
Techniques to Enhance Abstractive Summarization Model Training for Low

Resource Domains

by

Ahmed Magooda

B.S in Computer Engineering, Cairo University, 2011

M.S. in Computer Engineering, Cairo University, 2016

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Ahmed Magooda

It was defended on

March 4, 2022

and approved by

Diane Litman, Department of Computer Science

Adriana Kovashka, Department of Computer Science

Milos Hauskrecht, Department of Computer Science

He Daqing, Department of Informatics and Networked Systems

ii

Copyright © by Ahmed Magooda

2022

iii

Techniques to Enhance Abstractive Summarization Model Training for Low

Resource Domains

Ahmed Magooda, PhD

University of Pittsburgh, 2022

Nowadays, the amount of information is growing exponentially, and it is challenging to

digest even the information for a particular topic. Summarization can reduce the information

into a handful of paragraphs, helping human readers digest information easier. Automatic

summarization spans different techniques (abstractive, extractive, phrase extractive, etc.).

Abstractive summarization specially aims to mimic how humans summarize, as it aims to

summarize a large amount of text into a readable, comprehensive summary. Abstractive sum-

marization has benefited from recent advances in Machine learning and Natural Language

Processing. However, the majority of prior studies focus on data-rich domains, where large

datasets are available. On the other hand, very few studies focus on data scarce domains.

A typical practical issue that is rendered in such domains is model overfitting. Training

complex models using a few samples can easily lead to overfitting. As a step towards reme-

dying these shortcomings, this thesis aims to enhance abstractive summarization models in

low-resource settings by tackling three challenges.

1-Can we adapt widely used data augmentation/synthesis techniques to abstractive summa-

rization to remedy the scarceness issue?

2- How can we benefit from domain transfer or pretraining, and what can be a helpful strat-

egy to do it more efficiently?

3- Can we extract additional information from the data and to use it more effectively?

This thesis first proposes new data synthesis (augmentation) models, novel techniques

to synthesize new data for model training. We then introduced a variant of a recent data

augmentation technique to be used in generative tasks. Additionally, we explored the utility

of using curriculum learning to both improve pretraining and fine tuning processes. Finally,

to overcome the third challenge, we propose integrating the summarization model into a

iv

multitask learning setting. We also show that some auxiliary tasks can consistently im-

prove abstractive summarization in a low resource setting. We finally combine multitask

learning and data augmentation to observe if the combination would be more helpful than

each approach in isolation. We ultimately showed that combining more than one technique

can introduce some improvements compared to a single technique. However, overall, using

techniques in isolation leads to more consistent improvements.

v

Table of Contents

Preface . xvii

1.0 Introduction . 1

1.1 Contributions . 4

2.0 Datasets . 5

2.1 CourseMirror (CM)1 Summarization . 5

2.1.1 Description . 5

2.1.2 Usage . 11

2.2 CourseMirror (CM)2 Specificity/Quality 12

2.2.1 Description . 12

2.2.2 Usage . 14

2.3 Amazon/Yelp (AY)3 Opinion Abstractive Summarization 14

2.3.1 Description . 14

2.3.2 Usage . 18

2.4 CNN/DailyMail Summarization . 18

2.4.1 Description . 18

2.4.2 Usage . 19

2.5 Microsoft Paraphrasing . 21

2.5.1 Description . 21

2.5.2 Usage . 21

3.0 Related Work . 23

3.1 Extractive Summarization . 23

3.2 Abstractive Summarization . 24

3.2.1 Abstractive Summarization for Low Resource Data 25

3.2.2 Domain Transfer in Abstractive Summarization 26

1We refer to CourseMirror as CM for short
2We refer to CourseMirror as CM for short
3We refer to Amazon/Yelp as AY for short

vi

3.2.3 Templates in Abstractive Summarization 27

3.3 Phrase Summarization . 27

3.4 Data Augmentation . 28

3.5 Curriculum Learning . 29

3.6 Multitask Learning . 30

3.7 Evaluation . 30

4.0 Template-Based Data Synthesis and Domain Transfer Through Pre-

training (Data-Based Direction) (Published in FLAIRS-33 [57]) 32

4.1 Introduction . 32

4.2 Explored Approaches . 33

4.2.1 Domain Transfer . 33

4.2.2 Data Synthesis . 33

4.3 Proposed Template-Based Synthesis Model 34

4.3.1 Model Structure . 34

4.3.2 Model Training . 35

4.3.3 Model Usage . 36

4.4 Experiments . 36

4.4.1 Extractive Baselines (for answering Q1) 37

4.4.2 Domain Transfer (for answering Q2, Q5) 37

4.4.3 Synthesis Baseline (for answering Q3, Q4) 39

4.4.4 Template Synthesis Model (for answering Q4, Q5) 39

4.4.5 Template-based Summarization (for answering Q6) 41

4.5 Results . 41

4.5.1 ROUGE Evaluation Results . 41

4.5.2 Human Evaluation Results . 46

4.6 Conclusion . 46

5.0 Mitigating Data Scarceness through Data Synthesis, Augmentation

and Curriculum for Abstractive Summarization (Data-Based Direction

Cont.) (Published in Findings of EMNLP 2021) [59] 48

5.1 Introduction . 48

vii

5.2 Datasets . 49

5.3 Summarization Models Used . 49

5.4 Proposed Approach . 50

5.4.1 Data Augmentation . 50

5.4.1.1 Baselines . 50

5.4.1.2 Paraphrasing with GPT-2 51

5.4.1.3 Mixtext for text generation (MixGEN) 52

5.4.2 Curriculum Learning . 54

5.4.2.1 Specificity . 55

5.4.2.2 ROUGE . 55

5.5 Experiments . 56

5.5.1 Parameters . 56

5.5.1.1 Baselines . 56

5.5.1.2 Paraphrasing with GPT-2 56

5.5.1.3 MixGEN . 56

5.5.1.4 Curriculum learning . 57

5.5.2 Model Training . 57

5.6 Results . 58

5.7 Shuffling and Synthesis Analysis (Answering Question Q4) 62

5.8 Conclusion . 65

6.0 Improving Abstractive SummarizationWith Multitask Learning (Model

Based Direction) (Published in Findings of EMNLP 2021) [60] 67

6.1 Introduction . 67

6.2 Datasets . 68

6.3 Summarization Models Used . 70

6.4 Proposed Models . 70

6.4.1 Model Base . 70

6.4.1.1 BERT . 70

6.4.1.2 T5-Transformer . 70

6.4.1.3 BART . 71

viii

6.4.2 BERT Multitask Integration . 71

6.4.2.1 Shared BERT encoder . 71

6.4.2.2 Abstractive summarization 72

6.4.2.3 Extractive summarization . 72

6.4.2.4 Concept detection . 72

6.4.2.5 Paraphrase detection . 73

6.4.2.6 Language modeling . 74

6.4.3 T5 Multitask Integration . 74

6.4.3.1 Fine tune T5 on abstractive task 74

6.4.3.2 Mixture of tasks training . 75

6.4.3.3 Intermediate task transfer 75

6.4.4 BART Multitask Integration . 75

6.5 Experimental Setup . 77

6.5.1 Datasets . 77

6.5.2 Optimizer . 77

6.5.3 T5 Parameters and Training . 78

6.5.4 BERT Parameters and Training . 78

6.5.5 BART Parameters and Training . 79

6.5.6 Evaluation Metrics . 79

6.6 Results and Discussion . 79

6.6.1 Automatic Evaluation . 79

6.6.2 Human Evaluation . 84

6.7 Analysis . 88

6.7.1 Concept Distribution . 88

6.7.2 Abstractiveness . 89

6.8 Conclusion . 91

7.0 Multitask Learning and Data Augmentation for Abstractive Summa-

rization (Combining Data-Based and Model-Based Directions) 93

7.1 Introduction . 93

7.2 Summarization Models . 94

ix

7.3 Datasets . 94

7.4 Experimental Setup . 95

7.4.1 Set 1: Multitask Learning with Single Augmentation Technique (an-

swering questions Q1, and Q2) . 95

7.4.2 Set 2: Multitask Learning with Multiple Augmentation Techniques

(answering question Q3) . 95

7.4.3 Model Training . 96

7.5 Results . 96

7.5.1 Set 1 - Results (answering questions Q1, and Q2) 96

7.5.2 Set 2 - Results (answering question Q3) 99

7.6 Analysis . 102

7.6.1 Named Entities . 102

7.6.1.1 Named entity extraction . 103

7.6.1.2 Most frequent named entities 104

7.6.1.3 Filtering named entities . 105

7.6.1.4 Named entities distribution 106

7.6.1.5 Conclusion of analysis . 109

7.7 Conclusion . 110

8.0 Conclusions . 111

9.0 Future Directions . 113

9.1 Evaluation . 113

9.2 Results’ Significance . 113

9.3 Data Synthesis . 114

9.4 Domains . 114

9.5 MixGen . 114

9.6 Curriculum Learning . 115

9.7 Extractive Summarization . 115

Appendix A. Summarization Annotation . 117

Appendix B. Additional Multitask Learning Scores 118

Appendix C. Specificity . 120

x

C.1 Annotation Chart . 120

C.2 Model . 126

C.3 Evaluation . 127

Appendix D. Human Evaluation . 128

Bibliography . 132

xi

List of Tables

1 Sample data from the CourseMirror CS course. 8

2 CourseMirror dataset summary. 8

3 Human summary lengths across courses. 9

4 CourseMirror summary analysis. 10

5 CourseMirror dataset split summary (#Docs = num of lectures x num of prompts

x num of annotators) . 11

6 CourseMirror specificity dataset summary. 13

7 CourseMirror specificity dataset score distribution. 13

8 Sample from the AY training data. 16

9 Details of human summaries. 16

10 Distribution of AY data. 17

11 AY summary analysis. 17

12 Sample data from CNN dataset. 19

13 Distribution of CNN/DM data. 20

14 Details of input/output sizes for CNN/DM data. 20

15 Sample data from MSRP dataset. 21

16 Summaries generated by the three variants of [86] for the same CS reflection

document. 38

17 An example of synthesized CS summary. 40

18 ROUGE results. Italics indicates outperforms baselines. Boldface indicates best

over all. Underlining indicates best result in a group (i.e., Baselines, Fast-RL,

PG-net). 42

19 Model selection % (all human evaluations). 47

20 ROUGE results of BERTSum with augmentation techniques on CM and AY

(highlighted means outperform original, and bold means the best scores across

a set of experiments) . 58

xii

21 ROUGE results of BART with augmentation techniques on CM and AY (high-

lighted means outperform original, and bold means the best scores across a set

of experiments) . 59

22 Summary of results. Generalization indicates how the findings transfer across

models, data, and both. Y indicates that condition is satisfied for all the 3

ROUGE scores and N otherwise. Strong, moderate, weak, and none indicate the

number of satisfied conditions of (4, 3, 2 or 1, and 0) respectively. 61

23 ROUGE results of BART model on CM and AY data for shuffle baseline. 62

24 ROUGE results of BART model on CM and CM (8 reflections) data for shuffle

baseline. 63

25 ROUGE results of BERTSum model trained with real, shuffled, and synthetic

data from both CNN and CNN-small datasets. 63

26 Dataset summary. 69

27 ROUGE results of BERT multitask on CM. Gray indicates multitask R is higher

than single task score. Boldface indicates best R across tasks. (Q1, Q2) 80

28 ROUGE results of BERT on CNN-micro. (Q3) 81

29 ROUGE results of T5 (No language modeling auxiliary task) fine tuned on CM.

(Q4) . 82

30 ROUGE results of BART on CM. (Q4) . 83

31 ROUGE results of BART on AY. (Q5) . 83

32 ROUGE results of T5 fine tuned with paraphrasing on AY. (Q5) 84

33 Human evaluation scores over (Fluency, Relevancy, and Factual consistency) as-

pects for both CourseMirror and Amazon/Yelp datasets. Bold indicates best

score across all tasks for a certain aspect. (*) in header means statistically sig-

nificant using ANOVA test over all three aspects (i.e. Fluency, Relevancy, and

Factual consistency). (*) in cell means statistically significant using paired t-test

between combination of tasks (i.e. AC, AP, ACP) and abstractive only 86

34 Percentage of each task output selected by human annotators as best generated

summary across all task outputs. 87

35 %Ratio of concept words to total length across reflections and summaries 88

xiii

36 ROUGE results of BERT and T5 Models fine tuned on CM. 89

37 ROUGE results of BART with both multitask only and multitask with data

synthesis on CourseMirror data (highlighted means better than original) 97

38 ROUGE results of BART with both multitask only and multitask with data

synthesis on Amazon/Yelp data (highlighted means better than original) 97

39 ROUGE results of BART with both multitask only and multitask with curricu-

lum learning on CourseMirror data (highlighted means better than original) . . 98

40 ROUGE results of BART with both multitask only and multitask with curricu-

lum learning on Amazon/Yelp data (highlighted means better than original) . . 98

41 Results of BART with multitask, Synthesis, and curriculum learning on CM data

(highlighted means better than no curriculum. Bold means best ROUGE scores

across each combination of tasks) . 100

42 Results of BART with multitask, Synthesis, and curriculum learning on AY data

(highlighted means better than no curriculum. Bold means best ROUGE scores

across each combination of tasks) . 101

43 NER F1 Pearson correlation with ROUGE for CM and AY. P-value is shown

between parentheses . 103

44 Most frequent named entities in CM and AY 106

45 NER F1 Pearson correlation with ROUGE for CM after filtering, CM values

without filtering from table 43. P-value is shown between parentheses (* means

statistically significant) . 107

46 NER F1 Pearson correlation with ROUGE for each task using values from all

data variants (original, synthetic 5, and synthetic 10) (Recall that we didn’t

perform filtering for AY as the named entities varied significantly, unlike CM) (*

means statistically significant) . 107

47 Percentage of named entities in train, test and generated summaries for CM and

AY datasets . 108

48 Instruction provided to annotators during summarization annotation process. . 117

xiv

49 ROUGE results of BERT multitask model. ∆ represents the change direction

relative to the abstractive only model, where ’+’ means higher average ROUGE,

and ’-’ otherwise. Boldface indicates improving scores across all courses. Ital-

ics indicates improving scores across different datasets. Underlining indicates

improving scores across different datasets and different models. 118

50 ROUGE results of T5 multitask model. ∆ represents the change direction rel-

ative to the abstractive only model, where ’+’ means higher average ROUGE,

and ’-’ otherwise. Boldface indicates improving scores across all courses. Ital-

ics indicates improving scores across different datasets. Underlining indicates

improving scores across different datasets and different models. 119

51 Sample of specificity human annotation of an ENGR lecture. 125

52 Predictive performance results (best in bold). Lower is better for regression

Mean Square Error (MSE) and Mean Absolute Error (MAE), while higher is

better for regression R2 and classifier Quadratic Weighted Kappa (QWK). . . . 127

xv

List of Figures

1 Human evaluation task example. 45

2 MixText model. 52

3 MixText for generative tasks. 53

4 Proposed BERT-Multitask model. 71

5 Different fine tuning conditions for T5. (- -) indicates optional additive data for

Paraphrasing. 76

6 Example of pre human evaluation test . 85

7 Distribution of new Ngrams and Ngrams recall for both AY and CM datasets . 90

8 Flow chart of specificity annotation guidelines. 120

9 Specificity prediction model used. 126

10 Example of pre human evaluation test for factual consistency aspect 128

11 Example of pre human evaluation test for relevancy aspect 129

12 Example of CM annotation sample. 130

13 Example of AY annotation sample. 131

xvi

Preface

First and foremost, I would like to praise and thank God, who has granted me countless

blessings and the ability to finish this thesis.

I would then like to especially thank my advisor, Prof.Diane Litman. You are one of the

best persons I have worked with on both managerial and personal levels, and I have learned

a lot from you. I appreciate your help, dedication, and encouragement and that you gave

me total flexibility in work.

I then want to thank my wife, Shahd. You have been supporting me during my journey

for six years. You left your parents and friends to move out to the US with me. I appreciate

you had to start from scratch to get your certificate. I know these past six years were not

easy, so, Thank you.

Finally, I would like to thank my friends Amr, Salem, Yassin, and Zaghloul, who made

my time here in Pittsburgh full of fun. I also would like to thank my lab-mates, colleagues,

and committee for their help and supportive feedback.

xvii

1.0 Introduction

Nowadays, the amount of information available online is increasing exponentially. It is

becoming challenging to digest even the information available for a particular topic/field.

Text summarization is a helpful technique that can help with such cases. Summarization

can reduce large pieces of text into a handful of paragraphs, assisting human readers to

digest much information in a few lines. However, this is just the bright side of the story.

Getting summaries for a large amount of text is a labor-intensive process, which requires

humans to read the full documents before generating a summary. Reading documents would

lead us back to our original problem. Luckily automatic machine summarization can help

to solve the problem. Machine summarization techniques can be classified into two main

categories; 1- Abstractive summarization techniques, and 2- Extractive summarization tech-

niques. Extractive summarization, which aims to extract salient pieces of text, has seen great

performance strides during the last years. On the other hand, abstractive summarization,

which aims to summarize input text into a readable and comprehensive summary for users to

read easily, is still lacking behind. However, abstractive summarization, in turn, has gained

much attention due to recent advances in Machine learning and Natural Language Process-

ing (NLP). Performing the task of abstractive summarization typically requires two steps; 1-

Reading the input and storing the knowledge in some format, 2- Using the knowledge, pro-

ducing a condensed version with the same or new vocabulary. In earlier stages, researchers

used to read and present the knowledge with the aid of graphs or templates, then later on

traverse these graphs to generate summaries or fill these templates [22, 24, 71]. Later on,

neural networks, especially recurrent based ones (RNN, LSTM, GRU, Transformers, etc.),

helped represent the knowledge in a format of embedding that can be later used to generate

a summary [7, 23, 86, 74]. However, the majority of prior studies focus on data-rich domains.

Large datasets allow researchers to develop and train complicated and robust models. On the

other hand, very few studies focus on developing adequate models for scarce data domains

or improving existing models to perform better in such cases.

In this thesis, we try to fill a few gaps that we think are still underexplored in the

1

domain of abstractive summarization. While many works have focused on abstractive sum-

marization, few of that work focuses on abstractive summarization solutions for low resource

domains. That is a domain in which providing human-annotated data is a costly and time-

consuming process; thus, these domains tend to have small-sized (low resource) data (i.e.,

hundreds of samples) used for training machine learning models. Additionally, very little

research explored the data augmentation solution, a technique widely used for computer

vision and other NLP tasks such as machine translation. Similar to the work on the data

side, the work on the auxiliary tasks side is still underexplored. While numerous research

explored integrating additional auxiliary tasks, no prior work further explored which tasks

are especially useful in low resource settings. Additionally, no prior work combined two

paradigms of auxiliary tasks (generative and predictive).

With that said, in this thesis, we decided to pursue two different directions and fi-

nally combine both of them into a final collective approach . The first direction

(data-based direction) we pursue focuses on data manipulation, where we try to use data

differently regardless of the model. The work in this direction can be easily integrated into

different models with minimal or no changes to the model itself. In this direction, we explore

different techniques such as data augmentation and domain transfer. Training abstractive

summarization models typically require large amounts of data, which can be a limitation for

many domains. In this thesis, we explore using domain transfer and data synthesis to im-

prove the performance of recent abstractive summarization methods when applied to small

corpora of student reflections. First, we investigated whether tuning state of the art models

trained on newspaper data could boost performance on student reflection data. Evaluations

demonstrated that summaries produced by tuned models achieved higher ROUGE scores

than models trained on just student reflection data or just newspaper data. Tuned models

also achieved higher scores than extractive summarization baselines, and additionally were

also judged to produce more coherent and readable summaries in human evaluations. Sec-

ond, we explored whether synthesizing summaries of student data could additionally boost

performance. We proposed a template-based model to synthesize new data, which further

increased ROUGE scores when incorporated into training. Finally, we showed that combin-

ing data synthesis with domain transfer achieved higher ROUGE scores than only one of the

2

two approaches. Furthermore, we explore enhancing both the data augmentation and the

training process by first improving the template-based augmentation model and introducing

a different data augmentation approach that works on another part of the training pipeline

through mixing multiple training samples. Second, we explore improving the training process

by using the training data more effectively through a curriculum.

The second direction (model-based direction) we pursue, on the other hand, fo-

cuses on improving the model itself rather than the data. In this direction, we introduce

making changes to the model to incorporate multitask learning. We explore the effect of us-

ing multitask learning for abstractive summarization in the context of small training corpora.

In particular, we incorporate four different tasks (Extractive summarization, Language mod-

eling, Concept detection, and Paraphrase detection) both individually and in combination,

intending to enhance the target task of abstractive summarization via multitask learning.

We show that for many task combinations, a model trained in a multitask setting outper-

forms a model trained only for abstractive summarization, with no additional summarization

data introduced. Additionally, we do a comprehensive search and find that specific tasks

(e.g., paraphrase detection) consistently benefit abstractive summarization when combined

with other tasks across different architectures, different training corpora, or both.

This thesis is organized as follows. Chapter 2 reviews the different datasets we use across

our work, especially the CourseMirror student reflection dataset, which is the main low re-

source data we use in all of our experiments. Chapter 3 reviews prior work in our contribution

areas, particularly: automatic text abstractive summarization, data augmentation in NLP

and text summarization specifically, curriculum learning, and finally multitask learning for

text summarization.

In the following four chapters, we discuss moving from data-based solutions to model-

based ones, to combine them finally. Chapter 4 explores simple domain transfer and intro-

duces a new template-based model for data synthesis. Chapter 5 shows how to improve the

domain transfer technique by integrating curriculum learning. Additionally, it introduces a

different data augmentation technique that we use in addition to the template-based model.

Chapter 6 then switches gears towards model-based solutions. The chapter introduces train-

ing the abstractive summarization model in a multitask setting to make use of the training

3

data multiple times. The chapter also explores different auxiliary tasks and shows which

tasks are specifically helpful in the low resources setting. Chapter 7 explores combining all

the proposed solutions and finally reports how successfully these solutions can be integrated

simultaneously.

1.1 Contributions

We can summarize the thesis contribution into 4 points:

• Shed light on the utility of data augmentation/synthesis to remedy data scarceness in

the domain of abstractive text summarization and introduce novel template-based and

paraphrasing-based synthesis models.

• Proposing integrating curriculum learning in model training to improve the outcome of

the training process.

• Exploring improving abstractive summarization through multitask learning and the util-

ity of using the same data multiple times to train the different submodels. Additionally,

doing a comprehensive search across four different auxiliary tasks (Extractive summa-

rization, Language Modeling, Paraphrase Detection, Concept Detection) of two different

categories (Generative and predictive). Finally, showing that auxiliary tasks like para-

phrase detection can be consistently helpful for the abstractive summarization task in a

low resource setting. We also released the code online for other researchers to use it.1

• Combining the data augmentation, curriculum learning, and multitask learning in a

single model and comparing it with prior approaches.

1https://github.com/amagooda/MultiAbs

4

2.0 Datasets

In this chapter, we introduce the datasets we use in our research. For each dataset, we

first describe the dataset and then discuss the reason for including it alongside how and in

which part we incorporate it in our research.

2.1 CourseMirror (CM)1 Summarization

2.1.1 Description

Student reflections are comments provided by students in response to a set of instructor

prompts. The prompts are directed towards gathering students’ feedback on course material.

Student reflections are collected directly following each of a set of classroom lectures over

a semester. The set of reflections for each prompt in each lecture is considered a student

reflection document. Our work’s objective is to provide a comprehensive and meaningful ab-

stractive summary of each student’s reflection document. Our dataset consists of documents

and summaries from four-course instantiations [52, 54, 51]:

• ENGR (Introduction to Materials Science and Engineering)

• ST15 and ST16 (Statistics for Industrial Engineers, taught in 2015 and 2016, respectively)

• CS (Data Structures in Computer Science)

All reflections were collected in response to two pedagogically-motivated prompts [64]:

• Point of Interest (POI): “Describe what you found most interesting in today’s class”

• Muddiest Point (MP): “Describe what was confusing or needed more detail.”

For each reflection document, at least one human (either a TA or domain expert) created

three different types of summaries (Abstractive, Extractive, Phrase). The abstractive sum-

mary is a comprehensive paragraph that summarizes the major points in the reflections. The

1We refer to CourseMirror as CM for short

5

extractive summary is the five most representative sentences selected from the reflections.

Finally, the phrase summary is a set of five most representative phrases either selected from

the reflections or written in the annotator’s own wordings. A typical training sample

of the CourseMirror dataset is a set of reflections accompanied by one of the

human annotations. Thus, if two human annotators annotate a set of reflec-

tions, this would sum to two training samples.

CourseMirror

Prompt

Point of Interest (POI): Describe what you found most interesting in today’s class.

Student Reflection Document

• the dynamic bag

• I found the creation of the Bag to be the most interesting.

• Learning about bags was very interesting.

• Dr. Ramirez cleared up my understanding of how they should work.

• I was really interested in learning all about an entirely new data structure , the Bag.

• I ’m also noticing that as these classes get farther along , there is more focus on real world
factors that determine strength of code like speed

• The bag concept was cool how basically acts like a bag in real life with its usefulness.

• Bags as a data type and how flexible they are.

• Discussing the Assignment 1

• I found the examples and drawings the teacher drew on the whiteboard the most interesting.

• Abstraction, though seemingly intimidating is kind of just giving programmers a break right?

• We ’re given so many more abilities and operations without having to know exactly how to
code that.

• That being said , while I understand the applications being explained to me , it ’s hard to just
manifest that on my own.

• Learning about resizing Bags dynamically

• The discussion of the underlying methods of ADTs such as bags was most interesting

• the implementation of an array bag

• Order does not matter when using a bag.

6

• It is important to keep all of the values in an array together.

• To do this , you should move an existing element into the vacant spot.

• Looking at ADT ’s from both perspectives

• Information held in bags is not in any particular order

• different ways to implement the bag

• Thinking about a more general idea of coding with ADTs and starting to dig into data struc-
tures more specifically.

• Code examples of key concepts/methods is always helpful.

• I thought it was a good thing to go through the implementation of both the add () and remove
() methods of the Bag ADT

• Today we were talking about a certain type of ADT called a bag.

• We talked about certain ways that we would implement the methods and certain special cases
that we as programmers have to be aware of.

• If you were removing items from ADT bag , you can simply shift the bottom or last item and
put it in the place where you we removed an item.

• This is because , in bags , order does not matter.

• Learning about managing arrays in a data structure

• The bag ADT and how it is implemented

Reference Abstractive Summary

Students were interested in ADT Bag, and also its array implementation. Many recognized that
it should be resizable, and that the underlying array organization should support that. Others
saw that order does not matter in bags. Some thought methods that the bag provides were
interesting.

Reference Extractive Summary

• Bags as a data type and how flexible they are.

• Thinking about a more general idea of coding with ADTs and starting to dig into data struc-
tures more specifically.

• I thought it was a good thing to go through the implementation of both the add() and remove()
methods of the Bag ADT.

• Learning about managing arrays in a data structure.

• Information held in bags is not in any particular order.

Reference Phrase Summary

• The dynamic, resizable bag.

7

• Abstract data types (ADT)

• Methods of the bag.

• Arrays in the bag implementation.

• Order does not matter in bags.

Table 1: Sample data from the CourseMirror CS course.

Course Prompt Num Lectures
Reflections

Number of Annotators
Avg Min Max

CS
POI

23
25 15 33

3
MP 26 14 37

ENGR
POI

26
65 29 112

1
MP 65 29 111

ST15
POI

22
41 24 56

2
MP 41 24 55

ST16
POI

23
44 23 79

2
MP 44 23 65

Table 2: CourseMirror dataset summary.

Table 1 shows an example of both extractive and abstractive reference summaries pro-

duced by one annotator for the CS course (refer to appendix A for instructions provided to

annotators). Abstractive reference summary is what most of this work focuses on, as it is

used to train different abstractive summarization models. Additionally, extractive reference

summaries are used for experiments involving extractive summarization either as a baseline

(Chapter 4) or as auxiliary task (Chapter 6). Table 2 summarizes the dataset in terms of

the number of lectures, the type of prompts per lecture, the average number of reflections

per prompt, and the number of human summaries for each set of reflections. Table 3 shows

8

Course Prompt
Number of tokens

Abstractive Extractive Phrase
Avg Min Max Avg Min Max Avg Min Max

CS
POI 39.54 18 69 48.54 17 92 15.69 5 31
MP 44.43 23 80 47.3 14 91 15.98 5 42

ENGR
POI 36.5 17 52 38 18 110 13 5 22
MP 38.5 27 76 46.84 17 140 13.23 6 24

ST15
POI 33.79 13 50 31.27 9 93 14.7 5 37
MP 42 18 77 32.47 10 77 16.6 8 35

ST16
POI 40 30 57 16.52 9 39 14.7 7 30
MP 44.62 31 59 18.39 8 44 14.45 6 24

Course Prompt
Abstractive Extractive Phrase

Num Sentences Num Sentences Num Phrases
Avg Min Max Avg Min Max Avg Min Max

CS
POI 2.4 1 5 4.9 3 5 4.91 3 5
MP 2.8 2 5 5 5 5 5 5 5

ENGR
POI 2.2 1 3 4.85 3 6 4.77 3 5
MP 2.4 2 5 5.1 5 6 5 5 5

ST15
POI 1.9 1 3 4.87 2 5 4.87 2 5
MP 2.4 1 5 4.98 4 5 5 5 5

ST16
POI 2.5 2 4 5 5 5 5 5 5
MP 2.8 2 3 5 5 5 5 5 5

Table 3: Human summary lengths across courses.

9

Inter-Annotator ROUGE

Abstractive

Course Annotators R1 R2 RL Avg

CS

A1-A2 39.91 11.75 37.83 29.83
A1-A3 41.22 8.81 36.86 28.96
A2-A3 40.07 9.21 36.17 28.48
Max 39.91 11.75 37.83 29.83
Min 40.07 9.21 36.17 28.48
Avg 40.4 9.92 36.95 29.09

ST15 A1-A2 41.18 14.75 37.41 31.11
ST16 A1-A2 43.96 14.96 41.33 33.42

Extractive

Course Annotators R1 R2 RL Avg

CS

A1-A2 53.22 36.65 48.69 46.19
A1-A3 51.24 31.68 44.55 42.49
A2-A3 46.86 28.39 42.93 39.39
Max 53.22 36.65 48.69 46.19
Min 46.86 28.39 42.93 39.39
Avg 50.44 32.24 45.39 42.69

ST15 A1-A2 45.24 24 39.76 36.33
ST16 A1-A2 57.77 36.71 52.11 48.86

Phrase

Course Annotators R1 R2 RL Avg

CS

A1-A2 40.91 13.78 34.92 29.87
A1-A3 42.82 15.29 37.8 31.97
A2-A3 37.48 10.48 31.54 26.5
Max 42.82 15.29 37.8 31.97
Min 37.48 10.48 31.54 26.5
Avg 40.4 13.18 34.75 29.44

ST15 A1-A2 45.17 21.35 39.87 35.46
ST16 A1-A2 50.11 22.82 42.54 38.49

Table 4: CourseMirror summary analysis.

10

an analysis of the different human summary lengths across the different courses and different

prompts, which would provide an estimation of how many tokens/sentences summarization

models would produce. Table 4 shows the Inter-Annotator ROUGE (sec 3.7) (IAR) scores

for the different summary types (Abstractive, Extractive, and Phrase) across the different

courses. IAR provides an idea of the degree of similarity we can expect between human

annotators, thus providing comparable scores to judge how automatic models perform. We

calculate ROUGE between every two annotators. In table 4 we show the ROUGE scores be-

tween every combination of two annotators alongside the maximum, minimum, and average

of these combinations. We report the IAR for three out of the four courses (CS, ST15, and

ST16), respectively. IAR is not reported for ENGR as one human annotator only annotated

it. From table 4 we can argue that ROUGE scores in the range of (40∼44, 10∼15, and

37∼41) for (R1, R2, and RL) respectively are in the range of human agreement and can be

considered good performance for automatic abstractive summarization models.

2.1.2 Usage

Configuration Data # Docs Train Val Test

Leave One Course Out (LOCO)

CS 138 = 23x2x3 209 23 138

ENGR 52 = 26x2x1 286 32 52

S2015 88 = 22x2x2 254 28 88

S2016 92 = 24x2x2 250 28 92

Train/Val/Test Full CM 370 296 37 37

Table 5: CourseMirror dataset split summary (#Docs = num of lectures x num of

prompts x num of annotators)

CourseMirror (CM) is the primary dataset used in all of our experiments (Synthesis,

curriculum, and multitask). CourseMirror (CM) is a small-sized dataset (i.e., hundreds of

samples); this renders it a right candidate for our research focus of enhancing summarization

performance in low resources domains. We use CourseMirror data to train and fine tune dif-

11

ferent summarization models. Additionally, we use it as a part of the training data used to

train the rewriting model (part of the synthesis model introduced in chapter 4). We perform

experiments with CM data using two configurations Leave-One-Course-Out (LOCO) and the

traditional Train/Val/Test splits. For Leave-One-Course-Out, we essentially perform train-

ing and validation using the collective data of three out of the four courses and then perform

testing using data from the last course. On the other hand, for Train/Validation/Test con-

figuration, we compiled data from all courses into one dataset. We then split the data into

training, validation, and test sets (80%, 10%, 10%, respectively) by sampling equally from

all courses. Table 5 shows the different data split sizes using the two different configurations.

2.2 CourseMirror (CM)2 Specificity/Quality

2.2.1 Description

In another line of work that focused more on analyzing reflection quality, Fan et al. [21]

and Luo and Litman [53] collected a variant of the CourseMirror data intending to research

reflection specificity/quality prediction. The objective is to predict the specificity of student

reflections. The predicted values map to how specific reflections are, where higher values

correspond to more specific reflections, and lower values correspond to more vague ones. In

this work, we use the data collected by Fan et al. [21] and Luo and Litman [53] to train a

specificity prediction model that is later used for curriculum learning experiments. The data

consists of 4 courses:

• ENGR (Introduction to Materials Science and Engineering)

• ENGR2010 (Old version of Introduction to Materials Science and Engineering, taught

in 2010)

• ST15 (Statistics for Industrial Engineers, taught in 2015)

• Chemistry

2We refer to CourseMirror as CM for short

12

Course Lectures Reflections Annotation Avg Reflections/Prompt

ENGR 28 3626 1-4 122

ENGR2010 4 395 1-4 41

Chemistry 23 1034 1-4 50

ST2015 22 1769 1-4 77

Table 6: CourseMirror specificity dataset summary.

Course 1 2 3 4

ENGR 427 942 1658 599

ENGR2010 239 60 47 49

Chemistry 298 259 250 227

ST2015 390 774 422 183

Table 7: CourseMirror specificity dataset score distribution.

13

Table 6 shows a summary of the specificity data. The data is annotated according to

the flowchart in Appendix C, and table 7 shows the score distribution across the different

courses.

2.2.2 Usage

We mainly use the CourseMirror specificity data to train a specificity/quality predic-

tion model. In our experiments on curriculum learning, we cannot use the human anno-

tation specificity values as the courses in the two datasets (CourseMirror summarization

and CourseMirror specificity) are different. Instead, we use the values predicted using the

trained specificity prediction model. Appendix C describes the model used to predict re-

flection specificity values for CourseMirror summarization data. The predicted values for

reflections are then used to calculate documents’ specificity as a difficulty metric for curricu-

lum construction.

2.3 Amazon/Yelp (AY)3 Opinion Abstractive Summarization

2.3.1 Description

Another dataset that is closely similar to the CourseMirror dataset is Amazon/Yelp (AY)

opinion dataset used in [6]. Both datasets are small in size, and in both datasets, documents

consist of multiple human reviews/opinions where order doesn’t matter. The Amazon/Yelp

dataset contains customer reviews from Amazon [29] and Yelp4. The amazon data contains

samples from 4 different categories (Electronics; Clothing, Shoes, and Jewelry; Home and

Kitchen; Health and Personal Care). The data contains 160 (products/businesses), 60 prod-

ucts selected from Amazon, and 100 businesses from Yelp. Each of the products/businesses

selected contains a set of 8 reviews selected from the product/business full set of reviews.

For each set of 8 reviews, three human summaries are provided, table 8 shows a sample from

3We refer to Amazon/Yelp as AY for short
4https://www.kaggle.com/yelp-dataset/yelp-dataset

14

the Amazon data.

Amazon/Yelp

Reviews

Review 1 This pendant is so unique!! The design is beautiful and the bail is a ring

instead of the typical bail which gives it a nice touch!! All the corners are

smooth and my daughter loves it - looks great on her.I cannot say anything

about the chain because used our own chain.:) Satisfied.

Review 2 It look perfect in a womens neck!! great gift, I thought for the price it was

going to look cheap, but I was far wrong. It look great.Spect great reward

from your woman when you give this to her; D

Review 3 The prettiest sterling silver piece I own now. I get so many compliments

on this necklace. I bought it for myself from my hubby for Valentine’s Day.

Why not? When people ask where I got it, I simply say from my loving

hubby. And he is off the hook as to what to get me. win + win.

Review 4 I love hearts and I love ’love’:) I do not have any negative feedback, the

necklace is perfect and the charm is perfect. I just thought it would have

been slightly bigger. Overall, I love my new heart necklace.

Review 5 When I received the package, I was surprised and amazed because the neck-

lace is so elegant, beautiful and the same as the picture shown here. I really

love this necklace. It has a unique pendant designed. I will recommend it to

someone to order it now...

Review 6 Item is nice. Not a great quality item, but right for the price. Charm was

larger than I expected (I expected small and elegant, but it was large and

almost costume jewelry like). I think it is a good necklace, just not what I

expected.

Review 7 I got this as a present for my GF on Valintines day. She loves it and wears it

every day! Its not cheap looking and it hasn’t broken yet. The chain hasn’t

broken either even though it is very thin. Strongly recomend it!

15

Review 8 Over all service has been great the only problem, I ordered a purple Mickey

Mouse case for iPhone 4S they sent a black, n I felt it was to much trouble

n such a small item to send back so needless to say its put back in a drawer

somewhere

Abstractive Summaries

Summary 1 This silver chain and pendant are elegant and unique. The necklace is very

well made, making it a great buy for the cost, and is of high enough quality

to be worn every day. The necklace looks beautiful when worn bringing many

compliments. Overall, it is highly recommended.

Summary 2 This woman’s necklace makes a great gift for any woman or child. The thin

sterling silver chain looks elegant and the heart shaped pendant is beautiful

and unique. The necklace fits comfortably around the neck and looks great

when worn. It’s a good quality item for the price which is highly recom-

mended.

Summary 3 This necklace is attractive, unique, and looks nice considering the inexpensive

price. It makes a nice Valentine’s Day gift or a gift for a child. The chain

is thin but durable and should last a long time. The pendant is interesting

and something different as a gift for a loved one.

Table 8: Sample from the AY training data.

Data Products/businesses Summaries Avg. Num Words Avg. Num Sentences

Amazon 60 3 * 60 = 180 56.92 3.68

Yelp 100 3 * 100 = 300 58.06 4.3

Table 9: Details of human summaries.

16

Data Training Validation Testing

Amazon 28 12 20

Yelp 30 30 40

Table 10: Distribution of AY data.

Data Annotators
Inter-Annotator ROUGE
R1 R2 RL Avg

Amazon

A1-A2 29.65 5.32 26.94 20.64
A1-A3 27.71 4.99 24.96 19.22
A2-A3 28.06 5.48 26.24 19.93
Max 29.65 5.32 26.94 20.64
Min 27.71 4.99 24.96 19.22
Avg 28.47 5.26 25.81 19.85

Yelp

A1-A2 27.93 4.12 24.46 18.84
A1-A3 28.09 4.46 24.25 18.93
A2-A3 28.1 4.22 24.41 18.91
Max 28.09 4.46 24.25 18.93
Min 27.93 4.12 24.46 18.84
Avg 28.04 4.26 24.25 18.85

Table 11: AY summary analysis.

17

Moreover, table 9 shows further details of the human-produced summaries. The data is

split into training, validation, and testing according to table 10. Finally, table 11 shows the

Inter-Annotator ROUGE (IAR) scores for Amazon and Yelp data. We calculate ROUGE

between every two annotators. In table 11 we show the ROUGE scores between every

combinations of two annotators alongside the maximum, minimum and average of these

combinations.

2.3.2 Usage

We use Amazon/Yelp data as another small-sized dataset that has common aspects

with CM data. We use the Amazon/Yelp data in chapters 5, 6, and 7’s experiments to

further verify how far our findings can transfer between different data domains. The data

is used to train and fine tune the different models across this work. The data is split into

training/validation/testing splits according to table 10. The data is only annotated for

abstractive summarization with no extractive summarization annotation. That is why we

had to avoid experiments that involved extractive summarization auxiliary task when we

used Amazon/Yelp. On the other hand, we utilized other auxiliary tasks with no issue.

2.4 CNN/DailyMail Summarization

2.4.1 Description

CNN/DailyMail [30] is a widely used summarization dataset consisting of around 300k

news-oriented documents. The data is annotated for the abstractive summarization task,

and we followed the work done by Chen and Bansal [12] to perform extractive summarization

annotation. We show a sample from the CNN dataset alongside the generated extractive

summary in Table 12. Moreover, the data is split into training, validation, and testing ac-

cording to table 13. Finally, table 14 shows further details of input and abstractive summaries

sizes.

18

CNN

Input text

Mixed martial arts fighter Anderson Silva says he will fight for a spot in the Brazilian
taekwondo team at the 2016 Olympics in Rio de Janeiro. The announcement was made
on Wednesday after a meeting with Brazilian taekwondo officials. Considered one of
the best pound-for-pound fighters in the history of mixed martial arts, Silva said he is
‘trying to give back to the sport’ in which he began his career. Anderson Silva met with
Brazilian taekwondo officials and will compete for a spot in the 2016 Olympics team.
The former UFC champion said he is ‘trying to give back to the sport’ in which he began
his career. Taekwondo confederation president Carlos Fernandes said it will be an ‘honor
for our sport to welcome an athlete of this importance’. However, he also made it clear
that Silva will have to fight his way into the Olympics and wo n’t be helped because of
his UFC stardom. Silva is a taekwondo ambassador and a black belt in the sport. The
former UFC champion tested positive for two steroids in an out-of-competition test Jan.
9, and also failed a test after his UFC victory over Nick Diaz on Jan. 31. The 40-year-old
Brazilian posted a photo of himself via his Twitter page practicing taekwondo last week.

Reference Abstractive Summary

Anderson Silva met with Brazilian taekwondo officials on Wednesday. Silva is currently
suspended by UFC after failing drug tests. However, the former UFC champion will fight
for Olympics taekwondo spot.

Reference Extractive Summary

Anderson Silva met with Brazilian taekwondo officials and will compete for a spot in the
2016 Olympics team. Considered one of the best pound-for-pound fighters in the history
of mixed martial arts, Silva said he is ‘trying to give back to the sport’ in which he began
his career. However, he also made it clear that Silva will have to fight his way into the
Olympics and won’t be helped because of his UFC stardom.

Table 12: Sample data from CNN dataset.

2.4.2 Usage

The CNN/DailyMail is considered a large-sized data set (i.e., 300K samples) widely used

in the summarization community. The CNN data can serve as a perfect candidate for our

domain transfer and pretraining experiments for a couple of reasons; 1-The data size can

help pretraining a strong neural summarization model, 2- The significant difference in style

and domain between the CNN and CourseMirror data can help to show the utility of using

domain transfer even with a completely different domain. We use CNN in most of our

experiments across all the chapters (either for pretraining or training the rewriting model

19

Data Training Validation Testing Total

CNN 85K 3.2K 3.8K 92K

DailyMail 202K 7.8K 9.2K 219K

CNN + DM 287 11 13 311

Table 13: Distribution of CNN/DM data.

Data
Input Abstractive Reference Summary

Num Sentences Num Tokens Num Sentences Num Tokens

CNN 35.2 654.1 3.8 41.9

DailyMail 41.7 690.7 3.9 50.9

CNN + DM 39.8 679.9 3.9 48.3

Table 14: Details of input/output sizes for CNN/DM data.

20

(Chapter4)).

2.5 Microsoft Paraphrasing

2.5.1 Description

The MSRP [15] paraphrase dataset has been used in much paraphrasing and other related

research such as data augmentation [16], multitask learning, and so forth. The data contains

4076 samples. Each sample consists of a pair of sentences with annotation (1 or 0), where

one means the two sentences are paraphrases of each other, and zero otherwise. Table 15

shows two examples of the MSRP dataset, where each sample consists of two sentences and

the corresponding human label (0 means no paraphrasing and 1 otherwise).

Sample 1

Sentence1: Amrozi accused his brother, whom he called ”the witness”, of deliberately
distorting his evidence.
Sentence2: Referring to him as only ”the witness”, Amrozi accused his brother of
deliberately distorting his evidence.
Label: 1

Sample 2

Sentence1: Gyorgy Heizler, head of the local disaster unit, said the coach was carrying
38 passengers.
Sentence2: The head of the local disaster unit, Gyorgy Heizler, said the coach driver
had failed to heed red stop lights.
Label: 0

Table 15: Sample data from MSRP dataset.

2.5.2 Usage

In addition to the previous two summarization datasets (CourseMirror, and CNN), we

use the MSRP dataset in our multitask learning experiments. We use the data as an addi-

tional data to train the multitask learning summarization model introduced in chapter 6 to

21

explore how effectively the paraphrasing auxiliary task can support abstractive summariza-

tion training. We combine the MSRP data with the original summarization data to train

the paraphrasing auxiliary task.

22

3.0 Related Work

The challenge of information overload has triggered the research of automatic summa-

rization in the community of natural language processing (NLP). Automatic summarization

is the task of taking an input of text documents, speech, or video and producing a concise

summary of the most crucial information of the original documents [69]. Summarization, in

general, can be categorized into two major categories:

• Extractive

• Abstractive

Each of these two categories has its pros and suffer from its cons. Both similarly got the

attention of much research from the NLP community.

3.1 Extractive Summarization

Extractive summarization focuses on enumerating and extracting the most salient pieces

of text from the input. Unlike abstractive summarization, which produces a coherent para-

graph, extractive summarization aims to extract the most important pieces that satisfy a

couple of constraints:

• Salience: Extracted pieces maximize coverage of major points from the input text.

• Novelty: Minimize the redundancy and similarity between the extracted pieces.

Earlier work on extractive summarization involved unsupervised techniques such as hand-

crafted features to select important sentences [18], constructing relational graphs that can be

later traversed [70], or using ILP [4, 62]. Later on, deep networks started to be a basic block

of state of the art (SOTA) models across numerous NLP tasks. One of the very early works

that first introduced RNN encoders for extractive summarization models is SummaRuNNer

[66]. Another line of work proposed integrating pointer networks to select salient sentences

and keywords [34]. Recently, huge performance strides were achieved in different NLP tasks

23

using pretrained language models as encoders [14, 40, 77, 47]. In turn, a lot of summariza-

tion research started incorporating pretrained encoders such as BERT [104, 45]. This work

deals with the extractive summarization task as a simple classification task. Moreover, since

dataset such as CM consists of independent reflections and the human reference summaries

are similarly a set of independent reflections, we represent the extractive summarization

tasks as a non-auto-regressive classification task, where unlike [66, 104, 45] we classify each

reflection of the input as being part of the summary or not regardless of the classification

of other prior reflections. Finally, similar to work done by Zhong et al. [104] and Liu and

Lapata [45], we use deep encoders to provide a representation for both input document and

reflection to be classified, however in this work, we don’t only experiment with BERT, but

we use multiple encoders such as (BERT, BART, and T5).

3.2 Abstractive Summarization

Abstractive summarization aims to generate coherent summaries with high readability

and has seen increasing interest, and improved performance due to the emergence of seq2seq

models [88] and attention mechanisms [2]. For example, Rush et al. [79] used a vanilla

encoder-decoder model with attention, See et al. [86], Paulus et al. [74], and Gehrmann

et al. [23] used pointer networks to solve the out of vocabulary issue, while See et al. [86]

used coverage mechanism to solve the problem of word repetition. In addition, Paulus et al.

[74] and Chen and Bansal [12] used reinforcement learning in an end-to-end setting. After

introducing transformer models, great attention began to shift towards improving the tradi-

tional RNN-seq2seq models through transformers. Which, in turn, gave birth to a lot of new

abstractive summarization models that incorporate transformers into its building blocks,

either using encoder-decoder structure [44, 40, 77] or simply using decoder only structure

[44]. Böhm et al. [5] proposed eliminating the dependency on reference summaries and

proposed a model to train abstractive summarization model using reinforcement learning,

where the reward function is a holistic function of different human judgment criteria (read-

ability, coherency, etc.). Liu and Lapata [45] introduced an extractive and abstractive unified

24

framework using BERT encoder and transformer decoder. As per integrating GANs in ab-

stractive summarization, Liu et al. [43] proposed formulating the abstractive summarization

in a GAN setting, where they trained a generator and a discriminator using reinforcement

learning. Due to the complexity of training abstractive summarization models using both

RL and GAN frameworks, this work, similar to multiple prior work [79, 86, 44, 40, 77]

deals with the abstractive summarization task using the most common approach utilizing

encoder-decoder models. However, since the primary focus of our work is not improving the

SOTA of abstractive summarization but improving model training for low resource settings,

we perform experiments across this work using multiple SOTA abstractive summarization

models [86, 41, 77, 45] to verify our findings.

3.2.1 Abstractive Summarization for Low Resource Data

A lot of recent work have been targeting different aspects to improve abstractive sum-

marization models. However, most of these works focus on developing and testing their

models in environment where a lot of annotated data exists such as (news, publications,

etc.). On the other hand few number of works tackled the problem of improving abstractive

summarization models in domains with scarce data. For example; Bajaj et al. [3] used a pre-

trained abstractive summarizer (BART) [41] to avoid training new model using their scarce

data. However, to overcome their data length issue, they proposed doing data compression

by first extracting salient sentences before the summarization step. Bražinskas et al. [6]

proposed training abstractive summarization model by first training the model in unsuper-

vised setting as a language model that produces new reviews given old ones. Later on the

model is then tuned for summarization using a handful of samples annotated with human

summaries. Another recent work which was also concerned with low resources domains is

done by Sarkhel et al. [84]. While, their experiments were focused on low resources domain,

their main objective was interpretability throughout multiheaded attention. Our work dif-

fers from these prior works in many aspects, our work spans two different approaches to

improve performance (model-based, and data-based). The work doesn’t focus on a certain

abstractive summarization model, in contrast it involves different models either to verify

25

generalizability or to perform experiments with SOTA models. We focus more on techniques

that can improve the training process as a whole, either by data augmentation, synthesis and

curriculum learning or by searching for auxiliary tasks that can be integrated into any model

to improve the performance of abstractive summarization (more in following sections).

3.2.2 Domain Transfer in Abstractive Summarization

To our knowledge, training neural abstractive summarization models in low resource

domains using domain transfer has not been thoroughly explored on domains different than

news. For example, Nallapati et al. [67] reported the results of training on CNN/DM data

while evaluating on DUC data without any tuning. Note that these two datasets are both

in the news domain, and both consist of well written, structured documents. The domain

transfer experiments of Gehrmann et al. [23] similarly used two different news summarization

datasets (CNN/DM and NYT). Our work on domain transfer on the other hand differs in

several ways from these two prior domain transfer efforts. First, our work involve two entirely

different domains: news and student reflections. Unlike news, student reflection documents

lack global structure, are repetitive, and contain many sentence fragments and grammatical

mistakes. Second, the prior approaches either trained a part of the model using NYT data

while retaining the other part of the model trained only on CNN/DM data [23], or didn’t

perform any tuning at all [67]. In contrast, we do the training in two consecutive phases,

pretraining and fine tuning, where the whole model is trained using the in-domain and out-

of-domain data. Finally, Gehrmann et al. [23] reported that while training with domain

transfer outperformed training only on out-of-domain data, it was not able to beat training

only on in-domain data. This is likely because their in and out-of-domain data sizes are

comparable, unlike in our case of scarce in-domain data that would easily lead to model

overfitting.

Another work that was done after ours, is done by Yu et al. [102]. In their work they

study the effect of using large unlabeled data from different domains to pretrain a BART

model, and analyze the effect of pretraining and fine tuning with several different domains.

Our work differs in several aspects. First, our work doesn’t focus on improving a certain

26

summarization model (BART) in the case of Yu et al. [102]; in contrast, we focus on using

data efficiently, which can be applied to various models. Second, in our work we gradually

move from using pretraining with out of domain data to using techniques that can improve

the training process without additional data, e.g., synthesis, augmentation, and curriculum

learning.

3.2.3 Templates in Abstractive Summarization

In a different approach to abstractive summarization, Cao et al. [7] developed a soft

template based neural method consisting of an end-to-end deep model for template retrieval,

reranking and summary rewriting. While we also develop a template based model, our work

on template model differs in both model structure and purpose. Our model is structured to

take advantage of properties of domains which don’t involve storytelling, but instead tend to

be systematic with high dependence on keywords (e.g., technical terms, etc.). In addition,

while our proposed model integrates a rewriting module which was inspired by Cao et al.

[7], our model is tailored for our goal of synthesizing data in a low resources domain, for use

by different abstractive summarizers with high model complexity. In contrast, Cao et al. [7]

proposed their model with the goal of directly producing an abstractive summary. Thus,

unlike Cao et al.’s end-to-end model which requires a lot of training data, we create sub-

modules like rewriting and scoring, which can be trained using not only summarization data

but any generic textual data.

3.3 Phrase Summarization

Phrase summarization can be considered a special case of extractive summarization, in

which the summarization process is done on a different level of granularity. Phrase summa-

rization aims to extract and retrieve salient phrases instead of complete sentences. Phrase

summarization can help in numerous use cases, such as extracting a product’s major as-

pects/characteristics (e.g., frame durability, brewing speed, etc.) by summarizing user re-

27

views, similar to the work done by Yu et al. [101]. Another line of work on phrase summa-

rization is the work done by Luo et al. [52, 55, 54] on summarizing students’ feedback by

extracting the most relevant phrases. Additionally, Yao et al. [100] investigated cross-lingual

summarization by extracting phrases instead of sentences. Similar to phrase summarization

the work done on keyphrase extraction [97, 49, 63, 28] also aims to extract the most pre-

vailing/salient phrases from the input text. In this work, the main focus is on abstractive

summarization. However, in chapter 4 we compare against the work done by Luo et al. to

verify the potential of abstractive summarization models compared to extractive ones on the

CM dataset.

3.4 Data Augmentation

Data synthesis for text summarization is underexplored, with most prior work focusing

on machine translation, machine comprehension, and text normalization. Data synthesis ap-

proaches have varied from back-translation, word replacement to sentence re-writing. Zhang

et al. [103] and Wang and Yang [94] proposed doing data augmentation through word replace-

ment, using WordNet [65] and vector space similarity, respectively. We will use a WordNet

replacement method as a baseline synthesis method in the experiments described below. In

contrast, Fadaee et al. [20], Wang et al. [95], and Sennrich et al. [87] synthesized/augmented

data through back-translation and word replacement using language models. In an approach

more similar to our proposed template model in terms of model design (i.e., extracting then

rewriting using seq2seq model), Tan et al. [89] trained a multi-task learning model for snip-

pet extraction and answer rewriting, where they used a seq2seq network to rewrite snippets

extracted from the paragraph in the form of a final answer. While there are fundamental

differences between their model and ours (e.g. multitask vs. single task, end-to-end train-

ing, etc.), the motivating purposes are also different. Their model was developed to rewrite

the answer in a new format to account for words that might not appear in the snippet but

are part of the original answer, while our model was developed to synthesize summaries to

augment training data in low-resource domains. The work done by Parida and Motlicek [72]

28

is another recent work that trained a model to back generate a source document given a

summary. We think it might be infeasible to back generate student reflections from a human

summary, especially an abstractive one. Chen et al. [9] introduced a new approach for data

augmentation (MixText). MixText augmentation allows performing augmentation not only

on the input level but on different levels of the model. We build a part of our work on the

MixText approach; however, the major difference is the downstream task. Chen et al. [9]

proposed their model for classification based tasks. We introduce a variation of the approach

suitable for generative tasks (MixGen) and use it in abstractive summarization.

3.5 Curriculum Learning

Curriculum learning has gathered much attention lately as a technique to improve the

training procedure. The curriculum helps the model learn gradually by feeding the train-

ing data in difficulty ascending order based on predefined difficulty criteria. It has been

successfully applied in computer vision [27, 35, 26], and in NLP [80, 81, 90, 93] for ma-

chine comprehension, question generation, reading comprehension and machine translation

respectively. Xu et al. [98] introduced a new approach for curriculum learning to improve

model performance on different natural language understanding tasks, including machine

comprehension. We build our work on their idea; however, the core differences are both the

downstream tasks and the difficulty criteria. In their work, Xu et al. [98] focused only on

classification tasks; however, in ours, we focus on abstractive summarization tasks. Further-

more, we introduce a couple of functions for difficulty evaluation (ROUGE and specificity).

Finally, we study the effect of curriculum learning in different configurations, either in iso-

lation or in combination with data synthesis and multitask learning.

29

3.6 Multitask Learning

Multitask learning has been the focus of a lot of recent research, and it showed a lot of

improvements in different NLP tasks. Abstractive summarization has been enhanced by inte-

grating it with text entailment generation [73], with extractive summarization [11, 31], and

with sentiment classification [8, 56] in multitask learning frameworks. While these works

each integrate only one task, Lu et al. [50] and Guo et al. [25] combined multiple tasks.

However, Lu et al. [50] focused on integrating only predictive tasks (syntax labeling and text

categorization), while Guo et al. [25] instead used generative tasks (entailment generation

and question generation). Our work focuses on both generative and predictive tasks, explores

task utility in isolation and in all combinations, and demonstrates generalization of findings

across multiple models and data. Furthermore, while two of our auxiliary tasks (language

modeling [61] and extractive summarization [73]) have been examined before in the context

of multitask summarization, we introduce two additional auxiliary tasks (paraphrase detec-

tion, concept detection). Finally, while previous work relied on large training corpora (e.g.

CNN/DailyMail [30]), we target low resource domains and try to overcome data scarceness

by using the same data to train multiple task modules.

3.7 Evaluation

Summarization evaluation has been a pressing topic within the NLP community. The

issue lays in the subjective nature of summaries. The evaluation process requires using human

summaries to judge the machine generated one. However, when humans generate summaries

it can be very subjective, especially abstractive summaries. The subjectivity and freedom to

use own words render the evaluation process to be difficult and sometimes misleading. Thus,

there has been a lot of efforts to formulate an informative evaluation metric. One of the early

and far more the standard metric used in the majority of summarization literature is ROUGE.

ROUGE [42] is adopted by the summarization community as the standard evaluation metric

to evaluate the quality of summarization due to being fairly simple to calculate and it’s

30

reasonable correlation to human evaluation. ROUGE is calculated by counting the n-gram

overlap between a human summary (reference) and a machine produced one (prediction).

ROUGE score is evaluated on recall, precision and F-measure as follows:

ROUGEN Recall =
Countmatch(N)∑

S∈RS

∑
ngram∈S Count(ngram)

(1)

ROUGEN Precision =
Countmatch(N)∑

S∈MS

∑
ngram∈S Count(ngram)

(2)

ROUGEN F =
(1 + β2)X ROUGEN Recall X ROUGEN Precision

ROUGEN Recall + β2ROUGEN Precision
(3)

where N is the length of the n-gram, and ngram is an n-gram of length N . S is a sentence,

RS and MS are reference summary and machine summary respectively. Count(ngram) and

Countmatch(N) are counting the number of ngrams in a sentence S, and counting the number

of matching ngrams of size N between RS and MS respectively. However, ROUGE unfortu-

nately suffers from inability to match sematically simillar terms, which is a major property

of abstractive summarization (summaries can contain new words). With that said a lot of

effort has been invested in seeking unorthodox evaluation metrics. For example Chen et al.

[10] proposed to do evaluation by extracting a set of question from the topic and measure

how many of these questions can be answered using the original text and a summary. In

a similar context Durmus et al. [17] proposed integrating question answering evaluation to

judge model faithfulness. On the other hand, Clark et al. [13] measured semantic similarity

by means of earth moving algorithm and semantic embeddings. In contrast to these auto-

matic methods, a lot of recent work performed human evaluation as an additive evaluation

method to complement the automatic evaluation and judge machine summaries across dif-

ferent dimensions (readability, coherence, relevancy, etc.). In the course of this work we use

ROUGE, and human evaluation as evaluation metrics for our experiments.

31

4.0 Template-Based Data Synthesis and Domain Transfer Through

Pretraining (Data-Based Direction) (Published in FLAIRS-33 [57])

4.1 Introduction

Recently, with the emergence of neural seq2seq models, abstractive summarization meth-

ods have seen great performance strides [86, 23, 74]. However, complex neural summarization

models with thousands of parameters usually require a large amount of training data. In

fact, much of the neural summarization work has been trained and tested in news domains

where numerous large datasets exist. For example, the CNN/DailyMail (CNN/DM) [30, 67],

New York Times (NYT) [82] and Gigaword [68] datasets are in the magnitude of 300k, 700k,

and 3000k documents, respectively. In contrast, in other domains such as student reflections,

summarization datasets are only in the magnitude of tens or hundreds of documents (e.g.,

CourseMirror [52]). We hypothesize that training complex neural abstractive summarization

models in such domains will not yield good performing models, and we will indeed later show

that this is the case for student reflections.

To improve performance in low resource domains, we explore three directions. First,

we explore domain transfer for abstractive summarization. While domain transfer is not

new, compared to prior summarization studies [32, 36], our training (news) and tuning

(student reflection) domains are quite dissimilar, and the in-domain data is small. Second,

we propose a template-based synthesis method to create synthesized summaries, then explore

the effect of enriching training data for abstractive summarization using the proposed model

compared to a synthesis baseline. Lastly, we combine both directions. Evaluations of two

neural abstractive summarization methods across four student reflection corpora show the

utility of all three methods.

32

4.2 Explored Approaches

4.2.1 Domain Transfer

To overcome the size issue of the student reflection dataset, we first explore the effect of

incorporating domain transfer into two state of the art abstractive summarization models:

pointer networks with coverage mechanism (PG-net) [86] and fast abstractive summarization

with reinforcement learning (Fast-RL) [12]. One major reason for choosing these models is

that implementations of both are available1. This makes it easier to fully understand the

models and to make changes needed for domain transfer compared to re-implementing both

systems from scratch. Another reason is that while both models are state of the art, they

use two different paradigms for training. PG-net trains to optimize a maximum-likelihood

objective, while Fast-RL trains with reinforcement learning to maximize ROUGE-1. We later

modified the off the shelf code of Fast-RL to accommodate for fine tuning. To experiment

with domain transfer, both models were pretrained using the CNN/DM dataset, then fine

tuned using the student reflection dataset (see the Experiments section).

4.2.2 Data Synthesis

A second approach we explore to overcome the lack of reflection data is data synthesis.

We first propose a template model for synthesizing new data, then investigate the perfor-

mance impact of using this data when training the summarization models. The proposed

model makes use of the nature of datasets such as ours, where the reference summaries tend

to be close in structure: humans try to find the major points that students are concerned

about, then present the points in a way that marks their relative importance (recall the CS

example in Table 1). Examples from two other courses are below:

• Most students found type 2 errors interesting. A minority found type 1 errors, confidence

intervals, beta number, and p value interesting. (Stat2015)

• Most students found learning about specific syntax and commands in matlab interesting.

Some students were simply interested in programming in general. (ENGR)

1https://github.com/ChenRocks/fast abs rl; https://github.com/abisee/pointer-generator

33

• Many students found the concepts of runtime analysis, threads and efficiency between

binary and sequential search as interesting. Some other students liked synchronization

and vectors. (CS)

We then explore with combining domain transfer with data synthesis.

4.3 Proposed Template-Based Synthesis Model

Our motivation for using templates for data synthesis is that seq2seq synthesis models

(as discussed in related work) tend to generate irrelevant and repeated words [38], while

templates can produce more coherent and concise output. Also, extracting templates can be

done either manually or automatically typically by training a few parameters or even doing

no training, then external information in the form of keywords or snippets can be populated

into the templates with the help of more sophisticated models. Accordingly, using templates

can be very tempting for domains with limited resources such as ours.

4.3.1 Model Structure

The model consists of 4 modules:

1. Keywords and template extraction: To convert human summaries into templates, we

remove keywords in the summary to leave only non-keywords. We use Rapid Automatic

Keyword Extraction (RAKE) [78] to identify keywords. We then split the summary into

template (summary without the keywords) and extracted keywords

2. Template clustering: Upon converting human summaries into templates, we cluster them

intoN clusters with the goal of using any template from the same cluster interchangeably.

A template is first converted into embeddings using a pretrained BERT model [14], where

template embedding is constructed by average pooling word embeddings. Templates are

then clustered using k-medoid.

3. Summary rewriting: An encoder-attention-decoder with pointer network is trained to

perform the rewriting task. The model is trained to inject keywords into a template and

34

perform rewriting into a coherent paragraph. The produced rewrites are considered as

candidate summaries.

4. Summary selection: After producing candidate summaries, we need to pick the best

ones. We argue that the best candidates are those that are coherent and also convey the

same meaning as the original human summary. We thus use a hybrid metric to score

candidates, where the metric is a weighted sum of two scores and is calculated using

Equations 4, 5, and 6. Eq.4 measures coherency using a language model (LM), Eq.5

measures how close a candidate is to a human summary using ROUGE scores, while

Eq.6 picks the highest scored N candidates as the final synthetic set.

LMS = (
∑
w∈CS

log(P (w)))/(len(CS)) (4)

RS = Avg(
∑

i∈[1,2,l]

Ri(CS,HS)) (5)

Score = (αLMS + βRS)/(α + β) (6)

CS and HS are a candidate and human summary. P (w) is the probability of word w using

a language model. α, β are weighting parameters. In this work we use α = β = 1 for all

experiments. Ri(CS,HS) is ROUGE-i score between CS and HS for i=1, 2, and l.

4.3.2 Model Training

Before using the synthesis model, some of the constructing modules (rewriting module,

scoring LM) need training. To train the rewriting model, we use another dataset consisting

of a set of samples, where each sample can be a text snippet (sentence, paragraph, etc.).

For each sample, keywords are extracted using RAKE, then removed. The keywords plus

the sample with no keywords are then passed to the rewriting model. The training objective

of this model is to reconstruct the original sample, which can be seen as trying to inject

extracted keywords back into a template.

35

4.3.3 Model Usage

To use the synthesis model to generate new samples, the set of human summaries are

fed to the model, passing through the sub-modules in the following order:

1. Human summaries first pass through the template extraction module, converting each

summary si into template ti and the corresponding keywords kwi.

2. Templates are then passed to the clustering module, producing a set of clusters. Each

cluster C contains a number of similar templates.

3. For each template ti and corresponding keywords kwi from step 1, find the cluster Ci that

contains the template ti, then pass the set of templates within that clusters {tj}∀j, if

tj ∈ Ci alongside the keywords kwi to the summary rewriting module. This will produce

a set of candidate summaries.

4. The summary selection module scores and selects the highest N candidates as the syn-

thetic summaries.

4.4 Experiments

Our experimental designs tackle the following research questions:

• Question 1 (Q1) : Would training complex abstractive models with limited in-domain

or large quantities of out-of-domain be able to outperform extractive baselines ?

• Question 2 (Q2) : Would domain transfer help abstractive models even if in-domain

and out-of-domain data are very different and the amount of in-domain data is very small

?

• Question 3 (Q3) : Would enriching abstractive training data with synthetic data helps

overcome in-domain data scarcity ?

• Question 4 (Q4) : How would the proposed template-based synthesis model perform

compared to a simple word replacement model ?

• Question 5 (Q5) : Would combining domain transfer with data synthesis outperform

using each approach in isolation ?

36

• Question 6 (Q6) : Can the synthesis model be extended to perform reflection summa-

rization directly ?

4.4.1 Extractive Baselines (for answering Q1)

While both See et al. [86] and Chen and Bansal [12] used Lead-3 as an extractive baseline,

in our data sentence order doesn’t matter as reflections are independent. We thus use a

similar in concept baseline: randomly select N reflections. Since the baseline is random we

report the average result of 100 runs. Following [52], we compare our results to MEAD [76]

and to Luo and Litman’s extractive phrase-based model. 2 Since they extracted 5 phrases

as their extractive summary, we use N=5 for our three extractive baselines (Random Select,

MEAD, Luo and Litman). Additionally we compare to running only the extractive part of

Fast-RL.

4.4.2 Domain Transfer (for answering Q2, Q5)

To observe the impact of using out-of-domain (news) data for pretraining to compensate

for low resource in-domain (reflection) data, we train 3 variants of PG-net and of Fast-RL:

model training on CNN/DM; model training on reflections; and model training on CNN/DM

then tuning using reflections. Table 16 shows example summaries generated by the three

variants of PG-net for a CS document.

For all experiments where reflections are used for training/tuning, we train using a leave

one course out approach (i.e, in each fold, three courses are used for training and the remain-

ing course for testing). If the experiment involves tuning a combined dictionary of CNN/DM

and reflections is used for training to avoid domain mismatch. To tune model parameters,

the best number of steps for training, the learning rate, etc., a randomly selected 50% of

the training data is used for validation. We choose the parameters that maximize ROUGE

scores over this validation set.

To implement PG-net we use OpenNMT [37]3. The model uses 128-dimensional word-

2Designed for reflection summaries.
3http://opennmt.net

37

Model Summary

CNN/DM Internal vs. external version of iteration iterarors i was a bit preoc-

cupied today but seeing merge sort. How typically iterating through

a linked list can be very inefficient the implementation of iterators

iterators and their effectiveness how iterators can be used.

Student Reflections Most students found the data of data along with its mean and

effectiveness interesting, as well as topics related to sse, their, and

different. Students also found different a good topic.

Tuned Most of students were interested in iterators, the concept of iter-

ators, and quick sort and merge sort. They also found analyzing

linked lists in regards to runtime to be interesting.

Human Reference

Most of the students found iterators and linked lists as interesting. Some of them

liked merge sort and quick sort. A few of them liked internal vs external iteration

and analyzing runtimes of linked lists.

Table 16: Summaries generated by the three variants of [86] for the same CS reflection

document.

38

embeddings and a 512-dimensional 1 layer LSTM. On the encoder side, we use a bidirectional

LSTM. The model is trained with adagrad optimizer and an initial learning rate (LR) of 0.15.

The out-of-domain model is trained for 100k steps using the CNN/DM dataset. Following

base model training, we tune the model by training it using student reflections. The tuning

is done by lowering the LR from 0.15 to 0.1 and training the model for additional 500 steps.

The in-domain model is trained only using reflections. We use the same model architecture

as above and train the model for 20k steps using adagrad optimizer and initial LR of 0.15.

For Fast-RL, to train the base model we follow the authors’ instructions4. For tuning, the

initial LR is decreased from 1x10−3 to 1x10−4.

4.4.3 Synthesis Baseline (for answering Q3, Q4)

Following [103], we developed a data synthesis baseline using word replacement via Word-

Net. The baseline iterates over all words in a summary. If word X has N synonyms in

WordNet, the model creates N new versions of the summary and corresponding reflections

by replacing the word X with each of the N synonyms. Since the number of synonyms is

variable for each word, the number of resultant synthetic samples is different for each orig-

inal sample. On the other hand, the proposed template model creates a fixed number of

samples for each original sample so avoids flooding the synthetic data with one sample and

guarantees data balance. Simple word replacement models like the ones proposed by [103]

and [94] also suffer from other shortcomings, e.g., not considering word senses, compound

words, or technical terms. Our proposed synthesis model focuses more on keeping major

keywords, and additionally makes use of the power of seq2seq models to perform rewriting

and produce a coherent output.

4.4.4 Template Synthesis Model (for answering Q4, Q5)

To synthesize summaries, we use the same leave one course out approach. For each

course, we use the data from the other three courses to train the rewriting module and

tune the scoring language model. We can also use the summaries from CNN/DM data as

4https://github.com/ChenRocks/fast abs rl

39

additional samples to further train the rewriting module. We then start synthesizing data

using that training data as input. First templates are constructed. The templates are then

clustered into 8 clusters. We decided to use 8 to avoid clustering templates from POI with

MP, as the templates from both prompts would contain very different supporting words. We

also wanted to avoid a high level of dissimilarity within each cluster, and allow some diversity.

Following the clustering, the rewriting model produces candidate summaries for each human

summary. The rewriting model is an encoder-attention-decoder with pointer network. The

rewriting model, similar to PG-net model, uses 128-dimensional word-embeddings and a

512-dimensional 1 layer LSTM. On the encoder side, we use a bidirectional LSTM. The

model is trained with adagrad optimizer and an initial learning rate of 0.15. After producing

Original Human Summary

almost all the students enjoyed the algorithm for determining the height of binary

trees. a few others also mentioned binary trees and trees in general.

Extracted Keywords

algorithm, binary trees, binary trees, trees

Synthesized Sample

most of the students found binary trees and finding the height through recursion

as interesting. some mentioned binary trees some of them didn’t find anything

interesting in the lecture.

Table 17: An example of synthesized CS summary.

the candidate summaries, a language model is used to score them. The language model

is a single layer LSTM language model trained on 36K sentences from Wikipedia and fine

tuned using student reflections. In this work we decided to pick only the highest 3 scored

candidate summaries as synthetic data, to avoid adding ill-formed summaries to the training

data. Since we are adding N synthetic summaries for each set of reflections, that means we

are essentially duplicating the size of our original reflection training data by N , which is 3

in our case. Table 17 shows a human summary, the keywords extracted, then the output of

40

injecting keywords in a different template using rewriting.

4.4.5 Template-based Summarization (for answering Q6)

While the proposed template-based model was intended for data synthesis, with minor

modification it can be adapted for summarization itself. Because the modifications introduce

few parameters, the model is suitable for small datasets. Recall that for data synthesis, the

input to the template method is a summary. Since for summarization the input instead is

a set of reflections, we perform keyword extraction over the set of reflections. We then add

an extra logistic regression classifier that uses the set of reflections as input and predicts a

cluster of templates constructed from other courses. Using the keywords and the predicted

cluster of templates, we use the same rewriting model to produce candidate summaries.

The last step in the pipeline is scoring. In data synthesis, a reference summary is used for

scoring; however, in summarization we don’t have such a reference. To score the candidate

summaries, the model only uses the language model and produces the candidate with the

highest score.

4.5 Results

4.5.1 ROUGE Evaluation Results

Table 18 presents summarization performance results5 for the six extractive baselines,

for the original and proposed variants of the two abstractive summarization models Fast-RL

and PG-net, and finally for template-summarization. Following See et al. [86] and Chen

and Bansal [12], performance is evaluated using ROUGE-1 (R-1), ROUGE-2 (R-2), and

ROUGE-L (R-L) [42] on F1.

The motivation for using domain transfer and data synthesis is our first questions (Q1).

Table 18 answers this questions. All ROUGE scores for Fast-RL and PG-net that outperform

5We performed pairwise t-test for statistical significance over the results of the four courses. Unfortunately,
four samples is a sample size, thus, majority of the scores are not significant

41

Summarization Model CS ENGR
R-1 R-2 R-L R-1 R-2 R-L

Extractive

Luo et al. [52] 27.65 6.66 22.76 30.99 8.97 25.38 1
Mead 5 30.59 8.26 23.78 29.35 7.91 23.12 2
Random Select 5 26.74 5.89 20.55 26.14 5.35 20.57 3

Baselines
Fast-RL CNN/DM 28.95 6.62 22.16 26.6 5.09 21.06 4
Fast-RL Reflections 27.57 7.26 21.25 21.78 2.91 15.97 5
Fast-RL Tuned 26.86 6.04 20.91 20.84 3.82 15.61 6

Fast-RL
CNN/DM 28.75 6.38 22.63 27.51 6.42 22.17 7
Reflection 23.98 4.61 18.22 22.63 4.74 17.62 8
Tuned 30.28 8.09 24 31.67 9.5 24.41 9

PG-net

CNN/DM 29.83 7.10 18.28 29.30 6.95 17.63 10
Reflection 25.90 4.62 17.49 26.14 6.05 20.94 11
Reflection+WordNet 27.15 3.13 17.8 28.11 6.11 21.29 12
Reflection+Template 26.93 3.49 19.38 29.54 6.96 21.30 13
Tuned 37.31 10.20 24.16 38.47 13.88 27.79 14
Tuned+WordNet 34.13 7.13 21.96 32.61 7.51 21.72 15
Tuned+Template 37.88 11.01 25.30 38.98 13.97 28.65 16

Template Model Summarizing 34.8 9.3 23.4 36.5 11.2 24.1 17

Summarization Model Stat2015 Stat2016
R-1 R-2 R-L R-1 R-2 R-L

Extractive

Luo et al. [52] 28.84 10.15 25.05 32.96 12.44 27.90 18
Mead 5 26.06 8.84 21.28 32.31 12.30 26.27 19
Random Select 5 23.50 5.88 19.46 23.77 7.63 20.11 20

Baselines
Fast-RL CNN/DM 27.49 7.73 22.05 24.59 8.16 20.66 21
Fast-RL Reflections 20 5.5 16.08 18.3 6.28 15.2 22
Fast-RL Tuned 15.73 4.89 12.7 15.39 5.37 12.84 23

Fast-RL
CNN/DM 23.74 5.75 19.63 24.44 7.06 20.51 24
Reflection 26.61 6.41 19.32 30 5.43 20.74 25
Tuned 29.33 7.21 21.56 29.48 6.73 22.39 26

PG-net

CNN/DM 27.22 7.62 17.80 30.99 10.01 20.29 27
Reflection 29.29 5.66 20.31 32.10 5.92 22.28 28
Reflection+WordNet 26.11 5.26 20.41 31.92 6.14 22.36 29
Reflection+Template 29.65 5.42 20.54 32.43 5.96 21.53 30
Tuned 38.78 12.45 26.19 41.05 12.17 28.25 31

Tuned+WordNet 34.65 9.88 24.31 36.58 9.78 24.08 32
Tuned+Template 39.12 12.23 26.93 40.95 12.26 28.51 33

Template Model Summarizing 35.6 11.1 24.8 38.3 11.9 25.6 34

Table 18: ROUGE results. Italics indicates outperforms baselines. Boldface indicates

best over all. Underlining indicates best result in a group (i.e., Baselines, Fast-RL, PG-net).

42

all extractive baselines (in italics) involve tuning and/or use of synthesised data, except for

one R-1 exception (row 28).

Our second question (Q2) asks if domain transfer via model tuning should benefit both

the Fast-RL and PG-net abstractive models. Table 18 shows that fine tuning can indeed

improve the training of complex neural models when there is a large amount of out-of-

domain data but only a small amount of in-domain reflection data. For PG-net, comparing

the CNN/DM out-of-domain and Student Reflection in-domain results in rows (10 and 11)

and (27 and 28) with their corresponding tuned results in rows 14 and 31, we see that

fine tuning improves R-1 scores from (29.83 and 25.9) to 37.31, (29.3 and 26.14) to 38.47,

(27.22 and 29.29) to 38.78, and (30.99 and 32.1) to 41.05 for CS, ENGR, Stat2015, and

Stat2016, respectively. Similarly R-2 and R-L are also improved for all courses (rows 10, 11,

14 and 27, 28, 31). We also see the same benefits of model tuning for the Fast-RL model:

compared to using only news or only reflection data, the tuned models boost all ROUGE

scores for all courses (rows 7, 8, 9 and 24, 25, 26), except for R-1 and R-2 in Stat2016 (row

26). Qualitatively, the examples presented in Table 16 clearly show that tuning yields a

more coherent and relevant summary. Comparing the tuned versions of the two abstractive

summarization models to each other, Fast-RL (rows 9 and 26) achieves lower ROUGE scores

overall compared to PG-net (rows 14 and 31). For 8 of the 12 tuned results, Fast-RL is not

even able to beat the best baseline result. One factor might be the number of possibilities

for tuning Fast-RL. While PG-net is a single model that needs tuning, Fast-RL involves

three models that need tuning (extractor, abstractor, RL agent), which introduces more

parameters to optimize and also more choices for tuning (e.g., tune all models or a subset

of them). One support for this intuition is that when PG-net and Fast-RL are trained using

CNN/DM they achieve similar ROUGE scores; bigger differences appear only after tuning.

Over all courses, the tuned version of PG-net consistently outperforms the best baseline

result for each metric (rows 14 vs. 1, 2, 3, 4, 5, 6 and 31 vs. 18, 19, 20, 21, 22, 23) except

for R-2 in Stat2016.

Our next set of questions (Q3, Q4. Q5) asks if enriching low resources data with syn-

thesized data will render the in-domain data more effective in training or tuning abstractive

summarization models, and if the proposed template based synthesis model is indeed superior

43

to simple baselines like word replacement with WordNet. For these experiments we use only

PG-net to check the impact of data synthesis, since in general it performs better than Fast-

RL on our dataset. We use the synthesized data in two settings: either using it for training

(rows 12, 13 and 29, 30) or tuning (rows 15, 16 and 32, 33). Table 18 answers Q4 by showing

that the proposed synthesis model outperforms the WordNet baseline in training (rows 12,

13 and 29, 30) except for R-1 on CS and R-2 and R-L on Stat2016, and tuning (15, 16 and

32, 33) over all courses. It also shows that while adding synthetic data from the baseline is

not always helpful, adding synthetic data from the template model helps to improve both

the training and the tuning process. In the CS course, tuning with synthetic data enhances

ROUGE scores by 0.57%, 0.81%, and 1.14% for R-1, R-2, and R-L, respectively, compared

to tuning with only the original data. ENGR ROUGE scores are also enhanced by 0.51%,

0.09%, and 0.86% for R-1, R-2, and R-L, respectively (rows 14 and 16). As for Stat2015,

R-1 and R-L increase by 0.34% and 0.74% respectively, while R-2 decreases by 0.22%. For

Stat2016, R-2 and R-L increase by 0.13% and 0.26% respectively, and R-1 decreases by 0.1%

(rows 31 and 33). Training with both student reflection data and synthetic data compared to

training with only student reflection data yields similar improvements, answering Q3 (rows

11, 13 and 28, 30). While the increase in ROUGE scores is small, our results show that

enriching training data with synthetic data can benefit both the training and tuning of other

models. In general, the best results are obtained when using data synthesis for both training

and tuning (rows 16 and 33), answering Q5.

Finally, while the goal of our template model was to synthesize data, using it for sum-

marization is surprisingly competitive, answering Q6. We believe that training the model

with little data is doable due to the small number of parameters (logistic regression classifier

only). While rows 17 and 34 are never the best results, they are close to the best involving

tuning. This encourages us to enhance our template model and explore templates not so

tailored to our data.

44

Figure 1: Human evaluation task example.

45

4.5.2 Human Evaluation Results

While automated evaluation metrics like ROUGE measure lexical similarity between

machine and human summaries, humans can better measure how coherent and readable a

summary is. We thus perform a small human evaluation of machine-produced summaries

for 2 courses, namely Stat2015 and CS. Since the study is small scale, we picked only one of

Stat2015 and Stat2016 since they are the same course over two years and thus similar. We

picked CS over ENGR based on the number of documents. Since PG-net produced higher

ROUGE scores than Fast-RL, we perform the evaluation using only summaries from PG-net.

Our evaluation study investigates whether tuning the PG-net model increases summary

coherence, by asking evaluators to select which of three summaries for the same document

they like most: the PG-net model trained on CNN/DM; the model trained on student

reflections; and finally the model trained on CNN/DM and tuned on student reflections. 20

evaluators were recruited from our institution and asked to each perform 20 tasks similar

to Figure 1. Summaries are presented to evaluators in random order. Evaluators are then

asked to select the summary they feel to be most readable and coherent. Unlike ROUGE,

which measures the coverage of a generated summary relative to a reference summary, our

evaluators don’t read the reflections or reference summary. They choose the summary that

is most coherent and readable, regardless of the source of the summary.

Table 19 shows the percentage of evaluators selecting summaries from each model. For

both courses, the majority of selected summaries were produced by the tuned model (49%

for CS and 41% for Stat2015). The results of our human evaluation task provide further

evidence that domain transfer to remedy the scarceness of in-domain data can be helpful for

improving performance.

4.6 Conclusion

We explored improving the performance of neural abstractive summarizers when applied

to the low resource domain of student reflections using three approaches: domain transfer,

46

Model selection ratio

Course News Reflections Tuned

CS 31 19.7 49.3

Stat2015 30.9 28.5 40.5

Table 19: Model selection % (all human evaluations).

data synthesis and the combination of both. For domain transfer, two state of the art

abstractive summarization models were pretrained using out-of-domain data (CNN/DM),

then tuned using in-domain data (student reflections). The process of tuning improved

ROUGE scores on the student reflection data, and at the same time produced more readable

summaries. To incorporate synthetic data, we proposed a new template based synthesis

model to synthesize new summaries. We showed that enriching the training data of the

neural summarizers with this synthesized data can further increase the benefits of using

domain transfer / tuning to increase ROUGE scores. We additionally showed that the

proposed synthesis model outperformed a word replacement synthesis baseline.

47

5.0 Mitigating Data Scarceness through Data Synthesis, Augmentation and

Curriculum for Abstractive Summarization (Data-Based Direction Cont.)

(Published in Findings of EMNLP 2021) [59]

5.1 Introduction

The previous chapter showed that pretraining with data from a different domain and

synthesizing data using a template-based model could improve abstractive summarization

models for low resource domains. In this chapter, we expand the scope a little bit more. We

explore different methods of data augmentation and different approaches to improving the

used pretraining-fine tuning pipeline. In this chapter, we focus on two different directions;

data augmentation and curriculum learning. Data augmentation is widely used in computer

vision to increase the model resistance for slight input variants while increasing the training

data size.

On the other hand, for the textual domain, data augmentation tends to be more chal-

lenging due to the text’s structural nature. Most of the work done on data augmentation

focus on back translation and word replacement. These two approaches involve augmenta-

tion on the input level, which might expose the model to grammatically or logically incorrect

input. Additionally, the data augmentation benefits are distributed across the whole model,

which might involve already well-trained or less critical parts. Thus, we decided to explore a

different approach that can avoid the grammatical and logical constraints on the input side;

it can also allow us to push the learning more in-depth into the model to any specific part.

The second direction we explore is integrating curriculum learning in the training process.

Curriculum learning can help weighting training samples differently based on external crite-

ria. Weighting training samples, in turn, can help training the model gradually. Finally, we

explore combining both directions (augmentation and curriculum learning) to overcome the

data scarcity issue. The experiments performed in this chapter aim to answer the following

research questions:

• Question 1 (Q1) : Would the proposed shuffling and paraphrasing data synthesis model

48

be helpful even without reliance on templates ?

• Question 2 (Q2) : Would sample mixing and curriculum learning introduce any im-

provements for abstractive summarization on low resource domains ? What difficulty

metric to use ?

• Question 3 (Q3) : Would combining data synthesis with curriculum learning further

outperform using each technique in isolation ?

• Question 4 (Q4) : Finally, can the proposed shuffling and paraphrasing synthesis

technique generalize to more structured data ?

5.2 Datasets

CourseMirror (CM) In this chapter, we use the Train/Val/Test variant of CM data.

In order to use the Train/Val/Test variant of CM data for training, we compiled all courses

into one dataset. We then split the documents into training, validation, and test sets (80%,

10%, 10%, respectively) by sampling equally from all courses. Refer to chapter 2 for further

details.

Amazon/Yelp (A/Y) is the other dataset we use in this chapter. The dataset is an-

other small dataset, consisting of opinions. The dataset contains customer reviews from

Amazon [29] and Yelp. The data contains 160 products/businesses split into training, vali-

dation and test sets. Each of the products/businesses contains a set of 8 reviews. Refer to

chapter 2 for further details.

5.3 Summarization Models Used

Unlike previous chapter in which we used RNN based models [86, 12], in this chapter we

move to using more recent SOTA abstractive summarization models that utilizes transformer

networks (BART [41], BERTSum [45]). We decided to use these two models as being two

49

SOTA models for abstractive summarization and being easy to integrate with the proposed

techniques in this chapter.

5.4 Proposed Approach

This section describes the approaches we explore in the two directions (data augmentation

and curriculum learning).

5.4.1 Data Augmentation

We explore different data augmentation approaches. First, we introduce a couple of

simple approaches as baselines and compare them with more sophisticated approaches. We

then build on the template-based model discussed in the previous chapter by proposing

synthesising data using a pretrained paraphrasing model instead of templates. Finally, we

introduce the proposed variant of MixText that we use to augment data for text generation

tasks.

5.4.1.1 Baselines

In our experiments, we focus on summarizing student reflections as in CourseMirror

and customer reviews such as Amazon/Yelp. The input document consists of several in-

dependent reflections/reviews. Thus we decided to explore a couple of data augmenta-

tion approaches that can benefit from such property. To our knowledge, in prior work

there is no data augmentation technique used for summarization except back generation

proposed by Parida and Motlicek [72]. Accordingly, we introduce these two simple tech-

niques to be used as baselines. First, we randomly shuffle the reflections/reviews to gen-

erate a new input document. For an input document and its corresponding summary D

and S respectively where D consists of N independent reflections/reviews [r1, r2, r3, .., rn],

we generate M augmented samples [Da1, Da2, Da3, ..DaM] by randomly shuffling the re-

flections in the input document so that for i ∈ [1..M], Dai, S = shuffle(D), S. where,

50

shuffle(D) = shuffle([r1, r2, r3, .., rn]) returns a randomly shuffled version of the passed

set of reflection/reviews such as [r2, rn−3, r4, .., r1] and so on. By doing so, we try to re-

duce the model’s dependency on the order of reflections/reviews, as we pass the same set

of reflections/reviews and expected summary while having the reflections/reviews reordered

differently.

The second approach is shuffling with masking. Like the first approach, we generate M

augmented samples for each input document and corresponding summary by shuffling the

reflections/reviews. However, we additionally randomly allow for input masking such that

50% of the reflections are masked. We generate M augmented samples [Da1, Da2, Da3, ..DaM]

for an input document and its corresponding summary D and S, respectively by randomly

shuffling the reflections/reviews in the input document. We then randomly decide to mask

50% of the reflections/reviews or not by randomly sampling a value v between 0 and 1.

for i ∈ [1..M], Dai =

Dai[1 : N/2], if v ≥ 0.5

Dai, otherwise

We do so to allow the model to generate the summary from a partial set of reflections/reviews

and reduce order dependency.

5.4.1.2 Paraphrasing with GPT-2

Like data synthesis with a template-based model, we propose synthesizing new human

summaries using paraphrasing instead of templates. Using templates for augmentation can

involve implicit reliance on textual properties that might not be present in all domains. Un-

like opinion or reflection summarization, news or scientific paper summaries, for example,

might not have an underlying structure that can be common in many summaries. Thus,

relying on template extraction might not lead to a successful augmentation. With that said,

instead of extracting templates, we propose using a paraphraser to generate different poten-

tial summaries that are paraphrases of the original human summary. We use the paraphraser

trained by Krishna et al. [39]. They fine tuned a pretrained large GPT-2 language model

with data from PARANMT-50M [96] to direct the model into generating diverse paraphrases

that they later used for style transfer.

51

5.4.1.3 Mixtext for text generation (MixGEN)

Figure 2: MixText model.

MixText is a data augmentation approach based on mixing two input samples by weight

summing the features corresponding to the two samples at any level of the model (specific

layer of the encoder, after encoder, etc.) using λ. The model is then expected to produce

a probability distribution over the available classes, similar to a λ weighted sum of the two

samples’ gold predictions. We train the model using KL divergence between the predicted

distribution and the expected one. Figure 2 shows the original MixText model proposed

by Chen et al. [9]. We adapt the approach of Chen et al. [9] for text generation tasks by

modifying the decoding process and loss calculation; we call our approach MixGEN (Figure

3).

Similar to the original MixText, we use two input samples and pass them to the encoder.

We pass the samples up to a specific layer, then the two hidden states are summed together

weighted differently u sing t he λ p arameter. O n t he d ecoder s ide, fi rst, we co nstruct the

52

Figure 3: MixText for generative tasks.

expected values using the following:

for i ∈ min(L1, L2) PDi = [P1, P2, P3, ..Pv],

for j ∈ [1, v]


Pj = λ, if S1[i] = j

Pj = 1− λ, if S2[i] = j

Pj = 0, otherwise

where v = vocab size, and L1, L2 are the human summary of input sample 1 and input

sample 2, respectively. PDi is the probability distribution expected for tokeni. S1[i], S2[i]

are the ith token of the first sample’s and second sample’s human summary, respectively.

In simple wording, during decoding, we expect the output probability distribution across

the vocabulary of the decoder at token position i to have two high values, one with value

λ at vocabulary token corresponding to the ith token of the first sample’s human summary,

and another value of 1− λ at vocabulary token corresponding to the ith token of the second

sample’s human summary. This should continue as long as i is less than or equal to both

53

human summaries’ length. Once i is greater than the minimum summaries’ length, then

the expected distribution would only correspond to the longer summary. Finally, the text

generation on the decoder side is auto-regressive, thus, expected token is passed at the end

of each generation step. However, if we pass the argmax of the expected distribution, then

we will end up always passing the token corresponding to the sample with higher weight (λ)

vs. (1-λ). Thus, we randomly sample from the two input samples based on their weights

using the following equation.

for i ∈ [1, Lmin], Pi ∼ U(0, 1)

for i ∈ [1, Lmin]

Pi <= λ, Ti from S1

Pi > λ, Ti from S2

where S1 and S2 are the first and second sample respectively, Lmin is minimum length of

both S1 and S2. Pi is the sampling probability and U(0, 1) is a uniform distribution.

5.4.2 Curriculum Learning

Curriculum learning aims to help the model training process by introducing easier sam-

ples first followed by more difficult ones according to a particular difficulty metric. We use

the curriculum construction approach introduced by Xu et al. [98]. In this approach, we split

data into N buckets based on a difficulty metric. We then train the model in a difficulty

incremental setting by sampling from harder buckets as the training process progresses while

keeping the easy ones. After a while, the whole data is then used for training. This would

allow the model to focus on easier samples first, learn them then move to the harder ones.

In this work, we use two different curriculum difficulty metrics to infer which measures can

be more suited to our domain.

54

5.4.2.1 Specificity

Specificity is a measure of how specific or vague a piece of text is. We argue that the more

specific a piece of text is, the more complicated it can get. For example, text like Nothing,

or Everything is Easy are not specific and easy for the model to learn and vice versa. Thus,

we decided to use specificity as a pointer to how hard or easy it is to learn a piece of

text. We feed the model less specific pieces of text first during training, then introduce

the more specific ones as training progresses. Specificity is calculated (Appendix C) on the

reflection/review level, so we use the average values of the whole set of reflections/reviews as

the document value. For example; for a training sample of an input document D consisting

of N independent reflections/reviews [r1, r2, r3, .., rn], we calculate the specificity value for

the sample as follows:

Ds =
N∑
i=1

S(ri)/N

where S(ri) is specificity value of the i’s reflection/review.

5.4.2.2 ROUGE

ROUGE is the standard metric used for evaluating text summarization performance.

Thus, following Xu et al. [98], we decided to use ROUGE as a difficulty measure. In their

original approach Xu et al. [98] used the downstream’s task evaluation metric as the difficulty

measure for their curriculum. We decided to use ROUGE scores by measuring the input-

output ROUGE. In this method, for a training sample, we calculate the ROUGE score

between the input document D, and it is corresponding human summary S and use it as a

difficulty measure. We can think of the ROUGE value between input D and summary S, as

to how abstractive the summary is. According to Liu* et al. [44], the higher the ROUGE

score, the less abstractive the summary is compared to the input, and vice versa. We argue

that the more abstractive a sample (i.e., less ROUGE score) is, the harder the sample is to

learn.

55

5.5 Experiments

5.5.1 Parameters

5.5.1.1 Baselines

To our knowledge, in prior work there is no data synthesis technique used for summa-

rization except back generation [72] and template synthesis [58]. Thus, we developed two

synthesis baselines (shuffle; shuffle + mask). We generated 10 samples for each of the

original training samples for both baselines by randomly shuffling the reflections/reviews.

Additionally, for the shuffle-mask baseline, we randomly mask 50% of the reflection/reviews

50% of the time.

5.5.1.2 Paraphrasing with GPT-2

We used the paraphrasing model trained by Krishna et al. [39] 1. We generate n synthetic

samples for each original sample by generating n paraphrases of the human summary and

shuffle the input reflections. We varied n between [5, 10] to monitor the effect of synthetic

data size.

5.5.1.3 MixGEN

We integrate MixGEN by combining each sample with n other samples during training.

We varied n between [3, 5, 7]2, 3 for our experiments. Moreover, we use mixing probability

α=0.75 as specified by the original code implementation4.

1https://drive.google.com/drive/folders/1RmiXX8u1ojj4jorj QgxOWWkryDIdie-?usp=sharing
2We found that increasing n more than 3 leads to performance degradation. Thus, we only show results

of n=3 here.
3Integrating MixGen with BART is complex, and since experiments on BERT didn’t introduce huge

improvements, we decided to perform experiments only using BERT.
4https://github.com/GT-SALT/MixText

56

5.5.1.4 Curriculum learning

In the curriculum learning experiments, we use a specificity prediction model that consists

of a DistilBERT [83] encoder with a support vector machine classification layer (refer to

Appendix C for further details and model evaluation). The model is trained using CM

specificity data (refer to chapter 2) and predicts values between 1 and 4. We calculate

the whole input document’s specificity value by averaging the specificity values of all the

reflections. We normalize the whole training data values between 1 and n, where n is the

number of buckets to split the data. Following the work done by Xu et al. [98] we use n=10.

Similarly, we normalize the average ROUGE value to also be between 1 and n.

5.5.2 Model Training

In all of our experiments, we use BERTSum and BART models. We fine tune the models

using 6 Nvidia Quadro RTX 5000 GPUs. For BERTSum, we use the BERTSum pretrained

on CNN/DM checkpoint5. We used the same parameters in the original code. We conducted

experiments on CM and AY datasets using proposed methods in regular training and in a

pretraining→fine tuning setting, where we perform pretraining with synthesized data and

fine tuning using original data.

In BART experiments, we use the DistilBART model trained with CNN/DM data, con-

sisting of 6 layers on both encoder and decoder sides and a hidden size of 4096. We use

a batch size of 1 sample per GPU. We use a maximum input length of 1024 tokens with

right-side padding for shorter inputs and we truncate longer inputs.6. We generate an output

of a maximum length of 128 tokens on the decoder side. The generation is done using beam

search with a beam size of 10 beams. Similar to BERTSum, we conducted experiments on

CM and AY datasets using proposed methods in regular training and in a pretraining→fine

tuning setting, where we perform pretraining with synthesized data and fine tuning using

original data.

5https://github.com/nlpyang/PreSumm
6The hardware couldn’t accommodate larger batch sizes, and the maximum input length of 1024 is the

maximum length BART model can process. For CM, we only have 8 inputs longer than 1024 tokens and
none for AY.

57

5.6 Results

CM AY

Pretraining fine tuning R1 R2 RL R1 R2 RL

No Pretraining

None

Original 36.34 11.39 26 27.71 3.83 17.83
shuffle 38.57 11.72 26.94 28.34 4.04 17.74
shuffle + mask 37.07 11.52 26.45 28.01 4.21 17.87
Synth.(n=5) 39.39 12.85 26.66 28.27 4.36 17.84
Synth.(n=10) 41.14 14.24 26.98 28.49 4.54 18.08
Cur.(S) 36.88 12.41 27.63 28.69 4.28 17.95
Cur.(R) 37.01 12.13 27.11 28.8 4.33 18.18
Mix(n=3) 36.87 11.98 26.57 27.85 3.95 17.89

With synthetic data pretraining

Synth.(n=5)
Original 39.39 12.85 26.66 28.27 4.36 17.84
Cur.(S) 40.68 13.59 26.26 27.95 4.4 18.01
Cur.(R) 39.35 12.33 26.48 28.56 4.25 18.06

Synth.(n=10)
Original 41.14 14.24 26.98 28.49 4.54 18.08
Cur.(S) 39.81 12.94 26.81 28.52 4.5 18.15
Cur.(R) 40.22 14.12 27.33 28.21 4.35 17.87

Table 20: ROUGE results of BERTSum with augmentation techniques on CM and AY

(highlighted means outperform original, and bold means the best scores across a set of

experiments)

Table 20 shows results obtained through conducting experiments on CM and AY datasets.

Considering data synthesis and augmentation (answering Questions Q1, and Q2), we

first see that the two baselines (shuffle and shuffle+mask) can improve performance compared

to no data manipulation across all ROUGE scores except RL for shuffle baseline on the AY

dataset. This shows that reducing the model dependency on the input sentence order can

help the model depend more on the actual input text. Moving to the proposed augmentation

technique (MixGEN), we see that we can get a performance gain across all ROUGE scores

across both datasets by mixing training samples compared to normal training with a single

sample. Similarly, we can see that providing synthetic data with the proposed paraphrasing

approach can help outperform both using original data as well as baselines with (41.14,

14.24, 26.98) compared to (36.34, 11.39, 26) and (38.57, 11.72, 26.94) for original and shuffle

58

CM AY

Pretraining fine tuning R1 R2 RL R1 R2 RL

No Pretraining

None

Original 48.55 22.56 34.23 37.17 10.08 23.1
shuffle 52.08 30.05 40.2 35.8 8.15 21.79
shuffle + mask 53.37 30.09 39.37 36.19 8.75 22.51
Synth.(n=5) 48.26 23.56 35 37.84 10.36 23.84
Synth.(n=10) 49.39 23.35 35 38.15 10.34 23.88
Cur.(S) 46.84 20.91 34.29 37.94 10.2 23.75
Cur.(R) 48.2 23.33 34.39 37.83 10.24 23.64

With synthetic data pretraining

Synth.(n=5)
Original 48.26 23.56 35.05 37.84 10.36 23.84
Cur.(S) 46.51 22.23 33.01 36.27 8.98 22.78
Cur.(R) 47.01 21.2 33.73 37.24 9.36 23.3

Synth.(n=10)
Original 49.39 23.35 35 38.15 10.34 23.88
Cur.(S) 47.35 22.42 32.76 37.17 9.88 23.31
Cur.(R) 48.63 21.94 34.24 37.65 9.27 23.22

Table 21: ROUGE results of BART with augmentation techniques on CM and AY

(highlighted means outperform original, and bold means the best scores across a set of

experiments)

baseline respectively on CM, and (28.49, 4.54, 18.08) compared to (27.71, 3.83, 17.83) and

(28.34, 4.04, 17.74) on AY. Additionally, we can see that increasing the synthetic data size

helps to improve the model performance across all ROUGE scores for both CM and AY

datasets (N=5 vs. N=10).

Now moving to curriculum learning (answering Question Q2), we can see that in-

tegrating a curriculum to reorder training data differently using any of the two proposed

difficulty metrics can lead to consistent improvements across all ROUGE scores for both CM

and AY datasets. Additionally, we can see that curriculum can improve scores compared to

the two augmentation baselines across all ROUGE scores except R1 for CM data. On the

other hand, answering questionQ3, we don’t see consistent ROUGE score improvement when

using curriculum for fine tuning after pretraining with synthetic data. Furthermore, while

both curriculum difficulty metrics (i.e., Specificity and ROUGE) introduced improvement

59

compared to training with no curriculum, we didn’t observe any consistent improvement

pattern in using one metric over the other.

To further verify our findings, we performed similar experiments using BART model.

Table 21 show results obtained through conducting experiments on CM and AY datasets.

Similar to BERTSum, we found that different proposed augmentation techniques (i.e., data

synthesis and Mixing) can introduce improvements to training with no augmentation except

R1 on data synthesis for CM. Moreover, unlike BERTSum, the shuffling and shuffling with

masking baselines were able to introduce large improvements on CM but failed to introduce

any improvements on AY. Moving to curriculum learning, similar to BERTSum, integrating

a curriculum learning using any of the two proposed difficulty metrics can lead to consistent

improvements across all ROUGE scores for the AY dataset. However, for CM, we can see

improvements on R2 and RL using the ROUGE metric and improvements on RL only using

specificity metric. We counted the number of instances (i.e., R1, R2, or RL) where the

curriculum with the ROUGE metric achieved a higher score than the curriculum with the

specificity metric. We found that using the ROUGE metric outperforms the specificity metric

61% of the time compared to 39% for specificity. We also calculated the average difference in

scores between curriculum with ROUGE and curriculum with specificity for instances when

curriculum with ROUGE is higher and instances when curriculum with specificity is higher.

We found that the average difference in score for instances in which curriculum with ROUGE

is higher is 0.7, while for instances in which curriculum with specificity is higher is 0.48. Thus,

while both metrics are helpful, we can conclude that the more relevant ROUGE metric can

introduce higher and more consistent improvements. Finally, integrating curriculum learning

with data synthesis for BART didn’t introduce any improvements compared to training with

only synthetic data.

To conclude our findings, we summarized our results in table 22. In table 22, we show

each finding we observed in our experiments and mark whether the finding is satisfied (Y)

for each of the datasets and models or not (N). Y indicates that condition is satisfied for all

3 ROUGE scores and N is otherwise (e.g., Syn(5) outperforms original is marked with Y if

for all 3 ROUGE scores (R1, R2, RL) Syn(5) achieves greater or equal value than original).

Finally, we assign each Finding a generalization degree (strong, moderate, weak, and none)

60

that indicates how much the finding transfer across data, models, and both. Each degree

indicates a different number of satisfied conditions (A condition is a combination of a model

and a dataset, refer to table 22 for the four conditions), where strong indicates complete

transferability across data and models (i.e., all four conditions are satisfied), moderate (i.e., 3

out of 4 conditions are satisfied), weak (i.e., 1, or 2 out of 4 conditions are satisfied) and finally

none (i.e., 0 out of 4 conditions are satisfied). We can see that for single technique usage

(only synthetic and only curriculum), the proposed synthetic with paraphrasing technique

outperforms using only original data across the two models and the two datasets (i.e., all

8 conditions) except for one condition (answering questions Q1, Q2). Similarly, using a

curriculum with ROUGE or specificity difficulty metric outperforms using data without any

curriculum for three out of the four conditions (answering question Q2). Finally, we can

see that combining curriculum learning with data synthesis didn’t outperform using only

synthetic data for any of the four conditions.

Findings
BERTSum BART

Generalization
CM AY CM AY

Single Technique

Shuffle baseline outperforms Original Y N Y N Weak

Shuffle + mask baseline outperforms Original Y Y Y N Moderate

Cur.(S) outperforms Original Y Y N Y Moderate

Cur.(R) outperforms Original Y Y N Y Moderate

Syn.(5) outperforms Original Y Y N Y Moderate

Syn.(10) outperforms Original Y Y Y Y Strong

Syn.(10) outperforms Syn.(5) Y Y N N Weak

Multiple Techniques

Syn.(5) + Cur.(S) outperforms Syn.(5) N N N N None

Syn.(5) + Cur.(R) outperforms Syn.(5) N N N N None

Syn.(10) + Cur.(S) outperforms Syn.(10) N N N N None

Syn.(10) + Cur.(R) outperforms Syn.(10) N N N N None

Table 22: Summary of results. Generalization indicates how the findings transfer across

models, data, and both. Y indicates that condition is satisfied for all the 3 ROUGE scores

and N otherwise. Strong, moderate, weak, and none indicate the number of satisfied

conditions of (4, 3, 2 or 1, and 0) respectively.

61

5.7 Shuffling and Synthesis Analysis (Answering Question Q4)

In our experiments, we observed a difference between the performance of shuffle baseline

when performed on CourseMirror data and Amazon/Yelp data. Table 23 shows the results

of BART model on both CM and AY data using original data and original data with shuf-

fling baseline (numbers are extracted from table 21). We can see that the shuffling on

CM introduces good improvements; however, when we moved to AY data, shuffling achieved

worse performance than using only original data. One hypothesis is that CM, on average,

has large numbers of reflections per document (40) while AY only has eight reviews per

document. Having many reflections allows the shuffling to produce potentially different ex-

amples. However, with eight reviews only, shuffling may not be able to change the document

noticeably.

Data Configuration R1 R2 RL

CM ∼ (40 Refs/Doc)
Original 48.55 22.56 34.23

shuffle 52.08 30.05 40.2

AY = (8 Refs/Doc)
Original 37.17 10.08 23.1

shuffle 35.8 8.15 21.79

Table 23: ROUGE results of BART model on CM and AY data for shuffle baseline.

In order to verify this hypothesis, we decided to create a new version of CourseMirror

data. We randomly sample 8 reflections only per document in this version, and we refer to

that version as (CM-8). Sampling only eight reflections produces a version of CM similar

to AY data in terms of input document size. We then performed experiments to fine tune

BART with CM-8 using only original data and data with shuffling. Table 24 shows the

results of fine tuning BART on both CM and CM-8 using original data and shuffled data.

We can see that our hypothesis can hold, and we can see that by reducing the number of

reflections to only 8, the improvement in ROUGE scores decreased a lot. Moreover, we found

that for R2, the shuffling didn’t introduce any improvements.

62

Data Configuration R1 R2 RL

CM ∼ (40 Refs/Doc)
Original 48.55 22.56 34.23

shuffle 52.08 30.05 40.2

CM-8 = (8 Refs/Doc)
Original 41.58 15.86 28.55

shuffle 42.1 13.73 28.91

Table 24: ROUGE results of BART model on CM and CM (8 reflections) data for shuffle

baseline.

Data Configuration R1 R2 RL

CNN ∼ (28 Sents/Doc)

Original 34.33 13.14 23.58

shuffle 33.13 12.71 23.22

Syn 5 32.66 11.26 22.21

CNN - small
Original 16.37 2 10.61

Syn 5 19.48 2.55 12.76

Table 25: ROUGE results of BERTSum model trained with real, shuffled, and synthetic

data from both CNN and CNN-small datasets.

63

From the previous experiments (refer to section 5.6), we can conclude that proposed data

synthesis technique that depends on shuffling, in general, can introduce improvements for

datasets such as CM and AY, where the input is unstructured, and all reflections/reviews

are independent. However, we can’t guarantee the same behavior if applied to structured

data such as news. Thus, we performed another set of experiments to verify how shuffling

and shuffling based synthesis would affect more structured data. We performed experiments

using a subset of CNN/DM dataset to compare training with original data and training with

shuffled data. We randomly sampled 20k samples from CNN and 20k samples from DM

data for a total of 40k samples. The average number of sentences per document is around 28

sentences. We then shuffled and randomly sampled 25K samples from the 40k for training and

5k for validation, and 10k for testing. For each sample of the training samples, we produced

five more augmented samples via shuffling the input document’s sentences and using the

same ground truth summary. We then trained the BERTSum model once using only the

original 25k samples and another time using the 25k original + 125k augmented samples.

Table 25 shows the results of training using both versions of the CNN/DM datasets. We

can see that training the model with shuffling didn’t introduce any improvements to CNN;

however, we can conclude that shuffling is not very harmful even with structured data as we

observed a slight reduction in all ROUGE scores.

Now, we move to analyze the effect of shuffling combined with paraphrasing data syn-

thesis. We perform data synthesis with paraphrasing similar to what we did with CM and

AY. We generate five paraphrases for each training data sample as alternative human sum-

maries. We then shuffle the input document five times and combine each of the shuffled

versions with one of the generated paraphrased summaries as a new synthetic training sam-

ple. Unlike unstructured data, for which the data synthesis mechanism was able to help the

model improve, using the same shuffling-paraphrasing-based data synthesis approach didn’t

help the model improve with more structured data. From table 25 we can observe that using

the data synthesis approach led to a drop in all ROUGE scores. This might be due to the

training sample size we used for the CNN/DM dataset, which is 25K samples. That size

can’t be considered low resource data, and introducing synthesized data with low quality

was harmful to a model that can be trained well enough from 25K samples. To further verify

64

that hypothesis and confirm the effect of shuffling on structured data, we sampled a smaller

version of the CNN/DM dataset. We only sampled 1K samples for training and 500 samples

for both validation and testing. According to table 25, we can see that using the proposed

shuffling and paraphrasing synthesis technique was indeed helpful for low resource settings,

even if more structured data such as news was used. Additionally, as we hypothesized, the

synthesis is not effective when much data is available, as it would introduce low-quality data

that would be harmful to the model when much high-quality data is already available.

5.8 Conclusion

This chapter showed that we could mitigate the effect of data scarcity in different datasets

(i.e., CourseMirror and Amazon/Yelp) for abstractive summarization using three simple

data manipulation techniques. We showed that synthesizing data with paraphrasing to use

for pretraining can boost the model performance across all ROUGE scores for different

datasets and two different models (BERTSum, and BART). We also showed that mixing

samples for training can push the BERTSum model to be more resilient to overfitting and

improve its performance. Moreover, we showed that reordering training samples through

curriculum, using the proposed difficulty metrics (i.e., Specificity and ROUGE) would

help improve all ROUGE scores across different datasets without the need for any additional

data (either true or synthetic). However, we showed that using ROUGE difficulty metric

outperforms using specificity metric in higher number of cases. Finally, we showed that using

any of these data manipulation techniques in isolation can improve the performance across

two datasets using two different models. Unfortunately, we found that combining two of

these techniques (synthesis + curriculum) either didn’t introduce consistent improvements

or no improvements at all. We also showed that the proposed synthesis (paraphrasing and

shuffling) technique could also be helpful in low resource settings not only for reflections-like

data but also for structured data such as news.

In the next chapter, we are moving towards a different direction (i.e., model-based di-

rection), where we perform experiments on multitask learning. Finally, in the last chapter,

65

we combine both directions (i.e., data-based and model-based) into one framework targeting

low resource domains.

66

6.0 Improving Abstractive Summarization With Multitask Learning (Model

Based Direction) (Published in Findings of EMNLP 2021) [60]

6.1 Introduction

Recent work has shown the utility of training neural models using huge amounts of

data from various tasks. For example, research using T5 [77] and BART [40] has shown

that training text encoders using data from multiple tasks helps to produce an encoder

that can be used in numerous downstream tasks with minimal fine tuning. Research has

shown that other multitask learning models can also help a model better learn a target

task. However, in multitask learning for text summarization, it is still unclear what range

of tasks can best support summarization, and most prior work has incorporated only one

additional task during training [33, 11, 73, 23]. In their work Gehrmann et al. [23] showed

that training extractive summarization in addition to abstractive summarization helps to

enhance abstractive summarization performance. Additionally, all of the summarization

multitask work is using large summarization datasets. To our knowledge, no prior work has

tried to tackle multitask summarization in low-resource domains with little training data.

In this chapter we attempt to address these gaps by answering the following research

questions:

• Question 1 (Q1) : Can abstractive summarization performance be boosted via multi-

task learning when training from a small dataset?

• Question 2 (Q2) : Are there some tasks that might be helpful and some that might be

harmful for multitask abstractive summarization?

• Question 3 (Q3) : Will the same findings emerge if a very different small training

corpus is used?

• Question 4 (Q4) : Will the same findings emerge if different learning models are used?

• Question 5 (Q5) : Finally, what would be the outcome if we used both different model

and data?

67

These five questions aim to find the effect of incorporating multitask learning with multiple

tasks on abstractive summarization for low resource data. Additionally we aim to get an

initial understanding of which tasks are helpful to abstractive summarization and which are

harmful. Finally, these questions try to verify if the behavior is consistent across different

conditions (Model type, pretraining, data structure). To answer Q1, we use a pretrained

BERT model [14] within a multitask framework, and train all tasks using a small-sized

corpus of student reflections (around 400 samples). To answer Q2, we explore the utility of

training on four different tasks (both alone and in combination) in addition to abstractive

summarization. To answer Q3, we replicate the student reflection experiments using a very

different corpus of news documents. To answer Q4, instead of fine tuning with the BERT

model, we perform experiments using the BART and T5 transformer models [77, 41]. Finally,

to answer Q5 we perform experiments using BART and T5 on a different small dataset (i.e.

Amazon/Yelp). Our results show that abstractive summarization in low resource domains

can be improved via multitask training. We also find that certain auxiliary tasks such as

paraphrase detection consistently improve abstractive summarization performance across

different models and datasets, while other tasks like language modeling more often degrade

model performance when used as an auxiliary task coupled with low resource data.

6.2 Datasets

Table 26 summarizes each dataset in terms of the number of documents and their dis-

tribution into training, validation, and test sets. Chapter 2 contains examples from each

dataset alongside a more comprehensive distribution of each of the datasets.

CourseMirror (CM)1 In this chapter we perform experiments with CM data using the

two configuration Leave-One-Course-Out (LOCO) and the traditional Train/Val/Test splits

(refer to chapter 2). For both BERT and T5 we use the LOCO configuration. On the other

hand, we use the other configuration for fine tuning BART.

1https://petal-cs-pitt.github.io/data.html

68

CM LOCO

Train + validation data Test data Train Val Test

ENGR + S2015 + S2016 (232) CS (138) 209 23 138

CS + S2015 + S2016 (318) ENGR (52) 286 32 52

CS + ENGR + S2016 (282) S2015 (88) 254 28 88

CS + ENGR + S2015 (278) S2016 (92) 250 28 92

Other datasets

Data # Docs Train Val Test

Complied CM 370 296 37 37

Amazon/Yelp 160 58 42 60

CNN-micro 2500 1500 500 500

Table 26: Dataset summary.

Amazon/Yelp2 In our experiments, we use the provided Train/Val/Test splits to fine

tune both T5 and BART models.

CNN/DailyMail summarization dataset (CNN-micro) CNN/DM is a widely used

summarization dataset consisting of around 300k news-oriented documents (refer to chapter

2). Since the focus of our research is low resource data, we randomly select a small version

of CNN/DailyMail, and we refer to it as CNN-micro. To build CNN-micro, we randomly

sampled 500 samples for test and validation from the corresponding CNN original test and

validation sets. We then randomly sample 1500 documents for training from the original

training set. We only used the CNN-micro dataset for BERT experiments. The reason is

that CNN/DM is used as part of a huge corpus used for pretraining both T5 and BART.

Thus, testing with CNN dataset would be inaccurate.

2https://github.com/abrazinskas/FewSum

69

6.3 Summarization Models Used

In the previous chapter, we performed experiments using two of the SOTA abstractive

summarization models (BART [41], and BERTSum [45]). In this chapter, we decided to pick

BART out of the two models as it showed better performance across all experiments and

is easier than BERTSum to integrate within multitask learning scheme. Additionally, we

decided to use two additional models to verify our findings. The first one is T5 which is like

BART, a model trained with multiple tasks and is easy to integrate with a multitask learning

scheme. Moreover, we decided to propose another model unlike BART and T5, which are

pretrained in a multitask learning setting. The proposed model simply uses a BERT encoder

followed by task-specific sub-modules.

6.4 Proposed Models

This section describes the three summarization models used in this work, the different

tasks used for multitask learning, and the intuition behind using each of the tasks. We

first i ntroduce t he b ase e ncoder u sed f or e ach m odel. Then we d escribe h ow t o integrate

multitasking with each model, and the basic structure of the different parts of each model.

6.4.1 Model Base

6.4.1.1 BERT

We use a pretrained BERT [14] model as a sequence encoder followed by a set of different

task-specific modules.

6.4.1.2 T5-Transformer

We also make use of the recently introduced T5-transformer [77], which stores a large

amount of knowledge about language and different tasks, including abstractive summariza-

70

tion.

6.4.1.3 BART

We finally make use of the recently introduced BART [41], which trains multiple tasks

including abstractive summarization with different input manipulation and reconstruction

such as (shuffling, masking, etc.).

6.4.2 BERT Multitask Integration

Figure 4: Proposed BERT-Multitask model.

6.4.2.1 Shared BERT encoder

The model uses a pretrained BERT encoder shared between all tasks. Encoder output

is passed to task specific sub-models to perform generative and predictive tasks. Encoder

weights are also fine tuned alongside the rest of the model in the multitask framework. Figure

4 shows the model architecture.

71

6.4.2.2 Abstractive summarization

Although a lot of recent abstractive summarization work uses transformer-based models

to overcome issues of sequence length [99, 40], we found that LSTM based decoders consis-

tently outperform transformer-based ones when trained from scratch on our data. Thus we

decided to use LSTMs in all our experiments. We argue that transformers might require

more data to train from scratch compared to LSTMs, however further analysis is needed.

While most recent work on text generation tends to use pointer networks [92, 86], we decided

to avoid using pointer networks and used only attention and coverage mechanisms [86] to

reduce the number of model parameters.

6.4.2.3 Extractive summarization

The extractive summarization module aims to extract the most salient sentences from

the input document and present them as a summary. Magooda and Marcjan [61] showed

that a non-autoregressive extractive model trained with language modeling can be efficient.

The model consists of a linear layer to classify a sentence as part of the summary or not

given the input document and the sentence. Document and input sentence are fed to BERT

encoder in the format

[CLS]DW1DW2...DWn[SEP]SW1SW2....SWm

Where DWi is the ith word of the input document, SWi is the ith word of the sentence to

classify, and ([CLS], [SEP]) are respectively the starting and sentence separation tokens used

by BERT.

The output of the classification layer is either 0 or 1; 0 means the sentence is not part of

the summary and 1 means otherwise.

6.4.2.4 Concept detection

This task detects important concepts (keywords) within an input text. Humans can have

a general understanding of a topic’s main idea by looking through concepts or keywords

72

(e.g., keywords integrated into early pages of many research papers or books). We assume

the same is applicable for summarization; to accurately and efficiently summarize a topic, a

prior understanding of the concepts or keywords can help the summarization model locate

the important information. The module’s objective is to classify each word within a sequence

of words as either a part of a concept or not. So for each word wi in a sequence S of length

N , the module produces N predictions (P0, P1, P2, ..PN), where Pi = 0 or 1 for i=0..N ;

1 means the word is part of a concept and 0 otherwise. The module consists of a fully

connected layer that works as a classifier, where the input is the hidden states generated

using BERT encoder. Output on the other hand is either 0 or 1 for each of the words in

the input document. Further training details will be presented in sections (6.5.3, 6.5.4, and

6.5.5).

6.4.2.5 Paraphrase detection

The paraphrase detection module aims to classify a pair of sentences as to whether the

sentences are paraphrasing each other or not. Which in turn means that both sentences

convey the same idea in different wording. Guo et al. [25] proposed training entailment

generation with abstractive summarization, as summarization is very relevant to entailment

generation. We in contrast view the relation between the input document and generated

summaries as a potential paraphrasing. With that said we train a paraphrase detection task.

The module consists of a fully connected layer classifier. Similar to extractive summarization,

the input is passed to the BERT encoder in the format

[CLS]Sent1[SEP]Sent2

Where Sent1 and Sent2 are the two input sentences for MSRP paraphrasing datasets. On the

other hand, Sent1 and Sent2 are the input document and human summary for CM and CNN-

micro datasets. The output of the final classification layer is either 1 if the two sentences

are paraphrases and 0 otherwise.

73

6.4.2.6 Language modeling

We integrate a language modeling module into the multitask training framework. We

argue that language modeling, in general, can help improve generative tasks. The language

modeling module consists of a masked language modeling attention head. This module aims

to skew the BERT vocabulary slightly into the training data distribution by fine tuning it

using the masked language model objective. We train the language model module using

masked language model objective, in which a subset of the input words are masked and

model is expected to predict these words using the surrounding context. Following the

original BERT training from [14], input sequence tokens are masked with probability 15%,

where masked tokens are either replaced by a special masking token (80%), replaced with a

random word (10%) or left unchanged (10%).

6.4.3 T5 Multitask Integration

It is worth noting that unlike BERT, T5 represents any task as language modeling. Thus

we decided to drop the language modeling auxiliary task for T5, as it would be a form of

redundancy.

Following the T5 framework, we train a set of tasks jointly using the “text to text” format

described in the paper. That is, when a text is fed to the model, it is asked to generate a

corresponding output in text format as well. To separate tasks from each other, a unique

prefix is added to identify each one. For instance, we use “abs summarize” to distinguish

abstractive summarization from the rest of the tasks, and “ext summarize” to identify the

extractive summarization task. In our experiments, we explore utilizing T5 under three

experimental conditions.

6.4.3.1 Fine tune T5 on abstractive task

First, we fine tune pretrained T5 transformer on the abstractive task only, using the CM

dataset (Figure 5a).

74

6.4.3.2 Mixture of tasks training

Second, we adopt the T5 framework to train the mixture of tasks as text-to-text, which

allowed us to fine tune in the same model simultaneously. Figure 5b shows how we train the

combination of tasks in our experiments .

6.4.3.3 Intermediate task transfer

Finally, instead of training multiple tasks jointly with abstractive summarization, we

experiment to use them as intermediate tasks. First, we fine tune T5 on a single or a mixture

of tasks. Then, we fine tune the resultant model on the main abstractive summarization

task. Pruksachatkun et al. [75] studied this idea thoroughly. In their work, they refer to

intermediate tasks as data-rich tasks. In our work, we use closely related tasks as intermediate

tasks. Figure 5c shows the process of how we firstly select a task or more to fine tune T5

against, then fine tune again on Abstractive Summarization. Furthermore, T5 is pretrained

with CNN/DM, thus we don’t perform experiments with CNN-micro using T5.

6.4.4 BART Multitask Integration

We use the BART encoder-decoder framework to train a set of tasks jointly. Similar to

BERT we add 3 additional classification sub modules for concept detection task, paraphrase

detection task, and extractive summarization task. The three sub modules operate on the

BART encoder output. We use the encoder-decoder modules for both abstractive summa-

rization and language modeling tasks. Finally, instead of training multiple tasks jointly with

abstractive summarization, similar to T5 we used them as intermediate tasks. First, we fine

tune BART on a mixture of tasks including abstractive summarization. Then, we fine tune

the resultant model on the main abstractive summarization task only. Similar to T5, BART

is pretrained with CNN/DM, thus we don’t perform experiments with CNN-micro using

BART.

75

(a) Fine tune T5 on Abstracive Summarization
Dataset

(b) Fine tune T5 on Mixture of tasks

(c) Intermediate Task transfer using T5
transformer

Figure 5: Different fine tuning conditions for T5. (- -) indicates optional additive data for

Paraphrasing.

76

6.5 Experimental Setup

This section introduces data preprocessing, BERT, BART, and T5 model parameters,

and evaluation metrics.

6.5.1 Datasets

In addition to using the CM and CNN-micro datasets for abstractive and extractive

summarization, when the datasets are used for language modeling all training documents

corresponding to a dataset are combined into a single corpus and used for training. More-

over, to train the paraphrase module we combine MSRP data and a summarization dataset.

Finally to use a summarization dataset to train the concept detection module, we prepare

the concept detection data by initially extracting concepts using a simple TF-IDF ranking

algorithm [91]. The algorithm first generates a list of candidate concepts by applying noun

phrase chunking. The noun phrases are then ranked using a TF-IDF model trained on

Wikipedia. The top N high scoring phrases are selected as concepts. Each word in the input

document is then tagged with either 1 or 0, where 1 means the word is part of a retrieved

concept and 0 otherwise.

6.5.2 Optimizer

We perform training using multiple optimizers. The intuition is to tune different modules

with different rates. We tune the whole model using 3 optimizers: one for the BERT encoder,

another for the abstractive decoder, and the last for the other modules. All optimizers are

Adam optimizers, with different initial learning rates 5e-4, 5e-3, and 5e-5 for BERT encoder,

abstractive decoder, and other modules respectively. We also performed experiments using

a single optimizer for the whole model. Multiple optimizers consistently outperform a single

optimizer.

77

6.5.3 T5 Parameters and Training

We use the 3B T5 model, which is publicly available. The model consists of 24 layers

for encoder and decoder. For details of the model architecture, refer to [77]. We set the

initial learning rate to 0.001, which the authors used in their summarization experiments.

Due to the lack of hardware, we couldn’t perform Beam Search decoding. We fine tuned the

CourseMirror data on 7 TPUs on Google Cloud for 5000 steps.

6.5.4 BERT Parameters and Training

In our BERT experiments we use the BERT basic uncased model which consists of

12 layers, and a hidden size of 768. We fine tune the model using a single Nvidia P100

GPU for 85 epoch and a batch size of 4 and 8. The epoch with the highest ROUGE score

on the validation set is used later for testing. We tried multiple initial learning rates, as

different learning rates might be selected for different courses depending on the validation

set performance. The multitask training is done in a sequential fashion, where during each

epoch all tasks are trained sequentially (i.e. for each epoch, the abstractive sub-model is

trained using all data, followed by the extractive sub-model, etc.). We use a maximum input

length of (120, 200, and 250) tokens for CM experiments as the average document length of

CM data is around 200 tokens, then used the most suitable length based on the validation

set. We tried multiple max input lengths for CM as we noticed that there are repeated

sentences within the reflections. So while smaller cut-offs like 120 can truncate some of the

reflections (which can be repeated), it would lead to a faster training process. As for CNN-

micro we use a maximum of 500 (max is 512 for BERT). Shorter documents are padded and

longer ones are truncated. We generate summaries using beam search with beams of length

5. The average length of CM summaries ranges from 35 to 42 tokens, and 56 for CNN. Thus

we decided to limit the summary length to 50 tokens.

78

6.5.5 BART Parameters and Training

In BART experiments we use the DistilBART model trained with CNN/DM data which

consists of 6 layers on both encoder and decoder sides, and a hidden size of 4096. We fine

tune the model using 6 Nvidia Quadro RTX 5000 GPUs. We use a batch size of 1 sample per

GPU. Fine tuning is done for 1 epoch using multiple tasks followed by 10 epochs with only

abstractive summarization task. The epoch with the highest ROUGE score on the validation

set is used later for testing. We use a maximum input length of 1024 tokens with right side

padding for shorter inputs. On decoder side, we generate output of maximum length of 128

tokens. The generation is done using beam search with beam size of 10 beams.

6.5.6 Evaluation Metrics

We evaluate performance using ROUGE (1, 2, and L) [42] on F1. Moreover, we perform

human evaluation on three different aspects (Fluency, Factual consistency, Relevancy) to

overcome the limitations of ROUGE score.

6.6 Results and Discussion

6.6.1 Automatic Evaluation

Our experiments evaluate performance using ROUGE [42] on F1. For CM data we report

mean ROUGE using a leave-one-course-out validation for both BERT and T53,4, while for

CNN-micro, Amazon-Yelp, and BART on CM we report ROUGE using held-out test sets.

Q1-Can abstractive summarization performance be boosted via multitask

learning when training from a small dataset?: The gray cells in Table 27 show that

BERT multitask training for CM data can help improve single-task (A) training. For R1 and

R2 we observe improvements across all task combinations. While some task combinations

3Individual course ROUGE scores are in appendix B
4We performed pairwise t-test for statistical significance over the results of the four courses. Unfortunately,

four samples is a sample size, thus, majority of the scores are not significant

79

Tasks R1 R2 RL

Single task (A) 26.82 4.71 21.5

A C 27.11 4.75 21.1

A E 28.51 4.91 21.41

A P 27.83 5.99 23.05

A L 27.22 5.47 21.31

A E L 28.36 5.62 21.6

A E P 27.68 5.24 21.81

A E C 27.41 5.81 22.13

A C P 29 6.43 22.2

A L P 27.71 5.82 21.14

A L C 27.39 6.09 21.36

ALL 27.72 5.55 21.31

Table 27: ROUGE results of BERT multitask on CM. Gray indicates multitask R is higher

than single task score. Boldface indicates best R across tasks. (Q1, Q2)

also improve RL ((A P), (A E L), (A E P), (A E C), (A C P)), others degrade performance,

particularly when language modeling is involved (e.g., (A L), (A L P), (A L C), and (ALL)).

Thus, while multitask training can be effective, we need to further explore task choice.

Q2-Are there some tasks that might be helpful and some that might be

harmful for multitask abstractive summarization?: Prior work showed the utility

of extractive summarization [31] and language models [61] as auxiliary summarization tasks,

and we too observe similar behavior for R1 and R2 in Table 27. For RL, however, (A E)

and (A L) failed to improve the score. Similarly, our new concept task (A C) improves R1

and R2 but not RL. On the other hand, integrating our proposed paraphrasing task (A P)

improves performance for all ROUGE scores. When we integrate two auxiliary tasks, (A

E L), (A E P), (A E C), and (A C P) improve all of R1, R2 and RL compared to single

80

Tasks R1 R2 RL

Single Task (A) 13.3 0.73 8.98

A C 12.92 1.12 11.03

A E 12.9 0.33 8.76

A P 12.83 1.34 10.44

A L 13.43 0.65 8.36

A E L 14.18 0.36 10.1

A E P 12.82 0.64 8.53

A E C 11.52 1.05 11.23

A C P 11.08 1.09 10.95

A L P 12.79 0.53 8.94

A L C 10.35 0.09 9.81

ALL 11.15 1.26 10.49

Table 28: ROUGE results of BERT on CNN-micro. (Q3)

task performance. For RL, it seems that adding E with another auxiliary task rather than in

isolation improves performance. Also, the (A C P) combination which uses our two proposed

tasks (concept, paraphrasing) achieves the best R1, R2, RL in the 3-task setting.

Q3-Will the same findings emerge if a very different small training corpus

is used?: We now switch to using different dataset (i.e. CNN-micro). Table 28 shows

that when BERT multitask is applied to CNN-micro there is now no task configuration that

leads to improvement across all of R1, R2, and RL. However, the majority of combinations

(6 of 11) improved two out of the three ROUGE scores, especially R2 and RL. Additionally,

judging by ROUGE scores of certain combinations such as (A C) and (A P), we can see that

the reduction in R1 (0.38, 0.47) is less than the improvements gained in R2 (0.39, 0.61) and

far less than RL (2.05, 1.46) respectively. Thus, we can argue that both paraphrasing and

concept detection auxiliary tasks are still good candidates.

81

Tasks R1 R2 RL

Single Task (A) 36.08 10.94 31.57

A E 29.99 8.80 24.80

A C 35.46 10.76 30.81

A P 36.75 12.13 32.30

A C P 36.28 11.59 31.58

A E C 29.19 8.69 25.20

ALL 30.31 9.60 27.97

Table 29: ROUGE results of T5 (No language modeling auxiliary task) fine tuned on CM.

(Q4)

Q4-W1ill the same findings emerge if different learning models are used?:

Shifting gears from changing the data to changing the model, Tables 29 and 30 show that

out of the CM findings obtained using BERT multitask, (A P) is the only configuration that

performs similarly when different models (BART and T5) are used for CM. Additionally,

for T5 combining paraphrasing with the concept task (A C P) introduced improvements on

CM. Like BERT, incorporating paraphrasing into BART and T5 helps improve all ROUGE

scores when used as a single auxiliary task (A P). On the other hand, the utility of other

combinations of tasks didn’t transfer from BERT to BART and T5 on CM.

Q5-Finally, what would be the outcome if we used both different model and

data?: Finally, we try changing both the data and the model. Table 31 shows the results

obtained by using BART model with Amazon/Yelp data. We can see that most of the task

combinations except (A L P) improve all ROUGE scores compared to single-task (Abstrac-

tive only) training. This shows that similar improvements to BERT on CM data can be

seen when using a different model (i.e., BART) on a different dataset (i.e., Amazon/Yelp).

Finally, from all the previous experiments, we only found one combination of tasks that in-

troduced improvements consistently across all the configurations (i.e., A P). Thus, to further

82

Tasks R1 R2 RL

A 48.55 22.56 34.23

A E 44.21 18.91 30.08

A L 48.54 22.34 34.36

A P 49.87 22.59 35.6

A C 47.81 20.32 32.96

A E P 45.11 17.35 29.94

A L P 47.11 23.04 33.58

A E L 37.18 12.22 25.21

A C P 47.76 21.5 33.43

A L C 48.35 21.44 33.43

A L P C 47.94 21.09 32.94

Table 30: ROUGE results of BART on CM. (Q4)

Tasks R1 R2 RL

A 37.17 10.08 23.05

A L 37.85 10.66 24.03

A P 37.86 10.4 23.95

A C 38.05 10.81 24.15

A L P 36.96 9.45 22.96

A C P 37.52 10.42 23.56

A L C 37.32 10.39 23.57

A L P C 36.46 10.32 24.08

Table 31: ROUGE results of BART on AY. (Q5)

83

Tasks R1 R2 RL

Single task (A) 34 8.8 21.25

A P 34.1 9.1 21.7

Table 32: ROUGE results of T5 fine tuned with paraphrasing on AY. (Q5)

verify the utility of paraphrasing, we performed another experiment using a combination of

a different dataset and a different model. We evaluated the T5 model on the Amazon/Yelp

dataset using the (A P) combination only (refer to table 32). Table 32 shows that indeed

paraphrasing is again helpful as an auxiliary task, as it improves all ROUGE scores for T5

on Amazon/Yelp.

In conclusion, we can argue that paraphrasing auxiliary task tends to be very helpful

across different data (i.e., domains and types) and different models.

6.6.2 Human Evaluation

In addition to automatic ROUGE evaluation, following several recent works [19, 1, 85],

we performed a human evaluation on three different aspects (Fluency, Factual consistency,

Relevancy) to overcome the limitations of the ROUGE score.

First, we recruited four annotators from our institution (graduate students) with different

expertise (i.e., Biomedical and electrical engineering). We performed a pre-task test to

assess their understanding of the task. We presented each annotator with four questions;

each question consisted of a set of reflections and three handwritten summaries. The three

summaries are the original human reference summary and two slightly modified versions of

the original summary. Two out of the four questions asked to choose the best summary out

of the three provided summaries in terms of relevancy, where we provided a description of

relevancy according to Fabbri et al. [19]. The other two questions are similar in format but

are directed towards factual consistency rather than relevancy. Figure 6 shows an example

84

Figure 6: Example of pre human evaluation test

85

of the four questions from the pre-evaluation test that asks about factual consistency. The

four annotators passed the pre-evaluation test, with three out of the four answering all the

questions correctly, and only one annotator answered three out of the four questions correctly

on the first trial and answered all four on the second trial.

Factual Consistency Fluency Relevancy*

CourseMirror

A 1.83 1.9 1.79

A P 1.54 1.87 1.75

A C 1.96 2.42 2.21*

A C P 1.79 2.1 1.67

Factual Consistency Fluency* Relevancy

Amazon/Yelp

A 2.63 2.46 2.5

A P 2.46 2.55 2.42

A C 2.46 2 2.38

A C P 2.5 2.25 2.3

Table 33: Human evaluation scores over (Fluency, Relevancy, and Factual consistency)

aspects for both CourseMirror and Amazon/Yelp datasets. Bold indicates best score

across all tasks for a certain aspect. (*) in header means statistically significant using

ANOVA test over all three aspects (i.e. Fluency, Relevancy, and Factual consistency). (*)

in cell means statistically significant using paired t-test between combination of tasks (i.e.

AC, AP, ACP) and abstractive only

Second, we randomly selected 12 samples from each dataset (refer to appendix D for

examples of annotation samples and pre-evaluation test). Each sample is annotated

by two random annotators out of the four. For each sample, we present annotators with

four summaries generated using BART5 (Abstractive only trained model, Abstractive +

Paraphrasing (A P), Abstractive + Concept (A C), and finally Abstractive + concept +

paraphrasing (A C P)). The summaries are randomly shuffled, and human annotators are

asked to evaluate each summary for (Fluency, Factual consistency, Relevancy) on a scale of

5We only sampled summaries from BART as it achieved the best scores on both CM and Amazon/Yelp

86

A A P A C A C P

CourseMirror 25 % 16.6 % 33.3 % 25 %

Amazon/Yelp 29.16 % 45.83 % 4.16 % 20.83 %

All Data 27.08 % 31.25 % 18.75 % 22.92 %

Table 34: Percentage of each task output selected by human annotators as best generated

summary across all task outputs.

1 to 3. We use the same definitions of (Fluency, Factual consistency, Relevancy) reported

by Fabbri et al. [19]. Moreover, we ask the human annotators to pick the best summary

overall. We calculate the average human scores across the three aspects for each dataset

and combination of tasks. Table 33 shows the average scores for the three different aspects

on each dataset. Additionally, table 34 shows the percentage of each task being selected as

the best summary across both datasets. Unfortunately, we didn’t find major differences in

average scores between tasks. Moreover, we performed a one-way (single factor) ANOVA

test between all four combinations of tasks (i.e., A, AP, AC, ACP) for each individual aspect

(i.e., Fluency, Relevancy, Factual Consistency). We only found that the two statistically

significant (ρ ≤ 0.05) aspects are Relevancy for CM and Fluency for Amazon/Yelp. We

then performed paired t-test between abstractive only and the three combination of tasks

(i.e. AP, AC, and ACP) for fluency on AY and relevancy on CM. While in both cases

(relevancy on CM and fluency on AY), one of the two proposed tasks (AC for CM and

AP for Amazon/Yelp) got higher human scores than the abstractive only summaries. We

found that the only statistically significant difference is for relevancy between A and AC

on CM. We also found consistent findings when we analyzed the best-selected summaries

across datasets (table 34). We found that human annotators preferred summaries generated

through training with AC for CM and through training with AP for Amazon/Yelp

87

6.7 Analysis

In this section, we perform further analysis to get additional insights on models’ perfor-

mance. We perform the analysis on two different dimensions. First, we try to understand

how an auxiliary task like concept detection is related to the data properties. Thus, we can

estimate the performance of this task on new datasets by looking into its properties. On

the other dimension, we perform analysis on the task level to understand how different tasks

would lead to change summaries’ properties. Thus, we can use specific tasks to generate

summaries with certain properties6.

6.7.1 Concept Distribution

CS0445 ENGR S2015 S2016

Input 20.98 17.76 49.49 35.87

Summaries 21.28 21.23 26.19 22.58

Table 35: %Ratio of concept words to total length across reflections and summaries

First we do analysis to get additional insights into different models’ performance on

datasets and how dataset properties affect the final model performance. We start the analysis

by first exploring the effect of concept distribution similarity on the ROUGE score. Table 35

shows the ratio of concepts in input and output for each course in CM dataset. We aim to

investigate if having a similar concept distribution between input and output would affect the

ROUGE score. We further investigate the effect of combining the task of concept detection

with the task of abstractive summarization using two different models (T5, BERT7) for the

CM dataset. Table 36 shows the results of combining the two tasks using T5 and BERT

models on the CM dataset. We can see that for BERT average ROUGE score is improved

for (CS0445, ENGR, S2016) and only decreased for S2015.

6For now we only focus on abstractiveness property
7We did the analysis with T5 and BERT only as we didn’t perform experiments with BART using CM

leave on course out configuration.

88

Tasks R1 R2 RL AVG R1 R2 RL AVG

BERT

CS0445 ENGR

A 26.93 3.98 21.04 17.32 27.19 7.27 22.66 19.04

AC 27.09 4.85 20.12 17.35 30.14 7.67 22.96 20.26

S2015 S2016

A 27.71 4.83 19.4 17.31 25.46 2.76 22.93 17.05

AC 21.92 3.11 17.75 14.26 29.32 3.4 23.6 18.77

T5

CS0445 ENGR

A 34.62 9.46 29.84 24.64 35.43 9.93 31.07 25.47

A C 34.42 9.71 29.31 24.48 35.84 10.14 31.38 25.78

S2015 S2016

A 36.87 12.03 32.34 27.08 37.41 12.33 33.02 27.58

A C 34.49 10.40 30.12 25 37.09 12.77 32.42 27.42

Table 36: ROUGE results of BERT and T5 Models fine tuned on CM.

Similarly, in table 35 we can see that the distribution of concepts is similar for CS0445

and ENGR. The distribution is very different for S2015 and less different for S2016. On the

other hand, for T5, concepts are only helpful in the case of ENGR and are harmful to the

rest of the courses. However, the decrease in the average ROUGE score in CS0445, S2016

is small compared to S2015 course. Finally, we think that while BERT was not affected

dramatically by the difference in S2016, T5 was more affected. This can be due to T5 being

a more powerful model and able to fit the distribution closely. Thus, we can see that having

a similar distribution of concepts in both input and output can improve ROUGE scores

through the integration of concept detection task.

6.7.2 Abstractiveness

In addition to concept distribution, we performed additional analysis to find which tasks

would lead to more abstractive summaries. Abstractiveness in this context refers to models’

capability to integrate new words into the generated summaries. In order to measure ab-

stractiveness, we decided to analyze two aspects of generated summaries. First, we look into

89

(a) New Ngrams for CM (b) Ngrams recall for CM

(c) New Ngrams for AY (d) Ngrams recall for AY

Figure 7: Distribution of new Ngrams and Ngrams recall for both AY and CM datasets

90

the ratio of new n-grams in generated summaries that don’t appear in the input. A higher

n-gram ratio indicates the model’s ability to add new words that are not copied from the

input. However, a higher ratio of new words in isolation doesn’t mean the model generates a

relevant summary. In order to make sure that the model’s tendency to generate new words

doesn’t lead to generating irrelevant summaries, we also looked into the ratio of human sum-

mary n-grams that appear in generated summaries (n-gram recall). Higher n-gram recall

indicates that generated summaries are relevant to the input document. Thus, models that

achieve high ratios on both aspects can generate more abstractive summaries relevant to

the input subject. Figure 7 shows the ratio of new Ngrams in generated summaries by each

combination of tasks. Similarly, it shows the Ngram recall for each combination of tasks.

We can see that both paraphrasing (A P) and language modeling (A L) help produce more

new unigrams, bigrams, and trigrams compared to only abstractive (A) for both CM and

AY datasets. Additionally, we can see that both paraphrasing (A P) and language model-

ing (A L) gets higher Ngram recall than abstractive only (A) except for trigram recall on

the CM dataset and unigram recall on the AY dataset. Thus, we can conclude that both

the paraphrasing task and language modeling task help abstractive summarization models

produce more abstractive and relevant summaries.

6.8 Conclusion

We explored the utility of training a multitask model for abstractive summarization us-

ing low resources summarization data. We performed a series of experiments using three

fundamentally different models with different preconditions (i.e., BERT not pretrained with

summarization dataset versus T5 and BART pretrained with CNN dataset) to verify any ob-

served behavior. We integrated four different tasks in addition to abstractive summarization.

We performed several experiments to find if training a multitask model, in general, is helpful

or if some tasks might introduce degradation in model performance. We showed that indeed

some tasks might help improve ROUGE scores, and some might not help, at least when

trained in a low resource setting. We found that among all task combinations, three consis-

91

tently improved ROUGE scores across different types of datasets (CM (reviews/reflections)

and CNN-micro (news)) 1- (Abstractive + Paraphrase detection); 2- (Abstractive +

Concept detection + Paraphrase detection); 3- (Abstractive + Extractive sum-

marization + Concept detection). Moreover, we found that using (Abstractive +

Paraphrase detection) is consistent across different datasets (CM, CNN-micro, and AY)

as well as different models (BERT, BART, and T5). Additionally, we found that paraphras-

ing and concept detection, which had not been previously examined as auxiliary tasks for

abstractive summarization, can be, in general, beneficial tasks given low resource data. Fi-

nally, we found that combining any of (paraphrase detection and language modeling) tasks

with abstractive summarization would help the model produce more abstractive summaries

than summaries generated via training only with abstractive summarization task.

92

7.0 Multitask Learning and Data Augmentation for Abstractive

Summarization (Combining Data-Based and Model-Based Directions)

7.1 Introduction

In chapters 4, 5, and 6, we explored two main lines of work to improve how abstractive

summarization models perform in low resource situations when a handful of samples are

available to train the model, and both gathering and annotating new data is a time consuming

and costly task. The two lines are 1- Data based solutions (Chapters 4, and 5), and 2-

Model-based solutions (chapter 6). We introduced performing data synthesis and/or data

augmentation to enrich the training data. Additionally, we proposed integrating it with

another data augmentation approach based on mixing more than one input sample at a

time.

Moreover, we explored using curriculum learning to improve the domain transfer and

fine tuning pipeline by weighting training samples differently based on some difficulty crite-

ria. In the latter, we explored training the abstractive summarization task in a multitask

setting. We proposed a multitask model to train the abstractive summarization task with

different (generative and predictive) tasks. We carried out a comprehensive search across

the proposed tasks to find the most likely tasks to improve abstractive summarization when

performed in low resource settings, even with different base models and/or data from dif-

ferent domains. In this chapter, however, we propose to combine the two approaches into

one single framework, which can benefit from the best of the two worlds. The proposed

framework would include training with multitask learning using (Language modeling, Para-

phrase detection, and Concept detection) as auxiliary tasks1, and it would also include the

augmentation/synthesis steps that proved to be more effective according to chapter 5 (i.e.,

Synthesis with paraphrasing and Curriculum learning). Our experiments in this chapter

aims to answer the following research questions:

1Extractive summarization is not reported as AY data doesn’t have extractive annotation, and extractive
summarization wasn’t a helpful task in general (refer to chapter 6)

93

• Question 1 (Q1) : Would combining data synthesis with multitask learning outperform

using each method in isolation ?

• Question 2 (Q2) : Can combining curriculum learning with multitask learning outper-

form using each method in isolation, even if the difficulty metric is not suitable for all

tasks?

• Question 3 (Q3) : Finally, would combining all techniques (i.e., data synthesis, curricu-

lum learning, and multitask learning) from the two approaches (data-based and model-

based) lead to a better-performing model than using each approach in isolation?

To answer these questions, we perform a set of experiments using the combination of the

two directions and compare the outcome to prior reported results. In the following sections,

we provide the details of the models, and then we discuss the experimental design.

7.2 Summarization Models

In our work we perform experiments using the abstractive summarization model that

achieved best scores in previous chapters (i.e. BART [41]) from chapters 5 and 6. In this

chapter, we integrate multiple combinations of tasks with one or more of the augmentation

techniques (curriculum learning and data synthesis) and fine tune the BART model similar

to chapter 6. We fine tune the BART model using multiple tasks in parallel. The data for

each task is either augmented with synthesized data, fed to the model through a curriculum,

or both.

7.3 Datasets

In this chapter, we perform experiments using two different low resource summarization

datasets (i.e., Amazon/Yelp (AY) and CourseMirror(CM)). For CM, we use the (train/ dev/

test) configuration, and for AY, we use the original (train/ dev/ test) splits.

94

7.4 Experimental Setup

This section describes the experiments we plan to do using the integrated model. We

combine experiments done in chapters 5 and 6. We ultimately performed two sets of exper-

iments (set 1 and set 2) spanning the integration of multiple techniques.

7.4.1 Set 1: Multitask Learning with Single Augmentation Technique (answer-

ing questions Q1, and Q2)

The first set of experiments focuses on integrating multiple augmentation techniques

in isolation with multitask learning. We first perform experiments of data synthesis with

multitask learning. We similarly then perform experiments of curriculum learning with

multitask learning. To synthesis data, we used synthesis with paraphrasing approach (refer

to chapter 5). We varied the number of synthesized samples to (5, 10) synthetic samples for

each original sample within the experiments. We used GPT-2 fine tuned language model for

paraphrasing trained by Krishna et al. in [39].2

Regarding curriculum learning, similar to chapter 5 we used two difficulty metrics to

construct the curriculum (i.e., ROUGE and specificity). Unlike single-task learning, we need

to sort data from multiple tasks using the curriculum. However, the two proposed difficulty

metrics are suited for only abstractive summarization and paraphrase detection tasks (as

both tasks are the only tasks that use input document and human summary). Thus, for

other tasks, we presented the samples in random order.

7.4.2 Set 2: Multitask Learning with Multiple Augmentation Techniques (an-

swering question Q3)

The second set of experiments focuses on integrating both augmentation techniques (i.e.,

data synthesis and curriculum learning) simultaneously with multitask learning. We con-

struct a curriculum for both synthetic data and original data, and we then perform two

steps of fine tuning. We fine tune using synthetic data ordered via curriculum for the first

2https://drive.google.com/drive/folders/1RmiXX8u1ojj4jorj QgxOWWkryDIdie-?usp=sharing

95

step. We then do another fine tuning step using only the original data, similarly ordered via

curriculum.

7.4.3 Model Training

In all the experiments, we use the DistilBART model trained with CNN/DM data,

consisting of 6 layers on both encoder and decoder sides and a hidden size of 4096. We fine

tune the model using 6 Nvidia Quadro RTX 5000 GPUs. We use a batch size of 1 sample per

GPU. We use a maximum input length of 1024 tokens with right-side padding for shorter

inputs. We generate an output of a maximum length of 128 tokens on the decoder side. The

generation is done using beam search with a beam size of 10 beams. The first fine tuning

step is done for one epoch using multiple tasks followed by ten epochs with only abstractive

summarization task. The epoch with the highest ROUGE score on the validation set is used

later for testing.

7.5 Results

In this section we report results obtained for different experiments. We report results for

the two sets of experiments in tables 37, 38, 39, and 40 for set 1 of experiments and tables

41 and 42 for set 2.

7.5.1 Set 1 - Results (answering questions Q1, and Q2)

First, we would like to observe the effect of combining data synthesis with multitask

learning. According to tables 37, and 38 we can see that integrating synthesized data in

small numbers (5 samples) can introduce improvements for both AY and CM data, especially

for CM data compared to training with only original data. However, increasing the number

of synthetic data diminishes the improvements (10 samples VS. 5 samples). Additionally,

in our experiments on multitask learning, we observed consistent improvements through

training with the paraphrase detection task. However, when we combined data synthesis with

96

Original Synthetic 5 Synthetic 10

Tasks R1 R2 RL R1 R2 RL R1 R2 RL

A L 48.54 22.34 34.36 50.54 24.87 35.82 44.53 19.09 31.43

A P 49.87 22.59 35.6 43.6 18.45 30.53 43.99 18.65 30.44

A C 47.81 20.32 32.96 51.3 24.43 36.32 43.1 17.47 28.64

A L P 47.11 23.04 33.58 45.75 21.76 32.4 44.38 19.05 29.47

A C P 47.76 21.5 33.43 43.05 16.47 28.33 47.02 19.62 31.98

A L C 48.35 21.44 33.43 50.27 23.35 35.73 43.93 18.25 29.87

A L P C 47.94 21.08 32.94 43.2 18.43 29.23 45.14 18.92 28.93

Table 37: ROUGE results of BART with both multitask only and multitask with data

synthesis on CourseMirror data (highlighted means better than original)

Original Synthetic 5 Synthetic 10

Tasks R1 R2 RL R1 R2 RL R1 R2 RL

A L 37.85 10.66 24.03 38.01 10.99 24.16 32.6 7.83 20.83

A P 37.86 10.39 23.95 33.83 8.82 21.18 32.48 7.75 20.84

A C 38.04 10.81 24.15 38.59 10.69 24.2 33.53 8.5 21.65

A L P 36.96 9.45 22.96 32.67 7.95 21.07 32.41 7.77 20.56

A C P 37.52 10.42 23.55 34.2 8.26 21.67 34.16 8.31 21.2

A L C 37.32 10.39 23.57 37.98 10.57 23.74 32.39 7.83 20.97

A L P C 36.46 10.32 24.08 33.07 7.91 21.11 31.29 7.6 20.18

Table 38: ROUGE results of BART with both multitask only and multitask with data

synthesis on Amazon/Yelp data (highlighted means better than original)

97

Original Curr (R) Curr (S)

Tasks R1 R2 RL R1 R2 RL R1 R2 RL

A L 48.54 22.34 34.36 44.51 19.6 31.45 44.1 19.5 31.36

A P 49.87 22.59 35.6 45.47 20.01 32.23 45.86 20.65 32.56

A C 47.81 20.32 32.96 44.61 19.83 31.4 48.31 19.94 32.33

A L P 47.11 23.04 33.58 44.46 20.1 32.9 43.36 19.04 30.72

A C P 47.76 21.5 33.43 46.4 20.87 32.3 43.34 20.43 32

A L C 48.35 21.44 33.43 45.93 16.93 30.1 45 17.8 30

A L P C 47.94 21.08 32.94 46.1 18.26 29.9 45.2 18.73 31.01

Table 39: ROUGE results of BART with both multitask only and multitask with

curriculum learning on CourseMirror data (highlighted means better than original)

Original Curr (R) Curr (S)

Tasks R1 R2 RL R1 R2 RL R1 R2 RL

A L 37.85 10.66 24.03 36.9 10.23 24.4 35.59 8.9 23

A P 37.86 10.39 23.95 36.58 10.65 23.84 37.25 9.66 23.02

A C 38.04 10.81 24.15 36.51 10.84 23.83 37.84 10.26 23.71

A L P 36.96 9.45 22.96 36.78 10.3 24.32 35.66 8.98 22.8

A C P 37.52 10.42 23.55 36.13 10.5 23.86 37.04 10.1 23.26

A L C 37.32 10.39 23.57 36.12 9.97 24 35.63 9.35 23.3

A L P C 36.46 10.32 24.08 36.63 10.2 24.45 35.25 9.31 22.91

Table 40: ROUGE results of BART with both multitask only and multitask with

curriculum learning on Amazon/Yelp data (highlighted means better than original)

98

multitask learning, we found improvements with two different tasks (language modeling and

concept detection), and the paraphrase detection task failed to introduce any improvements.

In the next section, we perform some analysis to understand the discrepancy in helpful tasks

between the two cases (i.e., training with only multitask learning and combining multitask

learning with data synthesis).

We now observe the effect of integrating curriculum learning with multitask learning.

Tables 39, and 40 show the results obtained through integrating curriculum learning with

multitask learning for both CM and AY datasets respectively. According to both tables, we

can see that some improvements can be realized on AY data using the ROUGE curriculum

metric. The improvements are neither for all ROUGE scores nor consistent across tasks.

Additionally, no improvements can be seen by using specificity metric on AY data. Moreover,

there are almost no improvements when combining curriculum with multitask learning on

CM data either by using ROUGE or specificity metrics. Thus, we can see that combining

curriculum learning with multitask learning is not very helpful. This agrees with our earlier

hypothesis that the proposed curriculum metrics are unsuitable for all tasks.

7.5.2 Set 2 - Results (answering question Q3)

Now we observe the effect of combining all the techniques we have explored so far.

We combine multitask learning with two data manipulation techniques (i.e., data synthesis

and curriculum learning). First, table 41 shows the results obtained through combining

curriculum learning using ROUGE and specificity metrics with data synthesis and multitask

learning for CM dataset. Second, table 42 show the results obtained through combining

curriculum learning using ROUGE and specificity metrics with data synthesis and multitask

learning for AY dataset.

According to table 41 we can observe similar behavior for both constructing the cur-

riculum using ROUGE and specificity metrics on CM dataset. We can see that integrating

curriculum to sort synthetic data (5 samples) introduced improvements for the task combina-

tions involving paraphrase detection tasks (i.e., AP, ALP, ACP, ALPC). The improvements

observed for tasks involving paraphrase detection strengthen our hypothesis that proposed

99

Original Synthetic 5

No Curriculum + Curriculum (R) + Curriculum (s)

Tasks R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

A L 48.5 22.3 34.3 50.5 24.8 35.8 47.1 21.1 33.2 47.7 21.6 34.5

A P 49.8 22.5 35.6 43.6 18.4 30.5 48.4 22.6 35.1 46.8 21.6 34

A C 47.8 20.3 32.9 51.3 24.4 36.3 46.8 22.5 32.8 48.3 22.4 34.7

A L P 47.1 23 33.5 45.7 21.7 32.4 46.5 19.6 31.5 46.3 21.1 33.8

A C P 47.7 21.5 33.4 43 16.4 28.3 48.6 22.6 34.2 48 22.3 33.7

A L C 48.3 21.4 33.4 50.2 23.3 35.7 45.7 19 31.5 44.2 19.5 30.4

A L P C 47.9 21 32.9 43.2 18.4 29.2 46 19.4 31.8 44.5 20.2 32.1

Original Synthetic 10

No Curriculum + Curriculum (R) + Curriculum (s)

Tasks R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

A L 48.5 22.3 34.3 44.5 19.1 31.4 47.1 22.1 32.3 46.2 20.1 32.6

A P 49.8 22.5 35.6 44 18.6 30.4 48.6 21.5 33.6 47.2 23.3 34.4

A C 47.8 20.3 32.9 43.1 17.4 28.6 46.8 20.9 33.8 46.5 22 33.7

A L P 47.1 23 33.5 44.3 19 29.4 46.2 21 34.2 44.8 20.3 31.4

A C P 47.7 21.5 33.4 47 19.6 31.9 48 21.8 33.4 46.7 21.6 33.4

A L C 48.3 21.4 33.4 43.9 18.2 29.8 44.6 20.3 31.2 47 21.3 32.3

A L P C 47.9 21 32.9 45.1 18.9 28.9 44.3 19.9 31 46.3 21.5 32.7

Table 41: Results of BART with multitask, Synthesis, and curriculum learning on CM

data (highlighted means better than no curriculum. Bold means best ROUGE scores

across each combination of tasks)

100

Original Synthetic 5

No Curriculum + Curriculum (R) + Curriculum (S)

Tasks R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

A L 37.8 10.6 24 38 10.9 24.1 35.8 8.5 22.5 34.6 7.6 21.1

A P 37.8 10.3 23.9 33.8 8.8 21.1 36.7 9.1 23 36 8.5 23

A C 38 10.8 24.1 38.5 10.6 24.2 37 9 23.3 36 9 23

A L P 36.9 9.4 22.9 32.6 7.9 21 33.9 7.7 21.9 32 7 20.6

A C P 37.5 10.4 23.5 34.2 8.2 21.6 36.9 8.9 23.2 35.4 8.6 22.5

A L C 37.3 10.3 23.5 37.9 10.5 23.7 34.6 8.4 22.1 33.2 7.6 21.2

A L P C 36.4 10.3 24 33 7.9 21.1 33.1 7.1 20.8 32.1 6.8 20.7

Original Synthetic 10

No Curriculum + Curriculum (R) + Curriculum (S)

Tasks R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

A L 37.8 10.6 24 32.6 7.8 20.8 34.9 8.3 22.2 33.5 7.7 21.1

A P 37.8 10.3 23.9 32.4 7.7 20.8 36.7 9.1 23 35.7 8.4 22.5

A C 38 10.8 24.1 33.5 8.5 21.6 37.3 9.5 22.9 33.5 7.7 21.1

A L P 36.9 9.4 22.9 32.4 7.7 20.5 33.3 7.2 21.2 33.3 7.1 21.1

A C P 37.5 10.4 23.5 34.1 8.3 21.2 37.3 9.7 23.2 35.7 8.7 22.8

A L C 37.3 10.3 23.5 32.3 7.8 20.9 34.1 8.1 21.6 34.2 7.2 21.4

A L P C 36.4 10.3 24 31.2 7.5 20.1 33.3 7.8 21.1 32 6.8 20.7

Table 42: Results of BART with multitask, Synthesis, and curriculum learning on AY

data (highlighted means better than no curriculum. Bold means best ROUGE scores

across each combination of tasks)

101

metrics used in the curriculum are more suited to abstractive summarization and paraphrase

detection tasks. Additionally, we can see that using a curriculum on data synthesis with

more samples (10 samples) introduced improvements almost across all tasks and all ROUGE

scores. This proves that curriculum learning is beneficial, as it helps use the more noisy

data more efficiently, thus improving the performance across all tasks. We didn’t observe

any tangible difference between the two difficulty metrics when used on the CM dataset.

Now we move to results obtained on the AY dataset. Table 42 show results for both

constructing the curriculum using ROUGE and specificity metrics on AY dataset. Unlike

results obtained on the CM dataset, we can see that constructing a curriculum using ROUGE

introduces more improvements for synthesizing data with 5 and 10 samples for the AY

dataset. Moreover, similar to observations on the CM dataset, curriculum learning introduces

improvements for combinations that include paraphrase detection on AY. Additionally, it

similarly introduces improvements for all combinations of tasks on AY when applied to the

more noisy synthetic data (10 samples).

Finally, we observed improvements by adding curriculum learning to the scores obtained

through using data synthesis with multitask learning. Specially, on task combinations involv-

ing paraphrase detection which unlike training with multitask learning only, didn’t introduce

improvements. However, even with the improvements achieved by integrating the curricu-

lum, the performance is still worse compared to training with multitask learning only except

for ACP on CM data. Thus, combining the two manipulation techniques with multitask

learning in most cases is not very helpful compared to using only data synthesis with the

multitask learning.

7.6 Analysis

7.6.1 Named Entities

A recent line of work by Liu and Chen [48] introduced controlling summary generation

via named entities. They showed that summarization quality and factual consistency could

102

benefit from the inclusion of named entities. Additionally, Liu and Liu [46] performed

analysis on generated summaries using named entities. With that said, influenced by the

prior work, we decided to perform further analysis to find if the number of named entities that

appear in both input and reference summary and appear in generated summary relates to

the ROUGE scores. We want to investigate if the named entities produced by the model are

somehow related to auxiliary tasks used in multitask learning. Additionally, we investigate

how the model behavior changes when using original or synthetic data. Moreover, we want

to investigate if models focus more on named entities or regular words and how that affects

ROUGE scores.

7.6.1.1 Named entity extraction

CM AY

Data Tasks R1 R2 RL F1 R1 R2 RL F1

Original
AP 49.9 22.6 35.6 61.7 37.8 10.4 24 56.1
AL 48.5 22.3 34.4 59.3 37.8 10.6 24 58.9
AC 47.8 20.3 33 57.4 38 10.8 24.2 57.2

Syn. 5
AP 43.6 18.5 30.5 47.2 33.8 8.8 21.1 58.1
AL 50.5 24.9 35.8 58.3 38 11 24.1 59.2
AC 51.3 24.4 36.3 55.7 38.6 10.7 24.2 58

Syn. 10
AP 44 18.7 30.4 57.9 32.4 7.7 20.8 57.7
AL 44.5 19.1 31.4 59.3 32.6 7.8 20.8 66.1
AC 43.1 17.47 28.6 56.3 33.5 8.5 21.6 61.7

Correlation between F1 and ROUGE

CM AY

F1-R1 F1-R2 F1-RL F1-R1 F1-R2 F1-RL

Original 0.99(0.08) 0.86(0.3) 0.99(0.06) -0.11(0.92) 0.63(0.55) -0.11(0.92)

Syn. 5 0.95(0.2) 0.98(0.09) 0.95(0.19) 0.35(0.76) 0.49(0.67) 0.51(0.65)

Syn. 10 0.99(0.07) 0.97(0.15) 0.99(0.07) 0.14(0.98) -0.02(0.98) -0.02(0.98)

Table 43: NER F1 Pearson correlation with ROUGE for CM and AY. P-value is shown

between parentheses

We extracted named entities from the input documents using spaCy3 open-source python

package. We then marked named entities that appear in reference summaries as 1 and those

3https://spacy.io/

103

that don’t appear as 0. We then measured the F1 for extracted named entities in generated

summaries for 3 task combinations (AP, AL, AC). We chose these three tasks as we don’t

have extractive annotation for the AY dataset. We also used one auxiliary task instead of

multiple ones to analyze how each task affects named entities on its own. Table 43 shows

the F1 achieved for different task combinations using original and synthetic data on both

CM and AY datasets.

Additionally, table 43 shows the correlation4 between F1 on all tasks and ROUGE scores

(i.e., R1, R2, and RL) for original and synthetic data on both CM and AY datasets. We can

see that there is a very high correlation between all ROUGE scores and F1 for CM, both

original and synthetic. The high correlation means that on CM, the more named entities the

model produces, the higher the ROUGE score the model gets. On the other hand, we see a

low or negative correlation between ROUGE scores and F1 on AY. The negative correlation,

in turn, indicates that there is almost no relation between the ROUGE performance and the

number of produced named entities on AY.

7.6.1.2 Most frequent named entities

We perform additional experiments to analyze the discrepancy between AY and CM

datasets regarding the correlation between named entity and ROUGE score and further

analyze how important named entities can be for summaries. We extracted the most frequent

named entities for both CM and AY. The most frequent named entities are the ones that

appear most across all summaries. Table 44 shows the most frequent named entities that

appear in original and synthetic data for both CM and AY datasets. According to table 44

we can see that for CM, a lot of the most frequent named entities either produced through

different models or in reference summaries are words referring to the number of students

(e.g., 60%, over half, and approximately 20%). We found that the focus on these named

entities decreases as we synthesize more data, which is expected as we are introducing new

paraphrases replacing these named entities. On the other hand, for AY, the most frequent

4Unfortunately, most of the calculated correlation values are not significant due to the small sample size
(i.e., only three samples, as we calculate the correlation between F1 and R1, R2, and RL using three F1
values for (AP, AL, AC) and three R1, R2, and RL values for (AP, AL, AC)).

104

named entities vary significantly with no apparent effect of data synthesis on the retrieved

named entities. This, in turn, can justify the discrepancy we observed in the correlation

between AY and CM, as models on CM tends to produce named entities such as 60%, over

half, and approximately 20%, etc. to match the reference summary. In order to verify our

argument, we do a similar analysis after performing a filtering step to remove some of the

most frequent named entities from CM data.

7.6.1.3 Filtering named entities

To analyze the effect of the presence of the most frequent named entities such as 60%,

over half, and approximately 20%, etc., we removed these named entities from both produced

summaries and reference summaries and re-calculated ROUGE scores and NER F1. Table

45 shows F1, ROUGE scores, and correlation5 for CM data before and after filtering the

most frequent words. Additionally, table 46 shows the correlation between F1 and ROUGE

score for each task combination on both CM and AY datasets. According to table 45 we

can see that removing the most frequent words led to a huge drop in the correlation between

F1 and ROUGE scores for results obtained from original data. On the other hand, we can

see a less impact or a very slight impact on correlation for synthetic data. This shows that

synthesizing new data helped the model avoid focusing on a small subset of named entities

such as (60%, over half, and approximately 20%, etc.). Furthermore, we can see from

table 46 that summaries generated through AP trained models for the CM dataset tend to

focus on named entities from reference summaries, thus achieving a high correlation between

ROUGE and F1. Even when filtering the most frequent named entities, AP’s correlation

is slightly affected. This means that summaries produced from training with paraphrasing

as an auxiliary task contain a lot of named entities that appear in reference summaries.

However, the named entities are not focused just on the most frequent ones. As for the AY

dataset, while the correlation is negative, we can still see that AP has the highest correlation

compared to the other tasks.

5Similarly, most of the calculated correlation values are not significant due to the small sample size (i.e.,
only three samples, as we calculate the correlation between F1 and R1, R2, and RL using three F1 values
for (AP, AL, AC) and three R1, R2, and RL values for (AP, AL, AC)).

105

CM

Original

Ref Almost half milestone 3 a little under half a great year
A P 60% approximately 20% summer ssr
A L approximately 20% ssr m3 one
A C over half approximately 20% one ssr

Syn. 5

Ref almost half a little under half a great year milestone 3
A P more than a third 3-year-old 4th one
A L approximately 20% 100 years one ssr
A C approximately 20% over half another 20% one

Syn. 10

Ref almost half a little under half mile stone 3 a great year
A P ssr two m3 2
A L ssr third one first
A C ssr two 4 mile stone 3

AY

Original

Ref one bennett many years mexican
A P only one 3 today 70-300mm
A L two six-years-old $10 00 the morning
A C 1963 100 toronto first

Syn. 5

Ref one bennett many years mexican
A P the day of the day 3-year-old 70-300mm 24/7/
A L mexican one years 24 hours
A C mexican 45 minutes 24 hours $10 00

Syn. 10

Ref one bennett many years mexican
A P a couple of days a minute hour the weekend
A L mexican one 30-day ages 4 to 100
A C a couple of years $10 00 100 mexican

Table 44: Most frequent named entities in CM and AY

7.6.1.4 Named entities distribution

Another aspect we analyzed is the number of named entities that appear in train, test,

and generated summaries for different tasks on both CM and AY datasets. Table 47 shows

the percentage of ratio of named entities to all words that appear in train (input/output),

test(input/output), and generated summaries for CM, CM after filtering named entities, and

AY datasets. From table 47 we can see that for CM (original and filtered), the number of

generated named entities increase for AL when moving from original to synthetic-5 data,

this correlates with increase in ROUGE scores as well (refer to tables 43, and 45). We can

106

CM CM - Filtering

Data Tasks R1 R2 RL F1 R1 R2 RL F1

Original
AP 49.9 22.6 35.6 61.7 49.71 21.6 35.1 61.1
AL 48.5 22.3 34.4 59.3 48.1 21.6 33.8 54
AC 47.8 20.3 33 57.4 45.3 15.7 29 59.3

Syn. 5
AP 43.6 18.5 30.5 47.2 43.2 18 30.1 47.2
AL 50.5 24.9 35.8 58.3 50.2 24.4 35.3 54
AC 51.3 24.4 36.3 55.7 51.3 24 36 55.7

Syn. 10
AP 44 18.7 30.4 57.9 43.7 18.1 30.3 57.9
AL 44.5 19.1 31.4 59.3 44.4 18.9 31.4 59.3
AC 43.1 17.4 28.6 56.3 48.7 21.7 32.1 59.3

Correlation (p-value)

CM CM - Filtering

F1-R1 F1-R2 F1-RL F1-R1 F1-R2 F1-RL

Original 0.99(0.08) 0.86(0.3) 0.99(0.06) 0.15(0.9) -0.21(0.8) -0.01(0.9)

Syn. 5 0.95(0.2) 0.98(0.09) 0.95(0.19) 0.99(0.04)* 0.97(0.15) 0.99(0.04)*

Syn. 10 0.99(0.07) 0.97(0.15) 0.99(0.07) 0.61(0.57) 0.67(0.53) 0.92(0.25)

Table 45: NER F1 Pearson correlation with ROUGE for CM after filtering, CM values

without filtering from table 43. P-value is shown between parentheses (* means

statistically significant)

No Filtering Filtering

Data Tasks F1-R1 F1-R2 F1-RL F1-R1 F1-R2 F1-RL

CM
A P 0.74(0.47) 0.73(0.47) 0.68(0.51) 0.74(0.46) 0.72(0.48) 0.71(0.49)
A L -0.74(0.47) -0.82(0.38) -0.73(0.48) -0.93(0.23) -0.86(0.33) -0.92(0.24)
A C -0.98(0.12) - 0.93(0.24) -0.98(0.12) -0.82(0.38) -0.7(0.5) -0.9(0.29)

AY
A P -0.89(0.29) -0.85(0.34) -0.95(0.17) NA
A L -0.99(0.03)* -0.99(0.07) -0.99(0.05) NA
A C -0.96(0.17) -0.98(0.13) -0.99(0.05) NA

Table 46: NER F1 Pearson correlation with ROUGE for each task using values from all

data variants (original, synthetic 5, and synthetic 10) (Recall that we didn’t perform

filtering for AY as the named entities varied significantly, unlike CM) (* means statistically

significant)

107

Data
Train Test Generated

Input Reference Input Reference A P A L A C

CM

2.354

1.978

2.332 1.550

1.818 1.118 1.893

CM Syn 5 1.605 0.944 1.525 1.792

CM Syn 10 1.565 0.531 0.480 1.047

CM (Filtered)

2.354

1.839

2.332 1.408

1.621 1.011 1.683

CM Syn 5 (Filtered) 1.582 0.896 1.450 1.321

CM Syn 10 (Filtered) 1.549 0.531 0.480 1.078

AY

1.869

0.615

1.843 0.657

0.814 0.632 0.548

AY Syn 5 0.562 0.555 0.749 0.793

AY Syn 10 0.623 0.342 0.281 0.494

Table 47: Percentage of named entities in train, test and generated summaries for CM and

AY datasets

108

also see that the decrease in number of named entities correspond to decrease in ROUGE

score as seen in AP when moving from original to synthetic-5 to synthetic-10, and also for

AL and AC when moving from synthetic-5 to synthetic-10. Similarly, we can see that on AY

the number of generated named entities increase for both AL and AC when moving from

original to synthetic-5 data. This correlates with the increase in ROUGE scores. Similar

to CM, we can see that the number of generated named entities decreased for AP when

moving from original to synthetic-5 to synthetic-10 which also correlates with the decrease

in ROUGE scores we saw earlier in table 43.

7.6.1.5 Conclusion of analysis

In conclusion, we found a high correlation between copying named entities from reference

summaries and ROUGE score for the CM dataset. However, the correlation is not clearly

present in the AY dataset, except for synthetic data. We extracted and examined the most

frequent named entities from CM data. We then filtered these named entities to see if

the correlation would change. We found that we can still get a very high correlation with

synthetic data. Moreover, we found that the AP task has a good correlation between ROUGE

and F1 before and after filtering. Thus, we can conclude that using synthetic data can help

produce summaries with more diverse named entities. To further analyze the impact of

named entities in summaries, we counted the ratio of named entities to regular words for

different datasets. We found that for both CM (original/Filtered) and AY datasets, there

is a correlation between increasing the ratio of named entities and getting higher ROUGE

scores. We also found that AL and AC combinations tend to generate more named entities

when trained with synthetic data, thus leading to a higher ROUGE score. In the end, we can

see that named entities can give us a good indication of how different tasks would perform

across different datasets and of why there is a discrepancy between tasks that performed

well on original data (AP) and ones that performed well on synthetic data (AL and AC).

109

7.7 Conclusion

In this chapter, we integrate the two directions (data manipulation from chapter 5 and

multitask learning from chapter 6) into one framework to see if that would improve the use

of each direction in isolation. We integrated multitask learning with the two best performing

augmentation techniques (Synthesis with paraphrasing and Curriculum learning) either one

at a time or both simultaneously. We observed that integrating each technique in isolation

with multitask learning led to improvements. However, we found a discrepancy between

the combination of tasks that introduced improvements in training with original data and

training with synthetic data. We then performed further analysis using named entities

to find the cause of this discrepancy and get an insight into how different tasks would

perform on different datasets. We ultimately found that tasks that produce more named

entities and produce a distribution of named entities close to the distribution in reference

summaries can lead to higher scored summaries. Finally, we found that combining curriculum

learning with multitask learning didn’t help the model, and we argue that this is due to the

lack of a general difficulty metric that suits all tasks. We also found that combining both

augmentation approaches (synthesis and curriculum) simultaneously with multitask learning

didn’t introduce improvements over training with only synthetic or original data.

110

8.0 Conclusions

In this work, we focus on automatic text summarization for low resource domains which

is an under explored area. We also focus our work on less studied domains of student re-

flections and reviews. Unlike, prior work which mainly focused on extractive summarization

solutions, we on the other hand focused on abstractive summarization solutions which are

more challenging. In the course of this work, we explored two different directions to improve

the performance of neural abstractive summarization models for low resource domains. The

first direction focused on improving model performance through manipulating the data.

First, we explored improving the performance of neural abstractive summarization models

using three approaches: domain transfer, data synthesis, and the combination of both. To

tackle data synthesis that is rarely explored in the domain of text summarization, we proposed

a new template based synthesis model to synthesize new summaries. We then showed the util-

ity of the under explored data synthesis in improving model performance. Despite improving

model performance, the proposed synthesis model depends heavily on templates extracted

from in-domain training data. This can limit the model from generalizing to domains with

diverse forms of summaries such as news. Motivated by the improvement data synthe-

sis introduced and the limitations of template based data synthesis, we decided to further

investigate other potentially more generalizable data synthesis approaches and additional

data augmentation/manipulation techniques. We then proposed data synthesis using para-

phrasing and data augmentation using sample mixing (MixGen). Moreover, we introduced

training the model with the aid of curriculum learning to help the model learn gradually

which is also an under explored technique in the domain of text summarization. We found

that the proposed paraphrasing data synthesis approach is able to improve the performance

and to generalize to more complex data such as news. We found that MixGen introduced

slight improvements when mixing is done few number of times and fails otherwise. With

various parameters to tune we argue that MixGen needs further analysis and that it can be a

good candidate for future work. Finally, we showed that the two proposed difficulty metrics

(i.e., ROUGE and specificity) are able to improve the model training. However, using sum-

111

marization related ROUGE metric for curriculum learning most leads to more improvements

compared to generic metric such as specificity.

In our second direction we focused on improving the model itself through multitask

learning. In this direction, we explored the utility of training a multitask model for ab-

stractive summarization using low resources summarization data. Prior work showed that

certain auxiliary tasks such as extractive summarization and language modeling can be help-

ful with large data. We additionally proposed two new tasks (i.e. paraphrase detection and

concept detection). We performed several experiments to find if the proposed tasks would

be helpful and if the previously studied tasks would transfer well to low resource domains.

surprisingly we found that the very relevant extractive summarization task didn’t offer con-

sistent improvement across all experiments. We also found that the proposed paraphrasing

and concept detection tasks, which had not been previously examined as auxiliary tasks for

abstractive summarization, can be very helpful given low resource data.

In the last step, we merged the two directions into one framework. We showed that

combining multitask learning with data synthesis would introduce additional improvements.

However, the improvements are more prevalent in combinations of tasks that include lan-

guage modeling. This can be due to the human summaries’ variability introduced via para-

phrasing data synthesis, which can help the language modeling task that depends only on

summary rather than reflections for training, with a richer set of summaries. Moreover, we

found that to integrate curriculum learning with multitask learning, a more general difficulty

metric that suits all tasks is needed. This can be another interesting direction for future

work. Finally, we showed that combining multiple augmentation techniques with multitask

learning would harm the model performance, which is another side effect of the absence of

a generic difficulty metric for curriculum learning.

112

9.0 Future Directions

9.1 Evaluation

ROUGE is the most common evaluation metric used in the summarization community.

Unfortunately, ROUGE can’t capture many aspects of produced summaries that are impor-

tant to judge the summarization quality, such as coherency, factual consistency, diversity,

etc. In the course of our work, we focused on using ROUGE as the fundamental evaluation

metric. However, we tried to enrich the evaluation with human evaluation in order to over-

come the shortcoming of ROUGE. Recently there has been a growing interest in conducting

evaluation using different evaluation metrics (e.g., question answering, factual consistency,

semantic distance using BART, etc.). Thus, a future direction of this work can integrate mul-

tiple evaluation metrics and analyze how different evaluation metrics correlate with different

auxiliary tasks, augmentation techniques, and human decisions.

9.2 Results’ Significance

During the course of this work, we performed a large number of experiments. Many of

these experiments produced positive results. However, the differences in numbers in some

cases are minuscule. We performed statistical significance tests to verify if the differences

are significant or not (refer to section 4.5.1 and section 6.6.1). Unfortunately, we found that

most of the numbers are not significant due to the small sample size (four in our case due to

leave one course out setting). In the future, we plan to replicate experiments that produced

small differences, using more samples by performing experiments in a cross-validation setting.

Additionally, we plan to explore how differences in ROUGE score can affect other metrics

such as factual consistency, question answering capability, etc. We plan to analyze how the

observed conclusions would transfer to other different metrics and how strong or weak these

conclusions transfer.

113

9.3 Data Synthesis

We showed the utility of under-explored data augmentation, especially data synthe-

sis for abstractive summarization. In our experiments, we performed synthesis using two

different techniques, template-based and paraphrasing-based. Moreover, we showed that

paraphrasing-based synthesis is effective with domains such as reflections and reviews and

more structured domains such as news. However, in our analysis, we found that the synthesis

was harmful to the model when we used synthesis on CNN data with 20k training samples.

This raises a couple of questions “1- What can be the breaking point ?”, “2- Does the break-

ing point depend on the domain ?”. In the future, we plan to investigate the amount of data

that the synthesis might fail after. We also plan to investigate if this amount of data can

be different for each domain (i.e., news, reviews, scientific papers, reflections) or it can be

generic regardless of the domain.

9.4 Domains

In this work, we focused on understudied domains such as student reflections and reviews,

which unlike news articles or scientific papers, fundamentally consist of independent pieces

of text. To overcome this limitation, we analyzed how generalizable our findings would be

on different domains such as news. In future work, we would like to expand our analysis to

more structured and more difficult data such as scientific papers, emails, and medical notes.

We think that simulating low resource settings for these different domains would help judge

how generalizable the findings of this work are.

9.5 MixGen

In our experiments on sample mixing using MixGen, we found that increasing the number

of times we perform mixing more than three times for each sample leads to performance

114

degradation. Moreover, we found that we could only get slight improvement compared to

other augmentation techniques. Our experiments varied the number of times we performed

mixing while fixing the remaining parameters (i.e., number of layers to propagate samples

through, α that controls the β distribution). In future work, we think that tuning these

parameters is worth exploring and that it might lead to a different conclusion regarding the

sample mixing utility.

9.6 Curriculum Learning

Difficulty metric is a significant component of curriculum learning. In our work on

curriculum learning, we focused on difficulty metrics pre-computed prior to model training,

which can neglect the model’s potential to be better at learning certain aspects. Rather

than using a pre-computed difficulty metric, some research [98] used a smaller version of

the model, trained it with a portion of the training data, and then used it to judge other

training samples’ difficulty. In the future, we plan to investigate calculating difficulty using

the actual model and compare the performance with pre-computed metrics. Moreover, we

would explore different difficulty metrics for constructing a curriculum and see if we can

apply different ones for different tasks and if there is a general metric that can positively

affect all tasks. Additionally, we plan to explore different types of datasets that contain

more structure (news, papers, etc.) in the future, and we might see different findings than

the ones we observed in this work. Finally, we followed prior work and fixed the number of

buckets to split data into to be 10. In the future, we plan to change the number of buckets

and observe its effect on model performance.

9.7 Extractive Summarization

In prior work targeting richer domains, extractive summarization proved to be a helpful

auxiliary task. On the other hand, in our experiments, surprisingly, we didn’t find improve-

115

ments by integrating extractive summarization as an auxiliary task in most cases. This

might be due to the fact that in this work, we represented the auxiliary extractive summa-

rization task as a simple non-auto-regressive classification task. This, in turn, introduced

limitations to the task modeling. Human annotators also selected only five out of all input

reflections as the extractive summary. We then used these reflections as positive samples

while considering all other reflections as negative samples. We argue that this naive solution

neglects a fundamental property of reflections/opinions, which is redundancy. For the CM

dataset, multiple reflections are very similar, and training the model to accept a reflection

and reject a similar one if not selected by humans as part of the summary can lead the model

to perform poorly. Thus, we plan to perform a clustering step before training the extractive

summarization task in the future. Clustering similar reflections might help train the model

with more coherent decisions.

116

Appendix A Summarization Annotation

In the course of this work we used CourseMirro data [52, 54, 51]. The data was annotated

as part of work done by Luo [51]. According to Luo the process of annotating student

reflections with reference summaries is done by following a set of instructions. Table 48 shows

the instructions provided to annotators to annotate reflections with (abstractive, extractive,

and phrase) reference summaries.

In creating each summary, you should keep in mind the following scenario for its use.

Imagine you are a TA for this course, what do you want to present to the instructor

after reading the students’ responses for each of the following two prompts?

Prompt1: “Describe what you found most interesting in today’s class?”

Prompt2: “Describe what you found most confusing in today’s class?”

Task1: Phrase Summarization.

Create a summary using 5 phrases together with how many students semantically

mentioned each phrase. You can use your own phrases.

Task2: Abstract Summarization.

Given the students’ responses, create a short summary using your own words (40

words) of it. The summary needs to be a coherent paragraph and should include

the major points. The summary should only contain information about reflections,

and avoid adding irrelevant sentences or suggestions such as ” Make sure to bring

this up in next class”, or ”Consider this for future lectures” , etc..

Task3: Extractive summary.

Select five most representative sentences in order as the summary. (Use the sentence

index number.)

Table 48: Instruction provided to annotators during summarization annotation process.

117

Appendix B Additional Multitask Learning Scores

Tasks
R1 R2 RL AVG ∆ R1 R2 RL AVG ∆

CS0445 ENGR

A 26.93 3.98 21.04 17.32 * 27.19 7.27 22.66 19.04 *

AC 27.09 4.85 20.12 17.35 + 30.14 7.67 22.96 20.26 +

AE 25.62 5.04 19.9 16.85 - 31.75 4.69 22.77 19.74 +

AP 28.13 7.13 23.45 19.57 + 28.56 7.29 23.99 19.95 +

AL 25.53 4.69 21.48 17.23 - 30.04 7.36 24.27 20.56 +

AEL 28.18 6.48 21.34 18.67 + 33.75 8.64 26.86 23.08 +

AEP 28.18 2.68 20.21 17.02 - 27.4 8.72 25.33 20.48 +

AEC 27.4 6.58 21.36 18.45 + 28.87 8.95 24.33 20.72 +

ACP 28.18 5.21 20.67 18.02 + 30.37 10.84 26.78 22.66 +

ALP 25.99 4.87 20.15 17 - 28.57 10.15 21.74 20.15 +

ALC 32.15 5.42 21.99 19.85 + 25.81 7.66 21.51 18.33 -

All 28.34 3.89 22.79 18.34 + 28.54 6.64 25.7 20.29 +

S2015 S2016

A 27.71 4.83 19.4 17.31 * 25.46 2.76 22.93 17.05 *

AC 21.92 3.11 17.75 14.26 - 29.32 3.4 23.6 18.77 +

AE 27.99 5.07 20.97 18.01 + 28.7 4.87 22 18.52 +

AP 28.6 4.84 22.33 18.59 + 26.03 4.7 22.43 17.72 +

AL 26.12 4.43 18.37 16.31 - 27.22 5.4 21.14 17.92 +

AEL 23.44 4.35 18.72 15.5 - 28.09 3.01 19.51 16.87 -

AEP 26.91 4.85 21.47 17.74 + 28.26 4.72 20.25 17.74 +

AEC 26.43 4.45 21.62 17.5 + 26.94 3.27 21.24 17.15 +

ACP 28.04 5.59 21.15 18.26 + 29.67 4.11 20.23 18 +

ALP 26.27 4.69 19.55 16.84 - 30.04 3.59 23.13 18.92 +

ALC 26.78 7.46 20.62 18.29 + 24.84 3.84 21.33 16.67 -

All 25.71 6.39 21.31 17.8 + 28.31 5.3 21.89 18.5 +

Table 49: ROUGE results of BERT multitask model. ∆ represents the change direction

relative to the abstractive only model, where ’+’ means higher average ROUGE, and ’-’

otherwise. Boldface indicates improving scores across all courses. Italics indicates

improving scores across different datasets. Underlining indicates improving scores across

different datasets and different models.

118

Tasks
R1 R2 RL AVG ∆ R1 R2 RL AVG ∆

CS0445 ENGR

A 34.62 9.46 29.84 24.64 * 35.43 9.93 31.07 25.47 *

AE 30.01 8.21 22.92 20.38 - 32.04 8.11 27.10 22.41 -

AC 34.42 9.71 29.31 24.48 - 35.84 10.14 31.38 25.78 +

AP 34.56 9.81 30.11 24.82 + 36.79 12.64 32.62 27.35 +

ACP 34.70 9.47 30.2 27.79 + 36.16 11.46 31.74 26.45 +

AEC 27.43 7.54 24.63 19.86 - 29.41 7.63 26.15 21.06 -

ALL 28.34 8.31 26.72 21.12 - 30.11 8.45 28.98 22.51 -

STAT 2015 STAT 2016

A 36.87 12.03 32.34 27.08 * 37.41 12.33 33.02 27.58 *

AE 27.65 7.96 22.74 19.45 - 30.25 10.93 26.45 22.54 -

AC 34.49 10.40 30.12 25 - 37.09 12.77 32.42 27.42 -

AP 36.78 12.64 32.62 27.34 + 38.86 13.41 33.84 28.71 +

ACP 35.63 11.14 30.85 25.87 - 38.64 14.27 33.52 28.81 +

AEC 28.25 7.97 23.15 19.79 - 31.65 11.60 26.86 23.37 -

ALL 31.21 10.66 28.99 23.62 - 31.57 10.99 27.20 23.25 -

Table 50: ROUGE results of T5 multitask model. ∆ represents the change direction

relative to the abstractive only model, where ’+’ means higher average ROUGE, and ’-’

otherwise. Boldface indicates improving scores across all courses. Italics indicates

improving scores across different datasets. Underlining indicates improving scores across

different datasets and different models.

119

Appendix C Specificity

C.1 Annotation Chart

Figure 8: Flow chart of specificity annotation guidelines.

Points Of Interest Score Confusing Points Score

Matlab vectors 2 Matrix operations 2

Test fan 2 Test fan 2

testets 2 testetest 2

Seeing the way the program can solve
complex mathematical equations.

3 The most confusing part is finding

what was the error in a fail com-

mand. It is a very sensitive process.

4

120

I found vector operations interesting. 3 Explanation of the MATLAB ”ma-

trix dimension” error message.

4

The people coming in to discuss the
app and having us download it. Seems
like a cool tool to use for our class.
However, what is more interesting is
the ability to get extra credit from us-
ing this app which I personally feel is
amazing. Like who doesn’t love extra
credit? Extra credit is the greatest.

4 Everything was well described so I

was not confused or in need of more

detail.

1

Doing the math equations in matlab 3 I dont really understand the signif-

icance of the scripts

3

the coursemirror presentation 2 how to omit numbers from a vector

or matrix that doesn’t go in order

4

What I found interesting is how I
could actually write a program and
make it work on my computer.

4 Certain functions should be de-

scribed throughout the questions

instead of the end (example I didn’t

know what % did so I had to search

for it).

4

The most interesting thing was the
ability to compress the information
presented to the user in the command
window.

4 The difference between a matrix

and a vector is confusing. Also,

when to use the dot and when to

not use it.

4

Using vectors in Matlab 2 Following the assignment guide-

lines.

3

getting to start using MATLAB 2 creating a script for the first time. 3

121

I found the calculations exercuse inter-
esting and refreshing. It helped me re-
fresh my concepts and also learnt new
terms and concepts. I’m looking for-
ward to learning more calculation con-
cepts.

4 I was confused with script file part

of the problem set 1. Also, unlike

ENGR 132, This did not have un-

limited attempts in quizes, so that

might be slightly challenging and

tough. Some MATLAB concepts

were confusing.

4

Learning to code is very interesting. I
have not coded much before but I am
enjoying it.

3 I find using MATLAB help to be

confusing. It does not seem to have

a very intuitive search engine and

most of the time I find it difficult

to find what I’m looking for.

4

The most interesting thing about to-
day’s class was learning how to change
the format on a script, making it more
compact.

4 I was confused on how to write nat-

ural logs and log functions in MAT-

LAB.

4

I found learning learning how to use
a script in MATLAB as interesting,
also, the format compact was very
helpful.

4 The user interface if Matlab is con-

fusing. I’m not really sure if what

I’m doing is correct, and I don’t

know what I don’t know.

4

learning how to use the script files 3 using the correct syntax 2

The most interesting topic in today’s
class was getting to know to solve the
problem 3,4,5 on problem set 01.

3 The way the problem needs to be

submitted needed more detail.

3

Talking to new people. And listening
to the speaker.

3 The script writting and how to save

properly was very dificult and not

well explained.

4

When Dr. Hynes showed how to use
script properly

3 I didn’t understand what exactly

fprintf did for the program

4

122

The most interesting thing in today’s
class was how to program using MAT-
LAB. It is cool how we can program a
machine to do work for us.

4 The most confusing thing about to-

day’s class was the matrix multipli-

cation vs period character multipli-

cation.

4

Hearing about the using CourseMIR-
ROR to share our thoughts about our
class was quite interesting. I like the
idea of instructors receiving regular
feedback on their teaching.

4 Learning to use MATLAB was

rather confusing, but having TAS

nearby was helpful.

3

Learning about this app 2 Understanding MATLAB and how

to code correctly

3

Learning MATLAB further and doing
calculations was interesting.

3 The comma and suppression was

not quite clear for me.

4

I though courseMIRROR was the
most interesting thing.

3 the most confusing topic was chang-

ing the number of decimal places

4

Getting used to coding and MATLAB
and discovering the app is both chal-
lenging and interesting for me in to-
day’s class.

4 - 1

I liked solving mathematical problems
using matlab

3 There was nothing that needed

more illustration

1

MATLAB vector calculation 2 None 1

I enjoyed learning about the semi-
colons use in the matlab program. As
well as the commands showing how
to change the decimals shown and the
format command.

4 I did not find anything confusing

about today. I enjoy class when we

work on our assignments, because

the lectures seem to be redundant

or do not have much value to our

assignments. Todays lecture was

nuch better because it helps us com-

plete our given work.

1

123

The uses of computations in MAT-
LAB

2 How element by element operations

can be learned quickly

4

Course mirror and its innovative way
to facilitate Professor/student interac-
tion.

3 The free version of MATLAB and

it’s inconsistent and perplexing per-

formance.

3

I thought the most interesting part of
today’s class was working on problem
3 of PS01.

3 I did mot know how to use the

”fprintf” command in MATLAB.

4

I like how he picked out who will an-
swer his question at the beginning of
the class (the one with the longest hair
in the group).

4 The last part of Problem 3 was

sorta confusing what with the dec-

imal places and also the early part

of Problem 4 where rows were in-

volved.

4

I have never coded before so writing
lines of data and having them create
answers for us is pretty exciting.

4 Saving files is difficult for me as I’m

not always sure how to get files into

matlab itself vs. my documents on

my computer.

4

The thing I found most interesting was
the discussion about common issues
faced by everyone.

3 The thing I needed more detail

on was the process of zipping a

folder/file.

4

We can get extra credit 2 How to change how many decimal

places are displayed

4

The Matrix calculations in Matlab
and how to suppress it

3 How exactly the calculations work

because I don’t understand how

matrix dimension change via calcu-

lations

4

The most interesting topic in today’s
class was understanding notation to
denote element by element operations
in matlab.

4 The most confusing part of this

class is all the formatting needed to

submit problem sets.

4

124

The continued help in matlab has
helped me feel more comfortable with
the program.

3 Confusing functions in matlab like

ex

4

This new feedback app 2 More practice with scribe 3

I liked how we were taught the thing
to remove the extra space in the MAT-
LAB command window.

4 I could not get my Purdue career

drive open.

3

Script demonstration 2 Zipping files all together 3

I found the use of MATLAB and the
codes very interesting as a first time
user. The codes are interesting.

4 The manual was very self explana-

tory so I wasn’t really confused on

anything.

1

The most interesting thing in class to-
day was to be able to create script pro-
grams on Matlab for the first time.

4 The most confusing part of the day

was trying to find the perfect place

to submit your files: whether it was

on your drive or the Purdue drive.

4

learning how to use matlab and writ-
ing codes

3 also how to use matlab since I

haven’t had any previous experi-

ence with it.

3

Course mirror introduction 2 Nothing really 1

Learning how to use MATLAB to do
simple and complex calculations.

3 The class today was mostly inde-

pendent and cpuld have been done

outside of class. I didnt feel like i

learned much in class today.

4

professor gave more insight about
mathlab and learned more about
mathlab

3 how to round up the numbers on

the answers (the information was

given in the class 3 folder)

4

Table 51: Sample of specificity human annotation of an ENGR lecture.

125

C.2 Model

The specificity prediction model (figure 9) is trained using the CourseMirror specificity

data. The model uses DistilBERT encoder to produce reflection embedding, the embeddings

are then used as features to train a logistic regression classifier. To keep the number of tuned

parameters to minimum, the DistilBERT weights are frozen during the training process.

The embeddings are used as fixed features, and all the training is performed on the logistic

classifier side.

Figure 9: Specificity prediction model used.

126

C.3 Evaluation

In order to evaluate the performance of the used specificity model, we performed two sets

of experiments. First, we evaluated the model using Leave-One-Course-out (LOCO) config-

uration. We trained the model using 3 out of the four courses while performing testing using

the last course. Additionally, we performed an evaluation using a 10-fold cross-validation

configuration over all the four courses data. We compared the model with a GloVe baseline

line to verify the utility of the used model. Table 52 shows the results of both models using

the two configurations.

Model (CM data)
10-Fold Leave-One-Course-Out

QWK MSE MAE R2 QWK MSE MAE R2

GloVe (Baseline) 0.75 0.53 0.38 0.44 0.66 0.73 0.5 0.21

DistilBERT + SVM 0.84 0.33 0.26 0.66 0.79 0.42 0.33 0.56

Table 52: Predictive performance results (best in bold). Lower is better for regression

Mean Square Error (MSE) and Mean Absolute Error (MAE), while higher is better for

regression R2 and classifier Quadratic Weighted Kappa (QWK).

127

Appendix D Human Evaluation

Figure 10: Example of pre human evaluation test for factual consistency aspect

128

Figure 11: Example of pre human evaluation test for relevancy aspect

129

Figure 12: Example of CM annotation sample.

130

Figure 13: Example of AY annotation sample.

131

Bibliography

[1] Amplayo, R. K., Angelidis, S., and Lapata, M. (2021). Aspect-controllable opinion
summarization. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 6578–6593.

[2] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

[3] Bajaj, A., Dangati, P., Krishna, K., Kumar, P. A., Uppaal, R., Windsor, B., Brenner,
E., Dotterrer, D., Das, R., and McCallum, A. (2021). Long document summarization in a
low resource setting using pretrained language models. arXiv preprint arXiv:2103.00751.

[4] Berg-Kirkpatrick, T., Gillick, D., and Klein, D. (2011). Jointly learning to extract and
compress. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 481–490.

[5] Böhm, F., Gao, Y., Meyer, C. M., Shapira, O., Dagan, I., and Gurevych, I. (2019).
Better rewards yield better summaries: Learning to summarise without references. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3101–3111.

[6] Bražinskas, A., Lapata, M., and Titov, I. (2020). Few-shot learning for opinion sum-
marization. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4119–4135.

[7] Cao, Z., Li, W., Li, S., and Wei, F. (2018). Retrieve, rerank and rewrite: Soft template
based neural summarization. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 152–161.

[8] Chan, H. P., Chen, W., and King, I. (2020). A unified dual-view model for review
summarization and sentiment classification with inconsistency loss. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’20, page 1191–1200, New York, NY, USA. Association for Computing
Machinery.

[9] Chen, J., Yang, Z., and Yang, D. (2020). Mixtext: Linguistically-informed interpolation
of hidden space for semi-supervised text classification. pages 2147–2157.

[10] Chen, P., Wu, F., Wang, T., and Ding, W. (2018). A semantic qa-based approach
for text summarization evaluation. In McIlraith, S. A. and Weinberger, K. Q., editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI

132

Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 4800–4807. AAAI Press.

[11] Chen, Y., Ma, Y., Mao, X., and Li, Q. (2019). Multi-task learning for abstractive and
extractive summarization. Data Science and Engineering, 4(1):14–23.

[12] Chen, Y.-C. and Bansal, M. (2018). Fast abstractive summarization with reinforce-
selected sentence rewriting. In Proc. of ACL, pages 675–686.

[13] Clark, E., Celikyilmaz, A., and Smith, N. A. (2019). Sentence mover’s similarity:
Automatic evaluation for multi-sentence texts. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 2748–2760.

[14] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

[15] Dolan, W. B. and Brockett, C. (2005). Automatically constructing a corpus of senten-
tial paraphrases. In Proceedings of the Third International Workshop on Paraphrasing
(IWP2005).

[16] Du, J., Grave, E., Gunel, B., Chaudhary, V., Celebi, O., Auli, M., Stoyanov, V., and
Conneau, A. (2020). Self-training improves pre-training for natural language understand-
ing. arXiv e-prints, pages arXiv–2010.

[17] Durmus, E., He, H., and Diab, M. T. (2020). Feqa: A question answering evaluation
framework for faithfulness assessment in abstractive summarization. In ACL.

[18] Edmundson, H. P. (1969). New methods in automatic extracting. Journal of the ACM
(JACM), 16(2):264–285.

[19] Fabbri, A. R., Kryscinski, W., McCann, B., Xiong, C., Socher, R., and Radev, D.
(2021). Summeval: Re-evaluating summarization evaluation. Transactions of the Asso-
ciation for Computational Linguistics, 9:391–409.

[20] Fadaee, M., Bisazza, A., and Monz, C. (2017). Data augmentation for low-resource
neural machine translation. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 567–573.

[21] Fan, X., Luo, W., Menekse, M., Litman, D., and Wang, J. (2017). Scaling reflection
prompts in large classrooms via mobile interfaces and natural language processing. In
Proceedings of the 22nd International Conference on Intelligent User Interfaces, pages
363–374. ACM.

[22] Ganesan, K., Zhai, C., and Han, J. (2010). Opinosis: A graph based approach to ab-
stractive summarization of highly redundant opinions. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics (Coling 2010), pages 340–348, Beijing,
China. Coling 2010 Organizing Committee.

133

[23] Gehrmann, S., Deng, Y., and Rush, A. M. (2018). Bottom-up abstractive summariza-
tion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 4098–4109.

[24] Gerani, S., Mehdad, Y., Carenini, G., Ng, R., and Nejat, B. (2014). Abstractive
summarization of product reviews using discourse structure. In Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP), pages 1602–
1613.

[25] Guo, H., Pasunuru, R., and Bansal, M. (2018a). Soft layer-specific multi-task summa-
rization with entailment and question generation. arXiv preprint arXiv:1805.11004.

[26] Guo, S., Huang, W., Zhang, H., Zhuang, C., Dong, D., Scott, M. R., and Huang, D.
(2018b). Curriculumnet: Weakly supervised learning from large-scale web images. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 135–150.

[27] Hacohen, G. and Weinshall, D. (2019). On the power of curriculum learning in training
deep networks. In International Conference on Machine Learning, pages 2535–2544.

[28] Hasan, K. S. and Ng, V. (2014). Automatic keyphrase extraction: A survey of the
state of the art. In Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1262–1273.

[29] He, R. and McAuley, J. (2016). Ups and downs: Modeling the visual evolution of fash-
ion trends with one-class collaborative filtering. In proceedings of the 25th international
conference on world wide web, pages 507–517.

[30] Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M.,
and Blunsom, P. (2015). Teaching machines to read and comprehend. In NIPS, pages
1693–1701.

[31] Hsu, W.-T., Lin, C.-K., Lee, M.-Y., Min, K., Tang, J., and Sun, M. (2018). A unified
model for extractive and abstractive summarization using inconsistency loss. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 132–141. Association for Computational Linguistics.

[32] Hua, X. and Wang, L. (2017). A pilot study of domain adaptation effect for neural
abstractive summarization. EMNLP 2017, page 100.

[33] Isonuma, M., Fujino, T., Mori, J., Matsuo, Y., and Sakata, I. (2017). Extractive
summarization using multi-task learning with document classification. In Proceedings of
the 2017 Conference on empirical methods in natural language processing, pages 2101–
2110.

[34] Jadhav, A. and Rajan, V. (2018). Extractive summarization with swap-net: Sentences
and words from alternating pointer networks. In Proceedings of the 56th annual meeting
of the association for computational linguistics (volume 1: Long papers), pages 142–151.

134

[35] Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. (2018). Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. In International
Conference on Machine Learning, pages 2304–2313.

[36] Keneshloo, Y., Ramakrishnan, N., and Reddy, C. K. (2019). Deep transfer reinforce-
ment learning for text summarization. In Proceedings of the 2019 SIAM International
Conference on Data Mining, pages 675–683. SIAM.

[37] Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). OpenNMT:
Open-Source Toolkit for Neural Machine Translation. ArXiv e-prints.

[38] Koehn, P. and Knowles, R. (2017). Six challenges for neural machine translation. In
Proceedings of the First Workshop on Neural Machine Translation, pages 28–39.

[39] Krishna, K., Wieting, J., and Iyyer, M. (2020). Reformulating unsupervised style
transfer as paraphrase generation. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 737–762.

[40] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-
anov, V., and Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461.

[41] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov,
V., and Zettlemoyer, L. (2020). Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 7871–7880.

[42] Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. Text
Summarization Branches Out.

[43] Liu, L., Lu, Y., Yang, M., Qu, Q., Zhu, J., and Li, H. (2018). Generative adversarial
network for abstractive text summarization. In AAAI.

[44] Liu*, P. J., Saleh*, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., and Shazeer, N.
(2018). Generating wikipedia by summarizing long sequences. In International Conference
on Learning Representations.

[45] Liu, Y. and Lapata, M. (2019). Text summarization with pretrained encoders. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3721–3731.

[46] Liu, Y. and Liu, P. (2021). Simcls: A simple framework for contrastive learning of
abstractive summarization. arXiv preprint arXiv:2106.01890.

135

[47] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-
moyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

[48] Liu, Z. and Chen, N. (2021). Controllable neural dialogue summarization with personal
named entity planning. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 92–106.

[49] Liu, Z., Li, P., Zheng, Y., and Sun, M. (2009). Clustering to find exemplar terms
for keyphrase extraction. In Proceedings of the 2009 conference on empirical methods in
natural language processing, pages 257–266.

[50] Lu, Y., Liu, L., Jiang, Z., Yang, M., and Goebel, R. (2019). A multi-task learning
framework for abstractive text summarization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 9987–9988.

[51] Luo, W. (2017). Automatic Summarization for Student Reflective Responses. PhD
thesis, University of Pittsburgh.

[52] Luo, W. and Litman, D. (2015). Summarizing student responses to reflection prompts.
In Proc. of EMNLP, pages 1955–1960.

[53] Luo, W. and Litman, D. (2016). Determining the quality of a student reflective re-
sponse. In The twenty-ninth international FLAIRS Conference.

[54] Luo, W., Liu, F., and Litman, D. (2016a). An improved phrase-based approach to
annotating and summarizing student course responses. In Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical Papers, pages
53–63.

[55] Luo, W., Liu, F., Liu, Z., and Litman, D. (2016b). Automatic summarization of student
course feedback. In Proceedings of NAACL-HLT, pages 80–85.

[56] Ma, S., Sun, X., Lin, J., and Ren, X. (2018). A hierarchical end-to-end model for
jointly improving text summarization and sentiment classification. In Proceedings of the
27th International Joint Conference on Artificial Intelligence, pages 4251–4257.

[57] Magooda, A. and Litman, D. (2020a). Abstractive summarization for low resource
data using domain transfer and data synthesis.

[58] Magooda, A. and Litman, D. (2020b). Abstractive summarization for low resource
data using domain transfer and data synthesis. In The Thirty-Third International Flairs
Conference.

[59] Magooda, A. and Litman, D. (2021). Mitigating data scarceness through data syn-
thesis, augmentation and curriculum for abstractive summarization. In Findings of the
Association for Computational Linguistics: EMNLP 2021, pages 2043–2052.

136

[60] Magooda, A., Litman, D., and Elaraby, M. (2021). Exploring multitask learning for
low-resource abstractive summarization. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 1652–1661.

[61] Magooda, A. and Marcjan, C. (2020). Attend to the beginning: A study on using
bidirectional attention for extractive summarization. arXiv preprint arXiv:2002.03405.

[62] Martins, A. F. and Smith, N. A. (2009). Summarization with a joint model for sen-
tence extraction and compression. In Proceedings of the Workshop on Integer Linear
Programming for Natural Language Processing, pages 1–9.

[63] Medelyan, O., Frank, E., and Witten, I. H. (2009). Human-competitive tagging us-
ing automatic keyphrase extraction. In Proceedings of the 2009 conference on empirical
methods in natural language processing, pages 1318–1327.

[64] Menekse, M., Stump, G., Krause, S. J., and Chi, M. T. (2011). The effectiveness of
students’ daily reflections on learning in engineering context. In ASEE Annual Conf. and
Exposition.

[65] Miller, G. A. (1998). WordNet: An electronic lexical database. MIT press.

[66] Nallapati, R., Zhai, F., and Zhou, B. (2017). Summarunner: A recurrent neural network
based sequence model for extractive summarization of documents. In Thirty-First AAAI
Conference on Artificial Intelligence.

[67] Nallapati, R., Zhou, B., dos Santos, C., glar Gulçehre, Ç., and Xiang, B. (2016).
Abstractive text summarization using sequence-to-sequence rnns and beyond. CoNLL
2016, page 280.

[68] Napoles, C., Gormley, M., and Van Durme, B. (2012). ‘annotated english gigaword.
Linguistic Data Consortium, Philadelphia.

[69] Nenkova, A. and McKeown, K. (2011). Automatic Summarization, volume 5.

[70] Ouyang, Y., Li, W., Wei, F., and Lu, Q. (2009). Learning similarity functions in graph-
based document summarization. In International Conference on Computer Processing of
Oriental Languages, pages 189–200. Springer.

[71] Oya, T., Mehdad, Y., Carenini, G., and Ng, R. (2014). A template-based abstractive
meeting summarization: Leveraging summary and source text relationships. In Proceed-
ings of the 8th International Natural Language Generation Conference (INLG), pages
45–53.

[72] Parida, S. and Motlicek, P. (2019). Abstract text summarization: A low resource
challenge. In Proc. of (EMNLP-IJCNLP), pages 5996–6000.

137

[73] Pasunuru, R., Guo, H., and Bansal, M. (2017). Towards improving abstractive sum-
marization via entailment generation. In Proceedings of the Workshop on New Frontiers
in Summarization, pages 27–32.

[74] Paulus, R., Xiong, C., and Socher, R. (2018). A deep reinforced model for abstractive
summarization. In International Conference on Learning Representations.

[75] Pruksachatkun, Y., Phang, J., Liu, H., Htut, P. M., Zhang, X., Pang, R. Y., Vania, C.,
Kann, K., and Bowman, S. R. (2020). Intermediate-task transfer learning with pretrained
models for natural language understanding: When and why does it work? arXiv preprint
arXiv:2005.00628.

[76] Radev, D. R., Jing, H., Styś, M., and Tam, D. (2004). Centroid-based summarization
of multiple documents. Information Processing & Management, 40(6):919–938.

[77] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683.

[78] Rose, S., Engel, D., Cramer, N., and Cowley, W. (2010). Automatic keyword extraction
from individual documents. Text mining: applications and theory, pages 1–20.

[79] Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for ab-
stractive sentence summarization. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 379–389.

[80] Sachan, M. and Xing, E. (2016). Easy questions first? a case study on curriculum learn-
ing for question answering. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 453–463.

[81] Sachan, M. and Xing, E. (2018). Self-training for jointly learning to ask and answer
questions. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 629–640.

[82] Sandhaus, E. (2008). The new york times annotated corpus. Linguistic Data Consor-
tium, Philadelphia, 6(12):e26752.

[83] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

[84] Sarkhel, R., Keymanesh, M., Nandi, A., and Parthasarathy, S. (2020). Interpretable
multi-headed attention for abstractive summarization at controllable lengths. In Proceed-
ings of the 28th International Conference on Computational Linguistics, pages 6871–6882.

[85] Scialom, T., Dray, P.-A., Lamprier, S., Piwowarski, B., Staiano, J., Wang, A., and
Gallinari, P. (2021). QuestEval: Summarization asks for fact-based evaluation. In Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,

138

pages 6594–6604, Online and Punta Cana, Dominican Republic. Association for Compu-
tational Linguistics.

[86] See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1073–1083.

[87] Sennrich, R., Haddow, B., and Birch, A. (2016). Improving neural machine transla-
tion models with monolingual data. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 86–96.

[88] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–3112.

[89] Tan, C., Wei, F., Yang, N., Du, B., Lv, W., and Zhou, M. (2018). S-net: From answer
extraction to answer synthesis for machine reading comprehension. In Thirty-Second
AAAI Conference on Artificial Intelligence.

[90] Tay, Y., Wang, S., Luu, A. T., Fu, J., Phan, M. C., Yuan, X., Rao, J., Hui, S. C.,
and Zhang, A. (2019). Simple and effective curriculum pointer-generator networks for
reading comprehension over long narratives. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4922–4931.

[91] Thaker, K., Brusilovsky, P., and He, D. (2019). Student modeling with automatic
knowledge component extraction for adaptive textbooks. In iTextbooks@ AIED, pages
95–102.

[92] Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Advances in
neural information processing systems, pages 2692–2700.

[93] Wang, W., Tian, Y., Ngiam, J., Yang, Y., Caswell, I., and Parekh, Z. (2020). Learning
a multi-domain curriculum for neural machine translation. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 7711–7723.

[94] Wang, W. Y. and Yang, D. (2015). That’s so annoying!!!: A lexical and frame-semantic
embedding based data augmentation approach to automatic categorization of annoying
behaviors using# petpeeve tweets. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 2557–2563.

[95] Wang, X., Pham, H., Dai, Z., and Neubig, G. (2018). Switchout: an efficient data
augmentation algorithm for neural machine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pages 856–861.

[96] Wieting, J. and Gimpel, K. (2018). ParaNMT-50M: Pushing the limits of paraphrastic
sentence embeddings with millions of machine translations. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 451–462, Melbourne, Australia. Association for Computational Linguistics.

139

[97] Wu, Y.-f. B., Li, Q., Bot, R. S., and Chen, X. (2005). Domain-specific keyphrase
extraction. In Proceedings of the 14th ACM international conference on Information and
knowledge management, pages 283–284.

[98] Xu, B., Zhang, L., Mao, Z., Wang, Q., Xie, H., and Zhang, Y. (2020). Curriculum
learning for natural language understanding. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 6095–6104.

[99] Yan, Y., Qi, W., Gong, Y., Liu, D., Duan, N., Chen, J., Zhang, R., and Zhou, M.
(2020). Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training.
arXiv preprint arXiv:2001.04063.

[100] Yao, J.-g., Wan, X., and Xiao, J. (2015). Phrase-based compressive cross-language
summarization. In Proceedings of the 2015 conference on empirical methods in natural
language processing, pages 118–127.

[101] Yu, N., Huang, M., Shi, Y., and Zhu, X. (2016). Product review summarization by
exploiting phrase properties. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pages 1113–1124.

[102] Yu, T., Liu, Z., and Fung, P. (2021). AdaptSum: Towards low-resource domain adap-
tation for abstractive summarization. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 5892–5904, Online. Association for Computational Linguistics.

[103] Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for
text classification. In Advances in neural information processing systems, pages 649–657.

[104] Zhong, M., Liu, P., Chen, Y., Wang, D., Qiu, X., and Huang, X. (2020). Extractive
summarization as text matching. In ACL, pages 6197–6208.

140

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Sample data from the CourseMirror CS course.
	2. CourseMirror dataset summary.
	3. Human summary lengths across courses.
	4. CourseMirror summary analysis.
	5. CourseMirror dataset split summary (#Docs = num of lectures x num of prompts x num of annotators)
	6. CourseMirror specificity dataset summary.
	7. CourseMirror specificity dataset score distribution.
	8. Sample from the AY training data.
	9. Details of human summaries.
	10. Distribution of AY data.
	11. AY summary analysis.
	12. Sample data from CNN dataset.
	13. Distribution of CNN/DM data.
	14. Details of input/output sizes for CNN/DM data.
	15. Sample data from MSRP dataset.
	16. Summaries generated by the three variants of see2017get for the same CS reflection document.
	17. An example of synthesized CS summary.
	18. ROUGE results. Italics indicates outperforms baselines. Boldface indicates best over all. Underlining indicates best result in a group (i.e., Baselines, Fast-RL, PG-net).
	19. Model selection % (all human evaluations).
	20. ROUGE results of BERTSum with augmentation techniques on CM and AY (highlighted means outperform original, and bold means the best scores across a set of experiments)
	21. ROUGE results of BART with augmentation techniques on CM and AY (highlighted means outperform original, and bold means the best scores across a set of experiments)
	22. Summary of results. Generalization indicates how the findings transfer across models, data, and both. Y indicates that condition is satisfied for all the 3 ROUGE scores and N otherwise. Strong, moderate, weak, and none indicate the number of satisfied conditions of (4, 3, 2 or 1, and 0) respectively.
	23. ROUGE results of BART model on CM and AY data for shuffle baseline.
	24. ROUGE results of BART model on CM and CM (8 reflections) data for shuffle baseline.
	25. ROUGE results of BERTSum model trained with real, shuffled, and synthetic data from both CNN and CNN-small datasets.
	26. Dataset summary.
	27. ROUGE results of BERT multitask on CM. Gray indicates multitask R is higher than single task score. Boldface indicates best R across tasks. (Q1, Q2)
	28. ROUGE results of BERT on CNN-micro. (Q3)
	29. ROUGE results of T5 (No language modeling auxiliary task) fine tuned on CM. (Q4)
	30. ROUGE results of BART on CM. (Q4)
	31. ROUGE results of BART on AY. (Q5)
	32. ROUGE results of T5 fine tuned with paraphrasing on AY. (Q5)
	33. Human evaluation scores over (Fluency, Relevancy, and Factual consistency) aspects for both CourseMirror and Amazon/Yelp datasets. Bold indicates best score across all tasks for a certain aspect. (*) in header means statistically significant using ANOVA test over all three aspects (i.e. Fluency, Relevancy, and Factual consistency). (*) in cell means statistically significant using paired t-test between combination of tasks (i.e. AC, AP, ACP) and abstractive only
	34. Percentage of each task output selected by human annotators as best generated summary across all task outputs.
	35. %Ratio of concept words to total length across reflections and summaries
	36. ROUGE results of BERT and T5 Models fine tuned on CM.
	37. ROUGE results of BART with both multitask only and multitask with data synthesis on CourseMirror data (highlighted means better than original)
	38. ROUGE results of BART with both multitask only and multitask with data synthesis on Amazon/Yelp data (highlighted means better than original)
	39. ROUGE results of BART with both multitask only and multitask with curriculum learning on CourseMirror data (highlighted means better than original)
	40. ROUGE results of BART with both multitask only and multitask with curriculum learning on Amazon/Yelp data (highlighted means better than original)
	41. Results of BART with multitask, Synthesis, and curriculum learning on CM data (highlighted means better than no curriculum. Bold means best ROUGE scores across each combination of tasks)
	42. Results of BART with multitask, Synthesis, and curriculum learning on AY data (highlighted means better than no curriculum. Bold means best ROUGE scores across each combination of tasks)
	43. NER F1 Pearson correlation with ROUGE for CM and AY. P-value is shown between parentheses
	44. Most frequent named entities in CM and AY
	45. NER F1 Pearson correlation with ROUGE for CM after filtering, CM values without filtering from table 43. P-value is shown between parentheses (* means statistically significant)
	46. NER F1 Pearson correlation with ROUGE for each task using values from all data variants (original, synthetic 5, and synthetic 10) (Recall that we didn't perform filtering for AY as the named entities varied significantly, unlike CM) (* means statistically significant)
	47. Percentage of named entities in train, test and generated summaries for CM and AY datasets
	48. Instruction provided to annotators during summarization annotation process.
	49. ROUGE results of BERT multitask model. represents the change direction relative to the abstractive only model, where '+' means higher average ROUGE, and '-' otherwise. Boldface indicates improving scores across all courses. Italics indicates improving scores across different datasets. Underlining indicates improving scores across different datasets and different models.
	50. ROUGE results of T5 multitask model. represents the change direction relative to the abstractive only model, where '+' means higher average ROUGE, and '-' otherwise. Boldface indicates improving scores across all courses. Italics indicates improving scores across different datasets. Underlining indicates improving scores across different datasets and different models.
	51. Sample of specificity human annotation of an ENGR lecture.
	52. Predictive performance results (best in bold). Lower is better for regression Mean Square Error (MSE) and Mean Absolute Error (MAE), while higher is better for regression R2 and classifier Quadratic Weighted Kappa (QWK).

	List of Figures
	1. Human evaluation task example.
	2. MixText model.
	3. MixText for generative tasks.
	4. Proposed BERT-Multitask model.
	5. Different fine tuning conditions for T5. (- -) indicates optional additive data for Paraphrasing.
	6. Example of pre human evaluation test
	7. Distribution of new Ngrams and Ngrams recall for both AY and CM datasets
	8. Flow chart of specificity annotation guidelines.
	9. Specificity prediction model used.
	10. Example of pre human evaluation test for factual consistency aspect
	11. Example of pre human evaluation test for relevancy aspect
	12. Example of CM annotation sample.
	13. Example of AY annotation sample.

	Preface
	1.0 Introduction
	1.1 Contributions

	2.0 Datasets
	2.1 CourseMirror (CM)We refer to CourseMirror as CM for short Summarization
	2.1.1 Description
	2.1.2 Usage

	2.2 CourseMirror (CM)We refer to CourseMirror as CM for short Specificity/Quality
	2.2.1 Description
	2.2.2 Usage

	2.3 Amazon/Yelp (AY)We refer to Amazon/Yelp as AY for short Opinion Abstractive Summarization
	2.3.1 Description
	2.3.2 Usage

	2.4 CNN/DailyMail Summarization
	2.4.1 Description
	2.4.2 Usage

	2.5 Microsoft Paraphrasing
	2.5.1 Description
	2.5.2 Usage

	3.0 Related Work
	3.1 Extractive Summarization
	3.2 Abstractive Summarization
	3.2.1 Abstractive Summarization for Low Resource Data
	3.2.2 Domain Transfer in Abstractive Summarization
	3.2.3 Templates in Abstractive Summarization

	3.3 Phrase Summarization
	3.4 Data Augmentation
	3.5 Curriculum Learning
	3.6 Multitask Learning
	3.7 Evaluation

	4.0 Template-Based Data Synthesis and Domain Transfer Through Pretraining (Data-Based Direction) (Published in FLAIRS-33 FLAIRS2018441)
	4.1 Introduction
	4.2 Explored Approaches
	4.2.1 Domain Transfer
	4.2.2 Data Synthesis

	4.3 Proposed Template-Based Synthesis Model
	4.3.1 Model Structure
	4.3.2 Model Training
	4.3.3 Model Usage

	4.4 Experiments
	4.4.1 Extractive Baselines (for answering Q1)
	4.4.2 Domain Transfer (for answering Q2, Q5)
	4.4.3 Synthesis Baseline (for answering Q3, Q4)
	4.4.4 Template Synthesis Model (for answering Q4, Q5)
	4.4.5 Template-based Summarization (for answering Q6)

	4.5 Results
	4.5.1 ROUGE Evaluation Results
	4.5.2 Human Evaluation Results

	4.6 Conclusion

	5.0 Mitigating Data Scarceness through Data Synthesis, Augmentation and Curriculum for Abstractive Summarization (Data-Based Direction Cont.) (Published in Findings of EMNLP 2021) magooda2021mitigating
	5.1 Introduction
	5.2 Datasets
	5.3 Summarization Models Used
	5.4 Proposed Approach
	5.4.1 Data Augmentation
	5.4.1.1 Baselines
	5.4.1.2 Paraphrasing with GPT-2
	5.4.1.3 Mixtext for text generation (MixGEN)

	5.4.2 Curriculum Learning
	5.4.2.1 Specificity
	5.4.2.2 ROUGE

	5.5 Experiments
	5.5.1 Parameters
	5.5.1.1 Baselines
	5.5.1.2 Paraphrasing with GPT-2
	5.5.1.3 MixGEN
	5.5.1.4 Curriculum learning

	5.5.2 Model Training

	5.6 Results
	5.7 Shuffling and Synthesis Analysis (Answering Question Q4)
	5.8 Conclusion

	6.0 Improving Abstractive Summarization With Multitask Learning (Model Based Direction) (Published in Findings of EMNLP 2021) magooda2021exploring
	6.1 Introduction
	6.2 Datasets
	6.3 Summarization Models Used
	6.4 Proposed Models
	6.4.1 Model Base
	6.4.1.1 BERT
	6.4.1.2 T5-Transformer
	6.4.1.3 BART

	6.4.2 BERT Multitask Integration
	6.4.2.1 Shared BERT encoder
	6.4.2.2 Abstractive summarization
	6.4.2.3 Extractive summarization
	6.4.2.4 Concept detection
	6.4.2.5 Paraphrase detection
	6.4.2.6 Language modeling

	6.4.3 T5 Multitask Integration
	6.4.3.1 Fine tune T5 on abstractive task
	6.4.3.2 Mixture of tasks training
	6.4.3.3 Intermediate task transfer

	6.4.4 BART Multitask Integration

	6.5 Experimental Setup
	6.5.1 Datasets
	6.5.2 Optimizer
	6.5.3 T5 Parameters and Training
	6.5.4 BERT Parameters and Training
	6.5.5 BART Parameters and Training
	6.5.6 Evaluation Metrics

	6.6 Results and Discussion
	6.6.1 Automatic Evaluation
	6.6.2 Human Evaluation

	6.7 Analysis
	6.7.1 Concept Distribution
	6.7.2 Abstractiveness

	6.8 Conclusion

	7.0 Multitask Learning and Data Augmentation for Abstractive Summarization (Combining Data-Based and Model-Based Directions)
	7.1 Introduction
	7.2 Summarization Models
	7.3 Datasets
	7.4 Experimental Setup
	7.4.1 Set 1: Multitask Learning with Single Augmentation Technique (answering questions Q1, and Q2)
	7.4.2 Set 2: Multitask Learning with Multiple Augmentation Techniques (answering question Q3)
	7.4.3 Model Training

	7.5 Results
	7.5.1 Set 1 - Results (answering questions Q1, and Q2)
	7.5.2 Set 2 - Results (answering question Q3)

	7.6 Analysis
	7.6.1 Named Entities
	7.6.1.1 Named entity extraction
	7.6.1.2 Most frequent named entities
	7.6.1.3 Filtering named entities
	7.6.1.4 Named entities distribution
	7.6.1.5 Conclusion of analysis

	7.7 Conclusion

	8.0 Conclusions
	9.0 Future Directions
	9.1 Evaluation
	9.2 Results' Significance
	9.3 Data Synthesis
	9.4 Domains
	9.5 MixGen
	9.6 Curriculum Learning
	9.7 Extractive Summarization

	Appendix A. Summarization Annotation
	Appendix B. Additional Multitask Learning Scores
	Appendix C. Specificity
	 C.1 Annotation Chart
	 C.2 Model
	 C.3 Evaluation

	Appendix D. Human Evaluation
	Bibliography

