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Abstract 

Analysis of Sleeve Fracturing and Burst Experiments for Measurement of In-Situ Stress 

and Rock Fracture Toughness 

 

Yao Huang, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

Sleeve fracturing is a promising but underused field method for estimation of maximum 

and minimum horizontal stress in the subsurface. Similarly, the burst experiment is a laboratory 

technique for estimation of fracture toughness of rock under confined conditions that has been 

sparingly used for several decades by the petroleum industry. The techniques both involve 

pressurizing an uncased borehole until one or more fractures emanate from the borehole. However, 

ambiguity in their interpretation has led to inconsistencies and has been the primary barrier to 

wider adoption and full realization of the potential of these promising techniques. The main 

shortcoming is that previous analyses are constrained by Linear Elastic Fracture Mechanics 

(LEFM) or elastic stress analysis, for which the essential assumptions are violated in the vast 

majority of practically-relevant cases. Thus motivated, this research is aimed at simulating the 

behavior of fractures emanating from a pressurized borehole in both lab and field scale so that the 

measurements of this fracture initiation and growth can be leveraged for in-situ stress and fracture 

toughness estimation. The forward analysis uses cohesive zone elements in a Finite Element 

Analysis framework.  

Working from these simulations for sleeve fracturing, a rapidly-deployable inversion 

algorithm is developed to estimate the maximum and minimum horizontal stress based on the field 

data. The results show that, combining this inversion algorithm with data that is available from 
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recent developments in field measurements using Fiber Optic sensors, the full potential of sleeve 

fracturing to predict both minimum and maximum horizontal in-situ stress can be realized.  

Then, turning attention to the laboratory burst experiments, the results show that choosing 

a 3-parameter traction-separation law for the cohesive zone model is able to capture the impact of 

confining stress and specimen geometry. This is a major improvement over LEFM analysis, for 

which ad hoc dependence of the fracture toughness on confining stress and specimen geometry 

must be introduced. Furthermore, the results show that running burst experiments with different 

specimen geometries can provide a promising path to the challenging goal of experimental 

characterizing a traction-separation for a given rock (or other quasi-brittle) material.  
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1.0 Introduction 

Pressurizing an uncased borehole by using an inflatable packer can lead to one or more 

fractures emanating from the borehole. The initiation and propagation behavior of the stimulated 

fractures and the interaction behavior among these fractures are considered to be related to the in-

situ stresses and the rock properties. Based on this premise, the technique “sleeve fracturing” has 

been proposed and applied in the evaluation of in-situ stresses by field testing (Stephansson 1983; 

Serata et al. 1992).  

Knowledge of in-situ stresses is significant as this information has been widely used across 

a variety of cross-cutting areas, including but not limited to the Earth Sciences, Geo-Engineering, 

Petroleum Engineering and Mineral Engineering. The stress information is analyzed and compiled 

in a standardized format and quality-ranked for reliability and comparability on a global scale, as 

illustrated in Figure 1 (Heidbach, et al. 2018). In this collection of data, some of the stresses are 

considered to be known with high reliability because they are ascertained through combining 

different methods. Others, however, are less certain, often because they are estimated based solely 

on earthquake mechanism or the hydraulic fracturing stress testing technique. Because of this, 

some regions in the World Stress Map are left with high uncertainties. Therefore, there is a great 

importance to bring down these uncertainties in the orientation and magnitude of stresses mapped 

all around the World owing to the fact that they have been widely relied upon for things ranging 

all the way from assessing seismic hazard to reservoir characterization and management in oil and 

gas field.  

Fundamentally, the in-situ stress can be represented by three principal stresses with their 

orientations. Vertical stress is typically taken as one of the principal stresses and is routinely 
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estimated based on integration of the density of the overburden. The minimum horizontal stress is 

usually estimated based on a variety of well-established tests (see the review of Ljunggren et al 

2003). However, it is substantially more difficult to quantify the magnitude of maximum horizontal 

stress (𝜎Hmax) and the maximum horizontal stress is left as one of the most uncertain subsurface 

properties. This is because fracture-based testing methods (e.g. Haimson and Cornet 2003) 

typically depend most directly on minimum stress, and the first fractures to open are opposed by 

the least compressive stress. Quantifying maximum stress therefore relies on ability to observe and 

interpret more subtle and/or subsequent details of fracture initiation and growth. 

  

 

 

Figure 1 World Stress Map, from Heidbach, et al. 2018, used with permission. 

The sleeve fracturing technique is an attractive technique holding the potential to estimate 

both maximum and minimum horizontal stresses (e.g. Moos and Zoback 1990; Zoback et al. 2003; 

Hickman and Zoback 2004; Stephansson 1983; Serata et al. 1992). Unlike hydraulic fracturing, 
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where fluid flows into the fractures and causes them to grow in length away from the borehole, 

sleeve fracturing does not allow the fluid to flow into the induced fractures by hydraulically 

isolating the wellbore and applying pressure though an inflatable packer (Stephansson 1983; Serata 

et al. 1992, see Figure 21), thereby increasing the opportunity for secondary fracture(s) to initiate 

by preventing rapid fluid loss to the first fracture(s). Thus, the sleeve fracturing technique has the 

advantages of removing uncertainty in the interpretation of in-situ stresses caused by fluid 

penetration into the surrounding rock. The secondary fracture initiation behavior has been proved 

to be essential to estimation of the maximum horizontal stress (Detournay and Jeffrey 1986) from 

sleeve fracturing tests. It used to be difficult to detect secondary fracture initiation in field test and 

in the analysis due to the technology limitation. However, this limitation of secondary fracture 

detection has been overcome by the advent of distributed strain sensing applying optical fibers, 

and the ability to embed such distributed strain sensors in the inflatable packer (Ohanian 2019, 

Ohanian et al. 2021). Chapters 2 and 3 of this dissertation comprise pre-prints of articles addressing 

firstly the simulation of sleeve fracture using cohesive zone elements in a finite element analysis 

framework (Chapter 2) and development of an inverse method for estimating in-situ stress 

magnitudes based on matching the model predictions with observed fracturing in field experiments 

(Chapter 3). 

Bearing some mechanical similarity to sleeve fracturing, pressurizing a sleeve inside a pre-

notched borehole until the fracture growth is detected by a burst event comprises a laboratory 

method called the “burst experiment” (Abou-Sayed 1978). This is long-used technique applied 

mainly in the oil and gas industry to estimate the fracture toughness of rocks under confinement. 

Unlike other approaches that test rock fracture toughness under unconfined conditions, the burst 

experiment can determine rock fracture behavior in the deep subsurface with large confining 
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stresses. In this test, radial confinement is applied to the boundary of a cylindrical specimen while 

an internal and axially-notched borehole is pressurized simultaneously. As the test proceeds 

(Abou-Sayed 1978), the external and internal pressure are proportionally increased, with the 

internal pressure typically ramping up with a slope that is six times greater than the external 

pressure, until a crack catastrophically grows, and a burst event occurs in the specimen that is 

detected in the pressure and flow rate records of the pump(s) that are controlling the internal and 

external applied pressures.  

A variety of analyses have been conducted to analyze the fracture initiation and 

propagation behavior of a pressurized borehole while these previous analyses are typically based 

on Linear Elastic Fracture Mechanics (LEFM) or elastic stress analysis for both sleeve fracturing 

problem (e.g. Chandler 1989, Serata et al. 1992, Charsley et al. 2003) and the burst experiment 

(Zhang 2019 and Yoshioka et al. submitted). For analysis of sleeve fracturing, LEFM requires 

assumption that plasticity is confined to a region that is small relative to ad-hoc flaw(s) introduced 

near the wellbore in order to compute a stress intensity factor for comparison to a fracture 

toughness, which is assumed to be an intrinsic property of the rock. However, the crack initiation 

from a borehole have been proved to be substantially impacted by finite plasticity (zone of plastic 

deformation comparable in size to the crack and/or borehole) because of the fact that, in reality, 

the crack does not become “large” compared to the plastic zone until it substantially exceeds the 

borehole radius (Lecampion 2012), which means that the small-scale yielding assumption of 

LEFM is beyond the region of modeling interest for sleeve fracture. Furthermore, the LEFM 

assumes that the equations of elasticity are valid arbitrarily close to the crack tip in analysis of the 

burst experiment. In contrast, the process zone near the crack tip is expected to be at least on the 

order of 10 mm (Labuz et al. 1987; Lin and Labuz 2013) for most rocks, which is similar to the 
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size of both the borehole and the specimen itself for typical burst experiment setups. Consequently, 

LEFM-based analyses will miss size effects (and, more generally, impacts of geometric details of 

the specimen) that could be significant to experimental interpretation. Hence, new analyses are 

required to overcome the limitation due to the LEFM assumptions to interpret more details of 

fracture initiation and growth for both sleeve fracturing and the burst experiment.  

Motivated by the knowledge gaps remaining due to reliance upon LEFM for analysis and 

the urgent needs to leverage advanced technology in distributed fiber optic sensing, this study aims 

to provide a well-validated and sufficiently precise method to analyze and quantify the crack 

initiation, propagation and interaction behavior of cracks emanating from a pressurized borehole 

by taking advantage of the classical cohesive zone (CZ) model developed by Barenblatt (1962) 

and Dugdale (1960). The simulation carried out for sleeve fracturing problem is developed using 

cohesive zone elements deployed within a Finite Element framework, which aims to overcome 

limitation of LEFM analysis and revisit the effect of in-situ stresses on first and second crack 

initiation and growth under sleeve fracturing conditions. The results of this forward simulation are 

then further applied to establish a well-validated and sufficiently accurate method to estimate both 

maximum and minimum horizontal stress from sleeve fracturing data. The study conducted for the 

burst experiment aims to characterize dependence of rock fracture on confining stress and 

specimen size by developing a CZ finite element model. The presented study further aims to 

capture the crack initiation and propagation behavior for laboratory experiments using a traction-

separation law that is the same for all experiments without introducing ad hoc ad hoc dependence 

of the fracture toughness on both confining stress and hole size. The details of this analysis of the 

burst experiment comprise Chapter 4 of this dissertation. 
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2.0 Numerical Simulation of Sleeve Fracturing for In-Situ Stress Measurement using 

Cohesive Elements 

2.1 Preamble 

This chapter comprises a preprint of Huang et al. (2021a). It presents a numerical 

simulation to investigate the impact of in-situ stresses on initiation and propagation behavior of 

primary and secondary fractures at both field and lab scale by analyzing the fracture emanation 

from a wellbore under sleeve fracturing conditions.  The numerical model has been verified against 

Kirsch’s solution and results of a laboratory test. The field-scale simulation results have 

demonstrated that the first fracture always orients with the opening in direction of maximum in-

situ stress while the opening direction of the second fracture can vary with different in-situ stresses. 

2.2 Chapter Summary 

Numerical analysis of growth of fractures from a wellbore under sleeve fracturing 

conditions demonstrates the impact of in-situ stresses on initiation and propagation behavior of 

primary and secondary cracks at both field and lab scale. Crack initiation and propagation behavior 

are simulated in a Finite Element framework employing plane-strain cohesive element along the 

candidate crack paths. The model has been validated by benchmarking to Kirsch’s solution as well 

as by comparing predictions to results of a laboratory block test. Indeed, the field scale simulation 

results show that the first fracture always orients with the opening in direction of maximum in-situ 
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stress while the opening direction of the second fracture can vary with different in-situ stresses. 

Furthermore, the deviation of wellbore displacement from the Kirsch solution due to the fracture 

initiation can be captured by the simulation, which can be further applied to interpret the initiation 

pressure and location of cracks based on field test data. In the context of past contributions on 

sleeve fracturing, these numerical results demonstrate that a relatively large region near the crack 

tip undergoes inelastic deformation, which contrasts with the assumptions required to treat this 

problem using linear elastic fracture mechanics (LEFM). Notably, the finite tip plasticity appears 

to eliminate unstable jumping of the crack length(s) predicted by LEFM solution. The finite tip 

plasticity also leads to prediction that the secondary fracture often occurs in orientations other than 

90 degrees to the primary fracture. In contrast, the LEFM solution predicts none of this growth 

because the stress intensity factor (SIF) never reaches the rock fracture toughness in spite of the 

fact that these alternate orientations have the largest SIFs over limited periods of time. Finally, the 

finite tip plasticity shows the strength of materials approach (based on stress analysis around the 

hole) to give a lower-bound estimate of the pressure required for crack extension. 

2.3 Introduction 

Pressurizing an inflatable packer in an uncased borehole until one or more cracks emanates 

from the borehole (“sleeve fracturing”) is a technique used for the evaluation of in-situ stresses 

(Stephansson 1983; Serata et al. 1992). It is attractive as a method largely because of the potential 

to measure both minimum and maximum horizontal stress components from a single vertical 

borehole. The connection between sleeve fracturing data and estimation of both horizontal 

principal stresses relies on modeling extension of primary cracks that grow in the plane acted upon 
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by the least compressive stress, followed by secondary cracks in another orientation. Analysis that 

uses Linear Elastic Fracture Mechanics (LEFM) predicts that crack growth can undergo an 

unstable jump in the crack length and that the secondary crack will grow at 90 degrees to the 

primary crack, and hence in the plane acted upon by the most compressive horizontal stress 

(Detournay and Jeffrey 1986). A variety of analyses of this problem have examined issues such as 

connection between wellbore conditions and far-field stresses as well as the validity of the 

prediction of secondary fracture growth at 90o from the primary fracture (e.g. Chandler 1989, 

Serata et al. 1992, Charsley et al. 2003). However, the models generally take on the assumptions 

of LEFM, namely, a negligibly-small region of near-tip plasticity and propagation requiring 

KI=KIC, where KI is the calculated stress intensity factor and KIC is the fracture toughness, assumed 

to be a rock property. However, it has been recently shown that crack initiation from a borehole 

can be substantially impacted by finite plasticity (zone of plastic deformation comparable in size 

to the crack and/or borehole) owing to the fact that the crack does not become “large” compared 

to the plastic zone until it substantially exceeds the borehole radius (Lecampion 2012), which is 

beyond the region of modeling interest for sleeve fracture. Indeed, as a broad summary, the 

analysis to date of sleeve fracturing does not deal with initiation of fracturing, but instead tends to 

assume presence of initial cracks of rather arbitrary length and with an assumption that LEFM 

applies from the very beginning.  

The working hypothesis of this paper is that consideration of the finite plasticity associated 

with initiation and growth, including the stress interaction among the growing cracks, will lead to 

modifications of fracturing pressures and geometries and hence will refine the predictions used for 

test interpretation.  
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The approach to modeling finite plasticity associated with fracturing will make use of the 

classical cohesive zone model, which has been developed by Barenblatt (1962) and Dugdale 

(1960). This method has been widely applied in simulating fracture process in rock and concrete 

(Saouma et al. 2003; Segura and Carol 2010; Yao 2012). The cohesive zone model assumes that 

fracturing is a gradual process where the separation between a pair of cohesive surfaces is 

controlled by the cohesive traction. Therefore, the computational challenges associated with the 

stress singularity at the crack tip when using LEFM can be avoided by utilizing cohesive element 

method. Moreover, implementation of the cohesive elements in a conventional finite element 

method leads to a relatively straightforward and efficient approach to analyze fracture initiation 

and propagation behavior. 

This study aims to revisit the effect of in-situ stresses on first and second crack initiation 

and growth under sleeve fracturing conditions. This analysis allows for crack propagation that is 

not completely brittle elastic, which can be important in light of the fact that the wellbore, initial 

crack size, and likely size of the plastic zone near the crack tip are all of a comparable scale. For 

this purpose, a 2D plane-strain model is developed using ABAQUS while cohesive elements are 

implemented on pre-defined crack trajectories to simulate the possible crack initiation and 

propagation around the wellbore. Different boundary conditions are considered for field-scale and 

lab-scale simulation. Indeed, field-scale simulation results indicated that the first crack always 

initiate at the direction of maximum in-situ stress. However, the second crack can initiate at various 

direction with different in-situ stresses, which can challenge the general belief that the orientation 

of second fracture should be perpendicular to the first crack. 
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2.4 Model Methodology 

The numerical simulation provided in this work is developed using the commercial FEM 

software ABAQUS. The rock matrix is represented by plane-strain elements governed by linear 

elasticity for an isotropic rock, and the cohesive elements are implemented on pre-defined crack 

trajectories, as illustrated in Figure 2. Breakage of pre-defined cohesive zone elements generates 

new cracks. The mechanical deformation of rock formation as well as stress distribution along the 

wellbore are also coupled together via elasticity equations and the behavior of the cohesive 

elements. 

 

 

Figure 2 Generic illustration of rock elements connected together by cohesive zone elements on a potential 

plane of crack growth (after ABAQUS 2011). 

 

The behavior of the cohesive elements follows a prescribed traction-separation law. The 

traction-separation law defines the relationship between the traction (T) and the displacement (δ) 

between a pair of cohesive surfaces (i.e. as shown in Figure 2). A bilinear damage evolution model 

(after Barrenblatt 1962 and Dugdale 1960, see Figure 3) is adopted in this study. This model 

assumes that the cohesive surfaces follow linear elastic behavior before the traction reaches the 

cohesive element strength, Tmax, or the separation displacement exceeds the critical separation at 
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damage initiation δ0. Then, the traction tensor will reduce linearly to zero at the critical separation 

at complete failure δf. The area under this curve gives the critical energy release rate, Gc, which 

can be related to the fracture toughness of the rock, K1c, via 

𝐺𝑐 =
𝐾1𝑐

2 (1−𝑣2)

𝐸
                                                               (2-1) 

where the E is the Young’s modulus and v is the Poisson’s ratio. Additionally, the ratio (α= 

δ0 /δf) embodies the relative portion of the region wherein the cohesive element is in elastic 

deformation compared to the portion in which it is undergoing plastic softening. Moreover, the 

Tmax has the similar order with tensile strength of material while they are slightly different with 

each other. Finally, note that in ABAQUS there is an ability to account for shearing failure and 

shearing deformation of cohesive elements, which is taken as negligible because crack opening is 

assumed to be caused by normal traction by setting shearing strength Ts and shearing stiffness Ks 

to values that exceed their tensile counterparts by several orders of magnitude. Clearly this 

modeling choice, along with prescribing straight and smooth crack paths, precludes the impact of 

crack tortuosity, curving, and mixed mode loading. These issues could impact behavior in a 

practical sense, but, because of the ability to illustrate some important behaviors with a simpler 

model, this added complexity is left to future investigation.  
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Figure 3 Traction-separation law of cohesive elements (after Barrenblatt 1962 and Dugdale 1960). 

2.5 Model Setup 

The problem of sleeve fracturing is considered using a plane strain approximation in an 

isotropic rock with bi-axial in-situ stresses. The plane strain approximation is valid provided that 

the length of wellbore pressurized by the sleeve is long compared to the wellbore diameter. The 

model is setup for field-scale and lab-scale models, as described in what follows. Note that in both 

cases a particular mesh is discussed and presented, and these are chosen after a mesh sensitivity 

study with various mesh densities confirms that the solution is not mesh dependent.  

2.5.1  Field-Scale Model Setup 

The geometry of the field-scale model, which considers a vertical borehole subjected to 

biaxial far-field stresses and internal pressurization, is shown in Figure 4. Infinite elements, which 

are a built-in feature of ABAQUS, are applied to simulate the infinite domain relevant to a field 
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test, as shown in Figure 4a. A hole is placed in the center of the domain, representing a pressurized 

borehole. This hole has 16 pre-defined crack trajectories distributed along the wellbore at angle 

increments of 22.5o. The cohesive elements are implemented on these pre-defined crack 

trajectories, as shown in Figure 4b. The length of cohesive element trajectories is 31.25 times as 

long as the borehole diameter. For most of the cases, the simulated fracture travel 2 to 4 times 

borehole diameter away from the borehole. 

 

 

Figure 4 Model setup for field test, showing a) Full model including infinite elements around the model’s 

perimeter, and b) Closer view of borehole with pre-defined crack trajectories. 

 

Having set up the model, a variety of field-scale cases under different combinations of in-

situ stresses are considered. Figure 5 shows the biaxial far field loading, where σHmax is the 

maximum in-situ stress and σhmin is the minimum in-situ stress. Additionally, a pressure loading, 

pw, which is made to incrementally increase to simulate sleeve pressurization, is applied around 

the interior of the borehole. Material properties for both rock elements and cohesive elements are 
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kept the same for four cases (Table 1) while different combination of in-situ stresses are 

considered, as given in Table 2.  

 

 

Figure 5 Loading setup for field-scale simulation. 

 

Table 1 Material properties 

Solid elements 

Young’s 

modulus 

20.52GPa 

Poisson’ ratio 0.2 

Cohesive 

elements 

Gc 32 N/m 

Tmax 2MPa 

α 0.03 
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Table 2 In-situ stresses for different cases 

 Case 1 Case 2 Case 3 Case 4 

σHmax 20MPa 15MPa 20MPa 30MPa 

σhmin 10MPa 10MPa 15MPa 10MPa 

 

2.5.2 Lab-Scale Model Setup 

The model setup for a lab-scale experiment is generated to replicate an actual block test, 

and is shown in Figure 6. The loading in the experiments is applied by hydraulic pistons pressing 

on steel plates which, in turn, transmit the load to the specimen. To simulate this loading, four steel 

plates are placed on the boundaries of the specimen by defining frictional contact between the 

specimen and the steel plates wherein the friction coefficient of the contact is set as 0.2. Fixed 

boundary conditions are applied on the left and bottom plate to avoid rigid motions of the system. 

To avoid rigid rotation, the centers of the top and bottom plates are fixed in the x direction, and 

the centers of left and right plates are fixed in the y direction. The area percentage of pressure 

loading applied on the plate are related to the contact area between the steel plate and the piston 

used in the actual laboratory setup.  

Similar to the field scale model, cohesive elements are distributed along 16 pre-defined 

planes for potential crack growth. The loads in the two directions are set to generate nominal 

applied stresses of σ1 =2.76MPa and σ2=1.38MPa, in order to match a laboratory block test, 

described later in this paper. Furthermore, rock and cohesive element properties are chosen as in 

Table 3, with these choices intended to match the properties of the material used in the block 

experiment.  
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Figure 6 Model setup for the laboratory test. 

 

Table 3 Material Properties 

Solid elements 

Young’s 

modulus 

26.9GPa 

Poisson’ ratio 0.2 

Cohesive 

elements 

Gc 10.7 N/m 

Tmax 1.5MPa 

α 0.003 
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2.6 Validation of Model  

2.6.1 Validation of Model with Kirsch’s Solution 

The first step to validate the numerical model is to benchmark its stress calculation with 

the solution of the pressurized hole in an infinite elastic domain with stresses on its boundary 

(“Kirsch’s solution”, after Kirsch 1898), namely 

σ𝑟𝑟 =
σ∞

2
[1 − (

𝑎

𝑟
)

2

] +
σ∞

2
[1 − 4 (

𝑎

𝑟
)

2

+ (
𝑎

𝑟
)

4

] 𝑐𝑜𝑠2𝜃                                                 (2-2) 
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𝑎
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)
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𝑟
)

4

) 𝑐𝑜𝑠2𝜃                                                    (2-3) 

σ𝜃𝜃 =
σ∞

2
(1 + (

𝑎

𝑟
)

2

) −
σ∞

2
(1 + 3 (

𝑎

𝑟
)

4

) 𝑐𝑜𝑠2𝜃                                                   (2-4) 

Here, σ𝑟𝑟  is radial normal stress, σ𝜃𝜃is circumferential normal stress, and 𝜏𝑟𝜃 is radial-

circumferential shear stress. In this calibration problem, the hole has radius 𝑎 with the radial 

coordinate r and angular coordinate θ. Uniaxial tension is represented as the remote stress σ∞. 

The radius of the hole is set as 0.06m and the remote stress σ∞ is set as 10MPa. The radial 

normal stress, circumferential normal stress, and radial-circumferential shear stress are shown 

along various trajectories in Figure 7. 

Because numerical results are found to closely match the benchmark solution at a variety of 

different θ, here we only show benchmark results at one representative angle, Figure 7. Benchmark 

results from the Figure 7 show that the numerical simulation results match with Kirsch’s (1898) 

analytical solution both near the wellbore and in the far field. This successful benchmark 

demonstrates the validation of the numerical model in computation of stresses and strains for a 

hole in a bi-axial stress field. 
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Figure 7 Benchmark of numerical simulation with Kirsch’s (1898) solution. 

 

2.6.2 Validation of Model with Laboratory Test  

A block test run by Luna Innovations is used to validate the model’s predictive ability in 

lab-scale. The setup of this test is shown in Figure 8. This test used a 0.254m x 0.254m block that 

was 0.305m long in axial direction of the packer. The central hole has a diameter of 0.095m. A 

load frame mounted with hydraulic pistons applied bi-axial loading to the block through four steel 

plates. The applied load resulted in a nominal stress of 2.76 MPa and 1.38 MPa in two orthogonal 

directions. The tensile strength of the concrete was experimentally found to be 3.19 MPa, and the 

fracture toughness was experimentally measured to be 0.548MPa m1/2. The Young’s modulus of 

material was 26.9GPa. 
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Figure 8 Setup for the laboratory test for: a) Complete setup including pumping equipment with a concrete 

specimen, note that a constraining metal pipe covered the expandable portion of the sensor assembly that 

protruded from the rock specimen during inflation; b) Close-up of cored sandstone rock specimen with 

inflatable sensor assembly inserted. 

 

Figure 9 shows the crack initiation and propagation behavior predicted by the lab-scale 

numerical model. It is qualitatively similar to the behavior observed in the lab in that a primary 

crack growth in the plane upon which the smaller stress is acting. After this, upon increasing of 

the pressure inside the central hole, a secondary crack grows in the plane with angle 67.5°. Then, 

a tertiary crack initiates in the plane with angle 90°. The other 12 potential planes of crack growth 

did not show substantial fracturing, also in agreement with a lack of damage observed in the tested 

block. The crack opening versus pressure loading is plotted in Figure 9, which provides the 

initiation pressure for the first, second crack and third crack. Indeed, the difference between the 

initiation pressure of the secondary and tertiary crack is very small. Also, the results from Figure 

9 show that the secondary crack has been suppressed by the tertiary crack. Furthermore, a 
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comparison of initiation pressure for first and second crack between simulation and lab test 

(Appendix Table 1) indicates reasonable agreement, with the simulation overestimating the 

pressure for primary crack growth by about 0.4% and overestimating the pressure for secondary 

crack growth by about 18%.   

 

 

Figure 9 Lab-scale simulation result with ABAQUS finite domain at the correct scale. 

 

A field-scale simulation with same material properties and in-situ stresses with lab 

experiment assuming that the load application in the lab can be replaced with a far field stress in 

an infinite domain is also provided in Appendix A to check whether the lab experiment results can 

predict the field test. More detail parametric study of loading conditions and the cohesive element 

properties are also discussed in Appendix A. 
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Finally, it is important to note that the laboratory simulations are observed to be heavily 

influenced by the details of the boundary conditions of the loading on the finite block. That is to 

say, using an infinite domain model results in huge difference not only between details of the 

predicted pressures for crack initiation, but also in the qualitative behavior. Indeed, as will be 

shown in the sections to come, other orientations of secondary fracture can be favored in the 

infinite domain models. In the lab-scale simulations, even details such as size of the distributed 

load (representing the loading piston size) and the thickness of the steel loading platens can 

substantially impact the results. And, besides being affected by the details of the loading 

conditions, cohesive element properties were found to be important. In particular, the values of 

Tmax, Gc and 0 (Table 4) are essentially used as fitting parameters in order to achieve a match to 

the experiments, as they are both highly influential on the solution and poorly constrained by 

independent experiments. This final point emphasizes the importance of experiments, even if 

boundary conditions do not bear precise similarity to far-field stress conditions encountered in the 

field (as long as the model accounts for these lab-scale boundary conditions). 

The key takeaways are therefore threefold. Firstly, the lab-scale model is validated by 

comparison to the lab experiments. Secondly, if one wishes to use lab experiment results to predict 

the field test, it is important to use a purpose-built simulator that accounts for the details of the 

boundary conditions rather than simply assuming that the lab experiments somehow approximate 

an infinite domain. Finally, lab simulations are sensitive to details of the model, both in terms of 

precise representation of the load application apparatus and suitable choices of rock and cohesive 

element properties. 
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Table 4 Comparison of simulation results with lab test data for the pressure associated with first and second 

crack initiation. 

Initiation 

pressure 

Lab test results 

ABAQUS 

CZM finite 

domain 

1
st

 crack 2.45MPa 2.46MPa 

2
nd

 crack 5.59MPa 6.61MPa 

 

2.7 Field Scale Simulation Results  

Simulation results showing the open cohesive elements for four field-scale cases under 

different in-situ stresses (from Table 2) are shown in Figure 10. The presented figures show the 

crack geometry after the initiation of the second fracture, which corresponds in each case to a 

certain internal borehole pressure (see Figure 10). The first crack always initiates at the direction 

of maximum in-situ stress for all the four cases.  The common assumption is that the second 

fracture should initiate at the direction perpendicular to the first fracture. This assumption seems 

to be already challenged in the lab-scale simulation results. However, the results from Figure 10 

indicate that in the field-scale the second crack initiates at θ=45° for Case 1-3, and the orientation 

of second crack for Case 4 is θ=22.5°. Hence, the simulations predict that the initiation direction 

of the second fracture can vary depending on the combination of in-situ stresses. In addition, the 

crack which orients with the opening in direction perpendicular to the first crack for Case 1-3 is 

the third crack rather than the second crack, which is inconsistent with the most common 
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assumption of growth direction (with origins in LEFM typically neglecting fracture interaction). 

Moreover, it can be seen from the Figure 10 that there are also small fractures opening at θ=22.5° 

and θ=67.5° for Case 1-3. However, such cracks are not accounted as the second crack since they 

have been suppressed by other cracks and cannot appreciably open in order to be resolved in 

wellbore measurement data, for example in field tests. 

 

 

Figure 10 Field-scale simulation results showing the open cohesive elements for: a) Case 1; b) Case 2; c) Case 

3; d) Case 4. Deformed cohesive elements are shown at wellbore pressures indicated by P, which are 

somewhat above the corresponding crack initiation pressures so that the deformed cohesive elements are 

visible and illustrative of crack growth directions. 

 

The fracture width at the wellbore versus the pressure loading are plotted in Figure 11 to 

enable further examination of the fracture initiation and propagation behavior. As a point of 

comparison, Figure 11 also shows predictions of breakdown pressure based on comparison of the 

circumferential stress at various locations (angles, with 0 corresponding to the direction of the plan 
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acted upon by the least compressive stress). This prediction is a generalization based on the 

classical breakdown criterion of Hubbert and Willis (1972), where wellbore pressure leading to 

rock breakage in a given orientation q, denoted pb(q), is given by 

𝑝𝑏(𝜃) = 𝑇𝑚𝑎𝑥 + (𝜎𝐻𝑚𝑎𝑥 + 𝜎ℎ𝑚𝑖𝑛) − 2(𝜎𝐻𝑚𝑎𝑥 − 𝜎ℎ𝑚𝑖𝑛)𝑐𝑜𝑠2𝜃                               (2-5) 

Here 𝑇𝑚𝑎𝑥 is the tensile strength of the rock (or, in the model, the cohesive element strength),  

𝜎𝐻𝑚𝑎𝑥  is the maximum in-situ stress, 𝜎ℎ𝑚𝑖𝑛  is the minimum in-situ stress, and θ is the angle 

between the certain crack and the first crack.  

 

 

Figure 11 Crack initiation and propagation behavior for field-scale under different in-situ stresses a) Case 1; 

b) Case 2; c) Case 3; d) Case 4. 

 

Figure 11 shows that the initiation pressure of the first fracture and second fracture is 

varying with the different combinations of in-situ stresses. In particular, the difference between 
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the first and the second crack initiation pressure increases with the difference between the 

maximum and minimum in-situ stress, which also demonstrates the impact of the ratio of in-situ 

stresses on the fracture initiation behavior. Moreover, the first crack’s width is always the largest 

among all the cracks. In all the cases, the first crack propagates faster before other cracks initiate 

and more slowly thereafter.  However, it is also observed that the growth is steady, lacking sudden 

jumps in crack length that are predicted as a consequence of the crack length being double-valued 

for a given pressure at the early stages of growth according to LEFM (as pointed out by Detournay 

and Jeffrey 1986). 

Taken together, field-scale simulation results from Figs. 9 and 10 demonstrate the impact 

of in-situ stresses on fracture initiation and fracture propagation behaviors. Indeed, as expected, 

the simulation shows the first fracture always orients to grow in the plane acted upon by the least 

compressive stress. However, in contrast to prior expectation, the opening direction of the second 

fracture can vary with different in-situ stress combinations. This variability of the initiation angle 

of the second crack is due to the existence of the first fracture that can impact the stress distribution 

and eventually the direction in which damage develops to form a dominant crack. This behavior 

appears to be tied to the finite plasticity of the cohesive zone, interaction among growing fractures, 

and ability of the cohesive zone to deform and partially fail under conditions that would not lead 

to macroscopic crack propagation under the assumptions of LEFM. Additionally, there can be 

more than two directions of fracturing, as evidenced by crack growth in three orientations 

evidenced in Figs. 9 and 10. Furthermore, stress analysis based on a generalized form of Hubbert 

and Willis (1972) (Eq. (2-5)) can give us an apparent lower bound for the actual initiation pressure, 

noting that the lower bound is closer for the first fracture initiation than for second and third crack 

initiations. In the end, the most important observation is that the initiation and propagation 
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behavior of the first and second (and sometimes additional) fractures is sensitive to combination 

of in-situ stresses, which can be further applied to help estimate the in-situ stresses from the field 

test data. 

2.8 Parametric Study of Cohesive Element Properties  

Since the impact of in-situ stresses combination on crack initiation and propagation 

behavior has been proved by field-scale results, parametric study of cohesive element properties, 

including α, Tmax and Gc are further provided under the same combination of in-situ stresses with 

Case 2 (Table 2). The fracture width at the wellbore versus the pressure loading are plotted in 

Figure 13,15 and 17 to enable further examination of the fracture initiation and propagation 

behavior under different α, Tmax and Gc.  

The critical separation ratio α determines the size of fracture process zone for a given 

cohesive element energy Gc and cohesive element strength Tmax. Small α ratio means a large 

portion of the deformation is in the softening range and hence there is a large active fracture 

process zone.  

Simulation results from Figure 12 show that the orientation of the second crack is not 

varying with different α ratio while the Tmax and Gc are held to be the same so that only α is varying. 

Figure 13 shows that the initiation pressure of the first fracture and second fracture are both 

increasing as the α increases, which also means that the initiation pressure increases as fracture 

process zone becomes smaller. Additionally, the comparison between the predicted breakdown 

pressure and the initiation pressure observed from simulation also indicates that the initiation 

pressure of the first crack and second crack is moving toward the predicted breakdown pressure as 
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the α ratio becomes smaller. Moreover, the difference of initiation pressure between the first and 

second crack is increasing as the α ratio increases, which also indicates that the α ratio has more 

impact on the initiation pressure for the second crack than the first crack.  

 

 

Figure 12 Field-scale simulation results showing the open cohesive elements for: a) α=0.003; b) α=0.03; c) 

α=0.6; d) α=0.9. Deformed cohesive elements are shown at wellbore pressures indicated by P, which are 

somewhat above the corresponding crack initiation pressures so that the deformed cohesive elements are 

visible and illustrative of crack growth directions.  
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Figure 13 Crack initiation and propagation behavior for field-scale under different α (recall w1 and w2 are 

the crack opening at the wellbore for the first and secondary crack, respectively). 

 

Simulation results from Figure 14 indicate that the change of Tmax has no impact on the 

orientation of the second crack for cases in which α ratio and Gc are held to be the same so that 

only Tmax is varying. Figure 15 shows that the initiation pressure of the first fracture and second 

fracture does not change much as Tmax increases from 1MPa to 4MPa. However, the initiation 

pressure for the Tmax = 10MPa case does have a little difference with other three since there is a 

sudden jump in crack opening when crack starts to initiate. In all the cases, the first crack 

propagates faster before other cracks initiate and more slowly thereafter. Here we define the 

corresponding pressure at which the propagation speed of crack started to slow down as the 

“inflection pressure”. Indeed, it can be obtained from the Figure 15 that the inflection pressure for 

the first crack is decreasing as Tmax increases, while the inflection pressure for the second crack is 

increasing as Tmax increases. Note that for cases with the smallest values of Tmax, there is no 
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observed inflection point, which is also why there is no inflection observed in the cases presented 

for varying  ratio (Figure 13). 

 

 

Figure 14 Field-scale simulation results showing the open cohesive elements for: a) Tmax =1MPa; b) Tmax 

=2MPa; c) Tmax =4MPa; d) Tmax =10MPa. Deformed cohesive elements are shown at wellbore pressures 

indicated by P, which are somewhat above the corresponding crack initiation pressures so that the deformed 

cohesive elements are visible and illustrative of crack growth directions.  
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Figure 15 Crack initiation and propagation behavior for field-scale for different Tmax, with the inflection 

point for one case labelled as an illustration. 

 

Simulation results showing the open cohesive elements for four field-scale cases under 

different Gc are shown in Figure 16 while critical separation ratio α and cohesive element strength 

Tmax are held to be the same so that only Gc is varying. The presented figures show the crack 

geometry after the initiation of the second fracture, which corresponds in each case to a certain 

internal borehole pressure (see Figure 16). The first crack always initiates at the direction of 

maximum in-situ stress for all the four cases.  However, the results from Figure 16 indicate that 

the second crack initiates at θ=22.5° for Gc= 8 N/m, and the orientation of second crack for Gc= 

16, 32 and 64 N/m is θ=45°. Therefore, the simulations predict that the initiation direction of the 

second fracture can vary depending on the Gc value. Since Gc can be related to the fracture 

toughness of the material (see Eq. (2-1)), it can also be predicted that the initiation orientation for 

the second crack can vary with different fracture toughness. Hence, this prediction also challenges 
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the common assumption that the second fracture should initiate at the direction perpendicular to 

the first fracture. 

Figure 17 shows that the initiation pressure of the first fracture and second fracture are both 

increasing as the Gc increases.  The initiation pressure of the first crack and second crack in moving 

toward the predicted breakdown pressure as the Gc becomes smaller, which also means that 

material with a lower fracture toughness tends to have an initiation pressure closer to the lower 

bound for both first and second crack. Additionally, the inflection pressure for both the first and 

second fracture is increasing as the Gc increases.  Furthermore, for the largest value of Gc, the 

inflection pressure is not observed. 

Taken together, field-scale simulation results from Figs. 11-16 demonstrate the impact of 

cohesive element properties on fracture initiation and fracture propagation behaviors. Indeed, as 

expected, the simulation shows that critical separation ratio α and cohesive element strength Tmax 

have no impact on the opening direction of the second fracture. For the cohesive element energy, 

Gc can only change the initiation direction of the second crack when it is small enough. However, 

in contrast to the expectation, the fracture initiation and propagation behavior can vary with 

different cohesive element properties. This variability should be considered in selecting proper 

cohesive element properties for field-scale simulation. In order to select proper input, one 

suggestion is to align the cohesive element properties to the material properties. Accordingly, it is 

better to define a small α for the material with larger fracture process zone and a large α for the 

material with small fracture process zone while the tensile strength and fracture toughness of 

material can give a guideline for selecting Tmax and Gc. Additionally, the inflection pressure which 

has been proved to be sensitive to the combination of cohesive element properties can be further 
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applied to help select the cohesive element properties from the field test data assuming that such 

inflection point can be observed from field test data.  

 

 

Figure 16 Field-scale simulation results showing the open cohesive elements for: a) Gc =8N/m; b) Gc 

=16N/m; c) Gc =32N/m; d) Gc =64N/m. Deformed cohesive elements are shown at wellbore pressures 

indicated by P, which are somewhat above the corresponding crack initiation pressures so that the deformed 

cohesive elements are visible and illustrative of crack growth directions. 
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Figure 17 Crack initiation and propagation behavior for field-scale for different Gc. 

2.9 Displacements Around the Wellbore 

In the field, the strain around the wellbore can be measured using distributed fiber optic 

sensing (Ohanian 2019). Integration of strain can provide the displacement around the wellbore. 

Therefore, it is important to analyze the expected wellbore displacement behavior under different 

pressure loading based on numerical simulation results.  

Here, Case 2 is selected to present examples of circumferential displacement uθ around the 

wellbore at three different internal borehole pressures, along with open cohesive elements, in 

Figure 18.  Figure 18a shows how circumferential displacement distributes along the wellbore 

before any crack initiates, where the wellbore displacement obtained from the numerical solution 

matches the solution of Kirsch (1898) perfectly because there is no crack initiation at P=10.15 

MPa. As pressure increases, the fractures start to initiate. A small deviation from the Kirsch 
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solution can be seen from Figure 18b, which is due to the initiation of the first fracture. Finally, 

the deviation from the solution of Kirsch (1898) shown in Figure 18c is substantial due to fracture 

initiation and propagation. Therefore, the deviation of wellbore displacement from the Kirsch 

solution due to the crack initiation can be captured by the simulation, which can be further applied 

to interpret the initiation pressure and location of fractures based on field test data.    

 

 

Figure 18 Wellbore circumferential displacement and its corresponding simulation results showing the open 

cohesive elements for a) P=10.15MPa; b) P=21.15MPa; c) P=37.15MPa. 
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2.10 Specific Field Scale Case with Nearly Equal In-Situ Stress 

In previous sections, the maximum horizontal stress is considered substantially larger than 

the minimum horizontal stress (relative to an assumed-vertical wellbore orientation) for the field 

scale cases. However, there is a possibility in the actual field that the maximum horizontal stress 

is nearly equal to the minimum horizontal stress.  Figs. 18 and 19 show the field scale simulation 

results for one case with the same maximum and minimum horizontal stresses. Material properties 

for both rock elements and cohesive elements for this case are given in Table 2. These simulation 

results indicate that all the cracks initiate at the same internal pressure (see Figure 19a). As the 

wellbore pressure increases, some fractures become dominant while the others are suppressed (see 

Figure 19b), which further demonstrates the crack interaction affect among all the cracks. The 

fracture width at the wellbore versus the pressure loading are plotted in Figure 20, thereby showing 

again that the initiation pressure of cracks at different orientations is the same. The crack width of 

all the crack are also the same at the crack initiation period. As pressure increases, crack width 

corresponding to crack at 𝜃=22.5° and 67.5° keeps increasing while the crack width corresponding 

to crack at 𝜃=0°, 45° and 90° starts to decrease.  
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Figure 19 Field-scale simulation results showing the open cohesive elements for case with equal in-situ 

stresses: a) initiation period; b) propagation period. Deformed cohesive elements are shown at wellbore 

pressures indicated by P, which are somewhat above the corresponding crack initiation pressures so that the 

deformed cohesive elements are visible and illustrative of crack growth directions. 

 

 

Figure 20 Crack initiation and propagation behavior for field-scale with equal in-situ stress. 

 

While the phenomenon that all the cracks initiate at the same pressure is in one sense to be 

expected with exactly equal horizontal stresses, repeated simulations show similar behavior over 

the range 0.93<𝜎hmin/ 𝜎Hmax≤1. This result can be further applied to help estimate the in-situ 

stresses from the field test data, namely, that if field show that there are several cracks initiating at 
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the same internal pressure, the ratio of horizontal stresses is likely to be in the range 0.93<𝜎hmin/ 

𝜎Hmax≤1. 

2.11 Discussion 

Numerical simulation of sleeve fracturing using cohesive zone (CZ) elements leads to 

identification of behaviors that are not captured by LEFM simulation or elastic stress analysis. 

Most notably, when stress analysis and LEFM based simulation analyze secondary crack initiation, 

the conclusion is always that the second crack will initiate perpendicular to the first crack. In fact, 

these past results are somewhat nuanced. Indeed, LEFM simulation of Chandler (1989) show a 

period after primary crack growth where the largest stress intensity factor (SIF) corresponds to 

fractures at angles less than 90 degrees from the primary crack. However, in LEFM there is zero 

crack extension as long as the SIF remains below the fracture toughness. In contrast, CZ-based 

simulations show that these periods during pressurization can generate plastic deformation and 

crack opening at angles other than 90 degrees to the primary crack. Furthermore, CZ-based 

simulation is the first to indicate potential for crack growth in more than two directions.  

Besides leading to recognition of crack initiation and growth at angles other than 90 

degrees to the primary crack, CZ modeling demonstrates that details of the plastic deformation 

behavior can impact on the pressures at which crack growth occurs. Perhaps most strikingly, the 

borehole pressure leading to both primary and secondary crack initiation and growth increases 

with increasing  ratio. Recall that large  ratio indicates that a smaller portion of the traction 

separation law is in the softening curve. So, the smallest initiation pressures correspond to the 
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lowest values of  ratio, indicating that a material that transitions to softening early in its 

deformation history will have different crack initiation pressures to one that remains elastic until 

it undergoes relatively sudden plastic softening. Furthermore, the results show that for cases with 

large active process zone, the initiation pressures are closer to those predicted based on comparison 

of Kirsch solution stresses (Eq. (2-5)) to a nominal material tensile strength. For materials with 

smaller active process zones, there is a higher range of pressures for which the crack does not 

initiate, after which the failure is more sudden. Hence, the apparent initiation pressure – i.e. the 

first pressure with observable crack growth – is higher for materials tending to have a smaller 

active process zone. 

The issue of dependence on process zone size clearly raises the discussion of the measure 

by which a process zone is considered “large” or “small”. In this regard, the present work points 

to a size effect, with a transition in behavior experienced as intrinsic material length scale(s) is/are 

varied relative to structural length scale(s) (Bazant and Planas 1997). Hence the behavior transition 

should be understood to occur as a typical process zone size varies compared to the borehole size. 

Such a size effect has been explored in detail for hydraulic fracture initiation by Lecampion (2012) 

and comprises an important direction of future work for sleeve fracturing, where the introduction 

of multiple fractures propagating and interacting with one another creates challenges when it 

comes to defining a single structural length scale. 

Finally, simulations accounting for both infinite domain and finite domain show substantial 

differences in both initiation pressures and in secondary and tertiary fracture growth. Because it is 

typically impractical to achieve the hole size to block size ratio of (1/10) needed to achieve 

behavior converging to a biaxially-stressed infinite domain, laboratory block test interpretation 
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should make use of models that account for both the finite specimen size and the details of load 

application including loading piston size and thickness of the loading platens.  

2.12 Conclusion 

A new numerical simulation model using plane-strain cohesive zone elements is carried 

out to investigate the fracture initiation and propagation behavior for sleeve fracturing problem. 

The model has been validated by both analytical solution and a laboratory test. While laboratory 

test results were shown to be highly sensitive to the manner of load application and block size, by 

accounting for these details it is possible to obtain a reasonable match with experiments in both 

fracturing geometry (i.e. orientation of the secondary fracture) and the borehole pressure leading 

to both primary and secondary initiation. This match requires some adjustment of CZ properties, 

and emphasizes the usefulness of such block experiments for model calibration to the particulars 

of the failure of given materials. 

The CZ simulations bear similarity to predictions based on LEFM in the orientation of the 

initial crack growth, but differ in some marked ways. Simulation results for the field-scale model 

indicate that the first crack initiates and grows steadily, without an instantaneous jump (in contrast 

to LEFM), and it always orients to grow along the plane acted upon by the least compressive in-

situ stress (consistent with LEFM) for 0<𝜎hmin/ 𝜎Hmax≤0.93. For cases with very similar horizontal 

stresses (0.93<𝜎hmin/ 𝜎Hmax≤1), all the cracks initiate at the same internal pressure. The initiation 

pressure is also shown to be similar to, but somewhat greater than, predictions based on elastic 

stress analysis and comparison of the computed stress with a material tensile strength. The 
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cohesive zone properties impact this deviation from the initiation predicted through stress analysis, 

with the largest deviation occurring when the traction separation law corresponds to a material that 

is elastic through most of its loading and transitions suddenly to plastic softening before total 

failure occurs. On the other hand, a material that slowly softens after the traction reaches a nominal 

tensile strength most closely matches to the solution based on stress analysis around the borehole. 

In contrast to the consistent orientation of the first fracture, the opening direction of the 

second (and subsequent) fractures is shown to vary with different in-situ stress combinations and 

CZ properties (in contrast to LEFM). Furthermore, the initiation pressure and location of fractures 

is systematically impacted by the in-situ stress conditions, pointing to a significant potential that 

simulations using cohesive elements can be used to interpret field test data leading eventually to 

estimation of both the minimum and maximum horizontal far-field stress acting on a vertical 

wellbore.  

In summary, CZ simulations predict behavior with potential diagnostic importance for 

prediction of stresses, both minimum and maximum, based on data from sleeve fracturing 

experiments. Furthermore, these simulations set the stage for renewed efforts in sleeve fracturing 

for stress estimation. However, the key behaviors are complex and pertain to details of wellbore 

deformation, likely with relatively little discretionary ability to be provided by packer pressure and 

volume data alone. Hence, future directions in sleeve fracturing should be guided by these results 

and hence should pursue measurement of wellbore deformation with high azimuthal resolution in 

order to detect subtle crack growth events at all angles around the borehole. In this way, it is 

promising that minimum and maximum stresses can be estimated with unprecedented precision. 
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3.0 An Inversion Algorithm to Estimate Maximum and Minimum Horizontal Stress Based 

on Field Test Data for Sleeve Fracturing 

3.1 Preamble 

This chapter comprises a preprint of Huang et al. (2021b). In this chapter, a new inversion 

algorithm is developed to estimate the maximum and minimum horizontal stress with application 

of experimental data from sleeve fracturing experiments. The algorithm is developed by analyzing 

the crack initiation, propagation and interaction behavior between primary and secondary cracks 

based on the numerical simulation carried out in chapter 2. The Simulations using FEM with 

Cohesive Zone elements predict inflection points in the wellbore deformation that enable 

straightforward identification of 5 key quantities that comprise the inputs to the inversion 

algorithm. The algorithm has been validated using 100 sets of synthetic data generated by the 

FEM-CZ model while most cases showing agreement between the estimated and actual values of 

both minimum and maximum horizontal stress within a few percent. 

3.2 Chapter Summary 

An algorithm is developed to estimate maximum and minimum horizontal stress using 

experimental data from sleeve fracturing experiments. The algorithm is developed by analyzing 

the crack initiation, propagation and interaction behavior between primary and secondary cracks 

based on the Finite Element Method with Cohesive Zone elements. Five key quantities can be 



 42 

obtained from data curves and are related to comprise the basis of the algorithm in a manner 

consistent with an approximate model based on stress analysis around the borehole. The algorithm 

has been validated by 100 synthetic data cases covering various parameter combinations. 

Moreover, quantifying the degree of uncertainty in the stress prediction indicates strongest 

dependence on detecting when the borehole deformation from the first fracture(s) is impacted by 

growth of secondary fracture(s). Validity based on simulated data motivates new methods for high 

resolution strain sensing during sleeve fracturing especially for the purpose of accurately detecting 

secondary fracture initiation.  

3.3 Introduction 

Knowledge of in-situ stresses is important as this information is widely applied across the 

Earth Sciences and Geo-Engineering. Fundamentally, the in-situ stress can be represented by three 

principal stresses and their orientations. Vertical stress is typically taken as one of the principal 

stresses and is usually estimated based on integration of the density of the overburden. The 

minimum stress is routinely estimated based on a variety of well-established tests. However, it is 

substantially more difficult to quantify the magnitude of maximum horizontal stress (𝜎Hmax). This 

is because fracture-based testing methods (e.g. Haimson and Cornet 2003) typically depend most 

directly on minimum stress, because the first fractures to open are opposed by the least 

compressive stress. Quantifying maximum stress therefore relies on ability to observe and interpret 

more subtle and/or subsequent details of fracture initiation and growth.  

Among a variety of methods proposed and applied to quantity both minimum and 

maximum horizontal stress, (e.g. Moos and Zoback 1990; Zoback et al. 2003; Hickman and 
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Zoback 2004; Stephansson 1983; Serata et al. 1992), the so-called sleeve fracturing method is 

promising but still relatively unproven, especially for estimation of the maximum horizontal stress. 

The approach resembles hydraulic fracturing-based methods in that a borehole is pressurized until 

evidence of fracturing is detected. However, by hydraulically isolating the wellbore and applying 

pressure though an inflatable packer (Stephansson 1983; Serata et al. 1992, see Figure 21), sleeve 

fracturing has the advantages of removing uncertainty in the interpretation that arises from fluid 

penetration into the surrounding rock and preventing rapid fluid loss to the first fracture(s) thereby 

increasing the opportunity for secondary fracture(s) to initiate.  

Secondary fracture initiation is essential to estimation of the maximum horizontal stress 

(Detournay and Jeffrey 1986). However, difficulties arise both in detection of secondary fracture 

initiation and in the analysis. The advent of distributed strain sensing using optical fibers, and the 

ability to embed such distributed strain sensors in the inflatable packer, holds the potential to 

overcome the limitation of secondary fracture detection (Ohanian 2019, Ohanian et al. 2021).  

Even with such emerging technologies for obtaining data, previous approaches to estimate 

the in-situ stresses from sleeve fracturing tests are typically based on linear elastic fracture 

mechanics (LEFM) or elastic stress analysis. These approaches also do not include details of 

wellbore deformation, instead focusing on wellbore pressure and volume relationships that 

comprised the data previously available from sleeve fracturing tests (e.g. Chandler 1989, Serata et 

al. 1992, Charsley et al. 2003). Hence, new analysis is needed to leverage distributed fiber optic 

strain sensing in sleeve fracturing. Furthermore, such analysis should not be constrained by the 

assumptions of LEFM, especially that LEFM requires assumption that plasticity is confined to a 

region that is small relative to ad-hoc flaw(s) introduced near the wellbore in order to compute a 

stress intensity factor for comparison to a fracture toughness, which is assumed to be an intrinsic 
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property of the rock. In reality, the region of plasticity is expected to be of a similar order to the 

wellbore size, and therefore the small-scale yielding assumption of LEFM is typically violated for 

fracture initiation from a wellbore (Lecampion 2012). The capabilities for FEM framework to 

simulate hydraulic fracturing have been validated by Zielonka et. al. (2014) and Arndt et. al. 

(2015). This study aims to overcome limitations of LEFM analysis by use of Cohesive Zone 

elements deployed within a Finite Element framework, and to then provide a rapid and sufficiently 

accurate method to estimate both maximum and minimum horizontal stress from sleeve fracturing 

data.  

 

 

Figure 21 Sketch of the sleeve fracturing technique. 
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3.4 Identify Algorithm Inputs from Data 

In previous work, Huang et al. (2021a) analyzed the crack initiation and propagation 

behavior for primary and secondary cracks under different combinations of in-situ stresses. In 

brief, the 2D plane-strain model is developed using ABAQUS while Cohesive Zone elements are 

implemented on pre-defined crack trajectories to simulate the possible crack initiation and 

propagation around the wellbore. Details of the model setup are provided in Section 2.5 with inputs 

described in Table 5. Based on simulations, the derivative of crack width with respect to internal 

pressure versus the internal pressure is plotted for an illustrative case, shown in Figure 22a. Four 

inflection points are labelled and are given by: 

1) The derivative curve showing the propagation behavior of the first crack has one concave 

point (Point 1 labelled in the Figure 22a) before the initiation of the secondary crack. Note 

that the Point 1 is not the same as P1, which is the pressure corresponding to the initiation 

of the primary crack (as shown in Figure 22b).  

2) As pressure loading increases, the secondary crack starts to initiate. Then, the derivative 

curve of the first crack presents a bump point (Point 2 labelled in the Figure 22a) near the 

initiation pressure of the secondary crack.  

3) A concave point (Point 3 labelled in the Figure 22a) appears in the derivative curve for the 

first crack as the secondary crack propagates.  

4) Finally, the derivative curve showing propagation behavior of the secondary crack has one 

bump point (Point 4 labelled in the Figure 22a). Notably, Point 3 has the same 

corresponding pressure with Point 4.  
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Table 5 Material properties and in-situ stress 

Solid elements 

Young’s modulus Erock 20.52GPa 

Poisson’ ratio v 0.2 

Cohesive 

elements 

Cohesive element energy Gc 32N/m 

Cohesive element 

strength 

Tmax 2MPa 

Critical separation ratio  α 0.03 

In-situ stress 

Maximum horizontal 

stress 

𝜎Hmax 15MPa 

Minimum horizontal 

stress 

𝜎hmin 10MPa 
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Figure 22 Data curves with inflection points and key quantities labelled for one representative case showing: 

a) P2 and 𝜎PP; b) P1; c) 𝜃, the angle between first and secondary cracks. 
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Therefore, two quantities P2 and 𝜎PP are defined to describe the pressures corresponding 

to these inflection points, as shown in Figure 22a. These two quantities appear to be tied to the 

fracture interaction behavior since the inflection behaviors are caused by the interaction between 

the first and secondary crack. Moreover, the quantity P1 is used to define the initiation pressure of 

the first crack, which can be obtained from the data curve plotting the crack width versus internal 

pressure (see Figure 22b). The quantity 𝜃 representing the angle between the first and secondary 

crack can also be obtained from numerical simulation results (see Fig 22c). Details of the impact 

of in-situ stresses and cohesive element strength on these four quantities are presented in Appendix 

B.  

3.5 Algorithm Methodology 

A simple approximate model for the predicted breakdown pressure for cracks at different 

orientations has been provided by Kirsch (1898), as adapted to the present problem by Huang et 

al. (2021a), via  

𝑝𝑏(𝜃) = 𝑇𝑚𝑎𝑥 + (𝜎𝐻𝑚𝑎𝑥 + 𝜎ℎ𝑚𝑖𝑛) − 2(𝜎𝐻𝑚𝑎𝑥 − 𝜎ℎ𝑚𝑖𝑛)𝑐𝑜𝑠2𝜃                      (3-1) 

Here 𝑇𝑚𝑎𝑥 is the tensile strength of the rock (or, in the model, the cohesive element strength),  

𝜎𝐻𝑚𝑎𝑥  is the maximum in-situ stress, 𝜎ℎ𝑚𝑖𝑛  is the minimum in-situ stress, and θ is the angle 

between the crack and the maximum compressive stress direction.  

Because the first crack always initiates at the 𝜃=0°, that is, opposed by the least 

compressive stress, its initiation pressure is  
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𝑃1 = 𝑇𝑚𝑎𝑥 − 𝜎𝐻𝑚𝑎𝑥 + 3𝜎ℎ𝑚𝑖𝑛                                                      (3-2) 

Here P1 and 𝜃 can be obtained from data (as described in the previous section), Tmax is the 

rock tensile strength, and 𝜎𝐻𝑚𝑎𝑥 and 𝜎ℎ𝑚𝑖𝑛 are two unknowns. This is the classical solution for 

crack initiation from a wellbore with a non-penetrating fluid (Hubbert and Willis 1957). Hence, 

the pressure P1 corresponding to initiation of the first crack can be used to constrain this 

relationship. However, assuming tensile strength is known, there are two unknowns and therefore 

another equation is required to estimate the maximum and minimum horizontal stresses.  

The three quantities P2, 𝜎PP and 𝜃 appear to be tied to the fracture interaction behavior 

since the inflection behaviors are apparently caused by the interaction between the first and 

secondary crack. Furthermore, by parametric study the quantities P2, 𝜎PP and 𝜃 are demonstrated 

to be systematically related to the combination of 𝜎𝐻𝑚𝑎𝑥 and 𝜎ℎ𝑚𝑖𝑛 (Appendix B). Therefore, a 

hypothesis is proposed that these quantities can be related via an expression for the internal 

pressure of the borehole required to generate circumferential stress equal to PP at the angle of the 

second crack, . If this pressure is proposed to correspond to the initiation pressure of the second 

crack P2, then the proposed relationship is  

𝑃2 = 𝜎𝑃𝑃 + (𝜎𝐻𝑚𝑎𝑥 + 𝜎ℎ𝑚𝑖𝑛) − 2(𝜎𝐻𝑚𝑎𝑥 − 𝜎ℎ𝑚𝑖𝑛)𝑐𝑜𝑠2𝜃                        (3-3) 

Here P2 and 𝜎PP can be obtained from data (as described in the previous section). Initially this 

relationship is hypothesized by conjecture, building on observation and the form of the wellbore 

stress solution of the Kirsch (1898) solution. The hypothesis was extensively tested by numerical 

simulations with different stresses and rock properties, as detailed in Section 4. The results confirm 

this relationship and therefore it is adopted as a semi-empirical approximate model.  

Now with two unknowns and two equations, both maximum and minimum in-situ stresses 

can be estimated from field test data (or synthetic data for validation). Graphical analysis of the 
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data (Figure 22) provides inputs P1, P2 , σpp, , the secondary fracture initiation angle θ (also from 

borehole strain data). Lab testing can constrain rock tensile strength 𝑇𝑚𝑎𝑥. The result is 

{
𝜎𝐻𝑚𝑎𝑥

𝜎ℎ𝑚𝑖𝑛
} = [

1 − 𝑐𝑜𝑠2𝜃 1 + 𝑐𝑜𝑠2𝜃
−1 3

]
−1

∗ {
𝑃2 − 𝜎𝑃𝑃

𝑃1 − 𝑇𝑚𝑎𝑥
}                                (3-4) 

This approach essentially entails adopting the stress analysis of Eq. (3-2) as a simple 

approximate model for the fracture initiation and inflection points. The implementation involves 

providing inputs to the right-hand side of Eq. (3-4) based on data and inverting the 2x2 matrix.  

Note that Eq. (3-4) is applicable, from a practical perspective, provided that the two 

horizontal stresses are sufficiently different from one another. Specifically, Huang et al. (2021a) 

demonstrates that the in-situ stresses appear, from the perspective of the data, to be identical when 

they are within the range 0.93<𝜎hmin/ 𝜎Hmax≤1. When this is the case, the data is predicted to 

indicate that there are several cracks initiating in multiple orientations and at the same internal 

pressure. Therefore, upon observation of multiple cracks initiating at the same pressure, it can be 

assumed that 𝜎𝐻𝑚𝑎𝑥~𝜎ℎ𝑚𝑖𝑛. For this condition, the Eq. (3-2) can be simplified to  

𝑃1 = 𝑇𝑚𝑎𝑥 + 2𝜎𝐻𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥 + 2𝜎ℎ𝑚𝑖𝑛                                    (3-5) 

It follows that, when similar in magnitude, the in-situ horizontal stresses can be estimated using 

only the first crack initiation pressure P1 and the tensile strength of the rock Tmax via 

𝜎𝐻𝑚𝑎𝑥 = 𝜎ℎ𝑚𝑖𝑛 =
𝑃1−𝑇𝑚𝑎𝑥

2
                                              (3-6) 
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3.6 Validation of Algorithm  

 

To validate the inversion algorithm embodied by Eq. (3-4) for dissimilar stress magnitude 

cases and Eq. (3-6) for similar stress magnitude cases, 100 cases are simulated to cover a 

practically-relevant range of in-situ stresses and rock mechanical properties. The ranges of 

parameters are (see Table 5 for definitions and Section 2.5 for details of numerical 

implementation): 

𝜎𝐻𝑚𝑎𝑥 ∈ (10, 50)MPa 

𝜎ℎ𝑚𝑖𝑛

𝜎𝐻𝑚𝑎𝑥
∈ (0.5, 1) 

𝐸𝑟𝑜𝑐𝑘 ∈ (10, 70)MPa 

𝑣 ∈ (0.15, 0.25) 

𝐾1𝐶 ∈ (0.3, 2)MPa m1/2 

𝑇𝑚𝑎𝑥 ∈ (1, 10)MPa 

𝛼 ∈ (0, 1)                                                              (3-7) 

Simulations generate synthetic data of wellbore deformation versus internal pressure and 

the angle of secondary crack initiation for each case. The cases are firstly categorized by observing 

if there are multiple fractures initiating at the same wellbore pressure. If so, then the initiation 

pressure P1 is extracted graphically and Eq. (3-6) is used to estimate the magnitude of the similar 

magnitude horizontal stresses. If not, then the quantities P1, P2 , and σpp,  are obtained graphically 

and the secondary fracture initiation data is obtained also, manually, from the data. In these cases 

of dissimilar magnitude stresses, Eq. (3-4) is applied to estimate the in-situ stresses based on the 

synthetic data.  
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Hence, for each of the 100 synthetic data cases we obtain an estimate of the stresses using 

the inversion algorithm. As a validation, the comparisons between estimated and actual maximum 

in-situ stresses are plotted in Figure 23. 

 

 

Figure 23 Comparison of estimated and actual in-situ stress for: a) maximum horizontal stress; b) minimum 

horizontal stress. 

 

The comparison shows agreement at a level sufficient to validate the inversion algorithm 

over the ranges of parameters covered by this study and, of course, in the absence of either random 

noise or systematic errors in the data. Also, note that the algorithm works reasonably well even for 

cases that do not adhere as strictly to the pattern in Figure 22. Illustrative examples of data curves 

for several cases for which the inversion algorithm works well in spite of the data not giving ideal-

looking results are provided in Appendix C. The conclusion is that the method is robust to various 
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borehole responses and that graphically identifying key quantities needed as inputs to the algorithm 

can provide sufficient accuracy in the inversion for a wide range of cases.  

3.7 Error and Uncertainty 

In previous work, Huang et al. (2021a) analyzed the crack initiation and propagation 

behavior for primary and secondary cracks under different combinations of in-situ stresses. In 

brief, the 2D plane-strain model is developed using ABAQUS while Cohesive Zone elements are 

implemented on pre-defined crack trajectories to simulate the possible crack initiation and 

propagation around the wellbore. Details of the model setup are provided in Section 2.5 with inputs 

described in Table 5. Based on simulations, the derivative of crack width with respect to internal 

pressure versus the internal pressure is plotted for an illustrative case, shown in Figure 22a. Four 

inflection points are labelled and are given by: 

1. Inspection of a range of simulation data curves, both ideal and non-ideal in behavior 

(see Appendix C). For each of these, the uncertainty ascertained based on how sharply 

the curve changes at the relevant inflection points.  

2. Inspection of a quarry test data curve (summarized in Ohanian et al. 2021).  

Applying best-judgement estimates to these synthetic and field data curves, uncertainty of 

𝜃, P1, P2, 𝜎PP and Tmax is set as 3%, 2%, 5%, 2% and 5%, respectively.  

With these uncertainty levels set, 10,000 realizations of the inversion algorithm are carried 

out by randomly drawing the key quantities from the prescribed distributions. This gives an overall 

estimate of the uncertainty of the stress estimates. Additionally, the individual contribution of 
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uncertainty in each key quantity is estimated by fixing the others and allowing each quantity 

individually to be drawn 10,000 times, at random, from its prescribed distribution. Comparison of 

the histogram curves for estimated horizontal stresses by varying different key quantity are plotted 

in Figure 24 (also see Appendix Table 7 in Appendix D).  

 

 

Figure 24 Comparison of histogram curves of the estimated horizontal stresses varying different key quantity 

for illustrative Case with actual 𝜎Hmax =15MPa and actual 𝜎hmin =10MPa for: a); Comparison of 

uncertainty level for estimated maximum horizontal stress; b); Comparison of uncertainty level for estimated 

minimum horizontal stress; c); Histogram curve for estimated maximum horizontal stress with confidence 

interval labelled; d) Histogram curve for estimated minimum horizontal stress with confidence interval 

labelled. 

 

Figure 24a and 24b show that all the means are nearly the same while the standard 

deviations are different from each other. Indeed, the uncertainty degree of estimated 𝜎Hmax by 

varying only P2 is the largest compared with the uncertainty by varying other key quantities (see 
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Figure 24a and 24b), indicating that the uncertainty of picking P2 contributes most to the 

uncertainty for the estimation of both maximum and minimum horizontal stress. In addition, the 

coefficient of variation when accounting for simultaneous uncertainty in all the key quantities is 

12% for estimated 𝜎Hmax and 6% for 𝜎hmin. The accuracy of the method is therefore reasonable even 

in light of inevitable uncertainty in picking key quantities comprising the algorithm inputs. Note a 

similar uncertainty level is reported for statistic simulation method used to estimate minimum and 

maximum stress (Feng et al. 2019). To examine this more closely, confidence intervals of 95% 

and 99% of the normal distribution curve fitting the estimated horizontal stresses are shown in 

Figure 24c and 24d. For this case, it can be concluded that the maximum horizontal stress is 14.3 

± 3.4 MPa while the minimum horizontal stress is 9.8±1.1MPa with 95% confidence.  

Uncertainty estimation for all 100 cases firstly demonstrates dependence on the angle 

𝜃formed between the primary and secondary fractures. In the simulations, this quantity is found to 

be 22.5°, 45°, or 67.5°, with uncertainty for corresponding illustrative Cases 10, 15 and 30 shown 

in Figure 25 (see also Appendix D, Appendix Table 8). Less uncertainty occurs on the estimated 

value of the stresses for the cases where the combination of stresses and rock mechanical properties 

lead to a larger angle between the primary and secondary cracks. Additionally, Figure 25 shows 

that improving estimation of the quantity P2 proportionally reduces the level of uncertainty.  
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Figure 25 Comparison of uncertainty of estimated horizontal stresses with different 𝜃 generated from two 

different uncertainty of P2 for: a) maximum horizontal stress; b) minimum horizontal stress. 

3.8 Conclusion 

A new inversion algorithm is developed and validated to estimate both maximum and 

minimum horizontal stress for sleeve fracturing field test. The algorithm is based on an 

approximate model of fracture initiation with is basis in stress analysis around a wellbore. 

Simulations using FEM with Cohesive Zone elements predict inflection points in the wellbore 

deformation that enable straightforward identification of 5 key quantities that comprise the inputs 

to the inversion algorithm. The algorithm is validated using 100 sets of synthetic data generated 

by the FEM-CZ model, with most cases showing agreement between the estimated and actual 

values of both minimum and maximum horizontal stress within a few percent.  
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Quantifying uncertainty in the stress estimations shows the greatest sensitivity to picking 

the quantity P2, an inflection point that is most directly tied to the ability to detect onset of growth 

of the secondary fracture(s) and the impact of secondary fracture growth on the deformation of the 

wellbore associated with the primary fracture. For reasonable ranges of uncertainties on the 

algorithm inputs, the 90% confidence intervals on the stress estimates tend to be less than 10 

percent. However, when the secondary fracture initiates at a shallow angle relative to the primary 

fracture, the uncertainty is greater, with potential to exceed 20% especially if P2 is poorly detected. 

Thus, as field experimental methods are developed, an emphasis should be placed on detailed 

detection of secondary fracture growth and its influence on deformation of the borehole caused by 

the first fracture, with a goal to limit the uncertainty for picking P2 to around 2%, although for 

cases with larger angle between the first and second fractures the method is robust to larger levels 

of uncertainty in the data inputs. 
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4.0 Cohesive Elements Capture Size and Confining Stress Dependence of Rock Fracture 

Toughness Obtained from Burst Experiments 

4.1 Preamble 

This chapter comprises a preprint of Huang et al. (2022). In this chapter, a CZ-based 

numerical simulation is presented to investigate the impact of size/geometry and confinement on 

initiation and propagation behavior of primary and secondary fractures of at lab scale by analyzing 

the fracture emanation from a pre-notched borehole under confinement.  The numerical model has 

been verified comparing predictions to results of laboratory tests known as “burst experiments”. 

The simulation results have demonstrated that application of LEFM to rock fracture, especially 

under conditions where the near-tip inelastic zone size is similar to the crack size, will result in a 

need to introduce a fracture toughness that is both size and stress dependent. Then, the CZ-based 

approach overcomes this limitation of LEFM-based simulations by capturing the crack initiation 

behavior with three parameter traction-separation law that is the same for all tests.  

4.2 Chapter Summary 

Numerical analysis of growth of cracks from a notched borehole under confinement 

demonstrates the impact of size and confining stress on initiation and propagation behavior of rock 

fracture at lab scale. A Finite Element framework employing plane strain cohesive elements is 

applied to simulate crack initiation and propagation behavior. The model is validated by comparing 
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predictions to results of laboratory tests known as “burst experiments”, which have been used for 

several decades to characterize rock fracture toughness under confined conditions. The simulations 

capture the crack initiation behavior with three parameter traction-separation law that is the same 

for all tests. This contrasts with approaches that apply linear elastic fracture mechanics wherein ad 

hoc stress and size dependence must be introduced to the fracture toughness. Furthermore, the 

simulations also confirm the limitation of the typical burst experiment configuration owing to 

ambiguity in identifying the moment of crack initiation, thereby pointing to a straightforward 

modification of the experiment that will remove this ambiguity, while also indicating that pairing 

Acoustic Emission monitoring with the typical setup in order to independently detect crack 

initiation can enable complete characterization of the traction-separation law. 

4.3 Introduction 

The burst experiment (Abou-Sayed 1978) is a long-used technique applied mainly in the 

oil and gas industry to estimate the fracture toughness of rocks under confinement in the laboratory. 

While other approaches are convenient for testing unconfined specimens, determining rock 

fracture behavior in the deep subsurface, where confining stresses are large, requires specialized 

tests, with the burst experiment being among the most popular. In this test, radial confinement is 

applied to the boundary of a cylindrical specimen with simultaneous pressurization of an internal 

and axially-notched borehole. As the test proceeds (Abou-Sayed 1978), the external and internal 

pressure are proportionally increased, with the internal pressure typically ramping up with a slope 

that is six times greater than the external pressure, until a crack catastrophically grows, and a burst 

event occurs in the specimen that is detected in the pressure and flow rate records of the pump(s) 
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that are controlling the internal and external applied pressures. Recently, Yoshioka et al. 

(submitted) proposed that, in some commonly-used geometries and loading combinations, there 

will be an undetected stable crack growth period before the crack grows unstably to the boundary. 

This will lead to large uncertainty on the actual notch (i.e. crack) length that is associated with the 

stresses reaching the condition for rupture. The inaccurate notch length will, in turn, lead to 

inaccurate estimation of the fracture toughness. To investigate this source of uncertainty in 

experimental interpretation, Zhang (2019) carried out a series of both classical and modified burst 

experiments with acoustic emission (AE) detection to experimentally evaluate how the 

experimental configuration impacts the validity of the estimates of the fracture toughness. These 

experiments, combined with Finite Element Analysis of the associated stress intensity factor, 

(Yoshioka et al. submitted), have clarified that the uncertainty in notch length for some geometries 

and have provided guidelines for modifying the geometry of the burst experiment to overcome this 

issue. However, the analysis is based on Linear Elastic Fracture Mechanics (LEFM), which 

assumes that the equations of elasticity are valid arbitrarily close to the crack tip. In contrast, for 

most rocks the process zone near the crack tip is expected to be at least on the order of 10 mm 

(Labuz et al. 1987; Lin and Labuz 2013), which is similar to the size of both the borehole and the 

specimen itself for typical burst experiment setups. As a result, LEFM-based analyses will miss 

size effects (and, more generally, impacts of geometric details of the specimen) that could be 

important to experimental interpretation.  

Motivated by these prior works and the knowledge gaps remaining due to reliance upon 

LEFM for analysis, a cohesive zone (CZ) finite element model is used here to interpret burst 

experiment results in order to characterize dependence of rock fracture on confining stress and 

specimen size. Papanastasiou and Thiercelin (2011) presented a model that introduces a 
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combination of fracture mechanics parameters with length dimension that scales the size of the 

holes, thus allowing for size effect predictions. Therefore, the approach leverages recent burst 

experiments (Zhang 2019) carried out in Kosota Valley Limestone with various loading 

geometries including varying the confining stress as well as the size of the borehole. Matching 

LEFM-predictions to the results of these experiments requires introducing ad hoc dependence of 

the fracture toughness on both confining stress and hole size. While this approach has pragmatic 

use, it is challenging to translate such results for the purpose of predicting crack propagation in 

rock at scales and confining levels that are not covered by the experiments. The present study 

therefore aims to capture the crack initiation and propagation behavior for laboratory experiments 

using a traction-separation law that is the same for all experiments, regardless of hole size and 

confinement level.  

With that said, it is important to recognize that there are a variety of potential sources of 

high rock fracture toughness observed under field conditions. The causes are thought to include 

confining stress acting on the region where the rock is breaking and plasticity, including ductile 

rock deformation, at scales that cannot be neglected relative to the size of the main crack 

(Papanastasiou, 1997, 1999). The burst experiment and the CZ modeling thereof considers the role 

of stress and plasticity in part. Namely, it considers a particular stress state of isotropic radial 

confining stress and the limited case of inelastic deformation ahead of the crack tip along the line 

of crack growth. While this limited consideration surely does not capture the entirety of high 

apparent rock fracture toughness under field conditions, it does provide a step forward in the 

overall goal of developing laboratory-scale tests that can characterize rocks in a manner such that 

the associated models can be deployed for field-scale predictions. Furthermore, the calibrated 
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cohesive model can be used as propagation criterion in elastoplastic computations for field 

conditions to account for the high effective fracture toughness. 

The paper is organized as follows. The burst experiment in the literature and the typical 

results provided from Zhang (2019) will be reviewed as a background. Then, the methodology of 

modeling and model setup for numerical simulation are provided. Next, the simulation results are 

carried out to show the size and confining stress dependency of crack initiation and propagation 

behavior. Finally, a comparison will be shown among various approaches to capturing 

experimental behavior, including LEFM with a single value of the fracture toughness, LEFM with 

ad hoc dependence of toughness on confinement and hole size, and the new model using a 3 

parameter CZ model for all cases.  

4.4 Background 

Numerous studies investigate the effect of confining stress on the fracture toughness, with 

perhaps the most in depth being carried out with Indiana limestone (Roegiers, 1991; Thallak, 1993; 

Abou-sayed 1978; Schmidt and Huddle, 1977). Schmidt and Huddle (1977) designed two types of 

experiments to study the effect of confining stress on fracture toughness of Indiana Limestone. 

One is a single-edge-notch test and the other is a three-point-bend test notch modified to enable 

application of confinement. Roegiers and Zhao (1991) have conducted laboratory experiments 

with Chevron-notched disk specimen (CDISK) to measure  KIC of rocks again under simulated 

subsurface stress conditions. Primary loading is applied on the specimen and confining stress is 

generated by hydraulic oil. Thallak et al. (1993) designed and carried out a series of experiments 

to measure fracture toughness in a hydraulic fracturing-like environment. The specimen is set into 
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a cylindrical cell and then the fracture fluid is injected until evidence for crack growth or fracture 

break-through is observed. The confining stress is generated by fluid in the chamber while the 

surrounding membrane prevents the fluid from flowing into the specimen. The burst experiment 

(Abou-Sayed 1978; Abou-Sayed and Jones 1979) applies radial confinement to the boundary of a 

cylindrical specimen with concurrent pressurization of an interior, axially-notched borehole. The 

outer and inner pressure is increased proportionally until the specimen bursts.  A compilation of 

these published results is shown in Figure 26, indicating an increasing relationship between the 

fracture toughness and confining stress. More recently, Funatsu et al. (2004) carried out 

experiments using single edge notched round bar in bending and semi-circular bend specimens of 

Kimachi sandstone and Tage tuff to investigate the effect of confining pressure on the fracture 

toughness of clay bearing rock. The fracture toughness of sandstone and tuff was found to be 

significantly affected by increasing confining pressure. 
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Figure 26 Published results of fracture toughness versus confining stress on Indiana Limestone (after 

Roegiers, 1991; Thallak, 1993; Abou-sayed 1978; Schmidt and Huddle, 1977). 

 

As a result of these and similar studies, the stress dependence of fracture toughness for 

rock has become widely accepted. However, characterizing this phenomenon remains a challenge 

with the burst experiment continuing to be perhaps the most widely used approach (Abou-Sayed 

1978). More recently, Zhang (2019) carried out a series of both classical and modified burst 

experiments to experimentally evaluate how the experimental configuration impacts the validity 

of the estimates of the fracture toughness. The setup of the burst experiments carried out by Zhang 

(2019) is shown in Figure 27. Here the specimen diameter is 6 inches (152.4 mm) and in the case 

where the inner hole diameter is 0.5 inches (12.7 mm), the ratio of these two diameters (1/12) 
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recovers a classical burst experiment as described by Abou Sayed (Abou-Sayed 1978). A modified 

configuration changes only the hole diameter, increasing it to 2 inches (50.8 mm).  

To begin a burst experiment, the cylindrical rock specimen is placed in the center of a 

triaxial cell (see Figure 27), with confining stress provided by the oil filled chamber. The specimen 

is held at the vertical center of the cell by two aluminum spacers, while a Tygon jacket is inserted 

into the central hole of specimen and sealed by two rubber plugs. A steel rod holds the two rubber 

plugs in place inside the Tygon tube, expanding them via compression to provide better sealing. 

The injection tube is drilled inside the steel rod and thus induced the internal pressure, Pi, by 

pumping hydraulic oil through the tube while the Tygon jacket prevents the fluid from infiltrating 

the specimen. Moreover, two ISCO syringe pumps are used simultaneously to ramp up both the 

internal pressure and the confining pressure, Po, in a fixed proportion to one another, until a 

pressure drop is observed. Note that the ratio of the external to internal pressure is typically taken 

as 1/6 or 1/8, and little justification is given in the literature. However, for consistency with past 

work, we adopt also this proportional pressure ramping procedure. Once the pressure drop is 

observed, it is interpreted as the moment of specimen rupture which is in turn assumed to coincide 

with crack initiation and growth, hence the name “burst experiment”. The validity of this final 

assumption is critical to the interpretation and will be discussed in detail throughout this paper. 
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Figure 27 Lab setup for burst experiment (after Abou-Sayed 1978). 

 

Because of the possible ambiguity involved with the assumption that the burst pressure 

corresponds to the moment of crack extension, acoustic emission (AE) detection method has also 

been applied in Zhang (2019) by placing four sensors on the top surface of the specimen (see 

Figure 28). The AE data is collected during the increase of the internal pressure, providing the 

numbers of events changing with time. The results from AE detection are analyzed along with the 

pressure records to infer if rock breakage occurred prior to the peak pressure. 
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Figure 28 AE sensor layout on the specimen, viewed from the top looking down (Zhang 2019). 

 

The rock material is assumed to be linear elastic with homogeneous properties and, as with 

all linear elastic fracture mechanics calculations, an assumption that the plastic zone is negligibly 

small compared to the size of the crack. It is also assumed that the fracture toughness does not 

change with fracture length with elastic deformation. But if plasticity develops around tip, it was 

shown that the effective fracture toughness increases with fracture length (Papanastasiou, 1997, 

1999). Once the pressure associated with crack growth is ascertained from the experiment, the 

fracture toughness 𝐾𝐼𝑐 for each test can be estimated using the equation proposed by Abou-Sayed 

(1978), that is  

𝐾𝐼𝑐(𝑙) = 𝑃𝑖𝑐𝐾𝐼
𝐵∗(1, 𝑙, 𝑤, 𝑝∗)√𝑎𝜋                                            (4-1) 

Here the quantity 𝐾𝐼
𝐵∗ is the normalized stress intensity factor for a unit internal pressure, which 

can be computed numerically as a function of l, w and p*. Also, Pic is the internal pressure at the 

time of the burst, a is the borehole radius, p* is the ratio of confining pressure over internal 
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pressure, w is the ratio of specimen radius over borehole radius, l is the normalized crack length 

computed via 𝑙 =
𝐿

𝑏−𝑎
, where L is the crack (notch) length and b is the specimen radius. 

The challenge in the interpretation arises because it might not always be correct to assume 

that the burst pressure, Pic, gives the loading required for first extension of a crack of length L. 

Indeed, if there is stable crack growth prior to the sudden change in pressure corresponding to an 

eventual unstable “burst”, then the crack length L will be longer at the time of the burst event than 

is assumed by the analysis. This will lead to overestimating the fracture toughness and hence 

overstating the dependence of fracture toughness on confinement. To this point, there are three 

possible evolutions of 𝐾𝐼
𝐵∗ and the corresponding Pic, which can be applied to define the stability 

of the crack growth in the burst experiment (Yoshioka et al. submitted).  

1. The 𝐾𝐼
𝐵∗ is decreasing monotonically with l increasing while the Pic is increasing with l 

increasing monotonically (see Figure 29a). This case leads to a “stable” crack growth in the 

burst experiment.  

2. The 𝐾𝐼
𝐵∗ is decreasing with l increasing at beginning and then increasing with l increasing 

while the Pic is increasing with l increasing and then decreasing with l increasing (see 

Figure 29b). The crack will grow either stably or unstably depending on normalized crack 

length l.  

3. The 𝐾𝐼
𝐵∗ is increasing monotonically with l increasing while the Pic is decreasing with l 

increasing monotonically (see Figure 29c). In this case, the crack will grow unstably, and 

the specimen will burst.  
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Figure 29 Possible evolution of normalized stress intensity factor K_I^(B*) versus normalized crack length l 

(after Yoshioka et al. submitted). 

 

The burst pressure Pic, obtained from the laboratory experiment, is the key value to 

calculate the fracture toughness (see Eq. (4-1)). Indeed, there are two possible ways to pick this 

Pic from experiments (Zhang 2019). One way is to pick the peak pressure from pressure data 

recorded in experiments as shown in Figure 30 since the sudden pressure drop shown in the 

pressure data curve is considered to reflect the specimen rupture event. Another way, available 

only when AE data has been collected (which is not usually the case), is to obtain the Pic at the 

time of the first inflection point from the AE data recorded in experiments (see Figure 30). It is 

clear from this example, which is for a stable case (0.5 inch hole in a 6 inch specimen), that the 

burst pressure one would pick from the pressure record significantly exceeds the crack initiation 

inferred from AE data. Zhang (2019) shows that such ambiguity does not exist for unstable cases 

(2 inch hole in a 6 inch specimen). And, to be clear, the CZ modeling presented in this paper does 

not resolve ambiguity in the moment of crack extension, The moment of crack extension is clear 

in the simulations, but if it is not observable in the experiments, the ambiguity remains. So, rather 

than resolving an experimental ambiguity, the CZ modeling provides a framework for capturing 

size/geometry and confining stress impacts on crack initiation and growth in cases where detection 
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of said growth is unambiguous. Henceforth, our analysis and comparisons will therefore be limited 

to all unstable cases and only the stable cases with AE data reported by Zhang (2019).  

 

 

Figure 30 . Data curves with two possible Pic labelled for lab experiment results of test 3 (½ inch borehole in a 

6 inch specimen, the ratio of confining stress over internal stress is 1/8) (after Zhang 2019). 

4.5 Modelling Methodology 

4.5.1 Cohesive Zone Elements 

The numerical simulation model is developed using the commercial Finite Element method 

(FEM) software ABAQUS. The rock matrix is represented by plane strain elements governed by 

linear elasticity for an isotropic rock, and the cohesive elements are implemented on pre-defined 
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crack trajectories. The correspondence of solid and cohesive elements is illustrated in Figure 1 in 

a generic case of a pre-defined crack path, noting that details of the burst experiment geometry 

will be described later. Crack initiation and growth is accounted using built-in Cohesive Zone 

elements, which applies a Dugdale-Barenblatt type cohesive crack propagation model (Barrenblatt 

1962 and Dugdale 1960). This cohesive crack model has been widely applied to quasi-brittle 

materials such as rock and concrete (Papanastasiou 1997; Papanastasiou 1999; Sarris and 

Papanastasiou 2011; Saouma et al. 2003; Segura and Carol 2010; Yao 2012), including for 

simulating size effect on hydraulic fracture initiation for a wellbore (Lecampion 2012). 

The behavior of the cohesive elements follows a prescribed linear traction-separation law. 

The traction-separation law defines the relationship between the traction (T) and the displacement 

(δ) between a pair of cohesively-bonded surfaces (i.e. the two opposing surfaces connected by the 

CZ elements in the generic case of Figure 1). A bilinear damage evolution model (after Barrenblatt 

1962 and Dugdale 1960, see Figure 31) is adopted in this study. This three-parameter model 

assumes that the cohesive surfaces follow linear elastic behavior (i.e. with a constant slope) before 

the traction reaches the cohesive element strength, Tmax. This is equivalent to saying that the 

material begins to incur damage after the separation displacement exceeds the critical value of δ0. 

Then, the material softens, in this model assumed to be linearly, until completion of the material 

failure at the separation value of δf. The area under this curve gives the critical energy release rate, 

Gc, which can be related to the fracture toughness of the rock, KIc, via (Irwin 1957) 

𝐺𝑐 =
𝐾𝐼𝑐

2 (1−𝑣2)

𝐸
                                                            (4-2) 

where the E is the Young’s modulus and v is the Poisson’s ratio. Also note that no shear or 

slippage are involved in this energy release rate. Additionally, the ratio (α= δ0 /δf) embodies the 
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relative portion of the region wherein the cohesive element is in elastic deformation compared to 

the portion in which it is undergoing plastic softening. Finally, note that in ABAQUS there is an 

ability to account for shearing failure and shearing deformation of cohesive elements, which is 

taken as negligible because crack opening is assumed to be caused by normal traction by setting 

shearing strength Ts and shearing stiffness Ks to values that exceed their tensile counterparts by 

several orders of magnitude. Moreover, the Tmax has the similar order with the normal tensile 

strength magnitude of material, although its specific value is chosen in this study to match burst 

experiment results. Note that using an adjusted value of Tmax relative to a nominal tensile strength 

obtained from, say, indirect tension tests is experimentally justified, for example by Haimson and 

Fairhurst(1969) who observed a different value of tensile strength governing hydraulic fracture 

initiation than would be obtained from testing in other configurations (see page 814). In this case 

where shear stiffness and tensile strength are large enough to be irrelevant to material failure, the 

breakage is uniquely described by any 3 independent parameters describing the traction separation 

law. In the following, we will use Tmax, Gc, and the ratio , as indicated by Figure 31, with other 

quantities (such as hardening and softening slopes) implicit in, and readily obtained from, these 

three parameters. 
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Figure 31 Bi-linear traction-separation law of cohesive elements (after Barrenblatt 1962 and Dugdale 1960). 

 

4.5.2 Model Setup 

The burst experiment is modeled in plane strain with a central borehole having 

diametrically-opposed notches in an isotropic rock with confining stress (Figure 32a). The plane 

strain approximation is strictly valid provided that the length of wellbore pressurized by the 

injection fluid is long compared to the wellbore diameter. In the present case, the length of the 

specimen is 2 inches (50.8 mm), and so it is not strictly satisfied for all cases and hence three-

dimensional effects are possible and can be a topic of future investigation. The diametric notches 

are a part of the burst experiment setup, and are placed using saw cuts (Zhang 2019). The crack is 

assumed to initiate and grow in the notch orientation. Therefore, beginning at the tips of the notches 

with initial length L, cohesive elements are distributed along 2 pre-defined planes for potential 

crack growth, as shown in Figure 32. More specifically, cohesive elements are firstly place on the 
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bi-wing path. Then, a certain length of cohesive elements started from the wellbore will be 

removed (strength taken to zero) to define an initial notch with length L. To match the experiments, 

the radius of the specimen, b is 3 inches (76.2 mm) while the borehole radius a is either 0.25 inches 

(6.35 mm) or 1 inch (25.4 mm), as shown in Figs. 8b and 8c, respectively. Note that in both cases 

a particular mesh is discussed and presented, and these are chosen after a mesh sensitivity study 

with various mesh densities confirms that the solution is not mesh dependent.  

The pressure loading is applied on both external and internal boundaries of the cylindrical 

specimen as Po and Pi, respectively. Both Po and Pi are set as a pressure loading increasing 

proportionally with time. The ratios of Po over Pi for each test are shown in Table 2. The internal 

pressure Pi is increased at a constant rate, 6.2 MPa/min, starting from 2.5 MPa. Simultaneously, 

the outer (confining) pressure Po is increased either at 1.03 MPa/min from 0.42 MPa, or at 0.78 

MPa/min from 0.31 MPa, with these corresponding to the p*=1/6 and p*=1/8 cases, respectively. 

Roller-type boundary conditions are applied to 4 elements on the outer surface of the specimen to 

avoid rigid translations and rotations (see Figure 32a).  

As previously mentioned, the simulation results in this paper are compared with the lab 

experiments carried out by Zhang (2019). These experiments used Kasota Valley Limestone, a 

dolomitic limestone quarried in southern Minnesota, especially near the Minnesota River and its 

tributaries. The rock properties of this limestone have been measured in the lab (Lu et al. 2020; Lu 

et al. 2017; Lu 2016) and are shown in Table 1. Additionally, the geometry, loading, stability, and 

burst pressure for the 6 configurations tested by Zhang (2019) are listed in Table 2. The burst 

pressure Pic obtained from the laboratory experiments and the computed KIc using Eq. (4-1) based 

on LEFM method are also included in Table 2 (see Zhang 2019 and Yoshioka et al. submitted). 

Because some configurations had repeated experiments, a total of 12 experiments were performed. 
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These are listed in Table 2, noting that acoustic emission (AE) data is available for stable test 3. 

Also note that the meaning of the “partially stable” designation for some experiments will be 

discussed later in this article. 

 

Table 6 Material properties of Kasota Valley Limestone (Lu et al. 2020; Lu et al. 2017; Lu 2016) 

Material property  Test method 

Young’s modulus 45GPa 

Uniaxial compression on cylindrical 

specimens (ASTME111-04, 2010a) 

Poisson’s ratio 0.3 

Uniaxial compression on cylindrical 

specimens (ASTME132-04, 2010b) 

Fracture 

toughness 

0.77MPa.m1/2 

Three-point loading on semicircular 

bend specimens (Kuruppu et al., 

2014) 
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Figure 32 Sketch of model setup for burst experiment: a) Boundary conditions and loading setup; b) Mesh 

setup for ½-inch borehole; c) Mesh setup for 2-inch borehole. 
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Table 7 Configuration properties and stability for lab tests (after Zhang 2019 and Yoshioka et al. submitted). 

Test 

ID 
Stability  

a 

(mm) 
b (mm) L (mm) 

p*=Po / 

Pi 

Pic 

(Zhang 

(2019)) 

Computed 

KIc 

(MPa.m1/2) 

1 partially 

stable 
6.35 76.20 7.68 0 

14.10 0.84 

2 17.60 1.05 

3 

(AE) 
stable 6.35 76.20 7.68 1/8 47.60 1.56 

4 
stable 6.35 76.20 7.68 1/6 

49.70 1.20 

5 52.20 1.28 

6 
unstable 25.40 76.20 7.62 0 

2.60 0.43 

7 2.20 0.36 

8 unstable 25.40 76.20 7.62 1/8 5.00 0.6 

9 

unstable 25.40 76.20 7.62 1/6 

7.50 0.79 

10 7.40 0.78 

11 6.50 0.68 

12 6.90 0.73 

 

4.6 Results 

4.6.1 Unstable Cases 

All 12 lab tests shown in Table 2 are representing 6 different configurations varying by 

size and confining stress. The simulation results for lab tests 6-12, with 2-inch diameter borehole 

and different confining stress, show consistent crack growth behavior. Here, simulation cases for 

these lab tests are defined as unstable cases according to the categorization provided by Yoshioka 

et al. (submitted). While all cases are simulated and results are presented later in terms of 

comparing predicted and actual burst pressure, the simulation result for lab test 8 is selected as a 
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representative case for presenting details showing the crack initiation and propagation behavior 

that is qualitatively similar (although quantitatively distinct) all the unstable cases. For this case, 

Figure 33 shows the evolution of crack geometry and stress concentration, which corresponds in 

each time to a certain internal borehole pressure. The right column of subfigures shows contours 

of the maximum tensile principal stress (with tension positive). The left column of subfigures 

shows a zoomed-in view of the change of deformed CZ elements during the crack propagating 

progress colored by the overall scalar stiffness degradation (SDEG) value, which is calculated via, 

𝑆𝐷𝐸𝐺 =
𝑢𝑝𝑙

𝛿𝑓
                                                              (4-3) 

Here upl is the effective displacement of the CZ element, which is also taken as the crack 

width in the following discussion. And also note the δf is computed by  

𝛿𝑓 =
2𝐺𝑐

𝑇𝑚𝑎𝑥
                                                                (4-4) 

Hence, the CZ elements are fully broken when SDEG=1. Otherwise, the CZ elements are 

active (i.e. in plastic softening) if 0<SDEG<1. It can be seen from Figure 33a and 33b that there 

are no CZ elements fully broken until the time increases to 24.21s. Then, the crack is fully broken 

to the specimen edge at T=24.22s (see Figure 32c). The evolution of active CZ, labelled from 

Figure 33a to 33c, proves that the active CZ length is increasing from 0.28mm to 9.50mm as 

internal pressure increases from 4.85MPa to 4.98MPa before the crack grows to the edge. 

Moreover, the crack propagates to the specimen edge in only 0.01s (see Figure 33b to 33c), 

pointing to an unstable crack growth behavior. Indeed, this unstable crack growth can be 

interpretated by the location of stress concentration shown in the maximum principal stress contour 

changing along with fracture propagation (see the right column of Figure 33). Hence, in contrast 

to subsequent cases that will be presented, for these unstable cases there is only one distinguishable 

stage in the stress evolution (unstable growth) before the crack is fully developed to the specimen 
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edge (see Figure 33). During this stage, the maximum principal stress concentration is always 

expanding along with the crack tip as the crack grows until the crack is fully broken to the edge 

(see Figure 33a-33c). Also note, there is a tensile stress concentration at the borehole. However, 

the magnitude of stress concentration at the borehole is approximately half of the stress 

concentration at the crack tip. So that crack propagation from the notch is expected rather than 

fracture initiation and propagation from the borehole away from the notch.  
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Figure 33 Simulation results showing the open cohesive elements colored by SDEG value and maximum 

principal stress contour for lab test 8 (2-inch borehole, showing the ratio of confining stress over internal 

stress is 1/8) at: a) 22.95s; b) 24.21s; c) 24.22s. 

 

To view in greater detail, the fracture width and fracture length versus internal pressure 

loading for test 8 conditions are shown in Figure 34. Note that two different definitions of crack 

width as well as two definitions of crack length are included. For crack width, one definition counts 

the crack opening at the borehole while the other counts the crack opening at the notch tip. For 

crack length, one definition uses the distance to the first damaged element (SDEG>0) and another 
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uses the distance to the first fully broken element (SDEG=1). The comparison of crack length from 

these two definitions demonstrates that the active CZ length is increasing as the internal pressure 

increases before any CZ element is fully broken. All the four data curves presented in Figure 34 

show a sudden jump at the same corresponding pressure, reflecting the unstable crack growth 

behavior. Moreover, the unstable crack growth occurs once the crack width at the notch tip reaches 

the complete failure δf (see Figure 34). Hence, the internal pressure corresponding to this sudden 

jump is unambiguously defined as the predicted burst pressure for unstable cases, and it is this 

prediction that is compared with the burst pressure obtained from lab experiments in later 

discussions. Note that for purposes of comparison, the burst pressures for the laboratory 

experiments for unstable lab tests 6-12 (Table 2) are obtained by picking the peak pressure from 

the pressure data recorded (Zhang 2019) because the first sudden drop shown in pressure data (see 

Figure 30) reflects the specimen rupture event.  

 

 

Figure 34 Crack width and length versus internal pressure with Pic labelled for CZ-based simulation of test 8 

(2-inch borehole, showing the ratio of confining stress over internal stress is 1/8). 
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4.6.2 Confined Stable Cases 

Laboratory tests 3-5, with 0.5 inch diameter borehole and non-zero confining stress are 

categorized as stable cases by Yoshioka et al. (submitted) because LEFM simulations predict 

stable growth of the crack prior to the final burst event. The CZ predictions for these tests are 

qualitatively similar to one another but strikingly different to the nominally unstable cases. The 

simulation result for laboratory test 3 is selected as a representative case with Figure 35 showing 

the open cohesive elements and the maximum principal stress contours, thus illustrating the 

evolution of crack geometry and stress concentration after the initiation of the primary fracture, 

corresponding in each time to a certain internal borehole pressure. The left column of Figure 35 

shows the change of deformed CZ elements during the crack propagating progress colored by 

SDEG value. Fig 11a to 11b show that none of the CZ elements are fully broken before T=307.96s. 

Then, the crack propagates, but much more slowly than it did in the unstable cases since it takes 

only 24.22s for the crack to propagate to the boundary for unstable cases (see Figure 33). In 

addition, no specimen rupture event can be observed although the internal pressure has been 

increased to an extremely high level (15000MPa), indicating a stable crack growth behavior that 

results in complete crack arrest. Note that the simulations run to 15000MPa while no further 

evidence of crack extension is observed. Hence, Figure 35 focus on the first 50MPa. This complete 

crack arrest contrasts with LEFM predictions (Yoshioka et al. Submitted), which predict that once 

the crack growth momentarily arrests at a stable length, crack growth will recommence after a 

relatively small additional increase in pressure. However, this stable crack growth can be explained 

by the change of stress concentration shown in the right column of Figure 35. Here it is shown 

firstly that the largest tensile stress concentration occurs at the borehole rather than the crack tip, 

calling into question whether the rupture would actually occur at the well rather than notch tip. 
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Besides this, it is apparent that the proportional increasing of both the internal and external pressure 

is not leading to an expansion in the size of the region at crack tip in which there is a tensile stress 

concentration. This is unlike the unstable growth cases where the final instability is observed to be 

associated with expansion of the zone of the tensile stress concentration (recalling Figure 33 as 

well as forthcoming Figure 37). Hence, unlike LEFM model, the CZ model is impacted by the 

shape of the tensile stress concentration because it determines the proportion of the cohesive zone 

that is subjected to tensile traction that can lead to damage and breakage stays unchanged and 

eventually becomes so small that the crack no longer grows.  

 



 84 

 

Figure 35 Simulation results showing the open cohesive elements and maximum principal stress contour for 

stable cases (½ inch borehole, showing the ratio of confining stress over internal stress is 1/8) at: a) 289.96s; b) 

307.96s; c) 500.00s. 

 

The stable crack growth is also confirmed and illustrated by plotting fracture width and 

crack length versus internal pressure loading, shown in Figure 36. In contrast with the unstable 

cases, there is no sudden jump in any of the curves, reflecting a stable crack growth. Instead, a 

gentler inflection point is observed. It can also be seen from Figure 36 that the fully broken CZ 

start to appear at the internal pressure corresponding to this inflection point. Moreover, the crack 
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width at the notch tip reaches the complete failure δf  at the same pressure. Therefore, the internal 

pressure corresponding to this inflection point is picked as the predicted burst pressure from CZ-

based simulations for stable cases (see Figure 36) and is compared with the burst pressure inferred 

from lab experiments in later discussions.  

Notably, Zhang (2019) chose the peak pressure from pressure data recording from the lab 

experiment (see Figure 30) to be the burst pressure for stable cases since this peak pressure is 

considered to reflect the specimen rupture. However, the simulation result (see Figure 35 and 36) 

suggests there is no burst event corresponding to sudden crack growth in stable cases. For the 

experiments, it appears possible that the expanding crack width eventually accommodates 

extrusion of the membrane and therefore the rupture event occurs at a pressure corresponding to 

membrane breakage. If this is the mode of failure, then the burst event cannot be directly related 

to crack extension. We therefore note that in all experimental cases the membrane ruptures, the 

question is whether the rock fracture precedes or follows this membrane rupture. For unstable 

cases it appears reasonable to assume membrane rupture follows rock breakage, but for stable 

cases it is not so clear. For this reason, the burst pressures obtained from lab experiments for stable 

cases are modified in this study by picking the inflection pressure with the AE test data curve (see 

Figure 30), which is available for test 3 only, and laboratory tests 4 and 5 are considered ambiguous 

because they do not have AE data in order to ascertain the point of crack growth.  
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Figure 36 Crack opening versus internal pressure curve for CZ-based simulation of stable cases (½ inch 

borehole, showing the ratio of confining stress over internal stress is 1/8). a) showing the entire date with 

pressure increased to 150MPa; b) focusing on the first 50MPa with Pic labelled. 
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4.6.3 Unconfined Partially Stable Cases 

Laboratory tests 1 and 2, with a 0.5 inch borehole and no confining stress, are categorized 

as stable according to LEFM owing to the non-monotonic increase of stress intensity factor with 

increasing pressure (Yoshioka et al. submitted). However, the CZ simulations show crack growth 

behavior that shares some common features with unstable cases and other features with stable 

cases. Hence, these tests are more accurately defined as partially unstable cases. Specifically, these 

tests are similar to the stable cases in that the crack length propagates away from the loaded 

borehole and, at the beginning, the largest tensile stress concentration occurs at the borehole rather 

than the crack tip. However, unlike the fully stable cases, there is no pressure applied to the external 

boundary of the specimen that is increasing in proportion to the internal borehole pressure, and so 

the tensile zone is not as greatly suppressed and, eventually the tensile stress concentration region 

at the crack tip expands sufficiently to induce rapid crack growth to the boundary of the specimen. 

To see how this partial instability manifests in some detail, simulation results for tests 1 

and 2, showing the open cohesive elements and the maximum principal stress contours, are 

presented in Figure 37. These results show the evolution of crack geometry and stress 

concentration of the whole geometry, which corresponds in each time to a certain internal borehole 

pressure (see Figure 37). The left column of Figure 37 shows the change of deformed CZ elements 

during the crack propagation, color coded based on the SDEG value. Here it is observed that none 

of the CZ elements are fully broken before T=127.58s, Pi=13.18MPa (see Figure 37b). The 

evolution of the active CZ, labelled from Figure 37a to 37b, indicates that the active CZ length is 

increasing as internal pressure increases before the fracture approaches the edge. Moreover, once 

the crack reaches approximately halfway to the edge at T=128.14s, Pi=13.24MPa (see Figure 37c), 

it takes only 0.02s longer to fully reach the edge. This rapid growth is similar to what was observed 
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in the prior unstable cases and can be interpreted to correspond to generation of an expanded tensile 

stress concentration in the tip region based on observation of the maximum principal stress 

contours (see the right column of Figure 37).  

Based on these results, two distinguishable stages are observed in the crack propagation 

(see Figure 37). In the first stage, the maximum principal stress concentration is located at the 

borehole, (see Figure 37a and 37b), with relatively smaller tensile stress at the notch tip. This 

smaller tensile stress concentration apparently leads to stable crack growth and is indeed similar 

to the stress distributions observed in simulation results for stable cases except that the crack grows 

much faster for the unconfined tests than for the fully stable confined tests with 0.5 inch borehole. 

Then, as the fracture propagates, the magnitude of stress concentration at the borehole starts to 

decrease at the crack tip (see Figure 37c). This stage is similar to the stage observed in unstable 

cases, leading to the unstable crack growth behavior discussed above. Furthermore, the crack 

accelerates to the specimen edge rapidly within 0.02s once the maximum stress concentration 

appears at the crack tip. Hence, the unconfined 0.5 inch borehole cases possess commonality with 

both the stable and unstable cases and are thus referred to as “partially stable cases” (or, 

equivalently, “partially unstable cases”).  
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Figure 37 Simulation results showing the open cohesive elements and maximum principal stress contour for 

tests 1and 2 (unconfining test with ½ inch borehole) at: a) 122.96s; b) 127.58s; c) 128.14s. 

 

The fracture width and fracture length versus internal pressure loading behavior also 

indicates a period of stable growth followed by instability (see Figure 38). As in previous cases, 

the change of active CZ length with pressure can be seen as the separation between the crack length 

defined according to the distance to the first damaged element (SDEG>0) and the crack length 

defined according to the distance to the first fully broken element (SDEG=1). Furthermore, all the 

four data curves show an initial period of slow, stable growth followed by a sudden jump, with all 
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curves inflecting at the same pressure (see Figure 38). This inflection to unstable crack growth 

occurs once the crack width at the notch tip reaches the value for complete failure δf  (see Figure 

38).  With all of these observations, the internal pressure corresponding to this inflection is defined 

as the predicted burst pressure for comparison with the laboratory experiments. Additionally, 

because the sudden change is an unambiguous point of instability, the assumption is that the 

observed sudden drop in pressure in the experiments (which occurs because the pump providing 

internal pressure can no longer run quickly enough to sustain a constant ramp) gives the critical 

pressure that can be compared to the simulation. Hence, burst pressures of laboratory experiments 

for tests 1 and 2 are obtained by picking the peak pressure from the data (Zhang 2019).  

 

 

Figure 38 Crack width and length versus internal pressure with Pic labelled for CZ-based simulation of tests 

1 and 2 (unconfining test with ½ inch borehole). 
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4.7 Comparison with Laboratory Experiments 

Simulation results have demonstrated that the crack initiation and propagation behavior for 

burst experiments are affected by the size and confining stress conditions. The CZ-based 

simulation results have demonstrated that the crack grows unstably in unstable cases, i.e., 

laboratory tests 6-12, while the crack shows a stable propagation behavior for stable cases, i.e., 

laboratory tests 3-5. The crack propagation behavior of laboratory tests 1 and 2 is between unstable 

cases and stable cases. Furthermore, the simulation results for stable cases leads to a significant 

modification in picking burst pressure for current burst experiments. The burst pressures for lab 

test 3 is provided by an inflection in the AE event rate rather than the peak pressure from pressure 

data, as shown in Figure 30 (Zhang 2019). 

The burst pressure Pic, obtained in the laboratory experiment, is the key value to calculate 

the fracture toughness (see Eq. (4-1)). Hence, the comparison between the three parameter CZ-

based simulation predictions and the laboratory data focuses on this quantity. Note that the stable 

case laboratory tests 4 and 5 are excluded from this comparison because there are no AE data and 

hence no way to unambiguously pick the critical pressure for crack propagation.  

The comparison begins by optimally choosing the CZ parameters in order to obtain a best 

match in Pic between the simulations and experiments. It begins by selecting initial (“prior”) values 

of the input parameters, as indicated in Table 3. Note that Table 3 shows the 3 independent CZ 

input parameters and, for convenience of comparison and interpretation, several quantities that are 

computed from these inputs. Then a search is undertaken to select CZ parameters that minimize 

the square root of the sum of the squared difference between the predicted and measured values of 

Pic (RMS error). In principle this could be carried out through a formal genetic algorithm, grid 

search, or gradient-based search. In this case, because of the computational intensity of the 
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simulations (approximately 0.5 hours per evaluation on a single node of a supercomputer), the 

search is here carried out by hand following a quasi-gradient type of search method. Finally, one 

best combination of CZ element properties, as shown in Table 3, is found. The posterior fit of burst 

pressure Pic obtained from three parameters CZ-based simulation with Pic obtained from lab 

experiments is shown in Figure 39a, with the improvement over the prior apparent by comparison 

with Figure 39b.  

We observe that most of the size/geometry effect and confinement effect are captured by 

this three parameter CZ model. This stands as a distinct improvement over the LEFM model where 

fracture toughness is taken as a constant value (Figure 39c). Hence, the CZ approach takes a major 

step towards capturing size/geometry and confinement effect on fracturing without resorting to ad 

hoc introduction of size and confinement dependent values of governing parameters. With that 

said, it is clear that only a very limited exploration of size effect is included here, and only via the 

changing borehole size so that size effect and specimen geometry effects are mingled together in 

the result. Nonetheless, the success of the model at capturing these impacts on crack initiation 

pressure comprises a promising move relative to alternatives such as ad hoc definition of size and 

geometry dependent values of fracture toughness. 

As a further comparison, Figure 39d shows an LEFM approach where fracture toughness 

is fitted independently for each of the 5 experimental configurations that combine different hole 

sizes and confinement levels. As one would expect, the 5 parameter LEFM model matches the 

data very well, but it leaves uncertainty as to how to apply the model for a hole size and/or 

confinement level that was not directly addressed by the experiments. Also note that one could 

propose to introduce confinement dependent CZ element strength to improve the fitting the data 

to the experiments. However, the improvement provided by this approach is insignificant and does 
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not justify bringing an ad hoc treatment of size and confinement effect into the simulation 

methodology. Hence, the three parameter CZ-based simulations are found to suitably capture crack 

growth behavior for these lab experiments and, by doing this without need to introduce ad hoc 

stress and size dependency, they provide unique interpretation of fracture properties of the rock 

based on burst experiment data. Recalling also that the fracture toughness 𝐾𝐼𝑐 can be computed by 

the CZ element energy Gc using Eq. (4-2), we find that the three parameters CZ simulation can 

provide estimation of an intrinsic fracture toughness (see Table 3). Interestingly, the best fit value 

of KIC for the LEFM model that assumes a single value of KIC for all cases is 0.73 MPa m1/2, which 

is very similar to the value of 0.77 MPa m1/2 that is found based on the best fit of the 3 parameter 

CZ model, which is, in turn, consistent with the value of 0.77 MPa m1/2 found by unconfined semi-

circular bending tests (Lu et al. 2020). 

 

Table 8 CZ element properties. 

  Formula Prior  Posterior  

Basic CZ 

properties 

Gc (N/m)  41.35 12.10 

Tmax (MPa)  7.93 4.87 

α  0.86 0.87 

Computed 

properties 

Fracture 

toughness 

(MPa.m1/2) 

𝐺𝑐 =
𝐾𝐼𝑐

2 (1 − 𝑣2)

𝐸
 1.43 0.77 

Irwin length 

(mm) 
𝑙𝑟 =

𝐾𝐼𝑐
2

𝑇𝑚𝑎𝑥
2

 32.54 25.19 

δ0 (μm) 𝛿0 =
2𝛼𝐺𝑐

𝑇𝑚𝑎𝑥
 9.00 4.30 

δf  (μm) 𝛿𝑓 =
2𝐺𝑐

𝑇𝑚𝑎𝑥
 10.43 4.97 
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Figure 39 Comparison of burst pressure obtained from experiments and CZ-based simulations as well as 

LEFM methods. Note that KIC for the one parameter LEFM model is taken as 0.73 

4.8 Discussion of T-S Law 

The simulation results shown in Figure 33-38 are based on a critical separation ratio 

α≈1(recall Figure 31). The reason for this choice has been provided in the previous comparison of 

predicted burst pressure to observed critical internal pressure Pic, and it corresponds to rock 

fracture for which the softening slope is much steeper compared to the elastic stiffness. However, 

it is useful to also observe that the critical separation ratio  has an impact on the qualitative 
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behavior of these confined unstable cases. Specifically, for a critical separation ratio α≈0 (see 

Figure 40), which is the case where softening is gradual and most deformation is in the plastic part 

of the traction separation law, the stress concentration zone at the borehole is larger compared to 

the case for a critical separation ratio α≈1. This difference leads to a prediction that the case with 

a small critical separation ratio tends to have a higher possibility to generate cracks at the 

orientation perpendicular to the notch direction than the case with a large critical separation ratio. 

In the future it will be of interest to investigate this propensity for oblique crack initiation and 

growth. 

As discussed in previous section, we note that a combination of CZ elements with a large 

critical separation ratio  is demonstrated to provide a better fit compared to the combination with 

a small separation ratio, especially for stable case. In fact, through the fitting exercise carried out 

here, it is found that the separation ratio has negligible impact on the predicted burst pressure for 

unstable and partially stable cases. However, its impact on predicted burst pressure for stable cases 

is significant. So, from the perspective of the fitting, this separation ratio is a key quantity that 

allows the ability to capture burst pressure for stable cases. This observation implies that, provided 

AE detection is used to remove ambiguity in picking the crack propagation pressure in the 

experiments, the stable experimental cases provide an important part of an experimental campaign 

that is able to fully characterize a three parameter, bilinear traction-separation law for a given rock. 

We also note that for this rock, the Kasota Valley Limestone, the best fit with the large critical 

separation ratio implies that the traction separation law is most accurately depicted by a large 

elastic region and a small region of plastic softening (see e.g. Lecampion 2012 for a brief review 

of softening models with applications to rock mechanics CZ simulations). 
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Figure 40 Comparison of stress concentration of case8 at the same crack length 18.00mm under different 

critical separation ratio 
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4.9 Conclusions 

Numerical simulation of burst experiments using cohesive zone elements leads to two main 

observations. The first is that the 3 parameter CZ model is able to suitably capture size/geometry 

and stress effect in the burst experiments without need to introduce ad hoc dependence of material 

properties on size and stress. Hence, the CZ model is more readily available to be applied at sizes 

and under stress conditions that are not directly considered in the laboratory. Secondly, the value 

of the fracture toughness computed from the three parameter CZ model is very similar to the value 

of fracture toughness required in order to obtain a best fit of an LEFM model to all experimental 

data under the restriction that a single value of the toughness be applied to all cases.  

The present work therefore highlights the fact that application of LEFM to rock fracture, 

especially under conditions where the near-tip inelastic zone size is similar to the crack size, will 

result in a need to introduce a fracture toughness that is both size and stress dependent. By allowing 

interplay among size, stress, and the evolving inelastic zone near the crack tip, the CZ approach 

overcomes this limitation of LEFM-based simulations. 

Besides capturing size/geometry and confining stress dependence of the burst experiment, 

CZ modeling demonstrates that the burst experiment has a limitation in capturing the crack 

initiation behavior for the typical burst experiment configuration. Perhaps most strikingly, the 

burst pressure obtained by picking the peak pressure on pressure data recording is not reflecting 

the actual specimen rupture. Recall that the burst experiment is pressurizing the pre-notched 

borehole through injecting fluid into the tube. So, there is a possibility that the membrane will be 

pushed into the notch due to the internal pressure, leading to a pressure rupture on the recorded 

pressure data curve. Furthermore, the CZ modelling shows no rupture on crack opening curve for 
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stable cases, which also exacerbates the ambiguity associated with the picking of burst pressure 

for the typical burst experiment configuration.  

With that said, the fitting of the CZ model to the laboratory experiments highlights the 

potential for burst experiments to provide data for complete characterization of a three parameter 

(bilinear) traction-separation law. Here it is found to be advantageous to include cases with 

multiple hole sizes and confinement levels. It is also advantageous to include both stable and 

unstable configurations, but it is clearly also essential to include detection of crack growth (i.e. 

using acoustic emission monitoring) in order to find the critical pressure for the stable growth 

cases. Hence, this simulation and model-data fitting points a way forward whereby a modified 

burst experiment that uses multiple hole sizes and confinement levels can be used in combination 

with CZ modeling of the fracture process in order to completely characterize a suitable traction-

separation law for a given rock in a manner that will enable simulation of rock breakage across a 

range of sizes and stress conditions that cannot be attained by LEFM owing to the lack of 

adherence of rock materials to the LEFM assumptions of negligibly small plastic zone and the 

fracture toughness being an intrinsic, unchanging material constant. 
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5.0 Conclusions 

The crack initiation, propagation and interaction behavior of cracks emanating from a 

pressurized borehole are significant since these phenomena can be leveraged in order to estimate 

the maximum and minimum horizontal stresses from sleeve fracturing data and to evaluate the 

fracture toughness of rock with high confinement in laboratory experiments. By analyzing and 

thus quantifying the impact of in-situ stresses, specimen size/geometry and confining stress on 

crack growth behavior in sleeve fracturing and the burst experiment, this research paves the way 

for sleeve fracturing and the burst experiment to realize more reliable and insightful interpretation 

and hence wider applicability. The main contribution of this dissertation begins with providing a 

new numerical simulation model using plane-strain cohesive zone elements to investigate the 

fracture initiation and propagation behavior for sleeve fracturing problem. The model has been 

validated by benchmarking with both analytical solution and a laboratory test. The field-scale CZ 

simulations results bear similarity to predictions based on LEFM in the orientation of the first 

crack, which always initiates along the plane acted upon by the least compressive in-situ stress for 

0<𝜎hmin/ 𝜎Hmax≤0.93. For cases with very similar horizontal stresses (0.93<𝜎hmin/ 𝜎Hmax≤1), all 

the cracks initiate at the same internal pressure. However, the first crack initiates and grows 

steadily, without an instantaneous jump (in contrast to LEFM). In contrast to the consistent 

orientation of the first fracture, the opening direction of the second (and subsequent) fractures has 

been demonstrated to be varying with different in-situ stress combinations and CZ properties (in 

contrast to LEFM). Furthermore, the initiation pressure and location of fractures is systematically 

impacted by the in-situ stress conditions, pointing to a significant potential that simulations using 
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cohesive elements can be used to interpret field test data leading eventually to estimation of both 

the minimum and maximum horizontal far-field stress acting on a vertical wellbore.  

Inspired by the remarkable fact that crack initiation and propagation behavior is 

systematically impacted by the maximum and minimum horizontal stress conditions, a new 

inversion algorithm is developed and validated to estimate both maximum and minimum 

horizontal stress for sleeve fracturing field test, which provided the second main contribution of 

this dissertation. The algorithm is based on an approximate model of fracture initiation with is 

basis in stress analysis around a wellbore. Simulations using FEM with Cohesive Zone elements 

predict inflection points in the wellbore deformation that enable straightforward identification of 

5 key quantities that comprise the inputs to the inversion algorithm. The algorithm is validated 

using 100 sets of synthetic data generated by the FEM-CZ model, with most cases showing 

agreement between the estimated and actual values of both minimum and maximum horizontal 

stress within a few percent.  

Finally, the present research provides a numerical simulation of burst experiments using 

cohesive zone elements which overcome the limitation of LEFM-based analyses. The 3 parameter 

CZ model is able to suitably capture size/geometry and stress effect in the burst experiments 

without introducing ad hoc dependence of material properties on size and stress. Hence, the CZ 

model is more readily available to be applied at sizes and under stress conditions that are not 

directly considered in the laboratory. Besides capturing size/geometry and confining stress 

dependence of the burst experiment, CZ modeling shows that, perhaps most strikingly, the burst 

pressure obtained by picking the peak pressure on pressure data recording is not reflecting the 

actual specimen rupture, thereby demonstrating that the burst experiment has a limitation in 

capturing the crack initiation behavior for the typical burst experiment configuration. Furthermore, 
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no rupture is observed on crack opening curve for stable cases in CZ modelling, which also 

exacerbates the ambiguity associated with the picking of burst pressure for the typical burst 

experiment configuration.  

It is also interesting to observe that the laboratory test results were shown to be highly 

sensitive to the manner of load application and block size in sleeve fracturing test, by accounting 

for these details it is possible to obtain a reasonable match with experiments in both fracturing 

geometry (i.e. orientation of the secondary fracture) and the borehole pressure leading to both 

primary and secondary initiation. This match requires some adjustment of CZ properties, and 

further emphasizes the usefulness of such block experiments for model calibration to the 

particulars of the failure of given materials. This size and confinement effects are also observed 

from CZ simulation results for the burst experiment, pointing out a significant potential that 

simulations using cohesive elements can capture crack growth behavior of fractures emanating 

from a pressurized borehole, regardless of the specimen size and confinement level.  

In summary, the research comprised in this dissertation shows both qualitatively and 

quantitatively the impact of in-situ stresses, borehole size and confining stress conditions on the 

crack initiation, propagation and interaction behavior of cracks emanating from a pressurized 

borehole. It predicts behavior with potential diagnostic importance for prediction of stresses, both 

minimum and maximum, based on data from sleeve fracturing experiments, and further provides 

a rapid, well-validated and sufficiently accurate inversion algorithm to estimate the maximum and 

minimum horizontal stress from sleeve fracturing test data. Furthermore, this research identifies 

the size and confining stress dependency of fracture toughness obtained from the burst 

experiments, and then provides a 3 parameter CZ model to capture the size/geometry and stress 

effect in the burst experiments without introducing ad hoc size and stress dependence.  
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Appendix A Extended Discussion of Lab Scale Simulation 

Assuming that the load application in the lab can be replaced with a far field stress in an 

infinite domain, A field-scale simulation with same material properties and in-situ stresses with 

lab-scale test is further provided to see if the results from lab experiments can predict the field test.  

Appendix Figure 1 shows the crack initiation and propagation behavior predicted by this 

infinite domain numerical model. It is qualitatively similar to the behavior observed in the lab in 

that a primary crack growth in the plane upon which the smaller stress is acting. Also, upon 

increasing of the pressure inside the central hole, a secondary crack grows in the plane with angle 

67.5°, although this secondary crack is suppressed much more quickly in the lab-scale model. 

Then, a tertiary crack initiates in the plane with angle 90°, as in the lab-scale model. The other 10 

potential planes of crack growth did not show substantial fracturing, also in agreement with a lack 

of damage observed in the tested block.  

The crack opening versus pressure loading is plotted in Appendix Figure 1, which provides 

the initiation pressure for the first, second crack and third crack. Indeed, the difference between 

the initiation pressure of the secondary and tertiary crack is very small. However, the secondary 

crack has not been suppressed by the tertiary crack, which is different from the lab-scale simulation 

results with finite domain where only the 90o crack grows. Furthermore, a comparison of initiation 

pressure for first and second crack between simulation and lab test (Table 5) indicates substantial 

deviation between the finite and infinite models, with the predicted pressure for primary crack 

growth with infinite domain simulation is about 54% higher than the finite domain lab experiment 
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and the predicted pressure for secondary crack growth with infinite domain simulation is about 

82% higher than the finite domain lab experiment.  

The block size was increased relative to the hole size until the finite domain simulation 

results effectively converge to the infinite domain results.  Results are shown in Appendix Table 

1. Convergence is observed when the hole size to block size ratio is 1/10, and even then, only when 

the pressure loading uniformly distributing along the whole boundary. Such a pressure distribution 

could be obtained with fluid-filled flat jack loading, but would not be expected when loading is 

applied with hydraulic pistons. Indeed, the details of the piston size (i.e. applied loading area) and 

thickness of the steel platens are observed through the experience of this study to have a strong 

effect on the predicted initiation pressures, and therefore are chosen to closely match the actual lab 

configuration. Still, even if ideal loading is applied, the block size requirement is problematic 

because the required hole size needed to provide space for the packer and its accompanying sensors 

means that a 10x larger block size is impractical. So, for most practical purposes, the comparison 

between finite domain and infinite domain results further emphasizes the significance of boundary 

conditions for lab-scale simulation. If one wishes to simulate the lab experiments, it is important 

to use a purpose-built simulator that accounts for the details of the boundary conditions rather than 

simply assuming that the lab experiments approximate an infinite domain.  
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Appendix Figure 1 Crack opening versus pressure loading for ABAQUS infinite domain, i.e. (incorrectly) 

assuming that the load application in the lab can be replaced with a far field stress in an infinite domain. 
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Appendix Table 1 Comparison of simulation results with lab test data for the pressure associated with first 

and second crack initiation. 

Initiation pressure 

Initiation angle 

for 2nd crack 

Initiation 

pressure for 1st 

crack 

Initiation 

pressure for 2nd 

crack 

Laboratory experiment results 90° 2.45MPa 5.59MPa 

ABAQUS CZM finite domain (the hole 

size to block size ratio is 1/5 as in the 

actual lab configuration) 

67.5° 2.46MPa 6.61MPa 

ABAQUS CZM finite domain (the hole 

size to block size ratio is 1/10 with 

pressure uniformly distributing along 

the part of boundary) 

22.5° 3.65MPa 4.14MPa 

ABAQUS CZM finite domain (the hole 

size to block size ratio is 1/10 with 

pressure uniformly distributing along 

the entire boundary) 

67.5° 3.78MPa 10.18MPa 

ABAQUS CZM infinite domain 67.5° 3.78MPa 10.18MPa 

 

 

The predicted initiation pressures are somewhat sensitive to CZ properties. To explore this 

sensitivity, lab-scale simulations with different cohesive element properties are carried out while 

the boundary and loading conditions are set to match the actual lab configuration. The comparison 

of these simulation results is listed in Appendix Table 2, which shows that all 3 properties impact 
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initiation pressures. Basically, the initiation pressure of first and secondary crack is increasing as 

α increases while the cohesive element strength and cohesive element energy Gc are held to be the 

same so that only α is varying. This approach is the same for Gc and Tmax.. Therefore, by comparing 

with initiation pressure of first and secondary crack observed from laboratory experiment results, 

one group of CZ properties is selected to be applied in the final lab-scale simulation (see Table 3). 

Then, the lab-scale simulation with actual lab configuration can provide initiation pressure that is 

the closest to the experiment results with this group of CZ properties. 

 

Appendix Table 2 Comparison of lab-scale simulation results with different cohesive element properties for 

the pressure associated with first and second crack initiation. 

α Tmax Gc 

Initiation 

angle for 2nd 

crack 

Initiation 

pressure for 

1st crack 

Initiation 

pressure for 2nd 

crack 

0.003 2MPa 10.7N/m 67.5° 2.6MPa 6.8MPa 

0.003 2MPa 32N/m 67.5° 3.37MPa 7.5MPa 

0.003 1MPa 10.7N/m 67.5° 2.2MPa 6.1MPa 

0.03 1MPa 10.7N/m 67.5° 4.2MPa 6.7MPa 

0.003 1.5MPa 10.7N/m 67.5° 2.46MPa 6.6MPa 
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Appendix B Impact of In-Situ Stresses on Key Quantities 

Simulation results for cases with varying stresses (Appendix Table 3) are shown in 

Appendix Figure2. Initiation pressure of the first fracture under different in-situ stresses with the 

same material properties are shown in Table B1 while initiation pressure of the first crack for 

different cohesive element strength with the same in-situ stresses are presented in Table B2.  

 

Appendix Table 3 P1 obtained by field-scale cases under different in-situ stresses. 

𝜎Hmax 𝜎hmin P1 

15MPa 10MPa 17MPa 

20MPa 10MPa 12MPa 

20MPa 15MPa 27MPa 

30MPa 10MPa 5MPa 

 

 

Appendix Table 4 P1 obtained by field-scale cases for different cohesive element strength. 

Tmax P1 

1MPa 17MPa  

2MPa 17MPa 

4MPa 17MPa 

10MPa 17MPa 
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Besides obtaining the pressure for initial fracturing, the derivative of crack width at wellbore 

versus the pressure loading for cases under different in-situ stresses is plotted in Appendix Figure2 

to obtain the P2 and 𝜎PP. Appendix Figure2 shows that both P2 and 𝜎PP value are varying with the 

combination of in-situ stresses, which provides the evidence that there is a relationship between 

the in-situ stresses and these two parameters. Additionally, the derivative of crack width at 

wellbore versus pressure loading for different cohesive element strength is also plotted in 

Appendix Figure3 to show how the P2 and 𝜎PP are obtained. It can be seen from Appendix Figure3 

that both P2 and 𝜎PP values are varying with the cohesive element strength, which demonstrates 

the significance of Tmax in interpreting the in-situ stresses.  

 

 

Appendix Figure 2 Crack interaction behavior for field-scale under different in-situ stresses, with P2 and 𝜎PP 

labelled as an illustration for: a) 𝜎Hmax=20MPa, 𝜎hmin=10MPa; b) 𝜎Hmax=15MPa, 𝜎hmin=10MPa; c) 

𝜎Hmax=20MPa, 𝜎hmin=15MPa; d) 𝜎Hmax=30MPa, 𝜎hmin=10MPa. 
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Appendix Figure 3 Crack interaction behavior for field-scale for different cohesive element strength, with P2 

and 𝜎PP labelled as an illustration for: a) Tmax=1MPa; b) Tmax=2MPa; c) Tmax=3MPa; d) Tmax=4MPa. 

 

Taken together, comparison of field-scale simulation results from section Appendix B 

demonstrates the impact of in-situ stresses on the four key quantities, including P1, 𝜃, P2 and 𝜎PP. 

Indeed, as expected, the simulation shows that these four key quantities are all sensitive to the 

change of in-situ stresses. This variability of key quantities provides an assumption that there is a 

relationship between the key quantities and in-situ stresses which can be applied to interpret the 

in-situ stresses by finding key quantities from the field test data. Moreover, the P2 and 𝜎PP values 

are also showing sensitivity to the cohesive element strength while the Tmax can be related to the 

material tensile strength. Therefore, the Tmax (the tensile strength of the rock or, in the model, the 

cohesive element strength) should also be considered as a key quantity. In the end, the most 

important observation is that with known material tensile strength, the key quantities picked from 

the data curve of simulation results by locating the inflection points are proved to have a 



 110 

relationship with combination of in-situ stresses. Indeed, such inflection points have already been 

observed from quarry test data of sleeve fracturing (Ohanian et al. 2021), pointing to high potential 

that these key quantities can be applied to interpret actual field test data and eventually estimate 

the maximum and minimum horizontal stress.  
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Appendix C  Picking Key Quantities for Illustrative Cases 

This section shows four illustrative cases that do not adhere as strictly to the pattern in 

Figure 22 and how to pick the key quantities for these cases.  This illustration shows that, even for 

non-ideal cases, picking key quantities to the best of one’s ability (Appendix Table 5 shows the 

picks corresponding to Appendix Figures 4-7) leads to reasonably accurate stress estimates. 

Notably, Appendix Figure 7 shows the special case with several cracks initiating at the same time. 

For such cases, the maximum horizontal stress can be assumed to be equal to the minimum 

horizontal stress. Then, the in-situ stresses can be calculated by Eq. (3-6) with P1 and Tmax. The 

comparison between the estimated and actual in-situ stresses for these four non-ideal cases are 

shown in Appendix Table 6. In addition, the data curve generated from quarry test (Ohanian et al. 

2021) is extremely similar to the data curve shown in Appendix Figure 5 with all the inflection 

points required for the application of the inversion algorithm, leading to the confidence in 

estimating in-situ stresses from the actual sleeve fracturing field data.  

 

Appendix Table 5 Key quantities for four example cases 

 𝜃 (°) P1 (MPa) P2 (MPa) 𝜎𝑃𝑃 (MPa) Tmax (MPa) 

Case10 22.5 31 60 23.5 3 

Case15 45 45.5 66 18.3 9 

Case30 67.5 32 39.5 11 8 

Case97 N 91.5 N N 6 
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Appendix Table 6 Comparison of estimated and actual in-situ stresses for four example cases 

 
Estimated 𝜎Hmax 

(MPa) 

Actual 𝜎Hmax 

(MPa) 

Estimated 𝜎hmin 

(MPa) 

Actual 𝜎hmin 

(MPa) 

Case10 35.75 35.77 22.17 21.26 

Case15 27.8 27.03 21.41 21.18 

Case30 13.4 14 11.39 12.66 

Case97 42.78 42.78 42.77 42.77 
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Appendix Figure 4 Data curves with key quantities labelled for Case 10 showing: a) P2 and 𝜎PP; b) P1. 
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Appendix Figure 5 Data curves with key quantities labelled for Case 15 showing: a) P2 and 𝜎PP; b) P1. 
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Appendix Figure 6 Data curves with key quantities labelled for Case 30 showing: a) P2 and 𝜎PP; b) P1. 
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Appendix Figure 7 Data curve for Case 97, with P1 quantity labelled. 
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Appendix D Values Corresponding to Figure 24 and 25 

This section contains three tables showing the values corresponding to Figure 24 and 24 in 

major text.  Figure 24 compares the impact of uncertainty level of different key quantity on the 

accuracy in estimation for horizontal stresses and further labelled the confidence interval for 

estimated horizontal stresses for the illustrative case. Appendix Table 7 shows the mean, standard 

deviation, and coefficient variation corresponding to each curve shown in Figure 24. Then, the 

Figure 25 is aiming showing the relationship between the uncertainty level for estimating 

horizontal stresses and the angle between the first and secondary cracks. The mean, standard 

deviation, and coefficient variation corresponding to three representative cases with different 𝜃 

and 5% uncertainty level for P2 are shown in Appendix Table 8. Appendix Table 9 compares the 

uncertainty level of estimated horizontal stresses by choosing different uncertainty level for P2. 
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Appendix Table 7 Comparison of mean and standard deviation for estimated in-situ stresses varying different 

key quantities for illustrative case (see Figure 24 in major text). 

 
Varying 

only 𝜃 

Varying 

only P1 

Varying 

only P2 

Varying 

only 

𝜎𝑃𝑃 

Varying 

only Tmax  

Varying 

All 

Mean of estimated 

𝜎Hmax (MPa) 
14.26 14.25 14.25 14.25 14.25 14.26 

Standard deviation 

of estimated 𝜎Hmax 

(MPa) 

0.32 0.084 1.66 0.3 0.025 1.72 

Coefficient 

variation of 

estimated 𝜎Hmax 

2.2 % 0.6% 11.6% 2.1% 0.2% 12% 

Mean of estimated 

𝜎hmin (MPa) 
9.75 9.75 9.75 9.75 9.75 9.75 

Standard deviation 

of estimated 𝜎hmin 

(MPa) 

0.11 0.084 0.56 0.1 0.025 0.58 

Coefficient 

variation of 

estimated 𝜎hmin 

1.1% 0.86% 5.7% 1% 0.26% 6% 
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Appendix Table 8 Comparison of mean and standard deviation for estimated in-situ stresses varying all the 

key quantities for three illustrative cases with 5% uncertainty level for P2 (see Figure 25 in major text). 

 Case 10 (𝜃=22.5°) Case 15 (𝜃=45°) Case 30 (𝜃=67.5°) 

Mean of 

estimated 𝜎Hmax 

(MPa) 

35.84 26.66 14 

Standard 

deviation of 

estimated 𝜎Hmax 

(MPa) 

7.99 2.53 0.86 

Coefficient of 

variation of 

estimated 𝜎Hmax 

22% 9.5% 6.1% 

Mean of 

estimated 𝜎hmin 

(MPa) 

21.28 21.05 12.67 

Standard 

deviation of 

estimated 𝜎hmin 

(MPa) 

2.64 0.88 0.39 

Coefficient of 

variation of 

estimated 𝜎hmin 

12% 4.2% 3.1% 
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Appendix Table 9 Comparison of mean and standard deviation for estimated in-situ stresses varying all the 

key quantities for three representative cases with different uncertainty level for P2. 

 Case 10 (𝜃=22.5°) Case 15 (𝜃=45°) Case 30 (𝜃=67.5°) 

Uncertainty of 

estimated 𝜎Hmax 

with uncertainty of 

P2 (5%) 

22% 9.5% 6.1% 

Uncertainty of 

estimated 𝜎Hmax 

with uncertainty of 

P2 (2%) 

10% 4.2% 2.6% 

Uncertainty of 

estimated 𝜎hmin 

with uncertainty of 

P2 (5%) 

12% 4.2% 3.1% 

Uncertainty of 

estimated 𝜎hmin 

with uncertainty of 

P2 (2%) 

5.7% 2.1% 2.3% 
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