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ONLINE APPENDIX A—ADDITIONAL TABLES AND FIGURES 
 

Table A.1. ϵ-False Reports by Treatment 

 
  

 

Treatment False Reports 
All 

Priors 
By Prior 

𝜋𝜋0 = 0.5 𝜋𝜋0 ≠ 0.5 

Information 0.312  0.171  0.406  
(0.036) (0.035) (0.046) 

RCL 0.227  0.127  0.294  
(0.034) (0.034) (0.041) 

No Information 0.162  0.183  0.147  
(0.034) (0.040) (0.036) 

Feedback (t=1,2) 0.133  0.182  0.092  
(0.032) (0.056) (0.046) 

Feedback (t=9,10) 0.2  0.117  0.260  
(0.046) (0.052) (0.061) 

Description 0.182  0.138  0.211  
(0.034) (0.036) (0.039) 

N 2,630 2,630 
Note: Standard errors in parentheses clustered by participant (299 clusters) recovered from three separate 
joint estimates on the false report proportion in the prior elicitations: (i) All priors, dependent variable an 
indicator for |𝑞𝑞 − 𝜋𝜋0| > 0.05  with treatment level estimation; and (ii) By Prior column pair, same 
dependent variable as All priors, but with separate treatment estimates for centered/non-centered prior 
location. 
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Table A.2. Posterior Inference (Guesses 2+3): False Reports and Type by Treatment  

Treatment Distant Reports Distant Report Movement 
 All  By Posterior Location  𝜋𝜋 ∈ [0.15,0.35] ∪ [0.65,0.85] 

   Center 
Non-

Centered Interm.  Center 
Near 

Extreme 
Distant 
Extreme 

Information 0.332    0.267  0.348  0.407    0.116  0.025  0.141  
(0.026)   (0.038) (0.031) (0.033)  (0.021) (0.008) (0.022) 

RCL 0.265   0.195  0.283  0.308   0.054  0.043  0.098  
(0.023)  (0.032) (0.027) (0.029)  (0.013) (0.016) (0.016) 

No Information 0.276  0.304  0.269  0.318   0.286  0.068  0.134  
(0.023)  (0.034) (0.025) (0.028)  (0.011) (0.028) (0.021) 

Feedback (t=1,2) 0.246   0.300  0.232  0.296   0.065  0.009  0.056  
(0.037)  (0.076) (0.038) (0.045)  (0.026) (0.009) (0.024) 

Feedback (t=9,10) 0.296   0.396  0.271  0.305   0.017  0.034  0.102  
(0.038)  (0.066) (0.040) (0.045)  (0.012) (0.020) (0.033) 

Description 0.244   0.225  0.249  0.267   0.039  0.020  0.118  
(0.024)  (0.032) (0.032) (0.030)  (0.011) (0.013) (0.019) 

N 5,260   5,260  2,458 
Note: Standard errors in parentheses clustered by participant (299 clusters) recovered from three separate joint estimates 
on the distant-report rate:  

(i) Distant Reports, All, proportion of distant reports (|𝑞𝑞 − 𝜋𝜋| > 0.15) over treatment; 
(ii)  Distant Reports, By Posterior Location, proportion of distant reports over treatment and posterior location 

(centered,  𝜋𝜋 ∈ (0.35,0.65) ;  non-centered 𝜋𝜋 ∉ (0.35,0.65) , and intermediate, a subset of non-centered 
where we additionally exclude posteriors in 𝜋𝜋 ∈ [0, 0.15) ∪ (0.85, 1] so distant reports can move in both 
directions.  

(iii) Distant Report Movement proportion of distant reports by location of the movement, conditioning on the 
intermediate posterior classification. Types in (iii) for 𝜋𝜋 < 0.5 (with symmetric definition for 𝜋𝜋 > 0.5) 
defined as: movements to the exact center (𝑞𝑞 = 0.5); movements to the near extreme (𝑞𝑞 = 0); and to the 
distant extreme (𝑞𝑞 ∈ (0.5, 1]).  

Bold face coefficients are different from the relevant Information coefficient with 𝑝𝑝 < 0.1 (two-sided test). 
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Figure A.1 Responses to post-experimental questionnaire 

 

Figure A.2 Proportion of posterior reports by distance from Bayesian posterior 
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Figure A.3 Interquartile range in reports by elicitation 

 

Figure A.4 Share of participants who consistently report the prior 
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Figure A.5 False reports under QSR with and without information 

 

 

Figure A.5 False reports under the BSR Description Treatment 

 

 

 

 

  
(A) By Period (B) By Prior 
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ONLINE APPENDIX B—INFERENTIAL EFFECTS 

B.1. Model of the Inferential Effects 
To outline the potential effects center-biased beliefs can have on inference we consider two 
simple, representative exercises. Each are built around one of the inferential components 
of the Niederle and Vesterlund (2007, henceforth NV) gender-competition study, though 
where we strip out other controls for clarity and concision. We first outline (and sign) the 
potential effects from center-biased reports. We then outline a complementary with a series 
of simulations that demonstrate the effects in the specific regressions. 

The two exercises we consider are: (i) The elicited belief 𝑞𝑞𝑖𝑖 used as a dependent (left-hand-
side) variable to be explained, where we are looking for a difference in means across a 
binary group comparison (in the specifics of the NV study, a difference in confidence 
between men and women). (ii) The elicited belief 𝑞𝑞𝑖𝑖 used as a control (right-hand-side) 
variable, where we are trying to make inference on a difference in the variable 𝑦𝑦 over the 
group comparison but controlling for the beliefs (in NV a gender difference in tournament 
entry, after taking confidence into account). Each exercise therefore seeks to uncover a 
discrete difference in effect over the binary group/treatment.2 Our focus will be on how 
center bias in the reports alters inference on the estimated group difference. 

To make the exercise concrete, and dovetail with our subsequent test of the mechanic, we 
consider the two main results in NV, where the group variable is the gender of the 
respondent. We set-up the regression model to measure the difference 𝛿𝛿 between women 
and men. The first inferential exercise examines whether men and women differ in their 
confidence, and is given by: 

(1)       𝑞𝑞𝑖𝑖 = 𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞 ⋅ Female𝑖𝑖 + 𝜖𝜖𝑞𝑞 , 

where the estimated effect 𝛿𝛿𝑞𝑞  tells us how women differ from men in their confidence 
level. 

The second inferential regression instead examines the tournament entry decision 𝑦𝑦𝑖𝑖, where 
the inferential regression is 

(2)       𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦 + 𝛿𝛿𝑦𝑦 ⋅ Female𝑖𝑖 + 𝛽𝛽𝑞𝑞 ⋅ 𝑞𝑞𝑖𝑖 + 𝜖𝜖𝑦𝑦. 

The point of the exercise here is to ask whether women and men have distinct preferences 
for competition after controlling for the confidence effect estimated by 𝛽̂𝛽𝑦𝑦 ⋅ 𝑞𝑞𝑖𝑖. 

To understand the potential inferential distortions when beliefs are center-biased we make 
use of a very simple model. When information is provided the measured belief 𝑞𝑞𝑖𝑖  is 
modeled as random variable: with probability 𝛼𝛼  the constant 𝑐𝑐  is observed, and with 

 
2 Having inference be over a continuous variable is similar in intuition but introduces additional parameters. 
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probability 1 − 𝛼𝛼  the true belief 𝑞𝑞𝑖𝑖⋆  is observed. Using this model of distortion in the 
measured beliefs we can examine how inference will be distorted in the two inferential 
regressions for 𝛿̂𝛿𝑞𝑞  (women’s average confidence, relative to men) and 𝛿𝛿𝑦𝑦  (women’s 
average tournament-entry relative to men, holding constant confidence). 

We make the following simplifying assumptions to reduce the number of parameters: 

• The sample is balanced with 𝑁𝑁 men and 𝑁𝑁 women. 
• The econometric errors 𝜖𝜖𝑞𝑞 and 𝜖𝜖𝑦𝑦 are independent mean zero errors, each drawn 

from a distribution with finite variance (given by 𝜎𝜎𝑞𝑞2 and 𝜎𝜎𝑦𝑦2). 
• The distributions for men and women’s beliefs have true means given by 𝜇𝜇𝑞𝑞 and 

𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞, which is essentially the content of equation (1), but this is maintained for 
equation (2). 

Given these assumptions, what then is the effect on inference for center-biased distortions 
in the beliefs? When 𝛼𝛼 = 0 and no beliefs are mismeasured, the OLS coefficients are 
unbiased and consistent estimators of the true gender effects 𝛿𝛿𝑞𝑞 and 𝛿𝛿𝑦𝑦. However for 𝛼𝛼 >
0 both estimators are biased where the distorted belief 𝑞𝑞�𝑖𝑖 is used in place of the true beliefs. 

Beliefs as a dependent variable 

When the belief is the dependent variable, as in (1) the expected values (and probability 
limit) of the OLS coefficients are attenuated so that: 

𝔼𝔼�𝛿𝛿𝑞𝑞(𝛼𝛼)� = plim�𝛿̂𝛿𝑞𝑞(𝛼𝛼)� = (1 − 𝛼𝛼) ⋅ 𝛿𝛿𝑞𝑞 . 

Relative to the true effect 𝛿𝛿𝑞𝑞 the asymptotic bias in the estimator is: 

Asym. Bias�𝛿̂𝛿𝑞𝑞(𝛼𝛼)� = −𝛼𝛼 ⋅ 𝛿𝛿𝑞𝑞 . 

The intuition when the beliefs are the dependent variable is simple. Measured beliefs for 
both men and women move to the same center point 𝑐𝑐, and this movement to the center 
creates a distortion over the means for both men and women, 𝜇̂𝜇𝑞𝑞 and 𝜇̂𝜇𝑞𝑞 + 𝛿̂𝛿𝑞𝑞 moving both 
to the center. The difference between the two populations is therefore directly attenuated. 

The estimated effect-size is therefore attenuated in direct proportion to (1 − 𝛼𝛼). However, 
inference is potentially more complicated, as standard errors could potentially decline here. 
The inflation/deflation of the variance ratio of the biased/unbiased estimator is given by 

(3)          Var�𝛿𝛿�𝑞𝑞(𝛼𝛼)�
Var�𝛿𝛿�(0)�

= (1 − 𝛼𝛼) ⋅ [1 + 𝛼𝛼 ⋅ 𝛥𝛥𝑐𝑐], 

where 𝛥𝛥𝑐𝑐 is a measure of the distance between the center point 𝑐𝑐 and the two group means: 

𝛥𝛥𝑐𝑐 : =
1
2
⋅ �
𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞 − 𝑐𝑐

𝜎𝜎𝑞𝑞
�
2

+
1
2
⋅ �
𝜇𝜇𝑞𝑞 − 𝑐𝑐
𝜎𝜎𝑞𝑞

�
2

. 
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The effective 𝑇𝑇-statistic on the 𝛿𝛿𝑞𝑞(𝛼𝛼) coefficient is given by 

𝑇𝑇�𝛿𝛿𝑞𝑞(𝛼𝛼)� =
𝛿𝛿𝑞𝑞(𝛼𝛼)

�Var� �𝛿𝛿𝑞𝑞(𝛼𝛼)�
. 

However, because 𝛥𝛥𝑐𝑐 > 0 we can bound the variance ratio in (3) from below by 1 − 𝛼𝛼. As 
such the probability limit for the ratio of the T-statistics is: 

𝑇𝑇�𝛿𝛿𝑞𝑞(𝛼𝛼)�
𝑇𝑇�𝛿𝛿𝑞𝑞(0)�

=
𝛿𝛿𝑞𝑞(𝛼𝛼)
𝛿̂𝛿𝑞𝑞(0)

⋅ �
Var�𝛿𝛿𝑞𝑞(0)�
Var�𝛿𝛿𝑞𝑞(𝛼𝛼)�

≤ (1 − 𝛼𝛼) ⋅
1

√1 − 𝛼𝛼
= √1 − 𝛼𝛼 

The conclusion then is that center bias attenuates both the size of the coefficient, but also 
the qualitative inference over whether an effect exists, towards zeros. 3 

Proposition 1 (LHS effect) When observed beliefs are center-biased at rate α, the estimated 
treatment effect  𝛿𝛿𝑞𝑞 from econometric equation (1) is attenuated towards zero at rate (1-α). 

Beliefs as a control variable 

The right-hand side variables from equation (2) can be arranged into a column vector of 
2𝑁𝑁 ones (the constant), a column vector of 𝑁𝑁 zeros followed by 𝑁𝑁 ones (the indicator for 
women), and a column vector of the beliefs (𝑁𝑁 observations from men, 𝑁𝑁 observations 
from women.) The OLS estimator for (2) is therefore given by, 

�
𝜇𝜇𝑦𝑦�
𝛿𝛿𝑦𝑦�

𝛽𝛽𝑞𝑞�
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 2𝑁𝑁 𝑁𝑁 �𝑞𝑞𝑖𝑖

M

+ �𝑞𝑞𝑖𝑖
F

𝑁𝑁 𝑁𝑁 �𝑞𝑞𝑖𝑖
F

�𝑞𝑞𝑖𝑖
M

+ �𝑞𝑞𝑖𝑖
F

�𝑞𝑞𝑖𝑖
F

�𝑞𝑞𝑖𝑖2

M

+ �𝑞𝑞𝑖𝑖2

F ⎦
⎥
⎥
⎥
⎥
⎥
⎤
−1

⎝

⎜
⎜
⎜
⎛

�𝑦𝑦𝑖𝑖
𝑀𝑀

+ �𝑦𝑦𝑖𝑖
𝐹𝐹

�𝑦𝑦𝑖𝑖
𝐹𝐹

�𝑞𝑞𝑖𝑖
𝑀𝑀

𝑦𝑦𝑖𝑖 + �𝑞𝑞𝑖𝑖
𝐹𝐹

𝑦𝑦𝑖𝑖
⎠

⎟
⎟
⎟
⎞

. 

Letting 𝛊𝛊𝑁𝑁 be a column vector of 𝑁𝑁 ones, 𝟎𝟎𝑁𝑁 a column vector of 𝑁𝑁 zeros, and 𝐪𝐪0𝑀𝑀 and 𝐪𝐪0𝐹𝐹 
the true belief vectors for the male and female sample, respectively, the undistorted data 
is given by the 2𝑁𝑁 × 3 matrix: 

 
3 False inference is possible with the belief as a dependent variable if the null assumes a non-zero effect. So 
for example, if the belief is the dependent variable, and the independent variable were the Bayesian beliefs 
𝜋𝜋 with 𝑞𝑞𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝜋𝜋𝑖𝑖 + 𝜖𝜖𝑞𝑞, an obvious null would be that the agent was Bayesian with ( 𝛽𝛽𝜋𝜋 = 1). The same 
model of center bias would lead to an attenuated estimator 𝛽̂𝛽𝜋𝜋, where if 𝛼𝛼 is large enough the econometric 
inference could be to falsely reject the null even if the agent were Bayesian. 
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𝐗𝐗0 = �
𝛊𝛊𝑁𝑁 𝟎𝟎𝑁𝑁 𝐪𝐪0𝑀𝑀

𝛊𝛊𝑁𝑁 𝛊𝛊𝑁𝑁 𝐪𝐪0𝐹𝐹
�, 

while fully center-biased data would be given by: 

𝐗𝐗𝑐𝑐 = �𝛊𝛊𝑁𝑁 𝟎𝟎𝑁𝑁 𝑐𝑐 ⋅ 𝛊𝛊𝑁𝑁
𝛊𝛊𝑁𝑁 𝛊𝛊𝑁𝑁 𝑐𝑐 ⋅ 𝛊𝛊𝑁𝑁

�. 

The dependent variable (a 2𝑁𝑁 column vector) is given by 

𝐲𝐲 = 𝐗𝐗0 �
𝜇𝜇𝑦𝑦
𝛿𝛿𝑦𝑦
𝛽𝛽𝑞𝑞
� + 𝛜𝛜𝑦𝑦 

The probability limit for the OLS estimator (using the assumption that each entry in 𝛜𝛜𝑦𝑦 is 
a mean-zero independent error and that 𝛼𝛼 < 1 so that the inverse is well defined) is: 

plim�
𝜇𝜇𝑦𝑦�
𝛿𝛿𝑦𝑦�

𝛽𝛽𝑞𝑞�
� = plim �

𝛼𝛼
𝑁𝑁
𝐗𝐗𝑐𝑐𝑇𝑇𝐗𝐗𝑐𝑐 +

1 − 𝛼𝛼
𝑁𝑁

𝐗𝐗0𝑇𝑇𝐗𝐗0�
−1

�
𝛼𝛼
𝑁𝑁
𝐗𝐗𝑐𝑐𝑇𝑇𝐗𝐗0 +

1 − 𝛼𝛼
𝑁𝑁

𝐗𝐗0𝑇𝑇𝐗𝐗0��
𝜇𝜇𝑦𝑦
𝛿𝛿𝑦𝑦
𝛽𝛽𝑞𝑞
�

= �
𝜇𝜇𝑦𝑦
𝛿𝛿𝑦𝑦
𝛽𝛽𝑞𝑞
� + plim �

𝛼𝛼
𝑁𝑁
𝐗𝐗𝑐𝑐𝑇𝑇𝐗𝐗𝑐𝑐 +

1 − 𝛼𝛼
𝑁𝑁

𝐗𝐗0𝑇𝑇𝐗𝐗0�
−1 𝛼𝛼
𝑁𝑁
𝐗𝐗𝑐𝑐𝑇𝑇(𝐗𝐗0 − 𝐗𝐗𝑐𝑐)�

𝜇𝜇𝑦𝑦
𝛿𝛿𝑦𝑦
𝛽𝛽𝑞𝑞
�

 

The asymptotic bias is therefore: 

plim�
𝜇𝜇𝑦𝑦� − 𝜇𝜇𝑦𝑦
𝛿𝛿𝑦𝑦� − 𝛿𝛿𝑦𝑦
𝛽𝛽𝑞𝑞� − 𝛽𝛽𝑞𝑞

� = �𝛼𝛼 �
2 1 2𝑐𝑐
1 1 𝑐𝑐

2𝑐𝑐 𝑐𝑐 2𝑐𝑐2
� + (1 − 𝛼𝛼) �

2 1 2𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞
1 1 𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞

2𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞 𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞 2𝜎𝜎𝑞𝑞2 + 𝜇𝜇𝑞𝑞2 + (𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞)2
��

−1

𝛼𝛼 �
0 0 (𝜇𝜇𝑞𝑞 − 𝑐𝑐) + (𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞 − 𝑐𝑐)
0 0 (𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞 − 𝑐𝑐)
0 0 𝑐𝑐((𝜇𝜇𝑞𝑞 − 𝑐𝑐) + (𝜇𝜇𝑞𝑞 + 𝛿𝛿𝑞𝑞 − 𝑐𝑐))

��
𝜇𝜇𝑦𝑦
𝛿𝛿𝑦𝑦
𝛽𝛽𝑞𝑞
� .

 

The determinant of the inverse in the above is given by 2 ⋅ (1 − 𝛼𝛼) ⋅ 𝜎𝜎2(1 + 𝛼𝛼 ⋅ 𝛥𝛥𝑐𝑐), and 
the bias can be reduced to: 

plim�
𝜇𝜇𝑦𝑦� − 𝜇𝜇𝑦𝑦
𝛿𝛿𝑦𝑦� − 𝛿𝛿𝑦𝑦
𝛽𝛽𝑞𝑞� − 𝛽𝛽𝑞𝑞

� =
𝛼𝛼𝛽𝛽𝑞𝑞

2(1 − 𝛼𝛼)𝜎𝜎𝑞𝑞2(1 + 𝛼𝛼 ⋅ 𝛥𝛥𝑐𝑐)
�

2(1 − 𝛼𝛼)𝜎𝜎𝑞𝑞2(𝜇𝜇𝑞𝑞 − 𝑐𝑐 + 𝜇𝜇𝑞𝑞𝛥𝛥𝑐𝑐)
2(1 − 𝛼𝛼)𝜎𝜎𝑞𝑞2𝛿𝛿𝑞𝑞(1 + 𝛥𝛥𝑐𝑐)

−2(1 − 𝛼𝛼)𝜎𝜎𝑞𝑞2𝛥𝛥𝑐𝑐
� ,

=
𝛼𝛼𝛽𝛽𝑞𝑞

1 + 𝛼𝛼𝛥𝛥𝑐𝑐
�
𝜇𝜇𝑞𝑞(1 + 𝛥𝛥𝑐𝑐) − 𝑐𝑐
𝛿𝛿(1 + 𝛥𝛥𝑐𝑐)
−𝛥𝛥𝑐𝑐

� .
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The asymptotic bias in the group variable estimator 𝛿𝛿𝑦𝑦 is therefore given by: 

Asym. Bias�𝛿𝛿𝑦𝑦(𝛼𝛼)� = 𝛼𝛼 ⋅ 𝛽𝛽𝑞𝑞 ⋅ 𝛿𝛿𝑞𝑞 ⋅
1 + 𝛥𝛥𝑐𝑐

1 + 𝛼𝛼 ⋅ 𝛥𝛥𝑐𝑐
, 

where 𝛥𝛥𝑐𝑐 is the expected square-difference between the true populations means for men 
and women and the center point 𝑐𝑐. 

Similarly, the asymptotic bias on the beliefs control variable is given by: 

Asym. Bias�𝛽̂𝛽𝑞𝑞(𝛼𝛼)� =
−𝛼𝛼𝛽𝛽𝑞𝑞𝛥𝛥𝑐𝑐

1 + 𝛼𝛼 ⋅ 𝛥𝛥𝑐𝑐
, 

which always moves in the opposite direction from the true effect of the belief (an 
attenuating effect). 

The above leads to the following conclusion 

Proposition 2 (RHS effects) When observed beliefs are center-biased at rate 𝛼𝛼, the bias in 
the estimated treatment effect 𝛿𝛿𝑦𝑦 in the econometric equation (2) has a bias signed by the 
product 𝛿𝛿𝑞𝑞𝛽𝛽𝑞𝑞, and the estimated belief effect 𝛽̂𝛽𝑞𝑞 is attenuated towards zero. 
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B.2. Simulations of the effects of center bias in the NV-study 
We now use the model of center-bias to simulate the impact of center bias on inference 
within the NV-setting. To this end, we first estimate the degree of center bias from 
participants’ beliefs about objective priors in our BSR-study. We then use this estimate to 
simulate center bias for the NV-study, which shows that most of the inferential distortions 
observed in the actual data can be forecasted by with the help of the center-bias model. We 
next illustrate that the reverse exercise is not successful—that is, attempting to recover the 
unbiased estimates using the bias-model and the distorted data in the NV-Information 
treatment. 

B.2.1 Estimation of center bias from objective prior reports (BSR study) 

We restate the center-bias model for participant 𝑖𝑖’s report 𝑞𝑞𝑖𝑖 as: 

(4)             𝑞𝑞𝑖𝑖 = (1 − α) ∙ 𝑞𝑞i⋆ + α ∙ c,  

which is an α-weighted average of the uniform (or “center”) belief c and her true belief 𝑞𝑞i⋆. 
With α = 0, the participant reports truthfully, and with α = 1 all participants are fully center-
biased. Intermediate values of α express the degree of the participant’s center bias. Finally, 
since in the BSR study participants’ report on a binary prior, the uniform belief is c=1/2. 

Since equation (4) is linear in our parameter of interest 𝛼𝛼, we can estimate it via OLS.4 
Table B.1 shows the regression results for the BSR-No-Information data (column 1) and 
the BSR-Information data (column 5).  

Table B.1. Estimated center bias from beliefs about objective priors. 

 BSR-No-Information  BSR-Information 
 (1) (2) (3) (4)  (5) (6) (7) (8) 

 
All priors Close to 

center 
(p=0.3,0.7) 

Further from 
center 

(p=0.2,0.8) 

Divergence 
dependent 

 

 All priors Close to 
center 

(p=0.3,0.7) 

Further from 
center 

(p=0.2,0.8) 

Divergence 
dependent 

 
α/α0 0.034 0.001 0.063 -0.045  0.223*** 0.149** 0.289*** 0.045  

(0.044) (0.047) (0.047) (0.061)  (0.054) (0.060) (0.061) (0.085) 

α1    0.388*     0.877** 
    (0.218)     (0.334) 

N 600 240 120 600  600 240 120 600 
R2 0.959 0.967 0.954 0.959  0.939 0.945 0.907 0.940 

Note: OLS estimates; standard errors corrected for clusters on the individual level. 

In the No-Information (column 1), the estimated center bias is α = 0.034, which is not 
statistically different from zero (p=0.437). This result corroborates our previous findings 
of undistorted prior reports in No-Information. In contrast, in the Information treatment 

 
4 The results of tobit regressions are very similar with estimated α (cluster-corrected s.e.) of 0.028 (0.047) in 
the No-Information treatment and 0.219 (0.055) in the Information treatment. 
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(column 5) the estimated center bias is α = 0.223 and significantly different both from zero 
(p<0.001) and the estimate in the No-Information treatment (p=0.007). 

In addition to the baseline model, Table B.1 also reports on a simple extension of the model 
capturing a regularity of center-bias that will be important for our out-of-sample 
predictions. The extension is motivated by the relative strengths of the hedging motives, 
per Table 1 in the paper’s introduction (echoed in the post-experimental questionnaire for 
the Information treatment), which suggest that deviations from truth-telling could be 
increasing in the distance of true belief from the center. Columns (6) and (7) present 
evidence supporting this hypothesis.5 Here, we estimate the center-bias model separately 
for “less extreme” priors of 0.3 and 0.7 and for “more extreme” priors of 0.2 and 0.8, 
respectively. The estimated α is significantly different from zero in both groups but about 
twice as large for more extreme priors than for less extreme priors (p=0.011). That is, 
participants in the BSR-Information treatment show robust center bias but the degree of 
center bias is larger for priors further away from uniform.  

To capture this dependency in a parsimonious and portable way our simulations will also 
allow for α to depend on the distance between the participant’s true belief and the uniform 
belief. Specifically, 

(5)            α =  α0  +  α1ΔKL(b, u), 

where 𝛥𝛥KL(𝒃𝒃,𝒖𝒖) is a normalized Kullback–Leibler divergence between the participant’s 
true belief b and the uniform belief u given by 

(6)           ΔKL(𝒃𝒃,𝒖𝒖) =  ∑ 𝑏𝑏𝑘𝑘𝑙𝑙𝑙𝑙(𝑏𝑏𝑘𝑘/𝑢𝑢𝑘𝑘)𝐾𝐾
𝑘𝑘=1 /𝑙𝑙𝑙𝑙(𝐾𝐾),   

where K is the number of states measured in the elicitation.6  

The extended center-bias model nests the constant center-bias model as a special case with 
α1 = 0, which provides us with a simple way to test whether a belief’s divergence from 
uniform affects the degree of center-bias. 

Column (4) and (8) in Table B.1 show the estimated α0  and α1  using the BSR-No-
Information and BSR-Information treatment, respectively. We first confirm that there is no 
significant center bias in the No-Information treatment also with this more flexible 
specification. In the BSR-Information treatment, the estimate of α1 = 0.877 is large and 
significantly different from zero, reflecting a rejection of the constant center-bias model in 
favor of the divergence-dependent center-bias. 

 
5 In the BSR-No-Information treatment (columns 2 and 3), the estimated center bias is not significant 
different from zero for any prior group and there is no significant difference between the estimated parameters 
of center bias (p=0.080), which further corroborates the finding of no significant distortions in this setting. 
6  The normalization by ln(K) ensures that the measure is in [0,1] for any K, where 1 − ΔKL(b, u)  =
 −∑ 𝑏𝑏𝑘𝑘𝑙𝑙𝑙𝑙(𝑏𝑏𝑘𝑘)𝐾𝐾

𝑘𝑘=1 /𝑙𝑙𝑙𝑙(𝐾𝐾) is therefore the normalized Shannon entropy. 
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B.2.2 Simulating center bias effects from on unbiased data (NV-No-Information) 

We now simulate center-bias in the NV-study using our center-bias estimates from the 
BSR-study. Mirroring the original NV-study, we conduct simulations where the elicited 
belief is used as a left-hand side variable and when it is used as a right-hand-side variable. 
In both cases, the simulations are based on the actual data of the NV-No-Information 
treatment—in which no center bias is found—and it is the data of the NV-information 
treatment that is being simulated. Following the paper, we focus our simulations on the 
belief attached to winning the tournament. 

Beliefs as an independent variable 

In each of 10,000 iterations, we draw a bootstrap sample of stated beliefs (participants’ 
guessed chance of ranking first) from the NV-No-Information sample (fixing the gender 
strata). For each bootstrapped belief, there is an 𝛼𝛼𝑖𝑖 chance that the belief is replaced with a 
centered belief of c = ¼. In case of the extended center-bias model, this chance α depends 
on the divergence of the original bootstrapped belief (considering all four states, see 
equation (6)) and the estimated parameters α0 and α1 from the BSR-Information data (see 
column 8 in Table B.1). We next run an OLS regression of the center-biased bootstrap 
beliefs on a constant, a gender dummy, the participant’s tournament performance 
(round 2), and the difference between the participant’s tournament performance (round 2) 
and their piece-rate performance (round 1). This is the same specification as in Table V of 
the original NV-study except for running OLS instead of ordered probit regressions 
(subjects guessed their tournament rank in the original study).7 We then record the value 
of the estimated coefficient for each independent variable. After completion of the 10,000th 
iteration, we look at the bootstrap distribution of each independent variable and determine 
the bootstrapped mean and standard error of each coefficient.  

Table B.2 shows the results of this simulation for the constant center-bias model with 
α = 0.22, α = 0.5, and the divergence-dependent model (columns 3-5, respectively). 
Columns 3 and 4 show that the constant-center-bias model can predict the change in the 
qualitative conclusion from NV-Information study but only if the degree of center bias is 
large (here α = 0.5). Here, the coefficient on the gender dummy is: (i) significant in the 
NV-No-Information treatment but not in the simulated NV-Information data, and (ii) much 
smaller in the simulated NV-Information data than in the NV-No-Information treatment. 
This pattern mirrors the findings from the actual NV-replication data (columns 1 and 6).8  

 
7 Where our theory section used a simple specification, here we use the full specification per the NV 
parameter estimates in the paper. 
8 Column (1) and (6) show the results of OLS regressions using the actual data in the NV-No-Information 
and NV-Information treatment, respectively. The table also shows the results of the bootstrap exercise as 
described above except that we do not simulate center bias (i.e., we do not replace any bootstrapped belief 
with c = ¼; see column 2) as well as simple OLS regressions based on the actual data of the No-Information 
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As noted above, the value of α = 0.5 needed to explain the actual NV-data is much larger 
than the estimate of α = 0.223 obtained from the BSR data. The larger α is needed because 
the constant-center-bias model does not account for the larger intensity of center-bias near 
the extremes. In contrast, the divergence-dependent center-bias model in column (5) can 
explain the change in the qualitative conclusion with the parameters estimated from the 
BSR data. This highlights the importance of accounting for the observed center-bias 
regularity when assessing the sensitivity of qualitative results to center bias out of sample. 

Beliefs as a control variable 

We repeat the exercise for the case where elicited beliefs are used as a right-hand-side 
variable. Our simulation approach is the same except that inferential here acts through a 
probit regression of the tournament-entry decision, mirroring the paper’s specification that 
includes the confidence variable as a control.  

 

treatment (column 1) and the Information treatment (column 6). A comparison of columns 1 and 2 shows 
that for the actual No-Information data, the results are virtually the same whether we use simple OLS or 
bootstrap estimates. 

TABLE B.2. SIMULATION OF CENTER BIAS: BELIEFS AS A LHS VARIABLE 

  Reported probability of ranking 1st 
   NV-No-Information   NV-Information 

 (1) (2)  (3) (4) (5) (6) 

  

Actual data  
(OLS) 

 
  

Actual data  
(bootstrap) 

 
  

  

Simulated 
(bootstrap) 
α = 0.223 

  

Simulated 
(bootstrap) 

α = 0.5 
 

Simulated 
(bootstrap) 

α=.05+ 
.88ΔKL(b,u) 

Actual data  
(OLS) 

 
  

Female −0.148*** −0.148***  −0.115** −0.074 −0.076* −0.038 
 (0.051) (0.057) 

 
(0.055) (0.048) (0.043) (0.059) 

Tournament 0.008* 0.008  0.006 0.004 0.004 0.018*** 
 (0.004) (0.005) 

 
(0.005) (0.004) (0.003) (0.005) 

Tournament− 0.017** 0.017**  0.013* 0.008 0.005 −0.021** 
  piece rate (0.008) (0.007) 

 
(0.007) (0.007) (0.006) (0.010) 

Constant 0.305*** 0.307***  0.295*** 0.279*** 0.277*** 0.059 
 (0.097) (0.110) 

 
(0.105) (0.092) (0.079) (0.101) 

R2 0.273 —  — — — 0.187 
N 74 74  74 74 74 68 

Note: Asterisks represent p−values: *p<0.1, **p <0.05, ***p<0.01. Columns 2-4 are based on 10,000 bootstrap samples. In 
each bootstrap iteration of column 3-5, an observation is replaced by the uniform belief of 1/4 with probability α. 
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Table B.3 shows the simulation results together with the regressions from the actual data. 
The actual NV-No-results are provided in (column 1),9 while the results from the simulated 
model are given in columns (3) to (5). Per the LHS variable, with constant center bias, for 
an effect of α = 0.5, the gender coefficient using the distorted beliefs becomes larger and 
gains marginal statistical significance (column 4). Directionally, but much smaller, this 
reflects what is observed in the actual NV-information treatment, where the gender 
coefficient remains highly significant (column 6). Again, using the estimates of the 
divergence-dependent center-bias model (column 5) yields very similar results as the 
inflated constant center-bias model. To summarize, for the case of a control variable, the 
center bias model can partially explain the actual changes in the estimated gender 
coefficients (see columns 1 and 6). 

B.2.3 Attempted recovery of subjective beliefs from biased data 

The previous section showed that simple models of center bias can predict inferential 
mistakes, out-of-sample, in applied settings. Using the same model, the following section 
illustrates that the reverse exercise—attempts to recollect truthful reports from center-
biased data—is more challenging and not successful for the NV-setting.  

The first major challenge of the reverse approach is the identification of “likely biased” 
observations. While it is straightforward to transform unbiased data for a given center-bias 
model, the reverse approach requires identification of “likely biased” observations. In other 
words, given biased data we cannot be sure which observations are distorted and which are 
true beliefs. Even if we solve the first issue, the second issue is in trying to recover where 
the biased observation came from. Even if biased observations could be perfectly 
identified, it is often not feasible to fully recover the original data point.  

 
9 Column 2 shows again that the results are very similar for simple OLS and bootstrap estimates (without 
simulating center bias). 
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Throughout the following sections, we adopt a very simple and straightforward method for 
solving these two issues, where we briefly discuss the use of more sophisticated approaches 
at the end of this section.  

Beliefs as an independent variable 

Starting with beliefs as the left-hand-side variable we first detail our approach. In each 
simulation, we first split the bootstrap sample into two groups: those with centered beliefs, 
and those with and non-centered beliefs. We do this by calculating the distance of each 
bootstrapped belief from the centered belief of 0.25, and then figuring out the α-sized 
sample that is closest to the centered belief.10 We then replace the centered-data beliefs 
with a linear prediction based the non-centered sample (but therefore accounting for the 
observations covariates). As before, we then conduct OLS regressions to estimate 
parameters for each simulated sample.    

 
10 To assure that α is the same across simulations (given that beliefs are discrete), the assignment to the 
centered and non-centered group is random for beliefs that are at the distance threshold for α, where beliefs 
with a smaller distance are all centered and beliefs with a larger distance are all non-centered. 

TABLE B.3. SIMULATION OF CENTER BIAS: BELIEFS AS A RHS CONTROL   

  Tournament entry 
   NV-No-Information    NV-Information 

 (1) (2)  (3) (4) (5) (6) 

  

Actual data  
(probit) 

 
  

Actual data  
(bootstrap) 

 
  

  

Simulated 
(bootstrap) 

α=0.223 
  

Simulated 
(bootstrap) 

α=0.5 
 

Simulated 
(bootstrap) 
α=.05+.88 
ΔKL(b,u) 

Actual data  
(probit) 

 
  

Female −0.146 −0.121  −0.159 −0.190* −0.189* −0.382*** 
 (0.115) (0.125) 

 
(0.105) (0.093) (0.097) (0.124) 

Tournament 0.017 0.018  0.019 0.020* 0.019* −0.011  
(0.014) (0.015) 

 
(0.013) (0.012) (0.012) (0.014) 

Tournament− −0.015 −0.016  −0.009 −0.004 −0.003 −0.004 
  piece rate (0.021) (0.025) 

 
(0.022) (0.019) (0.020) (0.022) 

Belief weight 1.275*** 1.295***  1.117*** 1.021*** 1.125*** 0.994*** 
  on rank 1 (0.432) (0.494)  (0.459) (0.516) (0.505) (0.329) 
Pseudo R2 0.303 —  — — — 0.208 
N 74 74  74 74 74 68 

Note: The table reports marginal effects for a man with average performances and belief. Asterisks represent p-values: 
*p<0.1, **p <0.05, ***p<0.01. Columns 2-4 are based on 10,000 bootstrap samples. In each bootstrap iteration of column 3-
5, an observation is replaced by the uniform belief of 1/4 with probability α. ΔKL(b,u) ∈ [0,1] is the normalized Kullback–
Leibler divergence of the NV-No-Information belief reports from uniform. 
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Table B.4 shows the results of this simple exercise for the two values of the constant center-
bias model α = 0.223 (column 2) and α = 0.5 (column 3). It is apparent that the reverse 
simulations are not successful in recovering estimates close to the observed NV-No-
Information results (column 4), nor those from the original NV study. In fact, the bootstrap 
estimates and standard errors of the gender coefficients are virtually the same as in the 
original NV-Information data (column 1) they are based off. As such, the simulation results 
provide little hope for an effective strategy to recover true beliefs once they are affected by 
center bias. 

Beliefs as a control variable 

For completeness, we now repeat the reverse simulations of the previous section, except 
where beliefs are used as a RHS control (per Table B.3). Analogue to the previous section, 
Table B.5 provides the results of the reverse simulations, in which centered beliefs are 
replaced by predicted values based on individual characteristics, but where the 
specification has beliefs on the RHS (as in Table B.2). 

TABLE B.4. REVERSE SIMULATION: BELIEF ON LHS 

 Reported probability of ranking 1st 
 Information  No-Information 
 (1)  (2) (3) (4) 

  
Actual data  

(OLS) 
  

  
Simulated 
(bootstrap) 
α = 0.223  

Simulated 
(bootstrap) 

α = 0.5 

Actual data  
(OLS) 

  
Female −0.038  −0.060 −0.044 −0.148*** 
 (0.059) 

 
(0.071) (0.104) (0.051) 

Tournament 0.018***  0.019*** 0.023** 0.008* 
 (0.005) 

 
(0.006) (0.008) (0.004) 

Tournament− −0.021**  −0.022** −0.032** 0.017** 
  piece rate (0.010) 

 
(0.010) (0.015) (0.008) 

Constant 0.059  0.073 0.045 0.305*** 
 (0.101) 

 
(0.122) (0.172) (0.097) 

R2 0.187  — — 0.273 
N 68  68 68 74 

Note: Asterisks represent p−values: *p<0.1, **p <0.05, ***p<0.01. Columns 2-3 are based 
on 10,000 bootstrap samples. In each bootstrap iteration, the share α of the most centered 
beliefs (closest to uniform 0.25) is replaced by predictions based on regressions from the 
non-centered observations of the same bootstrap sample. Specifically, in each iteration, we 
first estimate the specification in this table for the non-centered observations to then predict 
the values of each centered observation based on their gender and performances. 
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The reverse simulation exercise again shows that we are not successful in generating data 
or qualitative findings that reflect the actual NV-No-Information treatment. Again, the 
qualitative results of the reverse simulations are not substantially different from the actual 
NV-Information data. 

B.2.4 Simulation Conclusions 

The simulations in this appendix illustrate that while predicting the effects of the center 
bias is straightforward and can yield relatively accurate results out-of-sample (here using 
the objective BSR-date to predict the effects of center-bias in the NV-study), the 
reconstruction of unbiased estimates from center-biased data is much more challenging and 
not successful for the NV-study. 

While our simulation techniques are intentionally simple to maximize comparability 
between the two tasks, more sophisticated approaches could clearly improve on the 
reconstructive approach, e.g., when identifying and separating “likely center-biased” from 
“likely unbiased” observations. However, we believe that such improvements would not 
address the two main challenges of the reconstructive approach. If the researcher has only 

TABLE B.5. REVERSE SIMULATION: BELIEF ON RHS 

 Tournament entry 
 Information  No- Information 
 (1)  (2) (3) (4) 

  
Actual data  

(probit) 
  

  
Simulated 
(bootstrap) 

α=0.223  

Simulated 
(bootstrap) 

α=0.5 

Actual data  
(probit) 

  
Female −0.382***  −0.363*** −0.346** −0.146 
 (0.124) 

 
(0.133) (0.138) (0.115) 

Tournament −0.011  −0.013 −0.011 0.017  
(0.014) 

 
(0.015) (0.017) (0.014) 

Tournament− −0.004  −0.001 0.000 −0.015 
  piece rate (0.022) 

 
(0.026) (0.030) (0.021) 

Belief weight 0.994***  1.020*** 0.760* 1.275*** 
  on rank 1 (0.329)  (0.353) (0.442) (0.432) 
Pseudo R2 0.208  — — 0.303 
N 68  68 68 74 

Note: The table reports marginal effects for a man with average performances and belief. 
Asterisks represent p-values: *p<0.1, ** p <0.05, *** p<0.01. Columns 2-3 are based on 
10,000 bootstrap samples. In each bootstrap iteration, the share α of the most centered beliefs 
(closest to uniform 0.25) is replaced by predictions based on regressions from the non-centered 
observations of the same bootstrap sample. Specifically, in each iteration, we first estimate the 
specification in Table B.1 for the non-centered observations to then predict the values of each 
centered observation based on their gender and performances. 
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data that is possibly affected by center-bias, then it is difficult to learn the true model and 
degree of center-bias, more sophisticated classification strategies might introduce 
additional uncertainty when identifying center bias, and the central problem of how to 
replace “censored” observations that are likely affected by center bias remains.  
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Online Appendix C—Experiment Instructions 
In the below instructions, treatment differences are indicated in [square brackets]. In 
addition, the RCL treatment uses the term “Your Submitted Guess” instead of “Your 
Guess” throughout, and the term “submit” instead of “provide” whenever the instructions 
referred to the participant reporting. 

C.1 Main Experiment Instructions (Handout + read aloud) 

Instructions 

[All except QSR-Inf and QSR-No-Information 

Thank you for participating in our study. This is an experiment on decision making. The 
other people in this room are also participating in the experiment, and you may not talk to 
them. If you have a question, please raise your hand and an experimenter will come and 
answer you in private.  

You will receive $8 for participating in this experiment, but the decisions you make can 
further increase these earnings. Any money you make will be paid privately and in cash at 
the end of the experiment. 
][QSR only as conducted online:  

Thank you for participating in our study. This is an experiment on decision making. The 
other people in this zoom meeting are also participating in the experiment, and you may 
not communicate with them. If you have a question, please send the experimenter a private 
chat message and they will answer you in private. 

You will receive $8 for participating in this experiment, but the decisions you make can 
further increase these earnings. Any money you make will be paid privately via Venmo at 
the end of the experiment. An additional $0.25 will be added to your payment to cover 
Venmo’s instant transfer fee, so that you can transfer your money to your bank account 
immediately. 
][All:  

Explanation of your task 

The experiment will consist of ten scenarios. In each scenario the computer will fill two 
urns with five balls, either red or blue. We call the urn with more red balls the Red urn, 
and the one with more blue balls the Blue urn. One of these two urns is selected to be used 
in the scenario. Your task is to guess how likely it is that the selected urn is the Red urn. 
Within each scenario you will make a total of three guesses. 

Each scenario proceeds as follows: 
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Computer Fills the Urns: The two urns are filled with five balls each, some blue, some 
red. You will always see the exact number of blue and red balls in the two urns. 

Computer Selects an Urn: The computer selects the Red or the Blue urn by rolling a fair 
10-sided die and comparing it to a number X between 1 and 10. The selected urn is 
determined as follows: 

• If the die roll is less than or equal to X then the Red urn is selected. 

• If the die roll is greater than X then the Blue urn is selected. 
 Once the computer selects an urn it is fixed and stays the same for the entire scenario. 

The die-roll selection rule X means that the chance the computer selects the Red urn 
is X-in-10. For example, suppose X=6, then there is a six-in-ten chance (60 percent) 
that the computer selects the Red urn, and a four-in-ten chance (40 percent) that the 
computer selects the Blue urn.  

The number X will vary across the 10 scenarios. After the computer has filled the two urns 
and rolled the 10-sided die to determine which urn is selected, you will be asked to make 
your guesses. At the beginning of each scenario you will learn how many red and blue balls 
there are in each urn, and the rule the computer used to select an urn (the number X). 
However, you will not learn which of the two urns has been selected until after you have 
made your guesses. 

You are asked to provide your best guess that the computer has selected the Red urn for 
the scenario. The three questions are ordered as follows:  

Guess 1 Knowing only the rule X that the computer used to select an urn, you provide your 
first guess that the selected urn is the Red one. 

Guess 2 The computer fairly draws one of the five balls from the selected urn. After seeing 
the color of this ball you provide your second guess that the selected urn is the Red 
one. 

Guess 3 After replacing the first-drawn ball back into the selected urn and mixing it, the 
computer fairly draws a second ball from the five. After seeing the color of the second 
ball you provide your third guess that the selected urn is the Red one. 

Note that the draws from the selected urn in questions 2 and 3 are independent from one 
another: After the first draw is made, it is as if the ball is returned to the selected urn before 
the next draw is made. The contents of the selected urn are therefore always the same when 
a draw is made, and each of the five balls has the same chance of being drawn in each 
question. 
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Feedback After you have answered the scenario’s three questions you learn which urn the 
computer selected and drew balls from. Your three guesses will be used to determine 
your chances of winning an $8 prize. Your chance of winning the prize is set so that 
more-accurate guesses lead to a higher chance of winning. 

Your Guess 

For each question you have to guess the chance that the selected urn is the Red one. Your 
guess is a percentage probability from 0 to 100—with 0 indicating a 0-out-of-100 chance 
that the selected urn is the Red urn, and 100 indicating a 100-out-of-100 chance. The 
number you provide is called Your Guess. 

You choose Your Guess by clicking the response bar on your screen. The width of the 

red part of the bar indicates your guess that the Red urn was selected. 

• Larger values of Your Guess represent a greater chance that the Red urn was 
selected and a smaller chance that the Blue urn was selected 

• Smaller values of Your Guess represent a smaller chance that the Red urn was 
selected and a greater chance that the Blue urn was selected 

The width of the blue part of the bar is 100−Your Guess, and represents your guess that the 
Blue urn was selected. 

 

Payment Rule 

[Information, RCL, Description treatments: 

We now explain how Your Guess is used to determine whether you win the $8 prize. 

• The computer chooses two numbers between 1 and 100, where each number is 
equally likely, as if rolling two 100-sided dice. These numbers are called 
Computer Number A and Computer Number B. 

• The computer determines whether you win the $8 prize according to which urn 
was selected: 

The selected urn is the Red urn: You will win the $8 prize if Your Guess is greater than 
or equal to either of the two Computer Numbers.  

The selected urn is the Blue urn: You will win the $8 prize if Your Guess is less than 
either of the two Computer Numbers.  

][QSR Information: 

We now explain how Your Guess is used to determine how much you earn. 
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The selected urn is the Red urn: You will earn $8*(1 − (1 − Your Guess/100)2) 

The selected urn is the Blue urn: You will earn $8*(1 − (Your Guess/100)2) 

To help you understand the payment rule, as you move Your Guess the computer will 
inform you of: 

• Your earnings if the Red urn was selected 
• Your earnings if the Blue urn was selected 

][Information, RCL treatments:  

To help you understand the payment rule, as you move Your Guess the computer will 
inform you of: 

• The probability of winning the $8 if the Red urn was selected 

• The probability of winning the $8 if the Blue urn was selected 
][RCL treatment:  

As mentioned above, we designed the payment rule to make sure that your greatest total 
chance of winning is secured by letting Your Submitted Guess equal to your most-accurate 
guess that the urn is Red (what we will call Your True Guess on Red). We provide a 
calculator to help you determine your total chance of winning the prize given any True and 
Submitted Guesses. 

The calculator will appear in a gray box on the bottom of your screen. When you have 

entered Your True Guess that the urn is Red the calculator will use Your Submitted Guess 
to compute your total chance of winning. The formula used to calculate your total chance 
of winning is given by: 

          (True Guess on Red)  × (Prob. of Winning if Red given Submitted Guess) 

 + 

         (True Guess on Blue)  × (Prob. of Winning if Blue given Submitted Guess). 
][All except QSR-Information and QSR-No-Information 

Final Payment 

The payment rule is designed so that you can secure the largest chance of winning the 
prize by reporting your most-accurate guess. [No-Information treatment: The 
precise payment rule details are available by request at the end of the experiment.] 

At the end of the experiment, the computer will randomly choose two of the ten scenarios 
for payment. From each of these two scenarios, one of the three guesses will be randomly 
chosen for payment. Every guess has the same chance of being selected for payment. 
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[Information, RCL, Feedback treatments: At the end of each scenario you find out 
which urn was actually selected, and learn your chance of winning the $8 if the guess is 
selected for payment.] 

For the selected questions we will use Your Guess and whether the selected urn was the 
Red urn to determine your chance of winning $8. After determining your chance of 
winning, the computer will conduct the lottery for the prize to see if you won the $8. 

Your payment for this experiment will therefore be: 

• $8 if you do not win the $8 on either guess. 

• $16 if you win the $8 prize on one of the two selected guesses. 

• $24 if you win the $8 prize on both selected guesses 
][Both QSR treatments: 

Final Payment: 

The payment rule is designed so that you can secure the largest expected earnings by 
reporting your most-accurate guess. [QSR-No-Information treatment: The precise 
payment rule details are available by request at the end of the experiment.] 

At the end of the experiment, the computer will randomly choose two of the ten scenarios 
for payment. From each of these two scenarios, one of the three guesses will be randomly 
chosen for payment. Every guess has the same chance of being selected for payment.[QSR-
Information: At the end of each scenario, you find out which urn was actually selected, 
and learn your earnings if the guess is selected for payment. 
 

[QSR-Information:  

For the selected questions we will use Your Guess and whether the selected urn was the 
Red urn to determine your earnings. You may earn between $0 and $8 for each selected 
guess. 
 

Including your $8 for participating in the experiment, your payment for this experiment 
will therefore be between $8 and $24 depending on your earnings from the two guesses 
selected for payment. 
] 

Summary 

[All except QSR:  
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For a brief summary please take a look at the presentation at the front of the lab. 
][QSR as online:  

For a brief summary please follow the presentation on the next slides.] 

C.2. Slides (shown) and Script (read aloud) as summary 
Slides Script (read out loud by 

experimenter) 

 

We now summarize the task in 
each scenario. 
To begin with the computer 
fills the two urns. 
Each urn is filled with five 
balls, which are either blue or 
red. 
The red urn is the urn with more 
red balls in it. 
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Next the computer selects one 
of the two urns for the scenario. 
It does this using the rule X and 
a 10-sided die roll. 
If the die roll is equal to less 
than X the red urn is selected. 
If it’s greater than X, the blue 
urn is selected. 
Because of this rule, the chance 
of selecting the red urn is X-in-
10. 

 

Suppose that X is equal to 6. So 
for die rolls of 1 to 6 the Red 
urn is selected. 
And for die rolls from 7 to 10 
the Blue urn is selected. 
So the chance the red urn is 
selected is 6-in-10, or 60 
percent. 
The selected urn remains the 
same for the entire scenario. 
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After the computer has selected 
one of the two urn you make 
your first guess. 
You make your first guess only 
knowing the die roll rule (here 
6) and how many red and blue 
balls are in each urn. 

 

After you make your first 
guess, you then get to see a 
drawn ball from the selected 
urn. The drawn ball can be 
either red or blue, where the 
chance of this depends on 
which urn was selected for the 
scenario. 
After seeing the color of the 
drawn ball, you make your 
second guess. 
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The first ball is put back into the 
selected urn, and the balls 
mixed. 
You then draw a second ball 
from the urn and see what color 
it is. 
After seeing the color, you 
make your third and final guess. 

 

You enter Your Guesses by 
clicking the response bar on 
your screen. 
The width of the red part of the 
bar indicates your percentage 
chance that the red urn was 
selected. 
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Your Guess is the width of the 
red part of the bar, and so wider 
selection represents a greater 
chance that the Red urn was 
selected. 

 

A thinner red selection 
represents a smaller chance that 
the red urn was selected. 
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The width of the blue part 
represents 100-Your Guess and 
is the percentage chance that 
the blue urn was selected. 

 

Remember, in every question 
we ask you for a guess that the 
Red urn is the selected urn. 

[RCL treatment only]  
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In addition to the bar where you 
enter Your Submitted Guess, 
we also provide you with a 
calculator. 
To use the calculator, you enter 
Your True Best guess. 
For any selection of Your 
Submitted Guess and Your 
True best Guess the calculator 
will provide you with your total 
chance of winning. 
Your total chance of winning is 
calculated as 

Your True Best Guess on Red 
times the Likelihood that you 
Win if Red is Selected, given 
Your Submitted Guess 
+ Your True Best Guess on 
Blue times the Likelihood that 
you Win if Blue is Selected, 
given Your Submitted Guess 

 
[RCL treatment only] 
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The calculator allows you to 
verify that whatever your True 
Best Guess might be, the 
payment rule ensures that you 
will maximize your total 
chance of winning by setting 
your submitted guess equal to 
your True Guess. 

 

Final Payment for the 
experiment will be $8 plus 
payment for two different 
scenarios. 
For each selected scenario one 
of the three guesses is selected 
for payment. 
The payment rule we use is 
designed so that you can secure 
the largest chance of winning 
the prize by reporting your 
most-accurate guess [RCL 
treatment: (Your True Guess)]. 
We will now start the 
experiment. 
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[QSR Treatments only] 

 
 

Final Payment for the 
experiment will be $8 plus 
payment for two different 
scenarios. 
For each selected scenario one 
of the three guesses is selected 
for payment. 
The payment rule we use is 
designed so that you can secure 
the largest expected earnings by 
reporting your most-accurate 
guess. 
We will now start the 
experiment. 
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C.3 NV-replication Elicitation 

Core Niederle-Vesterlund Task 
[Common to both Information and No-Information] 

Welcome 
This is an experiment about decision making. The other people in this Zoom session are 
also participating in the experiment. You must not talk to them or communicate with 
them in any way. If you have a question, please send the researcher a private chat 
message over Zoom and we will answer you in private. 
 
The study involves decision tasks. We will give you the details of those decision tasks 
immediately before proceeding to them. Your decisions in each task are anonymous; no 
one will be able to determine which decisions were made by you. At the end of the 
experiment, we will pay you your earnings over Venmo. Your earnings in today’s 
experiment may be affected by your individual decisions, decisions of others, and chance. 
Your total earnings will equal the sum of your earnings from the tasks plus $6 for 
showing up to the experiment, plus a payment of $4 for completing the experiment. 
 
We ask that you give us your full attention throughout the experiment. You must remain 
on Zoom and keep your video on. Please refrain from all other activities, including using 
your phone and browsing the internet. If we find that you are not paying attention or are 
violating any rules you will be dismissed with only your show-up payment. 
 
Your current and future status with the University of California, Santa Barbara, and any 
other benefits for which you qualify will be the same whether you participate in this 
study or not. 
 
This study is being conducted by researchers at the University of Pittsburgh. The 
researchers can be reached at [email address]. 
 
[Piece-Rate Instructions (Onscreen+ Read aloud)]] 

Instructions: Round 1 - Piece Rate 
You will first complete four rounds. At the end of the experiment we will randomly select 
one of the rounds to count for payment. We do this by drawing a number between 1 and 
4; with all numbers equally likely to be drawn.  

The method we use to determine your earnings varies across rounds. Before each round 
we will describe in detail how your payment is determined. 

Round 1 - Piece Rate  

In Round 1 you will be asked to calculate the sums of two randomly chosen two-digit 
numbers. You will be given 2 minutes to calculate the correct sums of a series of these 
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problems. The use of a calculator is not permitted. You submit an answer by clicking the 
submit button with your mouse. When you enter an answer, the computer will 
immediately tell you whether your answer is correct or not.  

If Round 1 is the one randomly selected for payment, then you get $0.50 per problem you 
solve correctly in the 2 minutes. Your payment does not decrease if you provide an 
incorrect answer to a problem. We refer to this payment as the piece rate payment. 

Please send Researcher 1 a private chat message if you have any questions before we 
begin.  
Please click OK when you have your questions answered and are ready to proceed.  

[Piece Rate Real Effort Entry Screen:] 

 

[Tournament Instructions (Onscreen+ Read aloud)] 

Instructions: Tournament Round 

As in Round 1, you will be given 2 minutes to calculate the correct sums of a series of 
two randomly chosen two-digit numbers. However, in this round your payment depends 
on your performance relative to that of a group of other participants. Each group consists 
of four randomly selected people. The three other members of your group are also 
participants in this Zoom session. If Round 2 is the one randomly selected for payment, 
then your earnings depend on the number of problems you solve compared to the three 
other people in your group. The individual who correctly solves the most problems will 
receive $2.00 per correct problem, while the other participants receive no payment. We 
refer to this as the tournament payment. You will not be informed of how you did in the 
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tournament until all four rounds have been completed. We break ties in the number of 
correctly solved problems by assigning the higher rank to the person who was fastest. 

Please send Researcher 1 a private chat message if you have any questions before we 
begin.  

Please click OK when you have your questions answered and are ready to proceed. 

[Tournament Round Real Effort Screens] 
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[Incentive Choice (Onscreen+ Read aloud)] 

Instructions: Choice Round 

As in the previous rounds, you will be given 2 minutes to calculate the correct sums of a 
series of two randomly chosen two-digit numbers. However, you will now get to choose 
which of the two previous payment schemes you prefer to apply to your performance in 
this round.  

If Round 3 is the one randomly selected for payment, then your earnings for this round 
are determined as follows. If you choose the piece rate you receive $0.50 per problem 
you solve correctly. If you choose the tournament your performance will be evaluated 
relative to the performance of the other three participants of your group in the Round-2 
tournament. The Round-2 tournament is the one you just completed. If you correctly 
solve more problems than they did in Round 2, then you receive four times the payment 
from the piece rate, which is $2.00 per correct problem. You will receive no earnings for 
this round if you choose the tournament and do not solve more problems correctly in this 
round, than the others in your group did in the Round-2 tournament. You will not be 
informed of how you did in the tournament until all four rounds have been completed. 
We break ties in the number of correctly solved problems by assigning the higher rank to 
the person who was fastest.  

The next computer screen will ask you to choose whether you want the piece rate or the 
tournament applied to your performance in this round. You will then be given 2 minutes 
to calculate the correct sums of a series of two randomly chosen two-digit numbers.  
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Please send Researcher 1 a private chat message if you have any questions before we 
begin.  

Please click OK when you have your questions answered and are ready to proceed. 

[Choice Round Selection Screen] 

 

 
Round 4 – Submit Piece Rate 

You do not have to add any numbers for the fourth and final round. Instead you may be 
paid one more time for the number of problems you solved in the Round-1 piece rate. 
However, you now have to choose which payment scheme you want applied to the 
number of problems you solved. You can either choose to be paid according to the piece 
rate, or according to the tournament.  

If Round 4 is the one selected for payment, then your earnings for this round are 
determined as follows. If you choose the piece rate you receive $0.50 per problem you 
solved in the Round-1 piece rate.  

If you choose the tournament your performance will be evaluated relative to the 
performance of the other three participants in your Round 2 - tournament group. If your 
number of correctly solved problems on Round 1 is greater than the Round-1 
performance of your Tournament group members then you receive four times the 
earnings of the piece rate, which is equivalent to $2.00 per correct problem. You will 
receive no earnings for this round if you choose the tournament and did not solve more 
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problems correctly in Round 1 than the other members of your group. The next computer 
screen will tell you how many problems you correctly solved in Round 1, and will ask 
you to choose whether you want the piece rate or the tournament applied to your 
performance.  

If you have any questions, please send Researcher 1 a private chat message.  
Please click OK when you have your questions answered and are ready to proceed.  

[Round 4 Submit Screen] 

 

Elicitation Tasks  within NV-Replication 

Guess Your Rank 

For this question you are asked to guess how your number of correct answers 
ranked in your group of four. We ask you to guess how likely it is that you were 
ranked first, second, third or fourth. You do this by entering a percent chance 
between 0 and 100 for each possible rank, with the four percentages summing 
up to 100. 

Earnings: 

We will reward the accuracy of your guess by using a payment rule that secures 
the highest chance of winning $4 when you provide your most-accurate guess. 
[Information only: Using your guess, the payment rule provides four chances-to-
win—one for each possible rank. The chance-to-win that counts for payment is 
the one that corresponds to your actual rank. 
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You will learn your chance-to-win for each of the four possible ranks as soon as 
you have entered your guess that sums to 100 percent across the four ranks. 
Suppose you submit a guess of {𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4}  that each of the four ranks 
occurred,  and that we denote the percent chance you attached to your actual rank 
by  𝑝𝑝𝐴𝐴. 

        Then, your chance-to-win is given by the equation: 

Chance − to − win = 50(1 + 2
pA

100
− w) 

Where w is the sum-of-squares across all four probabilities, 𝑤𝑤 = � 𝑃𝑃1
100
�
2

+

� 𝑃𝑃2
100
�
2

+ � 𝑃𝑃3
100
�
2

+ � 𝑃𝑃4
100
�
2
. 

---] 

Below you see the form for entering your guess with two valid examples 
[Information only:-- and the corresponding chance-to-win conditional on each rank 
being the actual rank---]. 

Example 1 

Suppose you entered the guess shown below: 

  

[No Information Example 1 Image] [Information Example 1 Image] 
 

This guess puts a 100 percent chance on your actual rank being second, and a 
zero percent chance on every other rank. This is a valid guess as the four 
percentages sum to 100 (100+0+0+0). [Information only:--- The chance-to-win the 
$4 if each rank was your actual rank is shown in the rightmost column. Your 
chance-to-win would be 100 percent if your actual rank was second, and you 
would have 0 percent chance-to-win if your actual rank was first, third or fourth. 

To see why, note that the sum-of-squares is 1 (𝑤𝑤 = 02 + 12 + 02 + 02). So, if 
your actual rank was second, then 𝑃𝑃𝐴𝐴 = 𝑃𝑃2 = 1  and  Chance-to-win = 50 ⋅
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�1 + 2 𝑃𝑃𝐴𝐴
100

− 𝑤𝑤� = 50 ⋅ (1 + 2 ⋅ 1 − 1) = 100 percent. If instead the rank was 

fourth, then 𝑃𝑃𝐴𝐴 = 𝑃𝑃4 = 0  and the Chance-to-win=50 �1 + 2 𝑃𝑃𝐴𝐴
100

− 𝑤𝑤� = 50 ⋅
(1 + 2 ⋅ 0 − 1) = 0 percent. ---] 

Example 2 

Suppose instead that you entered the guess shown below: 

  

[No Information Example 2 Image] [Information Example 2 Image] 
This guess puts an equal chance on your rank being first, second, third or fourth. 
This is a valid guess as the four percentages sum to 100 (25+25+25+25). 

[Information only:--- Suppose your actual rank was second then your chance-to-win 
$4 is 62.5 percent. This is because the sum-of-squares is 𝑤𝑤 = 0.252 + 0.252 +
0.252 + 0.252 = 0.25. Attaching a 25 percent chance to your actual rank, 𝑃𝑃𝐴𝐴 =
𝑃𝑃2 = 0.25 , your Chance-to-win= 50 �1 + 2 𝑃𝑃𝐴𝐴

100
− 𝑤𝑤� =  50 ⋅ (1 + 2 ⋅ 0.25 −

0.25) = 62.5 percent. If instead you were ranked fourth, then 𝑃𝑃𝐴𝐴 = 𝑃𝑃4 = 0.25, 
with the same w, and so the chance-to-win is again 62.5 percent. 

---] 

You can revise your guess [Information only: and review your corresponding 
chance-to-win for each of the four ranks] until you are ready to finalize your 
report. 

Remember the payment rule is set so that you will have the highest chance 
of winning $4 when you provide your most-accurate guess of how likely it is 
that you were ranked first, second, third or fourth. 

If you have any questions, please send Researcher 1 a private chat message 
before we begin. Please click OK when you have your questions answered and 
are ready to proceed. 
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Decision Screen: Tournament Belief 

Guess Round 2 – Tournament Rank 
Think back to your performance on the Round 2 – Tournament. What do 
you think your rank was relative to the other participants in your group? 
Please indicate below how likely you believe it is that you held each of the 
following ranks.  

You must enter integers that add up to 100. You receive $4 if you win and $0 if 
you lose. 

Click "Finalize Decision" to finalize your decision. 

[Example input screen: initialized] 
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Decision Screen: Piece Rate Belief 

Guess Round 1 – Piece Rate 
Think back to your performance on the Round 1 – Piece Rate. What do 
you think your rank was relative to the other participants in your group? 
Please indicate below how likely you believe it is that you held each of the 
following ranks.  

You must enter integers that add up to 100. You receive $4 if you win and $0 if 
you lose. 

Click "Finalize Decision" to finalize your decision. 
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C.4 Incentives-only Treatment 
These instructions were attached as module following a strategic study of public-good 
provision with two previous tasks.  

[Intro to task screen:] 

Decision Task 3: 

You now have a chance to earn an additional $8. 

You will make two choices and one of them will be carried out for payment. 

 

[Screenshot:] 
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[Decision Screen, Choice 1:] 

Decision Task 3: Choice 1 

You will choose a pair of lottery tickets, one red and one blue. Only one of the 
lottery tickets will count for payment. There is a 30% chance that the red 
lottery ticket is the one that counts and therefore a 70% chance that the 
blue lottery ticket is the one that counts. Each lottery ticket gives you a chance 
of winning $8, and the chance of winning varies. You get to decide which pair 
of lottery tickets will count for you (A through K).  Please select the pair of 
lottery tickets that you want by clicking your preferred row. 

[There then follows a table of eleven lotteries:] 

 Chance of winning $8 
Lottery pair Red lottery ticket Blue lottery ticket 

A 100% 0% 
B 99% 19% 
C 96% 36% 
D 91% 51% 
E 84% 64% 
F 75% 75% 
G 64% 84% 
H 51% 91% 
I 36% 96% 
J 19% 99% 
K 0% 100% 
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[Screenshot:] 

 
[Decision Screen, Choice 1:] 

Decision Task 3: Choice 2 

You will choose a pair of lottery tickets, one red and one blue. Only one of the 
lottery tickets will count for payment. There is a 20% chance that the red 
lottery ticket is the one that counts and therefore a 80% chance that the 
blue lottery ticket is the one that counts. Each lottery ticket gives you a chance 
of winning $8, and the chance of winning varies. You get to decide which pair 
of lottery tickets will count for you (A through K).  Please select the pair of 
lottery tickets that you want by clicking your preferred row. 

[There then follows a table of eleven lotteries:] 

 Chance of winning $8 
Lottery pair Red lottery ticket Blue lottery ticket 

A 100% 0% 
B 99% 19% 
C 96% 36% 
D 91% 51% 
E 84% 64% 
F 75% 75% 
G 64% 84% 
H 51% 91% 
I 36% 96% 
J 19% 99% 
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K 0% 100% 
 

[Screenshot:] 
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