Towards large-scale quantum circuit simulation (QCS) via systematic investigation and optimization.

Motivation
- Quantum supremacy
- Limited system size and access in NISQ era.
- A robust and efficient quantum circuit simulator is necessary.

Project Description
- Systematically investigate the performance deficiencies in modern quantum circuit simulation (QCS).
- Propose Q-GPU, a framework that packed with sophisticated optimizations to fuel QCS using GPUs.
- Introduce gate runahead execution to parallelize gate operations in QCS.

Context
- Observation: slow simulation and poor scalability of public quantum circuit simulators.
- Q-GPU features (Fig.1)
 - proactive state amplitude transfer,
 - zero state amplitude pruning,
 - delayed qubit involvement,
 - lossless non-zero state amplitude compression.
- Enlarge Runahead potential by:
 - gate reordering
 - gate transforming
 - gate chain scheduling on gate position sensitivity

Potential Impact
- Efficient and effective practical quantum algorithm development on quantum simulator.
- Quantum programming interfaces, compilers, and runtime management.
- Quantum computer architecture design exploration including both quantum device architecture as well as the interaction between quantum device and the classical counterparts.

Project Deliverables
- Develop a toolset to facilitate quantum-related research in NISQ era.
- Q-GPU significantly reduces the execution time of QCS across all the circuits, specifically for the largest number of qubits (Fig.2)
- Runahead work also introduce significant speedup.

References and/or Acknowledgements