sensitized, none have lost 6 months.

SMMARY

Recipient selection for use on a negative cross-reactive sera appears to yield graft survival rates as mismatched HLA antigens supports the policy of transplant with PPCN crossmatch. A restriction that HLA in previous allografts be

alized Wilcoxon test for censored samples. Biometrika

Cyclosporine Metabolite Profiles in the Blood of Liver Transplant Patients

CYCLOSPORINE (CyA) is a potent immunosuppressive agent that undergoes extensive hepatic metabolism. Eleven metabolites of CyA have been fully characterized. Recent reports indicate that CyA metabolites have in vitro immunosuppressive activity and/or nephrotoxicity. The time course of the formation and elimination of these metabolites in the blood of transplant patients has not been documented, however. The objective of our study, therefore, was to quantitate four major CyA metabolites in the blood of liver transplant patients over a dosing interval after oral and intravenous CyA administration.

MATERIALS AND METHODS

Patients

Three adult liver transplant patients who were clinically stable, on the basis of serum bilirubin and liver enzyme levels, were enrolled in the study. Blood sampling was conducted on two consecutive days: after the patient’s oral CyA dose on the first day and after an intravenous CyA dose that was 50% of the oral dose on the second day. Hourly blood samples were obtained during the 12-hour dosing interval on both study days.

Measurement of CyA and Metabolites

The measurement of CyA and metabolite concentrations used a gradient high-performance liquid chromatographic (HPLC) system. The column was a Resolve C-18, 15 cm x 3.9 mm, 5-µm column (Waters, Milford, MA) that was heated to 70°C. The mobile phase consisted of a linear gradient of acetonitrile and water delivered at 1.0 mL/min. Two milliliters of whole blood was mixed with an internal standard (cyclosporine D) and extracted with diethyl ether. The final dried extract was reconstituted in 100 µL methanol, and 40 µL was injected.

From the Clinical Pharmacokinetics Laboratory, Schools of Pharmacy and Medicine, University of Pittsburgh.

Address reprint requests to G.J. Burckart, PharmD, University of Pittsburgh, 807 Salk Hall, Pittsburgh, PA 15261.

© 1988 by Grune & Stratton, Inc. 0041-3458/88/2001-1064$03.00/0

Table 1. Blood Concentrations of CyA and Metabolites in Liver Transplant Patients

<table>
<thead>
<tr>
<th>Route (Dose, mg/kg)</th>
<th>CyA Average Concentration* (mg/mL) Range</th>
<th>M17</th>
<th>M1</th>
<th>M18</th>
<th>M21</th>
</tr>
</thead>
</table>
| Patient 1
| IV (2.9) | 1,253 | 1,200| 369| 161 | 161 |
| | (203-3,271) | (441-1,570) | (109-486) | (57-223) | (53-286) |
| PO (5.7) | 808 | 1,301| 544| 213 | 202 |
| Patient 2
| IV (1.7) | 593 | 860 | 226| 91 | 72 |
| | (203-1,537) | (601-1,358) | (115-297) | (44-186) | (32-136) |
| PO (3.5) | 364 | 648 | 238| 86 | 46 |
| | (232-571) | (535-1,349) | (125-480) | (56-203) | (41-145) |
| Patient 3
| IV (2.2) | 695 | 647 | 279| 53 | 66 |
| PO (4.4) | 393 | 464 | 280| 24 | 52 |

Abbreviations: IV, intravenous; PO, oral.

Average steady-state concentration (Cp) calculated as area under the curve divided by the dosing interval.
onto the HPLC column. Standards of the metabolites (M17, M1, M18, M21) were prepared from material recovered from human bile and confirmed by HPLC and mass spectrometry. Standard curves were prepared for CyA and each of the four metabolites that were quantified.

RESULTS
The average and range of blood concentrations observed during the dosing interval are presented in Table 1. Figure 1 demonstrates the typical metabolite concentrations measured over time during the dosing interval. The blood concentrations for the three patients were M17 > CyA > M1 for the oral study, whereas M18 and M21 concentrations varied during the dosing interval. In the intravenous study, the blood concentrations were CyA > M17 > M1 in two patients, with the third patient following the oral pattern. Metabolite concentrations did not consistently decline over the dosing interval; the CyA and metabolite concentrations increased to their highest level between nine and 12 hours in the oral study of patient no. 2.

DISCUSSION
High concentrations of CyA metabolites, particularly M17 and M1, were present in the
blood of liver transplant patients. Concentrations of and total exposure to M17 exceed or approximate those of CyA in these patients. Because both M17 and M1 are immunologically active, a contribution to the immunosuppressive effect of CyA in liver transplant patients is possible. During the dosing interval, extreme variability in metabolite blood concentrations was observed. The late increase in metabolite concentrations in the oral dosing interval of patient 2 may be due to either altered CyA absorption or metabolism. Additional studies are necessary to evaluate the immunosuppressive or toxic effects of these high concentrations of blood metabolites in liver transplant patients.

REFERENCES