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Abstract 

Classification and Representation of Biological Interactions in the Context of a Baseline 

Model 

 

Casey E. Hansen, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

Machine reading tools are able to quickly and automatically process vast amounts of 

information from relevant published literature, identifying and extracting the relevant information 

from a given paper or papers. This information can be used to build biological computational 

models or expand upon existing models. However, the information gleaned by machine readers is 

both vast and varied in quality. Machine readers must work to extract standardized biological 

interactions from inconsistent terminology and complex sentence structures, which sometimes 

leads to extraction errors. Here we present VIOLIN (Verifying Interactions of Likely Importance 

to the Network) a tool to automatically classify and judge biological interactions extracted from 

relevant literature. With VIOLIN, we are able to take these literature extracted events (LEEs) and 

compare them to an existing biological model, determining whether a given LEE agrees with the 

model (corroborates), introduces new information to the model (extends), disputes the model 

(contradicts), or requires manual review (flagged). Each LEE is assigned four numerical values to 

represent its relationship to the model system (Match Score), its classification category (Kind 

Score), its frequency (Evidence Score), and extraction confidence (Epistemic Value). These values 

are combined into a Total Score to allow for automatic filtering and classification of large sets of 

LEEs curated from multiple sources. We present VIOLIN in the context of five different models: 

melanoma, T-cell differentiation, the BDNF pathway as it relates to major depressive disorder, 

pancreatic cancer, and glioblastoma multiforme. These varied inputs show that VIOLIN has great 
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utility across many biological systems, making it a powerful computational tool. We also show 

how VIOLIN integrates with other modeling tools as part of a larger model extensions framework. 

The goal of this work is to be able to automatically extend existing biological models using the 

vast amounts of relevant information already available.   
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1.0 Introduction 

Computational biological models are a powerful scientific tool. They are used to replace 

physical experiments, investigate systems, predict behavior, and make diagnostic choices. The 

process of creating such models can be laborious. Often, creating models requires initial 

experimentation, expert understanding, or deep investigation into the literature. Even then, once a 

model has been assembled and validated, the model must be maintained as new knowledge or 

needs arise. Machine reading engines, interaction databases, and user-curated model databases aid 

in creating biological models, but this still requires significant human effort. In this work, we seek 

to identify the gaps in current methodologies, and create a tool to aid the process by which 

computational models are built. 

1.1 Motivation 

There are many effective tools and databases currently used to understand biological 

systems and create computational models accurately representing signaling networks or 

investigating specific signaling pathways. While these methods and databases greatly improve the 

ease with which a model can be assembled, they still require a great deal of expert knowledge and 

manual assembly. Automatic assembly methods [1, 2] struggle to judge relevant data, meaning 

that the user must either manually curate data for model building or use a “raw” machine reading 

output, which may contain irrelevant, erroneous, or duplicate interactions. And while there are 

tools with a comprehensive and reliable source of biomolecular interactions from the literature, 
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they do not have the ability to automatically compare these interactions with existing models, and 

to classify them within the context of the model [2]. 

Recently, efforts have been made to assemble knowledge bases of the COVID-19 [3] and 

Rheumatoid Arthritis [4] networks. These required massive amounts of manual labor, on the order 

of hundreds of contributors [3], searching through the literature and databases for relevant 

information. Manually assembling and validating such volumes of information is time-consuming 

and is limited by human capabilities. Having a tool that would automate this process would greatly 

reduce the time and number of human contributors required to assemble such networks. Even for 

smaller modeling goals, such a tool would be able to compare a model to the vast amounts of 

available information, expanding either the depth or breadth, or validating a new model to agree 

with the current literature and expertise.  

1.2 Scope 

In Figure 1-1, we outline the general framework of model-building, which often starts with 

a specific question or hypothesis, and seeks to determine an answer to this question. The next step 

in this framework usually consists of querying through the existing literature and knowledge bases 

for relevant information. In some cases, a baseline model may already exist, however, it does not 

satisfy all properties, or it does not recapitulate the modeled system’s behavior. This baseline 

model must then be tested and extended to meet the system properties, and model analysis confirms 

if these properties have been met. Finally, the verified and validated model can be further explored 

to find answers to initial questions and hypotheses or to make novel predictions about the system.  
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Figure 1-1. The role of VIOLIN in automating model assembly and model extension. To answer a question 

about the system, search queries and desirable system properties readable by machines (e.g., logical 

expressions) can be created. Machine reading engines use search queries to select relevant literature and 

extract a set of events (Literature Extracted Events - LEEs). VIOLIN uses the LEEs and an existing baseline 

model relevant for answering the question. The outputs of VIOLIN, classified and scored LEEs, can be used 

to extend the baseline model, or even assemble a new model. The model can be assembled/extended and tested 

iteratively until it satisfies desired properties. Analysis of the final model provides answers to the question. 

 

Focusing in particular on the steps highlighted within the blue box in Figure 1-1, a set of 

interactions relevant to building a model can be assembled from literature and knowledge 

databases. However, due to the volume of knowledge available, the user must also judge how 

useful the available information is. We can identify three levels of judging useful information, as 

illustrated in Figure 1-2. At level 1, the user assembles a set of interactions and compares them to 

other interactions from literature or databases. An example of this would be finding a secondary 

source to corroborate an interaction. At level 2, the user compares interactions from the literature 

to an existing graph of causal influences. This is more advanced than level 1 as a causal influence 
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graph is a more sophisticated representation of interactions, where the nodes are elements 

representing biological entities and the edges are causal influences with polarity and sometimes 

mechanism details. However, doing this manually takes a great deal of time an expert knowledge. 

At level 3, the user can compare the causal influences of two graphs, the most advanced method 

of finding useful knowledge, as this level compares not only individual interactions, but the 

relationships between them.  

 

Figure 1-2. Levels of information comparison as it relates to model building.  

At Level 1, one is comparing two sets of interactions, which may be assembled from multiple sources and 

vary in their usefuleness. Level 2 is what is introduced by VIOLIN, comparing a set of interactions to an 

existing model. Level 3 is the most advanced level of comparison, being able to compare two directed graphs, 

representing networks of biological interactions. 

 

To this end, we have designed VIOLIN (Validating Interactions Of Likely Importance to 

the Network), a tool for automatically classifying large sets of interactions, such as those extracted 

from research literature by machine readers, in the context of a given baseline model, which can 

be created from any model represented as a directed graph and split into individual directed 

interactions. VIOLIN automates the level 2 judgement by evaluating whether the new interactions 

support the information in the model (corroborations), identifies gaps or issues in the knowledge 

and published information (contradictions), suggests new connections to the model or more details 
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to existing connection (extensions), or indicates that the newly obtained information requires 

further investigation (flagged). Besides these main classification categories, VIOLIN uses various 

interaction attributes to determine more detailed classification subcategories, whenever the 

attribute information is available. Furthermore, VIOLIN has the capability to identify and search 

through pathways within a model when comparing to sets of new interactions, identifying new 

potential feedback and feed-forward loops. Finally, VIOLIN is fast, it performs the comparison 

and classification of large new interaction sets in the context of a baseline model at least three 

orders of magnitude faster than a human, thus enabling reliable high throughput curation tasks that 

would not be feasible otherwise. 

As illustrated in Figure 1-1, VIOLIN can be used as part of the question-answer workflow, 

and being fully automated, it can significantly reduce the time of this common research process. 

This work is presented in 7 chapters. Chapter 2 introduces the structure of underlying methods, 

and the foundations of event-based and element-based modeling approached, as well as the current 

tools, databases and methods used to assemble computation models. Chapter 3 presents the 

implementation of the VIOLIN tool, and its functional framework, and its classification scheme. 

Chapter 4 describes the inputs created for VIOLIN development, describing the baseline models 

chosen, and how the literature information was assembled, as well as the outcomes of these inputs. 

In Chapter 5, we further evaluate the structure and capabilities of VIOLIN, suggesting default 

parameters for standard use, and showing how the classification scheme can be modified 

depending on modeling goals and questions. Chapter 6 investigates the integration VIOLIN with 

other modeling tools, towards the goal of creating a larger automated model-building framework. 

Finally, Chapter 7 concludes this work and outlines the areas of future work.  
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2.0 Background 

In this section, we cover the background necessary to build a context for this work. Models 

that are used to study the dynamics of a system, that is, changes in its states over time, are often 

referred to as executable models. In Section 2.1 we provide definitions of an underlying structure 

and attributes of executable models of biological systems and in Section 2.2 we discuss common 

approaches for creating executable models. An overview of knowledge sources for biological 

interactions, networks, and models in Section 2.3 details all sources that can be used to create 

inputs for VIOLIN. Using many different online and published sources often requires translations 

between different representation formats, and therefore, we briefly describe the commonly used 

representation formats in Section 2.4. We summarize existing tools that can provide useful inputs 

for VIOLIN or utilize VIOLIN’s outputs in Section 2.5.  

2.1 Biological Interactions and Networks 

The VIOLIN tool was developed to compare biological interactions curated from various 

sources to model networks, making use of specific attributes available from both interactions and 

networks to make judgements.  
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2.1.1 Biological Interactions 

In this work, the main unit of comparison is a directed signed interaction between two 

elements, which, in the context of a graph, is represented as a directed signed edge between two 

nodes. We show an example of interaction in Figure 2-1 and in the following define more formally 

interactions (edges) and elements (nodes).  

 

Figure 2-1. A biological interaction represented as a directed signed edge between two nodes. 

 

Definition 1. An element (node), 𝑣 = 𝑣(𝐚𝑣), is defined by its name, type, and unique identifier 

(ID) and these attributes are written as a vector 𝐚𝑣 = (𝑎𝑛𝑎𝑚𝑒, 𝑎𝑡𝑦𝑝𝑒, 𝑎𝐼𝐷).       

 

The attribute 𝑎𝑛𝑎𝑚𝑒 is an element name, usually following the standard nomenclature used 

by biologists and in the literature (e.g., acronym ERK1 is used instead of a longer name 

“extracellular signal-regulated kinase 1”). The attribute 𝑎𝑡𝑦𝑝𝑒 represents element type, usually 

genes, RNAs, proteins, chemicals, or biological processes. Biological entity names often have 

multiple synonyms (e.g., ERK1 may also be referred to as MAPK3), and therefore, unique 
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identifiers (IDs) are used, which are stored in attribute 𝑎𝐼𝐷. These IDs can be obtained from 

standard databases such as UniProt [5], PubChem [6], or the Gene Ontology Databases (GO) [7]. 

In addition to these three required attributes, the node attribute vector 𝐚𝑣 may also include 

other attributes that help describe the element. For example, attributes 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷  

hold information about the cellular compartment where element is found and the compartment ID, 

respectively. We use the gene ontology database (GO) to obtain these location IDs [7].  

 

Definition 2. A directed signed interaction (also referred to as a directed edge) 𝑒 = 𝑒(𝑣𝑠, 𝑣𝑡 , 𝐚𝑒) is 

defined with its source element 𝑣𝑠, target element 𝑣𝑡, and vector of attributes 𝐚𝑒. The interaction 

attribute vector always includes at least the sign 𝑎𝑠𝑖𝑔𝑛 and connection type 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒  

attributes: 𝐚e = (𝑎𝑠𝑖𝑔𝑛, 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒). The direction of an interaction is always implicitly 

defined with source and target nodes, and therefore, not explicitly listed among its attributes. 

 

The 𝑎𝑠𝑖𝑔𝑛 attribute indicates the sign (also referred to as polarity) of the influences, and it 

can take two values, 𝑎𝑠𝑖𝑔𝑛= “positive” (e.g., activation) or 𝑎𝑠𝑖𝑔𝑛= “negative” (e.g., inhibition). 

Sometimes, only the information about indirect influences on pathways of interest is known, and 

therefore, the attribute 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒  is used to indicate whether the interaction 𝑒 is a direct 

physical interaction (𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒  = “direct”) or an indirect influence from the source node to 

the target node (𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒  = “indirect”). Since the interaction definition allows for indirect 

interactions, it is possible that source and target node are not in the same compartment, and this is 

the reason we assign the location attribute to nodes and not to the interaction. 

The list of other attributes is not necessarily fixed; the components in it may vary, 

dependent on the goals of the analysis. A more specific information about the biological 
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mechanism of an interaction can be included in the 𝑎𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚  attribute. The edge attribute vector 

can also include the 𝑎𝑐𝑒𝑙𝑙𝑙𝑖𝑛𝑒 , 𝑎𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 , 𝑎𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚, and 𝑎𝑡𝑖𝑠𝑠𝑢𝑒𝑡𝑦𝑝𝑒  attributes, which hold the 

information about the cell line, cell type, organism, and tissue type where the interaction is 

observed, respectively. Finally, the 𝑎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒  attribute is used to store the information about the 

source where the interaction is found or observed. The evidence attribute can hold paper IDs (e.g., 

PMCID [8]) and sentences from papers where the interaction is found, or an indicator that the 

information was obtained from an experiment or an expert’s suggestion. 

2.1.2 Model Structure and Attributes 

Since this work is focused on network models that can be represented as directed cyclic 

graphs, we provide here a definition of the network components that will be used throughout this 

thesis. We also show an example model in Figure 2-2.  
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Figure 2-2. A toy example of a model, showing input and output nodes, structures of edges and paths as they 

exist in such a model. 

 

Definition 3. The static structure of a model can be defined as a directed graph 𝐺(𝑉, 𝐸), where 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁} is a set of nodes, and each node 𝑣𝑖 = 𝑣(𝐚𝑖
𝑣) is one model element, while 𝐸 =

{𝑒1, 𝑒2, … , 𝑒𝑀} is a set of directed edges, and an edge 𝑒𝑗 = 𝑒(𝑣𝑠𝑗
, 𝑣𝑡𝑗

, 𝐚𝑗
𝑒) (𝑣𝑠𝑗

, 𝑣𝑡𝑗
∈ 𝑉) indicates a 

directed interaction between elements 𝑣𝑠𝑗
 and 𝑣𝑡𝑗

, in which source node 𝑣𝑠𝑗
 influences target node 

𝑣𝑡𝑗
, an example of which is shown in Figure 2-2. Vectors 𝐚𝑖

𝑣 and 𝐚𝑗
𝑒  are formed following the 

definitions in Section 2.1.1. When the information about 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷 , 𝑎𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 , 

𝑎𝑐𝑒𝑙𝑙𝑙𝑖𝑛𝑒 , 𝑎𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 , 𝑎𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚, or 𝑎𝑡𝑖𝑠𝑠𝑢𝑒𝑡𝑦𝑝𝑒  is not available, these attributes are assigned an 

“empty” value. 
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Definition 4. An input node is a node that is not a target node of any edge in the model, and an 

output node is a node that is not a source node of any edge in the model.  

 

We also refer to input and output nodes as “hanging” from the rest of the model, and they 

are often important for modeling outcomes: input nodes are used as pathway catalysts, and output 

nodes can represent model outcomes. 

 

Definition 5. We define a path in a model as n>1 connected edges: 𝑝 (𝑣𝑠𝑝
, 𝑣𝑡𝑝

, 𝑎𝑠𝑖𝑔𝑛𝑝) =

(𝑒(𝑣𝑠𝑝
= 𝑣𝑘1

, 𝑣𝑘2
, 𝐚𝑘1

𝑒 ), 𝑒(𝑣𝑘2
, 𝑣𝑘3

, 𝐚𝑘2

𝑒 ), … , 𝑒(𝑣𝑘𝑛
, 𝑣𝑘𝑛+1

= 𝑣𝑡𝑝
, 𝐚𝑘𝑛

𝑒 )). The direction of the path 

is implicitly defined with the source node 𝑣𝑠𝑝
 and target node 𝑣𝑡𝑝

. The regulation sign 𝑎𝑠𝑖𝑔𝑛𝑝  is 

considered positive when the number of negative signs in the set {𝑎𝑘1

𝑠𝑖𝑔𝑛
, 𝑎𝑘2

𝑠𝑖𝑔𝑛
, . . , 𝑎𝑘𝑛

𝑠𝑖𝑔𝑛
} is even, 

and negative when this number is odd. Cycles and feedback loops may be defined in cases where 

the path source is also the path target, i.e. 𝑝(𝑣𝑠𝑝
, 𝑣𝑠𝑝

, 𝑎𝑠𝑖𝑔𝑛𝑝 ). 

 

In the case of Figure 2-2, we can observe the path from source node 𝑣6 to target node 𝑣13. 

This path is defined in such a way that the source node is not also an input node, it is in fact a 

section of a larger path starting from either input node 𝑣1 or 𝑣2. In this case, the number of negative 

regulations is odd, there being one negative regulation from node 𝑣8 to 𝑣9, and so the sign of this 

overall path is negative. 
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2.2 Approaches for Dynamical Modeling 

We describe here two types of approaches for modeling dynamics in biological systems: 

event-based modeling and element-based modeling. We discuss several modeling approaches that 

fall within these types and examine whether the structure of built models can be represented using 

directed graphs. Event-based modeling [9-11] shows very clearly the processes driving system 

dynamics but is limited by the availability of certain event parameters. Element-based modeling 

can be accomplished with less complete information but can struggle to represent some of the 

mechanistic details. In Figure 2-3, we show how a set of example interactions could be represented 

across different modeling approaches within event-based and element-based methods. We begin 

by showing the example interactions, adapted from [12] and then how they would be represented 

as a set of rules. Next, we show the ODES for the system of reactions – these columns illustrate 

event-based methods described in Section 2.2.1. We then show how these reactions would be 

represented as a directed network, as described in Section 2.1.2, and the associate element rules. 

We show how this network would be represented in the BioRECIPES tabular format [13], and the 

element values would be updated using logical functions, discrete functions, and finally weighted 

functions. These later columns illustrate element-based methods described in Section 2.2.2. 
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Figure 2-3. Biological reaction representation in different modeling approaches.  

The example reactions presented in the first column were adapted from [reference], and then the resultant 

reaction rules follow in the second column. Column three shows the ODEs that would result from these 

reactions, with the first three columns together illustrating the event-based approach. In the fourth column, 

we show how these reactions could be represented in a directed graph, with associated element update rules 

shown in column 5. Column six shows how the graph could be represented in the BioRECIPES model format, 

and columns seven, eight, and nine show how the events in the graph could be represented with various 

updated functions used in element-based methods. 

2.2.1 Event-based modeling 

In event-based modeling of biological systems, biochemical reactions are modeled as 

events, while elements that participate in the event represent the entire populations of species 

participating in reactions. Therefore, a model is a collection of different events, while the same 

element may occur in multiple events. In the event-based columns of Figure 2-3, the outcome 

(creation of 𝑥10) is defined by the reaction, or event, occurring between 𝑥00 and 𝐴, as well as the 

forward reaction rate, 𝑘+1.  

Event-based models can be analyzed in different ways, for example, using event-based 

simulations, or translating them into a set of ordinary differential equations (ODEs) [14, 15]. Most 
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often, a biochemical reaction network is represented by a set of ODEs, such that for each species 

𝑣𝑖 participating in reactions, we can express the changes in its concentration [𝑣𝑖] as: 

𝑑[𝑣𝑖]

𝑑𝑡
= 𝑓(𝑣1, 𝑣2, … , 𝑣𝑛) 

where 𝑣1, 𝑣2, … , 𝑣𝑛 are all the species participating in the reaction network. The function 𝑓 can be 

something like Michaelis-Menten mechanics: 

𝑑[𝑣1]

𝑑𝑡
= 𝑘1,𝑠

𝑘1,2[𝑣2]

1 + 𝑘1,2[𝑣2]
− 𝑘1,𝑑[𝑣1] 

where 𝑣1 is regulated by 𝑣2 at a rate of 𝑘1,2, and the species 𝑣1 is synthesized by the system at a 

rate of 𝑘1,𝑠 and degrades at a rate of 𝑘1,𝑑. ODEs can capture or hold information about the 

connectivity and dynamics and enhance mechanistic understanding [16]. Many biological 

processes can be modeled by such functions, with the reaction rate parameters often coming from 

experimental data [8]. 

One of the strengths of event-based models is their ability to capture concentrations and 

dynamic behavior in a way that can easily be compared to experimental data [17-19]. They can 

also show the overall changes of the system without requiring focus on the specific behavior of 

individual entities.  

The reaction rule-based modeling (RRBM) approach, also often referred to in literature as 

just “rule-based modeling” [20, 21], has been introduced as another type of event-based modeling 

to avoid the necessity for explicitly writing the entire network of reactions. In RRBM, only the 

center of reaction that is relevant for the interaction occurrence is included in the rule, while any 

other reaction context is not captured within the rule. Thus, RRBMs do not require knowledge of 

all possible network species [22] and can address the complexity of protein interactions; proteins 

can interact with multiple other proteins and at multiple interaction sites, resulting in slightly 
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different reactions with the same reaction center being represented with a single reaction rule [20]. 

In other words, reaction rules allow for compact representation of reaction networks, while 

focusing on the elements of most interest [23].  

Once reaction rules are defined, similar to individual reactions, rates are assigned to the 

rules. The rates can be either constants or user-defined functions [21, 22]. For example, Marchisio 

et al. used RRBMs to create a computational representation of eukaryotic gene circuits [23]. 

Different methods exist for studying the dynamics using RRBMs. Often, these models are analyzed 

by first generating the entire reaction network from them, and then either translating the network 

into a set of ODEs and solving the ODEs, or using the stochastic simulation algorithm (SSA) [24-

27]. There are also network-free approaches that simulate RRBMs without generating the entire 

reaction network [28].  

However, the methods of event-based modeling often require that parameters of reactions 

are well known [14, 20, 29]. For poorly understood systems, this is a disadvantage for effective 

modeling. Certain systems also require more sophisticated functions, requiring expert knowledge 

of mathematical techniques [14]. It is also often necessary to apply proper constraints to the system 

for the results to be accurate [16], for example the time scale. 

While the network structure of event-based models such as reaction networks and RRBMs 

is a directed network, the translation to the network defined in Section 2.1.2 may not always be 

straightforward. The same reaction mechanism can be translated to different influence polarities, 

for example, phosphorylation is usually an activating event, although in some cases it may be 

considered an inhibiting event.  
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2.2.2 Element-based Modeling 

In element-based modeling of biological systems [30-33], an element represents a 

biomolecular species (and in some cases even a biological process) and all reactions that lead to 

changes in a single species are lumped together within the corresponding element’s update rule. 

Therefore, a model is a collection of element update rules, each update rule is associated with a 

different model element, which can be more formally defined as follows. 

 

Definition 6. An element-based model is a triple ℳ(𝐺, 𝒳, ℱ), where 𝐺(𝑉, 𝐸) is a network structure 

of the model (defined earlier in Definition 3), 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} is a set of N state variables 

corresponding to nodes in 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁}, and ℱ = {𝑓1, 𝑓2, … , 𝑓𝑁} is a set of N regulatory 

(update) functions such that each element 𝑣𝑖𝑉 has a corresponding function 𝑓𝑖ℱ.  

 

Definition 7. For each element 𝑣𝑖 ∈ 𝑉, its state variable 𝑥𝑖 ∈ 𝒳 can take any value from a set or 

interval of values 𝑋𝑖.  

 

Definition 8. For each element 𝑣𝑖, any element 𝑣𝑗 that influences the state of 𝑣𝑖 such that the 

function 𝑓𝑖 is sensitive to the value of 𝑥𝑗 is called a regulator of 𝑣𝑖.  

 

Definition 9. For each element 𝑣𝑖, an influence set, denoted as 𝑉𝑖
𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒

 𝑉, consists of all 

regulators of 𝑣𝑖. We will refer to the set of state variables that correspond to the elements in 

𝑉𝑖
𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒

 as 𝒳𝑖
𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒

. 
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Definition 10. The next state of element 𝑣𝑖, denoted as 𝑥𝑖
∗, is computed given current states of all 

elements in its influence set, that is, given values of all variables in 𝒳𝑖
𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒

: 

𝑥𝑖
∗ = 𝑓𝑖(𝒳𝑖

𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒
). 

 

In general, functions in ℱ can have different types, discrete or continuous, and moreover, 

individual elements within the same model could have very different update functions, thus 

forming hybrid models. The set or interval of possible values, 𝑋𝑖 , assigned to each model element 

𝑥𝑖 can also vary. The function and element types are usually decided based on the knowledge or 

the information available about the modeled system and its components. In the element-based 

columns of Figure 2-3, we illustrate how interaction events would be represented in an element-

based model, showing the directed graph, as well as the element rules, tabular representation 

format [13], and possible update rules. 

The element-based modeling approach can represent indirect influences between elements, 

and it can model systems where the knowledge about element interaction mechanisms is 

incomplete. Using element update rules in simulations allows for studies of cell dynamics, state 

transitions, and feedback loops [34, 35], and does not require full knowledge of the interaction 

mechanisms [36]. Element-based models can also allow for integration of both prior knowledge 

and data [13, 37, 38] and analysis of hybrid networks (systems involving protein-protein 

interactions, gene regulations, and/or metabolic pathways) [39].  

An example of element-based models are discrete models, where each element state 

variable 𝑥𝑖 is assigned a discrete set of values [38]. Following Definition 7, 𝑥𝑖 ∈ 𝑋𝑖: {0,1,2, … , 𝑛𝑖 −

1}, where 𝑛𝑖 is the number of different states that element, 𝑣𝑖 can have. Often, these different states 

represent different levels of activity or concentration for element 𝑣𝑖. Element update functions in 
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discrete models can be of different type, some examples are 𝑚𝑖𝑛 and 𝑚𝑎𝑥 functions, and 

(rounded) weighted sums.  

Boolean models are a subset of discrete models [29, 30, 40], where elements can have only 

two values, 0 (also referred to as OFF or False) or 1 (also referred to as ON or True). In Boolean 

models, value 0 represents states such as “inactive”, “absent”, or “low concentration” and value 1 

represents states such as “active”, “present”, or “high concentration”. Element update functions in 

these models are Boolean functions where logic operators such as AND, OR, and NOT are used 

[31]. As a subtype of Boolean networks, the Probabilistic Boolean Network (PBN), randomness 

is introduced by assigning multiple candidate Boolean functions to the variables. At each time step 

during simulation, one of element’s candidate functions is chosen at random to determine its state 

[41, 42].  

Other examples of commonly used element-based models are Bayesian Networks [35, 43] 

and Dynamic Bayesian Networks [34]. Bayesian networks introduce probability distributions into 

the governing rules of elements, increasing the freedom in updating element states. Similar to 

Baysian Networks are structural equation models (SEMs) [44]. SEMs are used to measure and 

analyze the relationships of observed, latent variables [45], and they have the ability to manage 

measurement error. In a set of relationships between variables, path coefficients are determined by 

methods developed by Wright [46], measuring the importance of the input of a given path to its 

output. The strength of SEM lies in analyzing these variable relationships, making it an excellent 

choice for disease studies.  

Given that the element-based modeling approach can be used for indirect influences and it 

can abstract away from detailed reaction mechanisms, additional methods have been introduced to 
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account for the timing in biological systems, rates at which elements change, or delays in element 

updating and delays in pathways [38].  

While the network structure defined in Section 2.1.2 may not always exactly match the 

structure of event-based models described in Section 2.2.1, element-based models do have such a 

structure and add element update rules to allow for studying the dynamics. Within the update rules 

of element-based models, the attribute 𝑎𝑒
𝑠𝑖𝑔𝑛

 is explicit, though it is not always explicitly stated in 

statements about influences that describe mechanisms (e.g., A phosphorylates B). In this case, it 

would be up to the user to either fill in this information from other sources or accept a default 

attribute assignment. 

2.3 Knowledge Sources 

Networks and models assembled from knowledge are typically built manually, using 

literature, interaction databases, model databases, conclusions from experiments and expert input. 

Additionally, networks can be inferred from data. Networks inferred from data are usually not 

directed and only represent correlations found in data, although recent efforts focus on inferring 

causal relationships from data. We discuss in this section the knowledge and data sources that can 

be used when creating inputs for VIOLIN.  

2.3.1 Interaction Databases 

The interaction databases contain information usually collected from the literature, 

dedicated collaborations of experts, experimental data, and general user input. Some databases 
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[47-51] include information from multiple molecule types, with curated biological interactions that 

belong to one or more of the following categories: protein-protein interactions (PPIs), protein-gene 

interactions (PGIs), protein-chemical interactions (PCIs), or proteins interacting with a biological 

process cascade (PBIs). Others may specialize in one specific type of interaction, such as the 

human protein reference database (HPRD) [52, 53] (PPIs), STRING [54-56] (PPIs), and STITCH 

[57] (PCIs). 

The interaction databases are excellent, comprehensive sources of information, and often verified 

and curated by experts. However, this inclusive availability of data can mean a user must take the 

time to search through large collections of knowledge. The SIGNOR database [48] hosts over 

30,000 interactions, STITCH [57] over 1.6 billion, STRING [54-56] over 20 billion, Pathway 

Commons [49] over 2 million interactions. IntAct [51] hosts over 5 million interactions. To make 

best use of these databases, a user must have well defined queries to find the relevant information, 

knowing a great deal about the system of interest. Table 2-1 shows a list of databases and their 

relevant characteristics.  

Table 2-1. Summary of Interaction Databases 

Database Curation Method Number of Entries Formats Grounding Link 

BioGRID [47] 

Manual and 

automated 

3+ million PPIs, PGIs, 

and PCIs 

N/A 

GO, HGNC, 

UniProt, HPRD 

thebiogrid.org 

Gene Ontology 

(GO) Database 

[7] 

Manual and 

automated 

43850 terms, 7.9 

million annotations, 

1.5 million gene 

products 

N/A N/A geneontology.org 

 

 

https://thebiogrid.org/
http://geneontology.org/
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Table 2-1. (continued) 

Database Curation Method Number of Entries Formats Grounding Link 

HPRD [52, 53] 

Manual, staff 

curators 

40000+ PPI, 36 

pathways 

BioPAX, 

SBML, PSI-MI 

RefSeq, GenBank, 

OMIM, SwissProt, 

etc 

hprd.org 

IntAct [51] 

Manual, staff 

curators 

5.5 million PPIs, 

PGIs, PCIs 

N/A 

GO, UniProt, 

ChEBI 

ebi.ac.uk/intact/ 

Open PHACTS 

[58] 

Manual, staff 

curators 

Unknown, private 

Unknown, 

private 

Unknown openphacts.org 

Pathway 

Commons [49] 

Manual, data 

providers 

5772 pathways, 2.4 

million PPIs, PGIs, 

PCIs 

GMT, SIF, 

SBGN, 

BioPAX 

GO, UniProt, 

ChEBI 

pathwaycommons.org 

Reactome [50, 

59] 

Manual, staff 

curators 

13827 PPIs, PGIs, and 

PCIs, 2536 pathways 

PDF, SBML, 

SBGN, 

BioPAX, 

OWL, Directed 

network graph 

(PNG) 

GO, UniProt, 

ChEBI 

reactome.org 

SIGNOR [48] 

Manual, staff 

curators 

29245 PPIs and PCIs N/A 

GO, UniProt, 

ChEBI 

signor.uniroma2.it 

STITCH [57] 

Manual and 

automated 

1.6 billion PCIs N/A Ensembl stitch.embl.de 

STRING [54-

56] 

Manual and 

automated 

20+ billion PPIs N/A 

GO, PubMed, 

UniProt, Pfam, 

InterPro 

string-db.org 

 

http://hprd.org/
https://www.ebi.ac.uk/intact/home
http://www.openphacts.org/index.php
https://www.pathwaycommons.org/
https://reactome.org/
https://signor.uniroma2.it/
http://stitch.embl.de/
https://string-db.org/
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2.3.2 Network and Model Databases 

There exists a number of open source network and model databases which are user curated, 

and models are sourced from existing publications in the literature or ongoing explorations. In 

addition to individual interactions, Pathway Commons host over 5,000 pathway networks. Large 

databases such as KEGG [60], PCNet [61], BioModels [62-64], MINT [65], and Open PHACTS 

[58] are manually or semi-manually (meaning there are some automated functions) maintained and 

require large amounts of human input to be kept valid and useful. Some databases such as the 

Pathway Coexpression Network [66], OmniPath [67], and Path2Models [68] collect information 

from other databases, not introducing any new information, but making it easier to search across 

multiple knowledge sources from a single database. 

Databases such as NDEx [69], Wikipathways [70], Reactome [50], Cell Collective [71], 

host user created models, or in the case of Cell Collective, allow users to assemble models from 

database information. The benefit of these databases is they host models in multiple formats, and 

at varying levels of detail. However, not all models hosted on these databases have been validated 

or peer-reviewed. Using an unvalidated model requires extra steps to confirm the veracity of the 

model results. Table 2-2 shows a list of network and model databases. Some databases allow for 

the uploading and downloading of system networks in specified formats, some databases present 

information as well-defined textual evidence which can be copied to a model or interaction set. 
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Table 2-2. Summary of Network and Model Databases 

Database 

Curation 

Method 

Number of 

Entries 

Formats Grounding Link 

Bio2RDF [72] 

Automated, 

from existing 

databases 

35 datasets RDF N/A bio2rdf.org 

BioModels [62-

64] 

Manual, 

registered 

users 

2647 models 

SBML, 

MATLAB, 

MorpheusML, 

COMBINE, 

etc 

GO, DOID, 

UniProt, etc 

www.ebi.ac.uk/biomodels 

Cell Collective 

[71] 

Manual, 

registered 

users 

28 public 

modules 

SBML, 

Boolean 

expressions, 

Truth tables 

Unknown cellcollective.org 

CoLoMoTo 

[73, 74] 

Manual, 

consortium of 

experts, from 

existing 

databases 

From 

BioModels, 

Cell 

Collective, 

GINsim, and 

PyBoolNet 

SBML, 

Boolsim, 

XML, GNA 

N/A colomoto.org 

HPRD [52, 53] 

Manual, staff 

curators 

40000+ PPI, 

36 pathways 

BioPAX, 

SBML, PSI-MI 

RefSeq, 

GenBank, 

OMIM, 

SwissProt, etc 

hprd.org 

 

https://bio2rdf.org/
https://www.ebi.ac.uk/biomodels/
https://cellcollective.org/
http://colomoto.org/
http://hprd.org/
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Table 2-2. (continued) 

Database 

Curation 

Method 

Number of 

Entries 

Formats Grounding Link 

KEGG [60] 

Manual, staff 

curators and 

data providers 

59 pathways 

Directed 

network graph, 

KGML 

RefSeq, Pfam, 

NCBI Gene ID, 

HGNC, 

Ensembl, 

UniProt 

kegg.jp 

MINT [65] 

Manual, 

registered 

users 

90 models 

Topoflow, 

JSON, etc. 

N/A mint.bio.uniroma2.it 

NDEx [69] 

Manual, 

registered 

users 

5000+ 

networks 

CX (cytoscape) 

GO, UniProt, 

PMCID 

ndexbio.org 

OmniPath [67] 

Automatics, 

from existing 

databases 

Collects data 

from 100+ 

resources 

R, Python, 

JSON 

N/A https://omnipathdb.org/ 

Path2Models 

[68] 

Automated, 

from existing 

databases 

~140000 

models 

SBML 

GO, UniProt, 

ChEBI, PMCID 

ebi.ac.uk/biomodels/path2models 

Pathway 

Coexpression 

Network [66] 

Automated, 

from existing 

databases 

1330 pathways 

Directed 

network graph, 

JSON 

NCBI Gene ID pcxn.org 

 

 

 

https://www.kegg.jp/
https://mint.bio.uniroma2.it/
https://www.ndexbio.org/#/
https://omnipathdb.org/
https://www.ebi.ac.uk/biomodels/path2models
http://pcxn.org:8080/
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Table 2-2 (continued) 

Database 

Curation 

Method 

Number of 

Entries 

Formats Grounding Link 

Pathway 

Commons [49] 

Manual, data 

providers 

5772 

pathways, 2.4 

million PPIs, 

PGIs, PCIs 

GMT, SIF, 

SBGN, 

BioPAX 

GO, UniProt, 

ChEBI 

pathwaycommons.org 

PCNet [61] 

Manual, staff 

curators, pulls 

from existing 

knowledge 

databases 

21 human 

genome-wide 

interaction 

networks 

Various Various Publication Link 

Reactome [50, 

59] 

Manual, staff 

curators 

13827 PPIs, 

PGIs, and 

PCIs, 2536 

pathways 

PDF, SBML, 

SBGN, 

BioPAX, 

OWL, Directed 

network graph 

(PNG) 

GO, UniProt, 

ChEBI 

reactome.org 

Wikipathways 

[70] 

Manual, 

registered 

users 

1100+ 

pathways 

BEL, SBML, 

CSV 

(interaction 

set) 

Ensembl, GO, 

RefSeq, 

UniProt, 

WikiGenes 

wikipathways.org 

 

 

https://www.pathwaycommons.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5920724/
https://reactome.org/
https://www.wikipathways.org/index.php/WikiPathways


 26 

2.3.3 Literature 

One of the biggest sources of knowledge, is of course, the published literature. Users can 

source information from textbooks, reviews, and articles from various sources. However, the 

tradeoff for this is often a large time expenditure. Some of the tools described in Section 2.5 can 

speed this process by automatically mining information, but these tools are often limited in their 

own way. These tools either require the user to manually enter the text or data for analysis [75], or 

they can only access literature which is available on open-source databases like PubMed [8], and 

recent enough to be fully digitized [76]. 

2.4 Network Representation Formats 

Many of the tools for creating causal networks and databases hosting such networks 

generate output in or are compatible with the following representation formats: SBML [77], 

SBML-qual [78], BEL [79], BioPAX [80], and BNGL [22] BioRECIPES [13]. Figure 2-4 shows 

example models in the SBML, BNGL, BEL, and BioPAX formats. 
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Figure 2-4. Examples of four common representation formats.(A) SBML model [81], (B) BNGL model [82], 

(C) BEL assertions [79, 83], and (D) example of BioPAX representation [80]. 

 

The BioRECIPES format [13] was developed to represent this information, be readable by 

a model simulator, and also easily readable by a human user. An example of a BioRECIPES format 

model is shown in Figure 2-5. The format is very similar to machine reading output spreadsheets, 

as shown in Section 2.5.2. However, due to the specificity of this representation format, it 

sometimes requires transformation to be compatible with other modeling tools. 

 

Figure 2-5. A model in the BioRECIPES representation format 

 

Systems Biology Markup Language (SBML) [77] is often considered the community 

standard, compatible with many of the tools and databases listed in the Sections 2.3.1 and 2.3.2 [2, 
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50, 63]. It is a freely available, XML-based, software-independent format for representing 

biochemical reaction networks. An example is shown in Figure 2-4A. SBML was developed to 

help standardize the representation of models, making them more accessible across modeling, 

simulation, and analysis tools [78]. And while SBML was originally developed with event-based 

modeling in mind, much like BioNetGen Language (BNGL) shown in Figure 2-4B [22], an 

extension, SBML-qual, allows for further compatibility with logical models [78]. The largest 

challenge with SBML and SBML-qual is its readability – the SBML language generally requires 

expert knowledge of the language, and is not intuitive for the user to read, as it is meant to be read 

by computation tools. 

The Biological Expression Language (BEL) [79] was developed to represent causal 

relationships between entities. An example of BEL such relationships, called BEL assertions, is 

shown in Figure 2-4C. It is most often compared to the Biological Pathway Exchange (BioPAX) 

language shown in Figure 2-4D, which was developed to enable visualization across biological 

pathways [80]. So where SBML aims to capture the dynamics of a biological pathway, BEL and 

BioPAX focus more on the causal relationships [84].  

Another example of an effort to address the formatting disparity and standardize 

representation, in particular in the field of logical modeling, is The Consortium for Logical Models 

and Tools (CoLoMoTo) [73]. However, such goals usually require a great amount of effort, not 

only on part of the consortium, but also on part modeling and database developers. 
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2.5 Tools 

To facilitate model building, several tools have been developed to speed up or automate 

knowledge retrieval, filtering and curation, as well as network assembly and model 

recommendation.  

2.5.1 Directed Network Inference Tools 

With the volume of experimental data available, some tools have taken the approach of 

building directed networks from data. The TETRAD project [85] seeks to use mathematically 

sound statistical standards to improve the process by which experimental data and background 

knowledge is used to build computational models. This work identifies the struggles with building 

a causal network from data which can be open to interpretation, or has multiple possible causal 

relationships. A review by Glymour et al. [86] showed that while these tools can speed the process 

by which data is used to build a directed network, their efficacy can be dependent on the modeling 

case [87, 88].  

Additionally, there are programming packages to aid in creating networks. The pcalg R 

package is capable of causal structure learning and estimation of causal effects from observed data 

[89]. This package makes use of  several algorithms [90-92], with the benefit of analyzing the size 

of causal effects, using the IDA method from Maathuis et al. [93] to create bounds based on the 

data. However, this package assumes the network has no feedback loops, and that the causal 

structure can be represented by a directed, acyclic graph [89]. The bnlearn R package contains 

algorithms for learning the structure of Bayesian networks [94]. This package uses constraint- and 

scored-based algorithms, and is able to analyze networks with either discrete or continuous 
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variables. The blearn package has the advantage of using permutation tests in its network learning 

algorithm, improving the experimental data analysis efficacy [94]. 

2.5.2 Machine Reading Tools 

To aid in the creation of computational models, one can make use of machine reading 

engines, which can identify and extract interactions from published papers selected via specified 

queries [76, 95-98]. We call these interactions Literature Extracted Events, or LEEs, and a set of 

LEEs form a collection of nodes and edges very similar to a model, the main difference is that 

LEEs in a set may or may not form a fully cohesive network. The benefit of machine readers is 

that they are able to extract vast amounts of information very quickly. However, because of the 

variability and sheer volume of language, machine readers can encounter difficulties in correctly 

identifying events. 

2.5.2.1 Functionality 

Machine reading tools function by automatically parsing through published papers or user-

input text and identifying interactions, compiling them into output for use. The tool REACH [76] 

is able to automatically query for papers on the PubMed Central [8] database and identify 

biological interactions from selected papers. These interactions are assembled into LEEs for 

output. The TRIPS machine reader [75] takes sentences or paragraphs from the user, and identifies 

the interaction or interactions represented in the text, though TRIPS does not assemble the 

identified interactions into LEE output [75]. Eidos [96] and PyBEL [97] are additional tools for 

extracting events from text, but these tools are specific to world-modeling systems and Biological 

Expression Language (BEL) documents [1], respectively. RUBICON [1, 98] is another machine 
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reader that can extract from biological literature, and also calculates an Epistemic Value for each 

LEE, based on recommendations by de Waard et al. [99]. The Epistemic Value assigns one of four 

numeric values, representing complete uncertainty, low certainty, high-likelihood, or complete 

certainty [100, 101], based on supporting text. Terms such as “unknown” or “unclear” suggest low 

certainty in the assertion in the rest of the evidence, whereas phrases like “this suggest…” or “the 

authors report…” can indicate possible knowledge, but it cannot yet be taken as absolute fact [99]. 

The tool INDRA (Integrated Network and Dynamical Reason Assembler) [2] is not a 

machine reader itself, but it can call on the machine readers REACH, TRIPS, and the BEL Large 

Corpus to assemble sets of LEEs. INDRA also calculates a “belief score” for each LEE, based on 

known success rates of each machine reader, and of the number of times an LEE has been extracted 

from the literature, as documented in a larger knowledge base [2]. 

2.5.2.2 Output 

Some readers output into JSON format [102], which, while not easily readable, is readily 

enough converted into a spreadsheet with a simple script. Some (like TRIPS [95]) will only output  

lists. Assemblers like INDRA [2] can pull from multiple readers and compile them in a JSON 

format, which can then further be transformed into a spreadsheet for any manual human input. 

Figure 2-6A shows the information commonly included in the output of several machine readers. 

Information such as the node names and IDs, and edge mechanisms are easy to extract, but the 

finer details such as the cellular location and cell type are often not explicitly stated in the text, and 

therefore not always available in machine reader output. INDRA, which does not perform machine 

reading directly, but instead calls upon existing machine readers, converts machine reading output 

into INDRA statements, which cannot always capture the same information as the machine reader.  
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Definition 11. The output of machine readers, which is created when processing a set of papers, is 

a set of events, where each event is an interaction or a causal relationship between entities. We 

refer to the interactions identified by machine reading tools as literature extracted events, or LEEs.  

 

Definition 12. A set of LEEs can form a graph, 𝐺LEE(𝑉LEE, 𝐸LEE), where 𝑉LEE =

{𝑣′1, 𝑣′2, … , 𝑣′N′} is a set of nodes, and each node 𝑣′𝑖 = 𝑣′(𝐚𝑖
𝑣′

), i = 1, … , 𝑁′ is an LEE element, 

while 𝐸𝐿𝐸𝐸 = {𝑒′1, 𝑒′2, … , 𝑒′𝑀′} is a set of directed edges, and each edge 𝑒′𝑗 = 𝑒′(𝑣′𝑠𝑗
, 𝑣′𝑡𝑗

, 𝐚𝑗
𝑒′) 

(𝑣′𝑠𝑗
, 𝑣′𝑡𝑗

∈ VLEE, 𝑗 = 1, … , 𝑀′ corresponds to a directed interaction from one LEE, connecting its 

regulator (source node 𝑣′𝑠𝑗
) and regulated (target node 𝑣′𝑡𝑗

) elements. 

 

Definition 13. Similar to Definitions 1-3 in Sections 2.1.1 and 2.1.2, we define vectors of node 

attributes in the LEE graph as  

𝐚𝑣′ ≡ (𝑎𝑛𝑎𝑚𝑒′, 𝑎𝑡𝑦𝑝𝑒′, 𝑎𝐼𝐷′, 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛′, 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷′)  

and edge attributes as  

𝐚𝑒′
≡ (𝑎𝑠𝑖𝑔𝑛′

, 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
, 𝑎𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚′

, 𝑎𝑐𝑒𝑙𝑙𝑙𝑖𝑛𝑒′
, 𝑎𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒′

,

𝑎𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚′, 𝑎𝑡𝑖𝑠𝑠𝑢𝑒𝑡𝑦𝑝𝑒′ , 𝑎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒′). 

 

The attributes listed above are based on the common attributes of biological interactions, 

as described in Section 2.1.1, but those available from machine readers vary. LEEs obtained from 

the state-of-the-art machine readers often do not include information about 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛′, 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷′, 
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𝑎𝑐𝑒𝑙𝑙𝑙𝑖𝑛𝑒′, 𝑎𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒′, 𝑎𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚′, and 𝑎𝑡𝑖𝑠𝑠𝑢𝑒𝑡𝑦𝑝𝑒′, and in such cases an “empty” value is assumed 

for these attributes. The interaction sign attribute (𝑎𝑠𝑖𝑔𝑛′
) is usually implicitly included in the 

tabular machine reading output with separate columns for positive and negative regulators (Figure 

2-6B). The machine reading engines assign “direct” to the 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
attribute when they find 

in the text that an interaction within LEE represents direct physical interaction, most often with 

known mechanism (e.g., CK1 to APC), Figure 2-6A. The types of mechanisms that can be assigned 

to the 𝑎𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚′
 attribute by readers are listed in Figure 2-6A. On the other hand, “indirect” is 

assigned to the 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
attribute when the machine reader does not find any explicit 

evidence that the interaction is direct. In Figure 2-6A, right, we show that the reader finds the 

interaction “Akt inhibits GSK-3beta” and identifies the interaction as indirect. The 𝑎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒′ 

attribute includes an ID of the paper (usually, PMCID [8]) where the LEE is mentioned, and the 

sentence in the paper from which it is extracted. 

 



 34 

 

Figure 2-6. Information relating to machine reading output: (A) attributes included in the output of several 

machine reading engines, and the translation of evidence text [103, 104] to an LEE, along with the commonly 

supported interaction mechanisms. (B) example representation of  biological interactions in a spreadsheet 

format. 

2.5.2.3 Machine Reading Errors 

While machine readers can speed the process of information curation, they are not infallible 

[105]. As described in [106], four types of errors are typically found in the machine reading output 

of biomedical literature, namely sign, direction, grounding, and omission errors. Sign errors occur 

when the machine reader assigns the wrong regulation sign to a source node. This is most common 

in phosphorylation interactions, as machine readers make the assumption that phosphorylation is 

always a positively regulating interaction. Direction errors occur when the machine reader 

identifies the regulating element as a target node, and the regulated element as a source node. 

Grounding errors occur when the machine reader does not assign the correct database ID to one or 



 35 

both elements of an LEE. Finally, an omission error occurs when a sentence is misconstrued to 

represent an interaction which is not actually supported by the literature. The tool FLUTE (The 

FiLter for Understanding True Events) [106] has been developed to help address these errors,  

using the STRING [55], STITCH [57], and Gene Ontology [7] databases to identify high-

confidence machine reading interactions. 

2.5.3 Network Assembly Tools 

Niarakis et al. identified best practices for model curation, and for the compatibility 

between multiple tools [74]. They also emphasized the importance of automating the integration 

of new information and making use of the vast quantity of interactions found in databases. 

Tools like INDRA [2] help automate the model assembly process, by automatically 

curating information from relevant literature through the use of machine readers, which are 

described in Section 2.5.2. INDRA provides a database of statements written in a standardized 

format, with each statement containing information about a biomolecular interaction and a belief 

score, which is based on the interaction occurrence in literature and the probability of machine 

reading error. INDRA also has the functionality to extend existing models, so long as they are in 

an INDRA compatible format. The drawback is that the user must extend the model manually, 

curating the interactions into INDRA statements either manually defined or produced from 

machine reading output. This requires the user to query, judge, and choose information from the 

vast sources in the literature and databases.  

Tools such as MINERVA [107], CARNIVAL [108], PathMe [109], VIPER [110], 

CLARINET [111], and Whistle [112] assemble models from existing knowledge databases such 
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as KEGG [60] and OmniPath [67] or from user-assembled interaction sets, but are limited only to 

the knowledge that exists in those sources. The BEL enrichment workflow [1] aims to 

automatically maintain knowledge graphs using literature, but still requires human input. 

Ostaszewski et al. worked to develop a knowledge base of disease maps [113], but their approach 

also required significant manual input from experts. Iyappan et al. developed a method for creating 

a pathway inventory for modeling disease mechanisms for the purpose of understanding 

Alzheimer’s disease [114]. Much like the databases described in Sections 2.3.1 and 2.3.2, this 

knowledge base must be updated frequently to stay relevant to the current understanding of the 

biology. 

2.5.4 Model Recommendation Tools 

In addition to network assembly, there are tools which make recommendations on 

executable model building and extension. The CaSQ tool [115] takes exisiting directed network 

graphs and transforming them into dynamic Boolean models to allow the investigation into 

dynamic properties. This tool does not add any outside information to an existing model, but 

increases the information which can be gleaned from it. 

On the other hand, several methods have been proposed to iteratively extend executable 

models by selecting subsets of the available LEE set and testing whether the new model improves 

the performance when compared to the original one. The tool ACCORDION [116] automatically 

extends and recommends executable models by processing large LEE sets and identifying clusters 

of LEEs that are most relevant to a given baseline model. Another method developed by Liang et 

al. [117] uses a different approach, selecting only those interactions from the LEE set that are 
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directly connected to the model being extended. Finally, the method presented by Sayed et al. 

[118] uses genetic algorithm to select most useful subset of LEEs.  

The DiSH simulator [38, 119] provides model analysis under different simulation schemes, 

and can generate input for, or validate output of, model recommendation tools, or it can be 

integrated as part of these tools (e.g., in ACCORDION). Another model analysis tool, model 

checking, is often used to evaluate how well the model satisfies the necessary system properties 

[118, 120]. For example, the model extension tools described above use model checking to find 

candidate LEEs that allow for satisfying desired system properties. In Chapter 6.0, we discuss how 

VIOLIN can help generate or focus the input for such tools.  

The tools presented in this chapter aim to reduce the time an effort required to assemble 

information from research literature, however, it is up to the user to determine the relevance and 

usefulness of the extracted information. We present VIOLIN as a tool by which this process can 

be automated. VIOLIN is as a tool which can aid network assembly, both by reducing the need for 

manual input and by judging the relevance of potential additions to the network, irrespective of 

the source of the information. In addition to aiding the network and model building process, 

VIOLIN maintains the importance of feeback loops, which are sometimes excluded for efficacy 

[89] and pathway influences, which play a vital role in certain modeling approaches [45, 46].  
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3.0 VIOLIN Implementation 

In this chapter we present the implementation of the VIOLIN tool. We define the 

classification categories and subcategories (Section 3.1), how the scores are calculated (Section 

3.2), the algorithm VIOLIN uses to determine the classifications and scores (Section 3.3), 

necessary considerations for selecting VIOLIN input (Section 3.4), VIOLIN’s compatibility with 

existing tools (Section 3.5), and the VIOLIN user interface (Section 3.6). The VIOLIN Framework 

is shown in Figure 3-1. First VIOLIN takes the set of LEEs and the baseline model as input. Next, 

information from the LEE set is used to compute the Evidence Score (detailed in Section 3.2.1) 

and identify the Epistemic value when available (detailed in Section 3.2.4).  

 

Figure 3-1. The internal framework of the VIOLIN tool. LEEs and a set of baseline model interactions are 

taken as input, and LEEs are given numerical values representing their different classifications, and these 

values are then culminated into a final score. 
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This also begins the classification process, comparing the nodes (Match) and edges and 

attributes (Kind) of the LEE set to the baseline model. From these classifications, numerical scores 

are assigned (described in Sections 3.2.2 and 3.2.3), and are then combined with the scores 

obtained from the LEE set information into a final Total Score, which represents the overall 

usefulness and relevance of a given LEE. The LEEs are then output based on their Total Scores 

and their main classification category (detailed in Sections 3.1.2-3.1.5) for use. 

 

Definition 14. Within our approach, we define model extension as the process of changing an 

existing model towards the goal of improving its representation of a system. This can mean 

increasing the size of the system network, increasing the detail of the represented interactions, 

correcting outdated information, or validating modeling interactions using outside sources (such 

as literature, experimental data, or expert knowledge). 

3.1 Classification Definitions 

3.1.1 Match definitions 

The basis for much of the judgement made by VIOLIN revolves around looking for 

matches between the LEEs and the baseline model. The Total Score assigned to each LEE is built 

from these matches, considering a rough comparison between the LEEs and the model network, 

as represented by the Match Score, and then a finer comparison between interaction details (or 

attributes), as represented by the Kind Score. Matching information serves to allow for comparing 

literature information to the baseline model, whereas mismatched information can provide insight 
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into how the baseline model may be extended or identify reading errors, depending on the nature 

of the mismatch. 

 

Definition 15. The necessary element match condition for an LEE element 𝑣′ to match a baseline 

model element 𝑣 is that 𝑣′ and v have the same type and they have either the same unique ID or 

the same name, that is, formally: (𝑎𝑡𝑦𝑝𝑒′
=𝑎𝑡𝑦𝑝𝑒) AND ((𝑎𝐼𝐷′

=𝑎𝐼𝐷) OR (𝑎𝑛𝑎𝑚𝑒′
=𝑎𝑛𝑎𝑚𝑒)). The 

necessary interaction match condition for an LEE interaction 𝑒′(𝑣′𝑠 , 𝑣′𝑡 , 𝐚𝑒′
) to match an 

interaction 𝑒(𝑣𝑠, 𝑣𝑡 , 𝐚𝑒) in the baseline model is that elements 𝑣′𝑠 and 𝑣′𝑡 satisfy the necessary 

condition to match elements 𝑣𝑠 and 𝑣𝑡, respectively, and that the interaction signs are same 

(𝑎𝑠𝑖𝑔𝑛′
=𝑎𝑠𝑖𝑔𝑛).  

If two corresponding attributes in the model and in the LEE are different (e.g., 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛′
≠ 

𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛), we refer to this as attribute mismatch. We note here that, in the case when the attribute 

value in the LEE interaction or in the baseline model interaction is “empty”, this will not be 

considered as an attribute mismatch. Additionally, the LEE evidence attribute, 𝑎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒′
, is not 

compared with the model, as it does not include information about the interaction itself, but instead 

it contains interaction metadata. 

3.1.2 Model corroboration requirements 

Definition 16. To classify an LEE as a corroboration, VIOLIN first determines whether 

there exists an interaction 𝑒(𝑣𝑠, 𝑣𝑡 , 𝐚𝑒) in the baseline model to satisfy the necessary interaction 

match condition for the LEE interaction 𝑒′(𝑣′𝑠, 𝑣′𝑡 , 𝐚𝑒′
).  
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Since this condition is not sufficient for the LEE to corroborate an existing model 

interaction, the comparison of other corresponding attributes between the LEE interaction and the 

baseline model is required. These comparisons and the classification decisions for all classification 

categories are outlined Section 3.3. We define a strong corroboration when, besides the necessary 

interaction match condition, it also holds that the 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛′
 and 𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷′

 parameters of both 𝑣′𝑠 

and 𝑣′𝑡 match the corresponding parameters in 𝑣𝑠 and 𝑣𝑡, respectively, and that 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 = 

𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒 . We show an example of this classification in Figure 3-2. In this figure, we show 

how example evidence text from an LEE would be represented alongside the model network in 

each classification case. Additionally, if a user adds more attributes, the list of attributes that are 

required to match can be extended.  

 

Figure 3-2. Examples of VIOLIN classifications and subclassifications of LEEs: strong corroboration, weak 

corroboration, hanging, internal, and full extensions, specification, contradictions, and flagged interactions. 

This figure allows easier visualization the formal definitions. Model elements are represented by blue nodes, 

and model edges by black arrows. LEE entities, edges, and attributes are represented in red. 
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We also define several types of weak corroborations as follows. When there is a baseline 

model interaction such that the LEE satisfies necessary conditions to match this interaction, and 

there is no mismatch among the remaining attributes between the LEE and the model interaction, 

with at least one of the remaining attributes in the LEE being “empty”, we define this as a weak 

corroboration type 1. Next, a weak corroboration type 2 is an indirect LEE that satisfies necessary 

conditions to match with a direct baseline model interaction (𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒 ′
=”indirect”, 

𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒=”direct”), and there is no mismatch among the remaining attributes (“empty” 

attributes are allowed). Finally, a weak corroboration type 3 is an indirect LEE with nodes 𝑣′𝑠 and 

𝑣′𝑡 that satisfy necessary conditions to match two nodes in the baseline model while the LEE does 

not match any baseline model interaction, and instead it satisfies necessary conditions to match a 

path in the baseline model (𝑣′𝑠 = 𝑣𝑠𝑝
, 𝑣′𝑡 = 𝑣𝑡𝑝

, 𝑎𝑠𝑖𝑔𝑛′
= 𝑎𝑠𝑖𝑔𝑛𝑝). Weak corroborations of type 2 

and type 3 are called “weak” due to the assumption by the machine readers that 

𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒 ′
=”indirect” by default, unless very specific criteria is met to indicate 

𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
=”direct,” meaning LEEs with 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′

=”indirect” may not capture a 

direct relationship if it is not explicitly stated in the text, or the text may convey a more broad 

understanding of a relationship between two elements than is found in the model. Therefore, in 

these two subcategories, although the LEE agrees with model, the model presents additional details 

about the relationship between two elements (Figure 3-2). 

3.1.3 Model contradiction requirements 

Definition 17. An LEE is classified as a contradiction if it contains information that 

disputes the model. 
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Figure 3-2 outlines the attribute comparison details that determine whether an LEE is a 

contradiction. Additionally, VIOLIN recognizes several different types of contradictions. For a 

given LEE interaction 𝑒′(𝑣′𝑠 , 𝑣′𝑡 , 𝐚𝑒′), if there exists a baseline model interaction 𝑒(𝑣𝑠, 𝑣𝑡 , 𝐚𝑒) such 

that 𝑣𝑠 satisfies the necessary condition to match 𝑣′𝑡, 𝑣𝑡 satisfies the necessary condition to match 

𝑣′𝑠, and either the model interaction is indirect (𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒=”indirect”), or the model 

interaction is direct (𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒=”direct”) but there is a mismatch between the LEE interaction 

and the model interaction in at least one attribute other than the sign attribute, then we classify this 

LEE as a direction contradiction (Figure 3-2). The reasoning behind this definition is that an 

indirect model interaction is only a placeholder in the absence of more detailed knowledge, and 

the new LEE interaction can dispute this previously incomplete knowledge. On the other hand, 

when the model interaction is direct, and there is a contradiction with LEE in direction and other 

attributes (e.g., location), this indicates a potential machine reading error or an incorrect model 

interaction. Other cases of direction mismatch are classified under different category as will be 

described later in this section. If elements of an LEE satisfy necessary conditions to match elements 

of a baseline model interaction, but the model and LEE interactions have different signs (𝑎𝑠𝑖𝑔𝑛  

𝑎𝑠𝑖𝑔𝑛′
), then we classify this LEE as a sign contradiction (Figure 3-2). When there exists an 

interaction in the model that satisfies the necessary conditions to match the LEE interaction, and 

there is a mismatch between the model interaction and the LEE interaction in at least one attribute 

other than 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′, then we call this attribute contradiction (Figure 3-2).  
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3.1.4 Model extension requirements 

Definition 18. An LEE is classified as an extension when it introduces a new interaction to 

the baseline model that does not contradict it.  

 

VIOLIN recognizes several different cases when this occurs. When there is no baseline 

model element that matches either of the LEE elements, then the LEE interaction cannot have a 

corresponding interaction in the model, and we call such LEEs full extensions (Figure 3-2). If only 

one of the LEE elements matches a model element, the LEE interaction still cannot have a 

corresponding interaction in the model, and we call such LEEs hanging extensions (Figure 3-2). 

If there exist two different model elements vi and vj such that the LEE elements 𝑣′𝑠 and 𝑣′𝑡 satisfy 

at least the necessary condition to match 𝑣𝑖 and 𝑣𝑗, respectively, while there is no interaction 

𝑒(𝑣𝑖 , 𝑣𝑗) in the model, and either 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
=”direct”, or 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′

=”indirect” and 

there is also no path 𝑝(𝑣𝑖 , 𝑣𝑗) in the model, then we call such LEEs internal extensions (Figure 

3-2). When an LEE satisfies the necessary condition to match a baseline model interaction and, 

either all attributes match and there is at least one "empty" model interaction attribute and a non-

"empty" corresponding LEE attribute, or 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
=”direct” and 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒=”indirect” 

and all the remaining attributes match, we call such LEEs specifications (Figure 3-2). They do not 

replace existing model interactions but instead add more specific information to them. 
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3.1.5 Flagged interactions 

Definition 19. There are some cases where a combination of matched, mismatched, and 

“empty” attributes requires further manual inspection before it can be classified, and therefore, 

these LEEs are flagged by VIOLIN. 

 

Within the flagged category, there are three subcategories. For a given LEE interaction 

𝑒′(𝑣′𝑠 , 𝑣′𝑡 , 𝐚e′
), if there exists a direct (𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒=”direct”) model interaction 𝑒(𝑣𝑠, 𝑣𝑡 , 𝐚𝑒) 

such that 𝑣′𝑠 and 𝑣′𝑡 satisfy the necessary condition to match 𝑣𝑡 and 𝑣𝑠, respectively, and there is 

no mismatch among node attributes (“empty” attributes are allowed), then we classify this LEE as 

flagged type 1 (Figure 3-2) A flagged type 2 LEE is an indirect LEE (𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
=”indirect”) 

with nodes 𝑣′𝑠 and 𝑣′𝑡 that satisfy the necessary condition to match two nodes in the baseline 

model, 𝑣𝑖 and 𝑣𝑗, respectively, while the LEE does not match any baseline model interaction, and 

instead there is either a path 𝑝(𝑣𝑖 , 𝑣𝑗) in the model with at least one mismatched attribute, or a path 

𝑝(𝑣𝑗 , 𝑣𝑖) (Figure 3-2). When both LEE elements satisfy the necessary condition to match the same 

model element, such an LEE appears to be a self-regulation, and is classified as flagged type 3. 

(Figure 3-2). We flag these LEEs as in some cases they may indeed be self-regulation interactions, 

but more often the self-regulation is a result of grounding and the level of abstraction in the 

baseline model. Grounding is an extraction step that uses public databases [5, 7] to pair a standard 

identified with the common name used in the literature text, though it can occasionally result in 

error. For example, in the literature, Caspase-3 and Caspase-8 interact with each other as separate 

entities, while in the melanoma model that we use as one of our case studies, all the caspases are 

grouped in a single variable. Thus, an LEE representing the interaction between Caspase-3 and 
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Caspase-8 is classified as flagged type 3 (self-regulation), and the user can then decide how to use 

the LEE. Self-regulation LEEs sometimes also result from machine reading errors, if a qualifier 

such as “mutated” or “phosphorylated” is ignored by the reader. For example, the statement 

“R2834H DP decreases phosphorylation of DP compared with WT” describes how a mutation of 

desmoplakin protein reduces the phosphorylation of the unmutated protein, the extracted event is 

“DP negatively regulates DP,” ignoring the important distinction of the mutated form. 

3.1.6 Path and loop finding 

In the process of classifying an LEE, when it finds two nodes in the baseline model graph 

that match 𝑣′𝑠 and 𝑣′𝑡 elements, VIOLIN often searches for paths between the two model nodes. 

In turn, such a search can provide additional information about the relationship between the 

baseline model and the LEE. Given the path definition in Section 2.1.2, if VIOLIN finds a path 

𝑝(𝑣𝑠𝑝
, 𝑣𝑡𝑝

, 𝐚𝑠𝑖𝑔𝑛𝑝) in the baseline model, such that 𝑣𝑠𝑝
 matches 𝑣′𝑠  and 𝑣𝑡𝑝

 matches 𝑣′𝑡, then this 

LEE could potentially form a feed-forward loop if added to the model. If the path and the LEE 

interaction signs are the same (𝑎𝑠𝑖𝑔𝑛𝑝  = 𝑎𝑠𝑖𝑔𝑛′
), the feed-forward loop would be positive, and if 

the signs are different, the loop would be negative (Figure 3-2). If 𝑣𝑠𝑝
 matches 𝑣′𝑡, and 𝑣𝑡𝑝

 matches 

𝑣′𝑠, in such cases, the LEE could form a feedback loop when added to the model; depending on 

whether the path and the LEE interaction signs are the same or different, the feedback loop would 

be positive or negative, respectively.  
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3.2 Scoring 

Within a given LEE set, VIOLIN evaluates each LEE using several different scores: 

Evidence score, Match score, Kind score, Epistemic score, and Total score. The Evidence and 

Epistemic scores depend on the literature that was selected and read by machine readers, and they 

are independent of a baseline model, while the Match and Kind scores result from the comparisons 

between the LEEs and the baseline model. The Total score is a combination of the other four 

scores. In the following, we provide a detailed description of the purpose of each score type and 

the method for computing it.  

3.2.1 Evidence Score 

It is usually assumed that if there are more mentions of an event in the literature, it is more 

likely that the event is both correct and useful to the model. Tools such as STRING [55] and 

INDRA [2] base their judgement of interactions on how frequently the interaction is either found 

in online databases or extracted with machine reading engines, respectively. The Evidence score 

(SE) counts all the mentions of each distinct interaction within an LEE set. Similar to the necessary 

conditions for a match between LEE and model interactions, described in Section 3.1.1 we 

consider two LEE interactions 𝑒′𝑗1 = 𝑒′(𝑣′𝑠𝑗1
, 𝑣′𝑡𝑗1

, 𝐚𝑗1
𝑒′) and 𝑒′𝑗2 = 𝑒′(𝑣′𝑠𝑗2

, 𝑣′𝑡𝑗2
, 𝐚𝑗2

𝑒′) to be same 

if they satisfy the following condition: (𝑎𝑠𝑗1
𝑛𝑎𝑚𝑒′=𝑎𝑠𝑗2

𝑛𝑎𝑚𝑒′ OR 𝑎𝑠𝑗1
𝐼𝐷′=𝑎𝑠𝑗2

𝐼𝐷′) AND 𝑎𝑠𝑗1

𝑡𝑦𝑝𝑒′
=𝑎𝑠𝑗2

𝑡𝑦𝑝𝑒′
 AND 

(𝑎𝑡𝑗1
𝑛𝑎𝑚𝑒′=𝑎𝑡𝑗2

𝑛𝑎𝑚𝑒′ OR 𝑎𝑡𝑗1
𝐼𝐷′=𝑎𝑡𝑗2

𝐼𝐷′) AND 𝑎𝑡𝑗1

𝑡𝑦𝑝𝑒′
=𝑎𝑡𝑗2

𝑡𝑦𝑝𝑒′
 AND 𝑎𝑗1

𝑠𝑖𝑔𝑛′
=𝑎𝑗2

𝑠𝑖𝑔𝑛′
 AND 𝑎𝑗1

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 = 

𝑎𝑗2
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′

. If two interactions do not satisfy this necessary condition, they are called distinct. 

VIOLIN also allows users to add other attributes to this condition, if necessary. As can be 
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concluded from the definition of SE, it is computed with respect to the overall LEE set, and 

therefore, it is also dependent on the user question and the selected literature. While computing SE 

for each distinct LEE, VIOLIN collects the PMCIDs of the papers from which these LEEs have 

been extracted and adds them to the 𝑎𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒′ attribute. 

3.2.2 Match Score 

The Match score (SM) is used to quantify the match between elements of an LEE (𝑣′𝑠 and 

𝑣′𝑡) and elements in the model. Following the definition of a match between an LEE element and 

a model element from Section 3.1.1, VIOLIN recognizes four different cases of matching the two 

LEE elements with the baseline model, and it assigns a value to each case. In other words, we 

define a set of values {sM1, sM2, sM3, sM4}, and assign one of these values to the SM score of a given 

LEE, as follows: sM1, when both 𝑣′𝑠 and 𝑣′𝑡 match elements in the baseline model; sM2, when 𝑣′𝑠 

matches an element in the model, and 𝑣′𝑡 does not match any model elements; sM3, when 𝑣′𝑡 

matches an element in the model, and 𝑣′𝑠 does not; sM4, when neither 𝑣′𝑠 nor 𝑣′𝑡 match any 

elements in the model. The four SM values are not fixed, VIOLIN allows their change, such that 

they can fit different use cases. For example, if we are interested in adding only new edges to the 

baseline model graph, we can increase the sM1 value, thus increasing the score for those LEEs that 

are classified as internal extensions. On the other hand, if we are interested in expanding the 

baseline model network, we can increase the other three scores (sM2, sM3, and sM4). Obviously, 

adding to the model those LEE interactions that are classified as full extensions (assigned score 

sM4) will lead to a disconnected graph, unless there are interactions in the LEE set that are classified 

as hanging extensions (assigned either score sM2 or sM3) that can connect full extensions with the 

model.  
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The default values used to represent the Match classifications are defined by the set {sM1 = 

10, sM2 = 1, sM3 = 100, sM4 = 0.1}, representing a scoring scheme for the case of general model 

extension, where a user seeks to expand both the breadth and depth of the baseline model network 

without creating excessive output nodes. We will explore the influence of the selection of sM1, sM2, 

sM3, sM4 values on the classification, and consequently, on modeling, in Section 5.1. 

3.2.3 Kind Score 

The Kind score (SK) is used to quantify the relationship of an LEE interaction to the 

baseline model. We define a set of values {sK1.1, sK1.2, sK2.1, sK2.2, sK3, sK4} for the classification 

categories described in Section 3.1. Since the difference between full, hanging and internal 

extensions is already captured with the Match score, we use the same value, sK1.1, for these three 

extension types, and another value, sK1.2, for the specification extensions. Strong corroborations 

are assigned value sK2.1 and weak corroboration are assigned value sK2.2. All three contradiction 

sub-categories, the direction, sign, and attribute contradictions, are assigned value sK3. Any 

remaining, flagged LEE is assigned value sK4. Similar to SM, the six SK values may be selected by 

the user, and VIOLIN allows their change, in order to fit different use cases. The default values 

used to represent the Kind classifications are defined by the set {sK1.1 = 2, sK1.2 = 1, sK2.1 = 40, sK2.2 

= 30, sK3 = 10, sK4 = 20}, again for the general model extension case. Here, we assign highest 

importance to extensions, and then to flagged LEEs which may identify feed-forward or feedback 

loops, and then contradictions which may represent corrections to outdated information in the 

baseline model. We will discuss the influence of the Kind score value on modeling in Section 5.2.  
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3.2.4 Epistemic Value and Total Score 

Some machine reading engines and information assembly tools output a quantified measure 

of the believability in the extracted interaction, such as INDRA’s belief score, which is based on 

information directly from the machine readers. If available, we will use this value as an Epistemic 

score (SB). Another such value is RUBICON’s Epistemic Value [98], where Zero, Low, Moderate, 

and High believability correspond to numerical scores of 0.0, 0.33, 0.67, and 1.0, respectively. 

When no value for the Epistemic score is available, the default value is accepted as 1.0, so that all 

LEEs are assumed to have the same believability. 

Finally, for each LEE in a given LEE set, we combine the previous four scores into the 

Total score (ST) using the following equation: 

𝐒𝐓 = (𝐒𝐊 + (𝐒𝐄 × 𝐒𝐌)) × 𝐒𝐁 3-1 

In other words, ST represents the quantity, quality, and believability of the LEE. The Match 

score is the most influential factor in the Total score, combined with the Evidence score because 

the addition of elements is generally the driving force behind model extension. In other words, 

multiplying the Match score by the Evidence score increases the Total score for the interactions 

found multiple times in the literature. We designed the scoring method this way so that an LEE 

with a high Evidence score may overcome a low Match score. For example, an LEE with SE = 12 

can move an LEE to its next highest Match ranking, assuming that the user has compiled their LEE 

set from literature relevant to the baseline model system, and so a well-documented LEE of a less 

desirable Match classification is of higher value than a poorly documented LEE of a more desirable 

Match classification. 
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However, we want to allow for the possibility that novel or unique interactions which have 

not necessarily been well studied would be good candidates for extension, and we capture this 

possibility in the Kind score. The Kind score can be used as a filtering method to select for specific 

classifications, but it remains as an addition factor so that while it can increase the total score, it 

cannot overcome the influence of the Match and Evidence scores. When available, the Epistemic 

score may also significantly influence the Total score. If we do not have high enough confidence 

in an LEE, the Epistemic score smaller than 1 decreases the Total score, even when the LEE has a 

high evidence count.  

3.3 Algorithm 

VIOLIN makes decisions on the classification and scoring of an LEE based on the 

attributes and nodes as they are defined in Section 2.5.2.2. Figure 3-3 shows the step-wise 

comparisons for a given LEE, and how these comparisons lead to the final classification outcomes. 

First VIOLIN determines and compares the connection types of the LEE and Model interaction. 

This can be explicitly defined in the input files, or VIOLIN can assign a default. For LEEs, the 

default connection type is 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′ =“indirect,” following the REACH method for 

identifying connection type [121]. For model interactions, the VIOLIN-defined default is 

𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑦𝑝𝑒 =“direct,” assuming that most models are assembled of known interactions, 

however, this default can be reassigned to “indirect” by the user, if the model is known to present 

more general interactions.  

Next VIOLIN makes use of the implicit attributes; the 𝑎𝑒
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 of the LEEs and model 

interactions coming from the definition of the source and target nodes, and then 𝑎𝑒
𝑠𝑖𝑔𝑛

, which may 



 52 

come from identified columns in the input files, or from a dedicated attribute (depending on source 

of the LEE set and baseline model). Finally, VIOLIN compares any additional attributes available 

in the LEEs and baseline model. The necessary attributes are either found to be a match or 

mismatch, denoted by “M” or “X” in Figure 3-3, respectively, and based on the definition of a 

match as given in Section 3.1.1. However, the “Other attributes” as noted in the figure (e.g. 

𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) can have a more complex comparison. These attributes may be missing from either the 

LEE or model interaction, denoted as “− +” if present only in the model, “+ −” if present only in 

the LEE. The attributes may also be absent in both LEE and model interaction or present and 

matching, this case which is represented by “+/−M” in Figure 3-3. Finally, the attribute may be 

present in both the LEE and model interaction, but mismatched, denoted by “+ +X.” These more 

specified cases allow for the weak corroboration and specification classifications detailed in 

Section 3.1. 

Step 6 of Figure 3-3 shows the final classification outcome defined by the combination of 

outcomes from the preceding steps. The full detail of the steps of the VIOLIN algorithm can be 

found in the Supplement. The classification decisions are based on biological principles – how 
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biological entities are known to interact. In Chapter 5.0 we further investigate the robustness of 

this classification scheme. 

 

Figure 3-3. Interaction chart showing the outcome of all possible comparisons of a given LEE to given 

baseline model interactions (MI).  

3.4 Selecting VIOLIN input 

When selecting VIOLIN input, or seeking to add a new benchmark, there are several things 

to consider. First, there is a minimum information requirement for both the LEE set and the 

baseline model. For a given LEE set, each LEE must identify the 𝑎𝑛𝑎𝑚𝑒′, 𝑎𝑡𝑦𝑝𝑒′, and 𝑎𝐼𝐷′for both 

𝑣𝑠
′ and 𝑣𝑡

′ , as well as 𝑎𝑒
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛′ and 𝑎𝑒

𝑠𝑖𝑔𝑛′
. In cases where 𝑎𝑒

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 is not available, it is 

assumed to be “indirect” following the REACH machine reading methods [76]. Similarly, for a 

baseline model, the model must contain 𝑎𝑛𝑎𝑚𝑒 , 𝑎𝑡𝑦𝑝𝑒, and 𝑎𝐼𝐷 for 𝑣𝑠 and 𝑣𝑡, as well as 𝑎𝑒
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
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and 𝑎𝑒
𝑠𝑖𝑔𝑛

. When 𝑎𝑒
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒

 is not available, the user can input what VIOLIN should assume 

as the default.  

In addition to the minimum information requirements, it’s important to consider the types 

of interactions contained in the LEE set and the baseline model. Machine reading engines can 

generally identify PPIs, PGIs, PCIs, and PBIs from the literature, as defined in Section 2.3.1. When 

selecting a baseline model, the user has to decide if they want to only consider those types of LEEs 

which match the types of interactions found in the model, or if they want to extend the types of 

interactions. Many baseline models on databases such as NDEx [69] or Wikipathways [70] are 

strictly PPIs, an LEE set which contains mostly PGIs, PCIs, and PBIs, may not produce VIOLIN 

output with high relevance or usefulness, unless the user’s goal is specifically to introduce genes, 

chemicals, and/or biological processes to the model.  

The user’s choices can be determined by their modeling use case. A breadth-first extension 

would increase the network size of the model, and this extension could be further specified to show 

preference for finding new regulators or input nodes (looking for the drivers of a system) or 

preference for finding new regulated or output nodes (looking for new outcomes from the network 

catalysts). A depth-first extension would increase the edges in a baseline model, thus increasing 

the knowledge about the interactions between nodes. And then a validation extension would 

confirm that the interactions represented in the baseline model are backed up by the current 

literature.  
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3.5 Compatibility with Other Tools 

Currently, VIOLIN is compatible with many of the modeling tools and databases already 

available. The default LEE input expected is based on the REACH machine reading tool [121], 

which the output from the INDRA tool [2] can easily be transformed into. Some machine readers 

and tools do not distinguish between positive and negative regulator nodes [75], instead 

representing the regulation sign as a distinct attribute 𝑎𝑠𝑖𝑔𝑛′. VIOLIN contains a built-in function 

to handle this case without a loss of information. VIOLIN also does not specify the nomenclature 

used to refer to interaction elements. While we define the interaction elements as source and target 

nodes (Section 2.1.2), other tools use the terms regulator/regulated or element. VIOLIN has the 

capability to accept them all and recognize the appropriate function of the element. 

The default model input is expected as the BioRECIPES format [13], meant for dynamic 

model simulation and also for easy user understanding. However, a common representation format 

of models across databases is as a node-edge list [69, 70], much like the machine reading output. 

VIOLIN was built with the functionality to transform multiple model formats. Specifically, 

between the BioRECIPES format and the node-edge format found on the NDEx [69], 

WikiPathways [70], and Reactome [50] databases. VIOLIN is also compatible with the INDRA 

output, meaning that VIOLIN can access machine reading output from REACH [76], TRIPS [75], 

and the BEL large corpus [97]; that is, it can transform any set of statements from INDRA into the 

input LEE set. While INDRA uses the JSON representation format for its output statements [102], 

which is suitable for machines but not practical for human use, VIOLIN’s transformations 

functions help bridge the gap between machine and human use. 
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3.6 VIOLIN UI & Visualization 

VIOLIN was written as a Python package, with pandas and NumPy dependencies, and can 

be found at https://bitbucket.org/biodesignlab/violin/src/master/. The associated documentation 

can be found at https://violin-tool.readthedocs.io/. While VIOLIN does not link to machine readers 

or information assembly tools directly, it is compatible with many forms of input. The current user 

interface is script-based; the user assembles either python script or Jupyter notebook calling the 

desired VIOLIN functions. A tutorial ipy notebook showing use of VIOLIN with default settings 

can be found at https://bitbucket.org/biodesignlab/violin/src/master/violin_tutorial/.  

 Currently, the default input format for VIOLIN is a spreadsheet from REACH or INDRA 

machine reading output and the BioRECIPES model format. For input outside of these formats, 

VIOLIN has functions to transform between representation formats, allowing for the compatibility 

with tools such as FLUTE [106] and CLARINET [111] as described in Chapter 6.0, along with 

databases and tools such as NDEx [69] and INDRA [2]. 

VIOLIN output is organized into five spreadsheets: one total output, with all the LEEs 

listed by their Total Score, and one each for the corroborations, extensions, contradictions, and 

flagged LEEs. This output can be used as input for a model extension tools such as ACCORDION 

or CLARINET, or can be visualized using the VIOLIN visualization function, which provides a 

visual summary of any of the output files. Figure 3-4 shows an example of this visualization for 

the Total output, summarizing the scores and the classification break down. Part of this function 

is a filtering value, which allows the user to visualize VIOLIN output based on specific criteria. 

The user can either use a thresholding value for the Total score or Evidence score, summarizing 

the output only of LEEs with such a score above a specific value, or the user can threshold a certain 

https://bitbucket.org/biodesignlab/violin/src/master/
https://violin-tool.readthedocs.io/
https://bitbucket.org/biodesignlab/violin/src/master/violin_tutorial/
https://violin-tool.readthedocs.io/en/latest/visualization.html
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percentage, summarizing the output of the top X% of LEEs, based on the Total score. This 

visualization allows the user to make decisions on how they wish to use the VIOLIN output. 

 

Figure 3-4. Example output from the VIOLIN visualization function, showing the classification distribution, 

and the distributions of the Evidence, Match, and Total scores. 

 

From this visualization, the user can surmise that the majority of the LEEs are extensions, 

from the top left graph. From the bottom left graph, they can discover that about half of the LEEs 

from the set are connected to the baseline model system, knowing that the Match Scores represent 

the categorizations defined in Section 3.2.2. Approximately 2,300 LEEs are completely 

unconnected while approximately 3,000 LEEs are connected to the baseline model system by 

either the source node (SM = 1), the target node (SM = 100), or by both nodes (SM = 1). This 

distribution could be caused by either a small baseline model network, or by LEEs assembled from 

papers/databases which were not chosen with close enough relevance to the model.  
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The top right graph of Figure 3-4 shows the distribution of Evidence scores across the LEE 

set. The highest Evidence score being 7, the user could conclude that the LEEs set was varied, and 

LEEs did not often repeat. The Total score distribution, shown in the lower right graph of Figure 

3-4, helps illustrate why we would not want the Kind score to be the leading factor in the Total 

score calculation. While there is a pretty clear divide between the extensions and the other three 

categories, the corroborations, contradictions, and flagged are more mixed. If the Kind score were 

the leading factor in the Total score, there would be no mixing, there would only be discrete 

sections of each category. This would mean the user would have to choose from each category 

which LEE to use. By having the Match and Evidence scores as the leading factors of the total 

score, there is a more continuous distribution, which allows for automatic LEE thresholding based 

on the Total score. The Evidence score and Total score distributions suggest that the contradictions 

and flagged interactions are not particularly useful to this user’s needs, possibly due to machine 

reading errors. We investigate the prevalence of machine reading errors further in Section 4.6.  
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4.0 VIOLIN Outcomes 

In this chapter, we show the outcomes of the VIOLIN tool on initial benchmark input. We 

first describe the Models and LEE sets curated for initial use of VIOLIN, as well as for 

investigations carried out in Chapters 5.0 and 6.0 (Section 4.1). We then show the initial results of 

VIOLIN’s judgement of LEE sets against two different baseline models (Section 4.2). We then 

illustrate how modeling goals guide classification strategies (Section 4.4), and how the path finding 

function leads to the discovery of loops (Section 4.5). We end the chapter with a deeper 

investigation into contradictions and flagged LEEs, and their potential for identifying machine 

reading errors (Section 4.6).  

To demonstrate VIOLIN’s capabilities in this chapter, we conducted several experiments, 

using two baseline models, and seven LEE sets. The main differences between the models are size 

and complexity, and the difference between reading sets is size and the method used to create 

them, with two sets created as “negative sets” to be deliberately irrelevant to the model.  

4.1 Models and LEE Construction 

In total, we curated five models of various systems and sources. The first model we used 

is a discrete model of biological pathways in the melanoma SkMel-133 cell line. This model (we 

will refer to it as model A) was created using the model in [122] by removing the immune cells 

and incorporating mutations of the melanoma cell line used in Korkut et al. [123], in which the 

authors performed DNA, RNA, and protein analysis on primary and metastatic melanomas from 
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331 patients. This model was in the BioRECIPES representation format [13], and included the 

connection types for all model interactions.  The second model we used is a model of the circuitry 

that controls the differentiation of naïve T cells into regulatory (Treg) and helper (Th) cells, 

described in [124]. This model (we will refer to it as model B) was manually created to investigate 

the early steps of T cell activation, and the suppression or generation of regulatory T cells (Treg). 

This model was also already in the BioRECIPES format but did not include the connection type 

attribute. In this case, we set at input that the model connection types should be assumed to be 

“direct,” under the reasoning that baseline model interactions will generally be validated and well 

understood.  

Our third baseline model (model C) was found on NDEx [69], from the publication of 

Sandhya et al. [125]. This model is a network of the BDNF pathway as it may relate to the 

regulatory processes involved in major depression disorder. This model was represented on the 

NDEX database as a node-edge list, which was made compatible with VIOLIN through its internal 

transformation functions. This model did not include the connection type attribute – it was added 

manually using the evidence text. Our fourth baseline model (model D) is of the pancreatic cancer 

cell model presented in [122]. It already existed in the BioRECIPES format, so it did not need 

transformation. Though it did not include the connection type attribute, and in this case the default 

connection type was again assumed to be “direct.” Our last model (model G) is of the Glioblastoma 

Multiforme system, as presented in [33]. This was a model automatically assembled and verified 

from the relevant literature and represented in the BioRECIPES format. Again, the connection 

types were not available in the model, and so were assumed to all be “direct.” Full descriptions of 

all models used in this work can be found in Appendix A. 
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For these models, we assembled a number of LEE sets. Three of our LEE sets (RB0, RC0, 

RD0) were assembled by using the REACH machine reader to extract interactions from the 

reference papers for the model publications, and we denote this method with the subscript 0. We 

then have LEE sets where were created with the REACH tool, indicated with single number 

subscripts, RA1, RB2, RA3, etc. RA1 was created using a general search query in REACH. RA2 was 

created using the more specific REACH Explorer tool [121], where papers were selected using 13 

protein queries. For each protein, we first selected top 10 papers that were returned by the REACH 

Explorer. In the case where 10 papers were not found, we obtained additional papers using the 

Fetch tool [121]. This ultimately led to 125 papers, from which REACH extracted 6305 

interactions. The remaining such denoted LEE sets were assembled by querying terms related to 

the associated baseline model using the REACH Explorer tool [121], and then using INDRA [2] 

to access the REACH machine reading engine [76]. A Full list of queries can be found in Appendix 

B.  

In Chapter 6.0, we investigate the use of the FLUTE tool [106] in conjunction with 

VIOLIN, and those LEE sets which are filtered by FLUTE are denoted by the #.1 subscript (e.g. 

RA2.1). For LEE sets RA2.0.1 and RB0.0.1, we manually removed all LEEs involving chemicals or 

biological processes. We call this manual filtering (1), and label it with #.0.1 subscript. For LEE 

RA2, we also took the resultant RA2.0.1 LEE set and had an expert manually judge the LEEs for 

redundancy to the model network and for obvious errors. We call this manual filtering (2) and 

label it with a #.0.1.1 subscript. We finally created two LEE sets, RB*1 and RB*2 and used them as 

“negative” sets. They were created by the same method of using REACH explorer, INDRA, and 

REACH, but their query terms included elements and pathways specifically not relevant for the T 

cell model. This was an important test of the accuracy of VIOLIN, as we would expect that most 
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if not all LEEs from these sets should be judged as extensions, with any exceptions being either 

machine reading errors or ubiquitous biological interactions. 

We show the metrics of our LEE sets and models in Figure 4-1. Figure 4-1A shows the 

model metrics and the LEE set notation scheme for VIOLIN inputs used in Chapters 4.0, 5.0, and 

6.0. Figure 4-1B shows a sample of query terms for a selection of LEE sets. The full list of query 

terms and curation methods for all LEE sets can be found in Appendix B. Figure 4-1C shows the 

number of papers used to assemble each LEE set, and the resultant number of LEEs. Across the 

LEE sets without additional filtering, we found there to be an average of 26 LEEs per paper. In the 

following chapter, results will be shown from VIOLIN output judging LEE sets against models A 

and B. 

Our models A and B, along with the associated inputs, were used for the initial 

investigation of VIOLIN, testing how well-assembled models and LEE sets are judged in VIOLIN. 

We expect these inputs to produce a good distribution of classifications, allowing us to investigate 

the outcomes of corroboration, extension, contradiction, and flagged judgements (Sections 4.2-

4.5). We also use two specific LEE inputs, RA1 and RA2.0.1.1, to further investigate how VIOLIN’s 

judgement compares to an expert identification of erroneous or redundant LEEs (Section 4.6). 

Here we expect the contradiction and flagged classification to help identify machine reading errors.  

With our Models C and D, we use the reference input (RC0 and RD0) to test the efficacy of 

VIOLIN’s corroboration and extension judgement (Sections 5.4 and 5.5). Here we would expect 

the majority of model interactions to be corroborated by LEEs sourced from the model references, 

and we also expect to be able to recover removed interactions as extensions.  

Models A, B, and C are also used to investigate the outcomes of using VIOLIN with the 

FLUTE tool, testing how both judgement and filtering can reduce the number of LEEs used to 
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extend a model.. Finally, Model G and its associated output are used to test how VIOLIN can be 

used to affect input for model extension tools such as CLARINET (Section 6.2.2). Here, we expect 

that VIOLIN will alter the size and entities of the clusters, as judgement is used to focus the scope 

of the desired extensions (in this case, extensions that are already connected to the model network). 

 

 

Figure 4-1. Metrics for our tested VIOLIN inputs(A) model metrics and LEE set curation methods, (B) 

example query terms or methods for each of our LEE sets, and (C) content of each LEE set, showing the 

number of papers and total number of LEEs per set. 

 

 

 

 

(A) 

(B) 
(C) 
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4.2 Classification of Extracted Events in Context of Baseline Model 

We show in Figure 4-2 the classification results of the LEE sets introduced in the previous 

section: (1) four sets classified with respect to the melanoma model (model A), RA1, RA2, RA3, RA4, 

and (2) three sets classified with respect to the T cell model (model B), RB1, RB2, RB3. While the 

distribution of LEEs among the four main classification categories defined in Sections 3.1.2-3.1.5 

is similar for most LEE sets, with extensions being far more prevalent than other categories, the 

distribution of classification subcategories varies.  

 

Figure 4-2. Classification distribution of our tested VIOLIN inputs 

 

In the model A case study, the distributions of classification subcategories for the LEE sets 

RA1 and RA2 are similar, while the distributions for sets RA3 and RA4 differ. This is due to both the 

size and context of the LEE sets. RA3 contains 1106 LEEs, while RA4 has only 21 LEEs (20 of 

which are unique). The query for RA3, the MAPK/ERK pathway, is also critical for the modeled 

system as changes in this pathway are found in many cancers. MAPK and ERK alone are involved 
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in 15 of the melanoma cell baseline model interactions. In contrast, the query for RA4, RPS6KB1, 

is a common kinase, but is only involved in two baseline model interactions. There are 10 hanging 

extensions in VIOLIN output for the RA4 set, among 20 extensions, caused by interactions 

involving entities which are either common in biological processes or interact with RPS6KB1: 

TERT, ERK, JNK, RAS, E2F, autophagy. On the other hand, all three LEE sets in the  model B 

case study (RB1, RB2, and RB3) have similar distribution of classification subcategories, due to the 

queries chosen; not only are queries for these LEE sets closely related to the naïve T cell 

differentiation context, but the queries also overlap with each other, all including T-cell, PTEN, 

AKT and FOXP3 terms. Sets RB2 and RB3 even share 18 LEEs from the same paper.  

The corroboration subcategory distribution is similar for all LEE sets, except RA4. The 

subclassification breakdown is shown in Figure 4-3. The most prevalent corroboration 

subcategory, weak type 3, includes LEEs with nodes that match source and target nodes of a multi-

edge path (not a single edge) in the model. The second largest subclassification of corroborations 

is weak type 2 (when an LEE matches the direction and sign of a baseline model interaction, and 

does not contradict any other attributes), due to many of the tested LEE sets not having any 

additional interaction attributes. For example, LEE sets RA1, RA2, and their subsets include only 

location attribute information, and thus, for these LEE sets VIOLIN compares only the location 

attribute to the model.  
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Figure 4-3. The corroboration sublcassification judgements of the tested VIOLIN input 

 

As can be seen in Figure 4-4, the extension subcategory judgement distributions, the 

extension subcategory distribution highlights the prevalence of the hanging subcategory in all LEE 

sets, confirming that, with the selection of relevant literature, the majority of LEEs are connected 

to the baseline model. LEE set RA2.0.1.1, which was obtained through curation of the original set 

RA2, has the highest number of internal extensions.  



 67 

 

Figure 4-4. The extension subclassification judgements of the VIOLIN input. 

 

The next most common subcategory of extensions in the VIOLIN output are full 

extensions, also illustrated in Figure 4-4. These results suggest that even when using the machine 

readers on papers that match the context of the baseline model, not all LEEs will be relevant, or 

even connected to the baseline model network. This is especially emphasized with 41% of 

extensions in set RA1 being full extensions, and also to an extent with LEEs in set RA2.0.1.1 (selected 

through curation for their relevance to baseline model) where approximately 24% of the extensions 

do not connect to the original model network directly, though they may connect to an element 

which does. We also note here that some of the full extensions are result of erroneous grounding 

of entities by machine readers, which can lead to elements being identified as “new” instead of 

matching a baseline model element. 

Of the contradictions, the predominant subcategory is a sign contradiction, except in the 

RA2.0.1.1 set, which has highest percent of attribute contradictions. Figure 4-5 shows the 

subclassification breakdowns for individual LEE sets, excepting RA4, as there were no 
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contradictions identified from this LEE set. As will be discussed later in Section 4.4, for reading 

sets RA1, RA2, RA2.0.1, and RA2.0.1.1 only, the location attribute is available. If this attribute were 

“empty”, or we had chosen not to consider it, all LEEs classified as attribute contradictions in 

Figure 4-5 would have instead been classified as either weak corroborations or specifications. This 

illustrates how the user’s classification choices affect the final VIOLIN output (this will be further 

discussed in Section 5.3). Direction contradictions make up either the smallest number of 

contradictions, or are not found in the contradictions at all, as shown for our RB sets, most likely 

due to the overall very few contradictions in these sets.  

 

Figure 4-5. The contradiction subclassification judgements of the VIOLIN input. 

 

The predominant subcategory of the flagged LEEs is the type 2 subcategory, an indirect 

LEE which corresponds to a path with one or more mismatched attributes. Figure 4-6 shows the 

subclassification breakdowns for individual LEE sets, excepting RA4, as there were no LEEs 

flagged from this set. This is expected, since the machine readers default to 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 = 
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“indirect” and self-regulations are not common, reducing the probability for flagged type 1 and 3 

subcategories. 

 

Figure 4-6. The flagged subclassification judgements of the VIOLIN input. 

 

For the two “negative” LEE sets, RB*1 and RB*2, since they were extracted from breast 

cancer-related literature, different from the context of the T cell baseline model, we expected few 

to no corroborations, few to zero contradictions, and only extensions in the VIOLIN output. The 

VIOLIN judgements of these two sets are illustrated in Figure 4-7. The RB*1 category distribution 

shows this perfectly, with only extensions in the VIOLIN output, and with 98% of those extensions 

as full extensions, not connecting to the baseline model in any way. The remaining 2% of 

extensions are hanging extensions and involve proteins which are found in many biological 

processes, such as the TGF-beta protein, and therefore, have one of the nodes in the baseline model. 

The RB*2 set includes 99% extensions, however there is also a small number of corroborations in 

this set (0.3%). This is due to the “inflammation” search term included in the query for the RB*2 

set, which is also part of the immune system response. The remaining LEEs were flagged type 2. 
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Similar to RB*1, 93% of the RB*2 extensions are full, and 7% are hanging extensions involving 

common biological entities (e.g., “mTOR promotes cell growth”). 

 

Figure 4-7. Classification breakdown and subclassification judgements for our two “negative” LEE sets 

4.3 Automated Curation of Extracted Events 

We explored the influence of curation on VIOLIN’s output, and we also compared the 

VIOLIN output for manually and automatically curated LEE sets.  

We consider LEE sets RA1, RA3, RA4, RB1, and RB3 as “raw” reading output, since they are 

obtained directly from the machine reader without manual curation and removal of LEEs. These 

sets are the fastest to assemble, but the most likely to have reading errors or irrelevant interactions. 

Even just observing the RA1 LEE classification in Figure 4-4, the percentage of full extensions is 

much higher than in the classifications of the LEE sets RA2, RA3, RA4, which are more closely 

tailored to the baseline model context.  

As described in Section 4.1, the selection of papers from which sets RA2 and RB2 were 

extracted was guided by experts. In particular, the RA2 set was created using a larger number of 
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query terms, while RB2 set was created using citations of the paper that describes the baseline 

model. Since the LEE sets RA2.0.1, RA2.0.1.1, and RB2.0.1 were obtained by manually curating and 

filtering the original sets, RA2 and RB2, thus relying on expert knowledge and manual input, they 

have a smaller number of LEEs and required a longer time to create. Figure 4-3 and Figure 4-5 

show that this careful selection for papers or LEEs that are relevant to the baseline model produces 

a higher percentage of corroborations and contradictions. Figure 4-4 shows that there is plenty of 

room for extending the melanoma baseline model. Moreover, in the RA2.0.1.1 LEE set, which was 

specifically created to be relevant to the model, most of the LEEs were classified as extensions. 

Figure 4-2 shows the difference in VIOLIN output between sets obtained using guided selection 

of papers, without any manual curation (RA2) and one with manual curation (RA2.0.1.1). 

In comparing the classification outcomes of LEE set RA2 to the manually curated RA2.0.1.1, 

we found that the corroborations and contradictions had the highest retention percentage (Figure 

4-3 and Figure 4-5). As expected, all strong corroborations were retained. Of the extensions, full 

extensions had the lowest retention, suggesting that the full extensions are the least likely to be 

useful. Furthermore, in some cases full extensions result from grounding errors, when one or both 

of the LEE nodes are improperly grounded and classified as “new” to the model.  

4.4 Classification Strategies Guided by Modeling Goals 

As can be concluded from Figure 3-3, a number of decisions, mostly related to interaction 

attributes, need to be made in order to inform VIOLIN’s classification algorithm. These decisions 

are not fixed and can often vary depending on the modeled system, the goals of modeling, or user’s 

preferences. VIOLIN allows users to choose how some of the classification decisions are made. 
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While some of the interaction attributes are critical for the classification (e.g., sign, as discussed 

in Section 3.1.3), and thus need to be considered, we were interested in exploring how much the 

decisions related to other attributes will affect the classification outcome. In Figure 4-8, we show 

the percentage of LEEs in several reading outputs where 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
= “direct”, LEEs where 

𝑎𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛′
 is non-“empty”, and LEEs where 𝑎𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚′

 is non-“empty”. Although the information 

about novel direct interactions, interaction location, and mechanism is in general very useful for 

modeling, the numbers in Figure 4-8 suggest that machine readers have a hard time extracting such 

information. Hence the depth at which VIOLIN can make comparisons is constrained due to 

machine reader limitations, leading to rare strong corroborations and specifications.  

 

Figure 4-8. Overview of attributes for different scenarios: attribute availability within the LEE sets observing 

what percentage had a “Direct” connection type (dark grey), a present location attribute (mid grey), and a 

present mechanism attribute (light grey).Pathfinding Discovery of Loops 

When enough information is available, machine readers can include the connection type 

attribute 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 as part of an LEE, indicating whether the LEE represents direct or 

indirect interaction between its source and target nodes. In models, if the connection type is 
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available, VIOLIN will use that information to set the 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 attribute and will use it in 

the classification. If there is no information about the connection type for model interactions, in 

our studies, we used 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒=”direct” as default. We made such choice as most baseline 

models are manually assembled by experts, and the likelihood of interaction ambiguity is low. 

However, if the omission of the connection type information is due to the lack of knowledge about 

the modeled system, the user can choose to set indirect connection type as a default.  

With the 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 attribute, VIOLIN can more accurately make judgements of 

LEEs with respect to a model. In Figure 3-3, we show how the classification outcomes differ due 

to the connection type. For an LEE that satisfies the necessary condition to match a baseline model 

interaction, the two interactions have the same connection type, and there is no mismatch in the 

remaining attributes, we can assume that they are the same interaction, and VIOLIN classifies this 

LEE as a strong corroboration of the model. If all the conditions are the same, except that the LEE 

has a direct connection type and the model interaction has an indirect connection type, VIOLIN 

classifies this LEE as a specification, because a known direct relationship between two elements 

is less ambiguous. In the converse case, if the LEE is indirect but the model interaction is direct, 

VIOLIN classifies this LEE as a weak corroboration, because an indirect interaction is not as 

specific as a direct relationship. Without the 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 attribute, these distinctions would be 

lost, and there would be more false corroborations or fewer specifications. 

Another important benefit of using 𝑎𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒′
 attribute is that it enables identification 

of paths, feed-forward and feedback loops in the baseline model, and between the baseline model 

and LEE sets. VIOLIN searches for paths when both the source and target from an LEE are found 

in the model, but there is no corresponding model interaction. As of right now, VIOLIN only 

judges the shortest path between the source and target. When searching for paths in the model, 
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there are several possible outcomes. The first is that an indirect LEE has a matching path in the 

model, which can be interpreted as a corroboration of that path. This is a neutral outcome, as it 

neither adds new information to the model, nor does it suggest errors in the model or in machine 

reading. In particular, such LEEs are classified as weak corroboration type 3, and as discussed 

previously and shown in Figure 4-3, this is the most prevalent corroboration subcategory in the 

studies that we conducted. Next, when the source and target node of a direct LEE match the 

beginning and end nodes of a path in the model, this indicates that there are potentially more direct 

relationships between model nodes and adding such an LEE to the model forms a feed-forward 

loop. This case is identified as an internal extension, and while it is the second-least common type 

of extension after specifications (Figure 4-4), it is important to be able to identify it when it 

appears.  

Finally, if there is an indirect LEE whose attributes mismatch a path in the model, this is 

flagged for review, although it is possible that the LEE is just representing a path different from 

the one that exists in the model. In such cases, VIOLIN allows users to decide how to treat the 

flagged LEE, that is, whether to include the conflicting indirect LEE as a baseline model extension 

or reject it to avoid complicating the model. These conflicting indirect LEEs are flagged, with type 

2 subcategory, and as seen in Figure 4-6, they are the most prevalent flagged subcategory in our 

studies. In Chapter 5.0, we investigate how these attributes influence the classification scheme. 

4.6 Reading Errors and VIOLIN output 

As described in Section 2.5.2.3, four types of errors are typically found in the machine 

reading output of biomedical literature, namely sign, direction, grounding, and omission errors. 
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Sign errors are most common in phosphorylation interactions, as machine readers make the 

assumption that phosphorylation is always a positively regulating interaction. From Figure 4-5, 

which shows a majority of contradictions are sign contradictions (with the exception of RA2.0.1.1 

LEE set), it follows that contradictions which are phosphorylation interactions are likely 

candidates for reading errors. 

Omission errors and grounding errors can both lead to wrong LEE elements. In turn, this 

can result in VIOLIN either inducing that an element is “new” with respect to the baseline model 

when there is a model element matching the true element, or in matching the element with a model 

element when the true element should be declared “new”. In the former case, VIOLIN will classify 

the LEE as an extension. However, in the latter case, VIOLIN may be able to single out reading 

errors through the contradiction and flagged classification categories. 

To explore VIOLIN’s ability to identify reading errors, for the LEE sets RA1 and RA2.0.1.1, 

we manually judged the presence of machine reading errors in the contradiction and flagged 

output, and for the flagged classification we additionally assigned all non-erroneous LEEs to an 

appropriate classification. We wanted to investigate the potential of these classifications to identify 

machine reading errors, as well as justify the use of the flagged classification. We chose the RA1 

set as it is the most general and would give us an idea of the overall prevalence of machine reading 

errors, and we chose RA2.0.1.1 because it would show us how many machine reading errors are able 

to slip through even expert judgement. We illustrate the outcomes of this investigation in Figure 

4-9. 
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Figure 4-9. Prevalence of machine reading errors in subcategories of contradiction and flagged categories, 

found manually in two LEE sets: RA1 and RA2.0.1.1. 

 

As expected, the manually curated set RA2.0.1.1 had fewer errors compared to the non-

curated set RA1. The most common reading error found in both contradictions and flagged 

interactions within the RA1 set was an omission error (Figure 4-9). None of the reading errors from 

the RA2.0.1.1 contradictions were classified as omission errors, though all of the flagged reading 

errors were omissions (Figure 4-9). We found that many omission errors come from “negative 

language” in the text such as “We couldn’t find that…”, “…did not regulate…”, “…failed to 

regulate…”, “…was regulated by [one protein] but not [the other]”. The other patterns we found 

in the omission reading errors were hypothesis statements, and element adjectives. The machine 

readers did not seem to distinguish between “mutated [entity]”, “wild-type [entity]”, and “[entity]” 

without descriptors. VIOLIN is capable of identifying these errors by classifying them as 

contradictions when both elements from the interaction are already in the model. When either the 
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regulator or regulated is not in the model, the interaction is automatically classified as an extension, 

and would require manual inspection to identify an omission error.  

Grounding errors made up 5% of the RA1 contradictions, 17% of the RA1 flagged, and 0% 

of the RA2.0.1.1 contradictions or flagged (Figure 4-9). We found two distinct grounding errors in 

the VIOLIN output. First were LEEs which contained short abbreviations. For example, m2 

macrophages were grounded to the PubChem ID for phthalic acid. Second, interactions where pH 

regulates the activity of an element almost always produced reading errors, such as “acidic 

extracellular pH causes rapid intracellular acidification and il-1beta-inducing effects” [126]. In 

these cases, pH is grounded as pancreatic prohormone. 

The second most common reading error in the RA1 contradictions and flagged interactions 

were sign errors (42% LEEs in contradictions and 33% LEEs in flagged output), and the least 

common were direction errors (5% LEEs in both the contradictions and in the flagged) (Figure 

4-9). The RA2.0.1.1 output contained four sign errors only in the contradictions and no direction 

errors in either the contradictions or flagged output (Figure 4-9). These errors almost exclusively 

result from vague language, such as interaction that describes the inhibition of another inhibitory 

interaction. Another common sign error came from phosphorylation interactions. Phosphorylation 

is assumed to be a positive regulatory process, but as is the case of TSC2 phosphorylation by AKT, 

it can also be an inhibitory interaction. This supports our assertion that contradictions which are 

phosphorylation interactions are likely machine reading errors.  

Figure 4-9 also shows the outcome of the manual classification of the flagged LEEs. The 

mixed distribution of classifications from the flagged LEEs shown in Figure 4-9 supports the need 

for this classification – the LEEs are too varied to be able to fully automate their classification 

without creating misclassified LEEs, though VIOLIN has been created with capability to classify 
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these LEEs as one of the other categories if the user chooses. While RA1 flagged LEEs produced 

the greatest number of errors, the RA1 contradictions had a greater percentage of reading errors, 

49% compared to the total number of contradictions. The most common types of errors found were 

sign and omission errors. This information can help guide users in choosing LEEs for 

consideration. 
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5.0 Further VIOLIN Evaluation 

We investigated the VIOLIN output from changing the classification parameters and input. 

In the previous chapter, we showed that VIOLIN can be effective on two different systems with a 

variety of LEE sets. We also showed the utility of the contradiction and flagged classifications, 

and how they can be used to identify reading errors. From these initial results, we found that it was 

important to further investigate the choices we made in the initial VIOLIN implementation. Here, 

we investigate how the Match Score is affected by different values (Section 5.1), how the Kind 

score is affected by different values (Section 5.2), how the classification scheme affects VIOLIN 

outcomes (Section 5.3), corroboration outcomes (Section 5.4), and extension outcomes (Section 

5.5).  

For our investigations into corroboration and extension classifications, we used models C 

(the BDNF pathway) and D (pancreatic cancer system), described in Section 4.1, and their 

reference LEE sets, RC0 and RD0. We also altered our input baseline models, removing specific 

interactions creating models C’ and D’, to investigate how well VIOLIN could recreate pathways 

from the reference literature (Section 5.5). Along with providing the context for out corroboration 

and extension testing, these inputs further show that VIOLIN is applicable to a wide range of 

systems and model types.  
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5.1 Match Score Testing 

5.1.1 Match Score Parameters 

To test the Match Score parameters, we used model A and LEE set RA2 as our input. Model 

A, already validated, acts as an ideal case for comparison, as we know that model interactions have 

been judged for biological accuracy. The LEE set RA2 is a large set, and a good representation of 

typical user input: curated to be highly relevant and lots of candidate information. Our 

classification scheme investigation makes use of several of the LEE sets introduced in Chapter 4.0, 

judged against models A and B.  

 In Section 3.2.2, we defined the Match Score values as follows: SM1 = 10 (both LEE 

entities are found in the model), SM2 = 1 (LEE introduces a new regulated element), SM3 = 100 

(LEE introduces a new regulator element), and SM4 = 0.1 (neither LEE entity is also found in the 

model). In other words, we ranked the Match cases as follows: M3 > M1 > M2 > M4. This scoring 

is based on the formula SMx = 0.1Yx, where x is from the set {0, 1, 2, 3} and Y is the evidence 

score required to move an LEE’s score from one ranking to another. In the case of our presented 

Match Score, Y=10, so an LEE must have an Evidence Score of 10 (i.e. be found in the LEE 10 

times) for its score to increase to the next highest rank. We present this as a set of default scoring 

values for general model extension, showing preference towards those LEEs with introduce new 

regulators or new information and interactions between existing model nodes. This default also 

works as a type of filtering method; LEEs with higher evidence scores are generally assumed to 

be a higher quality, and this formula considers that factor in determining the Match Score. 
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To test the impact that the score values have on the judgement outcome, we tested 20 

different sets of values to represent these criteria, shown in Table 5-1. These values were chosen 

on several different methods. Value sets B-I were calculated by the formula SM = Zx, where x is 

the ranking, and Z is an integer from 2 to 9. Value sets J-N were given as strict ranking (1,2,3,4), 

and then multiplied by factors 5, 10, 25, or 100. Value sets O-R were created as “controlled 

randomness” sets, maintaining the ranking order, but altering the differences between ranking 

values. And finally value sets S and T are for different ranking systems, where for S: M1 > M3 > 

M2 > M3, and for T: M3 = M1 > M2 > M4. Value set S represents the use case where the user 

desires to extend the model downstream of the input nodes, and value set T represents the use case 

where the user wants to add as many new nodes to the model as possible.  

For this investigation, we calculated the Total Score as  

𝐒𝐓  =  𝐒𝐄 𝐒𝐌, 5-1 

 to better analyze how the tested score values affected Match Score outcomes independent 

from other factors. Since we want the Match Score of an LEE to be affected by its Evidence Score, 

we include this factor, instead of considering the Match Score alone. 

Table 5-1. Match value sets used to test the Match Score 

Element in 

Model 

A B C D E F G H I J K L M N O P Q R S T 

Both 10 4 9 16 25 36 49 64 81 3 15 30 75 300 7 13 19 79 4 10 

Source 100 8 27 64 125 216 343 512 729 4 20 40 100 400 11 19 31 31 3 100 

Target 1 2 3 4 5 6 7 8 9 2 10 20 50 200 5 7 11 37 2 100 

Neither 0.1 1 1 1 1 1 1 1 1 1 5 10 25 100 3 3 3 3 1 1 
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5.1.2 Match Score Results 

From our tested Match Score value sets, we took the top 100 scored LEEs (calculated using 

the total score definition in Equation 5-1) and compared the LEEs in this subset pairwise for each 

value set. Figure 5-1 shows the percent overlap for each pair of outputs. From this, we found an 

exact overlap between value sets A, F, G, H, and I, and upon closer inspection, be find the VIOLIN 

outputs were identical for each of these value sets, excepting the exact total score values. Similarly, 

we found the output for value sets J, K, L, M, and N to be identical to each other. Value set S has 

the least amount of overlap with any other value set, which is to be expected, since it was chosen 

with a different use case and ranking in mind.  

 

Figure 5-1. Number of nteractions in common in the top 100 scored (greater than 50% overlap is in orange, 

greate than 90% overlap is in green) 

 



 83 

We then analyzed the scoring distributions of our tested Match Score value sets, using the 

total score defined in Equation 5-1, and then normalizing all total score values for ease of 

comparison. Figure 5-2 shows the Total Score distributions for each Match Value set. The plot 

was normalized to account for the wide range of values and allow for easier comparison between 

Value sets. The figure shows how tightly these distributions are, with value sets S and T showing 

the greatest outliers. 

 

Figure 5-2. Normalized total scores for each of our tested Match Level parameters. Parameters A,F-I were 

found to be identical to each other, and parameters J-N were found to be identical to each other.Kind Score 

Testing 

5.2.1 Kind Score Parameters 

Following from the Match Score parameterization in Section 5.1, we used model A and 

LEE set RA2 for our Kind Score parameterization as well. The Kind Score values were previously 

defined in the following way: SK1.1 = 2, SK1.2 =1, SK2.1 = 40, SK2.2 = 30, SK3 = 10, and SK4 = 20. 

Again, these values were chosen for the default use case of general model extension, showing 
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preference towards extensions and flagged interactions, which may be added to the baseline model, 

and then towards contradictions, which may indicate changes need to be made to the baseline 

model, and finally corroborations, which generally aren’t needed for model extension, unless there 

exist some novel interactions in the baseline which it would be helpful to validate during extension.  

Here, we tested six score value sets shown in Table 5-2, based off the results of the Match 

Score parameterization, shown in Section Match Score Testing. Value sets A and B are strict 

rankings, multiplied by a factor of 10 or 5, representing the median Match value orders of 

magnitude. Value sets C and D use the same ranking order, but those categories of higher 

importance to model extension where given scores based on the higher median Match value, and 

the corroborations are devalued to the lower median Match Value. Value sets E and F created 

categories, based on whether the LEE category is “more” or “less” useful. Value set E judges the 

categories in pairs: strong corroborations are more useful than weak, extensions are more useful 

than specifications, etc. Value set F judges the categories overall, deciding that extensions and 

contradictions are the most useful for model extension, specifications and flagged are of middling 

usefulness, and corroborations are least useful.  

We based these values on the median values of the Match Score so that the Kind Score can 

enhance the Total Score, but not dominate it. For this investigation, we calculated the Total score 

as defined in Equation 3-1.  
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Table 5-2. Kind value sets used to test the Kind Score 

Category A B C D E F 

Strong Corroboration 20 10 2 2 20 1 

Weak Corroboration 10 5 1 1 10 1 

Extension 60 30 40 50 20 10 

Specification 50 25 30 25 10 50 

Contradiction 30 15 10 10 10 10 

Flagged 40 20 20 20 20 5 

 

5.2.2 Kind Score Results 

We also took the top 100 scored LEEs from our tested Kind Score value sets, this time 

using the standard VIOLIN Total Score, defined in Equation 3-1; the pairwise comparisons are 

shown in Figure 5-3A. For the Kind Score, there is more than 60% overlap between any two tested 

value sets. The value sets with the lowest overlap are E and F, and this can be explained by the 

reduced number of category values in these sets – two possible values in set E and three in set F, 

compared to the six values in sets A-D. Figure 5-3B shows the distributions over the Total Score, 

and the full distributions match the trends of the top 100 scored. In this case we plotted the Total 
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Score distribution using the raw values, as the range in values was not as wide as for the Match 

Score outcomes. 

 

Figure 5-3. Results from the Kind Score Parameterization: (A) shows the overlap in the top scored (> 90  in 

green, >50 in orange) (B) shows the total score distribution.Classification Scheme testing 

Besides the classification scheme that we showed in Figure 3-3, we created two additional 

classifications schemes; all three are shown in Figure 5-4. Scheme V1 was created assuming that 

a direction mismatch (i.e. the LEE source node is found in the baseline model as the target of the 

LEE target node) may possibly identify a feedback loop, and should be flagged for review, unless 

the additional attributes are also mismatched. This scheme also leaves the interpretation of paths 

compared to direct LEEs mainly up to user judgement, classifying a direct LEE with elements 

matching the source and target nodes of a path in the model as a flagged LEE. In the case of indirect 

LEEs, this scheme assumes that mismatched attributes indicated a contradictory LEE.  

Scheme V2 made different assumptions about LEEs with correspond to model paths. 

Because of the difficulty with which machine readers identify direct LEEs (in that the language 
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usually has to be very clear and easily identified), and taking into account that biologically, this 

case may identify a feed-forward loop or provide more accurate information on the interaction 

between two elements, we chose to judge these interactions as extensions instead of flagging them 

for manual review. 

Scheme V3 made different assumptions on the meaning of mismatched attributes: for direct 

LEEs, attribute mismatches were assumed to be contradictory unless all attributes mismatched, 

because in this last case the argument can be made that with so few similarities, the LEE is likely 

a completely different interaction than presented in the model, and so should be flagged for review. 

In the case of indirect LEEs which correspond to source and target nodes of a direct model 

interaction, this scheme made the assumption that sign attribute mismatches should be flagged as 

potential feed-forward loops, but that a direction mismatch should be a contradiction unless the 

additional attributes (e.g. location) were also mismatches. This decision was made on the idea that 

if the element locations of the LEE differed from the corresponding model interaction, it’s possible 
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(though not certain) to be a completely new interaction. This scheme defined five separate 

subcategories of flagged LEEs, the greatest of any of the three schemes.  

 

Figure 5-4. The outcome chart of our three tested classification schemes compared side-by-side, including the 

different flagged subclassification definitions. Like Figure 3-3, this chart shows the possible outcomes of 

comparing an LEE to an interaction (MI) from a baseline model. 

 

We ultimately found that scheme V1 identified too many indirect LEEs as contradictions 

compared to paths found in the model, and scheme V3 was too biased against attribute mismatches. 

Our default scheme V2 strikes a balance between these two schemes, making decisive judgement 

where possible (and likely) without making too many assumptions about the contents of the LEEs. 

Figure 5-5 shows the prevalence of direct LEEs in each VIOLIN category for four LEE 

sets across our three classification schemes. With less than 1% of corroborations being direct, we 

can interpret this as LEE connection type having little correlation to the relevance of the LEE. Our 
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set RA2.0.1.1 has zero direct corroborations, but is arguably the most relevant LEE set, due to its 

curation method. However, we also note in Figure 5-5 the percentage of direct extensions increases 

as the LEE set becomes more relevantly curated, suggesting that direct LEEs may more often be 

useful to the model.  

 

Figure 5-5. The presence of direct LEEs across the main VIOLIN classifications, comparing our three tested 

classification schemes 

 

The results for the contradictions and flagged LEEs shown in Figure 5-5 demonstrate the 

importance of the classification scheme choices, and how they relate to facilitating the judgement 

on paths and the identification of loops. Figure 5-6 looks specifically at the contradictions and 

flagged LEEs, since those subclassifications are what required the most consideration in creating 

the classification scheme. This figure illustrates how the judgement choices led to the number of 

identified contradictions and flagged LEEs. Scheme V1 assumed too many contradictions, but was 

also not taking into account what is known or common about direct interactions. Scheme V3 relied 
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too much on manual judgement. We developed scheme 2 based on what is known or common 

amongst biological interactions (for example the existence of feed-forward loops), while still 

allowing for interpretation in the flagged LEEs.  

 

Figure 5-6. The number of LEEs found in contradictions and flagged classifications across our 3 classification 

schemes: (a) shows the number of contradictions in the “raw” sets, (b) shows the number of flagged in the 

“raw” set, (c) shows the number of contradictions comparing the filtering methods to their associated “raw” 

LEE sets, and (d) shows the number of flagged LEEs, comparing the filtering methods to their associated 

“raw” LEE sets 

 

Figure 5-7 shows the occurrence of phosphorylations across each category for our three 

classification schemes compared to Figure 4-5, which shows a majority of contradictions are sign 



 91 

contradictions (with the exception of RA2.0.1.1 LEE set), it follows that contradictions which are 

phosphorylation interactions are likely candidates for reading errors. 

 

Figure 5-7. The presence of phosphorylations across the main VIOLIN classification, comparing our tested 

classification schemes.  

5.3.1 VIOLIN Speed 

One of VIOLIN’s biggest assets is its speed. We investigated the processing time of 

VIOLIN inputs for each of our classification schemes. Figure 5-8 shows the average processing 

time of  VIOLIN, broken down into LEE set and model input, LEE classification, and LEE output. 

The smallest LEE sets shows the slowest input timing (Figure 5-8A), which can be attributed to a 

baseline time required to open the LEE files. Model input, and even model conversion into the 

directed graph used in the VIOLIN path-finding methods, takes only a fraction of a second (Figure 

5-8B) for both of our models, showing that VIOLIN can handle models of various sizes.  The 
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average classification time for the default scoring scheme is ~1000 LEEs/sec (Figure 5-8C). 

Assuming an expert can judge an LEE in 30 seconds, that puts VIOLIN at 30,000 times faster than 

an expert. A typical user would take closer to 60 seconds to judge a single LEE, making VIOLIN 

60,000 times faster in its judgement. The timing outcomes are even better when considering the 

time it would take an average user to find a path in the model to correspond to a given LEE. Once 

the LEEs are classified, VIOLIN quickly assembles the information into user-friendly spreadsheets 

(Figure 5-8D). 

 

Figure 5-8. The average processing time of VIOLIN.  

(A) shows the input rate for each LEE set, (B) shows the time it takes to input out models and convert them 

into directed graphs for path finding, (C) shows the classification rate for each LEE set, and (D) shows the 

output rate for each LEE set 

 

In general, three major factors of LEE processing speed are: the classification scheme, the 

number of attributes compared, and model size. In Figure 5-9, classification scheme V2 shows the 
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fastest LEE processing time. This is due to how paths and flagged interactions are treated. In 

classification V1, paths are judged more strictly by their attributes, determining what sub-

classification of corroboration or contradiction they are. In V2, a mismatched attribute between 

the path and the LEE is a flagged type 2 case, regardless of which attribute is mismatched. 

Classification V3 is slowed down by the increase in flagged sub-categories defined in Figure 5-4, 

as shown in Figure 5-9. Model A is bigger than model B, meaning that the LEE sets have to be 

compared to a larger knowledge base, and when VIOLIN is searching for paths, it takes longer to 

find a path through a larger model. The RB LEE sets also have no attributes other than element 

type, which means VIOLIN is skipping much of the attribute comparison steps, making the LEE 

judgement time even faster.  

 

Figure 5-9. Average processing times across classification schemes.  

Showing the average scoring time (left) and output time (right) for classification schemes V1, V2, and V3.  

 

While VIOLIN classification does not occur one classification category at a time, we can 

draw conclusions about how the number of computational steps correlates to classification 

categories. For example, a hanging or full extension (where one or both nodes are new to the model 

system) requires the fewest computational steps towards classification, while those LEEs that 
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require checking the model for paths result in the greatest number of computational steps. 

Pathfinding occurs when both LEE nodes are found in the model, an LEE has an indirect 

connection type, and there is no corresponding direct interaction in the model.  

5.4 Corroboration Testing 

To investigate VIOLIN’s corroborative abilities, we made use of those LEE sets created 

from references from the model publications: RC0 was created using the references from [125] used 

to build the model; of the 83 total references, only 28 were accessible by machine readers, and 

LEE set RD0 was created using 19 of  the references from [122]. The full details of these LEE sets 

are included in Appendix B. 

Figure 5-10 shows the classification distributions of these two sets. Both sets contain a 

majority of extensions, which is unsurprising. The amount of information available from a given 

paper may be more than is needed for the model assembly. In the case of the model C, the model 

itself was created to relate to major depressive disorder [125], but the BDNF pathway was 

implications in many biological functions. Interactions from these other pathways were ignored in 

creating model C. Many grounding errors were found in the reading set, relating to the TRKB 

protein. This was a central protein to model C assembly [36], and so this grounding error could 

have created several false extensions. Finally, many of the references used to create model C were 

not accessible by machine readers, and so the LEE set doesn’t not contain all of the information 

used to create the model. Our LEE set RC0 represents 34% of the reference literature for model C, 

and corroborates, 17% of the total model interactions.  
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Figure 5-10. Classification Distributions for our two corroborative sets; the LEE sets were judged against the 

original models C and D, respectively 

 

Similarly, LEE set RD0 was created from literature relevant to, but not exclusive to the 

pancreatic cancer cell. References for this model included general cancer environment data [127] 

and the ERK pathway [128], which participates in many biological processes. The authors of [122] 

also used sources outside of the 19 papers used to create RD0 in building model D. 25% of the 

model D interactions were corroborated by the RD0 set.  

For both LEE sets, we found that the contradictions were caused by reading errors. The 

flagged LEE from the RC0 set was of type 3, or a self-regulation, which was not considered useful 

by the model creators. The majority of the flagged LEEs in RD0 were of type 2, meaning that the 

LEE corresponded to a path in the model. If we assume all such LEEs to be weak corroborations 

of the more detailed model path, then these LEEs corroborate a further 6% of model D interactions.  

The extensions found in these reading sets give us information on just how much 

information is generated by machine readers, and also on the choices that experts make during 
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model assembly. Understanding these factors can help guide a user through utilizing VIOLIN as a 

corroborative tool. 

5.5 Extension Testing 

We used again our LEE sets RC0 and RD0 to test the extension utility of VIOLIN. In this 

case, we altered our input models, strategically removing interactions, and investigating how easily 

VIOLIN identifies the missing connections through the assembled information. From model C, we 

removed the protein NTRK2 which, connects to several other proteins, either directly or through 

a pathway, and we call this modified model C’ We will investigate if we can recover specifically 

the connections from BDNF to NTRK1 and NTRK2. From model D, we made used of the modified 

version presented in [28], where the authors removed the pathway from KRAS to cell proliferation, 

which we will call modified model D’, and we will investigate whether or not this pathway can be 

recovered. 

Figure 5-11 shows how these changes to the models affect VIOLIN outcomes. As expected, 

the number of corroborations decreases, and the number of extensions increases. Within the 

extensions, we are able to recover 5 of the 24 connections to NTRK2 originally found in model C, 

either from LEEs representing the model interaction as originally presented or from an LEE 

representing the endpoints of what was a model path. This is a promising outcome considering our 

LEE set RC0 represents less than half of the literature used to assemble model C. 
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Figure 5-11. Classification Distributions for our two corroborative sets; the LEE sets judged against the 

altered models C’ and D’, respectively 

 

From RD0 extensions, we were able to recover the full KRAS-proliferation pathway as 

shown in Figure 5-12. The difference between the pathway steps highlights how different sources 

represent biological interactions and pathways differently. In which case, it can be important for 

the user to identify the veracity of an identified pathway. We investigate this more deeply in 

Chapter 6.0. 

 

Figure 5-12. Representation of the KRAS-Proliferation pathway. (A) Shows the path as it was originally 

represented in model D and (B) shows how the path was recreated in model D’ by the extensions found in RD0 
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6.0 VIOLIN Variability 

In this chapter, we investigate the full utility of the VIOLIN tool. Our presented default 

values in Section 3.2 are for the general extension use case, but we investigate how different Match 

Score rankings can be applied to other modeling use cases (Section 6.1). We also investigate how 

VIOLIN integrates with other automated modeling tools as part of a larger framework, as shown 

in Figure 6-1. Using filtering methods such as FLUTE [106], we can use expertly curated databases 

to select LEEs which have verified for accuracy (Section 6.2.1). The output from VIOLIN can be 

used as input for automated model extension tools such as CLARINET [111] (Section 6.2.2). 

These tools help automate the model building and extension process, greatly reduce the need for 

human curation and assembly of knowledge. 

 

Figure 6-1. How VIOLIN fits in to a larger modeling framework with other automated modeling tools. 

 

To investigate potential default scoring values for other modeling use cases, we used the 

inputs from the scoring parametrization of Chapter 5.0: model A and LEE set RA2. To investigate 
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how VIOLIN would integrate with the FLUTE tool, we used a sampling of our benchmark inputs: 

choosing baseline models A (melanoma), B (T-cells), and C (BDNF pathway), and then choosing 

3 LEE sets for each, choosing those that were assembled in the manner of a typical user. We did 

also include the LEE set RA2.0.1.1 for this section, to investigate how an automated filter would 

compare to expert judgement. And then for the final section of this chapter, we used baseline model 

G (glioblastoma multiforme), and two associated LEE sets to investigate how VIOLIN output 

could be used in automated model extension methods. 

6.1 Use Cases for Other Scoring Values 

We investigated the potential of four default Match Score value sets: our original default 

value set for general extension, a value set for breadth-first extension (seeking to enlarge the model 

network), a value set for depth-first extension (seeking to increase the detail of the baseline model), 

and model validation (for a previously unvalidated baseline model). We outline the value sets for 

these cases in Table 6-1. 

Table 6-1. Match Score values for different use cases 

Elements in Model General Extension Breadth Extension Depth Extension Validation 

Both 10 10 100 100 

Target 100 100 10 1 

Source 1 100 10 1 

Neither 0.1 1 0.1 1 
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In Figure 6-2, we show the outcomes of these different use cases. For the Match Score 

schemes representing our four use cases, we compared both the total score trends and the scoring 

values. In the top 100 scored, there was less than 50% overlap between any two Match schemes 

except for depth extension and model validation. Figure 6-2A shows the pairwise comparison for 

each use case. This makes sense because both of these use cases rely on LEEs where both the 

source and target are in the model, which is reflected in the scheme values in Table 6-1. Figure 

6-2B shows the overall scoring distributions for each Match Scheme, and these shows more 

variation than that of the Match and Kind Score value sets, which differed in value but not in 

ranking.  

 

Figure 6-2. VIOLIN outcomes of our different modeling use cases. (A) shows the overlap between the top 100 

scored LEEs, (greater than 50 overlap is in orange, greater than 90 overlap is in green). (B) shows the Total 

Score distribution for each approach, and (C) shows how the Total score for a specified LEE differs between 

the use cases. 
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Finally, before judging with VIOLIN, every LEE in the set was given an index number, 

and we used these indices to compare how the LEE was scored for each Match scheme. The results 

of this comparison are shown in Figure 6-2C. This further shows how the judgement outcomes are 

influenced by the user’s choices. 

6.2 Integration into Larger Framework 

6.2.1 Integration with Filtering Methods 

FLUTE (FiLter for Understanding True Events) [106], is a tool that can use public 

databases to judge the veracity of machine reading output. Figure 6-3 shows the pipeline of 

FLUTE, which takes a set of literature extracted events (or LEEs), uses information from public 

databases like STRING [55], STITCH [57], and Gene Ontology [7] to score these LEEs, and taking 

a thresholding value from the user, outputs those LEEs which meet the specified criteria. We took 

12 of our LEE sets across three model systems (models A, B, and C) and filtered them with the 

FLUTE tool before judging the LEEs with VIOLIN. FLUTE kept an LEE in the set if it finds it in 

at least one of the supported databases. 
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Figure 6-3. Schematic of the FLUTE pipeline from [19]. 

 

We also investigated how many LEEs remain in a set after applying a specified filtering 

criteria, represented as the number of remaining LEEs relating to the number in the original LEE 

set (retention percentage). LEE sets RA2.0.1 and RB2.0.1 were created from LEE sets RA2 and RB2, 

respectively, by removing those LEEs representing PCIs or PBIs, and RA2.0.1.1, was created by 

removing RA2.0.1 of redundant or irrelevant LEEs, as outlined in Appendix B. We designate the 

associated FLUTE-filtered LEE sets as RA2.1 and RB2.1, respectively.  

We initially found that using FLUTE to filter and LEE set removes many interactions, in 

some instances, more than half. Figure 6-4A shows that even for our RA2.0.1.1 set, which was already 

manually judged for usefulness, was reduced by 61% when filtered. Figure 6-4B.  shows how the 

filtering propagates through each classification subcategory, giving the average retention 

percentage. Overall, corroborations have the highest retention, and extensions have the lowest. 

This we would expect, since extensions are most likely to be novel or unverified interactions. 
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Within the subcategories, strong corroborations and specifications have the lowest retention, 

though we should note that these classifications rely on the comparison of additional attributes, of 

which only three of our LEE sets have available, as described in Section 4.4. 

 

Figure 6-4. VIOLIN outcomes in conjunction with FLUTE filtering methods. (A) shows the number of LEEs 

for each set, with and without filtering. (B) shows the average retention rate for each classification category 

across all 12 LEE sets.  

 

 Figure 6-5 shows the VIOLIN output results for each LEE in both the unfiltered and 

filtered sets. Figure 6-5A and Figure 6-5B show how few strong corroborations and specifications 

were found even in the unfiltered sets. Similarly, the corroboration subcategory with the next 

lowest retention, weak type 1, also relies on additional attribute comparisons, as described in the 

Section 3.1.2.  

The attribute contradiction subcategory was only calculated based on those three LEE sets 

which were comparing an additional attribute (location), and this small sample size may have 

artificially inflated the retention percentage. Figure 6-5C shows that direction and attribute 
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contradictions were found for only three of our LEE sets, and of the sign contradictions, no LEE 

judged as such from our BDNF-related LEE sets was retained. 

 

Figure 6-5. VIOLIN output results for each LEE set, broken down my classification category. (A) shows the 

subclassification categories of corroborations, (B) of extensions, (C) of contradictions, and (D) of flagged. 

 

The corroboration category with the highest retention, weak type 3, occurs when the source 

and target nodes of an LEE matches the source node and end target node of a path in the model, 

as defined in Section 2.1.2. Figure 6-5D shows that of the flagged subcategories, type 2 is the only 

subcategory which retains at least one LEE for every LEE set filtered. Flagged type 2 describes an 

LEE whose source and target nodes match the source and end target of a path in the model, but 

there are one or more mismatched attributes (compared attribute, regulation sign, or regulation 

direction). We initially chose this distinction because this case could identify a feed forward of 

feedback loop, it could be caused by a machine reading error, or it may be a contradiction, some 

 

 
 

 

(A) 

(C) 

(B) 

(D) 
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new information identifying a more powerful direct interaction between two elements. The 

judgement requires expert knowledge to make, and so is flagged for further review. 

Figure 6-6 shows the retention percentage of different filtering methods for LEE sets RA2 

and RB2. In Figure 6-6A, we show that removing LEEs which involve chemicals or biological 

processes is the least stringent. The contradictions show the highest retention percentage in this 

method due to the components of modeled systems. Only 10% of model A nodes, and 5% of model 

B nodes are either chemicals or biological processes (model B in fact contains no nodes that 

represent biological processes), and so we would expect very few if not zero contradictions 

involving chemicals or biological processes. 

 

Figure 6-6. Showing the retention percentages across the subclassification categories. (A) Shows retention in 

RA2.1, RA2.0.1, and RA2.0.1.1 from RA2 and (B) shows retention in RB2.1 and RB2.0.1 from RB2. 

Figure 6-6 also highlights the differences between automatic filtering with FLUTE (RA2.1) 

and manual curation (RA2.0.1.1). The similarities between these retention percentages support the 
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expertise of our manual curator, and the differences give us some insight into the choices of a 

VIOLIN user. FLUTE filtered out a higher percentage of weak corroboration type 3 LEEs, those 

indirect LEEs which correspond to a model path (Figure 6-6B). This could be attributed to 

databases not storing much information about paths between elements. FLUTE retained a higher 

percentage of flagged LEEs, specifically of flagged types 1 and 2 (Figure 6-6B). Flagged type 1 

identifies potential feedback loops, which the expert did not find useful for the model. Flagged 

type 2 identifies potential feed-forward loops, of which the expert only judged some useful for the 

model. This distinction highlights the usefulness of VIOLIN’s identification of feedback and feed-

forward loops, as they may be biologically correct, but not desired for the model specifications. 

FLUTE had lower retention percentages than expert curation for specification and attribute 

contradiction subcategories (Figure 6-6B), which may be explained by a lack of attribute 

information in databases (in the case of our study, the compared attribute was interaction location).  

The expert curator who selected the RA2.0.1.1 set from RA2 chose to accept novel interactions 

as they could add previously unknown connections to the baseline model. On the other hand, 

FLUTE relies on the knowledge in databases, and therefore, it is more likely that novel LEEs are 

filtered out due to not yet being verified or added to databases.  

6.2.2 Integration with a Model Extension Tool 

CLARINET (CLARIfying NETworks) [111] is a tool for automatically extending models 

using information from the published literature. CLARINET takes a baseline model and a set of 

LEEs, and from the LEEs looks at not only how the LEEs relate to the model, but how they relate 

to each other, and from this CLARINET generates candidate extension clusters, which are then 
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ranked, and from that the user can find the best clusters to use to extend the baseline model (Figure 

6-7). 

 

Figure 6-7. Schematic of the CLARINET framework 

 

To investigate how VIOLIN output can be used with this tool, we introduce our final 

benchmarking input: a model of glioblastoma multiforme (GBM), which we call model G, and 

two associated LEE sets, RG1 and RG2. These LEE sets were created by querying lists of proteins 

related to the GBM system through REACH Explorer, and then assembling machine reading 

output from the resultant papers using INDRA. The full details of the model are found in 7.0, and 

the details of the LEE sets are found in Appendix B. For each LEE set, we judged them first with 

VIOLIN, and then used the VIOLIN output as input for the CLARINET tool. In total, we created 

four sets of input from each LEE set: the raw input from the unjudged LEE set, the unique LEEs 

from the set, making use of VIOLIN’s Evidence Score calculation and duplicate LEE 

identification, the extensions from the judged VIOLIN output, and the “connected” extensions, 

i.e., the hanging, internal, and specification extensions from the VIOLIN output. Table 6-2 shows 
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the number of LEEs in each set of input. Of our set RG1 only about 60% of the LEEs are unique, 

and similarly from RG2, only about 65% of LEEs are unique. 

Table 6-2. Number of LEEs for Each CLARINET Input 

LEE Set Raw Unique Extensions 

Connected 

Extensions 

RG1 10131 6214 6064 1779 

RG2 25857 17034 16718 4905 

 

Figure 6-8 shows the results of VIOLIN judgement on these two reading sets. From Figure 

6-8A we find that a vast majority of LEEs are judged as extensions. In Figure 6-8B, we see that 

the majority of these extensions are full. However, they may still connect to the model system, if 

one or both the nodes from a full extension LEE are found in a hanging LEE elsewhere in the set, 

or even if there is a path between several LEEs from a full extension LEE to the model system. 

 

Figure 6-8. VIOLIN judgement of RG1 and RG2. (A) shows the classification distribution, and (B) shows the 

subclassification distribution of the extensions. 
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And this is what drives our investigation with CLARINET. Figure 6-9 shows the resultant 

clusters generated by each of our input sets. As expected, the cluster sizes decrease in size as the 

input sets get smaller. In addition to the sizes, the cluster centers changed as the composition of 

the input set changed. For both RG1 and RG2, one of the clusters from the raw input was not retained 

in the unique LEE input, and in the case of RG2, a new cluster is introduced. This suggests that the 

frequency of an LEE has an influence on its use to the system. We investigated this with the 

Evidence Score we defined in Section 3.2.1, that the usefulness or relevance of an LEE is related 

to its frequency. Though we must note than in some cases, a high Evidence Score can be an 

indication of how ubiquitous an interaction is, or the focus of the source text (i.e., a paper on a 

focused topic will likely repeat a biological interaction).  

For LEE set RG1, clusters centered around Akt are identified in the raw, unique LEE, and 

extensions input, as shown in Figure 6-9, but the clusters generated from the connected extensions 

center introduce two completely new centers, PI3K and PTEN proteins. For set RG2, A cluster 

centered around ERK is not identified in the raw set, but one is identified for the unique, 

extensions, and connected extensions inputs.  
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Figure 6-9. Cluster outputs from CLARINET for each of our input sets 

 

These results tell us about how clusters can be generated with CLARINET, and how 

different modeling goals may determine which input set is most relevant. Figure 6-9 shows that 

etoposide and LPS, two chemicals used in cancer treatments and are not found in the baseline 

model G, are identified as significant addition to from the raw and unique output. The clusters 

from the extensions and connected extensions input are centered around nodes already found in 

the model. This suggests that using VIOLIN to first judge an LEE set can narrow the scope of 

extension – if one wanted a depth-first extension as described in Section 6.1, considering only 

connected extensions, or even taking a narrower focus of just internal extensions would allow for 

a tightly controlled extension. Using the full set of extensions as input would allow for more 

breadth in the extension of the baseline model.  

The benefit of using the raw and unique outputs lies in the other VIOLIN classifications, 

namely the corroborations. By having corroborations in the candidate extension LEEs, 
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CLARINET can assemble clusters that connect in a more abstract way through interactions already 

found in the model. 
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7.0 Conclusions & Future Work 

In this work, we introduced a tool for the fast, automated judgement of literature 

information as it relates to a baseline model, taking machine reading output and a baseline model 

and producing a classified output with numerical scores. In Chapter 1.0, we identified the current 

computational methods used in biological model building, and how they fit into the model-building 

process of question identification, information curation, model assembly, model extension, model 

testing and analysis, and eventual answering of the question. We highlighted how these tools 

improve and automate the modeling process, and also where they fall short of user need. We 

showed how the information available from the literature and from public databases is too vast for 

easy human curation. We also proposed how the VIOLIN tool can address these needs, and 

improve the speed and accuracy of comparing new information to an existing baseline. 

In Chapter 2.0, we outlined the process by which VIOLIN carries out this task. We 

assembled benchmark baseline model and LEE input from various sources and systems to 

represent typical user input. Our multi-tier scoring method classifies information on a deeper level 

than other tools currently available. Our implementation of VIOLIN is supported by extensive 

online documentation, open source tutorials, and example input. In Chapter 4.0, we showed how 

the novel path-finding method of VIOLIN allows for the identification of potential feed-forward 

and feedback loops. We also evaluated the stability of our scoring metrics and our classification 

scheme choices, making sure they hold up against a variety of inputs. We developed VIOLIN in 

the context of the already available information databases and tools, making sure that VIOLIN is 

compatible within the larger network of model-building resources. We introduced methods of 

using VIOLIN for multiple modeling goals, and for using VIOLIN within a larger modeling 
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framework, integrating VIOLIN with a filtering tool that can be used to further increase the 

relevance and usefulness of LEEs considered, and showing how VIOLIN output can be utilized as 

input for automated model extension tools.  

Our results showed the effectiveness of VIOLIN on a variety of systems. In Our developed 

tool was applied to models of melanoma, T cell differentiation, major depressive disorder, 

pancreatic cancer, and glioblastoma, created by varying methods and varying levels of detail. Our 

results also showed how machine reading output, and in particular machine reading errors, 

propagate through VIOLIN judgement. In Chapter 5.0, we showed further evaluation of VIOLIN’s 

methods, parametrizing the Kind and Match scores, comparing multiple classification judgement 

schemes, and investigating the outcomes of VIOLIN’s identification of corroborations and 

extensions, and in Chapter 6.0, we showed the effectiveness of using VIOLIN for multiple 

modeling goals, and it’s potential to integrate with other modeling tools. 

7.1 Future Work 

As future work, our first priority is to further increase the compatibility of VIOLIN, adding 

the functionality to transform between the user-friendly spreadsheet formats presented here and 

the commonly used SBML [77], SBML-qual [78], and BEL [1] representation formats. Adding 

this functionality will allow VIOLIN to take input from virtually all the commonly used modeling 

tools available, expanding its applications further. Currently in development are methods in 

progress to transform between the BioRECIPES [13] format and the SBML and SBML-qual [77, 

78] formats, but the challenges for this are differences between the two formats, such as the more 

mechanistic details usually presented in SBML. The ultimate goal would be to integrate into 
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VIOLIN the capability to take as input the major representation formats (BioRECIPES, BEL, 

SBML, SBML-qual, node-edge list), and compare them to machine reading output, user-

assembled information, or even other models. To that end, we also aim extend the utility of 

VIOLIN towards the level 3 comparison described in Section 1.2, showing use cases of VIOLIN 

comparing a small baseline model to a larger, validated network or knowledge base. 

We also plan to further investigate further capabilities of the Evidence Score. In this work, 

we implemented the Evidence Score based on the presence of recurring LEEs. However, we would 

like to investigate how we could create a more complex Evidence Score calculation taking into 

consideration such information as the evidence publication date or evidence source (journal versus 

database versus expert knowledge).   

Expanding on the integration methods we presented in Chapter 6.0, we hope to further 

integrate VIOLIN as part of a fully automated model building and extension system. The VIOLIN 

tool can be applied to increasing understanding of diseases, identifying effectiveness of disease 

treatments, and even be applied on the larger modeling scale outside of biology.  

Finally, to increase the utility of VIOLIN, we hope to suggest further scoring scheme input 

values for various use cases and implement a graphic user interface for VIOLIN use. This would 

make VIOLIN accessible to not only a wider range of modeling uses, but to a wider range of users, 

requiring less knowledge of programming syntax. 
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Appendix A Input Model Descriptions 

Melanoma cell model (A). A discrete model of the melanoma SkMel-133 cell line was 

manually created based on the work from Korkut et al. [123], in which the authors performed 

DNA, RNA, and protein analysis on primary and metastatic melanomas from 331 patients. Their 

investigation focused on four specific genomic subtypes: mutant BRAF, mutant RAS, mutant NF1, 

and triple wild type. The goal of both the wet lab experiments and the model analysis was to 

investigate potential immunotherapies. Korkut et al. were able to identify additional subtypes that 

may benefit from MAPK and RTK inhibition therapies. The model consists of 255 nodes and 325 

edges, with 54 input nodes (those which do not have regulators) and 91 output nodes (those which 

do not regulate other elements). This model includes PPIs, chemical regulation, the mRNA-gene-

protein cascade, and regulations of and by biological processes such as apoptosis. Specific 

interaction mechanisms were not available for this model. We used the BioRECIPES [13] tabular 

format to represent the model. 

Naïve T cell differentiation model (B). A model of the circuitry that controls the 

differentiation of naïve T cells into regulatory (Treg) and helper (Th) cells was published in Hawse 

et al. [124]. This model, with 61 nodes and 89 edges, 10 input elements, and 4 output elements, 

was manually created and confirmed by experimental results, investigating cellular response 

signals, such as extracellular stimulation. Model creation focused on the early steps of T cell 

activation, and the suppression or generation of regulatory T cells (Treg). The model connects the 

Akt-mTOR pathway to Treg development and shows the T cell receptor (TCR) pathways, 

including the activation and inhibition of FOXP3, leading to different T cell fates. In contrast to 

the melanoma cell model, this model includes almost exclusively protein-protein interactions, with 



 116 

very few (three) chemical nodes. Most of the elements are assumed to have two main levels of 

activity, and are therefore represented with Boolean variables, and their update rules are logic 

functions. This model was also represented in the BioRECIPES tabular format. 

Major depressive disorder model (C). A model of the brain-derived neurotrophic factor 

(BDNF) pathway as it relates to Major Depressive Disorder (MDD), published on NDEx [69] by 

Sandhya et al. [125]. BDNF has been linked to energy metabolism, memory, Alzheimers, and 

Huntington’s Disease. This model consists of 72 nodes, 82 edges, 23 input elements, and 31 output 

elements, and created from expert literature. This model represents both the BDNF/TrkB and 

BDNF/p75NTR signaling pathways, creating a network or protein-protein interactions. The goal 

of this model was to assemble a network pathway to better direct scientific investigations of this 

system. It was published as a node-edge list and transformed by VIOLIN for judgement. 

Pancreatic cancer cell model (D). A discrete model of the signaling pathways, 

metabolism, and microenvironment of pancreatic cancer was created by Telmer et al. [122], 

assembled from expert literature. This model was simulated over time and initialized with 

processes such as apoptosis, autophagy, immune response, etc. to investigate possible treatment 

therapies. This model, with 236 nodes, 316 edges, 99 input nodes, and 73 output nodes, was 

assembled from 19 core papers, which in turn cited 2,158 paper, was assembled manually from 

the information in these references. Model development was centered around the Hallmarks of 

Cancer [127], as was also a foundation for model building tools and methodologies. Like the 

melanoma model, this model includes PPIs and PBIs, as well as cell cycle progression. It was 

represented in the BioRECIPEs format. 

Glioblastoma multiforme model (G). A model network of Glioblastoma multiforme, 

assembled by Holtzapple et al [23]. This model was created by a combination of manual assembly, 
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automated assembly, automated extension, and automated verification methods, using tools such 

as FLUTE [106], INDRA [2], PCnet [61], as well as relevant papers and databases. This model 

has 237 nodes, 366 edges, 59 input nodes, and 90 output nodes. The goal of this model was to 

showcase a workflow for using open-source resources for network building and verification to 

understand the signaling pathways of GBM. 
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Appendix B Input LEE Sets 

Appendix Table 1. LEE set parameters 

LEE Set Model System Curation 

Method 

Query Terms Number 

of LEEs 

RA1 

Skel-133 

melanoma 

REACH General system query 131445 

RA2 REACH 

Explorer & 

Fetch tools 

MEK, ERK, AKT, GSK3, P70RSK, S6, CDK4, 

4EBP1, YB1, SRC, CHK2, MTOR, PI3K 

6305 

RA2.1 FLUTE RA2 filtered with FLUTE 902 

RA2.0.1 Manual RA2 removed of PCIs and PBIs 2876 

RA2.1.1 FLUTE RA2.0.1 filtered with FLUTE 785 

RA2.0.1.1 Manual RA2.0.1 removed of redundant or irrelevant LEEs 1102 

RA2.1.1.1 FLUTE RA2.0.1.1 filtered with FLUTE 384 

RA3 INDRA MAPK/ERK pathway 1106 

RA4 INDRA RPS6K1 21 

RB0 

T-cell 

differentiation 

INDRA Machine Reading output from Hawse et al. [34] 

references 

188 

RB0.1 FLUTE RB0 filtered with FLUTE 84 

RB0.0.1 Manual RB2 removed of PBIs and contradictions 117 

RB0.1.1 FLUTE RB0.0.1 filtered with FLUTE 58 

RB1 INDRA PTEN 711 

RB1.1 FLUTE RB1 filtered with FLUTE 81 

RB2 INDRA T-cell, PTEN, AKT, FOXO 293 
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Appendix Table 1. (continued) 

RB2.1 

T-cell 

differentiaion 

FLUTE RB2 filtered with FLUTE 39 

RB*1 INDRA Breast Cancer, DNA repair, Autophagy, Cancer 1336 

RB*2 INDRA DNA repair, BRCA1, ADAM17, inflammation 865 

RC0 

BDNF pathway 

INDRA References from Sandhya et al. [36] 380 

RC0.1 FLUTE RC0 filtered with FLUTE 20 

RC1 INDRA BDNF, NTRK, MDD, NFkB, TRK 1830 

RC1.1 FLUTE RC1 filtered with FLUTE 123 

RC2 INDRA MEF2A, MEF2C 789 

RC2.1 FLUTE RC2 filtered with FLUTE 38 

RC3 INDRA JUN, c-JUN 2521 

RC3.1 FLUTE RC3 filtered with FLUTE 44 

RD0 Pancreatic 

cancer cell 

INDRA References from Telmer er al. [33] 706 

RG1 

Glioblastoma 

multiforme 

INDRA TERT, TP53, ATRX, EGFR, PTEN, IDH1, 

PDGFRA, NF1, NEFL, GABRA1, SYT1, 

SLC12A5, RB, PI3K/AKT, MGMT, citrate, daxx 

10131 

RG2 INDRA Sos, VEGFA, CDK1, MCHR, MCHR2, ADCY1, 

MEK, CAM, ERK, ECM, ARF, MAPK, Raf, 

Ras, TGF, TGFa, IGF-1, p48, p21, GADD45, 

POLK, PLC, Shc 

25857 

 



 120 

Appendix C Example Typical Baseline Model 

Here we illustrate how one of our baseline models (model C) was taken from NDEx, saved 

into a spreadsheet file, and then transformed upon input within VIOLIN. Many models on tbe 

NDEx database can be viewed as a node-edge list spreadsheet, as shown in Appendix Figure 1. 

 

Appendix Figure 1. Model C as it is presented on the NDEx database 

 

While NDEx does not currently support the ability to download this spreadsheet directly, 

it’s very easy to copy into a CSV or Excel file, as shown in Appendix Table 2. The node types and 

standardized IDs are found in a separate “node” spreadsheet on the NDEx database. 
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Appendix Table 2. The model information copied from NDEx to a spreadsheet that can be saved as an input 

file for VIOLIN 

Source Node Source Type Source ID Target Node Target Type Target ID 

ADAM17 Protein P78536 NGFR Protein P08138 

AKT1 Protein P31749 BAD Protein Q92934 

AKT1 Protein P31749 YBX1 Protein P67809 

BDNF Protein P23560 CPE Protein P16870 

 

Finally, this node-edge list is easily transformed in VIOLIN to the BioRECIPES format, 

shown in Appendix Table 3. In this case, we used the evidence text for each model edge to 

manually determine and add the connection type attributes to this model. And since this model did 

not give specific variable names to each node, the common element name was used as the variable 

names, which are used in the VIOLIN path-finding function. 

 

Appendix Table 3. Model C transformed into the BioRECIPES format 

Element 

Name 

Element 

Type 

Element 

IDs 

Variable Positive 

Regulators 

Positive 

Connection 

Type 

Negative 

Regulators 

Negative 

Connection 

Type 

ADAM17 Protein P78536 ADAM17     

AKT1 Protein P31749 AKT1     

BAD Protein Q92934 BAD AKT1,RPS6KA3 D,D   

BDNF Protein P23560 BDNF NTRK2 D   
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