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Case Studies in Forcing Small Motor Neural Circuits

Marcello Codianni, PhD

University of Pittsburgh, 2021

The goal of this work is to explore a variety of forcing scenarios in small motor control

neural circuits. Numerous motor circuits interact to produce coordinated movement, and

forcing represents a convenient way to abstract the activity of other circuits so that the

analysis remains tractable. First, we analyze a pacemaking circuit responsible for joint co-

ordination. This circuit receives periodic bottom-up forcing from ground contact signalling.

We then modulate the circuit’s pacemaking properties through top-down input, and examine

the range in which this circuits output remains entrained to the forcing, allowing the animal

to keep its limbs coordinated during changing pace. Next, we turn our attention to a patho-

logical case of motor tics, where an unknown forcing signal produces stereotyped outputs.

We build a detailed neural model which expresses a great variety of observed behavior, and

carefully analyze how different current channels in the model can account for these different

behaviors. We then link it to another neuron model in a small, indirectly coupled circuit and

and study the response to different forcing profiles, and explain the model responses to this

forcing, offering mechanisms by which the motor tic may be explained. Finally, we observe

that during sustained, but modulated, forcing, the detailed model exhibits chaotic behavior.

We simplify the model to the key components in generating the chaotic firing, and perform

mathematical analysis utilizing tools from dynamical systems to examine the route to chaos

through examining its bifurcation structure and Lyapunov exponent approximations.
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1.0 Introduction

1.1 Background

Neural systems are found in nearly all animals, with very few notable exceptions, such

as Porifera (sponges). The prevalence of neural systems in the animal kingdom can be

succinctly explained by the fact that these neural circuits provide a robust mechanism for

animals to make sense of and move through the word; humans are, of course, no exception,

and thus, if we wish to understand our own senses, thoughts, and actions, we must first

understand the behavior of neurons and neural circuits. Neurons communicate with one-

another through spiking, all-or-none action potentials, or through graded potentials, and

often arrange themselves into small-world networks; networks which concurrently minimize

the number of connections made and the number of intermediate neurons on the path from

any one cell to another. This small-world characteristic then allows us to examine the

structure and behavior of smaller neural circuits in isolation, where the spontaneous activity

of individual neurons informs the spontaneous activity of the circuit. Of course, these small

circuits do not actually exist in isolation, and whether it be from different neural circuits

or senses such as vision, hearing, or physical contact, some of the neurons in our circuit

will inevitably receive some external input. We can then model this external input to our

small, isolated circuits mathematically through forcing one or more neurons. Considerable

work has been done on modeling these small circuits, and a thorough, detailed overview of

different modeling approaches can be found in Mathematical Foundations of Neuroscience

[48]. However, considerable work still remains, especially when it comes to specific responses

to signaling. In this thesis, I will present work in two such problems: joint control in stick

insect during certain walking patterns as a response to periodic forcing, and the response to

a simple striatal circuit during forcing of an unknown type.
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1.2 Modeling Approaches

When studying neural circuits, it is often useful to consider the dynamics of simplified

models. One such class of these models are the so-called circle maps, in which, rather than

details of voltage or currents, an oscillating neuron’s phase is modeled through d
dt
θ = ωi+g(t),

where ωi is the ”intrinsic” frequency of the oscillator, and g(t) is some time dependent

forcing. [57] For circuits of coupled oscillators, we can model the phase of each neuron

d
dt
θi = ωi+hij(θj 6=i), where hij is some function determining the coupling properties from cell

j to cell i. When hij is of the form K
N

∑N
j=1 sin(θj−θi), where N is the number of neurons and

K is a coupling strength parameter, we have the Kuramoto model [92]. Originally developed

to model chemical oscillators, this model has found widespread applicability, including neural

oscillators [26]. It is often of interest to study, rather than the particular phase of individual

neurons, their phase difference meets certain conditions, we can generate the phase models,

especially when studying synchronization and pattern formation. These take the form of the

difference of phases Ψij = θj−θi. When cells have similar intrinsic frequencies and hij meets

certain simplifying criteria, we have d
dt

Ψij = ε + hij(Ψij). Fixed points of this system then

represent phase locking.

Another class of neuron models, which are slightly more biorealistic, are the relaxation

oscillators. The cannonical relaxation oscillator is the Van der Pol oscillator, given by d2

dt2
x−

µ(1 − x2) d
dt
x + x = 0. µ here represents a damping force, a dissipation of energy [63]. A

modified version of the Van der Pol oscillator is the FitzHugh-Nagumo model, given by

d
dt
v = v− v3

3
−w+ Iext; τ

d
dt
w = v+ a− bw. [67] This system recovers the Van der Pol model

when a = b = 0 and a coordinate transformation, and can also be considered simplified two

dimensional Hodgkin-Huxley system. Of particular importance in these models is the cubic

nullcline, which directs the flow through a limit cycle. These models have an important

relationship with driving signals, becoming entrained.

In this work, then, we would like to continue examining these forcing signals and the

patterns of responses that occur in even more biorealistic settings, particularly using the

Hodgkin-Huxley framework, in order to examine more detailed circuit responses. Broadly

speaking, this framework takes the form C d
dt
v = −Imemb + Iext; τx∗

d
dt
x∗ = x∞(v) − x. [56]

2



Here, Imemb is a sum of currents from various ion channels, Iext is an external current, and

each x∗ is a gating variable for each channel, representing the proportion of channels open

at any given time.

1.3 Central Pattern Generators and Entrainment to a Periodic Signal

Central pattern generators (CPGs) are simple neural circuits which can produced stereo-

typed output even in the absence of drive, and are found throughout the animal kingdom

in relation to rhythmic action. [133] A notable CPG in humans is the pre-Bötzinger com-

plex, involved in respiration [104]. A critical feature of CPGs is their capacity to modulate

their activity in response to external signaling, e.g. changing gait as a response to chang-

ing movement speed. They typically function through feedback mechanisms, particularly

post-inhibitory rebound. The simplest subunit of CPGs is the half-center oscillator (HCO),

consisting of two mutually inhibitory neurons. [134] Each neuron has a fixed behavior which

does not vary except through this inhibitory coupling. HCO pattern formation is governed

by one of two types of action, escape and release. In escape paradigms, the inhibited neuron

will naturally return to its uninhibited behavior, and in release paradigms, the active neuron

will stop inhibiting the other neuron. See Figure 1.

In Chapter 2 we will focus on a motor control circuit in the stick insect. Insect locomotion

is an active area of interest, with particular applications to cybernetic control mechanisms,

and the stick insect is particularly valuable to study due to its large size and the fact

that these motor neurons are non-spiking [111], so rather than stable activity patterns,

we simply have stable fixed points. Each cell is excitable, so that once some stimulus reaches

a threshold, the cell will make a large excursion through phase space before returning to

its initial state. The CPG in this stick insect joint is not a true HCO, since in the absence

of input each cell remains at its fixed point, but nevertheless has very similar dynamical

properties. When driven periodically, the CPG oscillates, may entrain to the period of the

forcing, and does so in a manner akin to escape and release mechanisms, dependent on

some parameters. While there is a rich dynamical structure to be explored in higher period

3



pseudoentrainment, we constrain our focus to the regime where the cells are simply entrained

to the forcing signal, that is: the duty cycle of the circuit’s oscillations approximately matches

that of the periodic forcing.

1.4 Striatal Response to an Unknown Signal

We then turn our attention to a more detailed neural model within the striatum. The

striatum is part of the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) loop [101], the

major pathway for action selection and reinforcement learning. See Figure 2. The striatum

is an important part of this loop as the first node between the cortex and the rest of the basal

ganglia. Dysfunction in the striatum has been implicated in a number of movement and be-

havioral disorders, including, but not limited to: Parkinson’s disease, Tourette’s Syndrome,

Huntington’s Disease, autism, depression and addiction. [90] [95] [135] [93] [103]

In this work, we will be focusing on the role the striatum plays in generating motor

tics, a prevalent symptom of Tourette’s Syndrome. Major work has been done modeling

striatal action, both in the larger BG circuit of the direct-indirect-hyperdirect action selection

pathway, and in the striatum itself, particularly in the context of Parkinson’s Disease. In

Parkinson’s, patients often present elevated beta rhythms (neural oscillations between 12

and 30 Hz) due to synchronization of the primary output neurons of the striatum, the spiny

projection neurons (SPNs) [142]. Some of this work has led to a growing appreciation of

the tonically active cholinergic interneurons (TANs), a major source of acetylcholine in the

striatum, which are believed to play a role in striatal output, as well as reinforcement learning

through interactions with dopamine [22]. Despite this growing interest, the complex variety

of behavior observed in TANs has caused modeling to lag behind, a gap that we hope to fill.

Thus, we build a biorealistic spiking model of a TAN using the Hodgkin-Huxley frame-

work. To do this, we found experimental literature suggesting the presence of a variety of

functional channels, dynamic ion concentrations, and included a mechanism to include tran-

sient changes to neuromodulator activity, for a total of a 16-dimensional system for this cell

model, and incorporated it into a simple striatal circuit in order to compare this circuit to

4



Figure 1: Escape and Release Mechanisms. A: Escape Oscillations. The active cell

moves along the right branch of the orange (uninhibited) nullcline until it reaches its fixed

point (red dot). The inhibited cell moves along the green (inhibited) nullcline until it reaches

the knee (green dot). The cell then escapes inhibition, becomes active and inhibits the other

cell, which now follows the left branch of the green nullcline. B: Release Oscillations. The

quiescent cell follows the left branch of the orange (inhibited) nullcline until it reaches its

fixed point (red dot). The active cell follows the right branch of the green (uninhibited)

nullcline until it reaches the knee (green dot). The cell then moves to its quiescent phase,

releasing the quiescent cell, which becomes active, and follows the right branch of the green

nullcline.

5



Figure 2: Cortico-Basal Ganglia-Thalamo-Cortical Loop. The flow of activity from the 

cortex, through the basal ganglia into the thalamus, and back to the cortex. Notice that the 

striatum is the primary node between the cortex and the rest of the basal ganglia. Created 

by Andrew Gillies, CC BY-SA 3.0 via Wikimedia Commons
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experimental data from the striatum during motor tic events. Although the striatum has a

rich fauna of neurons directly impacting SPNs, and the SPNs themselves have a rich network

structure, virtually all signalling is done through GABA, which is blocked by bicuculline, so

our experimental circuit may be reduced to only TAN and SPN [141]. Rather than a typi-

cal neural circuit, coupling between cells is through the presence of neuromodulators rather

than synaptic transmission. These neuromodulators impact the firing properties of cells by

altering their intrinsic mechanisms as opposed to directly impacting the voltage equation.

[54]

Furthermore, we no longer know the details of the forcing signal: there is a sudden

shift in the dynamics of the system, suggesting forcing, but the details of this process are

unknown. Solving this kind of inverse problem is often involved and complex, but we are in

luck: signals of this type are often seen in one of a handful of profiles. We may use these

profiles as an ansatz, and constrain these candidate profiles based on the circuit response.

An interesting feature of this circuit is the action of the neuromodulator on the forcing signal

itself. Receptors are known to be present, but the specific action on the signal is unclear, so

we additionally investigate what impact this feedback may have.

1.5 Sustained Forcing and Chaos

In the TAN model we developed, we find that when forcing is both sustained and subject

to neuromodulator feedback, the model enters a state of deterministic chaotic firing. To put

it simply, this means the spiking pattern of model is somewhat random, and this randomness

is not the result of noise in the system. [29] More concretely, our system is sensitive to initial

conditions, which means that very small differences in an initial state can accumulate and

result in very dramatic differences at some later time. A classical example of a system

exhibiting chaos is the logistic map, given by xn+1 = µxn(1 − xn) [131]. The logistic map

is often used to model simple population dynamics, capturing reproduction and death as a

proportion of the current population. [94] To understand the evolution of of the system, it

is often helpful to analyse fixed points, here given by x∗ = µx∗(1 − x∗), where some simple
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algebra gives us that x∗ = µ−1
µ

. When µ < 1, these fixed points are negative, so we may

discard them as unrealistic, but when µ > 1 we can examine the stability of this fixed point

through a cobweb diagram, see Figure 3A-C, and see that an interesting pattern of behavior

emerges: when µ < 3, the fixed point is stable, when 3 < µ <∼ 3.4, the system bounces

between two values, and if µ >∼ 3.4, the system bounces between four values. If we track

these values for each value of µ, we obtain the bifurcation diagram in Figure 3D, and see that

this period doubling trend continues until we reach a point where our values are apparently

random, as the oscillation reaches infinite period. We can find these period doubling events

in a more systematic way, by computing the eigenvalues of the fixed points of the 2nth iterates

of the map. (i.e. fixed points of xn+1, xn+2, xn+4 etc.)

This period doubling cascade is a common route chaos [19], so returning to our model,

we might expect to find a similar process occurring as we increase the strength of the forcing

signal. In the interest of computational tractability we reduce our model to only its key

features, and although our model is a flow, not a map, we may use the theory of Poincaré

maps to convert our model appropriately.
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Figure 3: Period Doubling Bifurcations in the Logistic Map. A-C: The red trace

shows the cobweb diagram as the parameter increases through period doubling bifurcations.

D: The bifurcation diagram. Each point in the diagram shows the points the map oscillates

between for a fixed parameter value on the x axis. The coloring is included to illustrate

different branches.
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2.0 Stick Insect Motor Control Circuit

2.1 Introduction

The rhythms underlying locomotion are believed to be generated by neural central pat-

tern generator (CPG) circuits ([137, 37, 117, 87]; for overview, see also [124, 102]). Following

this hypothesis, CPG behavior is influenced by top-down neural commands and sensory feed-

back from muscles and limbs (for review see e.g. [6, 27]). CPG outputs are then processed

by other interneurons and eventually drive motoneurons responsible for muscle activation.

Coordinating all of these components to yield rhythmic movements of limb segments at par-

ticular joints is complex; however, segments within limbs must also be coordinated, as must

multiple limbs, for limbed locomotion to emerge. Depending on the given behavioral task

or the speed of locomotion, insects generate different interlimb coordination patterns during

walking ([116, 58, 121, 118, 51, 15, 60]) ranging from “wave or metachronal gait” at very

low speeds ([15, 35, 53]) to tetrapod and tripod coordination patterns at low-to-intermediate

and higher speeds ([118, 15, 53]). Information on the underlying neural mechanisms and the

contribution of central and peripheral signaling in CPG entrainment and its contribution to

this highly flexible interlimb coordination still remains elusive.

In this work, we try to address this problem by considering a small component of this

rhythm generation and coordination process in the stick insect Carausius morosus, using

a minimal computational model and dynamical systems analysis. Stick insect legs feature

three segments, each with a corresponding joint and antagonistic muscle pair (Figure 4, [18]).

The sensory signals to each segment within a leg are determined in part by the mechanical

loading of the leg and ground contact forces, where direct mechanical coupling between joints

is negligible during the swing movement of the leg [11], and movement-related signals from

muscles and other segments of that leg also contribute. Extensive experimental investigations

have produced a hypothesized chart of influences between stick insect leg segments [5] which

have successfully been implemented into a mathematical model controlling some basic aspects

of the movement of a stick insect leg [126, 129, 127, 122, 125]. These results imply that in the
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transition from swing to stance phase, depressor muscle activity and coxa-trochanter joint

signals impact the thorax-coxa (ThC, hip-like) joint control system, promoting retractor

muscle activation.

Our focus here is a model of the ThC joint control system featuring a half-center oscillator

CPG and a pair of interneurons (INs) that impact the CPG, along with drive signals. These

drives consist of a time-periodic signal to one of the INs, representing ascending depressor

input (i.e. loading of the leg and ground contact) during stepping, and independent con-

stant currents to the CPG units, representing top-down drive from higher neural command

centers, which could theoretically be used to initiate movement or to tune its properties

(e.g., initiate faster walking or turning). Outputs from this system control the contraction

of the protractor and retractor muscles. Stick insects engage in a variety of different walking

patterns consisting of a continuum of stable patterns ranging from metachronal to tripod

and tetrapod coordination patterns [34] and including curve walking and backward stepping

of single legs. These occur at different frequencies, and depressor muscles are active during

different fractions of each period in these different coordination patterns. To start with here

we focus on the two most commonly observed coordination patterns from among this con-

tinuum in insects: tetrapod and tripod. To account for the differences pointed out above we

will consider forms of depressor input representing these two coordination patterns. Further-

more, the impact of sensory versus central influences in the coordination of leg movements

is different for tetrapod and tripod walking. During tetrapod walking the stick insect walks

slowly and relies heavily on sensory feedback signals to coordinate its movements. If walking

speed increases the animal transitions to tripod walking, which is commonly assumed to rely

less on sensory information due to the increased influence of the central drive [6, 12, 7, 109].

In this study we are interested in the mechanisms underlying the entrainment of rhythmic

activity in the CPG dependent on the interaction of these ascending and top-down drive

signals.

The remainder of the paper is organized as follows. In Section 2.2, we present the model

on which we focus, both schematically and mathematically. We also go on, in subsection

2.2.3, to describe the methodology of how we consider entrainment in the ThC joint control

system, first at the level of the interneurons and next at the level of the core CPG. Section
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2.3 presents our analysis of entrainment, again starting from the interneurons and progress-

ing to the CPG. In the latter case, in subsection 2.3.2, we consider a variety of ways that

entrainment to the tetrapodal rhythm can be lost under parameter variations and additional

signal modifications that can lead to recovery of entrainment. In subsection 2.3.3, we show

how similar ideas can apply to additional scenarios including the loss of some signaling path-

ways, changes in the baseline CPG configuration, and switch to tripodal walking patterns.

The paper concludes with a discussion in Section 2.4.

2.2 Methods

In this section, we present the mathematical details of the model that we consider. We

also define entrainment of model units, which is the behavior of interest in our analysis, and

present the methods used to assess the success, breakdown, and recovery of entrainment

under variation of various model parameters.

2.2.1 ThC Network

We consider the network shown in Figure 5, which is based on experimental data of and

reasonable neurophysiological assumptions made for the stick insect walking system as well

as on numerical simulations [126, 129, 128]. The core of this network is the CPG, which

controls the activity of the protractor and retractor MNs and muscles (for experimental

details on the neural networks mediating coordination of multisegmental organs see [5]). Its

function is affected by the input from the peripheral sense organs via the interneurons (INs)

IN3 and IN4. The effect of the sensory input is of dual nature: it excites the “retractor”

CPG neuron (C1) directly via IN4 but inhibits the “protractor” CPG neuron (C2) via an

additional inhibitory interneuron, IN3. This part of the network was constructed on the

basis of experiments [3] and accompanying simulations [8] made for the neural network

controlling the antagonistic levator-depressor muscle pair of the stick insect leg. We assume

that essentially the same system can be applied to control any other antagonistic muscle
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Figure 4: Scheme of a stick insect leg. Three antagonistic muscle pairs drive the move-

ment of the leg: at the thorax-coxa joint, protractor and retractor muscles (red and orange)

are responsible for moving the leg fowards and backwards; at the coxa-trochanter joint, leva-

tor and depressor muscles (blue and purple) control the upward and downward movements;

and at the femur-tibia joint, the flexor-extensor muscle pair (dark and light green) moves

the leg inward and outward.
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pair of the stick insect leg. It therefore constitutes a network that, in its basic properties, is

likely to be close to that present in the stick insect.

An excitatory periodic signal β(t) with period τ is used to represent the depressor input

and also to implicitly represent inter-leg coupling signals. Specifically, while β(t) mainly

represents the loading and unloading of the same leg, which controls the activity of the

ThC joint under study (intra-leg coupling), β(t) also implicitly includes inter-leg coupling

signals: in the large-scale network model of Toth and Daun [125], inter-leg coupling is given

through the coupling of the CPGs that control the Coxa-trochanter joint of the ipsilateral

neighboring legs, which in turn impact β(t). The signal β(t) provides constant drive to

interneuron IN4 for a fraction α of each period and no drive for the remaining part of the

period. Different values of α correspond to different leg coordination patterns. The choice

α = 3/4 is consistent with a step cycle during tetrapod walking, while α = 1/2 corresponds

to tripod walking.

IN4 itself may be in an active or an inactive phase. While IN4 is in its active phase, it

provides excitatory drive to interneuron IN3 and to CPG neuron C1. The dynamics of IN3 is

nearly identical to that of IN4, but with drive provided by IN4 during its active phase rather

than by β. In the absence of drive, both IN3 and IN4 are excitable, with a stable fixed point

at a relatively hyperpolarized voltage corresponding to the silent phase. We assume a choice

of drive levels such that IN3 and IN4 remain excitable when driven; nonetheless, drive does

lower the activation threshold for these neurons. When the drive from IN4 activates IN3,

the latter also exhibits active and inactive phases and sends inhibitory drive to CPG neuron

C2 while active. Each cell in the CPG system receives three inputs: reciprocal inhibition

from the other CPG neuron, bottom-up input from either IN4 or IN3 resulting from their

responses to the depressor signal, and top-down excitatory input. The excitatory inputs

to the CPG units C1 and C2 would be modulated in part by inter-leg coupling. Central

influences between the ThC systems of the legs of the stick insect which are modulated by

sensory feedback of the individual legs are known to exist ([2, 1], modelled in [119]). In

particular, a single stepping leg is able to induce tonic or even rhythmic activity in the

protractor and retractor motoneurons of the neighboring legs. The CPG system is initially

tuned to match experimental data, such that in the absence of input, C1 has a fixed point at
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a hyperpolarized voltage, corresponding to its own silent phase, and C2 has a fixed point at

a depolarized voltage, corresponding to tonic activation. In a successful tetrapodal rhythm

at the level of the CPG, C1 and C2 exhibit periodic behavior, with C1 active for ∼3/4 of

each cycle (corresponding to the retraction phase) and C2 active for the other ∼1/4 of each

cycle (corresponding to the protraction phase), matching the β cycle.

2.2.2 Model Equations

Each CPG component (C1, C2) and each IN (IN3, IN4) is modeled with a pair of ODEs

for voltage (v) and the inactivation of an inward current (h). The voltage equations, while

posed in the Hodgkin-Huxley framework, are relatively simple because the relevant neurons

are non-spiking [4]; the equations feature only a leak current, a slowly inactivating inward

current that we represent as a persistent sodium current, and input terms. Some of these

inputs correspond to synaptic connections between neurons. We model each synaptic activa-

tion level as a steep sigmoidal function of presynaptic voltage, with an activation threshold.

Additional input terms correspond to the time-periodic drive to IN4 from the depressor unit

and the top-down signals to C1 and C2, taken as excitatory synaptic inputs with constant

conductances. The voltage nullcline for each neuron is either cubic or monotone, depending

on the combined inputs that the neuron receives, and the nullcline of each h equation is

sigmoidal.

The equations for the voltages v1, v2 of C1, C2 and v3, v4 of IN3, IN4 take the form

Cmjv
′
j = −Iionj − Iinputj . (1)

In equation (1),

Iionj = gNam(vj)hj(vj − eNa) + gLj(vj − eL)

for

m(vj) = (1 + exp[(vj − θNa)/σNa])−1.
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ThC joint control system 

C1 C2 

IN4 IN3 

CPG 

gapp1 gapp2 

Figure 5: Thorax-coxa (ThC) joint control system. Rhythmic activity of the ThC

joint is controlled by a CPG that receives depressor input β representing sensory feedback

signals about loading of the leg and ground contact, transmitted via a pair of interneurons

(IN), as well as descending signals gapp1,2. Connections denoted by triangles are excitatory,

while those indicated by circles are inhibitory. For further details see [129].
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Moreover,

Iinput1 = gapp1(v1 − esyne) + gcpgscpg(v2)(v1 − esyni)

+ gsyn41s41(v4)(v1 − esyne)

Iinput2 = gapp2(v2 − esyne) + gcpgscpg(v1)(v2 − esyni)

+ gsyn32s32(v3)(v2 − esyni)

Iinput3 = gsyn43s43(v4)(v3 − esyne)

Iinput4 = gapp4β(t)(v4 − esyne)

where gappi denote top-down input strengths, gcpg is the strength of coupling between the

CPG units, gsyn parameters quantify the strengths of other synaptic inputs in the system,

β(t) = H[sin(2πt/τ − Γ)− γ] for H[x] the Heaviside step function, and

sij(vi) = (1 + exp[(vi − θs)/σsj ])−1

for each sij function in the system; note that the σsj depends on the target cell j, whereas

vi corresponds to the source cell i. These expressions are accompanied by the inactivation

equations

h′j = εj(h∞j
(vj)− hj) cosh[(vj − θτ )/στ ] (2)

with

h∞j
(vj) = (1 + exp[(vj − θhj)/σhj ])−1.

The baseline parameter values used throughout this paper are listed in Table 1. Relevant

units are provided there; to avoid clutter, we omit these in figure labels. Rather than four

distinct εj values, we set ε1 = ε2 =: ε and ε3 = ε4 =: εIN . Moreover, we note that 0 < εj � 1

for all j, such that the vj dynamics is much faster than the hj dynamics. Thus, system

(1)-(2) can be viewed as a fast-slow system. Although it is a system with 4 fast and 4 slow

variables, we can visualize its dynamics by considering projections to each (vj, hj) plane. In

this view, system trajectories will spend most of their time drifting in a small neighborhood of

attracting parts of the vj-nullclines on the slow (O(εj)) timescale of equation (2), interrupted

by fast jumps, on the O(1) timescale of equation (1), between these attractors.
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2.2.3 Entrainment

We define entrainment separately for the interneurons and the CPG. For each interneu-

ron, we say it is entrained if for each cycle of the τ -periodic signal β(t), the interneuron has

one active and one quiescent phase, and the interneuron itself exhibits τ -periodic behavior.

We say the interneuron is quasi-entrained if for each cycle of β, the interneuron has one

active and one quiescent phase, and its behavior is 2τ -periodic but not τ -periodic. It may

be possible to have higher-order quasi-entrainment, featuring periods that are larger integer

multiples of τ , but the associated regions of parameter space are too narrow to robustly

identify, so we do not pursue this possibility. We say the interneuron is not entrained if it

does not have one active and one inactive phase per β cycle. In the CPG system, the units

drive motoneurons that induce muscle contraction, and functional rhythms should feature

minimal protractor and retractor co-contraction. Thus, we say that the CPG is entrained

if each of C1, C2 has one active and one inactive phase per β cycle, the activity pattern is

τ -periodic, and the duration of simultaneous C1, C2 activity is below a small time threshold.

We consider simultaneous inactivity as allowable for entrainment since time periods lack-

ing both protraction and retraction are functionally acceptable. For an example of a fully

entrained state, see Figure 6.

2.2.3.1 Entrainment of IN4

To compute entrainment regions in parameter space, we separate IN4, IN3 and the CPG

system C1 and C2. We consider both tetrapodal and tripodal walking patterns, distinguished

by their duty cycles, 3/4-1/4 and 1/2-1/2, respectively, although we mostly focus on the

tetrapodal case because the ideas involved in the tripodal analysis are similar. For IN4, we

use a time-τ map that starts from the cycle phase corresponding to the onset of β drive

and ends at time τ later, just before β turns on again, corresponding to one full β cycle.

To compute the entrained solution, we wish to find an initial condition (v4(0), h4(0)) for

equations (1),(2), specifically for j = 4, on the active branch of the driven v4-nullcline

such that (v4(τ), h4(τ)) = (v4(0), h4(0)). In practice, we search for such initial conditions

numerically. To do so, it suffices to take any initial condition (v4, h4) near the active branch
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Figure 6: The baseline entrained state for the full system in the tetrapod rhythm.

A-D: (V, h)-phase planes for IN4 (A), IN3 (B), C1 (C), C2 (D). Each green (red) dashed

curve is a V -nullcline with the β signal turned on (off). The purple dashed curves indicate the

h-nullclines for the cells, and the vertical dashed black lines mark the synaptic threshold.

The blue curves are projections of the model trajectory onto the four phase planes. The

β signal lowers the voltage nullcline for all cells except C2 (D). E: Voltage time course

of IN4 (blue) along with the pattern of drive from β (purple), enlarged for clarity. Note

that IN4 inactivates slightly after the signal from β ends. F: Voltage time courses of IN3

(gold), C1 (red), and C2 (green), along with β (purple). The inactivation of IN3 and C1

and the activation of C2 occur simultaneously, shortly after the end of the β signal, due to

propagation of the delayed inactivation of IN4. In this example, C1 and C2 activations are

complementary. In (E-F), the horizontal dashed black line indicates synaptic threshold.
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of the driven v4-nullcline, in the basin of attraction of the active branch under equation

(1) with h4 fixed, since the resulting trajectory will approach a small neighborhood of the

v4-nullcline on the fast timescale. Moreover, we find it most effective to break the process

up into pieces, first using a boundary value solver to find a solution with h4(τ) = h4(0),

without worrying about v4(τ). Once we find such a solution, two additional conditions are

necessary and sufficient for the trajectory we have identified to represent a stable entrained

solution: knee clearance and stability. For relevant strengths of input, the v4-nullcline is

cubic-shaped and can be viewed as the concatenation of three branches on each of which

v4 = v4(h4), the most negative and middle of which meet in a left knee (vlk,4(β), hlk,4(β))

and the most positive and middle of which meet in a right knee (vrk,4(β), hrk,4(β)), where

we have indicated explicitly that these knee coordinates depend on β. The knee condition

is that h4(0) > hlk,4(1), since β(t) = 1 when drive is on. This condition ensures that

when β turns on again to start the next τ -cycle, the IN4 neuron will be able to activate

in response (Figure 7). The stability condition is simply that there exists a neighborhood

U of (v4(0), h4(0)) such that all trajectories (v(t), h(t)) with initial conditions in U have

|h(τ) − h4(τ)| < |h(0) − h4(0)|; we focus on the h coordinates, since we can choose U such

that all trajectories under consideration lie arbitrarily close to the v4-nullcline at time τ .

Once we identify a stable solution, we are interested in its basin of attraction. Certain

solutions that start far from the entrained orbit may fail to become entrained and instead

repeatedly become caught on the left branch of the driven v4-nullcline (e.g., Figure 7B). To

compute the upper bound h4,upper on the basin of attraction, we find an initial height h∗4(0)

and corresponding solution (v∗4(t), h∗4(t)) such that h∗4(τ) = hlk,4(1), and set h4,upper = h∗4(0).

Next, for h4,lower, we find h†4(0) such that h†4(τ) = h4,upper, and we set h4,lower = h†4(0). Since

the map from h4(0) to h4(τ) is monotone decreasing, this map has a unique fixed point

in (h4,lower, h4,upper), and since we already checked stability, we know that this fixed point

is stable. Thus, the interval (h4,lower, h4,upper) gives us an approximation to the basin of

attraction for the fixed point; although this could be an overestimate, our numerics suggest

that the dynamics contracts in h4 within this interval, and hence the interval truly represents

the basin.

If the periodic solution does not satisfy the stability condition, then there may be a stable
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Figure 7: An illustration of knee clearance. A: When the trajectory with h4(τ) = h4(0)

satisfies h4(τ) > hlk,4(1) (as indicated by the horizontal dashed black line), the left knee of

the driven nullcline (green) is successfully cleared when β activates, and entrainment is thus

possible. B: Similarly, when h4(τ) = h4(0) < hlk,4(1), the knee is not cleared (horizontal

black dashed line) when β turns on (i.e., when β(t) = 1), causing the cell to remain quiescent

and preventing entrainment. Color coding of nullclines follows Figure 6. Arrows denote the

direction and relative speed of the flow (one arrow: slow, corresponding to h4 dynamics; two

arrows: fast, corresponding to v4 dynamics).
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solution that is either quasi-entrained or unentrained. How can the stable quasi-entrained

solution occur? Let (vp(t), hp(t)) denote the unstable periodic solution. Suppose that on each

cycle, β(t) is activated for t ∈ [0, ητ) mod τ , where 0 < η < 1. Also, assume that hp(t) >

hrk,4(0), such that the periodic solution is active, for t ∈ [0, ηpτ) mod τ with ηp ∈ (η, 1), and

that hp(ηpτ) = hrk,4(0); that is, the solution is caught on the right branch of the v4-nullcline

corresponding to β = 0 (β off) for time t ∈ (ητ, ηpτ) mod τ . Now, consider a perturbation

to the unstable periodic solution; specifically, for the perturbed solution (v̂(t), ĥ(t)), take

an initial condition (v̂(0), ĥ(0)) = (vp(0), hp(0) + δh) for 0 < δ � 1, which lies at a larger

h4 value than that of the periodic solution at time 0. We have ĥ(ητ) > hp(ητ), and hence

ĥ(ηpτ) > hp(ηpτ) = hrk,4(0). Thus, the perturbed solution jumps down at time η̂τ > ηpτ ,

and we have h′p(t) > 0, ĥ′(t) < 0 for t ∈ (ηpτ, η̂τ) such that ĥ(η̂τ) = hrk,4(0) < hp(η̂τ).

The perturbed and periodic trajectories cannot cross on the 1-dimensional left branch of the

v4-nullcline in the silent phase, and hence ĥ(τ) < hp(τ), when β turns on and the cycle ends.

In other words, a perturbed solution that starts above the unstable periodic orbit ends up

below the unstable periodic orbit after one β cycle.

Similar reasoning gives us ĥ(τ) > hp(τ) at the end of the next cycle. That is, the

perturbed trajectory alternates cycles where it lags the unstable periodic solution with cycles

where it leads. This mechanism can give rise to a 2τ -periodic quasi-entrained solution (for

example, see Figure 8). Moreover, a similar line of argument shows that such a 2τ -periodic

orbit must involve a time interval spent on the right branch of the undriven v4-nullcline,

an interval spent on the left branch of the driven v4-nullcline, or both. Finally, in the

absence of 2τ -periodic quasi-entrained behavior, we can observe more complicated patterns

featuring higher-order entrainment or apparent lack of entrainment, but we do not pursue

these non-robust cases in this work.

In the tripodal case, it happens that IN4 may meet the entrainment criteria, but the

duty cycle drifts quite far from that of β, so we additionally require that the duty cycle

remains within 10% of that of β for a solution to be considered entrained.
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Figure 8: Quasi-entrainment of IN4. A: When the periodic solution (dashed brown)

is unstable, we may have quasi-entrainment. If drive is low enough, this instability can

cause a failure of entrainment as the hlk,4(1) (green) moves up. Nullclines are as before,

with the dashed black line indicating the synaptic threshold. Note that the quasi-entrained

trajectory (blue) spends some time on the right branch of the undriven v4-nullcline (red)

on every second cycle. B: Voltage trace of the quasi-entrained state. The purple curve is

the activity of β, enlarged for visibility. The dashed black line indicates synaptic threshold.

When the trajectory spends time on the right branch of the undriven v4-nullcline, the active

phase of IN4 lasts beyond the time when β shuts off.
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2.2.3.2 Entrainment of IN3

With the description of entrainment of IN4 complete, we briefly turn our attention to

IN3. The equations for IN3 are identical to those for IN4 except that Iinput3 depends on

s43(v4), the input from IN4, rather than on β(t). Thus, entrainment, or lack of entrainment,

in IN3 will be dictated by that of IN4 together with the strength of drive from IN4 to IN3.

We consider three cases as the regimes where functionally relevant activation patterns may

occur. First, if IN4 is entrained and provides strong drive to IN3, then IN3 will be entrained,

and any lag in the time when IN4 shuts off relative to the offset of β yields continued drive

to IN3, so shutoff of IN4 and IN3 will be simultaneous. Second, if IN4 is entrained and

provides weak drive to IN3, then IN3 will enter a quasi-entrained state. Third, if IN4 is

quasi-entrained and provides strong drive to IN3, then IN3 will follow its drive and become

quasi-entrained as well.

2.2.3.3 Analysis of the CPG

To compute entrainment profiles for the CPG, we vary parameters over a two-dimensional

projection of interest in parameter space and consider trajectories starting from initial con-

ditions for C1, C2 taken in small neighborhoods of the respective stable fixed points of each

cell (see ThC Network). In addition to entrainment, we investigate duty cycles. To analyze

whether and how top-down drive can cause the escape from its β cycle, and hence alter the

resulting walking pattern, we also consider two parameter tunings of the CPG: a pacemaker

(PM) tuning in which the CPG oscillates in the absence of interneuron input when given

sufficient top-down drive and a nonpacemaker (NPM) tuning in which C1 is always quiescent

and C2 is always tonically active in the absence of input from the interneurons. The PM

tuning is obtained from the NPM by adjusting θh1 to introduce a small rightward shift in the

h1-nullcline. Entrainment effects with these two tunings share many qualitative similarities,

albeit with some quantitative differences, and we will assume the NPM tuning except where

otherwise indicated.

To characterize entrainment, we consider nullcline configurations as well as the frequency

of the particular walking pattern as top-down (gapp1 , gapp2) and bottom-up (gsyn41 , gsyn32)
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input strengths are varied. We shall see that the entrainment profile of the CPG will be

quantitatively perturbed in the case that either IN4 or IN3 is quasi-entrained rather than

entrained; however, the main mechanisms of entrainment breakdown and recovery in the

CPG are qualitatively similar across these two cases. Finally, we will consider a measure of

robustness of system performance by investigating the possibility of continued entrainment

of the CPG in the case that the connection to the CPG from either interneuron has been

damaged or destroyed. We find that the CPG is capable of maintaining some form of

entrainment for low τ , and while there may be some CPG-specific failure at very low τ , the

interneuron subsystem will fail before the CPG, and so these failures are irrelevant to the

entrainment of the circuit. Additionally, we find that with sufficient bottom-up signalling

to both CPG units, top-down modulation is unnecessary, and hence the CPG system can

maintain entrainment without top-down drive.

2.2.3.4 Numerical Methods

For IN3 and IN4, we utilized the built-in boundary value solver in Mathematica 11.0,

with the initial condition vi(0) = 20 and boundary condition hi(0) = hi(τ), where t = 0

corresponds to the beginning of the β-on part of a cycle; note that any choice of vi(0) above

the right branch of the vi-nullcline would give similar results based on the fast-slow structure

of equations (1),(2), and hence the choice of 20 was fairly arbitrary. Those solutions with

hi(τ) < hlk,i(1) were discarded, as they indicated knee clearance failure and hence were

incompatible with entrainment, as discussed above. The remainder were numerically tested

for stability, and those that were stable were considered to be entrained.

In the absence of stable entrainment, we considered solutions with initial conditions

(vi(0), hi(0)) = (20, h∗i ) for various choices of h∗i , over a 2τ time interval. We used a bisection

method to seek solutions with hi(0) = h∗i = hi(2τ) and hi(τ) > hlk,i(1), and we called

such solutions quasi-entrained; when such solutions were not found, the system was declared

to be unentrained (which includes any higher-order quasi-entrainment). We computed the

attraction basin of each entrained or quasi-entrained solution as described previously (see

Entrainment of IN4) by implementing the bisection method numerically.
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If IN4 and IN3 are entrained by β, then for our analysis of the CPG, rather than sim-

ulating the full 4-neuron system, we replaced the IN4 and IN3 dynamics with a Heaviside

function using a precomputed duty cycle to account for the interneuron inactivation latency.

That is, for a given parameter pair (gapp4 , τ), when IN4 is entrained the duty cycle will be

slightly different from 3/4-1/4, so we computed the specific duty cycle with this parameter

pair and fed this into the Heaviside function, giving the CPG units synaptic input 1 (cor-

responding to excitation of C1 and inhibition of C2) when IN4 was active and 0 otherwise.

We then computed the flow of the CPG equations for each parameter pair with a fixed ini-

tial condition, discarded a transient spanning ten time-τ cycles, and then checked the CPG

entrainment conditions – τ -periodicity of the orbit, one active and one inactive phase per

period for each CPG unit, and absence of simultaneous C1 and C2 activity – after starting

the orbit from its position at the end of the transient.

2.3 Results

In this section, we start from baseline parameters that yield entrainment, and we identify

major mechanisms of entrainment breakdown and recovery as parameters are varied in the

interneuron subsystem and in the CPG subsystem. For the CPG, we focus on the non-

pacemaking (NPM) tuning in which the CPG requires rhythmic IN input to oscillate, but

most of the mechanisms discussed applied to the pacemaking (PM) tuning as well; see

the subsection 2.3.3.2 for a discussion of some exceptions and details. The entrainment

breakdowns arise from effects on the nullcline configuration of the system under study that

lead either to a change in fixed point properties or to a collision of a trajectory with a nullcline

when input level changes. After a breakdown, a rhythm can in some cases be recovered by

other parameter variations that also affect nullcline configurations.
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Table 1: Stick Insect Model Parameters C∗ parameters denote capacitances, which differ

between interneurons and CPG units, g∗ parameters are conductances, and e∗ are reversal

potentials, with esyne and esyni the reversals for excitatory and inhibitory synapses, respec-

tively. θ∗ and σ∗ are half-activation and slope parameters, respectively, for the associated

sigmoid functions. Γ denotes a phase-shift in the β signal, while γ represents the activation

threshold, controlling the start time and duty-cycle of the ascending drive, respectively. ε∗

give the time constants of the slow variables, which differ for the CPG and IN subsystems.

In cases where two values are given, the first corresponds to the NPM tuning and the second

to the PM tuning (see text for details). Finally, note that gappi and gsynji values (where j

denotes the source cell and i corresponds to the cell indicated at the top of the table) are

sometimes varied, as indicated in the text.

C1 C2 IN3 IN4 C1 C2 IN3 IN4

gcpg (mS/cm2) 1 1 - - gappi (mS/cm2) 0.1 0.1 - 1

gsynji (mS/cm2) 0.7 0.7 1 - Cm (µF/cm2) 1.1493 1.1493 - -

Cmin (µF/cm2) - - 0.21 0.21 gna (mS/cm2) 10 10 10 10

θNa -37 -37 -37 -37 σNa -6 -6 -6 -6

gl (mS/cm2) 2.8 2.8 - - glin (mS/cm2) - - 5.8 5.8

el (mV) -65 -65 -65 -65 ena (mV) 50 50 50 50

esyni (mV) -80 -80 - - esyne (mV) 0 0 0 0

Γ - - - 7π/4 γ - - - −
√

2/2

θs -43 -43 -43 -43 σsi -0.1 -0.1 -0.1 -2.381

θτ -30 -30 -30 -30 στ 12 12 12 12

θhi(NPM) -60 -30 -58 -58 θhi(PM) -55 -30 -58 -58

σhi 10 6 1 1 ε 0.0019 0.0019 - -

εIN(Tetra) - - 0.0008 0.0008 εIN(Tri) - - 0.0018 0.0018
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2.3.1 Interneuron Subsystem

As IN4 is the only cell to receive input directly from the β signal, its entrainment depends

only on the strength of the β signal and the length of the period τ . Our specific results depend

on the fact that in the parameter tuning that we use for IN4, which is based on [5, 4, 97],

as drive strength increases, the fixed point remains on the left branch of the v4-nullcline,

where it is stable, until the nullcline switches from cubic to monotone increasing. Once that

occurs, additional increases in drive simply move the stable fixed point to gradually more

depolarized voltages, but these remain below the synaptic threshold for the drive levels we

consider.

As discussed in section 2.2, in an entrained parameter regime,

h4(τ) = h4(0) > hlk,4(1), (3)

where hlk,4(1) is defined from the driven v4-nullcline. If drive is weakened via a reduction

in gapp4 , hlk,4(1) increases. If the period τ of β(t) is reduced, the trajectory from a given

initial point (v4(0), h4(0)) ends up with a smaller h4(τ). Both of these changes work against

condition (3). Correspondingly, we observe that each of these changes can cause a loss of

entrainment, with h4(τ) < hlk,4(1), such that the solution collides with the left branch of the

driven nullcline and IN4 fails to activate when β turns on. This failure can result regardless

of the stability of the solution h4(τ) = h4(0) for the time−τ flow map: if the solution is

stable, it still lies below the knee, and if the solution is unstable, then any potential 2τ -

periodic solution will have either h4(τ) < hlk,4(1) or h4(2τ) < hlk,4(1); see Figure 9 for a

display of the highest value of h4 obtained for each of a collection of (τ, gapp4) pairs as well

as the respective basins of attraction for the entrained and quasi-entrained solutions.

It is important to note that the duty cycle of IN4 is rarely exactly that of β. In fact,

in most cases, when β turns off, the IN4 trajectory collides with the right branch of the

undriven v4-nullcline, such that IN4 briefly remains active until h4(t) = hrk,4(0), causing a

slight extension of its active phase relative to the on duration of β (e.g., Figure 6E).

As noted previously (see subsection 2.2.3.2), IN3 is functionally identical to IN4. Thus,

if IN4 is entrained, either with or without an extended active period relative to β, then IN3
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Figure 9: The entrainment region in (τ, gapp4)-space for IN4. A: The blue surface

denotes the highest h4 value of the stable entrained or quasi-entrained orbit over a region

of (τ, gapp4) values. The green and red surfaces denote the upper and lower boundary of

the orbit’s basin of attraction, respectively. B: The boundaries of entrainment and quasi-

entrainment in (gapp4 , τ) parameter space. The entrained region lies above and to the right

of the blue curve and corresponds to the color-coded region in A. The quasi-entrained region

lies below the blue curve and to the right of the orange curve.
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can undergo the same, left-knee-based failure mechanism as IN4 as the input strength gsyn43

or τ is reduced. If IN4 is not entrained, then IN3 does not receive drive during part or all of

the time when β is active, and hence IN3 will not be entrained either.

2.3.2 CPG Subsystem

We recall that in the absence of coupling between C1 and C2 and input from IN3 and

IN4, C1 has a critical point on the left branch of the v1-nullcline, at a hyperpolarized voltage

corresponding to an inactive state, and C2 has a critical point on the right branch of the

v2-nullcline, at a depolarized voltage corresponding to an active state. For an oscillation of

the CPG to occur, C1 must activate and then return to inactivity, while C2 must become

inactive and then resume its activity. The activation of C1 is induced by the drive from IN4.

Once that drive is off, the switch back to C1 inactive and C2 active will be initiated by one

of two events: either v1 will fall below the synaptic threshold, releasing C2 from inhibition

and allowing it to activate, or v2 will escape, rising above the synaptic threshold such that

C2 inhibits C1 [83, 45, 40]. We analyze these two cases separately and then discuss some

additional considerations.

2.3.2.1 Entrainment involving release by C1: failure and recovery

First, suppose that in the entrained CPG solution, after IN4 turns off, C1 releases C2

to return the system to its baseline state. Unlike the interneurons, the CPG system can

undergo various changes to its fixed point structure as parameters vary. One such change is

that an Andronov-Hopf bifurcation may occur in the driven regime for C1, as the drive level

coming from either top-down gapp1 or bottom-up gsyn41 is increased. Here, the fixed point

where the v1- and h1-nullclines intersect moves from the right driven branch of its cubic

v1-nullcline to the middle branch (Figure 10A). In this case, h1(t) = hrk,1(1) may occur for

some t < ητ , while β is still on (point 2 in Figure 10A), where we recall that we defined

ητ as the duration of β(t) activation within each cycle. The trajectory for C1 will then

jump down to the left branch of the driven v1-nullcline and may cross the synaptic threshold

v1 = θs, releasing C2. If this release happens too soon or the inhibition from C1 to C2 is
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too weak, however, then C2 will not be able to activate. Now, if the drive to C1 is not too

large, the time before h1 reaches hlk,1(1) is longer than the remaining time over which C1

receives bottom-up input. Hence, when that input turns off, C1 returns to the left branch of

the v1-nullcline and C2 eventually activates, maintaining entrainment. For even larger drive,

C1 will reach the left knee of the driven v1-nullcline, where h1 = hlk,1(1) (point 3 in Figure

10A), and will re-activate, resulting in two C1 activations during a single β cycle of period

τ (Figure 10B), which does not qualify as entrainment.

Given this failure, there are several parameter manipulations that can restore entrain-

ment. First, an increase in the pace of walking, implemented by lowering τ , can recover

entrainment, When τ is lowered, assuming that IN4 remains entrained, the duty cycle of

IN4 remains approximately 3/4-1/4, and so when C1 moves to the left branch of the driven

v1-nullcline, the remainder of the drive period is short enough that h1(ητ) < hlk,1(1) when

the drive period ends at t = ητ , preventing C1 from activating for a second time. C1 still

fails to release C2 when it first jumps down from hrk,1(1) (point 2 in Figure 11A), but since

there is no simultaneous activity of C1 and C2, the solution still represents entrainment.

Although in this case the duty cycle of the CPG can be quite different from that of β, and

we have simultaneous quiescence, each cell undergoes exactly one tonically active and one

quiescent phase during each τ period (Figure 11).

Although this failure can be induced by increasing the drive to C1, it can also be remedied

with an additional increase in this drive (either gapp1 or gsyn41). If the drive to C1 is increased

enough, the driven v1-nullcline loses its cubic structure and becomes monotone increasing.

This approach removes the release mechanism altogether, forcing the CPG oscillation to be

entirely dependent on the oscillation of the bottom up signalling, and hence on β. While

sufficient, applying enough drive to ensure monotonicity is not always necessary, as increases

in drive also lower the right knee of the driven v1-nullcline, increasing the time before C1

jumps down to its quiescent driven branch (Figure 12).

A third mechanism by which this failure can be remedied is by top-down stimulation of

C2. Higher top-down drive onto C2 promotes the activation of C2 when released by C1.

Specifically, when C1 leaves the active branch of the driven v1-nullcline, C2 loses a source

of inhibition. When the inhibition on C2 from IN3, gsyn32 , is strong relative to its top-down
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Figure 10: Entrainment failure after an AH bifurcation in the phase plane of

C1, relating to a premature jump-down. A: C1 phase plane. Note that the driven

v1-nullcline (green) and h1-nullcline (purple) intersect on the middle branch of the former.

At point 1, drive turns on and C1 becomes active. At point 2, h1 = hrk,1(1) and C1 jumps

down. In this simulation, this does not release C2 (not shown), and C1 reactivates at point

3, where h1 = hlk,1(1). At point 4, drive turns off and C1 returns to the inactive, undriven

v1-nullcline (red). The vertical black dashed line indicates the synaptic threshold. B: Time

course of v1 and v2 during the failed release (v1 blue, v2 orange). The purple curve indicates

the drive from IN4 due to β, enlarged for visibility, and the dashed black line indicates the

synaptic threshold.
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Figure 11: Recovery of CPG entrainment by decreasing the bottom-up drive

period τ . A: At point 1, drive begins and C1 activates. At point 2, C1 jumps down but C2

fails to activate (not shown). Because of the relatively small value of τ , the drive ends while

C1 is at point 3, before it can reactivate, causing C1 to jump down, allowing C2 to jump

up, and restoring the entrained rhythm. Note that the nullclines have not changed from

Figure 10. B: Time course of v1 (blue) and v2 (orange) with reduced τ . Note that while the

voltage v1 begins to climb slightly after an initial drop-off around time 350, it remains below

synaptic threshold (dashed black).
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Figure 12: Recovery of CPG entrainment by increase in drive to C1. A: Increasing

the drive to C1 can restore entrainment by removing the release mechanism. With increased

drive, the v1-nullcline becomes monotonic or nearly monotonic; C1 does not jump down

below synaptic threshold while β is active and hence does not release C2. B: Time course of

v1 and v2 (v1 blue, v2 orange) for the recovered entrained solution. Note that C1 falls below

synaptic threshold only when the drive β turns off.
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drive, gapp2 , the removal of inhibition from C1 does not change the fixed point structure for

C2: it retains a stable quiescent fixed point and fails to activate. With increased gapp2 , the loss

of inhibition from C1 that arises when C1 jumps down to the left branch of the v1-nullcline

pushes the C2 system through a fold bifurcation and annihilates the stable quiescent fixed

point. With this fixed point destroyed, C2 can jump up to the active state. Once active,

C2 inhibits C1, which then moves to an intermediate v1-nullcline of partial drive and partial

inhibition. In this case, the middle branch fixed point is destroyed, and C1 now has a stable

quiescent fixed point. As before, the duty cycle has changed, but the CPG still meets the

requirement of one active and one inactive phase of each unit per τ period (see Figure 13).

In summary, in this regime, when entrainment is lost, it can be recovered by decreasing

τ , increasing drive to C1, or increasing gapp2 , the top-down drive to C2. Interestingly, these

recovery mechanisms lead to different CPG output patterns and duty cycles.

2.3.2.2 Entrainment involving escape by C2: failure and recovery

We now change gears and turn our attention to entrained solutions for which, after IN4

and IN3 turn off, C2 becomes active by escape, without a termination of the inhibition

from C1. This escape regime requires a sufficiently strong gapp2 ; how strong is sufficient

in turn depends on the inhibition strengths gsyn12 , gsyn32 . That is, as the top-down drive

gapp2 to C2 is increased in the presence of full inhibition by C1 and IN3, the C2 subsystem

will undergo a fold bifurcation (cf. Figure 13), although the stronger gsyn12 , gsyn32 are, the

larger gapp2 must be to make this happen. In this case, with a large enough period τ , C2

can return to its tonically active phase via an escape mechanism, where h2(t) = hlk,2(1) for

some t < ητ . When this occurs, C2 inhibits C1 and the trajectory jumps to an intermediate

v1-nullcline in the (v1, h1) plane that reflects the presence of this inhibition before the end

of the β drive signal. Entrainment success or failure then depends on drive to C1. If C1

has evolved to satsify h1(t) < hinhrk,1(1), where the superscript inh represents the fact that

C1 receives inhibitory input from C2, then its trajectory jumps to the silent phase and an

entrained solution results. If, however, gapp2 is too strong, then C2 escapes too soon, with

h1(t) > hinhrk,1(1). In this case, when C2 escapes, the C1 trajectory collides with the active
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Figure 13: Recovery of CPG entrainment by increased top-down drive to C2. A-

B: Phase plane view of a stable entrained orbit for C1 (A) and C2 (B). Increasing top-down

drive to C2 can restore entrainment via a fold bifurcation in the C2 system. At point 1, drive

begins, activating C1 and inactivating C2. At point 2, C1 successfully releases C2 due to a

fold bifurcation in the fixed point structure of C2 as the v2-nullcline moves from the green

to the lower orange position (instead of the upper orange position that occurred for smaller

gapp2). From point 3, both cells travel along their intermediate nullclines (with input from

IN4 and IN3 still on) until point 4, when the drive from the interneurons ends. The phase

plane for C1 has not changed relative to Figure 10. For C2, the green dashed v2-nullcline

arises due to inhibition from C1 and IN3, while the red dashed v2-nullcline corresponds to

the absence of inhibition. The two dashed orange v2-nullclines occur for a partially inhibited

state, after C1 has become quiescent but IN3 is still active, for two different levels of gapp2 .

As top-down drive to C2 is increased, the orange knee moves below the h2-nullcline. C: A

voltage trace of the successfully entrained solution. The blue curve is v1, the orange v2. Note

that although the duty cycle is approximately 1/2-1/2, entrainment conditions are satisfied.
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branch of the inhibited v1-nullcline and the CPG enters a period of simultaneous activity

of C1 and C2. This appears to be the only mechanism by which failure occurs due to

simultaneous activity (see Figure 14).

Decreasing τ allows C2 to remain quiescent for a larger proportion of the active β cycle,

reducing the time of co-activation of C1 and C2. For τ low enough, the time required for

C2 to achieve h2 = hlk,2(1) and escape becomes longer than the extent of the active phase

of the β cycle, which restores entrainment, since there is no longer an escape of C2 with C1

active (see Figure 15).

This failure can also be remedied by weakening gapp1 or gsyn41 . As drive to C1 is weakened,

the right knee of the intermediate v1-nullcline moves up, until at the moment of C2 escape,

C1 lies below the knee and can hence jump directly to the left branch of the v1-nullcline.

Now, since C1 is quiescent for the remainder of the β cycle, we have no simultaneous activity

and have one active and one inactive phase per cycle for each cell, and thus the requirements

for entrainment have been restored (see Figure 16). Interestingly, in the solution with en-

trainment restored by this mechanism, C1 and C2 have almost fully swapped their duty

cycles relative to the original entrained solution, with C2 on and C1 off for about 3/4 of each

period.

More generally, the effects of this mechanism on the duty cycle can be quite extreme,

with only small changes in gapp2 leading to large changes in the duty cycle and, as we have

just observed, with some cases of the duty cycle being completely reversed. The latter regime

could possibly relate to backward stepping, which has been found to feature such a reversal in

protractor and retractor motor neuron activation and in the synaptic drive to these neurons

[27, 13], an idea which may warrant further investigation in future work. This parameter

variation mechanism therefore shows some promise as a means by which top-down signalling

can override the maintenance of walking patterns by bottom-up sensory signals and ease

transitions to different walking pattern modalities (see Figure 17).

In summary, with relatively large gapp2 that gives rise to C2 escape, failure can occur

when gapp2 becomes too strong relative to the inhibitory signal strength gsyn32 . In some

cases, decreasing drive to C1, via gapp1 or gsyn41 can restore entrainment by preventing co-

activation of C1 and C2, but at the cost of a major difference in duty cycle between the CPG
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Figure 14: Entrainment failure when C2 escapes and C1 remains active. A-B:

Phase plane views for C1 (A) and C2 (B) show projections of a trajectory representing failed

entrainment. At point 1, drive and inhibition due to β are applied to C1 and C2 from

IN4 and IN3, respectively. At point 2, C2 escapes, and it returns to the active phase at

point 3; meanwhile, although C1 is inhibited by C2, it becomes caught on the active branch

of the intermediate v1-nullcline (orange). From point 3 to point 4, C1 and C2 are both

active. At point 4, C1 returns to quiescence, causing C2 to move up to the intermediate

v2-nullcline. Finally, at point 5, the signal due to β ends and both CPG units jump to

corresponding voltage nullclines, where they evolve back to position 1. C: A voltage trace

of the unentrained solution shown in (A-B). Blue shows v1 and orange v2. Note that there

is an extended period of time when both cells are active together.
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Figure 15: Recovery of CPG entrainment with C2 escape by decreasing τ . A-B:

Phase planes for C1 (A) and C2 (B). With small enough gapp2 and a fast pace (small τ),

C2 fails to escape before the end of the active phase of the β drive, restoring entrainment.

C1 and C2 are at point 1 when β activates. With low enough τ or top-down drive to C2,

cells C1 and C2 reach point 2 when β turns off, without an escape of C2, and entrainment

is restored. C: A voltage trace of the resulting entrained solution (v1 blue, v2 orange). Note

that although C2 is capable of escape if the period τ were long enough, this does not occur

for this parameter set.
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Figure 16: Recovery of CPG entrainment with C2 escape by decreasing drive to C1. 

A-B: Phase planes for C1 (A) and C2 (B) showing the restored entrainment. At point 1, β 

activation begins. Later, at point 2, C2 escapes. When this happens, h1 lies below the right 

knee of the relevant v1-nullcline and hence C1 returns to quiescence, briefly continuing to 

provide inhibition to C2 until point 3, when v1 falls below θsyn. At point 4, β activation ends, 

allowing each cell to jump to its corresponding β-off nullcline. C: A voltage trace (v1 blue, v2 

orange) of one cycle of the entrained trajectory shown in (A-B). Notice that the duty cycles 

have been nearly completely reversed compared to the original CPG rhythm.
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and β. Decreasing τ , on the other hand, gives a recovery without this change in pattern.

2.3.2.3 Overdriven C1

C1 may receive enough top-down drive to cause a timing-dependent 2τ -periodic failure.

In this case, as the β cycle ends, say at time toff = ητ mod τ , drive to C1 ends. At

that moment, C1 is neither being driven by IN4 nor inhibited by C2. When gapp1 is large,

the resulting v1-nullcline is monotonic; we have seen how this monotonicity can be useful

for entrainment in subsection 2.3.2.1. But if gapp1 is so large that v1(toff ) > θsyn, then

C1 remains active when β turns off. With C1 active, C2 is prevented from activating and

τ -periodic entrainment is lost (see Figure 18).

Interestingly, this behavior is made worse by weakening bottom-up drive, gsyn41 , to C1.

As gsyn41 is decreased, the active phase fixed point for C1 is pushed to larger h1 and smaller

v1. When β turns off, the trajectory in the (v1, h1) phase plane jumps to a nullcline on which

v1 increases with h1. Eventually, the h1 coordinate of the fixed point becomes large enough

that when β turns off and the trajectory jumps, v1 > θs, preventing the release of C2 from in-

hibition from C1, and thus C1 remains active on every second τ -period. Correspondingly, we

obtain the counter-intuitive seeming result that in the face of excessive top-down drive gapp1

to C1, increasing gsyn41 can restore entrainment (see Figure 19). With this added bottom-up

drive to C1, the active fixed point is pushed to larger v1 and smaller h1. Furthermore, at

larger v1, the h∞ function takes on more extreme values, causing the trajectory to travel

down the v1-nullcline slightly faster, which allows h1 to reach smaller values. As the value

of h1 is lowered, the corresponding v1 value on the β-off v1-nullcline falls below synaptic

threshold, ending inhibition from C1 to C2 and allowing the entrained rhythm to proceed.

As in the C1 release case, the loss of entrainment due to excessive gapp1 can also be

remedied by increasing gapp2 (see Figure 13). Again, as C1 becomes and remains active,

C2 quickly approaches a stable quiescent fixed point. With increased gapp2 , this fixed point

undergoes the same fold bifurcation that came into play previously, enabling C2 to escape

and return to the active phase when inhibition from IN3 to C2 turns off (Figure 20).
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Full Duty Cycle

Duty Cycle Decay

C2 Escape

C2 Escape Failure

(Low Duty Cycle)

Figure 17: Entrainment featuring escape by C2 allows for a broad range of duty

cycles in the CPG. The orange surface indicates the duty cycle of the CPG over a range of

(gsyn32 , gapp2), with C1 in a baseline tuning. The flat section at a duty cycle of 0.75 represents

a regime in which the CPG follows the duty cycle of β well; the 0.75 refers to the fraction of

each cycle for which C1 is active. From there, sufficient increases in gapp2 and decreases in

gsyn32 can lead to the reduction in the fraction of each cycle with C1 active, down to about

0.2 before entrainment is lost.
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Figure 18: Bottom-up and top-down signalling to C1 can combine to prevent C1

inactivation on every second cycle. A-B: Phase planes for C1 (A) and C2 (B). In A,

the orange v1-nullcline occurs when C1 is receiving no input, since the β-dependent drive

has ended and v2 < θsyn. On one of every two cycles, v1 remains above synaptic threshold

on the orange v1-nullcline, preventing C2 activation, and entrainment fails. C: Time courses

of v1 (blue) and v2 (orange) in the case shown in A-B. Note that v1 falls to just above the

synaptic threshold (dashed black line) when β (purple) turns off.
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Figure 19: Paradoxical restoration of entrainment by increase in ascending drive

to C1 when gapp1 is strong. A: C1 phase plane. The brown and green dashed curves are

the driven v1-nullclines for small and large gsyn41 , respectively. When gsyn41 is sufficiently

large, the trajectory (blue) reaches small enough h1 values by the time that β turns off that

when it jumps down, it reaches v1 < θs on the corresponding v1-nullcline (orange), releasing

C2. Note here that the scale of h1 has been shortened relative to other phase plane plots

to provide a zoomed view of the key region. B: Time courses of v1 (blue) and v2 (orange).

Again note that C1 now falls below threshold at the end of the β activation period.
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Figure 20: Recovery of entrainment in the overdriven C1 case by increase in gapp2.

Phase planes for C1 (A) and C2 (B). As in the C1 release case, increasing drive to C2

can move its intermediate nullcline (orange) through a fold bifurcation. Now, when C1 β

activation ends, C2 is free to return to its active state, inactivating C1. C: Time courses of

v1 (blue) and v2 (orange).
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2.3.2.4 Summary of basic mechanisms

Let us assume that the β period τ is large enough to yield entrainment of IN4 and IN3,

and the drive to C1 is large enough to allow it to be recruited. Surveying the analysis so far,

we observe that CPG entrainment involves the recruitment of C1 by β followed by a switch

from C1 active to C2 active either due to release of C2 by C1, for relatively small gapp2 , or

the escape of C2, for relatively large gapp2 . In both cases, entrainment to an input signal with

a fixed duty cycle can be lost if τ becomes too large, corresponding to a walking pattern

that is too slow for that input, or if gapp1 or gapp2 is chosen to lie at a problematic level.

Interestingly, we see non-monotonicity in the effects of these top-down drive parameters;

there are cases when one or both could be increased to restore entrainment, cases when one

or both could be decreased to restore entrainment, and intermediate cases where changes

in both directions can restore entrainment, although as our figures show, the details of the

entrained rhythm do vary across entrained parameter regimes. Thus, the top-down drives in

the CPG system offer a powerful control system, and tuning of top-down drives in parallel

with modulation of bottom-up input strengths [61, 62] would allow entrainment to occur

over the broadest possible range of walking paces.

2.3.3 Generalizations

We have considered entrainment to the tetrapodal drive signal when the CPG system

is in a non-pacemaking (NPM) mode and hence does not oscillate in the absence of this

bottom-up signal. We now go on to consider three scenarios beyond this baseline regime,

namely scenarios with certain signaling pathways removed, with the CPG in the pacemaking

(PM) mode, or with a tripodal drive signal.

2.3.3.1 Loss or removal of signaling pathways from interneurons

The exact wiring of the network displayed in Figure 5, particularly for the interneuron

subsystem that conveys the sensory information to the CPG, is not known. The wiring

diagram shown is based on experimental data and reasonable neurophysiological assumptions
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made for the stick insect walking system as well as on numerical simulations made with

constructed models [126, 129, 128]. However, the suggested network was never analyzed

with respect to redundancy in the way that sensory information is transmitted to the CPG.

Interestingly, we found that under some conditions, the CPG can maintain entrainment

even when some synaptic connections associated with the interneuron subsystem are re-

moved, suggesting that the system does feature some redundancy. We next consider how

this effect can occur.

We require that IN4 is not eliminated entirely, as it is the only cell receiving the β signal.

If the synapse projecting from IN4 to either C1 or IN3 is eliminated (gsyn41 = 0 or gsyn43 = 0,

respectively), however, then the CPG can still maintain entrained oscillations over a certain

parameter regime. That is, oscillating drive from IN4 to C1 alone is capable of maintaining

entrainment, as is oscillating inhibition from IN3 to C2.

Consider first what happens if gsyn41 = 0. In this case, first suppose that gapp1 is small

but C1 is still able to activate when C2 becomes inhibited by IN3. The resulting CPG duty

cycle fails to exceed 1/2-1/2 because C1 jumps down from the active phase and releases C2

to activate before the end of β. Figure 21 shows the duty cycle of the CPG in the case of

gsyn41 = 0, with a low, fixed gapp1 . The nonmonotonicity of the boundary at low gapp2 is due

to the following: Starting on the plateau, with gsyn32 ≈ 0.6, the CPG is entrained due to the

release mechanism discussed in section 2.3.2.1. As gapp2 is lowered, we find a new, timing-

dependent entrainment failure mechanism. In this failure mode, C2 is not driven sufficiently

to allow for escape; thus, the activation of C2 depends on the loss of inhibition from β (via

IN3) and the activation of C1 requires the inactivation of C2 due to the onset of inhibition to

C2 from β. In this regime, however, the intermediate v2-nullcline of C2 corresponding to the

presence of inhibition from IN3 but not C1 has its right knee above synaptic threshold. With

small enough τ , if C2 begins its active phase at t0 = 0, then at t1 = τ/4, h2(t1) > hrk,2(0),

the intermediate right knee, and so when β turns off, the trajectory collides with the active

branch of this intermediate nullcline and C2 remains active, while C1 remains inactive due

to the persistence of inhibition from C2 (see Figures 22, 23).

As gapp2 is increased, C2 may escape before C1 releases, allowing the escape-dependent

mechanism to dominate and providing another window of entrainment, before it is again lost
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due to early escape, as in Entrainment involving escape by C2: failure and recovery. The

boundary between the flat portion of the surface and the curved portion arises where the

times associated with the escape and release mechanisms exactly balance, so that the two

events occur simultaneously.

Next, consider what happens as gapp1 is increased with gsyn41 = 0. With sufficiently large

top-down input to C1 and moderate top-down input to C2, the CPG can recover its 3/4-1/4

duty cycle, even though gsyn41 = 0. With enough top-down drive to C1, the active v1-nullcline

of C1 becomes monotonic, preventing early release, and the inactive v1-nullcline maintains

its quiescent fixed point; thus, in the resulting oscillation, transitions occur through the

actions of β on C2.

The other reduced signaling scenario to consider is gsyn43 = 0. Under this condition, C2

no longer receives input from IN3 since IN3 no longer activates and hence the inactivation

of C2 is entirely reliant on inhibition from C1. First, C1 needs to activate; it can do so when

it receives excitation from IN4, but only if gapp1 is not too small relative to the strength

of the inhibition from C2 to C1. A danger here is that if the inhibition from C1 to C2 is

too weak, or gapp2 is too strong, then entrainment can fail due to co-activation of C1 and

C2. A second pitfall for small gapp1 , even if C2 does inactivate, is that C1 will be in the

release mode and will leave the active phase before the end of β. Thus, although entrainment

occurs, the CPG again fails to maintain the duty cycle of its input. Increasing gapp1 can help

to increase the duty cycle as it did with gsyn41 = 0. Thus, we see that by top-down control -

specifically, tuning up gapp1 and tuning down gapp2 - the CPG can maintain function despite

loss of inhibition from IN3 to C2.

In summary, the wiring diagram shown in Figure 5 appears to include some redundancy,

in that the ascending β signal is transmitted to the CPG via two pathways, namely IN4-to-

C1 and IN4-to-IN3-to-C2, rather than just to one. Our analysis shows that the dual pathway

system is not necessary for entrainment of the CPG to the β signal. Without both pathways,

however, the maintenance of the duty cycle of the tetrapodal walking pattern by the CPG

becomes more difficult and requires quite strong top-down input to C1.
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Escape Regime

Equilibrium Line

τ-Dependent Failure

Figure 21: With loss of part of the ascending signaling pathway and low top-down

drive to C1, entrainment is possible but imprecise. The duty cycle of the CPG with

the IN4-C1 connection removed and with fixed, small gapp1 stays constant over a range of

gapp2 and gsyn32 but decays as these parameters are increased and decreased, respectively.

Observe that the fraction of the cycle for which C1 is on (duty cycle) is bounded above by

0.5. Entrainment can also be lost in a region of parameter space (white triangle to the right

of the surface).
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Figure 22: τ-dependent failures can occur for gsyn41 = 0. A: Phase plane for C2

showing entrainment failure for moderate gapp2 . When inhibition to C2 begins, C2 may

be caught on an intermediate v2-nullcline (orange) without inhibition from C1. Since C1

receives no drive from IN4, it remains inactive, preventing entrainment. On the subsequent

cycle, C2 does not become caught and C1 can activate, and these cases alternate repeatedly.

B: The C1 (blue) and C2 (orange) voltage traces. Note that at the second onset of β-induced

inhibition to C2, v2 decreases but remains above threshold, preventing the activation of C1.
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Figure 23: Top-down drive can restore the tetrapodal duty cycle in the absence

of drive from IN4 to C1. The duty cycle of the entrained orbits with fixed bottom-up

inhibition to C2, gsyn32 . A: With lower τ , there is a failure to entrain for moderate gapp2 and

large gapp1 , similar to the τ -dependent failure mechanism described above. B: With higher

τ , entrainment in this parameter region is recovered. In both cases, we observe that the

duty-cycle can increase up to a plateau at 3/4-1/4 as gapp1 increases, for small gapp2 . The

mechanism governing the duty cycle here is the release from C1, discussed in section 2.3.2.1.

As we increase gapp2 , we see a sharp drop in the duty cycle, which is again governed by the

escape of C2, discussed in section 2.3.2.2. On the plateau itself, neither cell is escaping nor

releasing, and so the duty-cycle is that of β, governed entirely by bottom-up input to C2.
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2.3.3.2 Differences between PM and NPM CPGs

With a small rightward shift in the v1 nullcline and a sufficiently large value of gapp1 ,

the CPG subsystem will oscillate even without bottom-up signaling, becoming what we are

calling a pacemaker (PM). In this tuning, the range of entrainment expands to include very

small values of gsyn41 , allowing robust entrainment even with an almost complete loss of

the connection between the interneuron subsystem and C1. If there is a complete loss of

signal, however, then the period of the CPG oscillation will not match that of β, and so

entrainment is lost. This is a result of the destabilization of the resting fixed point of C1

in the undriven state. Since it is no longer stable, the h1 value of the trajectory is now free

to climb above the slightly driven left knee, and so in turn the voltage is clear to jump to

the active branch once even slight β drive from IN4 to C1 begins. Indeed, since the slightly

driven nullcline is itself in an intrinsically oscillating regime, this return to activation is

guaranteed. C2 retains its active stable fixed point, both when C1 is active and quiescent,

but the fixed point corresponding to C1 quiescent lies above the right knee corresponding to

C1 active. Thus, the activation of C1 causes C2 to jump down to its quiescent state, where

it approaches a stable quiescent fixed point until C1 returns to quiescence.

The difficulty with entrainment in the PM regime is that in cases of higher gsyn41 , C1

enters its overdriven state more readily than in the earlier NPM case, since now the driven

fixed point for C1 occurs at larger v1 and h1. When v1 > θs on the intermediate v1-nullcline

that becomes relevant when β turns off, the release of C2 is prevented. Therefore, in the

PM regime, top-down signaling becomes a less effective mechanism for decoupling the limb

segment movements from bottom-up sensory signaling than in the NPM regime (see Figure

24).

2.3.3.3 Unlike the tetrapodal case, tripodal walking can lose entrainment via drift in duty

cycle but does not exhibit quasi-entrainment

    To retune the system to a tripodal walking pattern, we require that the interneuron 

subsystem entrains to a β rhythm with duty cycle 1/2-1/2 instead of 3/4-1/4. To achieve this 

change, we set both Γ and γ to 0, which adjusts the phase-shift and the activation
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Figure 24: CPG entrainment in the PM and NPM parameter regimes. In each

panel, we track the position of the value of h1 as β turns on (A) or off (B). In (A), the

trajectory in the PM case (orange) reaches above the left knee (green) at a smaller value of

gapp1 than is needed for the NPM case (blue), facilitating entrainment. Likewise, in (B), as

gapp1 is increased, the trajectory in the PM case (orange) when β turns off ends up above

the right knee (green) at lower gapp1 than for the NPM case (blue), such that the overdriven

state occurs more easily in the PM case.
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threshold of β, respectively. We also increase the rate constant εi of the interneuron slow

variables hi(i = 3, 4) to 0.0018. We selected this rescaling to produce the qualitative changes

in dynamics needed to produce the tripod duty cycle; although it may not be biologically

realistic, we obtain similar results from other parameter rescalings that produce qualitatively

similar dynamics, as we discuss further in Section 2.4. We also constrain the definition of

entrainment to require that the duty cycle of IN4 remains within 10% the duty cycle of

β; note that the choice of 10% is arbitrary, and we obtain similar results if this number is

increased. See Figure 25 for a comparison of duty cycles between the tripodal and tetrapodal

cases. In the tripodal case, stability is not lost before the failure of this duty cycle constraint,

and so quasi-entrainment is not observed. On the other hand, where the tetrapodal case

is entrained, it remains within its prescribed duty cycle tolerance. See Figure 26 for a

comparison of these regions in parameter space. In the CPG, the mechanisms of entrainment

failure and recovery remain consistent with those discussed for the tetrapodal case, although

the particular parameter values at which entrainment and failure occur will differ between

the two walking patterns.

2.4 Discussion

Animal locomotion requires highly coordinated activity of the segmental neuronal net-

works that control limb movements [137, 124, 118, 15, 18, 10, 66]. Experiments have shown

that sensory signals originating from the extremities play a pivotal role in controlling loco-

motion patterns by acting on central networks [6, 27, 5, 12, 46, 17]. Based on past data

[5, 4], we assume that these central networks contain CPGs as driving elements. Using a

neural network model created from stick insect data [126, 129, 127, 122], which incorporates

a possible set-up of how sensory information is transferred to the CPG, we investigated in

this work (1) the conditions under which sensory input entrains the CPG, (2) the mecha-

nisms by which entrainment of the CPG by sensory signals is lost, and (3) the restoration

of entrainment by changes in bottom-up or top down input or walking speed.

Slow walking stick insects heavily rely on movement, force, load and ground contact
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Figure 25: Comparison of tripodal and tetrapodal entrainment regions in param-

eter space. A: The duty cycles of the interneurons in the tripodal case undergo extreme

drift. For parameter values in the green region, the duty cycle is nearly exactly that of β,

while in the orange region duty cycles have drifted away from β, but are still considered

entrained. The red and blue regions consist of parameter values yielding duty cycles of more

than 10% away from 1/2-1/2 (too long and too short, respectively). B: The duty cycles of

the interneurons in the tetrapodal case do not drift excessively. Although entrainment can

be lost due to loss of stability or knee clearance failure, the duty cycles do not deflect from

their prescribed level. Green and orange regions have duty cycles that agree with, and are

within ±10% of, that of β, respectively.
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Figure 26: The boundaries of entrainment regions in parameter space for the two 

cases. A: Tripodal, B:Tetrapodal To the left of the red curve, which depends on τ, 

entrainment fails due to a knee collision, while to the left of the black curve, the driven v1-

nullcline retains a quiescent fixed point, making entrainment impossible, regardless of τ. The 

blue and purple curves denote boundaries where the duty cycle deviates ±10% from 1/2-1/2. 

Thus, the region above and to the right of the red curve in each diagram features successful, 

stable knee clearance and the subregion below the blue and above the purple curves is where 

the duty cycle meets our entrainment constraints in the tripodal case. The tetrapodal regime 

does not lose entrainment due to duty cycle drift.
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signals to establish coordinated walking patterns [27, 5, 97]. In particular, the CPGs that

are assumed to control the movements of the individual leg joints may be entrained by these

sensory feedback signals during walking. The results of our study fit nicely into this view

of a decentralized control in stick insect walking as we have emphasized that with sufficient

bottom-up signaling to both CPG units, top-down modulation is unnecessary, meaning that

the CPG system can maintain entrainment even without top-down drive.

The basic setup of the CPG was chosen such that in the absence of any input C1 has

a fixed point at a hyperpolarized voltage, corresponding to its silent phase, while C2 has a

fixed point at a depolarized voltage, corresponding to tonic activation of the cell. We have

shown that entrainment of the CPG involves the recruitment of C1 by β followed by a switch

from C1 active to C2 active either due to release of C2 by C1, for relatively small gapp2 , or to

escape of C2, for relatively large gapp2 . In both cases, entrainment can be lost if τ becomes

too large, corresponding to a slowing of locomotion to an extent that a different walking

pattern is needed, or if gapp1 or gapp2 is chosen to lie at a problematic level; presumably,

for slower patterns such as a metachronal pattern, the duty cycle of the β signal would

need to change, which we do not consider here. Loss of entrainment is seen in experimental

results. Grabowska et al. [121] found that amputation of stick insect middle legs leads

to loss of entrainment in front and hind legs. In this case, the removal of peripheral and

central influences of the middle legs might effectively reduce gapp1 , gapp2 to problematic levels.

Indeed, in the reverse experiment, Borgmann et al. [2] found that a single stepping middle

leg induces a generalized increase in activity in the protractor/retractor motoneurons of the

neighboring ThC joints, suggesting a strong drive from the middle leg that would be lost

with amputation. In our model, failures arise if C1 or C2 becomes too dominant or the two

become too independent, such that co-activation can occur; recovery requires restoring an

appropriate tuning that allows C1 and C2 to activate in alternation, once each per input

cycle. These constraints stress the point that even in the case of decentralized control of

slower walking, central inputs may still play a role in providing an appropriate activation

level to the CPG, and a balance between the central and sensory inputs to the CPG is still

necessary, meaning that top-down control has to be in a suitable regime for successful CPG

entrainment by bottom-up signaling to occur.
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Fast running cockroaches are believed to depend much less on sensory feedback signals to

establish coordinated walking patterns than stick insects do. Locomotion is assumed to be

instead controlled more centrally, presumably by a greater top-down input from higher brain

regions. This pushes the CPG into its pacemaker mode, in which it requires less sensory

information to be entrained ([75, 130, 9]; for a review on the comparison of cockroach and

stick insect locomotion, see [7, 109]). In accordance with this distinction we observed that, if

we push the CPG into its pacemaker mode, the range of entrainment expands to include very

small values of gsyn41, which allows a robust entrainment of the CPG by bottom-up signaling

even with an almost complete loss of the connection between the interneuron subsystem and

the CPG.

In addition, we have shown that the top-down drives in the CPG system offer a powerful

control system and that tuning these drive levels together with the strengths of the bottom-

up inputs would allow for the maintenance of entrainment over the broadest possible range

of walking paces. Interestingly, experimental evidence does suggest that top-down pathways

may also induce neuromodulation of sensory feedback signals [62]. The results from section

2.3.2.2, in particular, reveal a parameter variation mechanism that can allow the CPG duty

cycle to deviate significantly from that of the β input and bottom-up signals from IN3

and IN4. Importantly, the resulting regimes should not be interpreted as a representation of

alternative walking patterns such as tripodal stepping, because we do not vary the duty cycle

of β, as would arise with an altered time course of ground contact. Rather, these mechanisms

could relate to other walking modalities, such as turning or backwards stepping, which are

manifested at the level of the ThC joint. Rosenbaum and colleagues [13] have shown in the

stick insect that backwards stepping requires a change in muscle activation with protractor

and retractor completely switching their roles while no major adjustments in sensory duty

cycle are necessary (see also [27]). One possible mechanism for the performance of curve

walking or sharp tuning is to change the walking direction of the inner middle leg from

forward to backward [122, 100]; see also [28]. In an earlier model of stick insect walking

[129], we have made detailed suggestions as to how rhythmic stepping might be generated

by the CPGs, how this activity might be transmitted to the corresponding motoneurons

(MNs), and how the latter might control the activity of the related muscles. There, we
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suggested a mechanism by which MN activity could be modified by a premotor network (cf.

Figure 2, IN1 and IN2 in [129], not part of the circuit analyzed here) without changing the

activity of the CPG itself. An interesting direction for future work could be to combine

the changes in CPG duty cycle with the patterning by the premotor network to achieve

additional stepping patterns.

This work points to several forms of robustness within the overall ThC circuit. One

aspect of robustness that emerges from our work is that the loss of signals from the in-

terneurons conveying the bottom-up sensory information (IN3 and IN4) does not prevent

the entrainment of the CPG. Specifically, we found that oscillating drive from IN4 to C1

alone or oscillating inhibition from IN3 to C2 alone was capable of maintaining entrainment,

under certain conditions on parameters. This robustness points to some redundancy in the

interneuron subsystem, as has been previously proposed [126, 129]. The neural connectivity

of the subsystem that conveys the sensory information is not known; however, it is based on

reasonable physiological assumptions on stick insect neurophysiology. Our results show that

entrainment of the CPG by sensory signals from the legs can be achieved with a circuit even

simpler than the one proposed in the above-mentioned modeling studies. Another form of

robustness that we observe is that overall, the CPG duty cycle matches that of the sensory

signal over a wide parameter range, especially in the tetrapodal case (Figure 25). This in-

variance is appropriate because we are not explicitly modeling transitions between walking

patterns, with associated changes in sensory information from other legs and properties of

β, but rather the maintenance of patterns across variations in walking pace and signaling

strength. Combining our analysis with dynamics of β to model fluid changes between step-

ping patterns, such as might occur as the insect accelerates, remains for future work. In

fact, although we do not implement a closed-loop signaling system that allows CPG output

to impact the properties of β, we can obtain a preliminary idea of how a closed-loop version

of our model would work in certain cases by referring to Figures 13 and 16. There, we see

entrainment patterns that feature CPG phase durations that are out of register with the

input duty cycle, α. In both cases, there is a switch from C1 to C2 activity during the phase

when β is still on. If the CPG output in turn shortened α, then the earlier termination

of β would be unlikely to affect the CPG pattern and the new entrained pattern would be
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expected to continue. Confirming this type of outcome, and exploring closed-loop effects in

other scenarios, would require additional work, however, and remains for a future study.

A final form of robustness that we observe is that, although most of the results that we

present focus on the tetrapodal walking pattern, the same analysis that we present in detail

for the tetrapodal pattern also demonstrates that the mechanisms of entrainment failure and

recovery in the CPG remain the same for the tripodal pattern (see subsection 2.3.3.3). The

particular parameter constellations associated with each entrainment or failure regime for

the two walking patterns have a partial overlap (e.g., see Figures 25, 26). Interestingly, for

intra-network and top-down connection strengths that lie in a shared entrainment regime,

our model suggests that a direct transition or downshifting from an entrained tripodal to an

entrained tetrapodal pattern would be possible, via an abrupt change in τ (period) together

with α (duty cycle). Similarly, if a stick insect steps into a hole or its leg strikes an obstacle,

then it starts to perform searching movements to look for a good foothold. After a foothold is

found, the animal resumes walking at a slow pace. This means that if the animals would walk

in a tripodal pattern and encounter a large obstacle or hole, then there would be a period

in which the legs would perform searching movements and end up re-ordered before walking

was continued in the slower tetrapodal pattern. A set of network connection strengths that

gives entrainment for both patterns would facilitate such an adjustment.

In addition to a relatively simple, open-loop signaling system with fixed input duty cycle,

our model includes a minimal CPG circuit and relatively reduced representations of the

dynamics of the neurons in the network. The reductions in our model allow us to analyze

thoroughly the mechanisms involved in entrainment, its failure, and its recovery and the

roles of specific signals within the system. To do so, we used methods based on projections

of model trajectories to phase planes corresponding to individual circuit components, as

have been used for a variety of studies in past work (e.g., [40, 39, 38]). These methods

are more appropriate here than commonly used approaches based on phase response curves

(e.g., [115, 33, 21]), due to the strong coupling between the network components and the

fact that these components are not oscillators in the absence of coupling. A cost of this

tractability is that our model can only inform us about changes in walking patterns that are

distinguishable at the level of a single joint, i.e. walking patterns that can be distinguished
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by changes in cycle period and duty cycle of the CPG that we investigate. It cannot provide

insights about alternative walking patterns observed in stick insects, such as mirror-image

tetrapodal patterns for which the period and duty cycle do not change at the level of the

ThC joint. Our model produces changes in duty cycle arising at the CPG level with changes

in cycle period, but we do not study gradual changes of input duty cycle and the continuum

of patterns that may occur in a gradual transition between tetrapodal and tripodal cases as

input duty cycle and cycle period are modulated together. Another cost of using a reduced

model is that a single parameter set does not produce entrainment for both tetrapodal and

tripodal patterns; rather, we change the time constant εi of the gating variable h for the

model INs as part of the switch. From an analytical point of view, this switch makes sense

because it gives qualitatively appropriate IN and CPG dynamics, but it is not biologically

reasonable; we obtain similar dynamics and entrainment results if we change glin , el, and

gapp4 instead, for example, but then a shift in the range of τ is needed. A more realistic

model would allow for a more biologically feasible switching mechanism but with a loss of

analytical tractability.

Our findings represent effects that we predict will arise in more complicated circuits,

computational or physiological, that operate according the same general principles: rhythm

generation via a half-center-like mechanisms that yields alternations of activity of the neurons

projecting to antagonistic muscle groups, subject to ascending sensory input and tonic central

drive. We did not exhaustively catalogue the possible stable solutions in the system, ignoring,

for example, higher-order entrainment with period exceeding twice that of the ascending

input. We also do not claim to have identified every possible entrainment failure mechanism

that could arise through variation of the multiple control parameters in our model. The

analysis of chaotic or other exotic solutions occurring as entrainment is lost or gained (e.g.,

[21]) is also outside the scope of this study; while mathematically interesting, these solutions

seem to be limited to narrow parameter bands and are likely of limited importance to the

topics of our study.
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3.0 Striatal Motor Control Circuit Under Bicuculline

3.1 Introduction

Despite comprising only about 2% of striatal neurons, tonically active cholinergic in-

terneurons (TAN) are thought to play a crucial role in mediating striatal activity ([44], [88],

[36]). These TANs are the sole identified striatal source of acetylcholine (ACh), and nearly

all striatal neurons are thought to possess ACh-sensitive muscarinic receptors of various sub-

types, particularly M1 and M2/4 ([43], [20]). These receptors serve a number of roles, with

M4 acting to inhibit firing, while M1 effects are more complex, allowing for the promotion

of firing ([76], [42], [144]). Recently, there has been a focused interest in the ways that

ACh may impact or contribute to various basal ganglia related neurological disorders, such

as Parkinson’s Disease and Tourette’s Syndrome ([50], [79], [42], [123], [105]). Although

TANs are prominent at the forefront of striatal research, there are few mathematical models

of these neurons. Developing such models represents an important step in advancing this

research, to provide a tool for hypothesis testing and generating mechanistic predictions.

Experimental recordings have provided observations of TAN activity patterns, as well

as insights into the nature and properties of the individual currents expressed in TANs

([84], [69]). Given the availability of this level of information about TANs, we sought to

develop a conductance-based model that includes experimentally observed currents and to

find parameter regimes in which various TAN behaviors are captured. Further, there are

numerous reports characterizing TAN activity under various experimental conditions ([24];

[74]; [84]; [14]; [136]; [69]), and we tuned parameters to ensure that our model matches these

experimental benchmarks at a qualitative and, when possible, quantitative level. Finally,

we used the model to simulate the dynamics of TANs, along with spiny projection neurons

(SPNs), under conditions associated with tic production in an animal model of Tourette’s

Syndrome (TS), both as a form of model validation and to provide some insight into the

mechanisms of tic expression in the striatum.

TS is a disorder affecting about 1% of people throughout their lifetimes, characterized
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by the emergence of motor tics (Conciecao et al., 2017). Animal models of tic production

have been successfully developed via the application of bicuculline to striatum and have

shown a characteristic surge and pause of activity in SPNs ([65]; [64]; Bronfeld and Bar-

Gad, 2013). We hypothesized that ACh plays an important role in the striatal expression

of motor tics, and this led us to focus on the behavior of TANs during tic generation and

resulting dynamics of striatal ACh. Specifically, using our new TAN model, we considered the

associated ACh dynamics and the effects of ACh on TANs and SPNs. While neuromodulator

levels have typically been treated as fixed parameters when incorporated into conductance-

based models ([30], [140], [99], [89]), we opted to include the dynamics of the maximal

conductances associated with neuromodulator-related currents, allowing our model system

to emulate the ACh dynamics resulting from brief surges of synaptic input to TANs. We

consider two aspects of these responses: cholinergic effects directly on the effective input

associated with surge initiation and autoregulation effects of heightened ACh on the TANs

themselves. We show that with the combination of these two components, the model can

reproduce features of TAN and SPN dynamics observed experimentally in animal models

where the striatal application of bicuculline yields tic production ([64], Bronfeld and Bar-

Gad, 2013). Thus, we predict both of these impacts of ACh release contribute to the surge

and pause response associated with tic production in this setting.

3.2 Materials and Methods

3.2.1 Overview of Model Components

We develop a conductance-based model of a striatal TAN. In addition to typical sodium,

potassium, and leak currents (INa, IK , and IL, respectively), the model includes a variety of

other currents identified in TANs: sag and inward rectifier currents (Ih and IIR), a persistent

sodium current (INaP ), a slow calcium current (ICa), a T-type current (IT ), medium and

slow afterhyperpolarization (AHP) currents (ImAHP and IsAHP ), and an M-type potassium

current IM (sometimes called persistent K) ([78], [81], [120], [24], [77], [16], [84], [14], [79],
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Tan and Bullock, 2008, [73], [72], [99], [136], [141], [143], [123], [69]). Finally, we include an

applied current representing combined cortical and thalamic inputs to a TAN (IappT ).

In addition to the gating variables associated with these currents, the model includes dy-

namics of the concentrations of extacellular potassium (Ko) and intracellular sodium (Nai)

ions and of local levels of ACh, which is released by TAN spiking, along with the feedback

effects of ACh on other model components. Ko and Nai dynamics are modelled in a standard

fashion (Baretto and Cressman, 2011). As for ACh, there appear to have been few quanti-

tative measurements related to its dynamics and its effects as mediated through muscarinic

receptors (M1, M2 and M4), although the latter have been characterized qualitatively ([85],

[89]). Thus we implement its dynamics as follows: ACh is released into the extracellular

space by TANs at a rate that depends on TAN spiking, while after its release, ACh binds

and unbinds to different receptors at associated rates and is also degraded at some rate by

acetylcholinesterase (AChE). See Fig. 27 All simulations were performed in XPP-AUTO

(Ermentrout, 2002)

For the study of surge and pause dynamics, we also simulate a previously published

SPN model ([107]). This model includes sodium, potassium, M-type, and leak currents plus

inputs. We do not include synaptic inhibition from the model SPN to the model TAN because

the relevant experimental model includes the application of bicuculline ([64], Bronfeld and

Bar-Gad, 2013), which we assume, for simplicity, induces a complete block of inhibition.

Others ([82]; [98]; [108]; [140]; [99]) have modeled the effects of different fixed levels of

neuromodulators in conductance-based models by adjusting maximal conductance levels in

the currents impacted by these factors. Building off of this idea, we model the temporally

evolving effects of ACh on receptor activation through the dynamics of various conductances.

Of particular interest, we have a spike-enhancing M1 current in the SPN ([80]; [91]), a spike-

reducing M2/4 current in the TAN, and M2/4-like suppression of cortical and thalamic

inputs to both cells ([20], [106]). In some simulations, we seek to separate out the factors

contributing to the surge-pause pattern. For those results, either we allow the conductances

of the intrinsic M currents of the SPNs and TANs to vary, while the input strength remains

independent of the ACh level, or vice versa.
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Figure 27: Diagram of Cell Interactions. ACh is released from TAN firing at a rate ρmax 

and degraded by AChE at a rate η. Extracellular ACh becomes bound and unbound to M 

receptors at rates µ↑,↓ and ν↑,↓
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3.2.2 Model Details

The current balance equations for our model neurons take the form

CT
d
dt
vT = − INa − IK − Ileak − Ih − IIR

− ICa − IsAHP − ImAHP
− It − INaP − IMT

+ IappT + ζTWT (t)

CS
d
dt
vS = − INa − IK − Ileak − IMS

+ IappS + ζSWS(t)

(4)

where the subscripts T and S denote the TAN and SPN, respectively. The currents are given

in the Hodgkin-Huxley formulation as

INa = gNam
3
∞(v)h(v − ENa)

IK = gKn
4(v − EK)

IIR = gIR(v − EK)

Ih = ghp(v − Eh)

IT = gTa
3(v − ECa)

ICa = gCas
2(v − ECa)

INaP = gNaP r(v − ENa)

IsAHP = gsAHP ξ(v − EK)

ImAHP = gmAHP ([Ca]/([Ca] + km))(v − EK)

IL = gL(v − EL)

(5)

with IMT , IMS, IappT , IappS all defined later. The termsWT (t),WS(t) refer to Wiener processes

used to include noise in certain simulations, with a scalable amplitude ζT or ζS, respectively.

In most cases, we found that the inclusion of noise did not significantly alter the qualitative

behavior of the model TAN and so it is excluded from TAN simulations (i.e., ζT = 0) unless

otherwise noted.

Sodium and potassium activation functions m,n and sodium inactivation function h are

adapted from [86]. The fast activation function for INa is treated as instantaneous, and takes
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the form

m∞(v) = exp(
45v

7
)(v + 28)/τm(v)

where

τm(v) := −0.128 + 2.105 exp(
v

10
) + exp(

45v

7
)(v + 28).

The other gating variables in the TAN model obey differential equations that are a standard

part of the Hodgkin-Huxley framework, of the form

d

dt
X = (X∞(v)−X)/τX . (6)

For h and n, the function X∞(v) is determined by αX(v) = X∞(v)/τX , and βX(v) = (1 −

X∞(v))/τX where

αh(v) = 0.35 exp((−v + 51)/20)

βh(v) = 5/(exp(−(v + 21)/10) + 1)

αn(v) = −.05(v + 27/(exp(−(v + 27)/10)− 1)

βn(v) = −0.625 exp(−(v + 37)/80).

Otherwise, activation and inactivation variables evolve under equation (6) with X∞(v) =

1/(1 + exp(v−θX
σX

)) for parameters τX , θX , and σX specific to each variable (see Table 2).

Here τx, θX , and σX denote the time constant, half activation (inactivation) and slope of the

gating function X∞, respectively.

Additional model components include the calcium-related equations

d
dt

[Ca] = ε(−ICa(v)− kCa[Ca]− IT (v)),

d
dt
ξ = aξ[Ca]ξ − bξξ,

and ion equations

τKo
d
dt
Ko = γδIK − 2δIpump − Iglia − Idiff

τNai
d
dt
Nai = −γINa − 3Ipump
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with

Ipump = p/(1 + exp(25−Nai
3

))

(1/(1 + exp(5.5−Ko))),

Iglia = g/(1 + exp(18−Ko
2.5

)),

Idiff = εdiff (Ko −Kbase).

These concentrations affect the potassium and sodium reversal potentials, respectively given

by

EK = 26.64 log(Ko
Ki

),

ENa = 26.64 log(Nao
Nai

),

where Ki = 188−Nai and Nao = 144− δ(Nai − 18).

Of particular importance in our simulations are the two M -currents,

IMT = gM2/4mT (vT − EK),

IMS = gM1mS(vS − EK),
(7)

that contribute to the TAN and SPN membrane potential dynamics, respectively. The gating

function mT is as in equation (6) and the gating function mS comes from [107]. However, the

maximal conductance of each current can be modulated by the effects of ACh on associated

M-type receptors through a G-protein dependent second messenger type system ([144]).

To separate effects of ACh on these intrinsic currents from effects on extrinsic inputs,

we combine a fixed, ACh-insensitive conductance term, ĝ∗, and a dynamic, ACh-sensitive

conductance term, g̃∗, which we average to compute the instantaneous maximal g∗

gM2/4 =
ĝM2/4+g̃M2/4

2

gM1 = ĝM1+g̃M1

2

where

τM2/4
d
dt
g̃M2/4 = gM2/4max/(1 + exp(

AT−θg̃T
σg̃T

))

−g̃M2/4

τM1
d
dt
g̃M1 = gM1max/(1 + exp(

AS−θg̃S
σg̃S

))

−g̃M1.

(8)
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Rather than voltage, these conductance equations depend on AT and AS, which represent

the level of ACh bound to M-type receptors on TANs and SPNs, respectively.

The currents IappT , IappS corresponding to synaptic inputs are also affected by ACh, so

we implement a similar approach, with an ACh-insensitive part Îapp and a dynamic ACh-

sensitive part Ĩapp, again with

IappT =
ÎappT+ĨappT

2

IappS =
ÎappS+ĨappS

2

and

τappT
d
dt
ĨappT = IT/(1 + exp(

Aexc−θappT
σappT

))− ĨappT

τappS
d
dt
ĨappS = IS/(1 + exp(

Aexc−θappS
σappS

))− ĨappS .
(9)

Importantly, ÎappT , ÎappS , IT , IS are all prescribed functions of time, each given by what we

call a railcar or a ramp. A railcar input jumps to 0.5 at time t0, and back to 0 at time

tf = t0 + 250ms. A ramp input jumps to 0.5 at time t0ms, and decays linearly to 0 at time

tf = t0+2000ms. For ACh sensitive currents, these values define an envelope for the effective

input, which is modulated by Aexc (See Fig. 28)

Each dynamic equation in (8), (9) has an associated term for its level of bound of ACh,

given by AT for TAN M-receptors, AS for SPN M-receptors, and Aexc for both applied

currents. We model the dynamics of the level of free ACh, which depends on TAN firing,

and bound ACh phenomenologically, through the differential equations

d
dt
ACh = ρmax/(1 + exp(vT−θρ

σρ
))− ηACh

−τ ∗ ACh2

ACh2+α2 + Aexc − µ↑ACh+ µ↓AT

−ν↑ACh+ ν↓AS

d
dt
AT = µ↑ACh− µ↓AT

d
dt
AS = ν↑ACh− ν↓AS

d
dt
Aexc = ACh2

ACh2+α2 − Aexc.

(10)

In system (10), ρmax and the sigmoid function that it multiplies represent the voltage-

dependent release of ACh by elevations in TAN voltage (spikes), η represents the degradation

of ACh by acetylcholinesterase, and α is the half-saturation level for the ACh bound to

receptors that modulate inputs, Aexc, i.e. when ACh = α, Aexc equilibrates to 0.5. TANs
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and SPNs are known to receive asymmetric input from thalamus and cortex ([20]; [70]; [96];

[141]). For simplicity’s sake we combine coritcal and thalamic inputs into a single applied

current for each cell type, and to account for the asymmetry in their inputs, we consider

inputs to the TAN and SPN independently, leaving us with an applied current to TAN

and a separate applied current to SPN. Finally, µ↑,↓ and ν↑,↓ represent M-receptor binding

and unbinding rates of ACh in TANs and SPNs, respectively, and τ ∗ is a temporal scaling

parameter set to 1 ms−1. Note that these phenomenological equations are dimensionless and

the variables involved should not be viewed as concentrations.

We use TAN model to simulate TAN behavior in a variety of scenarios implemented

in previous experiments. In those experiments in which TTX is applied to the bath, there

is no firing, and hence no ACh release (Figs. 29, 30, 32). In those experiments in which

only individual cells were being stimulated at any given time, only a small amount of ACh

would be released from this firing, since the whole population is mostly unaltered. Thus, we

reasoned that the firing of the stimulated cells should have little effect on net ACh levels,

and accordingly we turned off ACh release from the model during our simulations of these

effects (Figs. 33, 34). In the in vitro experiments involving apamin, apamin was applied to

the bath; hence, we treat our model cell’s activity as characteristic of the activity that would

occur in many TAN neurons, and thus we include ACh effects in these simulations (Fig. 35).

Similarly, in experimental recordings of baseline firing modes, the entire TAN population is

free to fire, so we maintain dynamic cholinergic effects in the model (Fig. 29, 30).

3.2.3 Tic Expresion

To simulate the neural activity underlying motor tic production, we provided the TAN

and SPN with an excitatory input current consisting of an ACh-sensitive input compo-

nent with dynamics given by equations (9), (10) and an ACh-insensitive input component

ÎappT , ÎappS, respectively. For each of these input components, on each simulation, we used

either the railcar or the ramp temporal profile. In some simulations, we set the amplitude

of the ACh-insensitive input to 0, effectively using an ACh-sensitive input alone. In simula-

tions with nonzero inputs of both types we always ensured that the two inputs had different
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Table 2: Main TAN Model Parameters. † denotes values used for experiments with

apamin application, †† denotes values used for irregular firing, ∗ denotes values used for

noisy irregular firing.

Parameter Value Parameter Value

CT (µF/cm2) 1 gNa (mS/cm2) 25, 30††

gK (mS/cm2) 15, 10† gIR (mS/cm2) 2.75

gh (mS/cm2) 1.2, 0.8†† gT (mS/cm2) 0.15

gCa (mS/cm2) 0.2 gNaP (mS/cm2) 0.1, 0.02††

gsAHP (mS/cm2) 0.05, .5† gmAHP (mS/cm2) 15, 60†, 2††

gL (mS/cm2) 0.08 Eh (mV) -60

ENaP (mV) 45 EL (mV) -53, −60††

θIR (mV) -90 σIR (mV) 6

θp (mV) -90 σp (mV) 6

τp (ms) 600, 1200† θa (mV) -63

σa (mV) 7.8 θs (mV) 140

σs (mV) 4 θr (mV) -50

σr (mV) 3.1 τr (ms) 1

aξ 0.5 bξ .05

km 15, 3†† ε 0.0001, 5(10−5)††

ζT 0, 8∗
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Table 3: M-Current Parameters

Parameter Value

ĝM2/4 (mS/cm2) 0.04

θM2/4 (mV) -50

σM2/4 (mV) 5

τM2/4 (ms) 500

gM2/4max (mS/cm2) 8

θg̃T 9

σg̃T -0.1

τtildegT (ms) 500

ĝM1 (mS/cm2 1.3

gM1max (mS/cm2) 3

θg̃S 2

σg̃S 1.8

τg̃S (ms) 100
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Table 4: Cholinergic Subsystem Parameters

Parameter Value

η 0.005

ρmax 10

θρ 1

σρ -0.1

α 2

µ↑ 0.01

µ↓ 0.01

ν↑ 0.01

ν↓ 0.03

Table 5: Ion Subsystem Parameters

Parameter Value

γ 0.04

δ 1

p 1.25

εdiff 1.333

kbase 7

τKo 1000

τNai 1000
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Figure 28: Input Profiles. Schematic illustration of the time courses of the maximal in-put 

levels associated with (A) railcar and (B) ramp profiles. The effective input to each 

postsynaptic neuron will be less than the maximum due to effects of ACh.

profiles (i.e., ACh-sensitive railcar with ACh-insensitive ramp or vice versa), for a total of

four input profiles considered. In all simulations, the onset of SPN activity preceded the

onset of TAN activity by 50ms, so we supply SPN with input 50ms before we supply TAN

input. ([64]). See Fig. 28

3.3 Results

3.3.1 Firing Modes

In spite of their name, TANs exhibit a variety of firing patterns, which we broadly

characterize as tonic firing, burst-pause firing, and irregular firing. Each firing mode also

yields an associated behavior in response to the application of TTX ([84]).

In the tonic firing regime, neurons engage in tonic 4-15 Hz spiking with shallow hyper-

polarizations reaching -67 mV ([24], [84], [73]). In its tonic firing mode, our model produces

a steady firing rate of about 8 Hz, with hyperpolarizations reaching -69 mV. To achieve
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this firing regime, we set Kbase to 7 mM, corresponding to a potassium reversal potential

EK ≈ -86.5 mV. In the tonic firing regime, application of TTX yields a steady voltage above

firing threshold ([84]), which our model reproduces (Figs. 29, 30A). In this regime, firing is

slow enough that p, the gating variable of the sag current Ih, remains relatively active, and

overcomes the hyperpolarizing effects of IM and ImAHP , blocking the engagement of IIR and

thus preventing deep hyperpolarizations.

The burst-pause firing mode is characterized by 0.5-1.5 second bursts of firing separated

by deep hyperpolarizations to near the K+ reversal potential ([84], [72]). The mechanism

that allows TANs to undergo this deep, prolonged pause is thought to be important in regu-

lating learning, as the cessation of TAN activity disinhibits dopamine terminals (Conceicao

et al, 2017). To put our model into burst-pause firing mode, we only need to adjust the Kbase

parameter to 6 mM, corresponding to a reversal potential EK of about -90 mV. In vivo, vari-

ability in the baseline potassium concentration could result from various effects including

differences in activity of other local neurons, changes in vascular properties, or neuromod-

ulation ([23]; [139], [52]). With this single parameter change, our simulation achieves an

average firing rate of about 13Hz with each burst-pause cycle lasting about 650 ms and with

its deepest hyperpolarization reaching about -85 mV. As the cell fires, the magnitude of its

sag current, Ih, decays. Once Ih has decayed sufficiently, the inward rectifier current, IIR,

amplified by the lower potassium reversal potential, is engaged, which induces deep hyper-

polarizations. In this scenario, IM and ImAHP contribute to driving voltage low enough to

engage IIR, but are not required. At the resulting low voltages, Ih can recover, but its slow

time constant delays this effect (Fig. 29B, Fig 31). In this regime, TTX induces a slow,

non-spiking oscillation with a period of up to about 2 s.

Irregular firing can be viewed as a mixture of the previous two regimes, featuring slow

firing separated by both shallow and deep hyperpolarizations, as well as large subthreshold

oscillations without firing. The deep hyperpolarizations in this regime in our model reach

about -80 mV, consistent with experimental recordings ([84], [72]). While the firing in this

regime in our deterministic model is periodic, we do obtain large subthreshold oscillations,

and inclusion of a small amplitude noise term recovers the more irregular characteristic of

this firing pattern observed experimentally (Fig. 29D). TTX causes slow oscillations in the

75



Figure 29: Simulated TAN Firing Modes and Responses to TTX. A: Tonic Firing.

Upper: The cell fires at a steady rate of about 8 Hz. The hyperpolarization is shallow. Lower:

TTX suppresses firing, and the cell remains at a steady voltage of -60 mV. B: Burst-Pause

Firing. Upper: The cell exhibits periods of rapid firing, punctuated by quiescence. Lower:

Under TTX the cell engages in slow, deep oscillations. C: Irregular Firing. Upper: The

cell exhibits both shallow and deep hyperpolarizations. Overall, the firing rate is much lower

than in the other modes, and there are epochs where action potentials fail to materialize.

Lower: Under TTX, slow, regular oscillations occur, although they are faster and shallower

than the burst-pause case. D: Irregular Firing With Noise. With noise added, the

irregularity of the spiking is more pronounced. Note that in all simulations the total duration

is 2 seconds, which matches the length of the time bar in the experimental traces in Figure

30.
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Figure 30: Experimentally Observed TAN Firing Modes and Responses to TTX.

A: Tonic Firing. Tonic firing with and without TTX. B: Burst-Pause Firing. Burst-

Pause firing with and without TTX. C: Irregular Firing. Irregular firing with and without

TTX. Reproduced from [84].
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Figure 31: IR and Sag Currents. A: Steady-state values of the sag current Ih (blue), inward 

rectifier current IIR in the tonic firing regime (orange), and IIR in the burst-pause regime 

(yellow) when voltage is clamped to various levels. Magenta (left) and purple (right) vertical 

lines indicate the voltages of the deepest hyperpolarizations occurring in burst-pause and 

tonic firing, respectively. B: Time courses of Ih (blue) and IIR (orange) in tonic firing. C: Time 

courses of Ih (blue) and IIR (yellow) currents during burst-pause firing. Negative sag currents 

help depolarize the membrane potential from a hyperpolarized state. In B and C, the spikes in 

Ih correspond to voltage spikes, while the periods of elevated IIR correspond to epochs of lower 

voltage between spikes or bursts of spikes. Note the expanded range of the vertical axis in C 

relative to B.
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irregular firing mode, which are shallower and slower than in the burst-pause case ([84], [72])

(Figs. 29, 30C,D).

3.3.2 Experimental Benchmarks

Since TANs are most known for their tonic behavior, we validated our TAN model

by testing the ability of the model, with the parameter values associated with the tonic

firing regime, to reproduce four benchmarks derived from experimental observations, beyond

its basic firing pattern and behavior under TTX. This step provided much more rigorous

constraints on the model parameter values than those resulting from simply matching the

tonic firing pattern alone.

[136] found that the voltage time course of a TAN given a trapezoidal input current

after TTX application exhibits a characteristic form. Of particular note is the “undershoot”

effect following the removal of input, where the voltage of the cell falls below its baseline

level, which helps to expose the time courses of subthreshold currents that are thought to be

important in generating TAN pauses. Our model matches the following qualitative features

when stimulated with a trapezoidal current under TTX (Fig. 32): A concave rise in voltage,

a small voltage overshoot followed by a plateau when the applied current plateaus, and a

deeper voltage undershoot falling below the baseline resting potential before the applied

current ends, followed by a slow return to baseline. Ih is inactive at these voltages, and it

appears that IM and ImAHP are responsible for the undershoot, as they have not returned

to their baseline level by the end of the input current (Fig. 32C).

Experimental results suggest that the sag current Ih plays an important role in allowing

the cell to maintain tonic firing by preventing the engagement of IIR ([136], [69]). If a TAN

is supplied with a sufficiently hyperpolarizing applied current, then its firing ceases and its

voltage remains hyperpolarized until the current is removed. However, after an initial deep

hyperpolarization, there is a partial recovery of potential through the recruitment of Ih.

Once the hyperpolarizing current is removed, the cell recovers to a higher firing rate than

baseline, due to the deinactivation of INa that occurs during hyperpolarization. Our model

captures this effect, including its dependence on the strength of the applied current (Fig. 33).
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Figure 32: Trapezoidal Input. Upper: Behavior of the model TAN under TTX. A: Voltage

time course to the application of input (B) shows a slight overshoot followed by a plateau. A

significant undershoot occurs as input is removed, with the cell falling below baseline voltage

prior to the complete removal of input. Inset in A: A closer view of the undershoot. C:

IM (blue) and ImAHP (orange) currents. Their slow decay is responsible for the undershoot.

D: Experimentally recorded TAN responses to trapezoidal current injection (bottom) under

TTX. Grey traces are experiments with Ih blocker Zd7288 (top) and Kv7.2/7.3 blocker

XE-991 (middle). Panel D reproduced from [136].
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Figure 33: Application of Hyperpolarizing Input Reveals the Sag Current, Ih. A:

Model cell Voltage traces (upper) in response to hyperpolarizing currents of various levels

(lower). Note the slow recovery after the initial hyperpolarization and the accelerated spiking

after removal of the input. B: Experimental hyperpolarization and sag. C: Steady-state Ih

inactivation curve, p∞(v). Note half activation θp=-90 mV and slope σp=6. D: Experimental

measurement of sag inactivation under voltage clamp. Black curve from control mice, blue

curve from mice after dopamine depletion via 6-OHDA administration, and orange curve

from dopamine depleted mice receiving levodopa treatment. Panels B, D reproduced from

Figure 3C, 3F, [69], published under the Creative Commons Attribution 4.0 International

Public License CC BY 4.0
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When a positive current is applied to a tonically spiking TAN, the neuron exhibits a

predictable increase in firing rate. More importantly, when this drive is removed, the TAN

undergoes a deep, prolonged pause before returning to normal firing ([25], [14]). Our model

captures these effects as well as the brief elevation of potential above the original baseline, or

rebound depolarization, as spiking returns (Fig. 34). In this case, while the cell is spiking,

Ih decays while IM and ImAHP build up, similarly to what occurs in the burst-pause firing

mode, and, as in Fig. 32, these two currents remain elevated when input is removed. This

change in current balance promotes hyperpolarization, which in turn yields engagement of

IIR; these currents counteract the recovery of Ih and contribute to the amplitude of the

hyperpolarization.

The pause that we obtain in simulations lasts for approximately 750 ms, which lies

within the range of 390ms-1400ms reported in experiments ([25], [14]). This duration is

controllable through τp, the membrane time constant of Ih, and ε, the time constant of

[Ca2+]. It is important to note that despite some similarities, this type of pause appears to

be distinct from those arising in burst-pause firing. That is, pauses in both cases involve a

decay in the sag current Ih during a period of rapid firing, contributions of IM and ImAHP ,

as in the ”undershoot” phenomenon seen in Fig. 32 C, and the recruitment of IIR. Ih is,

however, required for spiking to recover, and if the experiment is run with Ih blocked, the

cell will never recover from its post-input hyperpolarization, and voltage remains at -85mV.

When apamin is applied to a TAN in tonic firing mode, the neuron engages in short bursts

with very rapid firing, followed by deep hyperpolarizations, due to IsAHP ([14]). To simulate

apamin we block ImAHP , and our model exhibits the experimentally observed firing pattern.

The new pattern results because when apamin reduces ImAHP , a speedup of firing and a

corresponding buildup of calcium result. This accumulation in turn engages the apamin-

insensitive current IsAHP , which brings the voltage low enough to engage IIR, resulting in a

deep hyperpolarization as seen in burst-pause firing (Fig 35).
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Figure 34: Application and Removal of Depolarizing Input Current. A: After

removal of a strong, depolarizing input current, the TAN voltage undergoes a prolonged

hyperpolarization and pause in spiking. B: Experimentally recorded voltage time course

corresponding to the application and removal of strong depolarizing input. Panel B repro-

duced from Figure 2A, [25], Copyright 2004, Society for Neuroscience
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Figure 35: Effects of Apamin. A: Tonic firing with apamin-sensitive parameter regime B:

With the application of apamin, we see rapid spiking followed by deeper hyperpolarizations.
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3.3.3 Tic Expression:

During a motor tic induced by bicuculline application, TANs and SPNs exhibit a surge

in firing followed by a prolonged pause ([64], [32]). The factor that is most likely to initiate

this surge is a strong excitatory input – indeed, these striatal populations are targeted by

excitatory synaptic projections from the cortex and thalamus – and hence we apply such an

input to our model TAN and SPN to simulate their tic-related activity. In this section, we

explore the capacity of inputs with various temporal profiles to induce the observed surge-

pause spiking profiles and we investigate the mechanisms involved in this process; since

bicuculline was applied in the experiments in which this activity was observed, we exclude

synaptic inhibition from our model, which implies that activity pauses must result from

other factors.

In our simulations, the initial surge in TAN activity induced by excitatory input leads

to a rise in ACh, which causes (see equation (8)) the SPN M-current conductance gM1

to decrease, promoting SPN firing. ACh has opposite effects on M1 versus M2 and M4

receptors. Thus, the rising ACh causes the TAN M-current conductance gM2/4 to increase,

initiating a TAN pause. With the pause now initiated, ACh decays below its baseline level,

causing gM1 to rise and gM2/4 to fall. High gM1 suppresses SPN firing, but, since the TAN

is in a pause phase, the low gM2/4 does not cause TAN activity to immediately resume. The

elevation of gM1 is strong enough to prevent SPN firing even with some sustained excitatory

input to the SPN. Thus, the response of the SPN to excitatory input is strongly impacted

by the response of the TAN and the ACh profile that results.

We now analyze this dynamics under certain input profiles (Fig. 28). Specifically, we

assume that the excitatory inputs to TANs and SPNs are either sustained, which we call the

railcar case, or adapting, which we call the ramp case, since these are common cortical firing

patterns. Since the behavior of the SPN is largely modulated by ACh, we first investigate

the response of the TAN. To consider a TAN response as a successful representation of

experimental observations, we require an initial surge in TAN firing, followed by a single

prolonged pause before a return to baseline spiking activity.

In the railcar input profile, “railcar” refers to the input time course: the maximum

85



Figure 36: Striatal activity During Tic Expression. Raster plot and average firing

rate of A: an SPN and B: a TAN, across multiple motor tics induced in the presence of

bicuculline. Raster plots (upper) and firing rate traces (lower) are aligned with tic onset

at time 0 (red vertical lines). Reproduced from Figure 2B, 2E, [64], Published under the

Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (CC-BY-

NC-SA 3.0) doi

applied input strength jumps from 0 µA to 0.5µA abruptly at onset and then jumps back

to 0 abruptly at a specified offset time, while ”long” refers to the offset time of tf = t0 + 250

ms, with t0 chosen sufficiently large such that the input duration outlasts the TAN surge.

We consider both an input that we call “ACh-sensitive”, in reference to the fact that the

effective input strength is modulated by ACh (see Materials and Methods, equations (9),

(10)), which weakens the effective current felt by the postsynaptic neuron, and an ”ACh-

insensitive” input, which has a strength that is not modulated by ACh. In each case, the

binding of ACh to M2/4 receptors in the model TAN, represented by AT , increases the M-

current conductance, suppressing firing and allowing for the TAN pause despite continued

excitation (Fig 37). As the TAN enters its pause phase, ACh decays and input recovers.

For sufficiently long input, this recovery may induce oscillations, which could range from

small subthreshold oscillations if the M-conductance dominates over the input (Fig 37 A) to

a second surge in spiking, not seen in experiments, if the input duration is long enough (not
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Figure 37: Simulated TAN Responses to Railcar Type Input Surge. A: ACh 

sensitive Railcar Input The initial surge (top) suppresses TAN firing before the end of 

the input (middle), followed by a slow return to baseline. Notice, however, that input is 

briefly weakened during the surge due to the rise in ACh. This rise in ACh causes a delayed 

rise in gM2/4, allowing for the initiation of the pause. B: ACh insensitive Railcar Input 

The initial surge is now stronger, leading to very rapid TAN firing. When firing resumes, a 

single spike is enough to initiate a second pause, due to a high gM2/4
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shown). In the ACh-insensitive case, TAN firing is more intense than in the ACh-sensitive

case, resulting in a higher level of ACh and thus higher M-current conductance gM2/4. This

higher conductance then decays slowly, so that even after a pause twice as long as the ACh-

sensitive case, there is enough residual M-current to initiate a secondary pause after a single

spik (Fig 37 B). We conclude that the ACh-sensitive railcar input profile that lasts beyond the

surge itself is consistent with experimental observations of surge-pause dynamics in TANs as

long as the input duration does not outlast the elevation in the intrinsic M-current, whereas

the ACh-insensitive railcar profile would not yield the observed surge-pause pattern. Since

neuronal firing often features spike frequency adaptation, as an alternative to the railcar

input current, we investigate a ramp input for which the maximal value decays over 2000 ms

from an inital strength of 0.5 µA. For concreteness, we assume that after an abrupt initial

jump to a maximum, the applied input strength decays linearly. As with the railcar profile,

we compare outcomes obtained when input is either ACh-sensitive or ACh-insensitive. As

before, due to the ACh buildup associated with the surge, the M2/4 receptors of the TAN

can induce a pause. In the ACh-sensitive case, the recovery of the effective input current

associated with ACh decay during the pause, together with the more gradual decay in the

applied input strength itself, shortens the pause and allows spiking to return sooner than

previously (Fig 37 A vs. Fig 38 A). On the other hand, in the ACh-insensitive case, a more

intense initial surge in TAN spiking results in a greater ACh and gM2/4 response, causing a

rise in M-current that initiates a second pause when the input decays sufficiently, and even

a third pause resulting from elevated firing due to rebound depolarization (Fig 38 B). Thus,

as in the railcar case, our simulations suggest that the ACh-sensitive scenario is consistent

with experimental surge-pause dynamics, albeit with a shorter pause than for a railcar input,

while the ACh-insensitive scenario is not.

In the ramp case, we could change the rate at which the input decays. For inputs that

decay too slowly, TAN activity exhibits a secondary increase, yielding overly rapid TAN

spiking after the pause or even a second surge and pause cycle not seen in the data (not

shown). If inputs are removed too quickly, however, then because gM2/4 remains elevated,

the correspondingly strong M-current induces a secondary pause. Thus, adapting input only

gives a TAN response consistent with experimental observations if its decay rate is neither
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Figure 38: Simulated TAN Responses to Ramp Type Input Surge. A: ACh sen-

sitive Ramp Input The initial surge (top) suppresses TAN firing, while both input and 

ACh make a slow return to baseline. As in the railcar case, input is briefly weakened during 

the surge due to the rise in ACh. This rise in ACh causes a delayed rise in gM2/4, allowing 

for the initiation of the pause. B: ACh insensitive Ramp Input Although ACh remains 

below baseline when firing recovers, residual M-current allows for a secondary pause when 

input has fully decayed.
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too slow nor too fast. (Fig. 39).

In the previous input profile cases, we examined inputs that outlast the duration of the

actual TAN surge. Another possibility is that the inputs are shorter; indeed, in theory, the

surge termination could be a direct consequence of the cessation of the input. Thus, as a

final case, we consider railcar inputs that are shorter than the length of the TAN surge,

so that tf = t0 + 60 ms. As before, TANs surge with the rising input, and the response

to ACh-insensitve input exceeds that to ACh-sensitive input, but in both cases, due to the

short nature of the input, the pause is induced by the loss of the input, as predicted, rather

than due to the rise of gM2/4. Again the ACh-sensitive input case behaves appropriately,

with a rise in ACh and a single pause, but now, because the surge is terminated early, the

ACh-insensitve case does not have as great an effect on ACh as it did with a longer input,

so gM2/4 does not grow to levels that initiate secondary pauses (compare Fig 37 B to Fig 40

B). Thus, we see that for short input surges, TAN behavior is consistent with experimental

observations irrespective of the ACh-sensitivity of the excitatory input it receives.

We have now established that certain types of input yield the types of TAN surge-pause

responses observed experimentally, while others do not. Next, we consider the firing profile of

our model SPN subject to similar inputs as the TAN but shifted 50 ms earlier in time ([64])

and also impacted by the ACh profile generated by the TAN response. Experiments show

that SPNs produce a qualitatively similar surge-pause pattern to TANs during tic expression

(Fig. 36). After excluding TAN responses that are inconsistent with experimental data, we

are left with four input profiles that we have considered that can produce an appropriate

TAN surge-pause pattern. We investigated how the SPN response to each of these input

profiles compares to the experimentally-observed SPN surge-pause. The model SPN is tuned

so that with its baseline input and maximal M-conductance it fires at roughly 0.5Hz, with a

rate that increases with the application of excitatory drive. The SPN neuron has no intrinsic

mechanism to suppress a surge in firing in the presence of sustained excitation. Thus, its

surge must end entirely due to changes in inputs or through effects of ACh release by the

model TAN.

M1-type receptors on the SPN facilitate firing in the presence of ACh, unlike the M2/4

receptors found in TANs, so in our model, the maximal conductance of the SPN M-current
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Figure 39: A Failure Due to Premature Drive Removal. If the duration of the ramp

is halved to tf = t0 + 1000 ms, there is an initial TAN surge and pause before firing resumes.

After input fades away, however, a second pause occurs.
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Figure 40: Simulated TAN Response to Short Railcar Input Surge. During the

short railcar input, both ACh-sensitive (A) and ACh-insensitive (B) exhibit a single pause

before returning to baseline. In the ACh-insensitive case, gM2/4 (B, green) grows to levels

more comparable with the ACh-sensitive responses in other input profiles

gM1 decreases in the presence of ACh and rises in its absence (equation 8). In our simulations,

as the TAN begins a surge in firing, ACh rises and suppresses gM1. Thus, IMS is reduced,

which enhances SPN firing above the level resulting from the input alone and contributes to

the SPN surge. Once the TAN pauses, ACh decays below its baseline level, causing AS, and

therefore gM1 and IMS, to rise and to fight against SPN firing, potentially yielding the SPN

pause. As TANs return to their baseline firing rate, ACh, and therefore gM1, recovers to its

baseline level as well. Figure 41 shows a typical ACh subsystem trace, generated by system

(10) for a successful surge simulation.

We find that two of the four successful TAN response profiles generate successful SPN

response traces (Fig 42A, B). For both the ACh-sensitive long railcar and the ACh-insensitive

short railcar, the TAN pause allows significant ACh decay, resulting in a strong increase in

gM1, which can overcome any residual input to the SPN and induce a pause. On the other

hand, the ACh-sensitive ramp input and ACh-sensitive short railcar input to the TAN both

result in inappropriate SPN dynamics (Fig. 42C, D), regardless of the SPN input profile.

For these cases, failure of the SPN surge-pause response occurs for two primary reasons: In
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the ramp input profile, the decay of ACh during the TAN pause allows the effective input

to the TAN (IappT ) to recover, shortening the duration of the pause. This shortened pause

causes firing to resume, so ACh does not decay as deeply as in the successful cases, gM1 does

not grow much above its baseline level, and hence IM only weakly suppresses firing in SPN.

Meanwhile, in both of these cases, TAN firing after the pause resumes at a slightly higher

rate than in baseline conditions (Fig. 37B). As the TAN returns to tonic firing at this higher

rate, ACh again rises above baseline, causing an increase in gM1 and thereby promoting SPN

firing again, leading to a prolonged surge of SPN spiking.

Thus, our simulations suggest that cortical and thalamic excitatory inputs to TANs and

SPNs could lead to their experimentally observed surge-pause responses if those inputs are

either an ACh-sensitive sustained (i.e,. adapting) input of long enough duration or a suffi-

ciently brief ACh-insensitive (i.e., non-adapting) sustained input. Given that experiments

have shown that input pathways from cortex and thalamus to TANs and SPNs do feature

receptors known to be impacted by ACh, however, we predict that cortical and thalamic

activity associated with motor tic production under bicucilline application is sustained and

outlasts the observed TAN and SPN surges.

3.4 Discussion

We have constructed a conductance-based model of a striatal TAN that can produce

various TAN spiking patterns observed experimentally and responds appropriately when

tested under a wide range of conditions previously explored experimentally ([25], [84], [14],

[64], [136], [69]). This model development represents an important step forward in efforts to

simulate and model striatal activity, which may be of use in studying movement disorders.

We find that ACh-sensitive M-current conductances that respond to varying ACh levels

represent a viable mechanism for TAN autoregulation, which has long been believed to play

a role in modulating striatal function ([145]; [50]). This cholinergic modulation has a strong

effect when the TAN model is coupled with an SPN, contributing to the emergence of the

surge-pause behavior associated with motor tics induced by bicuculline administration ([64]).

93



Figure 41: ACh Engagment. A: Normalized level of extracellular ACh in the case of 

ACh-sensitive railcar input of 250ms. Note the decay below baseline corresponding to the 

TAN pause. B-D: Normalized engagement of ACh in the various receptor types
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Figure 42: SPN Dynamics. A: In the ACh-sensitive railcar (blue) and combined input cases 

(orange, yellow), the initial buildup of ACh suppresses the conductance gM1 of the SPN M-

current during the TAN surge, inducing B: a corresponding surge in SPN spiking. As ACh 

decays, the SPN M-current conductance rises, suppressing further SPN firing. C: In the case 

of the ACh-sensitive ramp input, gM1 does not grow as large and D: a sustained surge of SPN 

spiking results.
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The contrast between the prolonged, accelerated firing of an individual TAN during de-

polarizing current injection and the pause in TAN activity following a firing surge associated

with motor tic production, which leads to a corresponding rise in ACh, suggests that cholin-

ergic feedback is vital for the latter. Because quantitative information about the effects of

ACh on muscarinic receptors is sparse, we used a phenomenological approach to model the

ACh subsystem; more precise modeling represents a natural future direction that can be

pursued once further research into the specific actions of ACh has been conducted. How-

ever, the results that we have obtained provide constraints on the time course of cortical

and thalamic inputs during motor tics. Specifically, our results suggest that inputs must be

longer than the associated TAN and SPN surge duration and must be sensitive to ACh levels;

for example, prolonged, sustained input should result in multi-phasic TAN responses, with

multiple surge-pause epochs, while adapting input should result in other patterns that have

not been observed experimentally ([64]). An important caveat to this work is that, lacking

data on cortical and thalamic inputs to striatum during motor tic production, we explored

several natural choices of input profiles; however, it is still possible that some more compli-

cated pattern of inputs occurs and results in the surge-pause response, or that differences in

cortical and thalamic input timing, which we have not considered, could contribute.

TANs exhibit a variety of firing modes ([84]), which we can reproduce with a single model.

Capturing these different firing patterns does require some differences in model parameter

settings. These differences likely reflect the biological reality; that is, the differences in

activity observed experimentally when TTX is applied to TANs engaged in these behaviors

indicates that the internal mechanisms of the cells truly are tuned differently across these

regimes and hence the use of different parameter values to capture them is justified. Of

particular note is the transition between the burst-pause regime and the tonic firing regime

in the model, which we obtain with only a change to extracellular K+ concentration. This

concentration is believed to exhibit local variations in vivo ([23]; [139];, [52]). Interestingly,

a diversity of firing modes is also found in certain neurons in other brain areas and may

also be associated with differences in potassium conductances ([52]). The tonic firing mode

appears to be the TAN activity pattern most commonly observed experimentally and gives

the cell its name, so we make the natural choice of selecting it as a baseline condition for our
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emulation of other experimental benchmarks. More work should be done in the future to

consider how all of the different TAN firing modes impact TAN computation and what role

they play in maintaining striatal function. Our model suggests a mechanism by which the

TAN firing mode may be controlled experimentally, and may be of future use in examining

TAN responses to different stimuli in non-tonic firing regimes.

While our approach shows that tuning of a small set of factors suffices to modulate

firing patterns in an isolated TAN neuron, it is likely that TAN activity observed in ex-

periments is influenced by the activity of a veritable zoo of other striatal cell types, many

of which have ACh-sensitive nicotinic receptors ([31]; [141]). Although many of these are

quite sparse within the striatum, these cells have recently been shown to play an important

role in mediating TAN function (e.g., GABAergic NPY-NGF neurons studied in [47]; [96]).

Dopamine is another important modulator of TAN behavior, which is widely believed to

play an important role in the process of learning, particularly during TAN pauses ([16]; [59];

[68]; Tan and Bullock, 2008; Conceicao et al., 2017). Indeed, motor tics may be learned

responses to corticothalamic surges (Conceicao et al., 2018), and the pause following TAN

surges may contribute to this learning process. However, the DA-TAN interaction is complex

and bi-directional and has not been implicated directly in the activity patterns that we have

studied, and hence we have not modeled it in this work. More detailed models should also

take into account the fact that SPNs are heterogenous, with direct pathway SPNs specifically

expressing M4 channels (Higley, Soler-Llavina and Sabatini, 2009; [20])

While other models of TANs exist ([84]; [71]; Tan and Bullock, 2018; [136]), we find that

they are generally non-spiking models of subthreshold dynamics or otherwise unsuitable

for exploring motor tic phenomena. To our knowledge, what we present here is the first

spiking, conductance-based model of a TAN that reproduces at least qualitatively the variety

of experimental benchmarks that we have considered. Although our model matches some

experimental observations quantitatively, the timing of certain events in our simulations,

especially during deep hyperpolarizations, is not fully consistent with experimental results.

This is likely a result of using fixed membrane time constants. Allowing the membrane

time constant of Ih to vary with voltage could potentially alleviate these timing differences,

as the deep hyperpolarizations in the model result from an interplay between Ih and other
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hyperpolarizing currents (e.g. IIR). Furthermore, while the activity of our model depends

on IM , which is not completely inactive at hyperopolarized voltages, there may be additional

subthreshold currents that we have not captured. Indeed, in the trapezoidal input experiment

done by [136], as input is ramped down, the experimentally observed voltage is roughly linear,

while the voltage trace of our model is concave (Fig. 32A,D). Finally, there is some subtlety

missing in our representation of calcium-sensitive AHP currents. Both experimentally and in

our model, an influx of calcium can cause the cell to transiently enter the burst-pause firing

regime, but it is not clear from our simulations that calcium dynamics alone can sustain

burst-pause firing. Moreover, our model requires some adjustment of parameter values to

respond accurately to apamin, and even in the apamin-sensitive parameter regime produces

hyperpolarizations slightly shallower than those seen experimentally. It may be possible to

resolve these small discrepancies by using a different formulation of the sAHP current or

tuning of the [Ca2+] subsystem.

Ultimately, we have developed a biologically constrained model of a TAN that fits a

variety of experimental observations and have used it to explore how feedback effects asso-

ciated with ACh contribute to TAN and SPN surge-pause responses to excitatory inputs,

as may occur during motor tic production after bicuculline application. Incorporating this

autoregulation into computational models including networks of striatal neurons may help

to determine what, if any, functional roles different firing modes play in regulating striatal

activity and whether GABAergic inhibition alone is enough to suppress the striatal activity

associated with motor tics.
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4.0 Chaos in Striatal Circuit with Sustained Drive

4.1 Introduction

Chaos, perhaps most famous from the butterfly effect, is often found in complex systems,

especially those involving feedback loops. [41] Due to their unpredictable behavior, chaotic

systems may appear at first glance to be random, they are in fact deterministic, and if an

initial state can be known exactly, the full future of the trajectory can be computed, at

least in principle [138]. While the brain is fundamentally noisy, chaotic and nearly chaotic

systems are believed to govern the underlying activity of many neural circuits. [112] [132]

[113] Whether or not this chaos is beneficial to the neural computation is of course dependent

on context, but one useful effect of chaos is the ability to initiate state transitions when

nearly chaotic circuits have multiple stable activity patterns. [49] When supplied adequate

sustained input, the TAN model in the previous chapter exhibits some characteristics of

chaotic behavior. The presence of interacting feedback loops is common in chaotic systems,

so we wish to examine this behavior more carefully. In this chapter, then, we will discuss

some routes to chaos and demonstrate them in a simplified TAN model.

4.2 Methods

4.2.1 Reduced Model

In the interest of tractability, we consider a simplified TAN model which captures three

key features of the full model during the transition to chaos: Periodic firing with no or low

sustained input, chaotic firing without hyperpolarizations with moderate sustained input,

and chaotic firing with hyperpolarizations with high sustained input. Since we no longer
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consider firing modes or channel blocker responses, the model is greatly simplified to

C d
dt
v = −INa − IK − IIR − Ih − Ileak + Iapp

τ ∗ d
dt
x∗ = x∗∞ − x∗

(11)

where all current equations are the same as the previous chapter. In addition to standard Na, 

K and leak currents, we retain only the sag, Ih and inward rectifier IIR, as well as cholinergic 

dynamics on the applied current, given by

d
dt
A = −η ∗ A+ ρ exp(a−θA

σA
)−1 − A2/(A2 + α2) + T

d
dt
T = A2/(A2 + α2)− T

τapp
d
dt
Iapp = Mapp(1 + exp((T − θapp)/σapp))−1 − Iapp

(12)

4.2.2 Key observations

With this simplified model, we may make some key observations. Between spikes, T is

much faster than A, and so remains near its nullcline. Since, between spikes, T remains on

its nullcline, it does not contribute to they dynamics of A, which now decays at a constant

exponential rate, A(t) = A(0) exp(ηt). Thus, between spikes, we can make the further

simplification to the cholinergic subsystem:

C d
dt
v = −INa − IK − IIR − Ih − Ileak + Iapp

τ ∗ d
dt
x∗ = x∗∞ − x∗

d
dt
A = −η ∗ A

τapp
d
dt
Iapp = Mapp(1 + exp(( A2

A2+α2 − θapp)/σapp))−1 − Iapp

(13)

During a spike, the release of ACh from TAN is steep, with a high half-activation,

causing A to behave approximately discretely during a spike - each spike increases A by

approximately 2.08. Finally, after each spike, v, h, and n return to approximately the same

values. See Figure 43.
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Figure 43: Key Observations in the Simplified TAN Model. A: A-T projection during 

spiking. Notice that T quickly approaches its nullcline, and remains for the duration of 

the interspike period. B: A trace over 100 ms C,D: Projections of voltage with h (Na

+ inactivation) and n (K+ activation), respectively. Notice that after each spike, all 

three return to the same approximate values.
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4.2.3 Building the Poincare Map

With these considerations in mind, we can now define our approximate Poincare map F

In+1 = Iapp(tf )

An+1 = A(tf )

pn+1 = p(tf )

(14)

Where Iapp(t), A(t), and p(t) are solutions to (13) with initial conditions I0 = In, A0 =

An + 2.08, p0 = pn, and spike condition tf : v(tf ) = 20. In the interest of computational

efficiency, we approximate this map on a four dimensional grid (one for each of the dynamic

variables, and one for the parameter Mapp), and use fourth-order spline interpolation.

4.3 Results

4.3.1 Period Doubling Bifurcations

In the Poincare map F , a periodic limit cycle appears as a fixed point, x∗ = F(x∗;µ),

where µ is some parameter [110] At these fixed points, the map intersects with the identity

map I(x) = x. An important bifurcation in these maps is the period doubling bifurcation,

occurring at µ∗. In this case, for µ < µ∗, we have some stable fixed point x∗ = F(x∗;µ),

but if µ > µ∗, the fixed point loses stability and we have a new stable solution x̂ such that

x̂ 6= F(x̂) and x̂ = F2(x̂). That is to say, applying the map F to x̂ takes us elsewhere, but

applying it twice returns us to our starting value. It is easy to see that there must, in fact,

be two points that satisfy this relationship, namely x̂ and F(x̂).

Iterating (14) over a range of Mapp yields a bifurcation diagram exhibiting period dou-

bling. (see Figure 49). We observe that the sequence period doubling bifurcations is in-

creasingly frequent, suggesting an eventual chaotic regime. Returning to the flow, at these

parameter values we additionally observe period doubling in the limit cycle of the model

neuron (see Figs. 44,45)
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Figure 44: Single Period Limit Cycle. A: Phase plane of Iapp vs. ACh. B: Phase plane 

of Iapp vs. sag gating variable p. C: Phase plane of receptor activation ACtx vs. ACh. D: 

Voltage trace. Notice that each phase plane follows a single loop, and voltage is periodic.

Figure 45: Period 2 Limit Cycle: A: Phase plane of Iapp vs. ACh. B: Phase plane of 

Iapp vs. sag gating variable p. C: Phase plane of receptor activation ACtx vs. ACh. D: 

Voltage trace. Notice that each phase plane follows a double loop, and voltage is doubly 

periodic.
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Figure 46: Period 4 Limit Cycle. A: Phase plane of Iapp vs. ACh. B: Phase plane of Iapp vs. 

sag gating variable p. C: Phase plane of receptor activation ACtx vs. ACh. D: Voltage trace. 

Though the difference is slight, each phase plane now follows four loops.

As we increase the parameter value, we continue to pass through a second period doubling

(see Figures 46,47)

As we increase the parameter further, we pass through another period doubling, and

here we should suspect that we indeed have a period doubling cascade. (see Figure 48)

To approach finding these fixed period doublings in a more principled manner, we perform

stability analysis of the fixed points. For fixed points, they remain stable so long as all

eigenvalues remain within the complex unit circle. While a loss of stability corresponding

to eigenvalues which leave the unit circle through 1 or complex conjugates are similar to

the case of flows, stability loss through an eigenvalue of −1 is not so straightforward, and

indicates a period doubling bifurcation [55]. Thus, for a period 2 bifurcation, we find where

an eigenvalue of F(x∗;µ) reaches −1; for a period 4 bifurcation, we find where an eigenvalue

of F2(x∗;µ) reaches −1; for a period 8 bifurcation, we track the eigenvalues of F4(x∗;µ) etc.

We perform this analysis up to period 8, finding more precise estimates of the bifurcation,

and compare to our bifurcation diagram. See Figures 49, 50 A-C.
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Figure 47: Another View of Period 4. A: Phase plane of Iapp vs. ACh. B: Phase 

plane of Iapp vs. sag gating variable p. C: Phase plane of receptor activation ACtx vs. 

ACh. D: Voltage trace. As Mapp is increased further, the 4-periodic nature is more clear.

Figure 48: Period 8 Limit Cycle: A: Phase plane of Iapp vs. ACh. B: Phase plane 

of Iapp vs. sag gating variable p. C: Phase plane of receptor activation ACtx vs. ACh. 

D: Voltage trace. After a period 8 doubling, chaos seems imminent. Notice, however, that 

ACtx consistently remains near a 1-dimensional curve.
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Figure 49: Period Doubling Bifurcations. A: close-up view of bifurcations from (A) 

period 1 to period 2, (B), period 2 to period 4, and (C) from period 4 to period 8. D: A 

closer view of period 8 doubling. Notice that a period 16 bifurcation is visible.
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4.3.2 Lyapunov Exponents

While sequential period doubling bifurcations offer evidence of chaos, finding the exact 

sequence of parameters is impractical; showing this sequence has a finite limit even more 

so. Instead, we may turn to computing the maximal Lyapunov exponent of the map. This 

exponent describes the rate of divergence of two nearby initial points: that is, given two 

initial     points    x0     and     x0 + ε,     after    N     iterations     of     the     map     F,     we     have

|FN (x0) − FN (x0 + ε)| ≈ εeNσ.   Thus, if σ < 0, solutions  converge exponentially, and if σ > 0, 

solutions diverge exponentially.  For solutions which diverge,  we are then in a chaotic system. 

To    find   the    Lyapunov      exponents      of      the      map,     we    compute   the  eigenvalues

of limn→∞(
∏n−1

i=0 DF(xi))
1
n with some sequence xi = Fi(x0) [55]. With these eigenvalues

λj, our Lyapunov exponents are then σj = log(λj). We approximate these exponents with

n = 5000, and find that our maximal Lyapunov exponent crosses 0 (and thus, the system

becomes chaotic) when the parameter Mapp ≈ 2.1 (see Figure 50D.) We again return to the

flow and find that the approximation agrees (see Figure 51).

4.3.3 Hyperpolarizations

When the cell fires rapidly, the sag current begins to inactivate. During normal firing,

particularly when Iapp is low, the sag current is responsible for keeping the cell above the

firing threshold. Thus, if Mapp is high enough, the cell begins to enter phases where the sag is

sufficiently inactivated and Iapp is low, causing the voltage to make an excursion toward the

K+ reversal potential due to the influence of the inward rectifier. When Iapp + Ih ≤ 0.4917

the spiking oscillation is destroyed and the voltage approaches a stable fixed point. This

excursion allows the sag current to recover and, due to the pause in firing, allows ACh

to decay which in turn allows Iapp to rebound to much greater levels than before. When

Iapp + Ih ≥ 0.8543, the fixed point is destroyed, and the cell resumes firing. This event can

be seen in the full bifurcation diagram (Figure 53.) After the chaotic regime has begun,

there is a sudden expansion in the range of I∗, indicating these large rebounds. Again, this

agrees with the flow. (See Figure 52)
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Figure 50: Eigenvalues and Maxmial Lyapunov Exponent. A-C: Eigenvalues of F,F2,

and F4, respectively. As they pass through -1, period doubling occurs. D: The maximal

Lyapunov exponent as it crosses 0, indicating the onset of chaos.
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Figure 51: Chaotic Regime. A: Phase plane of Iapp vs. ACh. B: Phase plane of Iapp 

vs. sag gating variable p. C: Phase plane of receptor activation ACtx vs. Ach. D: Voltage 

trace. After chaos begins, the trajectory creates a dense path, however, its behavior is still 

tightly bound. ACtx remains near a 1-dimensional curve.

Figure 52: Hyperpolarizations in the Chaotic Firing Regime. A: Phase plane of Iapp 

vs. ACh. B: Phase plane of Iapp vs. sag gating variable p. C: Phase plane of receptor 

activation ACtx vs. Ach. D: Voltage trace. When hyperpolarizations begin to occur, the 

range of activity of the neuron is greatly expanded. These hyperpolarizations allow Iapp and 

sag inactivation p to much higher levels than before.
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Figure 53: The Full Bifurcation Diagram. As the maximum current parameter Mapp 

increases, the system goes through a series of stable or periodic points, denoted I∗, be-

fore becoming chaotic. When Mapp ≈ 2.2, the range of I expands, indicating the onset of 

hyperpolarization events. Some numerical error is present at this scale.
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4.4 Discussion

It is unclear what role this chaotic firing may have in the striatum. One possibility

is that, since TANs are weakly coupled via ACh, there is some risk of synchronization of

firing, causing rhythmically varying levels of ACh throughout. This chaotic firing, then, can

break synchronization, allowing the population to maintain a relatively steady level of ACh.

On the other hand, by promoting sag inactivation, chaotic firing increases the propensity

of TANs to hyperpolarize, which may lead to pauses. Since pauses contribute to learning,

essentially randomly distributed pauses are likely to be detrimental to the normal function

of the striatum. This apparent dichotomy may be partially resolved by different TAN firing

modes. Periods of chaotic firing can be useful for transitioning between different stable

patterns. When TANs are in bursting mode, the sag current is minimally inactivated, which

may counteract the apparent promotion of pausing from the chaotic drive. It is important

to reiterate here that pauses during burst firing are distinct from the TAN pause, which is

longer, may occur during tonic firing, and is associated with learning events. Indeed, using

chaotic firing to switch to burst firing may even allow TANs to coordinate pausing during

these learning events. This aligns somewhat with other theories of chaos in neural systems,

which suggest that the striatum should be on the edge of chaos: unstable enough to undergo

lasting responses to brief signals, but not so unstable that these responses are too distinct

[114]

At first glance, the construction of the Poincare map does not seem to offer much sim-

plification: we are essentially integrating the same equations regardless. However, following

this approach does in fact greatly simplify computations. We only need to integrate over

one spike, and because the ACh is stereotyped during the spike, we can avoid computing

the full action potential. More useful, however, is the fact that since the solutions of these

integrals are continuous with respect to parameters and initial conditions, we can generate

an interpolating surface of these solutions. Thus, we need only compute the integrals on an

appropriately sized mesh, and from there iterating the map is merely computing polynomial

values, which is computationally very efficient. Without more detailed numerical analysis,

we do not know how the interpolation compares to the true surface, but comparisons to the
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flow near the bifurcations suggest that our approximation is appropriate.
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5.0 Conclusions

Throughout history, mathematics has been used to great effect to understand the natural

world. Until recently, the sheer scale and complexity of neural circuits has prevented de-

scribing these structures and behaviors in a mathematically rigorous fashion. However, with

the progress of technology, tools are becoming available to place these complex systems on a

firm mathematical foundation, and this work represents some small inroads toward building

a more complete theory of mathematical neuroscience.

We began by examining stick insect locomotion, during which each leg must be coor-

dinated with the others to generate the walking pattern needed for movement as a whole,

and within each leg, each joint must also coordinate with the others to generate correct

individual steps. The stereotyped nature of these walking patterns allows us to focus on

circuits of simple neurons specific to individual joints, and we focused on one of these joints.

Since the neurons were simple, we could then further subdivide the problem into systems of

planar ODEs. We found that except in the most ideal conditions, this circuit cannot track

the duty cycle of a periodic forcing signal perfectly, but it can maintain the correct sequence

of activity under a range of forcing conditions. This is achieved through modulation of a

CPG which shares many important features of an HCO. Using high-performance computing,

we were able to search parameter space across the entire circuit to find where the entrained

solutions were stable and within a certain tolerance of the duty cycle of the forcing. Some-

thing not addressed by this work, and an open question for the future is the possible role

of feedback from the CPG onto the forcing signal: the forcing is a result of ground contact,

and the action of the joint impacts the timing of contact with the ground.

Next, we sought to examine a more detailed, realistic conductance-based model of striatal

activity during motor tic production in animals treated with bicuculline. Although the

animals are treated with bicuculline, the motor tics were consistent with human motor tics,

so the behavior of this circuit may offer some insight into human pathologies, like Tourette’s

Syndrome. However, there were two major modelling challenges which first needed to be

overcome: modelling of the TAN has not kept up with renewed experimental interest in TAN
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behavior, and neuromodulators like ACh are commonly treated as static parameters, when

we are specifically curious about the effects of transient dynamics. Although there are TAN

models in the literature, they are often overly simplistic or overly restricted in their scope,

modeling only one aspect of the myriad of behaviors TANs express. To remedy this, we

began an extensive experimental literature review, identifying key features of normal TAN

behavior, searching for evidence of relevant currents and how the cells respond to different

experimental conditions. From this literature, we isolated a number of necessary currents

required to express the full range of TAN behaviors, and could then tune our parameters so

that the model matched TAN behavior under these different experimental conditions. Like

the stick insect, this was made possible due to the fact that channel blockers could relatively

isolate the response of individual currents, allowing us to tune the response of the model to

these currents individually and combine these results into a single full model. The second

modelling challenge to overcome was the action of ACh. Unlike the TAN itself, there is very

little literature on the specific action of ACh, particularly the action of ACh on the receptors

of interest. To work past this, we proposed a set of mechanistic interactions, similar to

Lotka-Volterra and other population models. These give us, then, an at least reasonable

model of the impact of these short, transient changes in the neuromodulator changes on the

cells, and how they impact the cells’ responses to drive. A particularly interesting feature of

this model is the negative self-feedback loop of the TANs, where the release of ACh prevents

TANs from firing, preventing the release of ACh, imposing some soft constraints on the firing

rate of TANs.

Finally, we sought to examine how the TAN’s feedback on its forcing signal impacted

its behavior. Given a strong, continuous forcing signal that is subject to negative feedback

due to ACh, the TAN response appears chaotic. With this observation, we then sought to

quantify two things: is this system indeed truly chaotic, and, if so, by what mechanism does

the cell transition from stable periodic firing to chaos. After simplifying the model to only

its core elements, we found stereotyped behavior that allowed us to construct a Poincare

map given through integral equations. This approach allowed us to drastically reduce the

amount of computation necessary, as although the map equations were still too complex to be

solved analytically, the entire behavior could be computed by integrating only a single spike
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forward in time. Since these solutions are continuous in initial conditions and continuous in

parameter space, we could then construct a mesh over which polynomial interpolation was

used to further reduce computational complexity. We found a sequence of period doubling

bifurcations, suggesting a period doubling cascade as a likely route to chaos. Rather than

attempt to specify this sequence and find its accumulation point, we turned to the theory of

Lyapunov exponents, and found that indeed the firing is truly chaotic.

This work has provided me with some insights into mathematical neuroscience, both

generally as well as within the specific context of forcing. Speaking generally, although

computers offer an extremely powerful tool for conducting research, they are not a substitute

for mathematical insight and rigor. Even very simple circuits, of which there are trillions to

study, can quickly grow into problems of immense complexity that computers are not capable

of handling when approached näıvely. Mathematical solutions are completely necessary to

cut through the scale of these problems and reduce complexity back to the realm of what is

tractable and not merely possible in principle. Indeed, this type of approach is what allows us

to study isolated forced circuits in the first place. As for forcing, it is important to realize that

the response to the forcing need not match the timing of the forcing signal itself. Even in the

case of the stick insect, where entrainment to the forcing signal is the goal, this is not always

possible, much less necessary. Here, it is the sequence of the response matches rather than

the specific timing, and so long as the sequence matches the insect can maintain its walking

pattern. This seems plain in hindsight: the world is fundamentally rough and uneven, and

maintaining fluid motion requires some level of redundancy and fault tolerance. We also see

that even very short forcing signals can impart long-lasting effects to the circuit, as in the

case of motor tics. While it would be incorrect to say that these long effects are necessarily

pathological, very brief signals can dramatically alter the activity of a circuit. In multistable

circuits, this may be an energetically efficient way to more permanently alter firing patterns.

Whether or not this is a desirable outcome depends on the context. Regardless, this type of

response will have considerable impact on neural computation.
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[1] Borgmann A Hooper SL Büschges A. Sensory feedback induced by front-leg stepping
entrains the activity of central pattern generators in caudal segments of the stick
insect walking system. Journal of Neuroscience, 29: 2972–2983., 2009.
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[103] Jeffrey H Meyer, Stephanie Krüger, Alan A Wilson, Bruce K Christensen, Verdell S
Goulding, Ayal Schaffer, Candace Minifie, Sylvain Houle, Doug Hussey, and Sidney H
Kennedy. Lower dopamine transporter binding potential in striatum during depres-
sion. Neuroreport, 12(18):4121–4125, 2001.

[104] Yaroslav I Molkov, Ana PL Abdala, Bartholomew J Bacak, Jeffrey C Smith, Julian FR
Paton, and Ilya A Rybak. Late-expiratory activity: emergence and interactions with
the respiratory cpg. Journal of neurophysiology, 104(5):2713–2729, 2010.

[105] Moehle M.S. and Conn P.J. Roles of the m4 acetylcholine receptor in the basal ganglia
and the treatment of movement disorders. Movement Disorders, 34(8):1089–1099,
2019.

[106] Dolezal V. Wecker L. Y. N. N. Muscarinic receptor blockade increases basal acetyl-
choline release from striatal slices. Journal of Pharmacology and Experimental Ther-
apeutics, 252(2):739–743, 1990.

[107] McCarthy M. M. Brown E. N. Kopell N. Potential network mechanisms mediating
electroencephalographic beta rhythm changes during propofol-induced paradoxical
excitation. Journal of Neuroscience, 28(50):13488–13504, 2008.

[108] McCarthy M. M. Moore-Kochlacs C. Gu X. Boyden E. S. Han X. Kopell N. Striatal
origin of the pathologic beta oscillations in parkinson’s disease. Proceedings of the
National Academy of Sciences, 108(28):11620–11625, 2011.

125
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