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Motivation

* Deep neural networks (DNNSs) require
massive computing resources for
moderate improvements (e.g., ~500x
more processing to achieve 2x
Improvement in accuracy [1]).

» Optical processors can operate at much
higher speeds than electrical
processors [2] but are limited in
scalability and challenging to fabricate.

Pl‘OjeCt Description
We aim to demonstrate a coherent
photonic-electronic prototype which
accelerates matrix operations for DNNSs.

* Our prototype will combine a photonic
integrated circuit with an off-the-shelf
image sensor for scalable readout at
guantum-limited efficiencies.

Context

* Our proposed approach addresses three
major challenges hindering both photonic
and electronic analog DNN accelerators:

» Sensitivity to fabrication variability
+ High-speed electrical readout
* Frequent reprogramming of analog weights
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Figure 1: Comparison with other photonic architectures. Unlike fixed-weight
photonic approaches (a) which are limited by the size of the memory array and can
require a broadband light source, we propose a time-multiplexed architecture (b)
where matrices A and B are encoded in the optical field. This decouples the optical
modulation frequency from the speed of electrical readout, significantly improving
compute efficiency.
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We aim to accelerate deep
learning applications by
designing fast, efficient,

and scalable optical

PDrocessors.
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Project Deliverables

« This work will result in the first
experimental demonstration of a
photonic matrix-matrix multiplier
using a time-multiplexed approach.

* In the following year, we will leverage
our platform to demonstrate high
speed neuromorphic computing using
time-dependent activation kernels.

* Project success will be determined by:
« Fabrication and testing of integrated
photonic components (mid-term goal)
* Functional imaging system built for
optoelectronic readout (mid-term goal)

« Demonstration of coherent matrix-
matrix multiplication (final goal)

* Simulation model to benchmark
efficiency and latency (final goal)

* Submission of CAREER proposal, journal
article, and conference paper (final goal)
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Figure 2: Schematic of proposed architecture. (a) A photonic integrated circuit with
an array of dot-product unit cells performs multiply operations on-chip through
coherent homodyne detection. An off-chip image sensor sums up the intensity and
reads out the final matrix result. (b) Each unit cell contains a photoelectric multiplier
to achieve the dot product between two time-multiplexed optical signals [3]. Light is
coupled out-of-plane to the near-IR image sensor using grating couplers to take
full advantage of both 2D and 3D integration.

Potential Impact

« We estimate our approach can improve
computational efficiency by >100x (<10
fJ/OP) while decreasing inference
latency by >10x compared to state-of-
the-art approaches [4,5]. This would
significantly reduce the carbon footprint
of deep learning architectures based on
digital electronics (e.g., GPUSs).

* Using a fabrication-tolerant design,
simple passive components, and off-
the-shelf image sensors, we envision a
qguicker path to commercial readiness
than competing approaches.
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