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The modern drug discovery and development pipeline are complex, lengthy, and costly. The 

amount and availability of biomedical data explosive increase in the past decade, accompanied 

by rapid developments in computational technology. Those provide new and exciting 

opportunities to better and systematically understand the biology and pharmacology of diseases 

with the help of data science, machine/deep learning (ML/DL), and artificial intelligence (AI) 

technologies. Pharmaco-Analytics rises from introducing data science-driven methods to the 

traditional modeling and simulation in pharmaceutical & clinical sciences. It encompasses topics 

that cover preclinical and clinical analyses, for example, computational drug discovery, 

bioanalytical methodology, Pharmacometrics and Systems Pharmacology, Pharmacoeconomics, 

and outcomes analytics. In the Pharmaco-Analytics field, there are emerging AI/ML technology 

development and growing numbers of applications published increasingly facilitate 

pharmaceutical sciences and health care research. 

We present six studies in Chapters 2 to 4 introducing our innovation of developing ML/AI 

methods to inform preclinical modeling and clinical outcomes research. The first two studies 

describe two computational methods on target identification using Pharmaco-Analytics 

technology. The first study involves the development of an AI platform to investigate drug abuse 

Poly-pharmacology using computational chemistry and machine learning algorithms. The second 

study introduces a novel algorithm (DeepTargetHunter) to identify the target of small molecules 
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based on a novel deep learning technique for drug repurposing. The subsequent two studies focus 

on developments for preclinical properties prediction. The first study introduces a novel graph-

based method (DeepGhERG), to predict the hERG cardiotoxicity of small molecules and the 

second study describes DL methods to predict blood-brain barrier permeability.  

Lastly, we examine two methods to predict the risk of substance use disorder (SUD) based on 

childhood psychopathological traits. The first study presents a novel ML method to predict SUD 

outcomes based on deriving 30 of the most important questionnaire items predicting SUD. 

Whereas the second study introduces a novel approach called CausalSUD to identify the causal 

relationship between psychopathological cluster patterns and risk of SUD from late childhood to 

adulthood. In aggregate, the results from this research demonstrate the heuristic utility of AI/ML 

methods for advancing the Pharmaco-Analytics research in preclinical modeling and causal 

machine learning on clinical outcomes analysis. 

 

Keywords: Pharmaco-Analytics, artificial intelligence, machine learning, deep learning, graphic 

neural network, TargetHunter, hERG, BBB, GPCRs, substance use disorder, causal analysis 
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CHAPTER 1. INTRODUCTION 
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1.1 An Overview of Artificial Intelligence and Pharmaco-Analytics 

 

Modern drug discovery and development pipelines are complex, lengthy, and costly 

(Khanna 2012). To understand the disease development and identify plausible therapeutic 

hypotheses, various advanced experimental technologies, such as high-throughput techniques, 

were developed, followed by the generation of a vast amount of biomedical data (Hertzberg and 

Pope 2000). Such data explosion provides opportunities for scientists to study the biology and 

pharmacology of diseases better. Furthermore, the conventional target-based drug discovery, 

which is the basis of the ‘one-drug-one-target-one-disease’ assumption, has been examined as 

the less successful way for complex diseases.  

Systems pharmacology has emerged as the new discipline to tackle such challenges in drug 

discovery (Zhou et al. 2016; Vicini and van der Graaf 2013). Integrating and analyzing those 

massive heterogeneous pharmaceutical science data collected from all stages of drug discovery 

and development and clinical trials becomes a critical problem. The recent growth in data 

science and artificial intelligence (AI) (Figure 1.1.1) technology offered a systematical 

methodology to analyze that information comprehensively('Data Science and its Relationship to 

Big Data and Data-Driven Decision Making'  2013). 
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Figure 1.1.1 Number of published research using different AI for drug discovery in the recent 

decade. The data shown in this figure was collected by searching ‘Artificial intelligence’, 

‘drug discovery’ in SciFinder (scifinder.cas.org) 
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The general philosophy of AI can be traced back to the 1950s, which aimed to develop a human-

like machine system that interacts with the environment automatically (Lungarella et al. 2007). 

Thanks to the rapid development of modern computational technology, AI has moved from 

largely theoretical studies to real-world applications over the past decade. The success of AI 

applications can be observed in different areas such as computer vision, natural language 

processing, anomaly detection, and so on (Das et al. 2015). In the Pharmaco-Analytics field, 

more and more AI/ML method and applications are developed to facilitate drug development and 

health care research (Jing et al. 2018c; Jumper et al. 2021; Zhou, Wang, et al. 2020). 

The AI system can ‘learn’ from a large volume of biomedical data, and then use the 

obtained insights to assist decision-making tasks. For example, the health care AI system may 

help physicians by providing real-time medical information to inform proper patient care or 

giving appropriate suggestions to reduce diagnostic and therapeutic errors common in the clinical 

practice (Yu, Beam, and Kohane 2018). In drug discovery and development, AI applications help 

scientists in various forms and achieve varying degrees of success in drug design (Figure 1.1.2). 

One of those examples is the AI robotic synthesis platform which can predict the synthetic route 

of an organic compound and automatically synthesis the compound (Coley et al. 2019). Another 

example of AI in this field is the development of Alpha-Fold (Jumper et al. 2021), an ML-based 

protein structure prediction method that accurately predicted the structures of 98.5% of human 

proteins in the entire human proteome (Tunyasuvunakool et al. 2021). 
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The concept of Pharmaco-Analytics comes from introducing data-driven methods to the 

traditional modeling and simulation in pharmaceutical science. It is a collection of medication-

oriented computational data science technologies across the drug discovery life cycle. The aim of 

developing Pharmaco-Analytics is to develop and apply in-depth knowledge of drug action, and 

apply patient factors for drug efficacy and safety.  

Pharmaco-Analytics comprises preclinical and clinical methods to advance data-driven 

improvements in multiple drug discovery and development processes, such as computational 

drug discovery, bioanalytical methodology, pharmacometrics, and systems pharmacology (PSP), 

Pharmacoeconomics and clinical outcomes, and patient safety (Figure 1.1.3). The power of AI 

and data science applications will enhance that data-driven Pharmaco-Analytics research when 

integrated with traditional AI computational analysis and multiscale modeling (Hart and Xie 

2016; Jing et al. 2018b). 

Overall, the goals of applying AI in Pharmaco-Analytics involve different challenges 

such as target selection, hit identification, lead optimization to preclinical studies and clinical 

trials, etc. While AI may not answer every challenge, it is a valuable tool with correct usage to 

help drive discoveries (Sellwood et al. 2018). 
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 1.2 Machine Learning and Pharmaco-Analytics 

 

1.2.1 Machine Learning and Pharmaco-Analytics 

Machine learning (ML) is the technology for achieving AI. ML algorithms were developed to 

provide computer machine systems the ability to learn from experience without explicit 

programming (Brunette, Flemmer, and Flemmer 2009). In the learning process, the algorithms 

adaptively improve the model’s predictive performance with increased quantity and quality of 

data. Therefore, ML is best applied to tasks with extensive training data. 

Based on the type of problem to be solved, ML techniques can be divided into three main 

subclasses: supervised learning, unsupervised learning, and reinforcement learning (Shobha and 

Rangaswamy 2018). Supervised learning aims to learn the mapping function from the input 

variable (X) to the output variables (Y) so that it can be used to predict future values of data 

categories (classification) or continuous variables (regression) (Mahesh 2020). In unsupervised 

learning, there are no corresponding output variables (Y); therefore, it can be used for 

exploratory purposes to learn the underlying structure or distribution of the data, such as 

clustering (Hastie, Tibshirani, and Friedman 2009). Reinforcement Learning is the algorithm that 

guides the learning process in an interactive environment by rewarding desired behaviors and 

punishing undesired behaviors (Li 2017). This section will mainly provide an overview of 

supervised algorithms and introduce ML concepts and methods described later. 

The fundamental concept in supervised learning is using algorithms to learn from large amounts 

of data and subsequently predict the future with new data sets (Mohri, Rostamizadeh, and 

Talwalkar 2018). The general workflow in supervised learning consists of several steps: 1) data 

preparation; 2) feature engineering; 3) model training; 4) model validation; and 5) model 
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refinement (Praveena and Jaiganesh 2017). The prepared clean data are usually split into three 

subsets: a training set, a validation set, and a test set. The training set provides information for 

model fitting; the validation set assesses model performance during the training process and 

gives feedback applied for model refinement or selection; the test set provides an unbiased 

evaluation of model accuracy. 

Feature selection. The concept of “feature” in ML refers to the explanatory variable used in 

statistical analysis. Feature selection is the technique used to recognize the variables needed to 1) 

predict the raw data and 2) reduce the imbalance between small sample size and large feature 

number which usually decreases the accuracy of the predictive model (Liu and Zhao 2012). To 

extract the most informative features and remove redundant information, feature selection 

reduces the dataset’s dimensionality (number of features). 

Generalized linear model. A generalized linear model (GLM) is a statistical modeling method 

that estimates the linear relationship between the dependent variable (Y) and the predictor 

variables (X = [X1, X2, X3, …, Xn]) (Nelder and Wedderburn 1972). Common examples of 

GLMs include linear regression and logistic regression (Cox 1958). For instance, in a linear 

regression model, Y is expressed as a linear combination of all the predictor variables X, and the 

random error distribution of X is considered normally distributed. 

Support vector machine. Support vector machine (SVM) is a widely used non-probabilistic 

classification algorithm for handling high-dimensional data (Cortes and Vapnik 1995). Early 

SVM was designed to find the linear decision boundary (hyperplane) in the geometric feature 

space that separates the two classes as widely as possible. Optimized SVM methods were 

developed for nonlinear data sets by introducing kernel methods that use mathematical 
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transformations to map the original data into another dimension where the two classes are 

linearly separable (Soman, Loganathan, and Ajay 2009). 

Naïve Bayesian. The Naïve Bayes algorithm is the machine learning algorithm that takes 

advantage of the Bayes’ theorem under the “naive” assumption that explanatory variables are 

conditional independents (Domingos and Pazzani 1997). Naive Bayes calculates the posterior 

probability of each class at the condition of given features, and the outcome class with the 

highest probability is the predictive outcome. Even with the ‘naïve’ assumption that is most 

unlikely in real data, in practice, Naïve Bayes methods usually perform surprisingly well on data 

where this assumption does not hold. 

Decision tree. The decision tree is a graphical method of classifying cases following a hierarchy 

of “if-else” conditions based on the features. The class label distribution in the original 

population is usually represented at the starting node of the tree (root node). The population can 

then be split into sub-groups (branches) based on a feature’s values that differentiates the class 

distribution. This process is repeated at each branch (recursive partitioning) until all cases with 

the same class label or no features can further determine the class distributions. 

Tree-based ensemble methods. Random forest (RF) algorithm is a commonly used tree-based 

ensemble learning algorithm for various tasks such as classification and regression (Breiman 

2001a; Ho 1998). It consists of many decision tree models trained using a randomly drawn 

subset of the original dataset from bagging (Quinlan 1996). This approach ensures the 

independence of each decision tree. In addition, the features for training each decision tree are 

randomly drawn from the original feature set to avoid having all trees focus on the same few 

strong predictors and ignore the others. The final prediction is based on majority voting from all 

decision tree models; therefore, although each decision tree may be sensitive to random noise in 
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the training data, their collective decision is reasonably robust. Another commonly used tree-

based ensemble method is adaptive boosting (AdaBoost), consisting of multiple weak decision 

tree models (Solomatine and Shrestha 2004; Ma, Wang, and Xie 2011b). Instead of using 

randomized bagging as a random forest, AdaBoost adopts a boosting algorithm to conjugate 

weak classifiers into an ensemble model by assigning them weights  and automatically adjusting 

weights using different training samples to achieve better predictability. And the final prediction 

is the weighted sum up of the output from those weak classifiers. 

k-Nearest Neighbor. k-nearest neighbor (kNN) is an example of an instance-based learning 

algorithm used for classification and regression (Patrick and Fischer III 1970). When kNN model 

predicts the class label of a sample, the kNN algorithm first calculates the similarity of this case 

to all cases in the training set using a distance measure. It takes the average value or majority 

voting of the k training cases that are nearest to the query sample as the predicted label. The 

choice of k depends on the data and can be optimized via a heuristic search. Alternatively, the 

distances can also be used to weight the training cases so that the label of the query sample can 

be predicted as a weighted sum of all label values in the training set. In addition, the kNN 

algorithm is also widely used for non-supervised learning (Ding and He 2004)and data 

imputation (Beretta and Santaniello 2016). 

Overall, ML algorithms can do linear and nonlinear fitting between dependent and independent 

variables and thus usually provide better predictive performance than traditional methods. 

However, the conventional ML algorithms introduced in this section have difficulty processing 

naturalistic data of raw forms. Therefore, hand-engineered features must be extracted to 

represent the input data, which is crucial but often intractable and requires expertise in the 

specific input data area. Thanks to well-established feature selection and model fitting 
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techniques, a machine-learning-based model can be quickly built using a large dataset with 

relatively good performance. However, there are still disadvantages to using those machine 

learning models. For example, most machine learning models lack interpretability due to the 

complex non-linear fitting, and those ‘black box’ models help a little with explaining the 

mechanism and further optimization of the target compound. Secondly, although machine 

learning algorithms can deal with large datasets, redundancy and overfitting problems often 

make the prediction and classification unreliable (Ghasemi et al. 2018). 

Currently, ML drives the success of artificial intelligence in both academia and industry. 

Specifically, ML methods have been widely used in Pharmaco-Analytics study of every drug 

discovery and development (Das et al. 2015) (Figure 1.2.1). One successful example of ML in 

Pharmaco-Analytics is the applications of ML in a quantitative structure-activity relationship 

(QSAR) or quantitative structure-property relationship (QSPR) models (Myint et al. 2012; 

Svetnik et al. 2003). QSAR/QSPR analysis is an important computational method for small 

molecular drug discovery, which can predict either the biological effect against a specific protein 

or the physicochemical properties based on the chemical structure (Roy, Kar, and Das 2015). 

Generally, a mathematical or statistical relationship (equation) will be established between the 

compound descriptors and the target affinity or physiochemical property to provide reliable 

predictions on the biological activity of target molecules. By applying ML-based modeling 

techniques in learning this relationship or equation, a more accurate forecast can be achieved 

with the increased size of the training dataset. However, there are also disadvantages of ML-

based QSAR/QSPR. Firstly, the experimental error and noise may heavily increase the false 

correlation in such regression models. Secondly, the descriptors used for generating 

QSAR/QSPR models may cross-correlate, making it harder to build a robust model. Thirdly, 
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different variables are not suggested to be mixed when building regression models, limiting the 

selection of descriptors to represent the compounds.  
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1.2.2 Deep Learning Technology for AI in Pharmaco-Analytics 

 

1.2.2.1 Background of deep learning 

In March 2016, AlphaGo knocked out Lee Sedol, one of the best Go players in the world, 

bringing AI back into public attention overnight, spurring extensive interest ('Artificial 

intelligence: Google's AlphaGo beats Go master Lee Se-dol'  2016). Compared to Deep Blue, the 

chess-playing computer developed by IBM that beat the world champion for the first time back 

in the 1990s, AlphaGo integrated an advanced and innovative architecture called the 

convolutional neural network (CNN), which is one of the most successful implementations of the 

deep learning (DL) algorithms in neural networks (Silver et al. 2016). Benefiting from the rise of 

big data analysis and the advance of large-scale computing capabilities, especially the 

development of graphics processing unit (GPU) computing (Ma, Wang, and Xie 2011a), using 

DL architectures has emerged as the first attempted technologies to address AI challenges 

(Baskin, Winkler, and Tetko 2016). 

DL is a rebranding of a traditional machine learning algorithm called artificial neural network 

(ANN), which consists of connected artificial neurons to mimic the human brain (McCulloch and 

Pitts 1943). The origin of a neural network can be traced back to the neural network algorithm 

proposed by Warren McCulloch and Walter Pitts in the 1940s and the perceptron algorithm 

invented by Frank Rosenblatt in the 1950s (Rosenblatt 1957). Both algorithms were designed to 

mimic the excitation of neurons in the human brain by analogizing the activation of a binary 

logic gate in the neural network. The main idea of this early ANN was to define an algorithm to 

learn the weight vector w, which was used as the coefficient of an eigenvalue. Then an activation 

function inside the neuron, such as Heaviside Step Function or Sigmoid Function, was used to 
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determine whether the neuron was activated or not(McCulloch and Pitts 1943; Rosenblatt 1957). 

Later on, the development of the BP algorithm (Kelley 1960) for ANN modeling brought the 

boom of those statistics-based ML methods for supervised learning. Such ANN was not ‘deep’ 

but ‘shallow’; it was composed of one input layer, one output layer, and one hidden layer in 

between (Figure 1.2.2). It receives signals from the hidden layer and then uses an activation 

function to produce an outcome. With a data stream following the process, those neural networks 

could be considered feedforward neural networks (FNN) (McCulloch and Pitts 1943). 

Optimization of these ‘shallow’ networks systems is achieved by first calculating the error 

between the output result and the actual value using the backpropagation algorithm (Rumelhart, 

Hinton, and Williams 1986). It then modifies the internal adjustable parameters (weights) to 

minimize the error through gradient descent (LeCun, Bengio, and Hinton 2015). The Universal 

Approximation Theorem states that ‘shallow’ networks, with only one hidden layer containing a 

finite number of nodes, could approximate any continuous function (Gao and Xu 1993). 

However, models with such architectures may be susceptible to overfitting when the number of 

adjustable parameters increases (such as several nodes with adjustable weight connections in the 

hidden layer). The overfitting problem can be minimized by carefully training of shallow 

networks, especially when regularization is applied(Lawrence and Giles 2000). 
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Nevertheless, more hidden layers could be designed to recognize more abstract patterns 

from input data, with lower layers learning basic patterns and upper layers learning higher-level 

patterns. Adding more hidden layers and nodes could significantly increase the computation task. 

Those multilayer neural networks with many hidden layers may suffer from gradient vanishing 

problems (Hochreiter 1998), resulting in the difficulty of changing weights to optimize the model 

training. To overcome these situations, the network architectures were modified to optimize the 

initialization and the updating of the weights. Different transfer functions and regularization 

techniques are adopted to minimize overfitting (Winkler and Le 2017). Examples of those 

architectures include the deep belief network (Hinton, Osindero, and Teh 2006), CNN, and 

recurrent neural network (RNN) (Olurotimi 1994). Meanwhile, the development of GPU 

acceleration technology tremendously improved the computing power and helped the 

development of the DL method (Ma, Wang, and Xie 2011a).  

The early practical framework of DL was proposed by Geoffrey Hinton and other scientists in 

2006, opening the revolutionary waves of DL and new AI in academia and the industry (LeCun, 

Bengio, and Hinton 2015). They developed a novel architecture for multilayer NNs to introduce 

feature learning into DL for abstracting the essentials of the data. DL methods could 

automatically extract features from input data with the raw format through feature learning, then 

transform and distribute them into more abstract levels (LeCun, Bengio, and Hinton 2015). 

Meanwhile, the rapid development in parallel computing techniques and computing hardware, 

especially the emerging application-specific integrated circuit designed for DL study such as the 

Tensor processing unit technique ('Google supercharges machine learning tasks with TPU 

custom chip'  2016), ensured that the tremendous computing workload might no longer be an 

inaccessible domain (Schmidhuber 2015). 
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1.2.2.2  Common deep learning architectures and concepts

There are various DL architectures, each of which can  recognize patterns and extract high-level

features in distinct ways based on the training data  structure.  In this  section  we mainly discussed

the basic DL architectures, including CNN, RNN, and the generative networks  (LeCun, Bengio,

and Hinton 2015).

Convolutional Neural Network. CNN is one of the most representative architectures in DL and 
is

widely adopted in many fields such as image and  voice recognition,  and  natural language

processing (NLP). The modern CNN came from the development of the recognition by

Fukushima in the 1980s, which was inspired by the research into the cat's visual cortex receptive

field by Hubel and Wiesel(Hubel and Wiesel 1962, 1959). When processing visual signals, local

neuron patterns take responsibility for perceiving particular regions in the sensory space and

CNN mimics its traits by developing two main characters in the convolutional layers: sparse

connectivity and shared weights (Figure 1.2.2A)  (Zeiler and Fergus 2014). Furthermore, the

increase of robustness achieved by pooling layers and the integration of  the dropout technique

for regularization makes the CNN even more sophisticated  (LeCun, Bengio, and Hinton 2015).

For those complicated signaling processes, in which the input data have a  massive  number of

input features and extremely abstract connections, the adoption of CNN could circumvent the

headache of feature selection by directly importing the input data into the model  (Pastur-Romay

et al. 2016). There are three types of layers commonly used in CNN: the convolutional layer, the

pooling layer, and the fully  connection layer (Figure 1.2.2B). Those layers were carefully

selected and arranged to form the multilayer network(LeCun et al. 1995; LeCun et al. 1998).

Depending on the input data modality, different forms of layers can be considered. For example,

for sequence signals such as language, layers can be formed with 1D arrays; for images or
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audios, layers can be formed with 2D arrays; and for videos, layers formed with 3D arrays can be 

applied(LeCun, Bengio, and Hinton 2015).  
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Recurrent Neural Network. RNN is another representative type of architecture in DL. Especially 

aiming to handle sequence data, RNN has been widely used and succeeded in NLP. RNN is 

different from regular FNNs, which follow the feedforward architecture. In regular FNNs, there 

is no connection between hidden nodes in the same layer but only between nodes in adjacent 

layers (Figure 1.2.4). One of the significant shortages of FNNs is that they cannot handle 

sequence problems because the output is related to the current input information and prior 

information, for example, machine translation. However, RNN can process sequential 

information by 1) introducing directed cycles into its network; 2) affiliating the adjacent hidden 

nodes with each other; 3) capturing the calculated information from preceding time slices; and 4) 

storing it for the subsequent procedure(LeCun, Bengio, and Hinton 2015; Olurotimi 1994). In the 

RNN, each hidden layer with directed cycles could be unfolded and processed as a traditional 

NN sharing the same weight matrices U, V, W in every same layer. There are plenty of 

variations of RNNs. The most common ones are Gated Recurrent Unit Recurrent Neural 

Network (GRURNN)(Cho et al. 2014), Long short-term memory (LSTM) network(Hochreiter 

and Schmidhuber 1997), and Clockwork RNN (CW-RNN)(Si, Hsieh, and Dhillon 2014). Among 

these RNN architectures, LSTM is currently the most popular and widely used in NLP. In NLP, 

LSTM is often combined with a distributed word embedding representation, which is achieved 

by checking the statements and Part-of-Speech tagging(LeCun, Bengio, and Hinton 2015; 

Schmidhuber 2015). Using a specialized function to compute the transition state in the hidden 

layer, the LSTM network is robust when capturing long-term dependencies compared to regular 

RNNs. In addition, LSTM is also as popular and successful as CNN in the image retrieval 

domain and is usually combined with CNNs for the automatic generation of image description in 

AI (LeCun, Bengio, and Hinton 2015).  
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Generative Deep Neural Network. DNNs are not only for processing labeled data in supervised 

learning but also for analyzing non-labeled data in unsupervised learning. One such example is 

Deep Auto-Encoder Network (DEAN), a generative network for unsupervised learning (Bengio 

2009; Pastur-Romay et al. 2016). DEAN consists of an encoder and a decoder, two symmetric 

DBNs, a deep neural network (DNN) proposed by Hilton et al. in 2006 (Hinton, Osindero, and 

Teh 2006). Those two DBNs are usually composed of several Restricted Boltzmann Machines 

(RBMs) (Hinton and Salakhutdinov 2006), a bipartite network containing one visible layer and 

one invisible layer. In RBM, there are symmetric connections between every two nodes from 

different layers and no connection between nodes from the same layer. The function of a simple 

Auto-Encoder can be regarded as the compression of data which can then be decompressed and 

recovered based on a BP algorithm with a minimal loss of information (Kelley 1960). Thus, 

DAEN is also considered an optimal method for dimensionality reduction because of its capacity 

to reduce redundancy. In this case, DAEN can be explicitly used for feature extraction for the 

reduced features to train a classification model using supervised learning algorithms (Chen et al. 

2014). This paradigm may be valuable in the future development of DL applications. More 

recently, Generative Adversarial Networks (GANs), another type of DL algorithm for 

unsupervised learning, have been developed and widely used in image synthesis, image-to-image 

translation, and super-resolution (Goodfellow et al. 2014). Its development is motivated by 

observational data’s underlying probability density or probability mass function. Generator (G) is 

responsible for making non-realistic images from random vectors to confuse the other network 

known as Discriminator (D). When D receives both forgeries and real (authentic) images, it will 

tell them apart. In that module, G and D compete with each other and are trained simultaneously 

until they find the optimal parameters. Under those parameters, the G maximizes its 
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classification accuracy, and the D maximizes its discrimination accuracy. Multilayer networks 

can be implemented by fully connected GANs, convolutional GANs, conditional GANs, GANs 

with inference models, and adversarial auto-encoder (AAE). 

Regularization and Drop Out. Since over-fitting is a severe problem in multilayer DNNs, a broad 

range of techniques for regularizing has been developed to minimize the over-fitting problem. 

Dropout is one of the common ways to regularize NNs by dropping out units (hidden and visible) 

in NNs [47]. The critical idea of dropout is to add noise to its hidden units randomly; therefore, 

preventing over-fitting and improving test performance. Those DNNs which adopt dropout 

techniques can be trained through stochastic gradient descent (SGD) like regular DNNs. 

Similarly, each hidden unit in an NN adopted dropout must learn to work with a randomly 

chosen sample of other units, making them more robust than relying on other hidden units to 

correct its mistakes. Bayesian regularized artificial neural network (BRANN) is another 

development that introduced regularization into NN architecture. By using ridge regression in the 

mathematical process of model training, nonlinear regression can be converted into a “well-

posed” statistical problem in the BRANN [48]. The cross-validation step for assessing the model 

in BRANN, which is usually tedious and time-consuming in DL modeling, may also be omitted. 

Automatic relevance determination (ARD) of the input features can be applied in BRANN to 

help calculate several effective network parameters or weights, which will cause the removal of 

parameters with smaller weights. In such a way, those irrelevant or highly correlated indices are 

neglected, and the essential variables for modeling are highlighted. Those two characteristics are 

beneficial for cheminformatics and QSAR/QSPR research because there are usually too many 

features to describe one molecule. 
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1.2.2.3 Deep learning algorithms for Pharmaco-Analytics

In recent years, the DL techniques have been adopted in Pharmaco-Analytics, opening a new

door to computational decision-making in the pharmaceutical industry(Jing et al. 2018c). The

success of DL techniques in Pharmaco-Analytics benefits from multiple aspects, including the

innovative development of the DL algorithms, the progress in high-performance computing

techniques,  and  the explosion of chemical information in chemical databases  (Gray et al. 2015).

Specifically, with the rapid development of big data and data science, the benchmark dataset is

essential  for  constructing a model. In the drug discovery field, the  Merck Kaggle challenge  using

a Merck-activity dataset, as well as the  Tox21 challenge  using  its benchmark datasets

significantly  speeded up the application of machine learning methods in the QSAR/QSPR studies

(Unterthiner et al. 2014; Casey 2013). Compared to traditional ML methods, DL methods  have

the capacity of processing ‘big data’. Therefore, the need for large, standardized datasets for DL

modeling is dire.

In 2017, Wu  et al.  introduced their large-scale benchmark package  (MoleculeNet)  for molecular

modeling study  (Wu et al. 2017). This dataset integrated multiple public molecular datasets,

covering quantum mechanics, physical chemistry, biophysics, and physiology. In addition, all the

datasets established metrics for model evaluation and implementations for calculated molecular

features were packaged together with the modeling toolkits in their python library called

DeepChem. In addition, Lenselink  et al. published their benchmark dataset generated from the

ChEMBL database, another  standardized dataset for developing DL models  (Gaulton et al.

2018).

DL models have been reported in three major areas in computational chemistry--  predicting the

drug-target interactions (DTI), generating novel molecules, and predicting absorption,
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distribution, metabolism, excretion, and toxicity (ADMET) properties for translational research 

(Rubio et al. 2010). Like other ML algorithms, DL undergoes more and more successful 

applications in building QSAR/QSPR models. As early as 2012, Hilton’s group won the Merck 

Kaggle challenge (https://www.kaggle.com/c/MerckActivity) using their DL models, opening a 

new chapter of applications using DL methods for predicting chemical compound activity and 

properties. Similarly, Wang and Zeng published their DTI-discriminative model using RBM, the 

commonly recognized first generation of DNNs (Wang and Zeng 2013). In the following year, 

Dahl et al. from Hilton’s group and Google Inc. published several papers on DL-based QSAR 

modeling. They tried multiple tasks and different features using DNNs with various hyper-

parameters and started using GPUs for a benchmark test(Ma et al. 2015; Dahl, Jaitly, and 

Salakhutdinov 2014; Ramsundar et al. 2015). In 2014, Wang et al. reported their DIT-predictive 

model using pairwise-input NNs, offering a new reasonable idea of adding target information 

into the model (Wang et al. 2014). To mimic the interactions between compounds and proteins, 

separated groups of weights were assigned to the compound features and protein features and 

then fed into the first hidden layer, respectively. In 2015, Wallach et al. introduced their DL 

model, AtomNet, to predict binding affinity for selecting active compounds for drug 

discovery(Wallach, Dzamba, and Heifets 2015). AtomNet was the first DL model to adopt CNN 

for small molecular binding affinity prediction. In AtomNet, a novel approach to combine both 

ligand and target structure information was used. However, AtomNet required the 3D structures 

for both ligand and target protein containing the location of each atom involved in the interaction 

at the binding site of the target. Recently, Wan and Zeng published their new model for 

compound-protein interaction prediction using DL methods, in which they adopted a widely used 

technique in NLP studies called feature embedding (Wan and Zeng 2016). In their model, both 

https://www.kaggle.com/c/MerckActivity
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the ligand information (molecular fingerprints) (Rogers and Hahn 2010) and protein sequence 

were embedded into multi-dimensional vectors. Following the embedding process, a sequence of 

fully-connected layers consisting of rectified linear units (ReLUs) was constructed(Nair and 

Hinton 2010). 

Besides predicting target selectivity and DTIs, DL methods have been adopted to predict 

ADMET properties. In 2013, Lusci et al. reported their model for predicting aqueous solubility 

using DL architecture (Lusci, Pollastri, and Baldi 2013). They segmented small molecules into 

atoms and bonds to build a digraph by sequencing those atoms and linking them using their 

corresponding bonds, and then put the contracted graph into the RNN model. In 2015, Shin et al. 

published their model developed using the DL method to predict the absorption potential of 

small molecules(Shin et al. 2016). In-vitro permeability data of 663 small molecules from the 

human colorectal carcinoma cell line (Caco-2) were used as training data, and 209 molecular 

descriptors were calculated using CDK toolkits based on their 2D structures 

(http://www.rguha.net/code/java/cdkdesc.html). Without using any specialized architecture, four 

layers of fully connected neural networks were generated to extract and transform the input 

information and finally classify the absorption potential of the input compound. DL methods 

were also helpful in predicting the toxicity of small molecules in the Tox21 Data Challenge 

launched by the NIH, EPA, and FDA. Unterthiner and colleagues reported their DL-based 

models for toxicity prediction in 2015 (Unterthiner et al. 2015). Multiple types of molecular 

features, such as different fingerprints and chemical properties, were tested and compared in 

their study. Forty thousand input features and a considerable number of hidden layers were 

adopted in their models. The average performance of their DL-based models was good in multi-

task testing, showing that the DL algorithm was quite robust regarding training data, parameters, 

http://www.rguha.net/code/java/cdkdesc.html
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and tasks. Recently, Pereira et al. proposed their DL-based protocol for docking-based virtual 

screening (Pereira, Caffarena, and Dos Santos 2016). Their model used both ligand information 

and the interactive amino acids from docking to optimize the docking results. The input data 

were the distributed representation (Hinton 1984) of the compound-protein complexes generated 

using the embedding technique, followed by a three-layer convolutional neural network.  

A lot of the earlier DL attempts in the drug discovery field had been using human-engineered 

features like molecular descriptors and fingerprints. In such cases, the characteristic of DL as 

representation learning, which allows DL to engineer molecular features directly from data 

automatically, is largely missing. Yet that is possibly the most crucial aspect that distinguishes 

DNNs from traditional ML algorithms. It is nice to see that more recent publications have 

demonstrated that learning directly on ‘unprocessed’ chemical data may also be a viable strategy. 

A work using ‘unprocessed’ chemical data on convolutional neural networks was published by 

Yao and Parkhill(Yao and Parkhill 2016). Notably, they used electron density from the 3D small 

molecules, rather than 2D molecular fingerprints or physical-chemical properties, as the input 

data and developed a 3D convolutional neural network model to predict the Kohn-Sham kinetic 

energy of hydrocarbons. Bjerrum reported a DL model using LSTM cell-based NN (Bjerrum 

2017). The innovative part of his research was that he used SMILES (Weininger 1988) 

enumeration, a single line text uniquely representing one molecule, as the raw input data in the 

model. Another research from Goh et al. tried to use 2D molecule drawing images of molecules 

as the input data of a CNN model to predict chemical properties (Goh et al. 2017a, 2017b). They 

also compared their method to a CNN model using conventional molecular features as the input 

features. The model constructed using their image-based input features slightly outperformed 

traditional molecular features.  
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More recently, with the development of unsupervised learning and generative NNs, the 

application of those generative models using DL algorithms has seen progress. Kadurin et al. 

developed a seven-layer generative AAE model for screening compounds(Kadurin et al. 2017). 

Unlike a standard screening method using the QSAR model, their model extracted features from 

the input molecular fingerprints of 6,252 training molecules and generated new fingerprint 

vectors for potential selective compounds using a non-supervised generative model. Then they 

screened those selected outputs vectors against an extensive library of 72 million compounds 

from PubChem (Kim et al. 2016) and predicted 320 compounds as potential compounds, in 

which 69 were identified as actual hits experimentally. Besides selecting novel compounds using 

auto-encoders, there were several attempts to generate novel compounds using other deep 

generative networks. Segler et al. introduced their generative models for designing novel focused 

libraries using RNNs, achieving a satisfactory performance to complete the de novo drug design 

cycle (Segler et al. 2017).  

Similar methods were developed for the de-novo library design by Olivecrona et al., with the 

novelty of adding RL (Schmidhuber 2015) into the method (Olivecrona et al. 2017). Guimaraes 

et al. adopted GANs, and RL to construct a generative model for generating different types of 

molecules using their SMILES data, giving a novel idea of designing novel compounds using 

state-of-the-art unsupervised DL methods (Guimaraes et al. 2017). 
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1.2.3 Deep Learning versus Traditional Machine Learning 

In the era of big data, DL has a significant advantage compared to other traditional algorithms, 

which are also considered ‘shallow’ in their learning capability compared to DL algorithms 

(Goh, Hodas, and Vishnu 2017). DL algorithms belong to the representation learning class, 

which can handle raw data and automatically extract features as the representations needed for 

further detection or classification (LeCun, Bengio, and Hinton 2015). As state-of-the-art machine 

learning algorithms, DL algorithms have been challenged by comparing them to other ‘shallow’ 

machine learning algorithms (Goh, Hodas, and Vishnu 2017). Winkler et al. recently reported 

comparing their Bayesian regularized neural network (BNN) models and the DL models 

generated by Ma et al. using the same KAGGLE data set from Merck (Ma et al. 2015). They 

showed that ‘shallow’ neural networks with one single hidden layer could perform as well as 

DNNs with more hidden layers, given sufficient training data in QSAR or QSPR modeling 

(Winkler and Le 2017). A similar conclusion was generated by Capuzzi et al. from the 

comparison with Tox21 data (Capuzzi et al. 2016). It appears that those results were consistent 

with the universal approximation theorem (Gao and Xu 1993), inferring that DL algorithms may 

not have superiority over regular ‘shallow’ networks. Those results may overturn our 

preconception that novel DL should be better than traditional ‘shallow’ machine learning 

methods. In fact, both DL and Shallow Learning have their places for supervised learning with 

the final purpose of classification or regression (Winkler and Le 2017; Ma et al. 2013). 

Schmidhuber. et al. suggested that the primary deficiency of most traditional machine learning 

methods is that they have a limited ability to simulate a complicated approximation function and 

generalize to an unseen instance (Schmidhuber 2015). NNs have advances in QSAR/QSPR 

modeling (Baskin, Winkler, and Tetko 2016), and the universal approximation theorem proves 
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its advanced capacity on approximation. Shallow NNs can generalize to new data very well in 

most cases, given sufficient diverse data. Given the same descriptors and training data, both 

types of neural networks generate similar quality models. However, DNNs can generate complex 

abstractions of the descriptors. As mentioned, the essential features of DL methods that 

distinguish them from shallow neural networks are not only the emphasis on the depth of the 

network but also the emphasis on feature learning. Compared to the shallow neural networks that 

need to ‘manually’ select the features, DL methods can learn features from data by constructing 

nonlinear network models to extract latent information of the ‘big data.’ In the early 

QSAR/QSPR studies, descriptors were designed manually, not capturing all the features 

impacting the QSAR/QSPR response surface (Winkler and Le 2017). As a result, one tiny 

change in the values of those descriptors could lead to a significant difference in the activity. 

Such phenomena are called activity cliffs (Maggiora 2006), which is a common concern in 

QSAR modeling. The presence of activity cliffs is also highly correlated with the distribution of 

the activity responding surface used for training the model, which refers to small molecular 

feature learning and protein target feature extraction. Research has shown that adding  protein 

features makes the DL model perform better(Lenselink et al. 2017; van Westen et al. 2011). 

From the aspect of DL modeling, both the choice of different DL architectures and the 

configuration of hyper-parameters are very vital for achieving good performance.  

Moreover, other differences between DL methods and traditional shallow machine learning 

methods were explored by other researchers. Lenselink et al. found that DL methods and 

traditional shallow machine learning methods performed similarly on randomly split data; 

however, they had significant differences when the data were divided by congeneric chemical 

series (such as by the nature of publishing) (Lenselink et al. 2017). They thought that compounds 
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published together were usually very similar in chemical structure and splitting in such a way 

could make the validation more in line with the experiments performed. Because of the advance 

of feature learning, DL can reach a high identification accuracy under the premise that the 

training set should contain a tremendous amount of data. With limited data, the DL techniques 

cannot achieve an unbiased estimate of the generalization, so that they may not be as practical as 

some traditional shallow machine learning methods(Winkler and Le 2017; Schmidhuber 2015). 

Also, with the rapid increase of time complexity because of the complication of the network 

architecture, stronger hardware facilities and advanced programming skills are required to grant 

the feasibility and effectiveness of DL methods. In addition, although DL methods usually have 

outstanding performance in practice, the tuning of the hyper-parameters in DL modeling is often 

tricky. Also, it is hard to know how many hidden layers and nodes could be enough to establish 

the best simulation without redundancy for a specific DL modeling. Finally, the strategy for 

unsupervised learning in DL is inspiring but still falling far behind (Schmidhuber 2015). In real-

world applications, especially in drug discovery, most of the data are non-labeled data, with 

plenty of information contained. Exploring and developing novel unsupervised learning methods 

using DL methods and mining useful information from those data is still difficult. 

Overall, modern pharmaceutical science and drug discovery will become more and more 

complex. Designed for intricate simulation, DL should have the capability to handle that 

complexity. Also, with DL methods, we should not restrict ourselves to the traditional 

predictions on biological activities, ADMET properties, or pharmacokinetics simulations; but it 

may also be possible to systematically integrate all the data and information and achieve a new 

level of Pharmaco-Analytics AI technology in drug discovery.  
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 1.3 Causal Inference and Bayesian Networks 

  

1.3.1 Introduction to Causal Inference 

Machine learning and deep learning are powerful for predictive tasks; however, they also have 

drawbacks. The major drawback of machine/deep learning algorithms is that they treat all 

variables as equals and do not necessarily distinguish between causes, outcomes, and 

confounders. This problem is especially pronounced when predicting the impact of treatment 

interventions using nonrandomized, observational data in health care research (Prosperi et al. 

2020). To address this problem, the causal discovery was developed to provide a concise way of 

representing and quantifying causal relationships among variables (Glymour, Zhang, and Spirtes 

2019b). Now, the causal discovery has already been applied in different areas such as genomics, 

ecology, epidemiology, space physics, clinical medicine, neuroscience, and other domains 

(Sachs et al. 2005; Schadt et al. 2005; Sinoquet 2014; Vasimuddin and Aluru 2017). 

The traditional way to discover causal relations is to use interventions or randomized 

experiments, which are expensive, time-consuming, or sometimes impossible. Causal discovery 

offers a different pathway for revealing causal information by analyzing complex observational 

data using Bayesian networks (BN) (Spirtes, Glymour, Scheines, Kauffman, et al. 2000). BN is a 

specific type of probabilistic graphical model (PGM) that represents the conditional 

dependencies among variables by a directed acyclic graph (DAG) and a set of parameters. In the 

PGM, the dependence structure among variables is described in a graph of nodes and edges, in 

which each node represents the variable, and the edge represents the dependency between two 

variables. Specifically, in the causal BN, the directed edge with an arrow pointing from one node 

to another represents the causal relationship between those two variables. In other words, if A → 
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B is in the directed graph of BN, then interventions on A will directly change the value or 

distribution of B. 
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1.3.2 Searching Causal Structures 

When training BN, the pairing of a DAG and a joint probability distribution on values of its 

variables is subject to the constraint that a graphical condition called d-separation must imply 

conditional independence in the probability distribution (Geiger, Verma, and Pearl 1990). For 

example, in three disjoint sets of variables (X, Y, Z), if all paths between X and Y are blocked by 

Z in the DAG, then variable sets X and Y are d-separated conditional on Z. The d-separation and 

its connection with conditional independence has an equivalent in the local Markov Condition, 

which is that any variable X in a DAG is independent of its non-descendants given its parents 

(Glymour, Zhang, and Spirtes 2019a). This is an essential precondition for causal inference 

called causal Markov assumption (Hausman and Woodward 1999). 

The causal dependence relations among variables can be identified by either acquiring from 

domain knowledge, learning from experimental and observational data, or combining of both. 

The domain knowledge is commonly used at the beginning of model construction, providing a 

valuable clue and starting point for the causal learning procedure. Then the following learning 

BN structures from data serve as an excellent approach for generating causal hypotheses that 

explain the underlying distribution of the data. The essence of causal structure learning is the 

statistical estimation of parameters describing the graphical causal structure. This computational 

estimation usually requires iterative or Monte Carlo procedures, also called causal structure 

searching. There are mainly two types of search algorithms: constraint-based algorithms and 

score-based algorithms (Triantafillou and Tsamardinos 2016). The constraint-based algorithms 

use hypothesis testing to estimate the dependence or conditional independence relationship of 

each variable implied by the data and then use these relations to construct a directed graphical 

model. Examples of constraint-based algorithms are the PC algorithm (Harris and Drton 2013; 
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Casini and Baumgartner 2020) and the Fast Causal Inference (FCI) algorithm (Spirtes 2001). The 

score-based search algorithms are mainly used in situations without confounders. Those 

algorithms aim to use a pre-defined performance score function (e.g., BIC score) to find the 

Markov equivalence class of graphs that most closely entails the set of conditional independence 

relations in the data. However, the causal structure search is a data-driven process, and 

sometimes it can be tricky. Therefore, it is often necessary to refine the identified causal 

relationship based on the domain knowledge. 

Conventional statistical analysis and machine learning methods can query the posterior 

probability of a target variable Y based on the probability distribution of the observational 

variables X, P(Y|X=x). However, such posterior probability is based on associations between X 

and Y; therefore, it can be not accurate because of confounding variables or biases that cause 

both the X and Y. In addition, in the data collection and analysis procedure, the selection of 

variables and covariates are usually arbitrary, which may lead to redundancy, incomplete 

blockage of confounding, as well as additional sources of bias (Pearl 1998). In comparison, 

Causal BN can identify causations rather than associations by making inferences on intervention 

effects. Instead of evaluating P(Y | X=x), causal BN adopts the do-calculus method to estimate 

the P(Y | do(X=x)), which means the condition that the value of X is artificially set to x 

regardless of  its causal parents’ values (Tucci 2013; Pearl 1995). Causal inferences from 

observational data can be achieved by controlling for a set of confounding variables. In the 

situation with unobserved confounders, P(Y | do(X=x)) can be estimated using the ‘front-door’ 

criterion by introducing a mediator. At the same time, the latent confounding and bias between 

two variables (X, Y) can also be eliminated by controlling for a set of variables that block all 
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‘back-door’ paths (Pearl 1995). In this way, causal analysis using BN provides a systematic and 

rational approach for identifying confounders. 
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1.3.3 Perspective of Causal Inference Analysis 

Data-driven methods have been highly successful in Pharmaco-Analytics research, especially for 

diagnostic and predictive tasks (Jing et al. 2018a). However, machine learning methods are 

speculative interventional and decision-supporting tasks, which are more common in clinical 

research and precision medicine. In addition, observational data collected retrospectively are 

usually collected with various biases; therefore, the estimation of causal effects from 

observational data requires thoughtful handling of potential biases and confounding. The causal 

analysis attempts to address those problems by estimating the interventional effects under the 

counterfactual conditional probabilities. By using conditional independence tests and causal 

structure search algorithms, causal analysis can reproduce the potential causal mechanisms from 

observational data even in the presence of bias and confounding (Prosperi et al. 2020). However, 

the computation power required for causal graph searching is super-exponential in the number of 

observed variables and hidden variables, making the exhaustive causality search computationally 

unfeasible. The exploration of combining deep learning with causal methods provides fascinating 

new insights to address this issue (van Amsterdam et al. 2019).  

Moreover, the interpretability of the causal model helps explain of variables and mechanisms, 

making up the ‘black-box’ model property of machine learning (Rudin 2019). In the future, 

intervention models could be more successful in Pharmaco-Analytics research and applications, 

in line with the current standards for diagnostic and discriminative models. And intervention 

models are expected to be integrated into clinical guidelines to facilitate future AI development 

in drug discovery and patient healthcare. 
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2.1 DAKB-GPCRs Platform for GPCRs-related Drug Abuse Research 

 

2.1.1 Significance and Background 

Drug abuse (DA) and addiction are complicated neurological disorders. The main symptom is 

compulsive behavior pertaining to drug craving, seeking, and persistent use despite serious 

adverse consequences. According to Drug Facts (NIDA 2020), the total overall costs of 

substance abuse in the U.S. exceed $740 billion annually, including approximately $193 billion 

for illicit drugs (National Drug Intelligence Center (NDIC) 2017; Birnbaum et al. 2011), $300 

billion for tobacco (Services ; Xu et al. 2015), and $249 billion for alcohol (CDC 2016) (Figure 

2.1.1A, B). Thus, research into DA prevention and treatment is a high priority. 

To accelerate and facilitate DA-related research, we constructed a self-serve online library 

named GPCRs-specific chemogenomics knowledgebase for DA research (DAKB-GPCRs) 

containing information about drug abuse-related protein targets and small molecules as well as 

tools and algorithms for computational data analyses and visualization of those data. In our 

established drug abuse chemogenomics knowledgebase (DA-KB) (Xie et al. 2014; Xie et al. 

2016) regarding protein targets of abused drugs, we found that 86 out of 258 proteins (33.3%) 

are G protein-coupled receptors (GPCRs) (Venter 2001), which GPCRs are targeted by 

approximate 40% of marketed drugs worldwide. However, only 39 GPCRs have been published 

with crystal structures in the last two decades (Xie et al. 2016). Moreover, among 86 GPCRs 

related to DA, only 18 GPCRs’ (21%) experimental structures are available (Figure 2.1.1C, D). 

Recently, homology modeling with a sequence identity of 30% or greater (Chothia and Lesk 

1986) and/or multiple conformations-based docking is becoming a powerful tool and strategy for 

structural study and drug discovery (Kitchen et al. 2004). Therefore, we constructed this DAKB-
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GPCR platform for drug abuse researchers/scientists who have no experience in programming, 

statistics, or in silico drug design to facilitate their DA research.  
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2.1.2  Methods

2.1.2.1  Data collection and content

Genes/Proteins. Genes/proteins related to drug abuse were collected from public databases such

as Ensembl  (Zerbino et al. 2017), UniProt  (The UniProt 2017), KEGG  (Kanehisa and Goto

2000), GPCRdb  (Isberg et al. 2017), and NCBI Protein Database  (Coordinators 2017). Available

crystal structures of GPCRs were retrieved from the Protein Data Bank (PDB)

(http://www.pdb.org/pdb/).

Drugs and Chemicals. ChEMBL  database (version 23) was used in our work  (Gaulton et al.

2018). The experimental data for each small molecule against its respective target proteins was

collected using the text mining technique and cleaned by manual inspection. Bioactivity data

from different resources were normalized using the same standard. Especially, small molecules

with IC50 lower than 1 µM towards a GPCR target were regarded as the active compounds,

while those larger than 10 µM were considered inactive compounds. A  training dataset that

consists  of both active and inactive compounds of each GPCR will be used for prescreening and

similarity search using TargetHunter  (Wang et al. 2013).

Homology Models. The sequences of the human GPCRs were collected from the UniProt

(http://www.uniprot.org/uniprot/) website. Modeler 9.18  (Webb and Sali 2016)  was used to

construct the homology models. After generating the 3D models of protein targets, SYBYL-X

1.3  ("SYBYL-X"  2010)  was adopted to carry out the energy minimization. Then the model after

energy minimization was selected for further molecular dynamics simulation.

Molecular Dynamics Simulation. To sample the conformations of each homology model or

crystal structure, 10ns molecular dynamics simulations were performed. The NAMD package

(version 2.9b1)  (Kalé et al.  1999)  using the CHARMM27  (Brooks et al. 2009)  force field was
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applied to the MD simulation. All the systems were equilibrant after 5ns, so we analyzed the data 

based on the trajectory file from 5ns to 10ns. Ten conformations with the lowest energy during 

the last 5ns MD simulation (from 5ns to10ns) were selected for prescreening. 

Prescreening. Ten models of each GPCR obtained after MD simulation was utilized to perform 

the prescreening against its training dataset (see Drugs and Chemicals). Three conformations of 

each GPCR with the best ROC curve were selected and integrated into our platform. Taking 

adrenoceptor alpha 1d (ADRA1D) as an example, Supplementary Figure S2.1 shows the curves 

of its best three conformations. It shows the statistical results of Model 1: the docking score of 

6.1539 was chosen as the best threshold because the docking scores of 81.111% (1-0.28889) 

inactive compounds were lower than 6.1539, while the docking scores of 78.498% (0.78498) 

active compounds were higher than 6.1539. The thresholds of docking scores of other models 

were 6.5873 (Figure S2.1B) and 6.709 (Figure S2.1C), respectively. 

 

  

  

 

 

2.1.2.2  Database Implementation and cheminformatics tools development

Database Infrastructure. A query compound can be submitted using JSME Molecular Editor

(Ertl 2010). DAKB-GPCRs were implemented based on our established molecular database

prototype CBID (http://www.cbligand.org/cbid/) using SQLite database management system

(https://sqlite.org/) and Kestrel HTTP server (https://github.com/aspnet/KestrelHttpServer) with

Apache HTTP server (https://httpd.apache.org/) as its reverse proxy server. The overview of our

design for DAKB-GPCRs  is  depicted in Figure 2.1.2.

TargetHunter. DAKB-GPCRs integrates our online target-identification service TargetHunter

(Wang et al. 2013)  for predicting the potential off-targets for submitted compounds.

TargetHunter exploits a  common  principle of medicinal chemistry: compounds with structural
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similarities often have similar physicochemical properties and biological profiles. For each query 

compound, TargetHunter calculates the similarity (from 0.0-1.0, totally different to 100% 

similar) with its known active compound’s dataset that was collected from Drugs and Chemicals. 

HTDocking. DAKB-GPCRs adopts our online high-throughput molecular docking technique-

HTDocking (Liu et al. 2014; Xu et al. 2016; Zhang, Wang, et al. 2016), for identifying possible 

interactions between protein targets and small molecules. Three different conformations for each 

GPCRs were selected from MD sampling and validated by prescreening. For each query 

compound, HTDocking will automatically dock it into three different conformations and 

generate docking scores. A higher docking score indicates that the protein is more likely to be 

the candidate target of the queried small molecule. 

  



47 

   



48 

  

F
ig

u
re

 2
.1

.2
 T

h
e 

o
v
er

v
ie

w
 d

es
ig

n
 f

o
r 

D
A

K
B

-G
P

C
R

s.
 W

h
en

 s
u
b
m

it
ti

n
g
 a

 q
u
er

y
 c

o
m

p
o

u
n

d
, 
o
u

r 
p

la
tf

o
rm

 w
il

l 

au
to

m
at

ic
al

ly
 g

en
er

at
e 

th
re

e 
d
o
ck

in
g
 s

co
re

s 
(e

ac
h
 p

ro
te

in
 h

as
 t

h
re

e 
co

n
fi

rm
at

io
n
s)

 v
ia

 H
T

D
o
ck

in
g
 (

h
ig

h
-t

h
ro

u
g
h
p
u
t 

m
o
le

cu
la

r 
d
o
ck

in
g
) 

an
d
 o

n
e 

si
m

il
ar

it
y
 s

co
re

 v
ia

 T
ar

g
et

H
u
n
te

r 
(p

re
d
ic

ti
n
g
 t

h
e 

p
o

te
n
ti

al
 t

ar
g
et

s/
o
ff

-t
ar

g
et

s 
o
f 

su
b
m

it
te

d
 

co
m

p
o
u
n
d
s 

b
as

ed
 o

n
 m

o
le

cu
la

r 
si

m
il

ar
it

y
) 

fo
r 

ea
ch

 G
P

C
R

. 
T

h
en

 t
ar

g
et

 c
la

ss
if

ic
at

io
n
 f

o
r 

ea
ch

 G
P

C
R

 w
il

l 
b
e 

g
en

er
at

ed
 

b
y
 o

u
r 

d
ee

p
/m

ac
h
in

e 
le

ar
n

in
g
 a

lg
o
ri

th
m

s 
th

at
 c

o
m

b
in

ed
 b

o
th

 d
o
ck

in
g
 s

co
re

s 
an

d
 s

im
il

ar
it

y
 s

co
re

s.
 S

p
id

er
-P

lo
t,

 o
u
r 

n
ew

 

m
ap

p
in

g
 t

o
o
l 

th
at

 i
s 

si
m

il
ar

 t
o
 C

y
to

sc
ap

e 
w

as
 u

se
d

 t
o
 m

ap
 o

u
t 

th
e 

m
o
le

cu
le

-p
ro

te
in

s 
n

et
w

o
rk

s.
 L

as
t 

b
u
t 

n
o

t 
le

as
t,

 t
h
e 

b
lo

o
d

-b
ra

in
 b

ar
ri

er
 (

B
B

B
) 

p
re

d
ic

to
r 

w
il

l 
v
is

u
al

iz
e 

th
e 

re
su

lt
s 

o
f 

th
e 

q
u
er

y
 c

o
m

p
o
u
n
d
. 

 



49 

Machine Learning-based Target Classification. For each GPCR, a dataset consisting of three 

docking scores and one similarity score for each known compound was trained to build the target 

classification models using established machine learning (ML) algorithms. The compound 

dataset collected for each target (as discussed in section 1.2) was used for training and testing the 

classification models. Molecular docking scores and molecular fingerprint similarity scores were 

computed using the protocols discussed in sections 2.2 and 2.3, respectively. Four ML 

algorithms were adopted by our classification models: logistic regression (Kleinbaum et al. 

2002), support vector machine (SVM) (Steinwart and Christmann 2008), random forest (RF) 

(Breiman 2001b), and artificial neural networks (ANN) (Gardner and Dorling 1998). 10-fold 

cross-validation was used to assess the predictive capability of all the models. The performance 

and evaluation for those classifications are listed in Figure 2.1.3. The performance of the ANN 

models was not robust in this case; thus, those models were eliminated. Therefore, the final 

prediction for each protein target was determined by the classifications from the three selected 

models and their confidence levels. 

Spider Plot. Based on the target classification, our online tool Spider Plot visualizes the 

molecule-protein interaction network (Chen et al. 2019). The average docking scores are 

displayed as connection labels, and the entire network graph can be exported as an image file. 

BBB Predictor. The blood-brain barrier predictor was integrated into DAKB-GPCRs. It predicts 

whether or not a query compound can move across the BBB to the central nervous system 

(CNS). The BBB predictor is available for access from http://www.cbligand.org/BBB. 

  

http://www.cbligand.org/BBB
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2.1.3 Results and Discussion 

To elaborate how the DAKB-GPCRs website can be used to facilitate research, we use a 

published compound (CHEMBL1779871, a positive allosteric modulator of human mGluR5), to 

showcase the functionalities step by step (Figure 2.1.4). 

Home Page. The DAKB-GPCRs can be accessed from https://www.cbligand.org/g/dakb-gpcrs. 

On the top of the home page (Figure 2.1.4A) is the navigation bar which contains the HOME 

button and the ‘ALL TASKS’ button. Clicking on the HOME button brings the user back to the 

home page, while the ‘ALL TASKS’ button directs the user to the task list page. 

Task List Page. The task list page displays all the tasks submitted in a table layout. (Figure 

2.1.4B) Completed tasks are shown as Finished in the status column, and ongoing tasks are 

shown as Running. Users can click on the task name to access the detailed information of the 

input compound and the output of the computation task. Users can initiate a new job by clicking 

on the Create a new task button in the upper right corner of the page. 

Start a New Task using Structure Query. Users can submit a query compound by drawing its 2D 

structure with JSME Molecular Editor or uploading a chemical file with the button (Figure 

2.1.4C). A meaningful name for the task is also required. Clicking on the Create Task button will 

initiate a new job. Afterward, a background job worker who periodically monitors the task queue 

will allocate computation resources and dispatch the computation task. In Figure 2.1.4C, the 

structure of CHEMBL1779871 in SMILES format was uploaded. 

Detailed Task Page. After submitting the request, the website will automatically direct the user 

to the detailed task page (Figure 2.1.4D). This page shows the task information and the progress 

bar on the top showing the real-time progress of computation for target prediction. Following the 

https://www.cbligand.org/g/dakb-gpcrs
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task, information is the section of ligand information which includes 2D/3D structures, multiple 

structure files of the query compound, and various computed molecular fingerprints. Moreover, 

the results from the BBB predictor can be found on this page (Figure 2.1.4E). 

Output Page for Target Prediction. The output page can be accessed by clicking on the See 

Detailed Output button from the detailed task page. On the output page, each block presents 

three docking scores by HTDocking computed against three protein target models and a 

similarity score by TargetHunter (Figure 2.1.4F). The classification result is presented, shown 

whether the query compound is an active or inactive compound for this protein target, and the 

confidence level of the prediction is also provided. When clicking on the download button, the 

user can download the docking results of the submitted compound. The most similar compound 

within the compound library of a protein target can be seen from the Best Match field. After 

clicking the compound ID , its comparison with the query compound is shown in a popup 

window (Figure 2.1.4G). When clicking on the target name, a window consisting of additional 

resources for the protein target (Figure 2.1.4H) will be shown, including a 3D interactive 

visualization, multiple links to other database websites, and models for direct downloading.  

The SPIDER PLOT button on the top of the page leads the users to the drug-target network 

plotting tool for data visualization and analysis (Figure 2.1.4I). The validated and most 

promising predictions for the query compound are shown as green nodes connected with a solid 

line. In contrast, unvalidated predictions are shown as purple nodes connected with a dashed line. 

The name and structure of the query compound are placed in the center of the plot. As illustrated 

in Supplementary Figure S5I, GRM5 was predicted as the most promising target for 

CHEMBL1779871, which was consistent with the bioactivity data where CHEMBL1779871 is 

an active compound for GRM5 (EC50 = 7.5nM). 
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Figure 2.1.4D Detailed task page for a given compound 
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Figure 2.1.4E Result from the BBB predictor for CHEMBL1779871 
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Figure 2.1.4G Popup window showing the comparison between query compound and the 

most similar compound in the database 
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Figure 2.1.4H Popup window presents additional resources for a protein target 
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Figure 2.1.4I Spider Plot for data virtualization and analysis 
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2.1.4 Conclusion 

In this study, we have introduced a DA-domain-specific chemogenomics knowledgebase 

platform for GPCR-related biomedical and pharmaceutical science research. This platform 

includes both the biomedical records database and implemented cheminformatics and 

bioinformatics tools. With the illustrated systems pharmacology analysis on GPCRs targets and 

therapeutic agents, we demonstrate that DAKB-GPCR can be an efficient and powerful tool to 

analyze data in DA-related research. The analysis result from this platform will help to 1) 

identify the patterns of DA from the systems pharmacology perspective by exploring the 

interactions between small molecules and GPCR proteins; and 2) provide a better understanding 

of how genes/proteins and small molecules influence the various risks for DA. Considering the 

current knowledge of GPCR distribution in the brain, the platform also provides BBB 

penetration evaluation to help with understanding the brain circuitry that underlies DA.  

The systematic effects and pharmacological mechanisms between abused drugs and DA-related 

GPCRs are complex. The state-of-the-art computational technologies, together with the 

Pharmaco-Analytics methods, enable us to understand them from a systems pharmacology 

aspect. Our TargetHunter, HTDocking, and AI/ML-based analysis boost the possibility of 

finding and optimizing lead compounds that combine multiple desirable mechanisms of action 

on these GPCRs in a single new chemical entity for DA intervention. In addition, our GPCR-

DAKB platform focus on analyzing interactions between DA-related GPCRs targets and their 

ligands, which be generalized to other DA-related target protein families. Therefore, we believe 

that our GPCR-DAKB platform will facilitate biologists to quickly discover the mechanisms of 

action for active ligands for DA treatment. Moreover, our platform will also facilitate 

pharmaceutical science researchers on different tasks such as off-target adverse effect analysis as 
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well as drug repurposing. The algorithms and methods developed and integrated into GPCR-

DAKB can help predicting new targets of existing drugs/compounds, which will further help 

discovery of novel therapies. 

To our knowledge, no such domain-specific system is available for the proposed computational 

applications. Our platform is the most comprehensive web-based service that integrates DA-

related genes, proteins, and drugs for DA research. In the development of this platform, state-of-

the-art computational chemistry/cheminformatics and machine learning algorithms established in 

our lab have been implemented. And by building cloud sourcing and cloud computing web 

service that can be accessed worldwide, we believe our DAKB-GPCR platform will boost the 

information exchange and data-sharing of knowledge new among DA researchers and healthcare 

providers, as well as relevant scientific communities. 
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2.2 DeepTargetHunter: A Novel Method for Target Identification using Deep Learning 

 

2.2.1 Significance and Background 

Modern drug discovery is based on the concept that the interaction between drugs and their 

protein targets can modulate the biological function of human protein, which drives the 

pharmaceutical action for disease treatment (Shuker et al. 1996). Exploring drug-target 

interactions (DTI) is the initial and vitally important step in drug discovery and development, 

which can be used not only for improving efficacy but also for drug-repurposing and off-target 

safety profiling (Hopkins 2008; Iorio et al. 2010; Iskar et al. 2013). At the same time, 

conventional drug discovery based on the ‘one-drug-one-target-one-disease’ assumption has 

been concluded to be the less successful tactic for complex diseases (Horrobin 2001). In recent 

decades, the concept of systems pharmacology has emerged as the new discipline to tackle such 

challenges in drug discovery (Zhou et al. 2016; Vicini and van der Graaf 2013). Single drugs can 

interact with multiple targets, and the treatment for one disease may require synergistic 

regulation between multiple targets. Therefore, there is a strong incentive to promote DTIs study 

to find a new therapeutic strategy. However, the identification of DTIs using large-scale 

chemical screening or biological experiments is usually time-consuming with high associated 

costs (Iorio et al. 2010; Iskar et al. 2013). To reduce the cost and save time to meet the needs of 

the pharmaceutical industry and pharmaceutical science academy, computational methods have 

been introduced into DTI prediction (Xu, Ru, and Song 2021).  

Traditional computational methods for large-scale DTIs identification have limitations. 

Similarity-based methods (Wang et al. 2013) were developed based on the simple medicinal 

chemistry assumption that structurally similar compounds usually share similar physiochemical 
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properties and similar biological targets. These methods are fast and straightforward; however, 

they only consider ligand information and rarely exploit the features from the protein data. High-

throughput molecular docking (Liu et al. 2014) methods are relatively accurate and robust; 

however, they require the precise 3D structure of the protein target and are usually 

computationally expensive and time-consuming. Nowadays, an increasing number of researchers 

are changing their strategies from chemistry-centric modeling to combined methods, which not 

only consider small molecules features but also include target protein information (You, 

McLeod, and Hu 2019; Wang, You, et al. 2020; Huang et al. 2020; van Laarhoven, Nabuurs, and 

Marchiori 2011).  

Enabled by the explosive increase in biomedical data in conjunction with machine learning, these 

techniques have become popular methods in drug-target interaction prediction research. Quickly 

and with no cost, machine learning methods offer an avenue for identifying the potential 

biological targets for small molecules accurately. Among machine learning applications, 

recommendation systems used for providing recommendations have become part of our 

everyday lives. For example, e-commerce sites offer suggestions based on our personal 

information and purchasing history, while online streaming sites recommend music and videos 

that we may enjoy. This concept of “user-item relationship” prediction can be extended to 

suggesting routes for exploring the drug-target relationship. Following this design, a machine 

learning-based recommendation framework for DTI prediction can be developed if considering 

the biological targets as users and the small molecular ligand as items. By projecting the ligand 

and target features into a high-dimensional space, the mathematical mapping between them can 

be learned as the abstraction of interaction.  
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To achieve this, state-of-the-art deep learning (DL) algorithms will be applied. DL is a new class 

of machine learning algorithms specifically designed for Artificial Intelligence (AI) (LeCun, 

Bengio, and Hinton 2015). The idea of DL came from the exploration of Artificial Neural 

Networks (ANN), which were initially developed to mimic the activity of neurons in the human 

brain (Gardner and Dorling 1998). The advantage of DL is that it consists of multiple layers, 

which can intensify the capacity of signaling transformation and feature extraction.(Schmidhuber 

2015). With such an architecture of multiple layers, deep learning will have the capability of 

extracting contributed features for identifying DTIs from the chemical/biological structure of 

small molecules and protein targets. Using those extracted features, classification to determine 

whether there is an interaction between small molecules and protein targets will be addressed. 

Due to the ability of DL to use more complex nonlinear transformations, it is believed that the 

prediction of unknown targets of compounds will be more efficient than current methods. This 

work proposes a novel DL-based method for large-scale DTIs prediction to support drug 

discovery research. 
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2.2.2 Methods 

2.2.2.1 Overall workflow 

Our new DL-based design adopted many state-of-the-art technologies such as embedding 

techniques in natural language process (NLP), deep convolutional neural network (CNN), deep 

recurrent neural network (RNN), personalized recommendation ranking system, and so on. The 

overall framework is depicted in Figure 2.2.1, consisting of one non-supervised learning 

component for feature embedding and one supervised learning component for classification. In 

the non-supervised components, both small molecular information and protein target information 

are learned through embedding methods. Then the embedded representations of ligand and target 

are further abstracted through a deep attention architecture for abstracting high-level features. At 

last, the abstracted information is fitted into an MLP classifier for final prediction. 
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2.2.2.3 Small molecular feature calculation 

The conventional method to describe the chemical feature of a small molecule is to use 

molecular fingerprints, which is a substructure search using hand-engineered structural keys. 

However, in this type of method, each feature (binary bit) is equidistant from every other and the 

2.2.2.2  Data preparation

The drugs and targets data for training DTIs models were collected from the DrugBank

database  (Wishart et al. 2018), which is a unique  bioinformatics and cheminformatics resource

that combines detailed drug data with comprehensive drug-target information

(http://www.drugbank.ca/). The entire dataset contains 8563 small molecules and 4345 targets,

with 18586 known interactions. Among those interactions, some pairs are positive DTIs, and

some pairs are not specified.  The negative samples  used  in this study were  randomly selected

from the unknown DTIs. In the present study, we randomly selected 18586 samples from the

non-specified DTIs as  a  negative data set. Thus, the whole data set has 38336 samples. A random

split  to  the training set and test set was performed, with the training set assigned 30000 samples

and the test set assigned 8336 samples.

For the feature embedding models training, additional  data  sets were collected. For small

molecules, a total of  123182 drug-like compounds were collected from the ZINC database

(Sterling and Irwin 2015)  and then diversely selected based on the molecular  fingerprint

similarity.  In total  6125 proteins  targets  with the primary structure were collected from RSCB

PDB  (Berman et al. 2000). In addition, an extra test set was constructed using  the  DUD data set

(Mysinger et al. 2012), which contained 40 biological targets and 98,266 ligands (2950 active

ligands and 95316 inactive ligands).

http://www.drugbank.ca/


70 

correlation information between features is missing. Using the embedding method to learn a 

distributed representation of molecular fingerprints can address this problem. The latent semantic 

analysis (LSA) technique was adopted here to learn the distributed representation. LSA is 

commonly used in Natural language processing (NLP) for document similarity analysis 

(Nadkarni, Ohno-Machado, and Chapman 2011; Landauer, Foltz, and Laham 1998). In LSA, 

each document is represented by a vector storing the term frequency and inverse document 

frequency (TF-IDF) information, which is a numerical statistic to describe the importance of a 

word in a document. And the entire collection of documents can be represented by a matrix in 

which the matrix column contains the occurrence information of terms in the document. At last, 

a low-dimensional distributed representation of terms (features) can be retrieved using singular 

value decomposition (SVD) (Furnas et al. 2017). In this study, ECFP6 was calculated as the 

initial molecular fingerprints representation to fit the embedding model (Figure 2.2.2). 

Considering the ECFP6 molecular fingerprint as a document, each binary bit in the ECFP6 can 

be considered as a term (or word), and finally the distributed representation of each fingerprint 

bit can be learned through this method. 
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2.2.2.4 Protein feature calculation 

There have been many successful applications in order to learn the accurate structure information 

of a protein from its amino acid sequence information, such as Alpha-Fold (Jumper et al. 2021). 

However, it may not be necessary to build a highly complex model to reproduce the protein 

structure. The primary purpose of this step is to learn the informative representation of a protein 

from its primary structure sequence. This representation may contain some structural features 

that can help to understand the mapping between ligand and protein. To convert protein 

sequences into sequential representation, we first split a protein sequence into a triple-gram 

amino acid sequence and then translated them to mathematical embeddings. 

In this step, the word2vec technique was applied to learn the vector representation of a protein 

target (Goldberg and Levy 2014). It is an unsupervised technique to learn high-quality 

distributed vector representations that describe sophisticated syntactic and semantic word 

relationships. Specifically, the Continue Bag-of-Words (CBOW) method was adopted to train 

the embedding model (Kenter, Borisov, and De Rijke 2016). In this model, the amino acid 

sequence of each protein was considered as a ‘sentence,’ and any combination of three 

continuous amino acid was considered as a ‘word.’ The goal of the model is to predict the center 

‘word’ given the surrounding context. As the result, this model finally maps the ‘word’ to low-

dimensional real-valued vectors, where the words that have similar. For collecting the 

surrounding information, a context window was set to 10, and the embedding dimension was set 

to 128. 
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2.2.2.5 The deep learning model for identifying drug-target-interaction training 

In this step, a DL-based classification model was developed using the learned features of both 

ligands and protein targets from the embedding models as input for assigning them the DTIs 

associated information. As shown in Figure 2.2.1, the transformer encoder architecture was 

adopted for both small molecule input and protein target input to encode the high-level features. 

The transformer is a new strategy for DL-based sequence transduction that replaced the old 

RNN, and recently it has become very successful in both NLP and computer vision fields. The 

general idea of the transformer is to use the ‘attention’ mechanism, commonly the self-attention 

model, to keep ‘long term memory’ when dealing with sequence (Vaswani et al. 2017)s. A 

typical transformer encoder is a stack of multiple identical layers. Each layer has two sub-layer:, 

one multi-head self-attention pooling layer and one position-wise feed-forward network. 

Specifically, in the encoder self-attention, queries, keys, and values are all from the outputs of 

the previous encoder layer. As a result, the transformer encoder outputs a multi-dimensional 

vector representation for each position of the input sequence.  

After the transduction of features, the output from the transformers was fitted into an MLP 

classifier to predict whether the input compound and protein target interact with each other or 

not. For hyper-parameter tuning, different numbers of layers and hidden neurons in MLP, as well 

as the optimization algorithms, were evaluated. In the batch training process, 1/10 of the batch 

samples was used as the validation set for monitoring model performance.  

For evaluating model performance, the ROC analysis was applied, and the area under the curve 

(AUC) was calculated as the representation of model accuracy of binning the sample into the 

correct category. The model construction and evaluation in this step were performed using 

Tensorflow 2.1. 
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In addition, comparative models were generated using traditional machine learning algorithms. 

The descriptors adopted for training these models were molecular fingerprints and molecular 

properties. All models were developed using the scikit-learn package in Python. 

 

2.2.2.6 Hyperparameter optimization and model evaluation 

The optimization of model architectures setup (hyperparameters) was processed based on the 

Bayesian optimization algorithm. Specifically, for deep-learning-based models including the 

deep graph neural network models, the optimization was completed using the HParams module 

in TensorFlow.  The following hyperparameters were considered for optimization: dropout rate, 

type of optimizer, learning rate, batch size, number of fully connected hidden layers, and number 

of graph neural network layers. In the hyperparameter tuning, we selected the most optimized 

hyperparameter setting for each model showing the highest accuracy on the 10-fold-cross-

validation. In addition, the hyperparameter tuning for traditional machine learning models 

adopted the skopt python package. For the model evaluation in the training and validation 

process, ROC analysis was applied to evaluate model performance, with the ROC curve plotted 

by a false-negative rate (FNR, 1-specificity) against a true positive rate (TPR, sensitivity, recall) 

at all classification thresholds. The area under the curve (AUC) represents the degree or measure 

of separability. This ROC AUC (also called AUROC), ranging from 0.5 to 1, specifies the 

accuracy of the classification model predicting the samples into its correct category.  



75 

2.2.3 Results and Discussion 

2.2.3.1 Model optimization 

Five different optimization methods, including Stochastic Gradient Descent (SGD), Adaptive 

Gradient (Adagrad), Adaptive Delta (Adadelta), Adaptive moment (Adam), and Root Mean 

Square Propagation (Rmsprop), were chosen to find the most efficient model in this case. 

Different dropout ratios (0 or 0.5) combined with different batch sizes (10, 100, 1000) were also 

added to the comparison. The results (Figure 2.2.3) showed that the model trained using 

Adadelta methods performed relatively better in this case, especially using a small batch size 10 

without adopting the dropout technique for further regularization, achieve the best performance 

with the validation accuracy reaching 0.89 and test accuracy reaching 0.82. Although the model 

trained using the Adagrad method performed better, it seems that a significant over-fitting 

problem may occur in this case. In addition, different numbers of layers (1, 3, 5, 7, 9) were also 

tested and compared. The results showed that 7-layers in descending number of nodes achieved 

the optimized performance. 

In addition, overfitting is a common problem discussed in ML-based modeling. To minimize the 

effect of overfitting, we also compared the training performance and the test performance when 

selecting the best hyper-parameter settings. For example, in Figure 2.2.3, we compared the 

changes of model performance (ROC AUC) in both training (upper row) and validation (bottom 

row) procedures. If we see convergence in the validation performance, but the training 

performance is still improving, then the model is starting to be over-fitted. Therefore, between 

Adadelta and Adagrade optimization methods, we finally choose the Adadelta method to 

minimize the overfitting problem. 
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2.2.3.2  Model evaluations

Traditional ML methods were adopted to build comparative models. In this step, four types of

ML algorithms were applied, including logistic regression (LR), support vector machine (SVM),

random forest (RF), and Naïve Bayes.  Table 2.1  shows the comparison between the DL-based

DTI prediction method and other ML methods. The DL-based model outperformed other

machine learning methods in the evaluation on both validation set and test set.  In contrast,  the RF

model achieved comparative performance in the test set evaluation. Additional evaluation on our

new DL-based methods was performed using the extra test set.  The novel DL-based model

achieved an accuracy of 0.61, with sensitivity achieving 0.88 and specificity achieving 0.61. This

performance is much worse compared to the primary evaluation. One reason for this may be that

the extra test set has an unbalanced but relatively  actual  distribution of active interaction.  Our

model mostly  predicts  the non-active interaction into the active interaction class. However, with

a high recall, this performance is acceptable as the model will be used in the first round to

identify as much active interaction as  possible  to reduce the risk of off-target side effects or

increase the chance of identifying new drugs.
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Table 2.1 Comparison between deep learning and other machine learning algorithms 

Algorithms 
Training 

Accuracy 

Training 

AUC 

Test 

Accuracy 

Test 

AUC 

DL 0.84 0.89 0.85 0.82 

LR 0.65 0.67 0.64 0.64 

SVM 0.78 0.78 0.74 0.73 

RF 0.83 0.85 0.83 0.82 

Naïve Bayes 0.55 0.55 0.48 0.53 
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2.2.4 Conclusion 

In this research, we established a novel DeepTargetHunter platform for target identification tasks 

using the state-of-art deep learning architecture with a self-attention mechanism for sequence 

feature extraction. Our DeepTargetHunter shows reliable performance on benchmark test sets. 

Moreover, we compared it with traditional machine learning-based models. The results show that 

our method achieved better-improved performance on the prediction tasks, suggesting it can 

learn desired interaction features and decrease the risk of hidden ligand bias. Finally, model 

interpretation capability was studied by mapping attention weights to protein sequences and 

compound atoms, which can explore whether a prediction is reliable and has physical 

significance.  

It is also worth noting that we adopted 1D sequential data to represent the protein data in this 

work. It is because, firstly, the number of experimental 3D structured data is smaller than that of 

1D sequential data, However, deep learning requires a relatively large number of training data 

samples. Although Alpha-Fold has successfully predicted the 3D structure of protein targets 

using amino acid sequence, it is still not promising to apply those predicted 3D data directly. In 

addition, the lack of pocket information and the time-consuming structure-based screening limit 

its application in target identification and drug discovery. However, the success of Alpha-Fold 

provides a novel perspective for processing the 1D protein sequence data and can be optimized 

in the future study of protein feature extraction. Overall, our DeepTargetHunter delivers a much 

faster and relatively accurate prediction of the potential targets of a small molecule and can be 

used widely for off-target identification and drug repurposing. 
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CHAPTER 3. AI/ML PHARMACO-ANALYTICS FOR PRECLINICAL MODELING 
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3.1 DeepGhERG: A Pharmaco-Analytics Prediction of Cardiotoxicity using Graph-based 

Deep Learning and Artificial Intelligence 

 

3.1.1 Research Background of Cardiotoxicity 

3.1.1.1 Proarrhythmic cardiotoxicity and hERG 

Proarrhythmic cardiotoxicity is one of the most severe side effects in drug research and 

development (R&D) caused by the off-target interactions of drugs with cardiac ion channels that 

control the normal heart rhythm (Gintant, Sager, and Stockbridge 2016; Jing et al. 2015). The 

human Ether-a-go-go Related-Gene (hERG) encodes a voltage-gated potassium channel, which 

takes charge of the action potential repolarization of cardiomyocytes. This channel carries 

delayed rectifying potassium current (IKr), which underlies the cardiac action potential 

repolarization. It is the principal ion channel when evaluating the cardiotoxicity of a drug 

candidate. Pharmacological blockade of the hERG channel by non-cardiac drugs inhibits the 

delayed IKr, and then delays the cardiac action potential repolarization (Cavalli et al. 2002). This 

results in the Long QT syndrome, shown as the extended QT interval in the electrocardiograph 

(ECG). Such QT interval can significantly increase the risk of the proarrhythmic cardiotoxicity 

termed Torsade de Points (TdP) and lead to life-threatening adverse side effects such as sudden 

cardiac death. Several non-antiarrhythmic drugs have been withdrawn from the market because 

of inducing TdP, such as Cisapride, Terfenadine, and Terodiline (Aronov 2005; Stockbridge et 

al. 2013). Therefore, it is necessary to develop efficient methods to evaluate proarrhythmic 

liabilities of drug candidates at the early stage of the drug discovery process to avoid investing in 

risky lead series. 
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3.1.1.2 Experimental methods for evaluating drug-induced cardiotoxicity 

The standard cardiac safety paradigm was documented by the International Committee on 

Harmonization (ICH) S7B preclinical guidelines and E14 clinical guidelines (Pugsley and Curtis 

2006). Instead of assessing the risk of TdP directly, those guidelines mainly focus on the 

detection of surrogate biomarkers, namely preclinical evaluation focuses on testing the blockade 

of the repolarizing IKr current that flows through the hERG ion channel. In contrast, the clinical 

study focuses on QT/QTc interval prolongation on electrocardiography (ECG) at the therapeutic 

and supratherapeutic exposure levels of the pharmaceuticals. In the preclinical phase of the drug 

discovery process, in vitro and in vivo experiments were established following the S7B 

guidelines (Group 2005). In vitro methods assess the potency of compounds to block the hERG 

channel. The standard in vitro method utilizes whole-cell patch clamping from recombinant cell 

lines that stably express the hERG channel (Houtmann et al. 2017). These electrophysiology 

assays can present a better estimation of hERG potency when compared with non-

electrophysiological methods. Other non-electrophysiology assays, including rubidium efflux 

assay (Chaudhary et al. 2006), radioligand binding assay (Yu et al. 2014), and fluorescence-

based assay (Piper et al. 2008), were developed for cases in which higher throughput and lower 

cost are desirable, even though those assays may result in under or overestimation of hERG 

potency. In vivo tests propose to detect the changes in the ECG in animal models and use them 

to predict the QT prolongation in humans; however, the significant species differences in 

ventricular repolarization and response to drugs limit the use of animal models in preclinical 

research (Raghib, Stebbing, and Majewski 2006). 
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3.1.1.3 Computational methods for evaluating drug-induced cardiotoxicity 

Computational methods have been widely used in the recent two decades to predict either hERG 

inhibition or the binding affinity of compounds. Compared to in vitro and in vivo assays, in silico 

models require less cost and time and are very common in the early phases of drug discovery. 

Generally, in silico methods for small molecular drug discovery can be mainly divided into two 

main classes: structure-based methods and ligand-based methods. Structure-based methods such 

as docking and molecular dynamics are based on the availability of the 3D atomic structures of 

the targets, in which a simulation of molecular binding will run between the 3D structures of 

small molecule and target protein to mimic the actual molecular interaction (Jing et al. 2015; 

Kalyaanamoorthy and Barakat 2018). Until the recent determination of the cryo-EM structure of 

the hERG channel (Wang and MacKinnon 2017), several well-established homology models 

were constructed based on the solved crystal structures of other similar homologous proteins 

(Xiao et al. 2017). However, due to the uncertainty of the binding mode between compounds and 

the hERG channel, it is still hard to accurately predict the interaction between chemical 

compounds and the hERG channel. Thanks to the exploration of computational algorithms in 

modern technology of data mining and artificial intelligence (AI), as well as the development of 

advanced experimental technologies that efficiently generate large-scale biochemical data, 

ligand-based approaches are continually explored to predict the inhibition between the ligand and 

hERG channel (Jing et al. 2018a). Generally, ligand-based methods are developed based on the 

medicinal chemistry assumption that structurally similar compounds should share similar 

physiochemical properties and biological targets. In the recent two decades, ligand-based models 

have been commonly adopted to explore the structure-affinity relationship of hERG blockers 

using various algorithms. Those methods include pharmacophore methods, CoMFA-based 

methods, three-dimensional (3D) quantitative-structure activity relationship (QSAR) methods, 
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and machine learning-based models such as support vector machine (SVM), random forest (RF), 

Naïve Bayes (NB), and so on (Jing et al. 2015; Ermondi, Visentin, and Caron 2009; Cavalli et al. 

2002; Lu et al. 2018; Konda, Keerthi Praba, and Kristam 2019). Those methods mainly aim to 

retrieve and summarize the common patterns that contribute to the interaction between 

compound and protein. In most of those methods, molecular properties (such as molecular 

weight and log P) and/or molecular fingerprints were used as the feature to represent either the 

chemical or the physical-chemical characteristics of the small molecules(Liu et al. 2020). And a 

manual or automatic feature selection process will be conducted to select the relevant feature 

subset for model training (Cano et al. 2017). 

 

3.1.1.4 Deep learning for drug-induced cardiotoxicity 

In recent years, with the development of state-of-the-art deep learning algorithms for AI 

technology, deep neural networks (DNN) architectures were utilized to develop classification 

models to discriminate hERG blockers, showing their capability to process large-scale datasets 

and usually provide better predictive performance (Cai et al. 2019; Sharifi et al. 2017; Zhang et 

al. 2019; Wang, Huang, et al. 2020). However, optimized deep learning architectures such as 

CNN and RNN are specifically designed  for Euclidean data with clear spatial order (e.g., image 

data and/or text data); therefore, it is inappropriate to adopt them on non-Euclidean data such as 

molecular data.  

More recently, graph neural networks (GNNs) became more and more popular due to their 

capability in dealing with non-Euclidean data by processing those data in a graph-like format 

(Wu et al. 2020). The motivation of GNNs came from CNNs and graph embedding theory (Wu 

et al. 2020; Zhou, Cui, et al. 2020). In GNNs, the graph nodes representations are learned 
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through graph embedding. Then the graph structure information can be aggregated collectively, 

learning from the concept of local connection, shared weights in CNN. Therefore, GNNs can 

model input and output consisting of elements and their dependency.  

Furthermore, incorporating the gate theory in RNNs, GNNs can simultaneously model the 

sequential diffusion process on the graph. Using different embedding and diffusion methods, 

different types of GNNs were developed, such as graph convolutional networks, graph attention 

networks, graph auto-encoders, graph generative networks, and others. Several published studies 

have tried to use GNNs in drug discovery (Sakai et al. 2021; Liu et al. 2019; Ryu et al. 2020), 

and those works proved that GNN-based methods have advantages over those traditional 

methods in drug discovery. However, those methods mainly focused on constructing the model 

architecture using GNNs but did less research on learning representation of the atom node in the 

molecular graph. This continuous vector representations of the atom nodes were learnt to 

manually define the atom characteristics and represent the atom node, for example, atom type, 

atom charge, atom aromaticity, atom chirality, etc. Since there is no strict standard to select the 

atom characteristics, this step can be subjective and arbitrary. The alternative option is to learn 

atom representations directly from raw data chemical structure. Word embedding methods in 

natural language programming have proved efficient in learning dense vector representations 

(Goldberg and Levy 2014). It is valuable to explore the feasibility and efficiency of learning 

atom representation automatically using similar embedding methods. 

In the present study, we develop a novel in-silico method to predict the hERG-related toxicity of 

small molecules using GNNs. For discriminating hERG inhibitor and non-inhibitor, 1) 2D 

chemical structure is used as the input; 2) the molecular representations are generated by 

specified atom-type-based embedding models; 3) the potential hERG inhibition of the small 
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molecular are predicted. Our results show that by integrating the atom feature learning, our 

GNN-based model can better predict the hERG inhibition of small molecules. 
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3.1.2 Methods 

3.1.2.1 Data preparation 

The small molecules with experimental bioactivities against the hERG channels were originally 

collected from the ChEMBL database (Gaulton et al. 2018). The chemical structure of the 

compounds was extracted from the SMILES string using the Open Babel toolkit (O'Boyle et al. 

2011), with solvents and salts removed using the RDKit toolkit (Landrum 2013). For the general 

consistency of the experimental data, only hERG IC50 data were assembled, including those 

from patch-clamp assay and binding assay. Data were then primarily cleaned by using a few 

criteria: 1) compounds without well-defined experimental bioactivities were eliminated; 2) 

incompatible data with the original published source were eliminated; 3) duplicated records 

identified by SMILES were removed; 4) for compounds with the same structure but inconsistent 

inhibitory activity values, the average binding affinity were kept. Finally, there were a total of 

7909 small molecules in the entire dataset. The entire dataset was randomly divided into two 

subsets, a training validation set (90%) and a test set (10%). For evaluating the chemical 

diversity of the data set, the chemical similarity between compounds in the datasets was 

calculated using the Tanimoto coefficient and molecular fingerprint. In addition to examining 

whether the distribution of the training set and test set is similar or not, compounds similarity 

was also calculated between the training set and test set. Compounds were binned to hERG 

blockers and non-blockers to develop classification models based on their hERG bioactivity data. 

Compounds with IC50 values less than 10 micromolar (µM) or other equal measurements were 

considered blockers, while the rest were non-blockers. The distribution of hERG blockers and 

non-blockers is depicted in Figure 3.1.1. For comparative analysis, an external test set of 44 

small molecules from the published paper were used as an external test set (Ryu et al. 2020).  
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Figure 3.1.1. Distribution of the collected hERG datasets. This figure shows the distribution 

between hERG inhibitor (active) and non-inhibitor (inactive) in different data sets including 

the entire dataset, training set, test set, and extra test set 
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3.1.2.2 Calculation of different molecular feature datasets 

In this study, three types of the chemical structure representations were generated as the feature 

to build models: 1) a graph-based molecular representation, 2) molecular fingerprints, and 3) 

molecular physicochemical properties. The graph-based molecular representation was explicitly 

generated for generating graph neural network models. Additionally, both molecular fingerprints 

and molecular properties were used to construct classifiers using traditional machine learning for 

comparison. 

For the graph-based molecular featurization in this study, the representation of each node in the 

molecular graph (atom types) was learned using embedding technology. Similar to the 

embedding methods in the natural language process (Kenter, Borisov, and De Rijke 2016), the 

input of the embedding model was the collection of one-hot-vectors for each atom type 

surrounding a specific atom type in a molecule, and the output was the one-hot-vectors of the 

center atom. The weights between the input layer and the first hidden layer were extracted from 

the initiated embedding vector for each atom type. Those embedding vectors were optimized by 

maximizing the conditional probability of accurately predicting the central atom type, given the 

information of surrounding atom types. All 53 atom types were originally defined in the general 

AMBER force field (GAFF), which was designed for rational small molecular drug discovery 

(Wang et al. 2006). The entire atom embedding section was processed using Python code 

(Python 3.7.6), and the DNN models were developed using the TensorFlow package 

(TensorFlow 2.1.0) (Abadi et al. 2016). 

The molecular fingerprint is a class of descriptors that records the chemical substructures in 

binary/numerical data format. Multiple types of molecular fingerprints were calculated as the 

molecular representation when building traditional ML models. Those fingerprints included 
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extended connectivity fingerprints (ECFP), functional class fingerprints (FCFP), marine corps 

community services fingerprints (MCCS), and atom-pair fingerprints(Rogers and Hahn 2010; 

Cheng et al. 2017; Polton 1982). The calculation of molecular fingerprints for each compound 

was proceeded using the RDKit toolkit (Landrum 2013). A total of 73 physicochemical 

properties of small molecules, such as molecular weight (MW), topological polar surface area 

(TPSA), and hydrogen-bond donor/acceptor (HBD/HBA), were also calculated using RDKit 

toolkit (Landrum 2013). 

 

3.1.2.3 Graph neural networks development for hERG inhibition classification 

GNN is a type of deep learning approach to handling non-Euclidean, such as graph data(Zhou, 

Cui, et al. 2020). In chemistry, the chemical structure of a small molecule is commonly depicted 

as a graph, in which atoms are graph nodes, and molecular bonds are edges. Therefore, this graph 

format of molecular representation can be used as the input of GNNs to build a graph-based 

learning system, which can exploit both the potential interactions between atoms and the 

property of the entire molecule, such as bioactivity for drug discovery. In this study, we 

developed a novel framework to specify hERG inhibitors from non-inhibitors using deep 

learning methods with GNNs architecture. 

The general procedure to develop a GNNs classification model involves two main sections: 

node-level graph embedding and graph-level classification (Wu et al. 2020). The first node-level 

graph embedding section aims to learn the representation of the network as a set of multi-

dimensional vectors (Cai, Zheng, and Chang 2018). Those vectors represent both the node 

information and the network topological information. All the node features will then be linked 

together using different aggregation methods based on the adjacency information. For example, 
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in a convolutional graph neural network, the adjacency matrix can be used as the basic 

convolutional kernel or can be used to construct more complex kernels such as the Laplacian 

matrix. Noteworthily, all the atoms in one molecule are sorted in ascending order according to 

their degrees. This order will be retained throughout the operations in the model. The implicit 

integration of the features of non-immediate neighboring atoms is implemented in the GNN 

operations. Since the output of the first GNN layer for each atom includes the atomic features of 

immediate adjacent atoms, in the next GNN layer, the operation considers the atoms that are next 

to the direct neighboring atoms, which is analogous to the situation of radius equals to 2 in 

ECFP. It is plausible that when we increase the number of GNN layers, the radius of the local 

substructure will increase. Therefore, the aggregation step can also be considered the extraction 

of high-level representations. Given the potential effect of the size of the substructure in 

classification, the number of GNN was the model parameter of primary concern in this study. 

Next, a graph-level classification section such as a deep neural network can be added, and then 

an entire graph-based deep learning classification model is built. The entire GNN process was 

implemented using the TensorFlow package (Abadi et al. 2016) on Python. 

 

3.1.2.4 Comparative models and hyperparameter optimization 

Comparative models were generated using traditional machine learning algorithms. Those 

algorithms involved random forests (RF), gradient boosting (GB), support vector machine 

(SVM), naïve Bayes, K nearest neighbor (kNN), and multilayer perceptron (MLP) (Ma, Wang, 

and Xie 2011b; Breiman 2001b; Gardner and Dorling 1998; Myint et al. 2012; Wang 2005; 

Solomatine and Shrestha 2004; Patrick and Fischer III 1970; Rish 2001). The descriptors adopted 

for training those models were molecular fingerprints and molecular properties, which were 
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introduced in the previous section 2.2.2. All models were developed using the scikit-learn 

package in Python (Pedregosa et al. 2011a) 

The optimization of model architectures was processed based on the Bayesian optimization 

algorithm (Snoek, Larochelle, and Adams 2012). Specifically, for deeplearning-based models, 

including the deep graph neural network models, the optimization was completed using the 

HParams module in TensorFlow (Abadi et al. 2016). The following hyperparameters were 

considered for optimization: dropout rate, type of optimizer, learning rate, batch size, number of 

fully connected hidden layers, and number of graph neural network layers. In the hyperparameter 

tuning, we selected the most optimized hyperparameter setting for each model showing the 

highest accuracy on the 10-fold-cross-validation (Shao 1993). In addition, the hyperparameter 

tuning for traditional machine learning models adopted the skopt python package (Pedregosa et 

al. 2011a). 

 

3.1.2.5 Model evaluation metrics 

For the model evaluation in the training and validation process, receiver operating curve (ROC) 

analysis was applied to evaluate model performance (Metz 1978), with the ROC curve plotted by 

false-negative rate (FNR, 1-specificity) against true positive rate (TPR, sensitivity, recall) at all 

classification thresholds. The area under the curve (AUC) represents the degree or measure of 

separability. This area under the receiver operating curve (ROC AUC, also called AUROC), 

ranging from 0.5 to 1, specifies the accuracy of the classification model binning the sample into 

its correct category. For the evaluation of predictive performance on the test set, five metrics, 

including 1) recall, 2) precision, 3) accuracy, 4) F1 score, and 5) Matthew’s correlation 



93 

coefficient (MCC) score, were considered comprehensively through the radar chart. The detailed 

formulas are shown below: 

FNR =  
FN

FP + TN
 

(1) 

Precision =  
TP

TP + FP
 

(2) 

sensitivity (recall) =  
TP

TP + FN
 

(3) 

Accuracy =  
TP + TN

TP + TN + FP + FN
 

(4) 

F1 score =  
2 ∗ TP

2 ∗ TP + FP + FN
 

(5) 

MCC score =  
TP ∗ TN − FP ∗ FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

(6) 
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3.1.3 Results and Discussion 

3.1.3.1 Atom type embedding using neural network models 

Deep neural network (DNN) embedding models were built to learn the mathematical 

representation of a total of 57 predefined atom types. Figure 3.1.2 illustrates how the input Layer 

in our DeepGhERG learns the graph-based molecular features. The training data set contained 

123182 drug-like compounds initially collected from the ZINC database (Sterling and Irwin 

2015) and then diversely selected based on the molecular fingerprint similarity. A different 

number of hidden layers (1, 2, 3, 4, 5, 6) in the DNN model were tested, and 4 hidden layers 

were selected, achieving an accuracy of 93% in the 10-fold cross-validation. 
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3.1.3.2 GNN model construction and optimization 

To predict reliable hERG inhibition of small molecules, the GNN-based classification model was 

designed, as shown in Figure 3.1.3. Firstly, the graph-based molecular feature was applied as the 

input data using the embedded vector for each atom type. The topology & connectivity of all the 

atom types for a molecular was extracted using the adjacency matrix. By using the adjacency 

matrix, for each atom in the molecule, its neighboring atoms can be identified. Those atomic 

features of the corresponding atom and its neighboring atoms will be added up and projected to 

another space. Secondly, four types of GNN architectures were adopted to construct the models, 

which included: 1) convolutional graph neural networks using the adjacency matrix as the filter; 

2) convolutional graph neural networks using normalized Laplacian matrix as the filter; 3) 

convolutional graph neural networks using Chebyshev polynomials of the Laplacian matrix as 

the kernel; 4) graph attention networks. In addition, both the dropout layer and pooling layer 

were added after the GNN layers as the optimization of the model. Thirdly, after the GNN and 

pool layers, the resultant features vectors of each atom will be flattened into a 1D vector using 

fully connected (FC) hidden layers. Then a Softmax function component was added to the 

architecture for the classification. The complexity of the GNNs was tested by adding more GNN 

layers (1 layer to 6 layers) and FC layers (1 layer to 5 layers). 

  



97 

  



98 

 

  
F

ig
u
re

 3
.1

.3
 O

v
er

al
l 

G
N

N
 a

rc
h
it

ec
tu

re
 o

f 
D

ee
p

G
h
E

R
G

 f
o
r 

p
re

d
ic

ti
n
g
 h

E
R

G
 i

n
h
ib

it
io

n
. 
T

h
is

 f
ig

u
re

 s
h
o
w

s 
h
o
w

 

D
ee

p
G

h
E

R
G

 p
re

d
ic

ts
 h

E
R

G
 i

n
h
ib

it
io

n
. 
F

ir
st

, 
th

e 
q
u
er

y
 c

o
m

p
o
u
n
d
 i

s 
tr

an
sf

er
re

d
 t

o
 a

 g
ra

p
h

-b
as

ed
 f

ea
tu

re
 u

si
n
g
 t

h
e 

es
ta

b
li

sh
ed

 e
m

b
ed

d
ed

 m
o
d
el

. 
T

h
en

 t
h
e 

g
ra

p
h

-b
as

ed
 f

ea
tu

re
 i

s 
p
ro

ce
ss

ed
 b

y
 d

ee
p
 G

N
N

s 
fo

r 
p
at

te
rn

 a
b
st

ra
ct

io
n
 a

n
d
 

re
co

g
n
it

io
n
. 
A

s 
m

en
ti

o
n
ed

, 
fo

u
r 

ty
p
es

 o
f 

G
N

N
 a

rc
h
it

ec
tu

re
s 

m
en

ti
o
n
ed

 a
re

 a
d
o
p
te

d
. 
A

t 
la

st
, 
th

e 
ex

tr
ac

te
d
 i

n
fo

rm
at

io
n
 i

s 

p
as

se
d
 i

n
to

 a
 f

u
ll

y
 c

o
n
n
ec

te
d
 n

eu
ra

l 
n
et

w
o
rk

 f
o

r 
cl

as
si

fi
ca

ti
o
n
 p

u
rp

o
se

s.
 



99 

3.1.3.3 Performance comparison with each comparative model 

The comparison of cross-validation performance between different GNN models and traditional 

machine learning models is presented in Figure 3.1.4. The validation results show that GNNs 

models performed better than comparative models developed using traditional machine learning 

models, regardless of which type of molecular representations were used. All types of GNNs 

architecture benefited the model performance, with the GNN model using Chebyshev kernel 

(GCN_Chebyshev Attention in Figure 3.1.4) achieving the best predictive accuracy 0.8213. 

Among the traditional machine-learning-based comparative models, the SVM model with ECFP 

and RF models with atom-pair fingerprints performed better. It is noticed that the Naïve Bayes 

model did not perform well, compared to another ML method. This is mainly because of the 

assumption of independence among predictors in Bayes' Theorem; however, in the 

cheminformatics area, most of the predictors for small molecules are correlated with each other. 

One way to minimize this issue may be to add a feature learning process to remove correlated 

predictors or use principal component analysis to perform a dimension reduction and generate 

independent new components. 

Next, we evaluated the predictive performance of GNNs-based models and comparative models 

developed using traditional machine learning algorithms using an independent test set. Five 

different evaluation metrics were adopted to systematically assess the model predictability 

(Table 3.1), and the evaluation results were also visualized using the radar chart (Figure 3.1.5). 

Overall, the GNN-based models could achieve reliable predictive performance, and the graph 

attention model (GATConv) did slightly better when predicting the test set compounds. 
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Figure 3.1.5 Performance of the extra test accuracy over the deep graph-based models. 

MCC_Score: Matthew’s correlation coefficient; F1_score: F1 means, or the harmonic mean 

of precision and recall; Precision: true positive rate; Recall (sensitivity): the number of true 

positives divided by the number of true positives plus the number of false negatives 
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Table 3.1 Evaluation of different methods on the test set 

 
Accuracy Precision Recall F1_Score MCC_Score 

GCN_Adj 0.6764 0.4249 0.8477 0.5661 0.4041 

GCN_Laplacian 0.6625 0.4148 0.8150 0.5497 0.3702 

GATConv 0.7383 0.7354 0.7372 0.7363 0.4766 

ChebConv 0.7547 0.6768 0.7988 0.7328 0.5150 

SVM+ECFP 0.7269 0.7888 0.6998 0.7416 0.4579 

RF+AtomPair 0.7360 0.7405 0.7318 0.7210 0.5121 

 

RF: random forest; SVM: support vector machine; GCN: graph convolutional network; GAT: 

graph attention network; ChebConv: graph convolutional network using Chebyshev polynomials 

kernel; MCC_Score: Matthew’s correlation coefficient; F1_score: F1 means, or the harmonic 

mean of precision and recall; Precision: true positive rate; Recall (sensitivity): the number of true 

positives divided by the number of true positives plus the number of false negatives. 
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3.1.3.4 Comprehensive performance comparison with an external test set 

Finally, we compared the prediction performance of our GNNs models to published models 

using an external test dataset containing 30 hERG blockers and 14 hERG non-blockers. External 

data and all prediction performance of published models were retrieved from the publication of 

the DeepHIT tool (Ryu et al. 2020). Our best GNNs model (ChebConv) showed an accuracy of 

0.84, precision of 0.83, recall of 0.93, F1 score of 0.88, and MCC score of 0.66 (Table 3.2). 

According to the results of the comparative analysis, our GNNs model overall performed best, 

demonstrating that our GNNs model can predict hERG non-blockers more reliably than other 

prediction tools.  
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Table 3.2 Evaluation of different methods on the external test set 

 
Accuracy Precision Recall F1_Score MCC_Score 

GCN_Adj 0.6136 0.5667 0.8095 0.6667 0.2620 

GCN_Laplacian 0.7955 0.8000 0.8889 0.8421 0.5603 

GATConv 0.7045 0.7000 0.8400 0.7636 0.3896 

ChebConv 0.8409 0.8333 0.9259 0.8772 0.6605 

DeepHIT 0.7727 0.8333 0.8333 0.8333 0.4762 

CardPred 0.3636 0.0667 1.0000 0.1250 0.1491 

OCHEM_ConsensusI 0.4318 0.2000 0.8571 0.3243 0.1637 

OCHEM_ConsensusII 0.7045 0.8000 0.7742 0.7869 0.3063 

Pred_hERG_V42 0.6136 0.6333 0.7600 0.6909 0.1925 
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3.1.4 Conclusion 

In this section, a novel DL-based method in predicting the drug cardiotoxicity was introduced. 

Significantly, the predictive performance of our novel GNNs-based methods in distinguishing 

hERG blockers and non-blockers was examined and compared to existing methods. The best 

prediction accuracy over the test set already achieved 0.75, with the sensitivity/recall achieving 

0.80 and the F1 score achieving 0.73. It performed better than the best machine learning methods 

in the validation (SVM and RF), indicating that when dealing with complex tasks such as 

identifying hERG ion channel blockers. The inhibition of the hERG channel is the primary cause 

of such cardiotoxicity; however, other ion channels also contribute to this in a synergetic form. 

In the future, we plan to focus on those types of cardiac ion channels using our established 

method and provide a more comprehensive evaluation of small molecular-induced 

cardiotoxicity. 

  



106 

3.2 Blood-Brain Barrier (BBB) Permeability Prediction using ML/DL Methods 

  

3.2.1 Research Background to BBB Permeability 

3.2.1.1 Basic principle of BBB permeation 

The BBB is a physiological and biochemical barrier between the CNS and the peripheral tissues. 

BBB serves as the primary active interface between the changeable blood environment of CNS 

and the extracellular fluid (Redzic 2011) and prevents the neurotoxic plasma components, blood 

cells, and pathogens from entering the brain (Sweeney et al. 2019). By regulating the transport of 

small molecules or macromolecules into and out the brain, BBB only permits the movement of 

selective molecules essential for keeping the brain function to maintain the homeostasis of the 

CNS (Małkiewicz et al. 2019).  

Generally, BBB is a capillary wall composed of brain endothelial cells, basement membrane, 

pericytes, vascular smooth muscle cells, astrocytes, and others (Sharif et al. 2018). And the 

physiological structures responsible for BBB transport mainly include the tight cell-cell 

junctions, endothelial and pericyte transporters, and perivascular transport (Sweeney et al. 2019). 

There are several transport routes for molecules to cross the BBB: paracellular and transcellular 

Diffusion, Carrier-Mediated Transport, and transcytosis (Dong 2018).  

The transport of most of the molecules between the brain and vascular system is mainly through 

transcellular transport (Figure 3.2.1). Therefore a few small molecules can enter the brain by 

paracellular and transcellular diffusion due to the tight junctions between capillary endothelial 

cells (Wong et al. 2019). However, the brain endothelial cells also provide alternate transport 

pathways, such as through active efflux transport proteins, including P-glycoprotein (P-gp) and 

breast cancer resistance protein (BCRP); and other substances including large molecules may 
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access the brain through transcytosis (Bors and Erdő 2019). In addition, BBB also helps the 

clearance of metabolites and toxins in the brain and regulates the composition and volume of the 

cerebrospinal fluid (Małkiewicz et al. 2019). 
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3.2.1.2  Role of the Blood-Brain Barrier in drug delivery

Disorders of the central nervous system (CNS) such as Alzheimer’s disease (AD) are

becoming one of the major burdensome disease areas. Up to the year 2017, hundreds of millions

of people are suffering from at least one type of those CNS disease,  including migraine (68.5

million people) and AD and other dementias (2.9 million people)  (Collaborators et al. 2021).

Also, the deaths from major CNS disorders were ranked third (10.8%) in the US among all

causes of death and fifth (5.5%) globally  ((IHME) 2019). As the aging of the population, the

number of people affected by CNS diseases has substantially increased in the past several

decades, and there is no doubt that  the number will continue  rising  in the future.  On the other

hand, the global sales of CNS disease drugs  and related therapeutical products totaled  more than

$80 billion in the year 2019,  and were forecasted to be more than $100 billion in the year 2022

(Dealmakers 2020).

However, the failure rate for the effective drug targeting CNS diseases is very high

compared to most other non-CNS areas of drug discovery.  There is an urgent need for

medications  against many CNS diseases that lack effective treatment,  such as AD  (Gribkoff and

Kaczmarek 2017). For example, the current FDA-approved drugs (e.g., donepezil, memantine)

for AD can only relieve symptoms rather than treat the disease. The blood-brain barrier (BBB) is

the major hurdle for CNS drug delivery; therefore, BBB must be considered to develop a

successful treatment for those CNS diseases  (Wong et al. 2019).  However, the protective

characteristics of BBB make it one of the most complicated microenvironments in drug

discovery and limit the development of novel drugs targeting CNS diseases. For example, more

than 98% of small molecule drug candidates have limited delivery to the brain  (Pardridge 2005),

with water-soluble molecule drugs in the blood being prevented from entering the CNS and

lipophilic molecule drugs being excluded by efflux transporters  (Banks 2009). Thus, because it is
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vitally important to optimize the BBB impermeability of the drug for the effective treatment of 

CNS diseases, increasingly more research efforts are devoted to this topic. 

 

3.2.1.3 Experimental methods for assessing BBB permeability 

Consequently, scientific interest in BBB physiology and pathology led to numerous experimental 

models. These models emanated from research aimed at accelerating the development of 

effective drugs to treat CNS diseases. BBB models have been developed using both in-vitro and 

in-vivo methods (Bagchi et al. 2019; Vastag and Keseru 2009). In-vitro methods for evaluating 

BBB permeability of small molecules involve two types. One is to test the physiochemical 

properties of the chemical, such as Log P and Log D (Leo, Hansch, and Elkins 1971). One 

example is the parallel artificial membrane permeability assay (PAMPA) method that evaluates 

passive BBB permeability using porcine brain lipid in dodecane as the artificial permeability 

membrane (Ottaviani, Martel, and Carrupt 2006). Other in-vitro methods to assess BBB 

permeability are cell-based assays, such as the Caco-2 method and MDR1 methods. Those 

assays have inherent appeal as in vitro models of BBB permeation because they use living cells 

and are more similar to the BBB than the physiochemical-based methods; however, they may not 

closely resemble the complex conditions at the BBB.  

The in vivo B/P experiment, which provides the brain distribution data of chemicals, is one of 

the standard approaches to evaluate BBB permeability, and it is widely used in the industry 

(Kerns and Di 2008). Overall, there are various methods available for assessing brain 

penetration, which is relatively expensive and time-consuming. The computational approach can 

also be applied to supplement and is an alternative to costly and labor-intensive experiments 

carried out in laboratories in drug discovery. These methods thus increase the survival of drug 

candidates and move the medicinal chemistry design to a higher probability space for success. 
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Therefore, to help to reduce the cost and time for CNS drug discovery, it is essential to explore 

computational methods to access the BBB permeability. 

 

3.2.1.4 Current computational method to predict BBB permeability 

Many review articles have already summarized different computational methods for BBB 

permeability prediction (Pardridge 1998; Pajouhesh and Lenz 2005; Clark 2003; Gupta 1989; 

Bradbury 1993; Saxena et al. 2019). Simple rule-of-thumb methods were applied to select 

compounds with potential good permeability; for example, a rule-based scoring system called 

central nervous system multiparameter optimization (CNS MPO) was introduced by Wager et al. 

from Pfizer to select optimal CNS molecules (Wager et al. 2010). Traditional QSAR/QSPR 

analyses were widely applied for predicting those experimental evaluations of BBB permeability, 

such as B/P ratio or logBB (Österberg and Norinder 2000; van de Waterbeemd et al. 1998). For 

example, Kelder et al. developed a QSAR model to predict BBB permeability using a relatively 

large dataset containing 2366 compounds (776 CNS drugs, 1590 non-CNS drugs), concluding 

that general CNS drugs had a much less PSA compared to non-CNS drugs (Kelder et al. 1999). 

Those traditional QSAR/QSPR methods to predict BBB permeability are widely used in modern 

drug discovery since QSAR/QSPR helps with the understanding of the effect of structure on 

activity/property, leading to the synthesis of novel analogs. 

Those traditional QSAR/QSPR studies generally applied linear methods to analyze the BBB 

penetration of small molecules (Plisson and Piggott 2019). However, the correlation between 

BBB permeability and compound descriptors can be more complex. With the help of machine 

learning, more and more complex but accurate models were developed using larger training data 

set in the last decade. For example, Tropsha’s group published their BBB predictive regression 
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models using combined machine learning methods (Zhang et al. 2008). In their methods, the k-

nearest neighbors (k-NN) method was used for selecting important features from a total of 346 

Dragon, MOE, and MolConnZ descriptors, and the support vector machine (SVM) regression 

algorithms were used for model construction. Besides using machine learning in regression tasks 

for predicting the exact value of BBB permeability parameters such as logBB, many 

computational models were developed attempting to discriminate BBB permeable compounds 

from non-permeable compounds (Singh et al. 2020; Lingineni et al. 2017).  

Generally, in those classification models, compounds were labeled as CNS+ (or CNS-) based on 

the in vivo or in vitro experimental results, such as B/P ratio or logBB, indicating that a 

compound can penetrate the brain (or not). One of the advantages of generating classification 

models is that labeling compounds into binary classes (CNS+/CNS-) may be considered a 

relatively reasonable way to merge several small datasets from multiple resources into a large 

one, as their experimental standards for validating BBB permeability were various (Kunwittaya 

et al. 2013). For example, Kortagere and colleagues developed classification models using the 

SVM classification technique with a combined BBB dataset from multiple resources (Kortagere 

et al. 2008). Those individual datasets were relatively small and used different experimental 

standards to get the logBB value. By using different thresholds of logBB value suggested by the 

authors to specify BBB+ and BBB-compounds, it would be hard to merge those small datasets 

into a large dataset. Recent studies also tried to use different types of data in their BBB 

classification modeling works, such as solvation energy descriptors and binary molecular 

fingerprints descriptors (Roy, Hinge, and Kovalenko 2019; Wang et al. 2018; Yuan, Zheng, and 

Zhan 2018; Zhang, Liu, et al. 2016). Overall, machine learning methods significantly promoted 
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the development of computational prediction of BBB permeability in early drug discovery and 

preclinical research. 

In recent years, deep learning methods have been used in drug discovery (Jing et al. 2018b; Miao 

et al. 2019). Specifically, there have been several studies using deep learning for BBB 

permeability prediction. Recently, a deep learning model using recurrent neural network (RNN) 

was reported by Alsenan and colleagues (Alsenan, Al-Turaiki, and Hafez 2020). RNN is a deep 

learning architecture for dealing with sequential data, and it is widely used in natural language 

processing and signaling processing. In the study, they used molecular fingerprints as the 

molecular sequence to be fitted into the RNN model and attempted to classify molecular into 

high penetration group (BBB+) and low penetration group (BBB-). Although deep learning is a 

powerful new technique for developing predictive models, only a few BBB permeability studies 

were reported using deep learning to address this gap in research. We explored the capability of 

several DL-based methods on discriminating BBB+ and BBB- compounds and proposed a novel 

in silico framework for evaluating the BBB permeability of small molecules. 
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3.2.2 Methods 

3.2.2.1 Data preparation 

Chemical information from diverse published resources was combined to generate the dataset 

used in this study, which contained 1924, including 1465 BBB+ and 353 BBB− compounds). 

The entire dataset was collected from multiple publicly available datasets (Adenot and Lahana 

2004; Li et al. 2005; Zhao et al. 2007; Yuan, Zheng, and Zhan 2018). BBB permeability is 

modeled as a classification task, in which a molecule is categorized into either a high penetration 

rate (BBB+) class or low penetration rate (BBB-) class. The classification of BBB+ and BBB− 

was based on the BB ratio, representing the ratio of total steady-state concentration in the brain 

to blood. Compounds assigned BBB+ should have a sufficiently high penetration rate (with the 

BB ratio ≥ 0.1) or has been known as CNS drugs or drug candidates under clinical development; 

while compounds assigned as BBB− should have a relatively low penetration rate (with the BB 

ratio < 0.1) or have been known not to cross the BBB. The chemical structures were retrieved 

from the SMILES string and then converted to the SDF format using the RDKit toolkit 

(Landrum 2013). The 3D conformations of the compounds were generated and optimized using 

the LigPrep package of the Schrodinger software (Release 2017), with the protonation or 

deprotonation states of compounds calculated in pH 7.4. To reduce biases from the training set 

selection, the dataset was split into the training and the test sets using a diverse selection. Firstly, 

the entire dataset was clustered based on the chemical diversity represented by molecular 

fingerprints. Next, compounds in each cluster were selected as the training compounds until 

reaching the required selection number for the training set, and the remaining compounds were 

collected into the test set. In this way, the selected training set was expected to uniformly cover 
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the chemical space distribution of the entire dataset, which may be considered an ideal 

representative subset of the original dataset. 

 

3.2.2.2 Descriptor calculation and selection 

Four types of molecular descriptors were adopted to represent the molecular structure of all 

compounds, including physicochemical molecular descriptors, molecular fingerprints, atom type 

count descriptors, and graph-based molecular representation. For physicochemical molecular 

descriptors calculation, 119 molecular descriptors were calculated using the RDKit toolkit 

(Landrum 2013), included MW, SlogP, TPSA, NumHBD, NumHBA, etc. For molecular 

fingerprints calculation, five types of different molecular fingerprints were collected using 

cheminformatics tools (Zhao et al. 2007). The MACCS fingerprint contains 166 binary 

fingerprints as substructure keys, each of which indicates the presence of one of the 166 MACCS 

substructure keys calculated from the molecular graph. The ECFP is circular topological 

fingerprints with 1024 descriptors, which represent the presence of particular substructures using 

circular atom neighborhoods. The FCFP is a variation of ECFP, which is further abstracted in 

that instead of indexing a specific atom in the environment, the index that atom’s role. The 

PubChem fingerprint covers a collection of 881 diverse substructure keys designed and used by 

PubChem. The atom pairs fingerprint contains 1024 bits of binary data collected based on the 

atomic environments and shortest path separations of every atom pair in the molecule. All those 

molecular descriptors were used for constructing classifiers using traditional machine learning. 

The atom type count descriptor was calculated by the amber force field software toolkit, which 

defines the specific atom types and counts the total number of atoms belonging to each atom type 

(Wang et al. 2006). The graph-based molecular representation introduced in section 3.1 was also 

generated specifically for generating graph neural network models.  
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For data pre-processing and cleaning, all the descriptors with low variance were removed, and 

the threshold of the variance was set to be 0.05. To avoid over-fitting issues, a feature 

eliminating process was performed using L1 regularization (Lasso) for eliminating descriptors 

with low correlation (Zhao and Yu 2006).  

 

3.2.2.3 Model construction using machine learning 

A prediction pipeline was developed for supervised classification with various machine 

learning algorithms, including random forest (RF) (Breiman 2001b), support vector machine 

(SVM) (Soman, Loganathan, and Ajay 2009), AdaBoost decision tree (AdaBoost) (Solomatine 

and Shrestha 2004), naïve Bayes (NB) (Rish 2001), logistic regression (LR) (Kleinbaum et al. 

2002), and ̈neural network/multilayer perceptron (MLP) (Gardner and Dorling 1998). The open-

source Python module Scikit-learn was used for model training, data prediction, and 

interpretation of results (Pedregosa et al. 2011a).  

For RF, the RandomForestClassifier function from Scikit-learn was applied. The model was 

saved after the optimization on parameters n_estimators (50, 100, 500) and max_depth (2, 3, 4, 

5). For SVM, the svm.SVC method was applied with three kernel functions (linear, RBF, poly). 

The SVM model with the best performance was saved after optimizing penalty parameter C and 

parameter γ for RBF and poly kernels. For AdaBoost, the AdaBoostClassifier function was 

applied with the optimization on parameters n_estimators (10, 100, 1000) and learning_rate 

(0.01, 0.1, 1). The weaker classifier used in AdaBoost was set to DecisionTreeClassifier. When 

training NB models, the BernoulliNB method was applied for datasets with fingerprints as 

features. Given that Bernoulli naive ̈Bayes requires binary-valued feature vectors for samples, 

the prior probabilities of the classes were set to none. For MLP, the MLPClassifier method was 
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applied with the setting of different hidden layers (1-5). The following parameters were also 

optimized during the model training: activation function (identity, logistic, tanh, relu), and 

learning rate (0.1, 0.01, 0.001, 0.0001). The LogisticRegression was applied to implement the 

logistic regression model with an L1 penalty (lasso). The parameter solver was set to sag to 

handle the multinomial loss in large datasets. The hyper-parameters tunning of each estimator 

was performed using the GridSearchCV tools, and the best-performance models in the cross-

validation were selected. Moreover, graph-based deep neural network models were constructed 

and compared in this study. As described in section 3.1, four types of graph neural network 

(GNN) architecture were applied in this study. Those include convolutional graph neural 

networks using the adjacency matrix as the filter (GCN_1), convolutional graph neural networks 

using normalized Laplacian matrix as the filter (GCN_2), convolutional graph neural networks 

using Chebyshev polynomials of the Laplacian matrix as the kernel (GCN_3), and graph 

attention networks (GAT). For fitting the GNN models, the molecular graph feature was 

calculated using the same atom-type embedding model trained and shown in section 3.1. 

 

3.2.2.4 Model evaluation 

Ten-fold cross-validation was performed for model generation and evaluation. The model was 

trained using any nine folds as training data, and the resulting model is validated on the 

remaining fold of data. Different statistical metrics were calculated to evaluate the performance 

of machine learning models from diverse aspects. The area under the receiver operating 

characteristic curve (AUROC) was calculated after acquiring the true-positive rate and false-

positive rate . AUROC can be referred to indicate the performance of the model on separating 

classes, while Balanced F-score was calculated as the weighted average of the precision and the 

recall. The accuracy classification score (ACC) was calculated to compute subset accuracy that 
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whether the label predicted for one sample matches with the corresponding true value. In 

addition, Matthew’s correlation coefficient (MCC) was calculated to measure the quality of 

binary and multiclass classifications. MCC score is a balanced measure that both the true and 

false positives and negatives are considered. 
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3.2.3 Results and Discussion 

3.2.3.1 Overall workflow 

The schematic illustration of the workflow of this study is shown in Figure 3.2.2. Compounds 

with the experimental label of BBB+ or BBB- were extracted and cleaned from the multiple 

public resources. Four types of features, molecular descriptors, molecular fingerprints, atom 

count descriptors, and atom-type-based graphic features, were calculated for the entire 

compound sets. The training sets and test sets were divided at a 3:1 ratio. Six supervised machine 

learning algorithms were applied to build classifiers for each of the prepared training sets. 

Different types of features can evaluate the properties of compounds from diverse aspects, and 

various machine learning algorithms may favor distinctive data structures. In the end, all the 

models were evaluated and compared to achieve the best model. 
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Figure 3.2.2 Overall workflow for data processing. First, the entire database which contained 

1924 (1465 BBB+ and 353 BBB− compounds) were cleaned and then denaturalized using 4 

types of molecule features. The cleaned dataset was split into a training set and test set with the 

ratio 0.75: 0.25, with the training set, used to train and validate the ML/DL model and the test 

set used to evaluate the model performance. 
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3.2.3.2 Prediction results in cross-validation 

The ROC AUC value of all the machine learning models for the cross-validation is summarized 

in Tables 3. Models gave relatively consistent performances when using the same types of 

molecular descriptors. Overall, the four GNN models (GCN_1, GCN_2, GCN3, and GAT) 

outperformed all the other algorithms, with the highest predictive accuracy reaching 0.95. For 

traditional machine learning methods, RF models and MLP models performed better than other 

methods. From the perspective of molecular descriptors, besides graph-based molecular 

representation used for GNN, FCFP molecular fingerprints provided more information helping 

the machine learning algorithms to learn a better model. Notably, the RF model combined with 

FCFP descriptors achieved a comparative performance to the GNN models. Figure 3.2.3 shows 

the ROC plot for four of the best models from cross-validation. Two of them use GNN methods 

(GCN3 and GAT), and two models use traditional machine learning methods (RF and MLP). 

The GAT model achieved a predictive accuracy of 0.95 in the ROC AUC in the cross-validation. 

The ROC curve is shown in Figure 3.2.3 also provides a sight of sensitivity and specificity of the 

prediction, which further indicates that this model made a reliable prediction for predicting 

whether a compound can transmit across BBB or not. 
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Table 3.3 ROC AUC of all machine learning models on cross-validation 
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Figure 3.2.3 The ROC plot of the selected best models from cross-validation. This figure 

shows the results from the ROC analysis on the four best ML/DL classification models of 

BBB. Each figure is a ROC curve from the analysis, with the X-axis assigned as FPR (false 

positive rate, 1-Specificity) and Y-axis assigned as TPR (true positive rate, Sensitivity, 

recall) 
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3.2.2.3 Model Evaluation 

Instead of using only the ROCAUC score, a series of metrics were calculated to further explore 

the performance of each machine learning algorithm on different feature types. Metrics functions 

assess prediction errors for specific purposes and evaluate the model performance from various 

aspects. The other metrics involved in this study are F1 score, Accuracy, MCC, precision, and 

recall. For each algorithm, the best-performed model was selected for the evaluation using the 

test set.  

The results were shown in Figure 3.2.4, and the test set performance was relatively consistent 

with the cross-validation. GNN models made the most accurate prediction on the test set 

evaluation, while the RF model also performed well. Most of the statistical evaluation metrics 

aligned with the ROC AUC when comparing different algorithms. Surprisingly, the linear 

regression model (LR) combined with lasso regularization achieved a relatively good predictive 

performance over the test set. However, the two simpler GNN models (GCN1 and GCN2) did 

not perform as well as their performance in the training process. 
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3.2.4 Conclusion 

In this study, an ML/DL classification framework in predicting the drug permeability of BBB is 

introduced. Significantly, the effectivity of the deep graphic neural network methods in 

predicting the drug’s BBB penetration was examined and compared with the existing methods. 

The prediction accuracy of the best mode over the external test datasets already achieved 0.93, 

and the average AUC is 0.94, the F1 score is 0.60. Furthermore, the accuracy, AUC, and F1 

scores of our machine learning methods with both training set and test set are relatively 

consistent, indicating that our model is stable and not overfitting. In the future, we will further 

evaluate our model using more experimental data and hope our method can be applied to 

facilitate CNS drug discovery. 
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CHAPTER 4. AI/ML PHARMACO-ANALYTICS IN CLINICAL OUTCOMES 

RESEARCH 

  



128 

4.1 Machine Learning-based Prediction of Substance Use Disorder in Children 

 

4.1.1 Background and Significance 

Substance use disorder (SUD) exact enormous societal cost, estimated in the United States to 

exceed 740 billion dollars annually (NIDA 2020). Considering that first exposure to legal 

substances (for adults), as well as illegal drugs, usually begins during adolescence, and 

frequently leads to SUD before thirty years of age (Bose et al. 2018), often co-occurring with 

psychiatric and medical disorders, physical disability, socioeconomic decline, long-term 

incarceration and social maladjustment (Organization and Unit 2014), it is important to 

efficiently detect and implement timely prevention for at-risk youths. Whereas a strong genetic 

contribution to SUD liability is documented in many population studies (McGue, Elkins, and 

Iacono 2000), it is not possible to measure the magnitude of SUD risk in the individual. At the 

phenotypic level, externalizing behaviors such as aggression, impulsivity, and sensation-seeking 

are well-established childhood antecedents of SUD (Verdejo-Garcia, Lawrence, and Clark 

2008a; Iacono et al. 1999). Relatedly, externalizing disturbances qualify for a psychiatric 

disorder, specifically, attention-deficit/hyperactivity disorder (ADHD) and conduct disorder 

(CD) also heighten SUD risk. In addition, internalizing disturbances evinced clinically primarily 

as anxiety and depressive spectrum disorders are also at risk for SUD (King, Iacono, and McGue 

2004b). Since externalizing and internalizing characteristics are correlated (Krueger and Markon 

2006) and their respective disorders frequently co-occur (Grant et al. 2004), it can be concluded 

that psychological dysregulation has the cardinal features of encompassing behavior under-

control and disturbed modulation of emotions (Tarter et al. 2003) is an integral component of the 

SUD liability phenotype. 
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Other behavioral characteristics that are not subsumed within internalizing and externalizing 

dimensions also impact SUD risk. For example, disinclination for physical exercise and more 

broadly sedentary lifestyle presages substance use onset (Nelson and Gordon-Larsen 2006). In 

effect, standard psychological constructs incompletely characterize the liability phenotype 

which, from the practical standpoint, diminishes the accuracy of detecting high-risk youths. 

Machine learning (ML) often associated with “big data” potentially enables constructing a 

computer program to predict SUD. A major advantage of ML methodology is that it is entirely 

empirical and thus free of investigator assumptions and biases (Wernick et al. 2010). 

Furthermore, ML is equipped with automatic feature selection functions (i.e., identifying the 

most salient variables) (Liu and Zhao 2012), using algorithms that use linear as well as nonlinear 

methods (Kotsiantis, Zaharakis, and Pintelas 2007). These advantages have led to its applications 

to address diverse medical issues (Chen and Asch 2017; Jing et al. 2018c) as well as detecting 

SUD peripheral biomarkers (Bough and Pollock 2018) and predicting SUD treatment outcomes 

(Acion et al. 2017). 

To date, ML has seldom been applied to characterize SUD liability owing in part to the paucity 

of longitudinal studies having multiple datasets spanning multiple assessment waves. The present 

study employs ML accessed waves of data consisting of approximately 1,000 variables at each 

timepoint accrued by the NIDA-funded Center for Education and Drug Abuse Research 

(CEDAR). Previous research conducted on CEDAR’s dataset has yielded the transmissible 

liability index (TLI); that is the psychological characteristics having intergenerational continuity 

that predispose to SUD (Vanyukov et al. 2003). This prospective study employing ML extends 

their line of research by identifying the specific characteristics that portend SUD during five 

developmental tripoints between 10-22 years of age without reference etiology. All the identified 
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characteristics can be ranked according to their strength of association with SUD outcome; 

hence, the final constellation of items informs SUD risk, and their ranked salience informs 

intervention targets. Selected items were further used to develop instruments to predict the 

liability of SUD with a high degree of accuracy using ML algorithm.  
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4.1.2 Methods 

4.1.2.1 Participants 

Males (N=494) and females (N=206) between 10-12 years of age (baseline) who had biological 

fathers (probands) qualifying for a lifetime diagnosis of SUD consequent to use of illicit drugs or 

no adult psychiatric disorder were re-evaluated at 12-14, 16, 19, 22 years of age with a large 

number of questionnaires and interviews items measuring psychological and psychiatric 

characteristics. The men were identified primarily via newspaper and radio advertisements, 

public service announcements, and random digit telephone calls. Approximately 25% of men 

with SUD were recruited from addiction. The sample was middle class and consisted of 75.6% 

European-American, 21.2% African-American, and 3.2% who self-identified having another 

ethnicity (Vanyukov et al. 2009b). Previous reports have detailed the characteristics of the 

sample (Vanyukov et al. 2009b). In brief, they scored in the average range of intelligence. None 

had a history of neurologic injury or disease, physical disability, or chronic medical illness. 

 

4.1.2.2 Measures and variables 

Informed consent was obtained from the parents, and children provided written assent before 

data collection. At 18 years of age and thereafter the participants signed informed consent forms. 

At the outset, breath alcohol, and urine drug screens were conducted to ensure that the results are 

not confounded by acute effects of substances. Questionnaires and interviews measured 

psychopathology, personality, family/social functioning, health, and neurocognition (Table 4.1) 

(Mezzich et al. 2001; Orvaschel and Puig-Antich 1987). The responses (approx. 1000 at each 

visit), hereafter termed features, commensurate with ML research, where the data inputs forecast 

SUD. The outcome variable, termed class label in ML research, is a diagnosis in any SUD 
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category based on DSM-IV criteria (Spitzer et al. 1992). The diagnosis was formulated by a 

clinical committee based on the results of the Structured Clinical Interview for Diagnosis (SCID) 

(Spitzer et al. 1992) in conjunction with information obtained in other aspects of the research 

protocol and medical records. 
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Table 4.1 Questionnaires summary for different visits 
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4.1.2.3 Data pre-processing and missing data imputation 

At the outset, a feature (i.e., item) was eliminated if 1) the percentage of missing responses was 

70% or more, 2) its response had a variance of <0.1, 3) the item directly queried substance use, 

or 4) the item was answered by an informant (e.g., teacher) other than a parent or their child. 

Imputation of missing data was performed using the k-nearest-neighbors algorithm. This 

algorithm assumes that missing data can be substituted with values informed by the closest cases 

(neighbors) from the entire sample (Beretta and Santaniello 2016). First, all the variables were 

normalized using the conjunction of three neighbors (k = 3) based on examination of the data 

reflecting the most appropriate balance between imputation error and preservation of the data 

structure true (Beretta and Santaniello 2016). Next, the proximity between features was 

calculated according to the equation: 

𝑆𝑖𝑗 = √
1

𝑛
∑ [𝑤𝑘(𝑣𝑖𝑘 − 𝑣𝑗𝑘)]

2𝑛
𝑘=1  , 

where n is the number of features without missing data for Subjects i and j, wk is the weight of 

feature k, vik, and vjk are the normalized values of feature k. The following two criteria must be 

satisfied during the difference score calculations: (1) n must be no smaller than 40% of total 

features, and (2) a feature is disqualified if the missing data is larger than 30%. If the k-th feature 

of subject i, vik, is missing, three subjects whose profiles are most similar to the subject i are first 

identified, that is, their difference score Sij is the smallest. Lastly, the mean of the three vjk values 

is assigned to vik. 

 

  4.1.2.4  Feature selection
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Feature selection is the ML technique of removing irrelevant and redundant features and 

selecting a subset of features for developing a good parsimonious prediction model. In addition, 

feature selection could also simplify the data description and improve the comprehensibility of 

the models (Liu and Zhao 2012). There are three general types of feature selection methods: 

“filter”, “wrapper”, and “embedding” (Guyon and Elisseeff 2003). The filter methods select 

features based on their feature importance score calculated independently from any model 

developing algorithms (e.g., χ2 values). These methods run very fast, but at the cost of inferior 

results. Wrapper methods search among different feature subsets iteratively to find the one that 

maximizes the predictive accuracy of the model. Those methods usually provide much better 

results, but they are very slow and more computational demanding (Bouaguel 2016). Embedded 

methods are built-in methods in the algorithms, which simultaneously perform feature selection 

and model training, and they often provide a good balance between performance and 

computational cost (Saeys, Abeel, and Van de Peer 2008). The random forest-based feature 

selection is one of the most commonly used embedded methods (Genuer, Poggi, and Tuleau-

Malot 2010). It can provide multivariate feature importance scores which are relatively cheap to 

obtain, and it has been successfully applied to diverse types of high dimensional data (Genuer, 

Poggi, and Tuleau-Malot 2010). In this study, this method was utilized to select the best features. 

The information gain (Shannon 1948) of each item calculated by RF was used as the importance 

score for predicting SUD. The items were ranked based on their importance scores and 

sequentially entered into the predictive model until reaching the maximum (ROC AUC) (Hanley 

and McNeil 1982). Pearson’s χ2 test assessed the relationship between each feature and the 

outcome class (SUD+/-). 
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4.1.2.5 Model construction using machine learning algorithms 

To keep consistent with the feature selection method, RF algorithm (Ho 1998) was primary used 

to construct prediction models. RF is a commonly used tree-based ensemble learning algorithm 

used for a variety of tasks, including classification and regression (Breiman 2001b). It consists of 

a multitude of decision tree models, each of which is trained using a subset of the sample and 

features are randomly drawn from the original dataset, and the final prediction is based on the 

majority voting from all decision tree models (Ho 1998). Each decision tree is a recursive 

partitioning model (Magerman 1995), in which the entire dataset is divided into smaller subsets 

recursively based on one feature value at each split until all the sample in the subsets has the 

same class label. In the current work, the RF models were optimized using the out-of-bag (OOB) 

estimates, which is the estimation using the left-out samples after randomly subsampling the 

entire dataset (Breiman 2001b). 

In addition to the RF algorithm, other ML algorithms were briefly tested and compared, which 

include logistic regression, adaptive boosting (AdaBoost) [ref]. naïve Bayes(Domingos and 

Pazzani 1997), support vector machine (SVM) (Steinwart and Christmann 2008), k nearest 

neighbor (kNN)(Stewart and Willett 1987), and deep neural network (DNN)(Lippmann 1989). 

AdaBoost is an ensemble tree-based algorithm that conjugates multiple decision tree models, and 

the final prediction is the weighted sum up of the output from those weak classifiers (Ma, Wang, 

and Xie 2011b). The Naïve Bayes algorithm (Domingos and Pazzani 1997) calculates the 

posterior probability of each class at the condition of given features, and the outcome class with 

the highest probability is the predictive outcome. The strategy of SVM is to find a decision 

boundary (hyperplane) that maximizes the geometric margin between the two classes in the 

feature space(Steinwart and Christmann 2008). This hyperplane can be either linear or nonlinear, 
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depending on kernel methods(Elisseeff and Weston 2002). The principle behind KNN, 

introduced in the missing data section, is to predict a new case using a pre-defined number of 

samples that are similar to it (Stewart and Willett 1987). DNNs are network-based methods that 

are composed of one input layer, one output layer, and several hidden layers in 

between(Lippmann 1989). Notably, DNNs are considered to enable deep learning that shows 

more tolerance to multiple levels, nonlinearity, and complexity of big data (Cabitza, Rasoini, and 

Gensini 2017). Sci-kit-learn python package(Pedregosa et al. 2011b) was used to develop models 

for these ML algorithms. The selected features were compared with the entire set using each ML 

algorithm. 

 

4.1.2.6 Validation of predictive models 

We performed 10-fold cross-validation to evaluate the forecasting accuracy of the six models 

(Shao 1993). The dataset was randomly divided into 10 approximately equally sized subsets. 

Nine subsets were combined to form the training set with the remaining subset was used to 

evaluate each model. This process was repeated ten times accompanied by ROC analysis to 

determine each model’s sensitivity, specificity, and overall classification accuracy. 
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4.1.3 Results 

4.1.3.1 Selected features for predicting SUD individuals 

To determine the optimal number of features needed for building robust models at each age 

point, we tracked the change in prediction accuracy (ROC AUC) of the random forest model 

constructed with an increasing number of features. Features were sequentially added into the 

model based on their importance ranking. As illustrated in Figure 4.1.1, accuracy at every visit 

for predicting SUD reached peak values when the size of the feature (items) set was 

approximately 30. Thus, the top 30 features (i.e., prediction of SUD outcome) were selected to 

generate the final models to predict SUD. The table in Appendix A (a) lists the features at 10-12 

years of age. Almost half (N=14) were ratings or responses provided by a parent. In the 

subsequent visits (Appendix A), all of the best features were provided by the children. This 

finding concurs with the observation that young children are not the most accurate informants 

about themselves. Overall, the best features at 10-12 years of age are indicators of psychological 

self-regulation spanning behavior control, emotion modulation, daily routine, and mental 

concentration in conjunction with social interaction problems at later ages, although different 

indicators of suboptimal psychological self-regulation with additional indicators of social 

maladjustment, particularly decrease proneness. Considered from the ontogenetic perspective, 

the features most prognostic of SUD thus advance from psychological dysregulation during 

childhood to the persistence of this disposition accompanied by marked non-normative 

socialization in adolescence and adulthood. 
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4.1.3.2 Model performance, selection, and validation 

The accuracy of RF models at different ages for predicting SUD is depicted in Figure 4.1.3. At 

10-12 and 12-14 years of age, the ROC AUC is 0.74. With increasing age, the forecasting 

improves to excellence. The ROC AUC is respectively 0.78, 0.83, and 0.86 at ages 16, 19, and 

22. Notably, RF and Naïve Bayes models are superior to the other models (Figure 4.1.2). 

However, regardless of the particular model, the accuracy of forecasting SUD increases with 

chronological age. It is also noteworthy that the standard deviation of the ROC AUC in the 10-

fold cross-validation is somewhat high in all six models indicating that the algorithms are 

interchangeable concerning this measure of model quality. Overall, the models consisting of 

thirty features (orange bars in Figure 4.1.2) are superior to the models using the entire dataset 

(blue bars in Figure 4.1.2). 
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4.1.4 Discussion and Conclusion 

To briefly recapitulate, the results of this prospective study demonstrate that models constructed 

using machine learning (ML) methodology predict SUD with increasing accuracy across five-

time points spanning from 10-12 to 22 years of age. Accuracy of forecasting SUD points to the 

feasibility of using the derived algorithms in routine screening of youths for timely determination 

of the need for intervention. Considering that the thirty items require about five minutes to 

administer and score on the Web platform, screening can be conducted expeditiously, 

inexpensively, and unobtrusively since none of the prognostic features query substance use. 

Overall, these results demonstrate the feasibility of detecting high-risk youths. However, in 

contrast to prior research focusing on a particular etiological component such as 

intergenerational transmissibility (Vanyukov et al. 2003), psychological orientation (e.g. 

externalizing behavior) (King, Iacono, and McGue 2004b), or normative socialization 

(Whiteman, Becerra, and Killoren 2009), ML models revealed additional important 

characteristics associated with SUD risk. For example, the 3rd, 12th, 18th, and 24th best predictor 

variables consist of daily routines, particularly eating and sleeping. These latter findings raise the 

prospect that interventions targeting these aspects of SUD liability may increase the likelihood of 

non-SUD outcomes. 

Whereas psychological dysregulation such as symptoms of ADHD and CD SUD forecast SUD 

(King, Iacono, and McGue 2004b; Krueger et al. 2005), this study also revealed other highly 

salient SUD risk features that are readily observed and amenable to intervention. Notably, the 

use of foul language is the most prominent feature. Poor play behavior ranks second and 

irritability ranks fourth. Additionally, it is observed that the array of predictors is not confined to 

individual characteristics, but also includes environmental factors (neighborhood and school). 
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These factors are well-known to impact SUD risks, especially in the later visits at ages of 16, 19, 

and 22. Future research directed at clarifying the SUD risk-promoting environ type (Kirisci et al. 

2009) using ML methodology may, therefore, enhance forecasting accuracy as part of 

comprehensive prevention targets.  

The best prognostic features are transdiagnostic. Since these features were identified 

independently of assumptions or biases of the investigator, their importance resides in their 

salience for prioritization of intervention tactics. It is also noteworthy that the portending SUD 

features may be detectable before ten years of age, the baseline in this study. Longitudinal 

studies show that temperament disturbance (Horner et al. 2015) before five years of age indicates 

disrupted psychological-self-regulation and daily rhythmicity forecasts SUD two decades later. 

These findings point to the feasibility of risk detection and intervention in early childhood. 

Several limitations in this study are noted. First, because the high-risk paradigm was used, 

oversampling children prone to SUD prevalence in the general population may have biased the 

results. Accordingly, the results of this study require replication employing random sampling of 

youths. Second, it is noteworthy that the standard deviations in the 10-fold cross-validation are 

large, indicating that while models are adequate, they need improvement. Furthermore, although 

the performance of the models ranged from satisfactory to excellent with increasing age, 

improvement may be achieved by expanding the spectrum of variables available for feature 

selection and removing redundant items using such methods as a lasso, ridge regressions, and 

genetic algorithms [51]. Notwithstanding these limitations, this study demonstrates the heuristic 

value of ML methodology to derive a cost-efficient scalable screening tool to identify youths at 

high risk for SUD. 
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In conclusion, ML techniques identified the characteristics between late childhood and adulthood 

that forecast SUD can be predicted by these characteristics with sufficient accuracy to justify 

application in routine screening to detect high-risk individuals. Moreover, ranking the 

components of risk according to their contribution to SUD development informs prioritizing 

intervention targets. Hence, reviewing an individual’s protocol quickly provides insight into the 

resources needed to ameliorate the particular risk factor to lower the risk for SUD. 
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4.2.1 Background and Significance 

Consumption of substances having dependence liability exacts an enormous cost to the U.S. 

economy, with estimates ranging up to $740 billion annually (NIDA 2020). Chronic medical 

disease, social decline, incarceration, mental health disorders, and violence victimization 

consequent to habitual use of abusable substances contributing to this fiscal burden are especially 

likely to occur among early age onset consumers who develop substance use disorder (SUD). 

Notably, the prevalence of consumption has remained high and stable in the youth population for 

over two decades (Administration 2020). Considering that substance use onset at a young age 

heightens risk (Lipari et al. 2017), it is important to accurately and efficiently develop tools that 

detect youths with a high probability of advancing to SUD (Conrod 2016). 

Toward this goal, we have published machine learning methods to identify the characteristics 

associated with elevated risk for SUD (Hu et al. 2020; Jing et al. 2020). Whereas measures have 

been shown to predict SUD based on theoretical suppositions regarding etiology and its 

intergenerational transmissibility (Schulenberg et al. 2014; King, Iacono, and McGue 2004a; 

Verdejo-Garcia, Lawrence, and Clark 2008b; Vanyukov et al. 2009a), machine learning 

procedures are theoretical and have the advantage of taking into account in the forecasting the 

correlations among all the predictors (Jordan and Mitchell 2015). In the study, we have shown 

that thirty characteristics, largely reflecting psychological disposition in 10–12-year-old children, 

forecasted SUD before 30 years of age with 74% overall accuracy (Jing et al. 2020; Hu et al. 

2020).  

4.2  CausalSUD: a Causality-based Method for Predicting SUD in Childhood using 

Causal Machine Learning
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Even though traditional machine learning methods, such as SVM and RF, can provide accurate 

predictions to support decision-making tasks, they have several weaknesses. Firstly, those 

methods may only specify association rather than causality between variables. Secondly, those 

methods may not be appropriate to identify the potential latent confounders from numerous 

variables. Thirdly, models developed using those methods are inherently less interpretable and 

run as a “black box”. Those weaknesses of machine learning limit its further development on 

offering physicians causal-based suggestions that accurately inform a personalized approach to 

recommend therapy for individual patients. (Rudin 2019). 

Within the family of machine learning methodologies, causal Bayesian network methods is 

especially promising for identifying the variables involved in the etiology of psychopathology 

(Heckerman, Geiger, and Chickering 1995; McNally 2016; Conrod 2016). In other words, this 

method has the potential to elucidate the psychological and behavioral variables that have a 

causal effect on the etiology of SUD (Kramer et al. 2014; Rhemtulla et al. 2016). Depicted in a 

graphic display, the derived causal network model is featured by nodes (representing the random 

variable) and their connections (representing potential causal influence) (Glymour, Zhang, and 

Spirtes 2019a). Moreover, causal network theory aligns with the conceptualization of SUD by 

focusing on the dynamic relationships among the symptoms traceable to their causal effect 

(Borsboom 2017; Jones, Heeren, and McNally 2017). This stands in contrast to the current 

conceptualization of psychiatric disorders, including SUD, portrayed as syndromes having latent 

(i.e., biological) causation (Jang et al. 2020). Additionally, the combination of machine learning 

and causal network analysis may help to achieve a balance between the predictability and the 

interpretability of the model and is becoming widely used in clinical outcomes research 

(Richens, Lee, and Johri 2020; Nogueira, Gama, and Ferreira 2020).  
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This prospective study examined the heuristic utility of causal network analysis to 1) delineate 

the causal relationships among psychological and psychopathological characteristics contributing 

to the etiology of SUD; 2) build graphic models based on psychological and psychopathological 

characteristics to forecast SUD during adolescence and young adulthood; and 3) elucidate its 

forecasting accuracy compared to other commonly used ML methods. Figure 4.2.1 illustrates the 

progress of the steps in this study. 
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4.2.2 Methods 

4.2.2.1 Data preparation and pre-processing 

The participants, measures, and variables are the same as in chapter 4.1.2.1. The data pre-

processing and missing data imputation process are the same with chapter 4.1.2.2. Details can be 

found in section 4.1. 

 

  

  

 

 

4.2.2.3 Exploratory factor analysis 

In Step 2, an exploratory factor analysis (EFA) was conducted to reveal the constructs 

underlying the questionnaire items that depict the behavioral and psychopathological 

characteristics. The goals of this analysis are to 1) better understand the internal structure of the 

measured variables; 2) discover patterns of relations (common factors) among the variables; and 

3) reduce the dimensionality of the data and prepare optimized data for the subsequent analysis.  

4.2.2.2  Analysis of variance with the regression model

In Step 1 of the study, analysis of variance (ANOVA) was performed to estimate the correlation

between each variable and SUD label and eliminate the less correlated variables  (Glantz and

Slinker 2001). Specifically, a logistic regression model was constructed between each variable

and SUD label. The p-value from the significance test was applied to interpret the correlation. In

addition, to minimize type I error consequent to multiple hypothesis testing, the p-values from

the original analysis were corrected using the false discovery rate (FDR) approach  (Benjamini

and Hochberg 1995).  This entire analysis was performed using the  statsmodels  package in

Python  (Seabold and Perktold 2010).
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EFA is a statistical method widely used to identify factors or aggregates of variables within a set 

of measured variables. The factors also describe the magnitude of the correlations of the 

measured variables within each factor (Norris and Lecavalier 2010). In sum, EFA is used in 

psychological research to identify latent constructs (Fabrigar et al. 1999). 

In this exploratory factor analysis, the correlation matrix was used to undertake the analysis. To 

determine how many factors should be included, the Kaiser criterion was adopted by eliminating 

factors with eigenvalues less than 1 (Yeomans and Golder 1982). Maximum likelihood 

estimation was employed to fit the factor analysis model. To increase interpretability while 

allowing them to correlate, the factors were rotated using the Promax (oblique) rotation method 

after the model-fitting procedure. Any variable with loading less than 0.4 was ignored and 

removed from the factor. The remainder reflects a common theme informing the factor label. The 

entire analysis was performed using the factor_analyzer package in Python (Biggs 2019). 

 

4.2.2.4 Causal network analysis 

Step 3 of this study involved a comprehensive causal analysis for each assessment wave (10-12, 

12-14, 16, 19, and 22 years of age). The results depict the causal relationship, if any, between 

psychopathological characteristics with SUD outcomes at specific ages. This analysis was 

performed using two procedures. The first procedure involved performing an extended Markov 

blanket search to adaptively identify the causal-related factors of SUD as well as the parent 

nodes of those factors. The second procedure involved doing causal inference based on the 

causal order learned and discovering an optimized causal network between causal factors and 

SUD. 
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Markov blanket search used in the first step is a standard method to learn the Bayesian network 

and feature selection (Aliferis et al. 2010). Under the faithfulness assumption, the Markov 

blanket of a node (T) in the network graph is the minimal set of nodes conditioned on which all 

other nodes are independent of T (Fu and Desmarais 2010). In this step, both the PC algorithms 

(Spirtes, Glymour, Scheines, and Heckerman 2000) and the Fast Greedy Equivalence Search 

(FGES) algorithms (Ramsey et al. 2017) were adopted to catch as many causal factors as 

possible. The PC algorithm is a type of constraint-based algorithm that involves a set of 

statistical tests of conditional independence. The rule of the PC algorithm is restricted to just the 

variables in the Markov blanket of the target node (T) and its output is the graph that is a pattern 

over the variables. The FGES is a score-based search algorithm that heuristically performs 

searches over a large number of different network models by iteratively adding or removing 

edges in the network graph, and finally returns the graph model with the highest score, such as 

the Bayesian information criterion (BIC) score. Such a method is fast and accurate; however, this 

method cannot deal with unobserved confounders because of the Causal Markova and 

Faithfulness Assumptions. 

The second procedure of this causal analysis consisted of performing a causal inference to search 

the optimal graphic causal network structure using the causal factors learned in the Markov 

blanket of SUD. To ensure the network extends to follow the causal series, tiers of nodes 

(variables) in the causal networks were pre-defined in each analysis, with one tier representing 

one certain age group. This step was achieved using Greedy Fast Causal Inference (GFCI) 

algorithm (Ogarrio, Spirtes, and Ramsey 2016), a hybrid causal inference algorithm that 

combines the FGES algorithm and Fast Causal Inference (FCI) algorithm (Spirtes 2001; 

Glymour, Zhang, and Spirtes 2019a). The FCI algorithm is a variation of the PC algorithms but 
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tolerates and sometimes discovers unknown confounding variables. Causal network structures 

which were compatible with the result of the statistical tests were selected out and the common 

features of those structures are extracted to generate the graphical object called a Partial 

Ancestral Graph (PAG). In this case, FCI could tolerate and sometimes discover unobserved 

confounding variables. However, one of the major disadvantages of the FCI algorithms is that 

the number of statistical tests in FCI will exponentially increase with the number of variables 

included in the data set. Therefore, the accuracy, computing speed, and reliability of such 

methods are always criticized when using FCI. GFCI takes advantage of those two algorithms by 

separating the causal analysis into two steps. First, GFCI uses the FGES algorithm to perform a 

quick search over the model space and generate a more accurate initial graph. GFCI uses the FCI 

algorithms by performing a set of conditional independence tests to refine the preliminary search 

results and find the orientations for the edges in the graph networks.  

This causal analysis was conducted using the Tetrad software package, version 6.7.1 (Ramsey et 

al. 2018; 'Tetrad Manual'  2019). The Fisher Z test was employed in the statistical test to judge 

the conditional independence if the conditional correlation is zero, with the p-value threshold 

parameter (alpha) set to 0.05. Tetrad-specific Bayesian information criterion (BIC) score was 

adopted in the scoring metrics to evaluate the networks generated from the search procedure, 

with the additional penalty parameter (penalty discount) set to be the standard BIC value of 1. To 

ensure the stability of the causal network, we performed the subset bootstrap procedure. Each 

time a random subset of the input data set was resampled, a causal graph network was computed 

for that sample. Then the edge and edge type probabilities in the graph, which mean how often 

the edge and edge type appeared in the 100 bootstrapped networks, were calculated. The final 

output graph will be the ensemble of the voting results from all the graphs. Specifically, the 
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ensemble method adopted here is the ‘highest’ option, which only returns edge orientation that 

the highest percentage of sample graphs returns. 

 

  

 

 

 

 

  

4.2.2.5  Machine learning for SUD

In Step 4 of this study, we tried to predict SUD by integrating machine learning methods causal

factors obtained from the causal analysis. The predictive accuracy from causal-ML models was

evaluated and compared with traditional machine learning-based models. In addition, the results

from our previous published study using machine learning methods were also added to the

comparison  (Jing et al. 2020). Specific for machine  learning  (Mohri, Rostamizadeh, and

Talwalkar 2018), six commonly used algorithms  were adopted including 1) logistic regression

(Kleinbaum et al. 2002), 2) random forests  (Breiman 2001b), 3) adaptive boosting (AdaBoost)

(Solomatine and Shrestha 2004), 4) naïve Bayes  (Rish 2001), 5) support vector machine (SVM)

(Steinwart and Christmann 2008), and 6) deep neural network (DNN)  (LeCun, Bengio, and

Hinton 2015). The dataset was split into a training set and a test set with a ratio of 10:1. During

the training process, the cross-validation (CV) using 10 folds  (Browne 2000)  was performed for

validating the models using the area under the receiver operating characteristic curve (ROC

AUC)  (Hajian-Tilaki 2013). All the models were developed utilizing the  Scikit-learn  Python

package  (Pedregosa et al. 2011a).
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4.2.3 Results 

4.2.3.1 Exploratory factor analysis and exploratory factor analysis 

Variables (question items) uncorrelated with SUD were eliminated after the variance 

analysis. The number of selected variables for all age groups is listed in Table 4.2. More than 

half of the questions (items) were filtered out from the original data set due to lacking correlation 

with SUD.  

The number of factors and associated information for all age groups of ages is shown in Table 

4.2. As can be seen, approximately a third to half of the total cumulative variance is explained by 

each factor. The final number of remained factors was determined using the Kaiser criterion 

(Yeomans and Golder 1982). This helped with keeping more information (variance) for the next 

step of causal network analysis and providing a more conceptually coherent and meaningful 

solution. As introduced in the methods section, factor loadings less than 0.4 were reset to be 

zero. The factor loadings can be interpreted as correlation coefficients, and regardless of sign 

(positive or negative), the absolute value was considered using this threshold. 
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Table 4.2 Data structure of substance use disorder (SUD) data 
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4.2.3.2 Causal Bayesian networks analysis for each age group 

To examine the causation between the psychopathological factors and SUD, we conducted 

causal analysis for each assessment wave. As mentioned in the methods section 2.6, we first 

performed the Markov blanket search to find the causal factors of SUD for each assessment 

wave separately. The results showed a limited number of causal factors contributing to the SUD-

associated networks, with only a few factors having a direct causal relationship with SUD (Table 

4.3). Figures 4.2.2 (A-E) depicted the PAGs generated using the GFCI algorithm for all five age 

groups. The edge thickness signifies edge type probabilities, and the edge direction indicates 

causal relationships. 

For children at age 10-12, five factors directly causally connect with SUD (Figure 4.2.2A), 

which include factor5, factor24, factor27, factor28, factor31. The top factor (factor 31) 

investigated how happy the child was, suggesting that the happiness might impact the mental 

health of the child, leading to psychological problems such as anxiety (factor 24) and behavior 

such as stealing (factor 28). For children at age 12-14, two factors were directly causing SUD. 

Factor 7 investigates children’s capability of self-control, which may further impact their 

dangerous behaviors such as keeping weapons (factor 30). For children at age 16 and 19, school 

attendance was a very important causal factor for SUD, and especially for the age 19 model, the 

only causal factor (factor 37) asked the child’s school attendance before age 15, which was the 

same with factor 10 for age 16 model. The causal factors for the age 22 model correlated with 

anti-social behavior (factor 13, factor 58) and the surrounding environment of the child (factor 

75, factor 90, factor 92). And the top factor (factor 92) in the causal network (Figure 4.2.2E) 

suggested that parents and families could play an extremely important role in preventing the 

development of SUD for their children.  



158 

Table 4.3 Causal factors relevant to SUD at each age group 
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4.2.3.3  Model performance  evaluation

The causal-ML models were validated to predict SUD using 10-folds cross-validation. For

comparison, traditional ML-based models generated using all factors from EFA were trained and

then evaluated using 10-folds cross-validation. In addition, published ML-based models using

original question items as features were also compared. The results of the comparison between

causal-ML models and traditional ML-based models were presented in  Figure 4.2.3.

The overall performance of causal-ML models (Orange bars in  Figure 4.2.3) was generally as

good as traditional machine learning models (Blue bars in  Figure 4.2.3) in terms of predictive

accuracy (ROC AUC). The predicted accuracy of causal-ML models in the cross-validation

achieved a reliable performance across all the assessment waves. The predictive accuracy

reaches 0.73 for 10-12 years of age and 0.87 for 22 years of age. We also made a comparison

between this causal-ML model and our published ML-based work (Gray bars in  Figure 4.2.3)

(Jing et al. 2020), which used ML-based feature selection to select important variables. The

results show that the causal-ML models are comparable to the published models, especially in

the models  for younger ages (i.e., at age 10-12, 12-14). In addition, the random forest method,

which performed best in our previous study, did not dominate for this task. Regardless of the

algorithms used for generating models, the accuracy of forecasting SUD increases with

chronological age. It is also noteworthy that the standard deviation of the ROC AUC in the 10-

fold cross-validation is somewhat high in all ML-based models indicating that the algorithms are

interchangeable with respect to this measure of model quality. Further evaluation of the models

was performed using the extra test set (Table 4.4). The performance on the test set aligned well

with the performance in the cross-validation. The general predictive accuracy of causal-ML

models on the test set is not as good as the training performance but still promising. Moreover,
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the comparison between training and test performance showed that there is no significant 

overfitting issue. Overall, the models constructed using causal-ML algorithms were reliable for 

predicting SUD. 
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Table 4.4 Training and test accuracy of causal machine learning models 
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4.2.4 Discussion and Conclusion 

To briefly recapitulate, the results from the presented analysis using causal networks analysis 

demonstrate the feasibility of examining the potential pattern cluster as well as detecting high-

risk youths. For children in early adolescence, it should be pointed out that in the causal factor at 

the age of 10-12 (factor 31), there was a question item (DT52) owning a very high negative 

coefficient. That question exams the happiness emotion of the child, which gives the parents and 

society notice of how important it is to create a peaceable environment to contribute to children’s 

happiness. Moreover, it’s important for parents to help children find their milestones, making 

plans, and motivating them to do things effectively are also important. For young children in 

middle adolescence, their school attendance and performance may causally relate to their future 

development, which has been considered as a predictor of SUD for young children in other 

studies (Crum et al. 2006), and our results confirmed this from the causal aspect, not just 

correlation. That is the same as the causality between risk and illegal behaviors and SUD. 

Inasmuch as these causal factors were identified independently of assumptions or biases of the 

investigator, their importance resides in their salience for prioritization of intervention tactics. It 

is also noteworthy that the portending SUD factors may be detectable before ten years of age, the 

baseline in this study. These findings point to the feasibility of risk detection and intervention in 

early childhood. 

From the perspective of making predictions, the results of this prospective study demonstrated 

that models constructed using causal-ML predict SUD with satisfying accuracy across five-time 

points spanning from 10-12 to 22 years of age. Accuracy of forecasting SUD points to the 

feasibility of using the combination of causal analysis and ML algorithms in routine screening of 

youths for the timely determination of the need for intervention. Considering that no matter 
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which methods are used to develop models, the selected items require only a few minutes to 

administer and score on the Web platform. Screening can be conducted expeditiously, 

inexpensively, and unobtrusively since none of the prognostic features query substance use.  

Several limitations in this study are noted. First, the procedure of EFA derived a continuous 

score from original discrete variables, which was an advantage for developing a scale, as many 

psychiatric studies have done. However, this step reduced the total variance of the entire dataset 

and manually introduced noise into the indeterminacy, and finally, limited the predictability of 

the predictive models. Second, it is noteworthy that the sample size was relatively small 

compared to the number of variables and/or factors, especially when modeling all five 

assessment waves together, which influenced the reliability of the heuristic study from the causal 

analysis. Furthermore, although the performance of the models ranged from satisfactory to 

excellent as age increased, improvement may be achieved by expanding the spectrum of 

variables available for feature selection and removing redundant information using other 

methods. Notwithstanding these limitations, this study demonstrates the heuristic value of causal 

network analysis to identify youths at high risk for SUD. 

In conclusion, causal network analysis identified the causal relationship between 

psychopathological and behavioral cluster patterns and the risk of SUD from late childhood to 

adulthood. The development of SUD can be forecasted by these patterns with sufficient accuracy 

to justify application in routine screening to detect high-risk individuals. Moreover, ranking the 

components of risk according to their contribution to SUD development informs prioritizing 

intervention targets. Hence, reviewing an individual’s protocol quickly provides insight into the 

potential etiology of the development of SUD as well as the resources needed to ameliorate the 

particular risk factor to lower the risk for SUD.  
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CHAPTER 5. SUMMARY AND PERSPECTIVE 
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Over the past decades, AI/ML techniques, including state-of-art DL methods, have 

provided opportunities to accelerate the drug discovery and development pipeline. As shown in 

this study, the applications of those novel Pharmaco-Analytics technologies enhance the entire 

cycle, from drug-target identification in the early discovery stage, to preclinical modeling, and 

finally to clinical outcomes. With the size of biomedical data becoming ‘bigger’ and computers 

becoming more powerful, AI/ML methods will inevitably produce ever better performance. 

Accordingly, it is expected that the number of applications in Pharmaco-Analytics in the coming 

years will continue to increase. We have described some AI/ML/DL method developments at 

different stages of drug design and development, which can also be readily applied to other fields 

such as healthcare research. Combining these methods with drug discovery will most likely lead 

to significant advances in personalized medicine. 

Even though ML/DL methods have been successfully applied in diverse areas, challenges 

remain applying them in Pharmaco-Analytics research. For example, ML/DL methods strongly 

rely on the training data, whereas the corresponding experimental datasets are less than optimal. 

Compared to the amount of ‘Big Data’ for training the DL models in general AI such as the 

AlphaGo, the size of the biomedical database for Pharmaco-Analytics modeling lags far behind. 

Despite that the size of a major database like ChEMBL has reached a magnitude of a million, 

there is still a dearth of available data for building a specific model (Gaulton et al. 2012). 

Moreover, experimental data are usually sparse and unbalanced, and beset with noise. It is the 

responsibility of AI/ML scientists to clean the data and comprehensively learn the internal 

structure of data distribution in order to construct a reliable model. 

Additionally, ML/DL systems are considered as ‘black box’ systems. Thus, they are hard 

to interpret and have limited power to engage in logical reasoning. Those factors limit the 
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application and approbation of ML/DL in many domains such as clinical data analysis. In cases 

of small molecule drug discovery, interpretation of a structure-activity relationship (SAR) study 

is more practical from the descriptor perspective. However, regular features commonly used by 

traditional machine learning models in current cheminformatics studies to describe the small 

molecules, such as molecular fingerprints (Rogers and Hahn 2010; Myint and Xie 2015; Myint et 

al. 2012; Wang et al. 2013), physicochemical properties, topological properties, and 

thermodynamics properties (Yao and Parkhill 2016), are not fully appropriate to be used in some 

complex ML/DL architecture (Kearnes et al. 2016). Thus, the development of more interpretable 

descriptors is dire. Specifically, since ML/DL methods belong to representation learning which 

can automatically abstract features from raw data, there are two very important problems to 

ML/DL modeling: 1) how to optimize ML/DL architectures to abstract useful features; 2) how to 

interpret those features. The lack of interpretability may hinder scientists, even in situations in 

which ML/DL perform better than human experts. The lack of interpretability of the approaches 

makes it more difficult to troubleshoot when they unexpectedly fail on new unseen data sets. 

Another important issue for ML/DL is repeatability, since ML/DL outputs sometimes are highly 

dependent on the initial values or weights of the network parameters or even the order in which 

training samples are presented to the model, as all of them are typically chosen at random. The 

situation that different ML methods may have totally different results will add uncertainty to the 

adoption of these methods. 

AI/ML has also been applied to electronic health records and real-world evidence to facilitate 

clinical outcomes research. Current applications of AI in clinical outcome analysis mainly 

include the use of ML/DL methods to support clinical decision-making such as diagnosis and 

prediction using various types of data such as electronic medical records. For example, many 
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studies have been conducted using the medical image of the brain for the detection of AD 

(Tanveer et al. 2020). However, limited studies focus on giving physician causal-inference 

suggestions on personalized medication or combinational therapy for individual patients. 

However, how to model intervention using observational data to discover causal connections 

between observations and outcomes is still a challenge. Causal inference using Bayesian 

networks is an alternative method for addressing this problem. Therefore, it is a powerful tool for 

explanatory analysis, which is expected to enable the modern ML/DL to become explainable 

(Kuang et al. 2020). In comparison with causal networks, current ML/DL technologies in AI 

have limitations. Models built using those methods usually perform better than models of 

traditional methods such as logistic regression, however, those methods have limited capability 

of understanding and interpreting the predicted results. As clinical decision support systems are 

more frequently applied in intervening in practice, it is critical to correctly predict and 

understand the causal effects of these predictions and interventions in the medical domain, 

especially when informing clinical decision support (Holzinger et al. 2019). Conventional ML 

methods build predictive models based on pattern recognition and correlational analyses without 

any statistical test, which are insufficient for causal reasoning. Therefore, the development of 

explainable Artificial Intelligence is warranted to establish trust in models for clinical decision-

making, and more and more AI research come to focus on using causal inference to explore the 

causality and explain-ability of AI technology in clinical research (Pearl 2019; Ohlsson and 

Kendler 2019; Demmer and Papapanou 2020) 
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Supplementary Figure S2.1 Statistical results of 3 models of adrenoceptor alpha 1d (ADRA1D). 

TPR: true positive rate, FPR: false positive rate, Number: numbers of ligand, Score: docking 

score 

  

Appendix A. Supplemental Data for Chapter  2
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Supplementary Table S2.1 DA-related GPCR targets and data information  

Target 

Name 

Total 

Compound 

Active 

Compd 

Inactive 

Compd 

Acc_LR Acc_RF Acc_svm Acc_mlp 

ADORA1 5373 2530 2843 0.65 0.64 0.64 0.53 

ADORA2A 6264 2937 3327 0.65 0.64 0.64 0.53 

ADORA2B 3211 1421 1790 0.68 0.66 0.68 0.56 

ADORA3 5661 2647 3014 0.7 0.72 0.71 0.69 

ADRA1D 2469 1057 1412 0.69 0.7 0.69 0.57 

ADRA2A 1168 550 618 0.64 0.67 0.66 0.63 

ADRA2B 790 349 441 0.65 0.66 0.64 0.56 

ADRA2C 914 365 549 0.65 0.66 0.67 0.65 

ADRB1 1724 799 925 0.65 0.65 0.67 0.54 

ADRB2 2014 989 1025 0.68 0.68 0.69 0.51 

ADRB3 2993 1301 1692 0.76 0.78 0.77 0.57 

AGTR2 690 337 353 0.8 0.81 0.8 0.51 

AVPR1A 1354 656 698 0.8 0.81 0.79 0.52 

BDKRB2 829 403 426 0.78 0.8 0.78 0.51 

CALCR 19 9 10 na na na na 

CCKAR 571 285 286 0.84 0.84 0.84 0.5 

CCKBR 1921 957 964 0.75 0.74 0.76 0.5 

CCR1 1072 536 536 0.76 0.77 0.78 0.5 

CCR2 2668 1334 1334 0.78 0.77 0.78 0.5 

CCR4 417 208 209 0.7 0.71 0.72 0.7 

CCR5 3447 1723 1724 0.86 0.85 0.86 0.5 

CHRM1 2535 1091 1444 0.65 0.64 0.63 0.57 

CHRM2 2190 1049 1141 0.68 0.68 0.68 0.56 

CHRM3 2600 1284 1316 0.69 0.7 0.69 0.51 

CHRM4 872 425 447 0.62 0.62 0.62 0.51 

CHRM5 577 288 289 0.53 0.63 0.63 0.5 

CNR1 5587 2793 2794 0.68 0.67 0.68 0.5 

CNR2 7357 3679 3678 0.67 0.66 0.67 0.5 

CXCR1 302 147 155 0.8 0.8 0.83 0.51 

CXCR2 1153 561 592 0.73 0.74 0.75 0.51 

CXCR3 1501 747 754 0.81 0.81 0.82 0.5 

CXCR4 568 283 285 0.76 0.75 0.74 0.5 

CYSLTR1 370 185 185 0.89 0.91 0.92 0.5 

DRD1 1507 753 754 0.67 0.67 0.67 0.5 

DRD2 8298 4521 3777 0.66 0.66 0.67 0.54 

DRD3 6617 3375 3242 0.7 0.72 0.72 0.63 

DRD4 3923 1942 1981 0.63 0.64 0.65 0.5 

DRD5 283 138 145 0.59 0.6 0.64 0.51 

EDNRA 2260 1116 1144 0.76 0.75 0.77 0.51 
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GABBR1 5 1 4 na na na na 

GRM1 1052 526 526 0.73 0.72 0.73 0.5 

GRM2 768 390 378 0.68 0.73 0.7 0.55 

GRM3 143 68 75 0.66 0.65 0.66 0.52 

GRM4 393 158 235 0.77 0.75 0.77 0.6 

GRM5 2681 1341 1340 0.64 0.64 0.66 0.5 

GRM6 69 7 62 na na na na 

GRM7 64 1 63 na na na na 

GRM8 63 9 54 na na na na 

HRH1 1774 884 890 0.67 0.67 0.68 0.5 

HRH2 217 108 109 0.58 0.63 0.63 0.5 

HRH3 6197 3081 3116 0.62 0.64 0.65 0.5 

HRH4 1610 803 807 0.72 0.72 0.72 0.5 

HTR1A 6471 3233 3238 0.69 0.7 0.7 0.5 

HTR1B 1810 904 906 0.75 0.75 0.74 0.5 

HTR1D 2132 1065 1067 0.71 0.72 0.72 0.5 

HTR1E 36 18 18 0.6 0.6 0.55 0.5 

HTR1F 213 106 107 0.76 0.73 0.76 0.5 

HTR2A 6235 3116 3119 0.68 0.68 0.7 0.5 

HTR2B 2158 1080 1078 0.63 0.64 0.66 0.5 

HTR2C 4641 2319 2322 0.62 0.65 0.66 0.5 

HTR4 917 458 459 0.77 0.78 0.76 0.5 

HTR5A 387 184 203 0.73 0.73 0.72 0.52 

HTR6 5191 2596 2595 0.69 0.68 0.68 0.5 

HTR7 2751 1372 1379 0.69 0.69 0.7 0.5 

MC1R 966 470 496 0.76 0.78 0.76 0.51 

MC2R 1 0 1 na na na na 

MC3R 826 413 413 0.66 0.66 0.62 0.5 

MC4R 4306 2113 2193 0.84 0.84 0.85 0.51 

MC5R 627 300 327 0.77 0.79 0.79 0.52 

NPBWR1 169 87 82 0.8 0.83 0.79 0.51 

NPFFR1 120 60 60 0.79 0.85 0.81 0.5 

NPSR1 134 67 67 0.78 0.82 0.8 0.5 

NPY1R 1016 495 521 0.81 0.82 0.83 0.51 

NPY2R 575 269 306 0.77 0.78 0.79 0.53 

NPY4R 62 26 36 0.95 0.97 0.97 0.58 

NPY5R 2085 1042 1043 0.79 0.78 0.78 0.5 

OPRD1 5310 2587 2723 0.73 0.72 0.73 0.51 

OPRK1 5711 2852 2859 0.73 0.72 0.73 0.5 

OPRL1 2539 1263 1276 0.74 0.73 0.74 0.5 

OPRM1 5494 2746 2748 0.74 0.72 0.73 0.5 

PTAFR 628 314 314 0.75 0.78 0.75 0.5 

TAAR1 383 190 193 0.69 0.68 0.68 0.5 
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TACR1 4492 2245 2247 0.83 0.83 0.84 0.5 

TACR2 1517 758 759 0.87 0.87 0.87 0.5 

TSHR 25 11 14 na na na na 
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Atom Class Atom type Description  

C Basic c sp2 C in C=O, C=S  

c1 sp1 C  

c2 sp2 C, aliphatic  

c3 sp3 C  

ca sp2 C, aromatic  

Special cc(cd) inner sp2 C in conj. ring systems  

ce(cf) inner sp2 C in conj. chain systems  

cp(cq) bridge aromatic C   

cu sp2 C in three-memberred rings   

cv sp2 C in four-memberred rings   

cx sp3 C in three-memberred rings   

cy sp3 C in four-memberred rings   

N Basic n sp2 N in amide  

n1 sp1 N  

n2 sp2 N with 2 subst. readl double bond  

n3 sp3 N with 3 subst.  

n4 sp3 N with 4 subst.  

na sp2 N with 3 subst  

nh amine N connected to the aromatic rings  

no N in nitro group  

Special n aromatic nitrogen  

nb inner sp2 N in conj. ring systems  

nc(nd) inner sp2 N in conj. chain systems  

O Basic o sp2 O in C=O, COO-  

oh sp3 O in hydroxyl group  

os sp3 O in ether and ester  

S Basic s2 sp2 S (p=S, C=S etc)  

sh sp3 S in thiol group  

ss sp3 S in -SR and SS  

s4 hypervalent S, 3 subst.  

s6 hypervalent S, 4 subst.  

Special sx conj. S, 3 subst.   

sy conj. S, 4 subst.   

P Basic p2 sp2 P (C=P etc)  

p3 sp3 P, 3 subst.  

Appendix B. Supplemental Data for Chapter 3

Supplementary Table S3.1 Atom type (AMBER) used for graph-based small molecular feature

calculation.



180 

p4 hypervalent P, 3 subst.  

p5 hypervalent P, 4 subst.  

Special pb aromatic phosphorus   

pc(pd) inner sp2 P in conj. ring systems  

pe(pf) inner sp2 P in conj. chain systems  

px conj. P, 3 subst.   

py conj. P, 4 subst.   

H Basic hc H on aliphatic C  

ha H on aromatic C  

hn H on N  

ho H on O  

hs H on S  

hp H on P  

Special h1, h2, h3, 

h4, h5 

H on aromatic C with 1-5 EW group; 

halogen Basic f any F  

cl any Cl  

br any Br  

i any I  
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Table S3.2 Model optimization and hyper-parameter tuning in DeepGhERG training process.  

GNN types n_GCN n_MLP batch_size lr dropout K optimizer bestEpoch ValAcc TrainAcc 

GCN_Adj 5 5 100 0.001 0.1 N/A rmsprop 99 0.8036 0.8143 

5 3 100 0.001 0.1 N/A adam 84 0.8036 0.8143 

1 5 100 0.001 0 N/A adam 92 0.7988 0.8571 

4 3 100 0.001 0 N/A adam 92 0.7988 1.0000 

5 3 100 0.001 0.2 N/A rmsprop 99 0.7975 0.8571 

5 1 100 0.001 0.2 N/A adam 71 0.7974 0.8571 

1 1 100 0.001 0.1 N/A adam 57 0.7925 0.8571 

6 5 100 0.001 0.1 N/A adam 81 0.7924 0.8571 

2 5 100 0.001 0 N/A adam 68 0.7911 0.8571 

6 3 100 0.001 0.1 N/A adam 58 0.7900 0.5714 

1 3 100 0.001 0.2 N/A adam 83 0.7886 1.0000 

2 3 100 0.001 0.1 N/A adam 98 0.7875 1.0000 

3 3 100 0.001 0.2 N/A adam 84 0.7875 1.0000 

6 3 100 0.001 0 N/A adam 90 0.7874 1.0000 

3 5 100 0.001 0 N/A adam 63 0.7874 0.7143 

1 3 100 0.001 0.2 N/A rmsprop 94 0.7863 0.8571 

6 3 100 0.001 0 N/A rmsprop 91 0.7850 0.8571 

6 1 100 0.001 0 N/A adam 72 0.7850 0.5714 

2 5 100 0.001 0.2 N/A adam 90 0.7849 1.0000 

4 3 100 0.001 0.1 N/A adam 89 0.7838 1.0000 

6 1 500 0.001 0.1 N/A rmsprop 96 0.7836 0.7420 

3 5 100 0.001 0.2 N/A rmsprop 79 0.7825 1.0000 

6 5 100 0.001 0 N/A adam 69 0.7825 0.8571 

4 3 500 0.01 0 N/A adam 99 0.7820 0.8256 

2 5 100 0.01 0 N/A adam 95 0.7811 1.0000 

4 1 100 0.001 0 N/A adam 93 0.7788 0.7143 

4 3 500 0.001 0.1 N/A adam 90 0.7781 0.8034 

1 1 100 0.001 0 N/A adam 74 0.7775 0.7143 

5 1 100 0.001 0.2 N/A rmsprop 93 0.7775 0.8571 

3 5 500 0.001 0.2 N/A adam 77 0.7773 0.7617 

GCN_ 

Laplacian 

4 1 100 0.001 0.2 N/A rmsprop 99 0.8100 0.8571 

4 1 100 0.001 0 N/A adam 73 0.7913 0.4286 

4 3 500 0.001 0.2 N/A adam 96 0.7897 0.7617 

3 1 100 0.001 0.5 N/A adam 76 0.7888 0.7143 

1 5 100 0.001 0.1 N/A rmsprop 70 0.7886 1.0000 

3 5 100 0.001 0 N/A adam 64 0.7861 0.4286 

4 5 100 0.001 0 N/A adam 46 0.7825 1.0000 

6 1 100 0.001 0 N/A rmsprop 80 0.7824 1.0000 

2 3 500 0.001 0 N/A adam 98 0.7802 0.7617 
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3 3 100 0.001 0.5 N/A adam 91 0.7800 0.7143 

6 3 100 0.001 0 N/A adam 91 0.7799 1.0000 

3 1 100 0.001 0.1 N/A rmsprop 92 0.7799 0.7143 

5 3 500 0.001 0.2 N/A adam 96 0.7797 0.7936 

2 5 1000 0.01 0 N/A adam 75 0.7792 0.8329 

4 3 100 0.001 0.2 N/A adam 99 0.7788 0.7143 

3 3 100 0.001 0.1 N/A adam 74 0.7786 0.7143 

2 5 100 0.001 0 N/A rmsprop 58 0.7786 1.0000 

2 5 100 0.001 0 N/A adam 94 0.7763 0.7143 

3 5 100 0.001 0.2 N/A rmsprop 93 0.7763 0.8571 

4 3 100 0.001 0 N/A adam 96 0.7761 1.0000 

4 1 500 0.001 0.1 N/A rmsprop 94 0.7752 0.7076 

2 5 100 0.001 0.1 N/A adam 60 0.7750 0.8571 

6 3 500 0.01 0 N/A adam 97 0.7750 0.8010 

2 1 100 0.001 0.2 N/A adam 81 0.7749 0.7143 

3 1 100 0.001 0.1 N/A adam 93 0.7735 0.8571 

4 3 500 0.001 0.1 N/A adam 69 0.7735 0.7666 

1 1 100 0.001 0.2 N/A adam 60 0.7725 1.0000 

1 3 100 0.001 0.1 N/A rmsprop 59 0.7725 0.7143 

5 3 100 0.001 0 N/A adam 96 0.7725 0.8571 

1 5 100 0.001 0 N/A adam 84 0.7713 1.0000 

GATConv 2 3 100 0.001 0 N/A adam 70 0.7825 0.8571 

1 5 100 0.001 0.2 N/A adam 86 0.7813 0.5714 

2 5 100 0.001 0 N/A rmsprop 83 0.7725 1.0000 

2 5 100 0.001 0 N/A adam 63 0.7713 0.7143 

1 3 100 0.001 0 N/A adam 55 0.7686 1.0000 

1 1 100 0.001 0.1 N/A adam 89 0.7674 1.0000 

1 3 100 0.001 0.1 N/A rmsprop 63 0.7648 0.7143 

1 3 500 0.01 0.1 N/A rmsprop 80 0.7645 0.7862 

1 3 500 0.001 0 N/A rmsprop 98 0.7640 0.8256 

1 3 100 0.01 0.1 N/A adam 95 0.7637 0.8571 

1 3 100 0.001 0 N/A rmsprop 87 0.7636 0.8571 

1 5 100 0.001 0 N/A adam 73 0.7624 0.8571 

1 1 100 0.001 0 N/A adam 76 0.7613 0.8571 

3 5 100 0.001 0 N/A adam 66 0.7611 0.7143 

1 3 100 0.01 0.5 N/A adagrad 95 0.7600 0.7143 

2 5 100 0.001 0.1 N/A adam 67 0.7588 0.7143 

1 3 100 0.001 0.2 N/A adam 74 0.7588 0.8571 

1 5 100 0.01 0 N/A adam 99 0.7586 0.7143 

3 5 100 0.001 0 N/A rmsprop 67 0.7586 1.0000 

1 5 500 0.001 0 N/A adam 97 0.7584 0.8698 

1 5 100 0.001 0.1 N/A adam 69 0.7563 0.8571 

2 5 500 0.001 0.1 N/A adam 81 0.7558 0.7445 
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1 5 1000 0.01 0 N/A adam 90 0.7553 0.8771 

1 5 100 0.001 0.1 N/A rmsprop 44 0.7550 0.8571 

2 3 100 0.001 0.1 N/A adam 93 0.7549 0.5714 

1 1 100 0.001 0 N/A rmsprop 64 0.7538 1.0000 

2 5 500 0.001 0 N/A adam 82 0.7536 0.8059 

1 1 500 0.01 0.1 N/A adam 47 0.7535 0.7150 

2 5 500 0.01 0 N/A adam 58 0.7527 0.7764 

1 1 100 0.001 0.1 N/A rmsprop 52 0.7525 0.8571 

ChebConv 3 3 100 0.001 0.5 4 adam 96 0.8138 0.8571 

6 3 100 0.001 0 4 adam 72 0.8138 1.0000 

5 1 500 0.001 0.1 4 adam 68 0.8132 0.8428 

5 3 500 0.001 0.1 4 adam 94 0.8083 0.8477 

5 1 100 0.001 0 4 rmsprop 97 0.8075 1.0000 

5 1 100 0.001 0.2 4 adam 95 0.8075 1.0000 

3 5 100 0.001 0 4 rmsprop 70 0.8063 1.0000 

5 1 100 0.001 0 4 adam 79 0.8062 1.0000 

5 3 100 0.001 0 4 adam 84 0.8038 0.8571 

2 3 100 0.001 0 4 adam 52 0.8025 0.8571 

6 3 100 0.001 0 3 rmsprop 97 0.8024 1.0000 

5 3 500 0.001 0 4 rmsprop 63 0.8015 0.8108 

4 3 100 0.001 0.1 4 rmsprop 66 0.8011 1.0000 

3 5 500 0.001 0.1 4 adam 89 0.8008 0.8231 

3 3 100 0.001 0 4 adam 67 0.8000 0.7143 

1 1 500 0.001 0.1 3 adam 92 0.7994 0.7322 

4 5 100 0.001 0.1 4 adam 96 0.7988 1.0000 

6 1 100 0.001 0.2 2 adam 99 0.7988 0.7143 

5 3 100 0.001 0.2 4 adam 72 0.7988 1.0000 

2 5 100 0.001 0.1 4 rmsprop 87 0.7986 1.0000 

4 1 100 0.001 0.1 3 adam 91 0.7975 1.0000 

3 1 100 0.001 0.2 4 adam 65 0.7975 0.7143 

3 5 100 0.001 0.5 3 adam 88 0.7974 0.4286 

3 5 100 0.0001 0 4 adam 64 0.7963 0.7143 

2 1 100 0.001 0 3 adam 58 0.7961 0.8571 

4 3 100 0.001 0 4 adam 48 0.7950 0.8571 

5 3 100 0.0001 0 4 rmsprop 79 0.7950 0.8571 

4 3 100 0.001 0.2 4 adam 87 0.7950 0.8571 

6 5 100 0.001 0.5 4 adam 91 0.7938 0.7143 

6 1 100 0.001 0.2 4 rmsprop 68 0.7938 0.8571 
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Questions Feature 

Importance 

Importance 

rank 

chi2 p-value 

Do you often swear or use bad language? 0.0069 1 42.3804 0.0000 

Do you have difficulty playing quietly? 0.0055 2 39.0885 0.0000 

My child eats about the same amount at breakfast 

from day to day (Parents) 

0.0047 3 10.9055 0.0010 

Are you touchy or easily annoyed by others? 0.0043 4 26.8952 0.0000 

About how many times a week does your child do 

things with any friends outside of regular school 

hours? (Parents) 

0.0042 5 4.7421 0.0294 

Do you have difficulty staying in line in the 

supermarket or waiting for your turn while you 

were playing with other children? 

0.0042 6 38.1248 0.0000 

Do you deliberately refuse adults, or do you refuse 

to do your chores at home or disobey rules a lot? 

0.0041 7 34.7887 0.0000 

Do you often argue with adults? 0.0038 8 30.2260 0.0000 

How many jobs, chores do your child has? 

(Parents) 

0.0036 9 3.6153 0.0573 

Is your child hard to be distracted? (Parents) 0.0033 10 7.8940 0.0050 

Does your child get very restless If he/she has to 

stay in one place for a long time? (Parents) 

0.0032 11 11.0743 0.0009 

Does your child get hungry about the same time 

each day? (Parents) 

0.0031 12 5.4537 0.0195 

Do you get very fidgety after a few minutes if 

you're supposed to sit still? 

0.0029 13 14.0798 0.0002 

Does your child get very fidgety after a few minutes 

Even when he/she is supposed to be still? (Parents) 

0.0028 14 9.3343 0.0022 

How many organizations, clubs, teams or groups 

does your child belong to? (Parents) 

0.0028 15 9.0944 0.0026 

Within the past 6 months, does your child, hang 

around with others who get in trouble? (Parents) 

0.0027 16 19.4536 0.0000 

Compared to others of his/her age, how well does 

your child play and work alone? (Parents) 

0.0027 17 3.2823 0.0700 

No matter when your child goes to sleep, does 

he/she wake up at the same time the next morning? 

(Parents) 

0.0027 18 8.0267 0.0046 

Appendix C. Supplemental Data for Chapter 4

Supplementary Table S4.1. Selected 30  features for predicting SUD in age group 1 (Age 10-12)
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Does your child have difficulty following through 

on instructions from others (not due to oppositional 

behavior or failure of comprehension), e.g., fails to 

finish chores? (Parents) 

0.0027 19 42.7693 0.0000 

Does failure at a task or in school make your work 

harder? 

0.0026 20 3.7005 0.0544 

Can you read a book for half an hour before you 

get restless? 

0.0026 21 6.6266 0.0100 

Do you get into trouble because you would do 

things without thinking about them first, for 

example running into the street without looking? 

0.0025 22 29.7495 0.0000 

Do you get very restless when you have to stay in 

one place for a long time? 

0.0025 23 8.9215 0.0028 

Does your child wake up at the same time each day 

when he/she is away from home? (Parents) 

0.0024 24 8.0571 0.0045 

Do your heart beats fast for a long time when you 

get stirred up? 

0.0023 25 4.4068 0.0358 

Do you have so much energy that you just can't 

stop moving? 

0.0023 26 8.2014 0.0042 

Do you get so excited that I remain very excited for 

a long time after watching an action show? 

0.0023 27 6.5546 0.0105 

Are you easily distracted? 0.0023 28 6.9223 0.0085 

Compared to others of the same age, about how 

much time does your child spend in hobbies, 

activities and games other than sports? (Parents) 

0.0023 29 0.6293 0.4276 

Do you develop a plan for all your important goals? 0.0022 30 3.3211 0.0684 
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Supplementary Table S4.2. Selected 30 features for predicting SUD in age group 2 (Age 12-14) 

Questions Feature 

Importance 

Importance 

rank 

chi2 pval 

Have you been suspended from school? 0.0116 1 34.1238 0.0000 

Have your friends stolen anything from a 

store or damaged property on purpose? 

0.0086 2 25.3322 0.0000 

Have any of your friends been in trouble 

with the law? 

0.0050 3 22.4370 0.0000 

Is there anyone who would wish to harm 

you? 

0.0047 4 22.2547 0.0000 

Do you swear or use dirty language a lot? 0.0041 5 17.8792 0.0000 

Are you sure nobody really would wish to 

harm you? 

0.0040 6 4.4896 0.0341 

Do you think the people who don't do the 

work should feel very guilty? 

0.0040 7 6.0113 0.0142 

Do your friends cut school a lot? 0.0040 8 24.3936 0.0000 

Do you think the people are always 

bugging you deserve a punch in the nose? 

0.0039 9 16.7450 0.0000 

Were you bothered by problems you 

were having with a friend? 

0.0038 10 12.3399 0.0004 

Are your grades below average? 0.0036 11 18.6292 0.0000 

Do you get into fights? 0.0035 12 39.6817 0.0000 

Have you ever felt tempted to steal 

something? 

0.0034 13 14.6926 0.0001 

Do you get into trouble because you 

would do things without thinking about 

them first, for example running into the 

street without looking? 

0.0033 14 40.6352 0.0000 

Are you often worried that you will lose 

control of your feeling? 

0.0033 15 24.3527 0.0000 

Do you think whoever insults you, or 

your family is looking for trouble? 

0.0033 16 22.7151 0.0000 

Are your grades in school worse than 

they used to be? 

0.0032 17 16.1606 0.0001 

Do you have trouble concentrating in 

school or when studying? 

0.0032 18 12.1541 0.0005 

Are you Inattentive, easily distracted? 0.0029 19 23.1874 0.0000 

Have you ever been talked into doing 

something you didn't want to do? 

0.0029 20 11.0709 0.0009 

Can you tell us the number your favorite 

hobbies, activities, and games, other than 

sports? 

0.0028 21 3.4236 0.0643 

Will little things or distractions throw 

you off? 

0.0028 22 15.6035 0.0001 
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Is it very hard for you to get used to a 

new situation? 

0.0028 23 4.4760 0.0344 

Do you often lose your temper? 0.0028 24 37.1608 0.0000 

Do you lose control over your actions 

sometimes when you're angry? 

0.0028 25 23.2534 0.0000 

Do your parents or guardians dislike 

your friends? 

0.0028 26 14.6298 0.0001 

Have any of your friends cheated on 

school tests? 

0.0027 27 9.7745 0.0018 

Sex 0.0027 28 2.7875 0.0950 

Do you hit someone when you really get 

mad? 

0.0027 29 25.6019 0.0000 

Will you be a little rude to people you 

don't like? 

0.0026 30 14.8206 0.0001 
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Supplementary Table S4.3. Selected 30 features for predicting SUD in age group 3 (Age 16) 

Questions Feature 

Importance 

Importance 

rank 

chi2 pval 

Do you skip classes or school without an 

excuse? 

0.0100 1 90.8518 0.0000 

Are the parents absent at most of the 

parties you have gone to? 

0.0086 2 32.1471 0.0000 

Have you been suspended from school? 0.0064 3 35.2659 0.0000 

Have you ever made money doing 

something that was against the law? 

0.0059 4 39.4514 0.0000 

Do you lie about your age to get into some 

place or to buy something, for example 

lying about your age to get into a movie or 

to buy alcohol? 

0.0057 5 63.9847 0.0000 

Do you often not do your school 

assignments? 

0.0055 6 26.4756 0.0000 

Have you ever felt tempted to steal 

something? 

0.0054 7 22.1189 0.0000 

Do you deliberately refuse adults, or do you 

refuse to do your chores at home or disobey 

rules a lot? 

0.0050 8 71.6345 0.0000 

Will your friends get bored at parties when 

there was no alcohol served? 

0.0049 9 32.0085 0.0000 

Do you prefer to be fast and careless than to 

be slow and plodding? 

0.0048 10 14.4702 0.0001 

Do you swear or use dirty language? 0.0046 11 22.5124 0.0000 

Do you go out for fun on school nights 

without permission? 

0.0041 12 32.8435 0.0000 

Do you like to watch a good, vicious fight? 0.0040 13 17.9742 0.0000 

Do you swear or use dirty language a lot? 0.0037 14 18.1234 0.0000 

Do you skip classes alone or were others 

with you? 

0.0036 15 4.1741 0.0410 

Have you stolen things? 0.0034 16 28.0122 0.0000 

Do you think it is pointless spending time 

on a task that is probably too difficult? 

0.0034 17 15.9235 0.0001 

Has a member of your family ever been 

arrested? 

0.0033 18 24.8175 0.0000 

Do you often swear or use bad language? 0.0033 19 49.8315 0.0000 

Are your grades below average? 0.0033 20 26.0356 0.0000 

Do you do risky or dangerous things a lot? 0.0030 21 22.7663 0.0000 

Do you think it is pointless sticking with a 

problem if success is unlikely? 

0.0030 22 12.8763 0.0003 
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Are your parents or guardians often 

unaware of where you were and what you 

were doing? 

0.0027 23 22.1863 0.0000 

Do you often go on working on a problem 

long after others would have given up? 

0.0026 24 7.7619 0.0053 

Are you often late for class? 0.0025 25 23.6823 0.0000 

Do you think most people stay friendly only 

as long as it is to their advantage? 

0.0024 26 11.5344 0.0007 

Do your friends cut school a lot? 0.0024 27 28.5453 0.0000 

Do you have frequent arguments with your 

parents/guardians who involved yelling and 

screaming? 

0.0024 28 19.1145 0.0000 

Have you stolen or attempted to steal things 

worth $5 or less? 

0.0022 29 54.3203 0.0000 

How is your performance in academic 

subjects? 

0.0022 30 3.4943 0.0616 
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Supplementary Table S4.4. Selected 30 features for predicting SUD in age group 4 (Age 19) 

Questions Feature 

Importance 

Importance 

rank 

chi2 pval 

Do you do things a lot without first 

thinking about the consequences? 

0.0106 1 46.1616 0.0000 

Do you swear or use dirty language a lot? 0.0105 2 28.8758 0.0000 

Have you failed to conform to social 

norms with respect to lawful behavior, as 

indicated by repeatedly? 

0.0103 3 69.6168 0.0000 

Do you go out for fun on school nights 

without permission? 

0.0101 4 31.4849 0.0000 

Have you ever receiving stolen property 

(or possession of stolen property)? 

0.0098 5 50.3877 0.0000 

Do you carry a knife? 0.0097 6 42.8425 0.0000 

Have you ever shoplifted? 0.0094 7 41.5452 0.0000 

Have you ever made money doing 

something that was against the law? 

0.0091 8 56.9989 0.0000 

Have you been suspended from school? 0.0086 9 36.8688 0.0000 

Are your parents or guardians often 

unaware of where you were and what you 

were doing? 

0.0086 10 36.0509 0.0000 

Have you ever played truant? 0.0083 11 43.4836 0.0000 

Have you ever been arrested after age of 

15? 

0.0079 12 43.4478 0.0000 

Have you ever flighted on school 

grounds? 

0.0078 13 34.9638 0.0000 

Do your friends cut school a lot? 0.0073 14 38.6300 0.0000 

Have your friends stolen anything from a 

store or damaged property on purpose? 

0.0069 15 35.7664 0.0000 

Have you ever been involved into verbal 

fights, verbally assaultive? 

0.0066 16 30.8590 0.0000 

Have any of your friends been in trouble 

with the law? 

0.0063 17 30.8590 0.0000 

Do you often not do your school 

assignments? 

0.0061 18 32.4980 0.0000 

Do you often swear or use obscene 

language? 

0.0059 19 70.1197 0.0000 

Do you agree that most mornings the day 

ahead looks bright? 

0.0056 20 10.7965 0.0010 

Do you like to watch a good, vicious 

fight? 

0.0055 21 25.5635 0.0000 

Are you reckless regarding your own or 

others' personal safety, as indicated by 

0.0055 22 53.1566 0.0000 
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driving while intoxicated, and/or 

recurrent speeding? 

Do you have temper? 0.0051 23 26.1920 0.0000 

Have any of your friends cheated on 

school tests? 

0.0050 24 27.5915 0.0000 

Have you ever taking parent's car? 0.0050 25 34.5161 0.0000 

Do you think you are often not as 

cautious as you should be? 

0.0049 26 19.7519 0.0000 

Do you do petty theft? 0.0049 27 33.0313 0.0000 

Have you ever cut school more than two 

days a month? 

0.0046 28 30.2571 0.0000 

Have you ever convicted of a crime after 

age 15? 

0.0046 29 72.2338 0.0000 

Do you often truant? 0.0046 30 31.3284 0.0000 
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Supplementary Table S4.5. Selected 30 features for predicting SUD in age group 5 (Age 22) 

Questions Feature 

Importance 

Importance 

rank 

chi2 pval 

Have any of your friends been in trouble 

with the law? 

0.0217 1 59.1422 0.0000 

Do your friends get bored at parties 

when there was no alcohol served? 

0.0122 2 35.2838 0.0000 

Have you ever been curfewed? 0.0120 3 22.6362 0.0000 

Do you like to watch a good, vicious 

fight? 

0.0101 4 31.6867 0.0000 

Have you ever been involved into verbal 

fights, verbally assaultive? 

0.0091 5 23.4821 0.0000 

Have you ever done shoplifting? 0.0087 6 32.1019 0.0000 

Have you ever made money doing 

something that was against the law? 

0.0079 7 44.8398 0.0000 

Will you try to retaliate (get even) when 

someone hurts you? 

0.0071 8 29.5773 0.0000 

Will you be very embarrassed to tell 

people that you had spent your vacation 

at a nudist camp? 

0.0068 9 24.6081 0.0000 

Have you ever been sexual misbehaved? 0.0061 10 27.7401 0.0000 

Have you ever had sexual intercourse 

(made love or gone all the way)? 

0.0061 11 2.4758 0.1156 

Have you ever received stolen properly 

(or possession of stolen property)? 

0.0057 12 34.3720 0.0000 

Have you ever done trespassing? 0.0057 13 21.2388 0.0000 

Do you prefer quiet parties with good 

conversation or "wild" uninhibited 

parties? 

0.0057 14 16.2933 0.0001 

Do you enjoy a good brawl? 0.0056 15 28.5904 0.0000 

Have you ever stolen? 0.0055 16 32.1314 0.0000 

Do you do risky or dangerous things a 

lot? 

0.0053 17 35.5660 0.0000 

Have you ever taken parent's car? 0.0052 18 26.3156 0.0000 

Have you ever stopped working at a job 

because you just didn't care? 

0.0052 19 34.1459 0.0000 

Do you swear or use dirty language a 

lot? 

0.0051 20 20.3407 0.0000 

When was the last time you carried a 

weapon, such as a gun, razor, or big 

knife, for protection? 

0.0048 21 115.8488 0.0000 

Are you satisfied with your educational 

situation? 

0.0042 22 10.3296 0.0013 

Do you disturb the peace? 0.0042 23 30.5305 0.0000 
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When was the last time you destroyed 

something belong to someone else? 

0.0041 24 62.1470 0.0000 

At any time in the past 6 months, did 

you live with your spouse or with a 

partner? 

0.0041 25 20.0053 0.0000 

Do you have temper? 0.0040 26 21.1296 0.0000 

Do you do things a lot without first 

thinking about the consequences? 

0.0040 27 33.5189 0.0000 

Do you prefer to date members of the 

opposite sex who are physically exciting 

or who share your values? 

0.0040 28 15.8746 0.0001 

Do you do things that may cause you to 

fail? 

0.0038 29 28.8233 0.0000 

Do you think heavy drinking usually 

ruins a party because some people get 

loud and boisterous or keeping the 

drinks full is the key to a good party? 

0.0038 30 14.6957 0.0001 
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