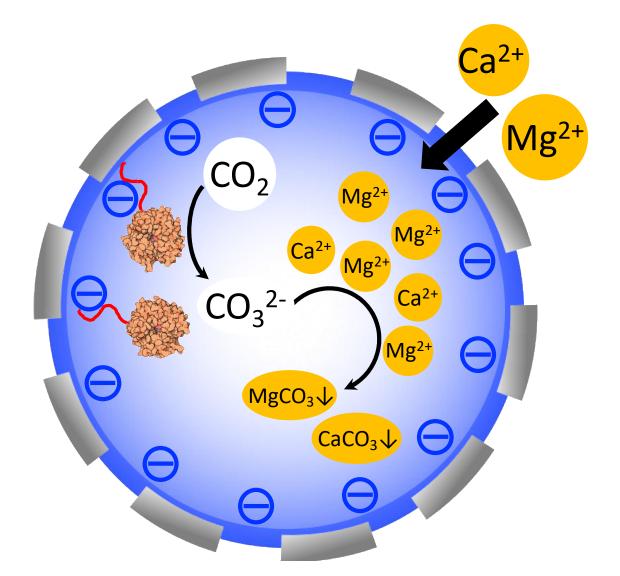
Carbonic Anhydrase-Catalyzed CO₂ Sequestration in Seawater

Meng Wang

Civil and Environmental Engineering, Swanson School of Engineering University of Pittsburgh

Motivation


- Investigate the feasibility of carbonic anhydrases for overcoming the slow CO₂ and water combination in seawater
- Explore the potential of seawater in sequestering CO₂

Project Description

- Screen and identify carbonic anhydrase isomers that retain high activity under high-salinity conditions
- Determine the optimal conditions for carbonic anhydrase-mediated carbonate precipitation in seawater
- Improve carbonic anhydrase efficacy in seawater by modifying the enzyme microenvironment

Context

- The slow combination of CO₂ and water prevents sequestering CO_2 in seawater far from cost-viable
- Current processes require alkalifying seawater¹
- We will minimize the environmental impact and reduce the cost of seawater CO₂ sequestration using carbonic anhydrase to overcome the slow kinetics of CO_2 hydration

A schematic illustration of a bionanoreactor for enhanced CO₂ sequestration. Carbonic anhydrases that convert CO₂ to carbonates² are encapsulated in a negatively-charged protein compartment, which concentrates mineral cations.³

Develop a carbonic anhydrase-based enzymatic approach for sustainable CO₂ sequestration in seawater.

Project Deliverables

- A carbonic anhydrase isomer that efficiently converts CO₂ to carbonates in seawater
- An optimal condition of carbonic anhydrase-mediated CO₂ sequestration in seawater
- A bionanoreactor that encapsulates carbonic anhydrase for enhanced CO₂ sequestration
- Two journal articles and several conference presentations
- Preliminary data for standard NSF grant applications

Potential Impact

- Lead to a new potential gigaton-scale CO₂ sequestration strategy that will make significant contributions to reaching net-zero CO₂ emissions and alleviating global warming
- Provoke the expansion of current carbon anhydrase applications to more environmental matrices such as soil and surface water bodies, which will provide a suite of solutions for sequestering CO_2

References and/or Acknowledgements

- 1. La Plante, E. C.; Simonetti, D. A.; Wang, J. B.; Al-Turki, A.; Chen, X.; Jassby, D.; Sant, G. N. Saline Water-Based Mineralization Pathway for Gigatonne-Scale CO₂ Management. ACS Sustainable Chem. *Eng.* **2021**, *9*, 1073-1089.
- 2. Effendi, S. S. W.; Ng, I. S. The Prospective and Potential of Carbonic Anhydrase for **Carbon Dioxide Sequestration: A Critical** Review. Process Biochem. 2019, 87, 55-65.
- 3. Azuma, Y.; Bader, D. L. V.; Hilvert, D. Substrate Sorting by a Supercharged Nanoreactor. J. Am. Chem. Soc. 2018, 140 (3), 860–863.