {ace, bce, bde}
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The following terms are the possible additions to the resulting imsets:

δ{T⊆N(G),eV } = δ
NG,e

1,1
+ δ

NG,e
2,2

+ δ
NG,e

3,3
+ δ

NG,e
12,12
− δ

NG,e
12,1
− δ

NG,e
12,2

+ δ
NG,e

13,13
− δ

NG,e
13,1
− δ

NG,e
13,3

+ δ
NG,e

23,23

− δ
NG,e

23,2
− δ

NG,e
23,3

+ δ
NG,e

123,123
− δ

NG,e
123,12

− δ
NG,e

123,13
− δ

NG,e
123,23

+ δ
NG,e

123,1
+ δ

NG,e
123,2

+ δ
NG,e

123,3

Fill in the indices with actual set values:

δ{T⊆N(G),eV } = δ
NG,e
ace,ae

+ δ
NG,e
bce,e

+ δ
NG,e
bde,de

+ δ
NG,e
ce,e
− δ

NG,e
ce,e
− δ

NG,e
ce,e

+ δ
NG,e
e,e
− δ

NG,e
e,e
− δ

NG,e
e,e

+ δ
NG,e
be,e

− δ
NG,e
be,e
− δ

NG,e
be,e

+ δ
NG,e
e,e
− δ

NG,e
e,e
− δ

NG,e
e,e
− δ

NG,e
e,e

+ δ
NG,e
e,e

+ δ
NG,e
e,e

+ δ
NG,e
e,e

Rewrite the imsets in their conditional forms:

δ{T⊆N(G),eV } = δNc,e|a + δNbc,e + δNb,e|d + δNc,e − δNc,e − δNc,e − δ∅ + δ∅ − δ∅ + δNb,e − δNb,e
− δNb,e + δ∅ − δ∅ − δ∅ − δ∅ + δ∅ + δ∅ + δ∅

Cancel like terms and drop empty imsets:

δ{T⊆N(G),eV } = δNc,e|a + δNbc,e + δNb,e|d − δNc,e − δNb,e

Run Pairs(GV \e, d):

MG,d = {d, cd} NG,d = {abd, acd}

The following terms are the possible additions to the resulting imsets:

δ{T⊆N(G),eV \e} = δ
NG,e

1,1
+ δ

NG,e
2,2

+ δ
NG,e

12,12
− δ

NG,e
12,1
− δ

NG,e
12,2

Fill in the indices with actual set values:

δ{T⊆N(G),eV \e} = δ
NG,e
abd,d

+ δ
NG,e
acd,cd

+ δ
NG,e
ad,d
− δ

NG,e
ad,d
− δ

NG,e
ad,d

Rewrite the imsets in their conditional forms:

δ{T⊆N(G),eV \e} = δNab,d + δNa,d|c + δNa,d − δNa,d − δNa,d
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Cancel like terms and drop empty imsets:

δ{T⊆N(G),eV \e} = δNab,d + δNa,d|c − δNa,d

Algorithm 3 completes since all the non-m-connecting set are accounted for:

δNN(G)
= δNc,e|a + δNbc,e + δNb,e|d + δNab,d + δNa,d|c

− δNc,e − δNb,e − δNa,d

B.4 Necessity of the Adjustment Term

In this section, we give an example for which our current proof strategy fails. This does

not necessarily mean that the adjustment term is necessary.

Let G = (V,E) be a directed MAG where V = {a, b, c, d, e, f, g} and E = {a→ b, b↔ c,

c↔ d, d↔ e, e↔ f , f ← g}. In other words, G is a collider chain of length seven. The

m-connecting sets can be constructed using the heads and tails of the graph as follows:

δM(G) = δbcdef |ag + δbcde|a + δcdef |g + δbcd|a + δcde + δdef |g + δbc|a + δcd

+ δde + δef |g + δb|a + δc + δd + δe + δf |g + δa + δg

Note the following equalities:

δP(V ) = δM(G) + δN(G) + δ∅

µPδP(V ) = µPδM(G) + µPδN(G)

δabcdefg = µPδM(G) + µPδN(G)

Accordingly, the Möbius inversion of the non-m-connecting sets are as follows:

µPδN(G) = δabcdefg − µPδM(G)

Note the following Möbius inversions:

µPδbcdef |ag = δabcdefg − δabcdeg − δabcdfg − δabcefg − δabdefg − δacdefg + δabcdg
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+ δabceg + δabdeg + δacdeg + δabcfg + δabdfg + δacdfg + δabefg + δacefg

+ δadefg − δabcg − δabdg − δabeg − δabfg − δacdg − δaceg − δacfg
− δadeg − δadfg − δaefg + δabg + δacg + δadg + δaeg + δafg − δag

µPδbcde|a = δabcde − δabcd − δabce − δabde − δacde + δabc + δabd

+ δabe + δacd + δace + δade − δab − δac − δad − δae + δa

µPδcdef |g = δcdefg − δcdeg − δcdfg − δcefg − δdefg + δcdg + δceg

+ δcfg + δdeg + δdfg + δefg − δcg − δdg − δeg − δfg + δg

µPδbcd|a = δabcd − δabc − δabd − δacd + δab + δac + δad − δa
µPδcde = δcde − δcd − δce − δde + δc + δd + δe

µPδdef |g = δdefg − δdeg − δdfg − δefg + δdg + δeg + δfg − δg
µPδbc|a = δabc − δab − δac + δa

µPδcd = δcd − δc − δd
µPδde = δde − δd − δe
µPδef |g = δefg − δeg − δfg + δg

µPδb|a = δab − δa
µPδc = δc

µPδd = δd

µPδe = δe

µPδf |g = δfg − δg
µPδa = δa

µPδg = δg

201



The non-m-connecting sets are then as follows:

µPδN(G) = δabcdeg + δabcdfg + δabcefg + δabdefg + δacdefg − δabcdg − δabceg − δabdeg − δacdeg
− δabcfg − δabdfg − δacdfg − δabefg − δacefg − δadefg + δabcg + δabdg + δabeg + δabfg

+ δacdg + δaceg + δacfg + δadeg + δadfg + δaefg − δabg − δacg − δadg − δaeg − δafg
+ δag − δabcde + δabcd + δabce + δabde + δacde − δabc − δabd − δabe − δacd − δace − δade
+ δab + δac + δad + δae − δa − δcdefg + δcdeg + δcdfg + δcefg + δdefg − δcdg − δceg
− δcfg − δdeg − δdfg − δefg + δcg + δdg + δeg + δfg − δg − δabcd + δabc + δabd + δacd

− δab − δac − δad + δa − δcde + δcd + δce + δde − δc − δd − δe − δdefg + δdeg + δdfg

+ δefg − δdg − δeg − δfg + δg − δabc + δab + δac − δa − δcd + δc + δd − δde + δd

+ δe − δefg + δeg + δfg − δg − δab + δa − δc − δd − δe − δfg + δg − δa − δg

Cancelling like terms:

µPδN(G) = δabcdeg + δabcdfg + δabcefg + δabdefg + δacdefg − δabcde − δabcdg − δabceg − δabcfg − δabdeg
− δabdfg − δabefg − δacdeg − δacdfg − δacefg − δadefg − δcdefg + δabcg + δabdg + δabeg

+ δabfg + δacdg + δaceg + δacfg + δadeg + δadfg + δaefg + δcdeg + δcdfg + δcefg + δabce

+ δabde + δacde − δabc − δabe − δabg − δace − δacg − δade − δadg − δaeg − δafg − δcde
− δcdg − δceg − δcfg − δefg + δac + δae + δag + δce + δcg + δeg − δa − δc − δe − δg

Let Si(µPδN(G)) sum the Möbius inversion of the non-m-connecting sets of cardinality i:

Si(µPδN(G)) =
∑

T∈P(V )
|T |=i

µPδN(G)(T )

The sums are then as follows:

• S6(µPδN(G)) = 5

• S5(µPδN(G)) = −12

• S4(µPδN(G)) = 16

• S3(µPδN(G)) = −14

• S2(µPδN(G)) = 6
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• S1(µPδN(G)) = −4

We need to construct a linear combination of semi-elementary imsets with positive coeffi-

cients. Consider semi-elementary imsets of the form u〈A,B|C〉 where |A| = 1, |B| = 1, and

|C| = 4 and note:

• S6(u〈A,B|C〉) = 1

• S5(u〈A,B|C〉) = −2

• S4(u〈A,B|C〉) = 1

• S3(u〈A,B|C〉) = 0

• S2(u〈A,B|C〉) = 0

• S1(u〈A,B|C〉) = 0

Let u be a structural imsets constructed as a linear combination of semi-elementary imsets

of the considered form such that the coefficients sum to 5, then:

• S6(µPδN(G) − u) = 0

• S5(µPδN(G) − u) = −2

• S4(µPδN(G) − u) = 11

• S3(µPδN(G) − u) = −14

• S2(µPδN(G) − u) = 6

• S1(µPδN(G) − u) = −4

Accordingly, to deal with S5(µPδN(G) − u) = −2, it is necessary to have semi-elementary

imsets with negative coefficients. Note, that if we had chosen semi-elementary imsets of any

other form, it would only exacerbate this issue.

B.5 Comparison to Bayesian Scoring of Constraints

Jabbari et al. formulated Bayesian scoring of constraints (BSC) to estimate the log prob-

ability that an independence model induced by a directed MAG is induced by a probability

measure. BSC sums over the log probabilities that conditional independence statements are
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represented or not represented in the probability measure given that they have the same rep-

resentation status in the directed MAG [41, 42]. Under Jabbari et al.’s assumptions, the sum

in question returns the log probability that an independence model induced by the directed

MAG is induced by the probability measure. In this section, we show that the m-connecting

set factorization and BSC are equivalent to instantiations of the general imsetal factorization

given by Theorem 3.5.1 up to a constant.

The general imsetal factorization is given with respect to a structural imset. Let V be

a non-empty set of variables and X be a collection of random variables indexed by V with

probability measure P that admits density f(x) with respect to dominating σ-finite product

measure ν. If u is a structural imset over V , then I(u) ⊆ I(P ) if and only if:

log f(x) = log f(x)−
∑

T∈P(V )

u(T ) log fT (x).

Let G = (V,E) be a directed MAG. The m-connecting set factorization fits the form of

the general imsetal factorization:

log f(x) =
∑

M∈M(G)

φM(x)−
∑

N∈N(G)

u≤,−
N(G)(N)φN(x)

=
∑

T∈P(V )

(δM(G)(T )− u≤,−
N(G)(T ))φT (x)

=
∑

T∈P(V )

(1− u≤,+
N(G)(T ))φT (x)

= log f(x)−
∑

T∈N(G)

u≤,+
N(G)(T )φT (x)

= log f(x)−
∑

T∈P(V )

µPu
≤,+
N(G)(T ) log fT (x).

Jabbari uses BIC to formulate the probability that a conditional independence statement

is represented or not represented in a probability measure [41]:

Pr(〈a, b | C〉 ∈ I(P ) | x1, . . . , xn) ∝ n−
|Θ〈a,b|C〉|

2

n∏
i=1

fa∪C(xi | θ̂mle
n ) fb∪C(xi | θ̂mle

n )

fC(xi | θ̂mle
n )

;

Pr(〈a, b | C〉 6∈ I(P ) | x1, . . . , xn) ∝ n−
|Θ|
2

n∏
i=1

fab∪C(xi | θ̂mle
n ).
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In order to directly compare BSC to the m-connecting set factorization we only reason

about the likelihood component of the score using density terms. The parameter penalty

can be added back later similar to how we add a parameter penalty to the m-connecting set

factorization to formulate ˆBIC:

BSCG(x) =
∑

〈a,b|C〉∈I(G)

log Pr(〈a, b | C〉 ∈ I(P ) | x) +
∑

〈a,b|C〉6∈I(G)

log Pr(〈a, b | C〉 6∈ I(P ) | x)

=
∑

〈a,b|C〉∈I(G)

[
log fa∪C(x) + log fb∪C(x)− log fC(x)

]
+

∑
〈a,b|C〉6∈I(G)

log fab∪C(x) + g(x)

=
∑

〈a,b|C〉∈I(G)

[
log fa∪C(x) + log fb∪C(x)− log fC(x)

]
+

∑
〈a,b|C〉6∈I(G)

log fab∪C(x)

−
∑

〈a,b|C〉∈T(V )

log fab∪C(x) +
∑

〈a,b|C〉∈T(V )

log fab∪C(x) + g(x)

=
∑

〈a,b|C〉∈I(G)

[
log fa∪C(x) + log fb∪C(x)− log fC(x)− log fab∪C(x)

]
+ g′(x)

= −
∑

〈a,b|C〉∈I(G)

φa,b|C(x) + g′(x)

= −
∑

〈a,b|C〉∈I(G)

φa,b|C(x) + g′(x)− log f(x) + log f(x)

= log f(x)−
∑

〈a,b|C〉∈I(G)

φa,b|C(x) + g′′(x)

where g(x) =
∑
〈a,b|C〉∈T(V ) log

[fa∪C(x) fb∪C(x)
fC(x)

+ fab∪C(x)
]

is the sum of conditional inde-

pendence statement normalization terms, g′(x) = g(x) +
∑
〈a,b|C〉∈T(V ) log fab∪C(x), and

g′′(x) = g′(x) − log f(x). Notably g′′(x) is constant with respect to G. In the formula-

tion above, we sum over all elementary conditional independence statements for illustrative

proposes. In practice, the sum would be restricted to the set of conditional independence

statements considered by BSC.

Let uBSCG
be the structural imsets constructed from the of conditional independence

statements represented in G considered by BSC. BSC fits the form of the general imsetal

factorization:

BSCG(x) = log f(x)−
∑

T∈P(V )

uBSCG
(T ) log fT (x) + g′′(x).

Accordingly, both the m-connecting set factorization and BSC are equivalent to instan-
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tiations of the general imsetal factorization up to a constant using structural imsets µPu
≤,+
N(G)

and uBSCG
respectively. Notably, the set of conditional independence statements considered

by BSC to construct uBSCG
are given by reruns of the FCI algorithm. Accordingly, uBSCG

is

likely to be constructed from redundant elementary imsets and its Möbius inversion is not

guaranteed to assign a non-zero integer value to all non-m-connecting sets. In contrast, u≤,+
N(G)

is constructed to reduce redundancy and guarantee that a positive integer value is assigned

to all non-m-connecting sets. The empirical ramifications of these properties remains to be

explored.

B.6 Shifted NLL Comparison
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Directed MAG
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Directed MAG
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Directed MAG

a b c d e

Negative Log-likelihood

100 101 102

Exact sNLL

100

101

102

Ap
pr

ox
im

at
e 

sN
LL

n = 500
r2 = 0.969

not Markov
Markov

100 101 102 103

Exact sNLL

100

101

102

103

Ap
pr

ox
im

at
e 

sN
LL

n = 5,000
r2 = 0.971

not Markov
Markov

100 101 102 103 104

Exact sNLL

100

101

102

103

104

Ap
pr

ox
im

at
e 

sN
LL

n = 50,000
r2 = 0.968

not Markov
Markov

100 101 102

Exact sNLL

100

101

102

Ap
pr

ox
im

at
e 

sN
LL

n = 500
r2 = 0.996

not Markov
Markov

100 101 102 103

Exact sNLL

100

101

102

103

Ap
pr

ox
im

at
e 

sN
LL

n = 5,000
r2 = 0.997

not Markov
Markov

100 101 102 103 104

Exact sNLL

100

101

102

103

104

Ap
pr

ox
im

at
e 

sN
LL

n = 50,000
r2 = 0.997

not Markov
Markov

100 101 102

Exact sNLL

100

101

102

Ap
pr

ox
im

at
e 

sN
LL

n = 500
r2 = 0.995

not Markov
Markov

100 101 102 103

Exact sNLL

100

101

102

103

Ap
pr

ox
im

at
e 

sN
LL

n = 5,000
r2 = 0.991

not Markov
Markov

100 101 102 103 104

Exact sNLL

100

101

102

103

104

Ap
pr

ox
im

at
e 

sN
LL

n = 50,000
r2 = 0.99

not Markov
Markov

100 101 102

Exact sNLL

100

101

102

Ap
pr

ox
im

at
e 

sN
LL

n = 500
r2 = 0.983

not Markov
Markov

100 101 102 103

Exact sNLL

100

101

102

103

Ap
pr

ox
im

at
e 

sN
LL

n = 5,000
r2 = 0.98

not Markov
Markov

100 101 102 103 104

Exact sNLL

100

101

102

103

104

Ap
pr

ox
im

at
e 

sN
LL

n = 50,000
r2 = 0.979

not Markov
Markov

212



Directed MAG

a b c d e

Negative Log-likelihood

100 101 102

Exact sNLL

100

101

102

Ap
pr

ox
im

at
e 

sN
LL

n = 500
r2 = 0.999

not Markov
Markov

100 101 102 103

Exact sNLL

100

101

102

103

Ap
pr

ox
im

at
e 

sN
LL

n = 5,000
r2 = 1.0

not Markov
Markov

100 101 102 103 104

Exact sNLL

100

101

102

103

104

Ap
pr

ox
im

at
e 

sN
LL

n = 50,000
r2 = 1.0

not Markov
Markov

100 101 102

Exact sNLL

100

101

102

Ap
pr

ox
im

at
e 

sN
LL

n = 500
r2 = 0.994

not Markov
Markov

100 101 102 103

Exact sNLL

100

101

102

103

Ap
pr

ox
im

at
e 

sN
LL

n = 5,000
r2 = 0.999

not Markov
Markov

100 101 102 103 104

Exact sNLL

100

101

102

103

104

Ap
pr

ox
im

at
e 

sN
LL

n = 50,000
r2 = 0.999

not Markov
Markov

100 101 102

Exact sNLL

100

101

102

Ap
pr

ox
im

at
e 

sN
LL

n = 500
r2 = 1.0

not Markov
Markov

100 101 102 103

Exact sNLL

100

101

102

103

Ap
pr

ox
im

at
e 

sN
LL

n = 5,000
r2 = 0.999

not Markov
Markov

100 101 102 103 104

Exact sNLL

100

101

102

103

104

Ap
pr

ox
im

at
e 

sN
LL

n = 50,000
r2 = 0.999

not Markov
Markov

100 101

Exact sNLL

100

101

Ap
pr

ox
im

at
e 

sN
LL

n = 500
r2 = 0.998

not Markov
Markov

100 101 102 103

Exact sNLL

100

101

102

103

Ap
pr

ox
im

at
e 

sN
LL

n = 5,000
r2 = 0.999

not Markov
Markov

100 101 102 103 104

Exact sNLL

100

101

102

103

104

Ap
pr

ox
im

at
e 

sN
LL

n = 50,000
r2 = 0.999

not Markov
Markov

213



B.7 Exact Histograms
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Random Directed MAGs with |V | = 4 and |E| ∈ [0, 3]
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Random Directed MAGs with |V | = 4 and |E| ∈ [4, 6]
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Random Directed MAGs with |V | = 5 and |E| ∈ [0, 5]
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Random Directed MAGs with |V | = 5 and |E| ∈ [6, 10]
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B.9 Full Airborne Pollutants Tables

Air Pollutant N Pollutant → Cardiovascular Pollutant ↔ Cardiovascular

Acetone 517 0.15 (0.03, 0.27) 0.064 (0.0, 0.24)

Acrolein 445 0.002 (0.0, 0.01) 0.998 (0.99, 1.0)

Arsenic 273 0.092 (0.0, 0.4) 0.654 (0.04, 1.0)

Cadmium 265 0.291 (0.02, 0.77) 0.342 (0.03, 0.94)

Carbon Monoxide 572 0.931 (0.65, 1.0) 0.069 (0.0, 0.35)

Chromium 273 0.232 (0.09, 0.41) 0.438 (0.13, 0.87)

Lead PM10 359 0.1 (0.0, 0.63) 0.899 (0.36, 1.0)

Lead PM2.5 273 0.084 (0.0, 0.35) 0.736 (0.06, 1.0)

Manganese 273 0.251 (0.01, 0.72) 0.392 (0.06, 0.96)

Methyl Ethyl Ketone 485 0.333 (0.16, 0.46) 0.046 (0.0, 0.19)

Methyl Isobutyl Ketone 517 0.008 (0.0, 0.07) 0.978 (0.83, 1.0)

Nickel 273 0.212 (0.01, 0.44) 0.443 (0.09, 0.96)

Nitric Oxide 495 0.098 (0.0, 0.55) 0.893 (0.4, 1.0)

Nitrogen Dioxide 495 0.021 (0.0, 0.14) 0.979 (0.86, 1.0)

Outdoor Temperature 624 0.092 (0.0, 0.46) 0.755 (0.07, 1.0)

Oxides of Nitrogen 495 0.028 (0.0, 0.21) 0.972 (0.79, 1.0)

Ozone 327 0.87 (0.45, 1.0) 0.094 (0.0, 0.48)

Particulate Matter 2.5 µm 826 0.057 (0.0, 0.31) 0.535 (0.03, 1.0)

Particulate Matter 10 µm 784 0.392 (0.08, 0.86) 0.1 (0.01, 0.34)

Sulfur Dioxide 687 0.101 (0.0, 0.35) 0.894 (0.63, 1.0)

Table B1: Complete airborne pollutants and cardiovascular disease results.
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Air Pollutant N Pollutant → Respiratory Pollutant ↔ Respiratory

Acetone 517 0.382 (0.17, 0.5) 0.367 (0.12, 0.5)

Acrolein 445 0.955 (0.56, 1.0) 0.009 (0.0, 0.05)

Arsenic 273 0.109 (0.0, 0.36) 0.394 (0.02, 0.99)

Cadmium 265 0.202 (0.04, 0.44) 0.305 (0.03, 0.88)

Carbon Monoxide 572 0.041 (0.0, 0.26) 0.959 (0.74, 1.0)

Chromium 273 0.313 (0.11, 0.72) 0.196 (0.05, 0.66)

Lead PM10 359 0.52 (0.15, 0.92) 0.181 (0.02, 0.72)

Lead PM2.5 273 0.119 (0.0, 0.38) 0.285 (0.02, 0.98)

Manganese 273 0.267 (0.04, 0.68) 0.272 (0.03, 0.87)

Methyl Ethyl Ketone 485 0.367 (0.17, 0.49) 0.325 (0.09, 0.49)

Methyl Isobutyl Ketone 517 0.146 (0.05, 0.4) 0.033 (0.01, 0.16)

Nickel 273 0.537 (0.15, 0.93) 0.231 (0.03, 0.78)

Nitric Oxide 495 0.984 (0.88, 1.0) 0.003 (0.0, 0.02)

Nitrogen Dioxide 495 0.997 (0.98, 1.0) 0.001 (0.0, 0.01)

Outdoor Temperature 624 0.987 (0.98, 1.0) 0.013 (0.0, 0.02)

Oxides of Nitrogen 495 0.996 (0.98, 1.0) 0.001 (0.0, 0.01)

Ozone 327 0.558 (0.27, 0.81) 0.094 (0.03, 0.35)

Particulate Matter 2.5 µm 826 0.002 (0.0, 0.02) 0.98 (0.74, 1.0)

Particulate Matter 10 µm 784 0.187 (0.01, 0.57) 0.511 (0.08, 0.98)

Sulfur Dioxide 687 0.592 (0.15, 0.98) 0.012 (0.0, 0.03)

Table B2: Complete airborne pollutants and respiratory disease results.
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Appendix C Factorization of Graphs with Five Vertices

The conditional interaction information terms are similar to the terms intersection terms

used to construct u≤,+
N(G) and u≤,−

N(G) in Algorithm 3. By expanded the conditional interaction

information terms we can ensure that they are disjoint—this means that there is no need for

an adjustment term in the factorization.
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log f(x) = log fa(x) + log fb(x) + log fc(x) + log fd(x) + log fe(x)
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log f(x) = log fa(x) + log fd|e(x) + log fe|bc(x) + log fb(x) + log fc(x)
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−φa,d|bc(x)
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a

b
c

d
e

log f(x) = log fd|abc(x) + log fe|abc(x) + log fa(x) + log fb(x) + log fc(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fd|abc(x) + log fa(x) + log fb(x) + log fc(x)

a

b
c

d
e

log f(x) = log fa(x) + log fc|e(x) + log fd|e(x) + log fe|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fd|e(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fa(x) + log fd|c(x) + log fc|e(x) + log fe|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|c(x) + log fc|e(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fa(x) + log fd|ce(x) + log fc|e(x) + log fe|b(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fd|ce(x) + log fc|e(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fd|b(x) + log fb(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fe|ad(x) + log fa(x) + log fd|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fe|abd(x) + log fa(x) + log fd|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fd|be(x) + log fb(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fd|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fd|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,d|b(x)
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a

b
c

d
e

log f(x) = log fa(x) + log fd|bc(x) + log fc|e(x) + log fe|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|bc(x) + log fb(x) + log fc|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|bc(x) + log fc|e(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fa(x) + log fd|bce(x) + log fc|e(x) + log fe|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|bce(x) + log fb(x) + log fc|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|bce(x) + log fc|e(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fe|bd(x) + log fd|ab(x) + log fa(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fc|e(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|e(x) + log fe|abd(x) + log fd|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|abc(x) + log fa(x) + log fc|e(x) + log fe|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|abc(x) + log fc|e(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fa(x) + log fc|e(x) + log fe|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|e(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fa(x) + log fc|de(x) + log fe|bd(x) + log fd|b(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fc|de(x) + log fd|b(x) + log fb(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fe|ad(x) + log fa(x) + log fd|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fd|b(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fe|abd(x) + log fa(x) + log fd|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fd|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fd|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,d|b(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fc|de(x) + log fe|abd(x) + log fd|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fa(x) + log fc|bde(x) + log fd|b(x) + log fe|b(x) + log fb(x)

−φb,c|d(x)

a

b
c

d
e

log f(x) = log fc|ade(x) + log fd|b(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,c|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|b(x) + log fe|ab(x) + log fa(x) + log fb(x)

−φab,c|d(x)

a

b
c

d
e

log f(x) = log fa(x) + log fc|bde(x) + log fd|be(x) + log fb(x) + log fe(x)

−φb,c|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φab,c|d(x)− φa,d|b(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fd|ab(x) + log fa(x) + log fe|b(x) + log fb(x)

−φb,c|d(x)
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a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)

−φab,c|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|abe(x) + log fa(x) + log fb(x) + log fe(x)

−φab,c|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|abe(x) + log fa(x) + log fe|b(x) + log fb(x)

−φab,c|d(x)

a

b
c

d
e

log f(x) = log fa(x) + log fc|bde(x) + log fd|b(x) + log fe|b(x) + log fb(x)

−φb,c(x)

a

b
c

d
e

log f(x) = log fde|abc(x) + log fa(x) + log fb(x) + log fc(x)

−φa,d|bc(x)− φb,e|ac(x)− φd,e|ab(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fe|ad(x) + log fa(x) + log fd|b(x) + log fb(x)

−φa,c|bd(x)− φb,c(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|b(x) + log fe|ab(x) + log fa(x) + log fb(x)

−φa,c|bd(x)− φb,c(x)
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a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

−φab,c(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)

−φab,c(x)

a

b
c

d
e

log f(x) = log fa(x) + log fe|bcd(x) + log fd|bc(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|bc(x) + log fc|b(x) + log fb(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fe|ad(x) + log fa(x) + log fd|bc(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fe|acd(x) + log fa(x) + log fd|bc(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fa(x) + log fd|bc(x) + log fc|b(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fd|bce(x) + log fc|b(x) + log fb(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|bce(x) + log fe|ac(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|bce(x) + log fe|abc(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|b(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,d|bc(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fe|ac(x) + log fa(x) + log fc|b(x) + log fb(x)

−φa,d|bc(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fc|b(x) + log fb(x) + log fd|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|ae(x) + log fe|ac(x) + log fa(x) + log fc|b(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fd|ae(x) + log fe|abc(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|ac(x) + log fe|ac(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fe|acd(x) + log fd|ac(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|ac(x) + log fc|b(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fe|abd(x) + log fd|ac(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|ac(x) + log fe|abc(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fd|ac(x) + log fa(x) + log fc|b(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fd|ace(x) + log fe|abc(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|b(x) + log fe|ab(x) + log fa(x) + log fb(x)

−φb,d|ac(x)

a

b
c

d
e

log f(x) = log fd|abc(x) + log fe|abc(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fd|abc(x) + log fa(x) + log fc|b(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|be(x) + log fd|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|be(x) + log fd|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,d|b(x)

a

b
c

d
e

log f(x) = log fd|bc(x) + log fc|be(x) + log fe|ab(x) + log fa(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fd|bce(x) + log fc|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|be(x) + log fd|ae(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|be(x) + log fd|abe(x) + log fa(x) + log fe|b(x) + log fb(x)

−φb,d|a(x)

a

b
c

d
e

log f(x) = log fd|ac(x) + log fc|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|ace(x) + log fc|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|be(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|be(x) + log fe|abd(x) + log fd|ab(x) + log fa(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fd|abc(x) + log fc|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|be(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φad,c|b(x)− φa,d|b(x)

a

b
c

d
e

log f(x) = log fd|bce(x) + log fc|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,d|bc(x)− φa,c|b(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φb,d|ac(x)− φa,c|b(x)

a

b
c

d
e

log f(x) = log fc|abe(x) + log fd|ab(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)
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a

b
c

d
e

log f(x) = log fc|abde(x) + log fe|ad(x) + log fd|ab(x) + log fa(x) + log fb(x)

−φad,c|b(x)

a

b
c

d
e

log f(x) = log fc|abe(x) + log fd|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φad,c|b(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fe|abd(x) + log fd|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fe|ad(x) + log fd|ab(x) + log fa(x) + log fb(x)

−φa,c|bd(x)
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a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)

−φa,c|bd(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|abe(x) + log fa(x) + log fe|b(x) + log fb(x)

−φa,c|bd(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|abe(x) + log fb(x) + log fe|a(x) + log fa(x)

−φa,c|bd(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)

−φa,c|b(x)

a

b
c

d
e

log f(x) = log fc|ab(x) + log fd|ab(x) + log fe|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fc|ab(x) + log fe|abd(x) + log fd|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fc|ab(x) + log fd|ab(x) + log fa(x) + log fb(x)
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a

b
c

d
e

log f(x) = log fd|abe(x) + log fe|abc(x) + log fc|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fd|abc(x) + log fc|ab(x) + log fa(x) + log fb(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fc|e(x) + log fd|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fd|c(x) + log fc|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fd|ce(x) + log fc|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|bc(x) + log fb|e(x) + log fc|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|bce(x) + log fb|e(x) + log fc|e(x) + log fe|a(x) + log fa(x)
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a

b
c

d
e

log f(x) = log fd|abc(x) + log fb|e(x) + log fc|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fb|e(x) + log fc|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|d(x) + log fd|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|d(x) + log fd|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fe|ac(x) + log fc|d(x) + log fd|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fe|acd(x) + log fc|d(x) + log fd|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fd|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)
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a

b
c

d
e

log f(x) = log fc|de(x) + log fd|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fd|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|de(x) + log fd|abe(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,c|d(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,c|d(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fc|ade(x) + log fd|ae(x) + log fe|a(x) + log fa(x)

−φa,c|e(x)− φa,d(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fd|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)

−φb,c|e(x)
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a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)

−φab,c|e(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)

−φb,c|ae(x)− φa,c(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

−φb,c|ae(x)− φa,c(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fc|ade(x) + log fe|d(x) + log fd|a(x) + log fa(x)

−φa,c(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,c(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)

−φb,c|ae(x)− φa,c(x)

a

b
c

d
e

log f(x) = log fd|bc(x) + log fc|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)
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a

b
c

d
e

log f(x) = log fd|bce(x) + log fc|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|ac(x) + log fc|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|ace(x) + log fc|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|b(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|bc(x) + log fc|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|bce(x) + log fc|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|be(x) + log fb|e(x) + log fe|ad(x) + log fd|a(x) + log fa(x)
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a

b
c

d
e

log f(x) = log fd|ac(x) + log fc|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|ace(x) + log fc|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|abc(x) + log fc|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|be(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|bd(x) + log fd|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|bd(x) + log fd|abe(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fd|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)
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a

b
c

d
e

log f(x) = log fc|bde(x) + log fd|abe(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|abd(x) + log fb|e(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|e(x) + log fd|ae(x) + log fe|a(x) + log fa(x)

−φae,c|b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|e(x) + log fd|ae(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fd|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)

a

b
c

d
e

log f(x) = log fb|e(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φc,d|a(x)

a

b
c

d
e

log f(x) = log fc|ab(x) + log fd|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)
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a

b
c

d
e

log f(x) = log fc|ab(x) + log fd|abe(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|abc(x) + log fc|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|ab(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|abe(x) + log fd|abe(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|abc(x) + log fc|abe(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fd|abce(x) + log fc|abe(x) + log fb|e(x) + log fe|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|de(x) + log fc|de(x) + log fe|ad(x) + log fd|a(x) + log fa(x)

255



a

b
c

d
e

log f(x) = log fb|de(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,c|d(x)

a

b
c

d
e

log f(x) = log fb|de(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,c|d(x)

a

b
c

d
e

log f(x) = log fb|de(x) + log fc|ade(x) + log fd|e(x) + log fe|a(x) + log fa(x)

−φa,c(x)

a

b
c

d
e

log f(x) = log fb|de(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,c(x)

a

b
c

d
e

log f(x) = log fc|be(x) + log fb|de(x) + log fe|ad(x) + log fd|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fb|de(x) + log fe|ad(x) + log fd|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|de(x) + log fd|ace(x) + log fc|a(x) + log fe|a(x) + log fa(x)

−φa,d|c(x)
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a

b
c

d
e

log f(x) = log fb|de(x) + log fd|ac(x) + log fe|ac(x) + log fc|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|de(x) + log fd|ace(x) + log fc|ae(x) + log fa(x) + log fe(x)

−φa,d|c(x)

a

b
c

d
e

log f(x) = log fb|de(x) + log fc|ade(x) + log fe|d(x) + log fd|a(x) + log fa(x)

−φc,d|a(x)

a

b
c

d
e

log f(x) = log fb|de(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φc,d|a(x)

a

b
c

d
e

log f(x) = log fc|abe(x) + log fb|de(x) + log fe|ad(x) + log fd|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|de(x) + log fe|ad(x) + log fd|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|cde(x) + log fc|de(x) + log fd|a(x) + log fa(x) + log fe(x)

−φb,c|d(x)
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a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φac,b|d(x)− φa,c|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φac,b|d(x)− φa,c|d(x)

a

b
c

d
e

log f(x) = log fb|ade(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b|d(x)− φa,c|e(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fa(x) + log fe(x)

−φb,c|ad(x)− φa,b|de(x)− φa,c|e(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φac,b|d(x)− φa,c(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fb|de(x) + log fd|a(x) + log fa(x) + log fe(x)

−φc,d|b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φad,c|b(x)− φa,b|d(x)
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a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φad,c|b(x)− φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fb|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,c|bd(x)− φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,c|bd(x)− φa,b|d(x)

a

b
c

d
e

log f(x) = log fb|cde(x) + log fd|ac(x) + log fe|c(x) + log fc|a(x) + log fa(x)

−φb,c|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ac(x) + log fe|ac(x) + log fc|a(x) + log fa(x)

−φac,b|d(x)
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a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ace(x) + log fc|a(x) + log fa(x) + log fe(x)

−φac,b|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ace(x) + log fe|c(x) + log fc|a(x) + log fa(x)

−φac,b|d(x)

a

b
c

d
e

log f(x) = log fb|ade(x) + log fc|ae(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ae(x) + log fd|a(x) + log fa(x) + log fe(x)

−φb,c|ad(x)− φa,b|de(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φac,b|d(x)− φc,d|a(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ac(x) + log fc|ae(x) + log fa(x) + log fe(x)

−φac,b|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ace(x) + log fc|ae(x) + log fa(x) + log fe(x)

−φac,b|d(x)
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a

b
c

d
e

log f(x) = log fb|ade(x) + log fc|ad(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fb|ade(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fb|ade(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fa(x) + log fe(x)

−φb,c|ad(x)− φa,b|de(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φac,b|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fa(x) + log fd|e(x) + log fe(x)

−φb,c|ad(x)− φa,b|de(x)− φc,e|a(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ace(x) + log fe|c(x) + log fc|a(x) + log fa(x)

−φac,b|d(x)− φa,d(x)
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a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|ae(x) + log fe|a(x) + log fa(x)

−φac,b|d(x)− φc,e|a(x)− φa,d(x)

a

b
c

d
e

log f(x) = log fc|ab(x) + log fb|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|abe(x) + log fb|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|de(x) + log fd|a(x) + log fa(x) + log fe(x)

−φc,d|ab(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φc,d|ab(x)− φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φc,d|ab(x)− φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|abd(x) + log fb|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|d(x)
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a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|d(x)

a

b
c

d
e

log f(x) = log fa(x) + log fb|cde(x) + log fc|de(x) + log fd(x) + log fe(x)

−φb,c(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd(x) + log fe|a(x) + log fa(x)

−φa,b|cd(x)− φb,c(x)− φa,c|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|e(x) + log fe|a(x) + log fa(x)

−φac,b(x)− φa,c(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φac,b(x)− φa,c(x)

a

b
c

d
e

log f(x) = log fc|bde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b(x)
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a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fa(x) + log fe(x)

−φa,c|bd(x)− φa,b|e(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fe|d(x) + log fd|a(x) + log fa(x)

−φa,c|bd(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,c|bd(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|e(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,c|b(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ce(x) + log fe|ac(x) + log fc|a(x) + log fa(x)

−φac,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ac(x) + log fe|ac(x) + log fc|a(x) + log fa(x)

−φac,b(x)
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a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ce(x) + log fc|ae(x) + log fe|a(x) + log fa(x)

−φb,c|ae(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fb|ade(x) + log fc|ae(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ac(x) + log fc|ae(x) + log fe|a(x) + log fa(x)

−φb,c|ae(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ae(x) + log fd|a(x) + log fa(x) + log fe(x)

−φb,c|ad(x)− φa,b|e(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fe|d(x) + log fd|a(x) + log fa(x)

−φb,c|ad(x)− φa,b(x)− φc,d|a(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ae(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φb,c|a(x)− φa,b|e(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ac(x) + log fc|ae(x) + log fa(x) + log fe(x)

−φb,c|a(x)− φa,b|e(x)
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a

b
c

d
e

log f(x) = log fb|ade(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fe|d(x) + log fd|a(x) + log fa(x)

−φb,c|ad(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φb,c|ad(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd(x) + log fe|a(x) + log fa(x)

−φb,c|a(x)− φa,b|d(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|e(x) + log fe|a(x) + log fa(x)

−φac,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φac,b(x)

a

b
c

d
e

log f(x) = log fc|ab(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b(x)
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a

b
c

d
e

log f(x) = log fc|abe(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fe|d(x) + log fd|a(x) + log fa(x)

−φc,d|ab(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φc,d|ab(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fb|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fb|cde(x) + log fe|acd(x) + log fd|ac(x) + log fc|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fe|ad(x) + log fd|ac(x) + log fc|a(x) + log fa(x)

−φa,b|cd(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ace(x) + log fe|c(x) + log fc|a(x) + log fa(x)

−φa,b|cd(x)
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a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ace(x) + log fc|a(x) + log fe|a(x) + log fa(x)

−φa,b|cd(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|cd(x)− φc,d|a(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ace(x) + log fc|ae(x) + log fa(x) + log fe(x)

−φa,b|cd(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ac(x) + log fe|ac(x) + log fc|a(x) + log fa(x)

−φa,b|c(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fe|d(x) + log fd|a(x) + log fa(x)

−φa,b|c(x)− φc,d|a(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|ae(x) + log fa(x) + log fe(x)

−φa,b|c(x)− φc,d|a(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|e(x) + log fe|a(x) + log fa(x)

−φa,b|c(x)
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a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b|c(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|a(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|a(x) + log fe|ad(x) + log fd|a(x) + log fa(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fd|ae(x) + log fe|ac(x) + log fc|a(x) + log fa(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fd|abc(x) + log fc|ab(x) + log fb|a(x) + log fa(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fe|a(x) + log fa(x)

−φb,c|a(x)

a

b
c

d
e

log f(x) = log fa|e(x) + log fb|cde(x) + log fc|de(x) + log fd(x) + log fe(x)

−φb,c(x)
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a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fd|a(x) + log fa|e(x) + log fe(x)

−φa,b|ce(x)− φb,c(x)− φa,c|e(x)

a

b
c

d
e

log f(x) = log fa|de(x) + log fb|cde(x) + log fc|de(x) + log fd(x) + log fe(x)

−φb,c(x)

a

b
c

d
e

log f(x) = log fa|de(x) + log fb|cde(x) + log fc|de(x) + log fd|e(x) + log fe(x)

−φb,d(x)− φc,e(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|de(x) + log fd(x) + log fe(x)

−φa,b|de(x)− φa,c|d(x)− φb,c|e(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|de(x) + log fd(x) + log fe(x)

−φa,bc|d(x)− φb,c(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fc|bde(x) + log fb|de(x) + log fd(x) + log fe(x)

−φa,bc|d(x)− φc,e|b(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|de(x) + log fd|e(x) + log fe(x)

−φa,bc|d(x)− φb,d(x)− φc,e(x)
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a

b
c

d
e

log f(x) = log fa|bcde(x) + log fc|bde(x) + log fd|b(x) + log fb|e(x) + log fe(x)

−φa,bc|d(x)− φc,e(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|de(x) + log fd|e(x) + log fe(x)

−φa,c|bd(x)− φa,b|de(x)− φb,e|d(x)− φc,e(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|de(x) + log fd|e(x) + log fe(x)

−φa,b|de(x)− φa,c|d(x)− φc,e(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ae(x) + log fa|de(x) + log fd|e(x) + log fe(x)

−φa,b|d(x)− φb,e(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fa|de(x) + log fd|e(x) + log fe(x)

−φa,b|d(x)− φb,e(x)− φc,d|a(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ad(x) + log fa|de(x) + log fd|e(x) + log fe(x)

−φa,b|d(x)− φb,e(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|de(x) + log fd(x) + log fe(x)

−φa,bc(x)− φb,c(x)
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a

b
c

d
e

log f(x) = log fa|bde(x) + log fc|bde(x) + log fb|de(x) + log fd(x) + log fe(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fc|bde(x) + log fb|de(x) + log fd(x) + log fe(x)

−φa,c|bd(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fc|bde(x) + log fb|de(x) + log fd(x) + log fe(x)

−φa,bc(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fa|bde(x) + log fb|de(x) + log fd(x) + log fe(x)

−φc,d|ab(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fa|bde(x) + log fb|de(x) + log fd(x) + log fe(x)

−φa,b(x)

a

b
c

d
e

log f(x) = log fb|acde(x) + log fc|ade(x) + log fa|de(x) + log fd(x) + log fe(x)

−φa,b|c(x)

a

b
c

d
e

log f(x) = log fe|abcd(x) + log fd|abc(x) + log fc|ab(x) + log fb|a(x) + log fa(x)

−φa,c|b(x)− φa,b|d(x)− φc,e|a(x)− φb,d|e(x)− φd,e|c(x)
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a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|d(x) + log fe|d(x) + log fd(x)

−φa,c|b(x)− φa,b|d(x)− φb,d(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|de(x) + log fd|e(x) + log fe(x)

−φa,c|e(x)− φa,b(x)− φb,d|e(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fc|bde(x) + log fd|b(x) + log fb|e(x) + log fe(x)

−φa,c|e(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fc|abde(x) + log fa|bde(x) + log fd|b(x) + log fb|e(x) + log fe(x)

−φc,e|a(x)− φa,b(x)

a

b
c

d
e

log f(x) = log fa|bcde(x) + log fb|cde(x) + log fc|de(x) + log fd(x) + log fe(x)

−φa,b|d(x)− φa,c(x)
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dicting causal effects in large-scale systems from observational data. Nature Methods,

7:247–248, 2010.

279



[50] Marloes H Maathuis, Mathias Drton, Steffen L Lauritzen, and Martin Wainwright.

Handbook of Graphical Models. CRC Press, 2018.

[51] Marloes H Maathuis, Markus Kalisch, and Peter Bühlmann. Estimating high-
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