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Abstract 

Towards the Automation of Expanding Dynamic Network Models with Knowledge from 

Literature 

 

Yasmine Ahmed, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

Creating computational models of world complex systems, including intracellular and 

intercellular bionetworks, geopolitical, economic, environmental, and agricultural world systems, 

is a time and labor-intensive task which is often limited by the knowledge and experience of 

modelers. This has naturally led to the emergence of the idea of automating the process of building 

new models or extending existing models, which could have a significant potential in enabling 

rapid, consistent, comprehensive and robust analysis of complex systems.  

Inspired by this idea, we propose in this work different novel approaches for expanding 

models using the information extracted from literature with machine reading engines. Our 

proposed approaches combine machine reading with clustering, and graph theoretical analysis to 

create an automated framework for efficient model assembly. Furthermore, by automatically 

extending models with the information published in literature, our proposed methods allow for 

collecting the existing information in a consistent and comprehensive way. This, in turn, facilitates 

information reuse, data reproducibility, and replacing hundreds/thousands of manual experiments, 

thereby reducing the time needed for the advancement of knowledge.  

We tested how well each method can reproduce manually built and curated models in 

different biological domains, when provided with varying amount of information in the baseline 

model and in the machine reading output. In particular, we have demonstrated the reliability of the 

proposed methods using three different selected models, namely, T cell differentiation, T cell large 



 v 

granular lymphocyte, and pancreatic cancer cell. Experimental results reveal considerable 

improvements of our approaches over other related methods. Moreover, using our automated 

model extension approach, we are able to efficiently find the best set of extensions to reproduce 

the manually extended models. Besides demonstrating automated reconstruction of a model that 

was previously built manually, our methods can assemble multiple models that satisfy desired 

system properties. As such, it replaces large number of tedious or even impractical manual 

experiments and guides alternative hypotheses and interventions in biological systems. Finally, we 

explored different model versions and system property testing results in order to develop a 

heuristic to modify model update rules.  

 

Keywords: Automated model assembly, model recommendation, graph clustering, text mining, 

natural language processing, statistical model checking, stochastic simulations, Boolean modeling, 

discrete mechanistic models, query answering, colitis associated colon cancer. 
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1.0 Introduction 

1.1 Motivation 

Modeling has an important role in the process of explaining complex systems or extending 

existing models with new information. It guides data collection, allows for capturing the dynamics 

of these systems, helps identify gaps in our understanding, and thus, often leads to new questions 

and the search for missing information (Clarke & Fisher, 2020; Epstein, 2008a).  

In biology, there are several approaches that have been introduced to model the dynamics 

of biological systems. The ordinary differential equations (ODEs) is a common approach used to 

describe the rate of production or consumption of cellular components in a reaction network 

(Faeder et al., 2009). Systems modeled with ODEs follow the event-based modeling formalism, in 

which the system can be fully represented by a set of events. One possible limitation of this type 

modeling approach is with granularity when the number of network components (such as 

receptors, ligands, kinases) is large. Even with the availability of fast methods such as BioNetGen 

(Smith et al., 2012) and RuleBender (Smith et al., 2012), such approach requires quantitative 

knowledge about network details necessary for accurate ODE-based models. Modelers are familiar 

only with indirect cause-effect relationships for a number of events in the network, since there is 

a limited knowledge about exact mechanisms and parameters necessary to create ODEs.  

Therefore, it is often necessary and more practical to work at higher levels of abstraction 

due to a lack of information required to develop such models. Element-based modeling approaches 

have been suggested to overcome the issue of missing information while still providing important 

insights into system behavior (R. Albert & Thakar, 2014; Miskov-Zivanov, Turner, et al., 2013a; 
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Schwab et al., 2020a). In element-based approaches, a model consists of multiple elements (which 

determines granularity) with defined interactions. Discrete variables (which determines the 

resolution) are associated with each element, and regulation functions or update rules allow 

simulation of the model by calculating next-state values of each element variable over time. 

Element-based approaches balance model simplicity with accuracy (Sayed, Telmer, et al., 2018; 

C. A. Telmer, Bocan, et al., 2019). This approach studies an element as a unit, in which the states 

change over time as determined by its regulation functions. In this work, we focus on element-

based models and in particular, on discrete models. In section 2.1, we show a detailed example of 

a discrete model of colon cancer that we have recently created. 

Model creation is highly dependent on human input, it requires reading hundreds of papers 

to extract useful information, incorporating background and common-sense knowledge of domain 

experts, and conducting wet lab experiments(J. Fisher & Henzinger, 2007).  

Moreover, the amount of biological data is constantly growing, further augmenting the 

issues of data inconsistency and fragmentation(Frisoni et al., 2021; Valenzuela-Escárcega et al., 

2015). Therefore, the automation of model building, and even more, of model extension, when 

new information becomes available, or when the domain knowledge advances, is a critical next 

step for computational modeling. Such automation will not only lead to more efficient modeling 

due to reducing the amount of slow human interventions, but will also allow for more consistent, 

comprehensive and robust modeling process. 

Recently, there has been a push in the field of synthetic biology to automate the entire 

pathway of model assembly, starting with collecting biological interactions, assembling a model, 

and performing simulations. Approaches like Path2Models (Büchel et al., 2013) and 

INDRA(Gyori et al., 2017a), will automatically generate quantitative or qualitative models based 
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on the granularity of the information they are given. Unfortunately, the utility and accuracy of the 

assembled models are dependent upon the modeling approach, biological context, and correctness 

of the starting information. These techniques rely on accurate information, and their performance 

suffers when the interaction information is inaccurate, incomplete, or from a different biological 

context. 

1.2 Dissertation Scope 

In this dissertation, we are mostly interested in assembling computational models that 

explain how biomolecular signaling pathways regulate cell functions (G.T. Zañudo et al., 2018; 

Schwab et al., 2020b). Usually, modelers start with a few seed components and their interactions, 

which summarizes domain experts’ knowledge about the system, or with a baseline model that can 

be found in curated public model databases such as Reactome (Fabregat et al., 2018), STRING 

(von Mering et al., 2005), KEGG (Aoki & Kanehisa, 2005), or in published literature. Depending 

on the questions to be answered by the model, the baseline model is often further extended with 

the information extracted from literature or obtained from experts (Miskov-Zivanov, 2015). 

In order to automate the collection of articles and information extraction, one begins with 

a formal search query, which is defined according to a question posed about the modeled system. 

The search query guides automated selection of articles that contain relevant information from 

published literature databases. As the biomedical literature mining tools are becoming essential 

for the high throughput extraction of knowledge from scientific papers, we use in our work existing 

machine reading engines. We then use the extracted information to extend or assemble models in 

order to answer questions about the system under investigation (Etzioni et al., 2006).  
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In (Liang et al., 2017), the authors proposed a method that starts with a baseline model and 

selects interactions automatically extracted from published work. The goal of (Liang et al., 2017) 

was to build a model that satisfies pre-defined requirements or to identify new therapeutic targets, 

formally expressed as existing or desired system properties. As results in (Liang et al., 2017) 

demonstrate, automatic model extension is a promising approach for accelerating modeling, and 

consequently, disease treatment design. The authors in (Liang et al., 2017) organize the 

information extracted from literature into layers, based on their proximity to the baseline model. 

Recently, another extension method that uses a Genetic Algorithm (GA) was proposed in (Sayed, 

Bocan, et al., 2018). The GA-based approach was able to extract a set of extensions that led to the 

desired behavior of the final extended model. The disadvantages of the GA-based approach include 

non-determinism, as the solution may vary across multiple algorithm executions on the same 

inputs, as well as issues with scalability.  

Therefore, there is a pressing need for developing a tool and a methodology that 

automatically and efficiently assembles the information extracted from available literature into 

models, tests the newly assembled models, and selects the most suitable model to address user 

questions. In contrast to the previously published work (Liang et al., 2017; Sayed, Bocan, et al., 

2018), our approach focuses on identifying clusters of strongly connected elements in the newly 

extracted information, that have a measurable impact when added to the model. Once the 

interactions extracted from the literature are clustered, we score their performance on a selected 

set of system properties, using stochastic simulation methods (Sayed, Kuo, et al., 2018) and 

statistical model checking (Wang, 2016). The scoring helps determine which clusters to add to the 

baseline model. The process of selecting and scoring the interactions takes at most a few hours to 
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execute thousands of experiments in silico, which would take days, or months, or would be 

impractical to conduct in vivo or in vitro.  

1.3 Dissertation Contributions 

In this work, our main goal is to develop versatile and efficient methods that can be used 

to extend many different dynamic network models automatically and without human interventions. 

In particular, we are interested in developing innovative approaches that utilize new combinations 

of extracted data to address previously intractable questions. This is achieved by collecting the 

existing information from literature in a rapid, consistent and comprehensive way, which in turns 

will facilitate information reuse and data reproducibility, and will replace hundreds or thousands 

of manual experiments, since the time needed for the advancement of knowledge is reduced.  The 

contributions of this work include: 

Main contribution #1 We propose ACCORDION (ACCelerating and Optimizing model 

RecommenDatIONs), a new method to extend dynamic network models, that combines clustering 

with simulation and formal analysis in order to test the possible candidate models on a set of 

formally written desired system properties. 

Main contribution #2 We propose MELOGRAPH (Model Extension using 

coLlabOration GRAPH), an automated framework for rapid model assembly that combines 

machine reading, the frequency class-based metric, and graph analysis. Using MELOGRAPH, we 

will explore the utility of several graph centrality metrics for guiding model extension.  

Main contribution #3 We propose CLARINET (CLARIfying NETworks), an automated, 

fast methodology and a tool that selects relevant knowledge from published papers and suggests 
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most useful model extensions. CLARINET extracts the events from literature as a collaboration 

graph, including several metrics that rely on the event occurrence and co-occurrence frequency in 

literature.  

Main contribution #4 Exploring different dynamic network model versions and system 

property testing results in order to develop a heuristic to modify model update rules.  

Main contribution #5 Applying our proposed model extension methods on several other 

models in different biological domains, e.g., T cell differentiation, T cell large granular 

lymphocyte, and pancreatic cancer cell. 

1.4 Dissertation Organization 

The dissertation is organized as follows. In chapter 2, we provide a background on discrete 

models, the nature and the representation of information extracted from literature, in addition to 

the model representation format that will be used throughout the thesis. We will also provide a 

brief explanation of two different model analysis approaches, common graph network metrics, and 

an overview of the three use cases for three published models namely, T cell differentiation model, 

Pancreatic cancer cell model, that we will use to demonstrate the main steps of our proposed 

methods. In Chapter 3, 4 and 5, we describe the details of implementation and the results of our 

proposed methods and tools, ACCORDION, MELOGRAPH and CLARINET. For each method, 

we describe a detailed explanation of the methodology as well as the main contributions and the 

outcomes of applying each tool on the use cases described in Chapter 2. In chapter 6, we present 

a comprehensive comparative analysis between our proposed methods and other competitive 

methods that have been recently proposed. In chapter 7, we summarize the conclusions of the 
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research presented in this dissertation and the possible future directions to be investigated as the 

next steps for this research.  
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2.0 Background 

2.1 Computational Model of Signaling Pathways in Ulcerative Colitis (UC) and Colitis-

Associated Colon Cancer (CACC) 

Computational mechanistic models of within-cell signal transduction networks can explain 

how these networks integrate internal and external inputs to give rise to the appropriate cellular 

response (Gómez Tejeda Zañudo et al., 2017). These models can be used in cancer cells, whose 

aberrant decision-making regarding their survival or death, proliferation or quiescence can be 

connected to errors in the state of nodes or edges of the signal transduction network. Reaction 

network models require detailed quantitative data that are not always available (Miskov-Zivanov, 

Turner, et al., 2013a). However, the use of logic-based, discrete dynamic models does not require 

quantitative parameters needed in a reaction network model, but rather enables the development 

of complex qualitative networks. Moreover, it enables the identification of results that are mainly 

due to the organization of the signaling network, and those that also depend on the kinetics of 

individual events. Network-based models such as this will play an increasing role in the rational 

design of high-order therapeutic combinations. 

In this study, we have uncovered novel regulatory axes interconnecting macrophages and 

colon cells involved in ulcerative colitis (UC) and colitis-associated colon cancer (CACC). Patients 

with UC have an increased risk of developing CACC. Changes in glycosylation of the oncoprotein 

MUC1 commonly occur in chronic inflammation, including UC, and this abnormally glycosylated 

MUC1 has been shown to promote cancer development and progression. What causes changes in 

glycosylation of MUC1 is not known. Gene expression profiling of myeloid cells in inflamed and 
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malignant colon tissues showed increased expression levels of inflammatory macrophage-

associated cytokines compared to normal tissues. We analyzed the involvement of these cytokines 

and macrophages that produced them in the induction of aberrant MUC1 glycoforms. A co-culture 

system was used first to examine the effects of M1 and M2 macrophages on glycosylation-related 

enzymes in colon cancer cells. M2-like macrophages induced the expression of the 

glycosyltransferase ST6GALNAC1, an enzyme that adds sialic acid to O-linked GalNAc residues, 

promoting the formation of tumor-associated sialyl-Tn (sTn) O-glycans. Immunostaining of UC 

and CACC tissue samples confirmed the elevated number of M2-like macrophages as well as high 

expression of ST6GALNAC1 and the altered MUC1-sTn glycoform on colon cells. Cytokine 

arrays and blocking antibody experiments indicated that the macrophage-dependent 

ST6GALNAC1 activation was mediated by IL-13 and CCL17. We demonstrated that IL-13 

promoted phosphorylation of STAT6 to activate transcription of ST6GALNAC1. A computational 

model of signaling pathways was assembled and used to test IL-13 inhibition as a possible therapy. 

Our findings reveal a novel cellular crosstalk between colon cells and macrophages within the 

inflamed and malignant colon that contributes to the pathogenesis of UC and CACC. 

The protein interactions involved in signaling pathways investigated in this study were 

collected from the literature to be entered using the BioRECIPES tabular format (Sayed, Telmer, 

et al., 2018), described in Section 2.3, a model representation format that includes, for each model 

element: name, type (protein, gene or a chemical), cellular location, number of possible discrete 

states, and formatted list of regulators. Three levels are used to represent activation or inhibition 

of elements. Specifically, level 0 if the element has low activity, level 1 if the element has moderate 

activity and 2 has high activity. From the tabular representation, an executable discrete model is 

created using element update functions generated from the formatted regulator lists. Simulations 
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of the model were performed using the publicly available stochastic simulator, DiSH (Sayed, Kuo, 

et al., 2018), described in Section 2.4.1.  

 

Figure 1 Interaction map of the UC and CACC model. Pointed arrows represent activation; blunted arrows 

represent inhibition. The cytokines (triangles) were selected from experiments and represented as inputs, these 

ligands bound to the receptors (orange shape) at the plasma membrane, and the signal was transduced across 

the membrane by activating the receptors. Signaling cascades then relayed the signal through the cytosol to the 

transcription factors STAT1, STAT3, STAT6, and AKT. The latter were translocated into the nucleus to 

regulate the ST6GALNAC1 gene (rectangle) to influence the amount of enzyme in the Golgi and ultimately the 

glycosylation of the extracellular sTn form of MUC1 

Different experimental conditions, scenarios, are defined by assigning initial values to all 

model elements, and a set of inputs for scenarios of normal, UC, CACC and IL-13 inhibitor. Many 

independent runs of the scenario represent multiple cells in an experiment that have the same 

starting point but traverse through time steps differently. From these individual simulation runs, 
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we computed average trajectories to plot and visualize element behavior over time.  We assembled 

a computational model that incorporates our experimental data and what has been reported in the 

literature to simulate signaling pathways potentially involved in the development of UC and CACC 

(Figure 1). The granular modeling framework utilizes a standardized tabular framework (Section 

2.3) and the DiSH simulator (Section 2.4.1). In this modeling approach discrete elements change 

state depending on the influences of positive or negative regulators. The inputs are ligands present 

in the tumor microenvironment (Figure 2(a)) that stimulate signaling cascades to influence the 

ST6GALNAC1 gene and MUC1 protein of colon cells (Figure 1). The stochastic simulation results 

reflected the experimental results for the normal, UC and CACC scenarios, when 

microenvironment signaling ligands are used as inputs (Figure 2(a), (b)). Higher levels of IL13 

and CCL17 observed in M2 co-culture with HT-29 cells and CACC result in increased 

transcription of ST6GALNAC1 and MUC1 sTn mediated by p-STAT6 and P65. Introduction of 

an IL-13 inhibitor resulted in decreased sTn only when introduced to UC and not CACC suggesting 

early intervention as a therapeutic strategy (Figure 2(c)). The model has IL-6 and IL-13 activating 

STAT6, however IL-6 is present in CACC and therefore the IL-13 inhibitor alone does not prevent 

ST6GALNAC1 transcription as the model still predicts its expression will occur downstream of 

IL-6. Experimental data and the computational model (Kvorjak et al., 2019) indicate that the 

IKK/IKB/P65 pathway is active in the presence of IL13 and CCL17 regulating the PI3K/AKT 

pathway through inhibition of PTEN. 

The proposed computational model also provided indications for the involvement of NF-

kB and suggests future studies including VEGF-A signaling. Further studies will investigate these 

results and will allow for rapid testing of multiple scenarios to replace difficult and expensive 

experiments.  
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Figure 2 (a) Table showing cytokine input levels for UC and CACC. (b) Simulation results showing the average 

behavior from 200 runs over 1000 time steps for MUC1 sTn for three different scenarios (Normal, UC and 

CACC). (c) Simulation results showing the average behavior from 200 runs over 1000 time steps for MUC1 

sTn for two different scenarios (UC + IL-13 inhibitor and CACC + IL-13 inhibitor) 

2.2 Information Extraction from Literature  

Extraction from literature usually starts with a question, for example, “How is PTEN 

regulation involved in T-cell fate?” We can write these questions as logical expressions (Figure 

3(a)). These formally written queries are used to search public literature databases (e.g., PubMed 

(Roberts, 2001)) as illustrated in (Figure 3(b)). Once the relevant papers are selected, they are sent 

to machine reading engines for automated extraction of information (Figure 3(b)).  

The state-of-the-art automated reading engines ((Burns et al., 2016; Valenzuela-escárcega 

et al., 2018)) are capable of finding hundreds of thousands of events in cellular signaling pathways 

from thousands of papers, in a few hours. Events in the machine reading output represent 

interactions between biochemical entities, such as post-translational modifications (e.g., binding, 

phosphorylation, ubiquitination, etc.), transcription, translation, translocation, and increase or 
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decrease of amount or activity. In the context of biomedical literature, entities are usually proteins, 

chemicals, genes, and RNAs, although sometimes they also represent biological processes. For 

each extracted entity, reading engines provide its name, the database where it is characterized, and 

the database identifier (ID) for the entity. Machine reading also collects the evidence, usually a 

sentence from which the event was extracted. For our case study, we used an open-source reading 

engine, REACH (Valenzuela-escárcega et al., 2018), to quickly obtain information from 

biomedical literature. In (Figure 4(a)), we show two example sentences. The REACH reading 

engine extracts events into an interaction-based format shown in (Figure 4(b)). We will refer to 

the list of interactions retrieved from literature in this format as reading output. The graphical 

representation or the interaction map of REACH outputs is illustrated in (Figure 4(c)), pointed 

arrows represent activation (increase in the amount or activity), blunt arrows represent inhibition 

(decrease in the amount or activity). 

 

 

Figure 3 (a) Example query used to select relevant papers, (b) Main components of information extraction 

from relevant papers. 
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Figure 4  (a) Two example sentences with highlighted entities and events that are extracted by machine 

readers, (b) Tabular outputs from REACH engine when reading example sentences from (a), (c) Graphical 

representation of REACH outputs. 

2.3 Model Representation and Executable Models  

We can automatically translate the three rows in the table in (Figure 4(b)) into the element-

based BioRECIPES format (Sayed, Telmer, et al., 2018), which is then used as input to the 

executable model generation (see Section 2.2). The BioRECIPES tabular model representation 

format is illustrated in (Figure 5(a)) with several examples of molecules and interactions in T cells 

(Miskov-Zivanov, Turner, et al., 2013a). In the examples, PTEN is positively regulated by Foxp3, 

and negatively regulated by TCR. Ras has one positive regulator, TCR, and no negative regulators. 

IL-2 has positive and negative regulators, Ras and Foxp3, respectively. 
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The BioRECIPES representation format includes, for each model element: (i) name, (ii) 

type (protein, gene, RNA, or a chemical), (iii) identifier from a database (e.g., UniProt (Bateman 

et al., 2017)), (iv) variable that represents state, and (v) set of regulators. While the BioRECIPES 

format is a sufficient representation for all the relevant element and interaction information, all 

interactions in a model can also be represented as a directed graph G(V, E), with a set of nodes V 

and a set of directed edges E. Each node v ∈ V corresponds to one model element, and each edge 

e(vi, vj) ∈ E represents a directed interaction in which element vi regulates element vj. The graphical 

representation of all model interactions is often referred to as an influence map, and it is especially 

useful for the extension methods proposed in this work, as will be discussed in Chapter 3. In 

(Figure 5(b)), we show a graph of element interactions that are listed in the table. As can be seen 

in the graph, we include the information about the sign of the interaction in the form of arrow type, 

a pointed arrow represents positive regulation (activation), while a blunt arrow represents negative 

regulation (inhibition).  

We will refer to the set of regulators of an element as its influence set, distinguishing 

between positive and negative regulators. Additionally, we can define a vector of all variables 

representing states of model elements as x = (x1,…., xN), where N=|V| is the total number of model 

elements. If we use Boolean variables, then xi ∈ {0, 1}, where i=1,…..,N. Next, we can assign a 

state transition function to any model element, which defines a state change of the element, given 

the states of its regulators. We will refer to these functions as element update rules and to the 

model with update rules as an executable model. In the case of Boolean variables representing 

element states, the basic operations are AND (*), OR (+) and NOT (!). For example, one version 

of update rules for the small graph in Figure 5 can be: PTEN = Foxp3 * !TCR, Ras = TCR, and 

IL-2 = Ras * !Foxp3. The choice between AND and OR operation depends on the available 
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information about interactions and element regulations. For example, for an element to be 

“activated”, all necessary regulators are combined with an AND operation, and all sufficient 

regulators with an OR operation. 

 

Figure 5 (a) Tabular representation of several elements and their influence sets (positive and negative 

regulators) in BioRECIPES format, (b) graphical repre-sentation of elements and influence sets. 

 

2.4 Model Analysis  

In this section, we describe two methods that we use to analyze the models extended with the 

newly obtained information and data.  

2.4.1 Stochastic Simulation 

We use the DiSH simulator (Sayed, Kuo, et al., 2018) to observe dynamic behavior of the 

baseline model and the extended models. DiSH can simulate networks with multi-valued elements 

in both deterministic and stochastic manner, and we utilize both of these features in our extension 
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analysis, as shown later in Chapter 3. Each simulation run starts with a specified initial model state, 

where initial values are assigned to all model elements to represent a particular system state (e.g., 

naïve T cell, regulatory T cell, etc.). Next, we use element update rules to determine element state 

transitions. We track element changes for a predefined number of simulation steps, or until a steady 

state is reached (Sayed, Kuo, et al., 2018).  

Furthermore, this approach has been used for simulation and analysis of discrete models, such as 

those described in (Miskov-Zivanov, Turner, et al., 2013a; Zhang et al., 2008) and was previously 

incorporated into several other tools ((I. Albert et al., 2008; Helikar et al., 2012; Naldi et al., 2018). 

If we assume that a simulation run has M steps, we define a trajectory of element xi in the kth run 

as a time course of its state values Tk(xi)= (xi0, xi1,…, xiM)k in time steps t=0,..,M. When the 

simulator is in the stochastic mode, in each simulation step, only one element is randomly chosen, 

and its new value is computed according to its update rule. Depending on the information available, 

the rates at which elements are updated can be different across model elements; when there is 

limited information about elements, we choose to use the same update rate for all elements. In 

either case, due to the randomness in element update order, multiple runs that start with the same 

initial state may result in different (non-deterministic) state transitions, and thus, in different 

trajectories of state changes in time. DiSH simulations output a file that includes all the simulated 

trajectories for all model elements, in other words, for K runs, for each model element xi, we obtain 

its simulated trajectories T(xi)={T1(xi), T2(xi)…, TK(xi)}. These trajectories can be used to plot and 

visualize behavior over time for any given element. Typically, averaged trajectories are plotted 

((Miskov-Zivanov, Turner, et al., 2013a; Zhang et al., 2008)), where an average element state value 

is computed across all trajectories, in each simulation step. 
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2.4.2 Statistical Model Checking 

In this work, we use statistical model checking ((Kumar-Jha et al., 2009; Wang et al., 

2016)) to test all generated models against formally defined properties. Model checking is often 

used to verify whether a model of a system, or a system design, satisfies a set of properties 

describing expected behavior of the system. Each property is encoded into Bounded Linear 

Temporal Logic (BLTL) ((Kumar-Jha et al., 2009; Tkachev & Abate, 2013)). Here, we use 

statistical model checking since the state transitions are not necessarily deterministic, and we 

follow the simulation approach described in Section 2.3.1. To avoid a full state space search, 

statistical model checking conducts randomized sampling to generate simulation trajectories of the 

model and performs statistical analysis on those trajectories. The input to the statistical model 

checker is a system property expressed as a BLTL formula, and the output is a probability estimate 

(P) that the model satisfies a given property, under particular error interval for the estimate. For 

instance, let us assume that we would like to test a property that, at any point within the first s1 

time steps, element vi becomes 1 and element vj becomes 0, and that they both keep those values 

for at least s2 time steps. We would then write the formula: 

 𝑭𝒔𝟏𝑮𝒔𝟐(𝒗𝒊 = 𝟏 ∧ 𝒗𝒋 = 𝟎 )                                                                                                                                      (2.1) 

where 𝐹𝑠1stands for “any time in the future s1 steps”, and 𝐺𝑠2 stands for “globally for s2 

steps”. 
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2.5 Common Graph Metrics 

As a brief background for the analysis that we will describe in chapters 3 and 4, we provide 

here definitions of static network characteristics (average path length (APL), clustering coefficient 

(Coeff), and graph density) (Newman, 2003a) as well as several node and edge centrality metrics 

commonly used in network theory (degree, neighborhood connectivity, betweenness centrality, 

closeness centrality, radiality, and edge betweenness) (Scardoni & Lau, 2012). We will later 

discuss some of these metrics in the context of the new metrics that we propose in chapter 4. 

Degree (D) of a node vi is the number of its adjacent edges in an undirected graph, and in 

a directed graph, is the sum of the in-degree (the number of incoming edges) and the out-degree 

(the number of outgoing edges) of vi. 

Assuming that a distance d(vi, vj) is the number of edges on a shortest path between nodes 

vi and vj, APL is computed as an average distance across all possible pairs of nodes in the graph: 

𝑨𝑷𝑳 =
𝟏

|𝑽𝒏𝒆𝒘,∗|∙(|𝑽𝒏𝒆𝒘,∗|−𝟏)
∙ ∑ 𝒅(𝒗𝒊, 𝒗𝒋)𝒗𝒊,𝒗𝒋∈𝑽𝒏𝒆𝒘,∗,𝒗𝒊≠𝒗𝒋

                                                                                              (2.2) 

where |Vnew,*| is the number of nodes in the graph. If there is no path between vi and vj, then d(vi, 

vj )=0.  

The clustering coefficient (Coeff) (Newman, 2003a) is computed for each node vi in a 

directed graph as: 

𝑪𝒐𝒆𝒇𝒇(𝒗𝒊) =
𝑻(𝒗𝒊)

𝑫𝒕𝒐𝒕(𝒗𝒊)∙(𝑫𝒕𝒐𝒕(𝒗𝒊)−𝟏)−𝟐∙𝑫↔(𝒗𝒊)
                                                                                                                  (2.3) 

where T(vi) is the number of triangles (three connected nodes) in the graph that contain node vi, 

and 𝐷↔(vi) is the reciprocal of D(vi). Coeff is a number between 0 and 1, and therefore, if an 

average Coeff value, computed across all graph nodes, approaches 0, the graph is more likely to 

contain stars, while when this value approaches 1, the graph is a clique.  
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The graph density (Newman, 2003b) is defined for a directed graph as: 

𝒈𝒓𝒂𝒑𝒉 𝒅𝒆𝒏𝒔𝒊𝒕𝒚 =
|𝑬𝒏𝒆𝒘,∗|

|𝑽𝒏𝒆𝒘,∗|(|𝑽𝒏𝒆𝒘,∗|−𝟏)
                                                                                                                       (2.4) 

where |Enew,*| is the number of edges and |Vnew,*| is the number of nodes in the graph. A graph is 

considered to be dense if the number of edges is close to the maximum number of possible edges, 

therefore, the graph density is close to 1 for a dense graph and close to 0 for a sparse graph. 

Neighborhood Connectivity (NC) of a node is an average of the D value of all its neighbors, 

where a neighbor is a node connected with the given node via an edge. Nodes with more neighbors 

tend to have these neighbors more connected (larger NC), while nodes with few neighbors usually 

have their neighbors less connected (smaller NC).  

Betweenness Centrality (BC) of a node is the number of shortest paths between any other 

couple of nodes, that pass through the given node. High BC value for a node indicates that the 

node, for certain paths, is crucial to maintain node connections.  

Closeness Centrality (CC) of a node is an inverse of a sum of the lengths of shortest paths 

between the node and all the other nodes in the graph. Higher CC value for a node indicates more 

proximity to other nodes.  

Radiality (R) of a node is computed by first finding the lengths of shortest paths between 

the node and every other node in the graph, then subtracting the value of the diameter (the maximal 

possible distance between nodes) from each shortest path length, and finally adding all the 

resulting values. If a node radiality is high compared to the average radiality of the network, this 

means that the node is generally closer to the other nodes, however, if the radiality is low, the node 

is peripheral. 
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2.6 Case Studies 

2.6.1 Naïve T cell Differentiation Case Study 

Naïve peripheral T cells are stimulated via antigen presentation to T cell receptor (TCR) 

and with co-stimulation at CD28 receptor. This stimulation results in the activation of several 

downstream pathways, feedback and feedforward loops between pathway elements, which then 

lead to the differentiation of naïve T cells into helper (Th) or regulatory (Treg) phenotypes. The 

distribution between Th and Treg cells within the T cell population depends on antigen dose; for 

instance, high antigen dose results in prevalence of Th cells, while low antigen dose leads to a 

mixed population of Th and Treg cells. The key markers that are commonly used to measure the 

outcomes of the naïve T cell differentiation into Th and Treg cells are IL2 and Foxp3, respectively. 

In other words, Th cells are characterized by high expression of IL-2 and low expression of Foxp3, 

and Treg cells are characterized by high expression of Foxp3 and low expression of IL-2. To 

demonstrate our model extension procedure, we use two existing, manually built models of T cell 

differentiation, from (Miskov-Zivanov, Turner, et al., 2013a) and (Hawse et al., 2015a).  

2.6.1.1 Baseline Model and Golden Model 

 

In (Miskov-Zivanov, Turner, et al., 2013a), the authors proposed a model where most of 

the elements are assumed to have two main levels of activity, and are therefore represented with 

Boolean variables, and their update rules are logic functions. Additionally, the stimulation through 

TCR is assumed to have three different levels, no stimulation (TCR=0), low dose (TCR=1), and 

high dose (TCR=2), and therefore, it is implemented using two Boolean variables. We used the 



 22 

model from (Miskov-Zivanov, Turner, et al., 2013b) to create the baseline model for our case 

study. The interaction map of this model is provided in (Miskov-Zivanov, Turner, et al., 2013b).  

In (Hawse et al., 2015a), the authors have proposed an extension of the original T cell 

model from (Miskov-Zivanov, Turner, et al., 2013b), a new model that improved the behavior of 

the original model. Specifically, in the new model in (Hawse et al., 2015a), the Foxp3 response to 

low dose is closer to experimental observations, that is, it is present in almost 70% of the 

differentiated population, while in (Miskov-Zivanov, Turner, et al., 2013b) Foxp3 was present in 

100% of the differentiated population. In both models, there is a brief transient induction of Foxp3 

after the stimulation with high antigen dose. We will refer to the model from (Hawse et al., 2015a) 

as the golden model. For the baseline, we used the original model from (Miskov-Zivanov, Turner, 

et al., 2013b), without several interactions overlapping with the golden model from (Hawse et al., 

2015a) (TCR activates PIP3, PIP3 activates Akt, Akt activates mTORC2 and mTORC2 inhibits 

Akt). While the model from (Miskov-Zivanov, Turner, et al., 2013b) satisfied a large number of 

system properties, except for a few that are satisfied by the model in (Hawse et al., 2015a) only, 

the baseline model in its reduced shape does not satisfy a larger set of system properties. Our aim 

is to use our proposed extension methods to automatically expand this baseline model in order to 

recapitulate the behavior of the golden model. 

2.6.1.2 Set of Properties 

From the golden model in (Hawse et al., 2015a) and the results of its studies, we define a 

set of properties that our final automatically extended model (as will be shown later in chapters 3 

and 4) needs to satisfy. Specifically, the properties capture observed responses of key pathway 

components in T cells, Foxp3, IL-2, PTEN, CD25, STAT5, AKT, mTOR, mTORC2 and FoxO1, 

to three scenarios: (1) no stimulation (TCR=0), (2) stimulation with low antigen dose (TCR=1), 
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and (3) stimulations with high antigen dose (TCR=2). The complete list of 27 properties is shown 

in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24 

Table 1 The set of properties that are observed to be true in Tcell model (Miskov-Zivanov, Turner, et al., 

2013b)(Hawse et al., 2015b) written in BLTL format as well as the corresponding scenario, description in 

plain English and the goal property probability values 

 

Prop. 

 

Description  

 

BLTL format 

 

Expected 

Scenario 0: No TCR    

1 Once deactivated, AKT will remain inactive until end of analyzed period F[1500]G[50](AKT==0) 1 

2 Once activated, PTEN will remain active until end of analyzed period 
F[1500]G[50](PTEN==1) 

0.338 

3 
Once deactivated, FOXP3 will remain inactive until end of analyzed 

period 

F[1500]G[50](FOXP3==

0) 
1 

4 Once deactivated, IL2 will remain inactive until end of analyzed period F[1500]G[50](IL2==0) 1 

5 Once deactivated, CD25 will remain inactive until end of analyzed period F[1500]G[50](CD25==0) 1 

6 
Once deactivated, STAT5 will remain inactive until end of analyzed 

period 

F[1500]G[50](STAT5==

0) 
1 

7 
Once deactivated, mTORC1 will remain inactive until end of analyzed 

period 

F[1500]G[50](MTORC1

==0) 
1 

8 
Once deactivated, mTORC2 will remain inactive until end of analyzed 

period 

F[1500]G[50](MTORC2

==0) 
1 

9 Once activated, FOXO1 will remain active until end of analyzed period 
F[1500]G[50](FOXO1==

1) 
1 

Scenario 1: Low TCR    

10 Once deactivated, AKT will remain inactive until end of analyzed period F[1500]G[50](AKT==0) 1 

11 Once activated, PTEN will remain active until end of analyzed period F[1500]G[50](PTEN==1) 0.9 

12 Once activated, FOXP3 will remain active until end of analyzed period 
F[1500]G[50](FOXP3==

1) 
0.760 

13 Once deactivated, IL2 will remain inactive until end of analyzed period F[1500]G[50](IL2==0) 1 

14 Once activated, CD25 will remain active until end of analyzed period F[1500]G[50](CD25==1) 1 

15 Once activated, STAT5 will remain active until end of analyzed period 
F[1500]G[50](STAT5==

1) 
1 

16 
Once deactivated, mTORC1 will remain active until end of analyzed 

period 

F[1500]G[50](MTORC1

==0) 
1 

17 Once activated, mTORC2 will remain active until end of analyzed period 
F[1500]G[50](MTORC2

==1) 
1 

18 Once activated, FOXO1 will remain active until end of analyzed period 
F[1500]G[50](FOXO1==

1) 
1 

Scenario 2: High TCR    

19 Once activated, AKT will remain inactive until end of analyzed period F[1500]G[50](AKT==1) 1 

20 In developing Th, PTEN decreases and remains absent F[1500]G[50](PTEN==0) 1 

21 
Once deactivated, FOXP3 will remain inactive until end of analyzed 

period 

F[1500]G[50](FOXP3==

0) 
1 

22 Once activated, IL2 will remain active until end of analyzed period F[1500]G[50](IL2==1) 1 

23 Once activated, CD25 will remain active until end of analyzed period F[1500]G[50](CD25==1) 1 

24 Once activated, STAT5 will remain active until end of analyzed period 
F[1500]G[50](STAT5==

1) 
1 

25 
Once activated, mTORC1 will remain inactive until end of analyzed 

period 

F[1500]G[50](MTORC1

==1) 
1 

26 Once activated, mTORC2 will remain active until end of analyzed period 
F[1500]G[50](MTORC2

==1) 
1 

27 Once activated, FOXO1 will remain active until end of analyzed period 
F[1500]G[50](FOXO1==

0) 
1 
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2.6.2 T cell Large Granular Lymphocyte (T-LGL) Leukemia 

The T cell large granular lymphocyte (T-LGL) leukemia is a disease characterized by an 

abnormal increase of cytotoxic T lymphocytes (CTLs) (Zhang et al., 2008). As described by 

authors in (Zhang et al., 2008), similar to normal activated CTL, leukemic T-LGL exhibit 

activation of multiple survival signaling pathways. Unlike normal activated CTL, leukemic T-LGL 

are not sensitive to Fas-induced apoptosis, a process essential for activation-induced cell death. 

There is no curative therapy yet known for this disease. Hence, there is a crucial need to identify 

potential therapeutic targets. A discrete dynamic model has been proposed in (Zhang et al., 2008) 

to understand the signaling components that determine the survival of CTL cells in T-LGL 

leukemia. The model incorporates the signaling pathways involved in normal cytotoxic T cells 

activation and the known deregulations of survival signaling in leukemic T-LGL. The model 

includes proteins, mRNAs, small molecules such as lipids and biological processes that indicate 

cell fate such as cytoskeleton signaling, proliferation and apoptosis. 

2.6.2.1 Baseline Model and Golden Model 

For the TLGL case study, the model published in  (Zhang et al., 2008)will serve as the 

golden model, whereas the baseline model for this study will be created by removing all direct 

regulators of the 19 model elements that were identified by (Saadatpour et al., 2011) as therapeutic 

targets. According to (Saadatpour et al., 2011), these elements are: BID, Caspase, Ceramide, DISC, 

ERK, GAP, IL2RB, IL2RBT, JAK, MCL1, MEK, NFKB, PDGFR, PI3K, RAS, S1P, SOCS, 

SPHK1 and STAT3.  
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2.6.2.2 Set of Properties 

Here, we define the set of properties that our final automatically extended model needs to 

satisfy as the properties that capture the observed responses of the 19 therapeutic targets in the 

golden model under one scenario (Table 2). 

Table 2 The set of properties that are observed to be true in T-LGL(Zhang et al., 2008) model written in 

BLTL format as well as the corresponding scenario, description in plain English and the goal property 

probability values 

Prop. 
#  

Description  
BLTL 
format 

Expected  
value 

1 Once deactivated, DISC will remain inactive until end of 
analyzed period 

F[1500]G[50](DISC==0) 1 

2 
Once deactivated, Ceramide will remain inactive until 

end of analyzed period F[1500]G[50](Ceramide==0) 
1 

3 
Once deactivated, Caspase will remain inactive until end 

of analyzed period F[1500]G[50](Caspase==0) 
1 

4 
Once activated, SPHK1 will remain active until end of 

analyzed period F[1500]G[50](SPHK1==1) 
1 

5 
Once activated, S1P will remain active until end of 

analyzed period F[1500]G[50](S1P==1) 
1 

6 
Once activated, PDGFR will remain active until end of 

analyzed period F[1500]G[50](PDGFR==1) 
1 

7 
Once deactivated, GAP will remain inactive until end of 

analyzed period F[1500]G[50](GAP==0) 
1 

8 
Once activated, RAS will remain active until end of 

analyzed period F[1500]G[50](RAS==1) 
1 

9 
Once activated, MEK will remain active until end of 

analyzed period F[1500]G[50](MEK==1) 
1 

10 
Once activated, ERK will remain active until end of 

analyzed period F[1500]G[50](ERK==1) 
1 

11 
Once activated, IL2RBT will remain active until end of 

analyzed period F[1500]G[50](IL2RBT==1) 
1 

12 
Once activated, IL2RB will remain active until end of 

analyzed period F[1500]G[50](IL2RB==1) 
1 

13 
Once activated, STAT3 will remain active until end of 

analyzed period F[1500]G[50](STAT3==1) 
1 

14 
Once deactivated, BID will remain inactive until end of 

analyzed period F[1500]G[50](BID==0) 
1 

15 
Once activated, MCL1 will remain active until end of 

analyzed period F[1500]G[50](MCL1==1) 
1 

16 
Once deactivated, SOCS will remain inactive until end of 

analyzed period F[1500]G[50](SOCS==0) 
1 

17 
Once activated, JAK will remain active until end of 

analyzed period F[1500]G[50](JAK==1) 
1 

18 
Once activated, PI3K will remain active until end of 

analyzed period F[1500]G[50](PI3K==1) 
1 

19 
Once activated, NFKB will remain active until end of 

analyzed period 
F[1500]G[50](NFKB==1) 1 
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2.6.3 Pancreatic Cancer Microenvironment 

Although some cancers such as breast and colon can be managed, others such as glioma 

and pancreatic cancer have very poor survival rates (C. A. Telmer, Sayed, et al., 2019). As 

described in (C. A. Telmer, Sayed, et al., 2019), pancreatic cancer has early KRas activating 

mutations followed by TP53 and CDN2A inactivating mutations in the majority of tumors. 

Although the pancreatic cancer has a known mutational profile disrupting signaling pathways, 

there are no available drugs to target KRas activation or restore tumor suppressor function, and 

therefore, survival of patients has not improved. The modeling of pancreatic cancer is of great 

importance since it could reveal molecular mechanisms important for disease treatment. Therefore, 

the focus of such model is to include the major signaling pathways, metabolism and the tumor 

microenvironment. The pancreatic cancer model proposed in (C. A. Telmer, Sayed, et al., 2019) 

describes the hallmarks of cancer (which are represented as the processes of apoptosis, autophagy, 

cell cycle progression, inflammation, immune response, oxidative phosphorylation and 

proliferation) and suggests combinations of inhibitors as therapies. 

2.6.3.1 Baseline Model and Golden Model 

The model in (C. A. Telmer, Sayed, et al., 2019) serves as a golden model for our PCC 

case studies. We removed from the model in (C. A. Telmer, Sayed, et al., 2019) a subset of paths 

that have autophagy, apoptosis and proliferation as their target nodes to create three different 

baseline models for the PCC case studies. We designed each experiment with a different baseline 

model. This is achieved by removing the paths that connect a source node that initiates a specific 

biological process such as (autophagy, apoptosis and proliferation) to a target node which will be 

this biological process. For instance, in PCC BMAu, according to the evidence that mTORC1 
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initiates autophagy (Muilenburg et al., 2014), we remove the paths that link mTORC1 and 

autophagy and the outcome will be our first baseline model that corresponds to PCC BMAu. 

Similarly, for PCC BMAp and PCC BMPr, based on the fact that TGFβ1 regulates apoptosis (Siegel 

& Massagué, 2003) and KRas mutations enhances proliferation (Bardeesy & DePinho, 2002), we 

have also created the baseline models that correspond to PCC BMAp and PCC BMPr, respectively 

by removing the paths that connect source nodes (TGFβ1, KRas) to target nodes (apoptosis and 

proliferation). In this case study, the golden model will be the whole PCC model network (C. A. 

Telmer, Sayed, et al., 2019). 

2.6.3.2 Set of Properties 

Using the golden model and the descriptions from (C. A. Telmer, Sayed, et al., 2019), we 

wrote the BLTL expressions of 21 system properties that capture the behavior of seven key 

elements (apoptosis, autophagy, cell cycle progression, immune response, inflammation, oxidative 

phosphorylation and proliferation) under three different scenarios, (1) normal, (2) with injury and 

(3) with KRas, TP53 and CDN2A mutation (C. A. Telmer, Sayed, et al., 2019) (Table 3). 
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Table 3 The set of properties that are observed to be true in the PCC model (C. A. Telmer, Sayed, et al., 

2019)written in BLTL format as well as the corresponding scenario, description in plain English and the goal 

property probability values 

Prop. 

# 

Description BLTL 
format 

Expected 
value 

Scenario 0: Normal    

1 Once deactivated, apoptosis will remain inactive 
until end of analyzed period 

F[9500]G[50](apoptosis==0) 1 

2 Once deactivated, autophagy will remain inactive 
until end of analyzed period 

F[9500]G[50](autophagy==0) 1 

3 Once deactivated, cell cycle progression will 
remain inactive until end of analyzed period 

F[9500]G[50](cell cycle progression==0) 1 

4 Once deactivated, immune response will remain 
inactive until end of analyzed period 

F[9500]G[50](immune response==0) 1 

5 Once deactivated, inflammation will remain 
inactive until end of analyzed period 

F[9500]G[50](inflammation==0) 1 

6 Once deactivated, oxidative phosphorylation will 
remain inactive until end of analyzed period 

F[9500]G[50](oxidative 
phosphorylation==0) 

1 

7 Once deactivated, proliferation will remain 
inactive until end of analyzed period 

F[9500]G[50](proliferation==0) 1 

Scenario 1: With injury    

9 Once deactivated, apoptosis will remain inactive 
until end of analyzed period 

F[9500]G[50](apoptosis==0) 1 

9 Once deactivated, autophagy will remain inactive 
until end of analyzed period 

F[9500]G[50](autophagy==0) 1 

10 Once deactivated, cell cycle progression will 
remain inactive until end of analyzed period 

F[9500]G[50](cell cycle progression==0) 1 

11 Once deactivated, immune response will remain 
inactive until end of analyzed period 

F[9500]G[50](immune response==0) 1 

12 Once activated, inflammation will remain active 
until end of analyzed period 

F[9500]G[50](inflammation==1) 1 

13 Once activated, oxidative phosphorylation will 
remain active until end of analyzed period 

F[9500]G[50](oxidative  
phosphorylation==1) 

1 

14 Once deactivated, proliferation will remain 
inactive until end of analyzed period 

F[9500]G[50](proliferation==0) 1 

Scenario 2: With KRas, TP53, CDN2A mutation  

15 Once deactivated, apoptosis will remain inactive 
until end of analyzed period 

F[9500]G[50](apoptosis==0) 1 

16 Once activated, autophagy will remain active until 
end of analyzed period 

F[9500]G[50](autophagy==1) 1 

17 Once activated, cell cycle progression will remain 
active until end of analyzed period 

F[9500]G[50](cell cycle progression==1) 1 

18 Once deactivated, immune response will remain 
inactive until end of analyzed period 

F[9500]G[50](immune response==0) 1 

19 Once activated, inflammation will remain active 
until end of analyzed period 

F[9500]G[50](inflammation==1) 1 

20 Once deactivated, oxidative phosphorylation will 
remain inactive until end of analyzed period 

F[9500]G[50](oxidative 
 phosphorylation==0) 

1 

21 Once activated, proliferation will remain active 
until end of analyzed period 

F[9500]G[50](proliferation==1) 1 

 



 30 

3.0 Context-aware Information Selection and Model Recommendation with ACCORDION  

3.1 Objective and Applicability 

In this chapter, we propose ACCORDION (Ahmed et al., 2022) (ACCelerating and 

Optimizing model RecommenDatIONs), a novel methodology and a tool, that can be used to 

automatically and efficiently assemble the information extracted from literature into models and 

to recommend models that achieve desired dynamic behavior. In contrast to (Liang et al., 2017), 

ACCORDION focuses on identifying clusters of strongly connected elements in the newly 

extracted information, that have a measurable impact when added to the model. Once the 

interactions extracted from the literature are clustered, ACCORDION scores their performance on 

a selected set of system properties, using stochastic simulation methods (Sayed, Kuo, et al., 2018) 

and statistical model checking (Wang et al., 2016) described in Sections 2.4.1 and 2.4.2 

respectively. The scoring helps determine which clusters to add to the baseline model. Therefore, 

ACCORDION takes at most a few hours to execute thousands of experiments in silico, which 

would take days, or months, or would be impractical to conduct in vivo or in vitro.  

We designed ACCORDION to be versatile and to be used to extend many different models. 

To demonstrate the efficiency and utility of ACCORDION, we have selected nine different case 

studies using models of three systems, namely, the T cell differentiation model (Miskov-Zivanov, 

Turner, et al., 2013b), the T cell large granular lymphocyte model (Zhang et al., 2008) and the 

pancreatic cancer cell model (C. A. Telmer, Sayed, et al., 2019), and seven machine reading 

outputs with varying features. Our main goal is to show that ACCORDION, automatically, without 
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human intervention, recommends model improvements to significantly reduce baseline model 

error and recapitulate desired system behavior.  

3.2 Proposed Methodology 

The inputs and outputs of ACCORDION, as well as the main methods within the tool are 

outlined in Figure 6. The first step of our proposed methodology is creating an input for 

ACCORDION, which includes extracting new event information from literature by machine 

reading engines, followed by filtering, scoring and classifying these events. Once the new input is 

created, the three main steps within ACCORDION are performed, and they include (1) clustering 

of new events, (2) assembly of the clustered event data into models, and (3) selection of the most 

suitable and useful events. In the following subsections, we discuss each of these steps in detail.  

3.2.1 Baseline Model (BM) 

The baseline model can be obtained in many different ways, for example, it could be 

manually created with expert input, or adopted from models published in literature (Zhang et al., 

2008), (Miskov-Zivanov, Turner, et al., 2013b), (C. A. Telmer, Sayed, et al., 2019), (Bianconi et 

al., 2012) and in model databases (Aoki & Kanehisa, 2005), (Fabregat et al., 2018),(Pillich et al., 

2017). In general, ACCORDION works with models that have directed cyclic graph structure, 

G(V,E), where each node v ∈ V corresponds to one model element, representing a protein, gene, 

chemical, or a biological process, and each directed edge e(vi, vj) ∈ E indicates that element vj is 

regulated or influenced, directly or indirectly, by element vi. We refer to the set of regulators of an 
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element as its influence set, distinguishing between positive and negative regulators. 

ACCORDION assigns to each element v a discrete variable x representing the element’s state, 

such as a level of its activity or amount. Each model element may have a state transition function, 

referred to as element update rule, which defines its state changes given the states of its regulators, 

thus enabling the study of system dynamics. While the types of elements and their update rules 

(see Sections 3.2.3-3.2.7) are not constrained by the main methods implemented within 

ACCORDION, they are largely affected by the information that is available in new events (see 

Section 3.2.2) and in the baseline model. Most often, the events described in literature are 

qualitative, for example, only two element states (e.g., inactive/active, absent/present) may be 

distinguished or relevant, or only two or three levels of concentration may be considered (e.g., 

low/high or low/medium/high). Causal or Boolean types of regulations and update rules are most 

suitable in such cases and ACCORDION is also compatible with such qualitative information.  

3.2.2 Candidate Event Set 

A set of candidate events (CEs) is the second input to ACCORDION, which can be 

collected from different sources and created manually or automatically. Since the machine reading 

of published literature results in large event sets, and therefore, allows for a high throughput 

processing of available information, we will assume here such automated pipeline, including both 

machine readers (e.g., the ones described in (Valenzuela-escárcega et al., 2018), (Allen & Teng, 

2017)) and INDRA database of interactions extracted from literature (Gyori et al., 2017b). The set 

of relevant papers can be selected either using search tools such as Google or PubMed (Roberts, 

2001) or by providing key search terms to reading engines, which then directly use Medline search 

tools (e.g., PubMed (Roberts, 2001), Ovid (Https://Www.Ovid.Com, n.d.)) to find most relevant 
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papers. The former approach includes manual user step (using search tools to find papers to input 

to machine readers), but gives more flexibility to users when selecting relevant papers, while the 

latter approach allows for full automation, starting with the query entered by a user. In either case, 

machine readers process the selected papers and output a set of events. Examples of queries, 

sentences processed by machine readers, and events in the machine reading output are shown in 

Figure 6. As can be seen in the figure, each event has a direction (source and target of interaction) 

and sign (positive or negative regulation). 

3.2.3 Network Creation and Return Path Definition  

The CE set can be represented as a set of edges, Eext, where the source and target nodes of 

these edges form set Vext. From the baseline model graph GBM(VBM, EBM) and the CE set, 

ACCORDION creates a new graph Gnew(Vnew, Enew), where Vnew = VBM ∪ Vext, and Enew = EBM ∪ 

Eext. The edges e(vs,vt) in Eext, where vs is the source node and vt is the target node, can be classified 

into three categories: (i) both source node vs and target node vt are found in the baseline model: 

{vs,vt}∈VBM; (ii) either the source node or the target node is found in the baseline model: (vs∈VBM 

and vt∉VBM) or (vs∉VBM and vt∈VBM); (iii) neither the source node nor the target node is found in 

the baseline model: {vs,vt}∉VBM. Adding the entire set of CEs to the baseline model all at once 

usually does not result in a useful and accurate model. Alternatively, we can add one interaction 

at a time and test each model version, which is time consuming, or even impractical, given that the 

number of models increases exponentially with the size of the CE set. Moreover, adding individual 
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interactions does not have an effect on the model when an interaction belongs to category (iii), and 

most often when it belongs to category (ii). 

 

 

Figure 6 The diagram of the flow that includes a user, machine reading and ACCORDION. Input and output 

examples column: (Top) Left: Example query used to select relevant papers. Right: example property written 

in BLTL format. (Middle) Main components of information extraction from relevant papers. Top: Two 

example sentences with highlighted entities and events that are extracted by machine readers. Bottom-Left: 

Tabular outputs from REACH engine with Example 1 and Example 2 sentences as input. Bottom-Right: 

Graphical representation of REACH outputs. (Bottom) Left: Tabular representation of several elements and 

their influence sets (positive and negative regulators) in BioRECIPES format [45] and the graphical 

representation of elements and influence sets. Right: A toy example graph Gnew of a baseline model and 

connected clusters: grey nodes belong to the baseline model, light and dark green nodes belong to the CE set 

obtained from machine reading, blue edges highlight a return path within one cluster, and red edges show a 

return path connecting two clusters. The multi-cluster path starts at GBM (baseline model), continues through 

C1 (cluster 1), then through C2 (cluster 2), and ends in GBM.   
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 It proves much more useful to add paths of connected interactions, which are at the same 

time connected to the baseline model in their first and last nodes. Therefore, our approach for 

finding the most useful subset of the CE set includes finding connected interactions, that is, a set 

of edges in the graph Gnew that form a return path.  

We define a path of k connected edges as epath(vs1,vtk) = (ei1(vs1,vt1), ei2(vs2=vt1,vt2), 

ei3(vs3=vt2,vt3), …,eik(vsk=vtk-1,vtk)), and we will refer to epath(vs1,vtk) as a return path, 

when{vs1,vtk}∈VBM (Figure 6). ACCORDION searches for such return paths after clustering Gnew.  

3.2.4 Network Clustering 

To find clusters in Gnew, we apply Markov Clustering algorithm (MCL) (Schaeffer, 2007), 

an unsupervised graph clustering algorithm, commonly used in bioinformatics (e.g., clustering of 

protein-protein interaction networks (Brohée & van Helden, 2006), (Lei et al., 2016)). In 

(Vlasblom & Wodak, 2009), the authors showed that the MCL algorithm is tolerant to noise, while 

identifying meaningful clusters. A number of previous studies have demonstrated that the MCL 

algorithm outperforms other clustering techniques(Frey & Dueck, 2007), (King et al., 2004), (Blatt 

et al., 1996),(Bader & Hogue, 2003). The MCL algorithm has been proven to converge with 

undirected graphs (Vlasblom & Wodak, 2009), and therefore, ACCORDION provides to the MCL 

algorithm the information about node adjacency in Gnew. Since we are interested in clustering a 

graph given its connectivity only, the information about adjacency without directionality is 

sufficient in this step. The directionality will be used in later steps when exploring dynamic 

behavior. In other words, the adjacency matrix M created this way is symmetric, mapping nodes 

in Gnew to both row and column headers in M. The entries in matrix M are assigned value 1 when 

an edge between their column and row nodes exists in Gnew or when an entry is on the main 
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diagonal of M (i.e., same column and row node), and value 0 otherwise. Next, the updated matrix 

M is used by the MCL algorithm as an initial version of a stochastic Markov matrix (Gagniuc, 

2017), where each entry represents the probability of a transition from the column node to the row 

node. Since Gnew is not a weighted graph, all transitions are assumed to be equally likely, and the 

matrix M is normalized such that the sum of entries in each column is equal 1. As mentioned 

earlier, graph Gnew can be cyclic, and although the MCL algorithm has been previously applied to 

acyclic graphs (Mountasser et al., 2017), we still use the MCL algorithm for its speed, and our 

results show that it provides useful results when applied in automated model extension 

recommendation. MCL simulates random walks on an underlying interaction network (in our case, 

graph Gnew), by alternating two operations, expansion and inflation. The probability of a random 

walk of length l between any two nodes can be calculated by raising the matrix M to the exponent 

l, a process called expansion. As the number of paths is likely larger between nodes within the 

same cluster than between nodes across different clusters, the transition probabilities between 

nodes in the same cluster will typically be higher in a newly obtained expanded matrix. MCL 

further amplifies this effect by computing entry-wise exponents of the expanded matrix, a process 

called inflation, which raises each element of the matrix to the power r. Clusters are determined 

by alternating expansion and inflation, until the graph is partitioned into subsets such that there are 

no paths between these subsets. The final number of generated clusters, C1,…,Cn, depends on the 

selected inflation parameter r (Schaeffer, 2007). As discussed above, ACCORDION clusters the 

entire Gnew in order to account for the connectivity with the baseline model, and thus, it likely 

assigns parts of the baseline model to different clusters. Once the clusters are generated, since we 

are interested in adding the components of the CE set from the clusters to the entire baseline model, 
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we will refer to the CE (BM) part of a generated cluster l as Cl
CE (Cl

BM) and to the nodes and edges 

in such cluster subsets as 𝑉𝐶𝑙,𝐶𝐸 (𝑉𝐶𝑙,𝐵𝑀) and 𝐸𝐶𝑙,𝐶𝐸 (𝐸𝐶𝑙,𝐵𝑀), respectively. 

3.2.5 Assembly of Candidate Model Networks 

From the generated clusters and the baseline model, ACCORDION assembles multiple 

candidate models (CMs) as follows. ACCORDION can add clusters one at a time, or in groups. 

The more clusters or cluster groups are generated, the number of possible cluster combinations 

grows, and consequently, ACCORDION needs to assemble and test more models. In addition to 

that, in most cases VBM is smaller than Vext, and EBM is smaller than Eext, and thus, the number of 

new nodes and edges in a cluster tends to be relatively large compared to the size of the baseline 

model. Adding a large number of new nodes and edges to the baseline model at once can 

significantly change the structure and the behavior of the model. Therefore, the default approach 

in ACCORDION is to evaluate only individual clusters generated as described in Section 3.2.4, as 

well as clusters Ci,j, created by merging pairs of clusters Ci and Cj (i,j = 1..n, i≠j). ACCORDION 

determines for each individual and merged cluster whether it forms a return path with the baseline 

model, and for each such cluster, ACCORDION creates a candidate model by adding the entire 

baseline model to the cluster. In other words, the number of created candidate models is equal the 

number of clusters (both individual and merged) that form a return path with the baseline model. 

As defined above, the clusters formed from the Gnew graph can contain nodes and edges of the 

baseline model. Therefore, for those clusters (individual or merged) that were used to create 

candidate models, ACCORDION computes the node overlap (NO) value (Ahmed, Telmer, et al., 

2021), as a ratio of those nodes in a cluster C𝑙 that are present in the baseline model (𝑉𝐶𝑙,BM = VBM 

∩ VC𝑙) and the total number of nodes within a cluster (𝑉𝐶𝑙). 
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𝑵𝑶𝒍 =
|𝑽𝑪𝒍,𝑩𝑴|

|𝑽𝑪𝒍|
                                                                                                                                                          (3.1)5 

3.2.6 Executable Model Creation and Testing 

In this section, we discuss an additional input to ACCORDION besides the baseline model 

and the CE set and how all three inputs are used to evaluate the dynamics of candidate models. 

The third input to ACCORDION includes a set of properties 𝒯 defining desired dynamic behavior 

that the assembled model should satisfy. ACCORDION uses element update rules in the baseline 

model and the sign of influences (positive or negative) in the CE set to create new element update 

rules. For those elements that were already in the baseline model, but their influence set was 

extended after adding a cluster to the baseline model, ACCORDION modifies their update rules. 

When new elements with non-empty influence set are added to the baseline model, ACCORDION 

generates a new update rule for them. As stated previously, event information available in the CE 

set is often qualitative, for example, “A positively regulates B”. Furthermore, if an update rule for 

element B in the baseline model already includes two positive regulators C and D, i.e., 𝑥𝐵 = 𝑓(𝑥𝐶, 

𝑥𝐷), then the new event from the CE set can be added to the update rule for B as 𝑥𝐵 = 𝑓(𝑥𝐶, 𝑥𝐷) OR 

𝑥𝐴, or 𝑥𝐵 = 𝑓(𝑥𝐶, 𝑥𝐷) AND 𝑥𝐴 (following the definition from Section 2.3, 𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐷 are variables 

representing level or amount or activity of elements A, B, C, D, respectively). For elements with 

more than two discrete levels, ACCORDION can use max and min operators to determine the 

maximum or minimum influence from a given set of regulators. To select the CM that allows for 

most closely reproducing the experimentally observed or desired behaviors and, given the 

randomness in time and order of events in modeled systems, ACCORDION uses a combination of 

stochastic simulation and statistical model checking. The DiSH simulator, described in Section 
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2.4.1, is used to obtain the dynamic behavior of the baseline model and the CMs. DiSH is a 

stochastic simulator that can simulate models at different levels of abstraction, information 

resolution, and uncertainty. This range of simulation schemes is especially valuable when working 

with diverse information sources and inputs, such as the ones used by ACCORDION. Each 

simulation run starts with a specified initial model state, where initial values are assigned to all 

model elements to represent a particular system state (e.g., naïve or not differentiated cell, healthy 

cancer cell). The initial values for the baseline model elements (nodes in VBM) are usually already 

known, however, the newly added elements (nodes in Vext) need to be assigned initial values as 

well. Given that machine reading does not provide this information, we assume that all elements 

within the same cluster have the same initial value. ACCORDION runs a statistical model checker 

(Section 2.4.2) to verify whether the CMs satisfy a set of properties describing expected behavior 

of the modeled system. The model checker reads properties formally written using Bounded Linear 

Temporal Logic (BLTL) (Kumar-Jha et al., 2009), (Tkachev & Abate, 2013) and, for a given 

model ℳ and a property 𝓉, it outputs a property probability estimate, 𝑝𝓉
ℳ, that model ℳ satisfies 

property 𝓉, under predefined error interval for the estimate. For instance, we can test whether at 

any point within the first s1 time steps, model element vi (i.e., its state variable xi) reaches value X1 

and element vj (i.e., its state variable xj) reaches value X2, and they both keep those values for at 

least s2 time steps. We write this property formally as 𝐹𝑠1𝐺𝑠2( 𝑥𝑖 = X1 ∧ 𝑥𝑗 = X2), where 𝐹𝑠1 stands 

for “any time in the future s1 steps”, and 𝐺𝑠2 stands for “globally for s2 steps”. An example of a 

property and its expected value are shown in Figure 6. To avoid a full state space search, the 

statistical model checker calls the simulator to generate element trajectories for a defined number 

of steps and then performs statistical analysis on those trajectories with respect to a given property 

(Miskov-Zivanov, Zuliani, et al., 2013), (Liang et al., 2017). 
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3.2.7 CM Scoring and Recommendation 

Usually, we are interested in a model that can satisfy a property 𝓉𝑗 ∈ 𝒯 with high 

probability. However, in some cases, due to randomness in biological systems, the 𝑝𝓉
ℳ value lower 

than 1 (e.g., 𝑝𝓉
ℳ ≥ 0.7) is expected. In our case studies explored in Section 2.6 (and in Table 1, 

Table 2, Table 3), we will show examples of such properties. In order to provide the 

recommendation of top CMs that are closest to expected probability values for properties, we 

introduce several metrics. The first metric, model property error, determines the difference 

between an estimated probability value for property 𝓉𝑗 for CMi, 𝑝𝑡𝑗

𝐶𝑀𝑖, and the goal property 

probability value for 𝓉𝑗, 𝑃𝑡𝑗
: ε𝑡𝑗

𝐶𝑀𝑖= |𝑝𝑡𝑗

𝐶𝑀𝑖 − 𝑃𝑡𝑗
|. Next, we compute average model error, across all 

tested properties 𝓉𝑗 ∈ 𝒯, for each CMi, ε𝒯,avg
𝐶𝑀𝑖 , and 𝜎-score for model CMi for the given set of 

properties as σ𝒯
𝐶𝑀𝑖 = 1 − ε𝒯,avg

𝐶𝑀𝑖 . The larger 𝜎-score for a model is, the closer the model is to 

satisfying all desired properties. We also define model δ-score, N𝒯,𝛿
𝐶𝑀𝑖, as the percent of properties 

out of all properties in 𝒯 for which: ε𝑡𝑗

𝐶𝑀𝑖≤ δ. In other words, the parameter δ indicates how close 

the 𝑝𝑡𝑗

𝐶𝑀𝑖 value needs to be to the goal probability 𝑃𝑡𝑗
 for the property to be considered satisfied. 

This parameter can be selected by ACCORDION users depending on their modeling goals. 

Below, we provide notations summary as well as the definition of all the metrics used in to 

evaluate the performance of ACCORDION 

𝒯 – set of all properties 

𝓉𝑗 ∈ 𝒯 – property j 

𝑝𝓉𝑗
ℳ - estimated probability that model ℳ satisfies property 𝓉𝑗  

P𝓉𝑗
 – goal probability value for property 𝓉𝑗 



 41 

휀𝓉𝑗
ℳ = |𝑝𝓉𝑗

ℳ − P𝓉𝑗
| – model error for ℳ in property 𝓉𝑗                                               (3.2)6 

휀𝒯,𝑎𝑣𝑔
ℳ =

1

|𝒯|
∑ 휀𝓉𝑗

ℳ
𝓉𝑗∈𝒯  – average model error for ℳ across all properties 𝓉𝑗 ∈ 𝒯     (3.3)7 

𝜎𝒯
ℳ = 1 − 휀𝒯,𝑎𝑣𝑔

ℳ  – 𝜎-score for ℳ with respect to a set of properties 𝒯                   (3.4)8 

δ – limit for 휀𝓉𝑗
ℳ, that is, if 휀𝓉𝑗

ℳ ≤ δ, then it is considered that ℳ satisfies property 𝓉𝑗; δ can 

have different values 

𝒟 = { 𝓉𝑗| 𝓉𝑗 ∈ 𝒯 and 휀𝓉𝑗
ℳ ≤ δ} – 𝒟 is a subset of 𝒯 

𝑁𝒯,𝛿
ℳ = |𝒟| – δ-score for model ℳ with respect to a set of properties 𝒯                   (3.5)9 

𝑁𝒯,𝛿,%
ℳ =

𝑁𝒯,𝛿
ℳ ∗100

|𝒯| 
 – percent of properties within 𝒯 that model ℳ satisfies, assuming δ   

                                                                                                                                      (3.6)10 

ℭ - set of all generated CMs  

�̃�𝒯
𝐶𝐸𝑀𝑙 = (𝜎𝒯

𝐶𝐸𝑀𝑙 − min
𝐶𝐸𝑀𝑖∈ℭ

(𝜎𝒯
𝐶𝐸𝑀𝑖)) / ( max

𝐶𝐸𝑀𝑖∈ℭ
(𝜎𝒯

𝐶𝐸𝑀𝑖) − min
𝐶𝐸𝑀𝑖∈ℭ

(𝜎𝒯
𝐶𝐸𝑀𝑖))  

– normalized 𝜎-score                                                                                                        (3.7)11 

휀�̃�,𝑎𝑣𝑔
𝐶𝐸𝑀𝑙 = (휀𝒯,𝑎𝑣𝑔

𝐶𝐸𝑀𝑙 − min
𝐶𝐸𝑀𝑖∈ℭ

(휀𝒯,𝑎𝑣𝑔
𝐶𝐸𝑀𝑖 )) / ( max

𝐶𝐸𝑀𝑖∈ℭ
(휀𝒯,𝑎𝑣𝑔

𝐶𝐸𝑀𝑖 ) − min
𝐶𝐸𝑀𝑖∈ℭ

(휀𝒯,𝑎𝑣𝑔
𝐶𝐸𝑀𝑖 ))  

– normalized average error Equation                                                                              (3.8)12 

�̃�𝒯
𝐶𝐸𝑀𝑙 = (∏ 𝑝𝓉𝑗

𝐶𝐸𝑀𝑙
𝓉𝑗∈𝒯 − min

𝐶𝐸𝑀𝑖∈ℭ
(∏ 𝑝𝓉𝑗

𝐶𝐸𝑀𝑖
𝓉𝑗∈𝒯 )) / ( max

𝐶𝐸𝑀𝑖∈ℭ
(∏ 𝑝𝓉𝑗

𝐶𝐸𝑀𝑖
𝓉𝑗∈𝒯 ) −

min
𝐶𝐸𝑀𝑖∈ℭ

(∏ 𝑝𝓉𝑗

𝐶𝐸𝑀𝑖
𝓉𝑗∈𝒯 ))  

– normalized joint probability of satisfying all properties in 𝒯 (assuming independence in 

properties.                                                                                                                                    (3.9)13 
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3.3 Results 

3.3.1 Benchmarking 

In the absence of standardized benchmarks to evaluate ACCORDION, we created nine 

case studies. In Section 2.6, we provide an overview of the biological background for all studied 

systems, the details of creating the baseline model and the golden model. In this section, we detail 

the steps of selecting literature and creating CE set for each conducted case study. In Figure 7, we 

list the main characteristics of these nine cases, with models of three biological systems and 

different sets of CEs for each system. The three models include control circuitry of naïve T cell 

differentiation (T cell) (Miskov-Zivanov, Turner, et al., 2013b), T cell large granular lymphocyte 

(T-LGL) leukemia model (Zhang et al., 2008), and pancreatic cancer cell model (PCC) (C. Telmer 

et al., 2019). The studies vary in the size and graph features of baseline models (“BM creation” 

columns) and the CE sets (CE set creation” columns), and are named Tcell CEFA, Tcell CESA, Tcell 

CESM, T-LGL QSm, T-LGL QMed, T-LGL QDet, PCC BMAu, PCC BMAp, and PCC BMPr. As can be 

seen in Figure 7, the size of baseline models varies from several tens to several hundreds of nodes 

or edges, and the number of interactions in the CE set varies from half the number of interactions 

in the baseline model to six times larger (“BM and CE set relationship” columns). We also list in 

Table 1, Table 2, Table 3, the sets of desired properties, that are not fully satisfied by baseline 

models and are used to guide new model assembly for each case study. The properties are provided 

in both natural language descriptions and machine readable BLTL format, and we also include 

their goal probability values (𝑃𝑡𝑗
).  

For each system, besides a baseline model, we also found a golden model in literature 

((Hawse et al., 2015b) for the T cell model, (Zhang et al., 2008) for the T-LGL model, and (C. A. 
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Telmer, Sayed, et al., 2019) for the PCC model). Figure 7 includes the characteristics of golden 

models (columns “GM” and “GM and CE set relationship”). With these nine case studies, we 

evaluate ACCORDION’s performance and also demonstrate different research scenarios where it 

can be used, such as varying size and contents of baseline model and CE set (all nine case studies), 

varying quality of the CE set (Tcell case studies), varying level of detail in user selection of 

literature (Tcell CEFA and all three T-LGL case studies) reconstruction of previously published 

model (all nine case studies). 

 

Figure 7 (Top) Description of each use case in terms of 1-how each CE set is acquired (using a query or a 

preselected set of papers, how many papers are read, the number of edges in the entire machine reading output 

file, 𝑬𝑹𝑶, the number of nodes or entities 𝑽CE, the unique number of interactions in each CE set 𝑬CE), 2-how 

each baseline model (BM) is created, whether it is fixed across all three studies for the same system, or it is 

different for the three studies of the same system, 3-the relationship between each BM and the corresponding 

CE set in terms of the number of common nodes (entities) and edges (interactions), 4-the golden model (GM) 

specifications, 5-the relationship between each GM and the corresponding CE set (the number of common 

edges, the number of edges that are in GM but not in BM, the number of edges that are in GM but not in BM 

and are found in the CE). (Bottom) Venn diagrams showing the overlap between three sets, 𝑬CE, 𝑬BM and 𝑬GM 

for the nine case studies. 
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3.3.1.1 T cell CE Sets 

 The CE set, which is another input to ACCORDION, is assembled in three different ways 

for the Tcell case studies. In the fully automated (Tcell CEFA) approach, both the PubMed database 

search for relevant articles and the extraction of event data from the selected articles were done by 

machines. Specifically, in the FA experiment, we used search query “T-cell and (PTEN or AKT or 

FOXO)” and selected top 11 from the best matched papers, by the PubMed search engine. In the 

semi-automated (Tcell CESA) approach, we selected papers that are cited by (Hawse et al., 2015a) 

and used the event information that REACH extracted from those papers. Finally, in the semi-

manual approach (Tcell CESM), we rely the most on human intervention, we manually excluded 

from the SA reading output those interactions that violate any assumptions made by the authors 

originally in (Miskov-Zivanov, Turner, et al., 2013b). For instance, the authors in (Miskov-

Zivanov, Turner, et al., 2013b) consider element TCR to be an input to the network, and therefore, 

TCR should not have any regulators in the T cell model. Therefore, if REACH retrieves an 

interaction in which TCR is a regulated element, we manually remove these interactions and keep 

only the interactions having TCR as a regulator.  

3.3.1.2 T-LGL CE Sets 

For the T-LGL cases, we came up with three different queries that will be the input to the 

search engine in order to retrieve the most relevant sets of pa-pers. The first query which 

corresponds to “T-LGL simple query” or (T-LGL QSm) case is “T-LGL leukemia therapeutic 

targets and apoptosis”. From the papers that PubMed returned, we then selected 22 papers that 

PubMed identified as “Best match”. The machine reading output obtained by reading those papers 

contains 52 interactions. For the second and third cases of this study namely “T-LGL medium 

query” or T-LGL QMed and “T-LGL detailed query” or T-LGL QDet, we used “T cell large granular 
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lymphocyte (T-LGL) leukemia proliferation apoptosis” and “T cell large granular lymphocyte (T-

LGL) leukemia therapeutic targets proliferation apoptosis”, respectively. The number of 

interactions used in these cases are 448 and 644 extracted from 38 and 46 papers, respectively. As 

can be noticed, the queries were designed so that they include key words related to the T-LGL 

model and therapeutic targets. For each query and the corresponding set of papers, we used 

REACH to read these papers and extract the set of CEs as input to ACCORDION. 

3.3.1.3 PCC CE Sets 

The CE input set for ACCORDION is the same for the three PCC cases, it contains 631 

interactions retrieved from 19 papers cited in the PCC model paper (C. A. Telmer, Sayed, et al., 

2019). 

3.3.2 Recommending New Models with Desired Behavior 

In Figure 8, we show the minimum and maximum of the average model error (ε𝑇,𝑎𝑣𝑔

𝐶𝑀𝑖 ) found 

across all created CMs for each of the nine use cases. Additionally, in Figure 9, we show the δ-

score, 𝑁𝒯,𝛿
𝐶𝑀𝑖, values for the top CMs recommended by ACCORDION in all nine use cases. We 

also explored different δ values (0.1 to 0.5). To highlight the improvements in CMs when 

compared to the original baseline model, we show all results next to their corresponding baseline 

model values. As can be seen from the figure, ACCORDION achieved δ-score of 95% when δ = 

0.3 (i.e., all but one property satisfied). Furthermore, increasing δ improves the model score, 

however, we observed that 0.2 or 0.3 value for δ is optimal to obtain useful models with high score. 

Overall, ACCORDION automatically selected a small fraction (e.g., ~20%, as will be discussed 
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in Section 3.3.3) of all interactions in the CE set, sufficient to decrease model error by up to 83%, 

as shown in Figure 10.  

As can be concluded from Figure 8, Figure 9, Figure 10, automated reading and model 

assembly are not able to reduce model errors ε𝑇,𝑎𝑣𝑔

𝐶𝑀𝑖  all the way to 0 in our use cases. ACCORDION 

outputs 𝑝𝑡𝑗

𝐶𝑀𝑖  values for all properties and all CMs it creates, and the list of extensions from CEs 

that are used in each CM. We show in Figure 11 the 𝑝𝑡𝑗

𝐶𝑀𝑖  heatmaps that ACCORDION computed 

for all nine case studies. The heatmaps provide details per each individual property and CM, and 

this information can be especially useful if users decide to manually inspect and further modify 

CMs recommended by ACCORDION. Although we show in Figure 11 results for all properties, 

several of the CE sets did not fulfill the necessary requirement for all properties to be used.  

 

Figure 8 ACCORDION evaluation on nine case studies, three Tcell studies SM, SA, FA, three T-LGL studies 

SM (Sm), MD (Med), DT (Det), and PCC studies AU, AP, PR: (a) minimum (best) and maximum (worst) 

average model error 𝜺𝓣,𝒂𝒗𝒈
𝑪𝑴𝒊  across all recommended models for each case study, compared to the average error 

of the baseline model in each study 
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In other words, all the elements that are listed in properties (Table 1, Table 2, Table 3) need 

to be present in at least one of the sets VBM and VCE. As shown in Figure 12 (“Properties” columns), 

in six out of nine studies, these elements are either already in the baseline model or in the CE set. 

However, in all three T-LGL studies element GAP is not found in either of the two sets, VBM and 

VCE, and in the T-LGL QSm case two elements, Ceramide and SOCS, are also not present. These 

element omissions occur in ACCORDION’s input and are due to machine reading not finding 

those elements in selected papers. While the properties that correspond to such omitted elements 

are not suitable for evaluating ACCORDION, we included them in our results to demonstrate 

realistic cases with imperfect CE sets. As part of our future work on ACCORDION, we plan to 

include pre-processing methods to automatically exclude such tests before clustering the CE set, 

or to inform the user at the beginning that property elements are not found in the input.  

On the other hand, we were especially interested in ACCORDION’s performance in the 

cases where property elements are not present in VBM but are in VCE. Thus, we defined “criterionA” 

(Figure 12) to evaluate ACCORDION in such cases. As can be seen from the figure, 

ACCORDION is able to recover all property elements missing from a baseline model in at least 

one of the recommended CMs. 
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Figure 9 ACCORDION evaluation on nine case studies, three Tcell studies SM, SA, FA, three T-LGL studies 

SM (Sm), MD (Med), DT (Det), and PCC studies AU, AP, PR: maximum across all CM 𝛿-scores 𝑵𝓣,𝜹
𝑪𝑴𝒊 obtained 

in each case study expressed in %; the results are compared for different values of 𝛿 (10%, 20%, 30%, 40%, 

50%) 

Finally, when ACCORDION recovers all necessary property elements, most often the 

reason for non-zero model property errors (ε𝑡𝑗

𝐶𝑀𝑖 > 0) is in update rules. For instance, in the Tcell 

cases, for the best recommended model per case, ACCORDION was able to recover FOXO1 

which was not in VBM but was in VCE. Moreover, ACCORDION recovered the update function of 

FOXO1 in all three cases and therefore, the properties that correspond to the dynamic behavior of 

FOXO1(𝓉9, 𝓉18 and 𝓉27) under three different scenarios were all satisfied as shown in Figure 11. 

However, in the case of update function for AKT, ACCORDION added a number of new AKT 

regulators to the baseline model which affected the dynamic behavior of AKT. Again, this 

demonstrates the dependance of ACCORDION output on the CE sets provided by machine 
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reading. There are two ways in which this could be overcome. First, one could either use other 

tools to filter or score individual interactions in CE set (Gyori et al., 2017b) before they are used 

by ACCORDION, which we are planning to incorporate as one of our next steps. Second, 

ACCORDION can be used to identify cases where human input is necessary, for example, cases 

where many element regulators appear in literature, not all of which can be used to form regulatory 

rules. 

 

Figure 10 Error reducttion ACCORDION achieves in each case study 
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Figure 11 The Tcell, T-LGL and PCC use cases results including 1- the node overlap (NO) values for each 

candidate model (CM), 2- the normalizedsigma-score (σ ̃) , 3- the normalized delta-score (δ-score), 4- the 

normalized joint probability (p ̃), and 5- heatmaps of the statistical model checking results of 27, 19 and 21 

properties of the Tcell, T-LGL and PCC use cases, respectively, listed in Table 1, 2 and 3. 
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3.3.3 Finding Most Relevant Set of New Interactions 

We created the use cases such that the relationship between the number of elements and 

interactions in baseline models (|𝑉𝐵𝑀|, |𝐸𝐵𝑀|), and in their corresponding CE sets (|𝑉𝐶𝐸|, |𝐸𝐶𝐸|) 

varies, from the CE set being smaller than baseline model in the T-LGL QSm case, to being up to 

six times larger than baseline model in other use cases (Figure 7). We also determined the size of 

the overlap, |𝑉𝐵𝑀 ∩ 𝑉𝐶𝐸| (see Figure 7), further highlighting that indeed the number of new 

elements that could be added to the model is much larger than the number of elements in the model. 

Additionally, we created these nine case studies such that they have baseline models with varying 

level of network connectivity. As described in Section 2.6.1.1, the baseline model in the T cell 

studies is a previously published, thus functional model, while the T-LGL and PCC baseline 

models were created by removing nodes and interactions from a published model. Since by 

construction the clusters that ACCORDION generates are usually connected only to a part of the 

baseline model, we used the node overlap metric NO, defined in Section 5.2.4, to determine the 

relationship between the number of new nodes that are added to the baseline model and the part of 

the model those nodes are connected to. The NO numbers in Figure 11, together with the ratios 

|𝐸𝐶𝑀\𝐸𝐵𝑀|

|𝐸𝐶𝐸|
 listed in Figure 12, show that ACCORDION is very selective, and it only adds to the 

baseline model a subset of new interactions that are well connected with the model.  

We further investigated the percentage of these interactions selected from the entire CE set 

that were included in the top recommended CM (Figure 12(a)). For the Tcell cases, ACCORDION 

recommended on average 14% of the interactions as candidates for model extension, whereas for 

T-LGL and PCC cases, ACCORDION identified on average 26% and 15% of such interactions, 

respectively. These numbers emphasize an important characteristic of ACCORDION: while it 
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provides a comprehensive overview of literature, it significantly reduces the number of selected 

interactions, such that, if human input is still necessary, the number of interactions to manually 

review is significantly smaller than the original CE set. Interestingly, when observed together with 

the model error results, in the T cell and T-LGL studies, the higher NO values seem to correlate 

well with larger reduction in model error. However, in the PCC studies this correlation does not 

hold, where the CMs with a large number of new interactions compared to the size of the baseline 

model significantly decrease the baseline model error (~80% reduction). This demonstrates 

another important characteristic of ACCORDION: when the baseline model is already well-built, 

a smaller number of extensions can help improve it (e.g., Tcell and T-LGL cases), while for 

baseline models that are not very well connected and not functional or usable to start with (e.g., 

when the user starts only with a seed set of interactions and not a complete model), a larger number 

of interactions needs to be added to improve them (e.g., PCC case). 

3.3.4 Identifying Alternative Networks 

As described in Section 2.6, we identified golden models for our case studies. Our goal 

with using golden models was twofold: we were interested in exploring how closely 

ACCORDION can reproduce previously published models (“criterion B” and “criterion C” in 

Figure 12) as well as comparing and contrasting them to automatically created models that satisfy 

the same set of properties. In all three T cell case studies, ACCORDION adds all the interactions 

from the 𝐸𝐺𝑀\𝐸𝐵𝑀 set to its top recommended CMs (columns “GM” in Figure 12, dark yellow 

cells). For example, the merged cluster 𝐶1,2
𝑆𝑀, with NO=0.7, restored all the missing interactions 

that were removed from the golden model. In the T-LGL and PCC studies, ACCORDION adds 

30% and 32% of missing golden model interactions to recommended CMs. However, while in all 
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three T cell studies all missing golden model interactions, i.e., interactions from the 𝐸𝐺𝑀\𝐸𝐵𝑀 set 

are present in CE sets, the CE sets in the T-LGL and PCC studies do not contain all the interactions 

from the 𝐸𝐺𝑀\𝐸𝐵𝑀 sets, as shown in Figure 12 (columns “GM”, dark yellow cells). This is due to 

either papers that were selected using queries do not include those missing interactions or machine 

reading does not recognize these interactions in the papers.  

An important outcome from this exercise is that ACCORDION recommends new CMs, 

different from golden models, which have high 𝜎-score and δ-score and contain new interactions 

that form return paths with the baseline model. Moreover, in the T-LGL studies, a significant 

portion of interactions (41%) was removed from the golden model to obtain the baseline model. 

In such cases, ACCORDION selected from the large CE sets many additional interactions that 

form stronger connections with the baseline model (as part of clusters with high NO values and 

return paths) than the ones that are in the golden model, while also being able to find CMs that 

have high 𝜎-score and δ-score. For instance, the regulators of AKT in the golden model are PIP3 

and mTORC2, while the models recommended by ACCORDION also include regulations by 

TGFB, IFNgamma, CK2, CTLA4, SHIP1, all of which are suggested in literature. This highlights 

another possible use of ACCORDION, when examining redundancies in signaling networks or 

discovering alternative pathways regulating the same target element. 

3.3.5 Assistance in Query Answering 

We also explored the relationship between the design of queries and ACCORDION’s 

effectiveness, that is, whether the selection of search terms to mine literature affects the usefulness 

of extensions selected by ACCORDION. As described in Section 3.3.1.1, for the Tcell CEFA case, 

we used a search query as an input to PubMed to identify the most relevant papers. We investigated 
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the influence of this query on the percentage of interaction in clusters used to create CMs with top 

scores. In Figure 12, we show the average and the maximum percentage of selected interactions, 

i.e., (
|𝐸𝐶𝑀\𝐸𝐵𝑀|

|𝐸𝐶𝐸|
)

𝑎𝑣𝑔

and (
|𝐸𝐶𝑀\𝐸𝐵𝑀|

|𝐸𝐶𝐸|
)

𝑚𝑎𝑥

, which are 10% and 33%, respectively. For the best 

recommended model of this particular case study, ACCORDION was able to recover all the 

missing elements that are in VGM and not in VBM, namely, FOXO1, NEDD4, CK2 and MEK1. 

Furthermore, as can be seen in Figure 11, ACCORDION recapitulated the dynamic behavior of 

FOXO1, an element that was in the search query used to collect interactions for the CE set (Section 

3.3.1.1), in all three scenarios (properties 𝓉9 , 𝓉18and 𝓉27). However, the dynamic behavior of 

AKT (also in the search query), IL2 and STAT5 was not recovered in one out of three scenarios, 

(high TCR scenario, properties 𝓉19, 𝓉22 and 𝓉24). This is due to potentially erroneous interactions 

in the CE set extracted by machine readers, e.g., CD8 → AKT, proliferation → AKT, 

differentiation -| AKT, differentiation -| IL2 and differentiation -|STAT5 (“→” represents positive 

regulation, “-|” represents negative regulation, also used in Figure 1, Figure 4). As mentioned 

above, we plan to add pre-processing of CE sets (e.g., using interaction filtering (Holtzapple et al., 

2020)). For the T-LGL model study, we used three different queries as described in Section 3.3.1.2. 

The most elaborate query, in the T-LGL QDet case study, introduced more descriptive search terms, 

led to selecting more relevant papers, and consequently, extraction of relevant events and element 

regulators resulting in recommendation of a CM with high 𝜎-score (0.76) and δ-score (0.75). 

Additionally, the update rules of most of the elements were retrieved except three elements, S1P, 

GAP and IL2RB. The properties that correspond to these three elements are properties 𝓉5, 𝓉7 and 

𝓉12. In contrast, for T-LGL QSm and T-LGL QMed cases, less properties have been satisfied. 
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Figure 12 (a) Characterization of CMs created by ACCORDION for the nine case studies. (b) Three criteria 

definitions and ACCORDION’s criteria outcomes in the nine case studies (vproperty is the element included in the 

property as listed in Table 1, 2 and 3; CMrecommended is the top recommended model). 

For example, the baseline model error in property 𝓉17, related to the behavior of element 

JAK, is not corrected in the T-LGL QSm case, while property 𝓉19, related to element NFB, is not 

corrected in both T-LGL QSm and T-LGL QMed cases. This is mainly due to the key regulatory 

interactions for these elements not being extracted from literature, or due to the interactions that 

are recovered not forming proper update functions. Overall, by comparing the results for the three 

queries in the T-LGL case studies, we have confirmed that a better query design leads to more 

useful and relevant information in the input CE sets. 

3.3.6 Role of Static Network Characteristics 

In this section, we will explore some of the static network characteristics of the network to 

be clustered or Gnew, for the three cases of the Tcell benchmark. In Figure 13, we show three 
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networks (undirected interaction maps, for easier visualization) that were formed by combining 

each of the CE sets (Tcell CEFA, Tcell CESA, and Tcell CESM) with the baseline model.  

 

Figure 13 Networks obtained when combining baseline model with the CEI set for each of the three cases, FA, 

SA, and SM (Gnew,FA, Gnew,SA, and Gnew,SM). Gray nodes are the baseline model nodes and white nodes are the 

new nodes that belong to the CEIs. 

We explored static characteristics of these three graphs and their correlation with the selection 

of the best extended model. Given a directed graph Gnew,*(Vnew,*, Enew,*), where *{FA,SA,SM} 

and the definition of a path in Section 2.2, we computed average path length (APL), clustering 

coefficient (Coeff), and graph density (Section 2.4). In Figure 14, we highlight the difference 

between the three graphs: Gnew,FA is shown in green, Gnew,SA in blue, and Gnew,SM, which is a 

subgraph of Gnew,SA, in orange. In addition, we show the overlapping nodes between the three 

networks in cyan. 

Interestingly, it was observed that despite network diversity, Gnew,FA, Gnew,SA, and Gnew,SM 

share prominent structural features: they have small APL, small average Coeff, and small graph 

density, and thus, large average degree values are unlikely. This similarity is even better illustrated 

in (Figure 15(a)), showing the Degree histogram for the nodes in each network that follows a 
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power law, and in (Figure 15(b)) showing the distribution of node distance (d) centered 

approximately around value 4. As can be noticed, both graph parameters, Degree (D) and d, have 

similar patterns but with different count numbers for each Gnew,* in proportion to the size of its 

network.  

 

Figure 14 Gnew,FA, Gnew,SA, and Gnew,SM drawn together, highlighting the common nodes 

Moreover, the values of graph density of  Gnew for Tcell CEFA, Tcell CESA, and Tcell CESM 

cases are 0.017, 0.032 and 0.032, respectively, which suggest that the graphs assembled from the 

information extracted by machine readers are less dense, even with varying network size. These 

results also suggest that the difference in literature sources and the size of the CE sets did not affect 

the characteristics of Gnew,* graphs in this case study. 

The inspection of obtained clusters shows that they are less dense and star-like networks 

(two examples shown in Figure 16, which agrees with the conclusions of the above studies of 

graph characteristics. Thus, computing the graph parameters can guide our proposed extension 

method by providing an early estimate of whether the CE sets can lead to desired models. For 
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instance, if the APL is large, we will expect to extract a fewer number of return paths from the 

Gnew,* graphs, and therefore, in our analysis we will lack the connectivity of the CEs to the baseline 

model. Additionally, the graphs with smaller graph density will reduce the computation time, and 

computing this parameter helps determine in advance the expected execution time of our 

algorithm. 

 

Figure 15 (a) Different degree D values and corresponding number of nodes; (b) Different shortest path length 

d values and the corresponding number of paths 

 

Figure 16 Two clusters that form a return path with the baseline T cell model, shown as directed graphs (yellow 

node is a common node for both clusters). 
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3.3.7 Runtime 

In Figure 12, we list the time that ACCORDION takes to generate clusters when run on a 

3.3 GHz Intel Core i5 processor. The time required by ACCORDION to generate clusters increases 

with larger CE sets. For the PCC case studies, the runtime same across studies since the same CE 

set has been used. However, for the T cell and T-LGL case studies, the CE sets have different 

sizes, and thus, result in different runtime. The runtime of the overall extension algorithm is 

proportional to the number of properties that we need to test against. In other words, if we have 

NC clusters and NP properties, the time required for the extension algorithm is at the order of 

O(NC*NP). However, the runtime can be significantly reduced if testing for all properties and 

clusters is carried out in parallel, which is part of our immediate future work. 

3.4 Conclusion 

In this chapter, we have described a novel methodology and a tool, ACCORDION, that 

can be used to automatically assemble the information extracted from literature into models and 

to recommend models that achieve desired dynamic behavior. Our proposed approach combines 

machine reading with clustering, simulation, and model checking, into an automated framework 

for rapid model assembly and testing to address biological questions. Furthermore, by 

automatically extending models with the information published in literature, our methodology 

allows for efficient collection of the existing information in a consistent and comprehensive way, 

while also facilitating information reuse and data reproducibility, and often helping replace tedious 

trial-and-error manual experimentation, thereby increasing the pace of knowledge advancement. 
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The results we presented here demonstrate different research scenarios where ACCORDION can 

be used. As our next steps, we are planning to improve the input pre-processing in order to provide 

more useful candidate event sets, to make ACCORDION compatible with other model 

representation formats (e.g., SBML), as well as to work on parallelizing the tool implementation 

to improve the runtime when testing large number of properties. 
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4.0 Guided Assembly of Network Models from Knowledge in Literature using 

Collaboration Graph 

4.1 Objective and Applicability 

We propose a novel methodology, MELOGRAPH (Model Extension using CoLlabOration 

GRAPH) (Ahmed & Miskov-Zivanov, 2021), to automatically assemble network mechanistic 

models, by selecting most relevant and useful information from published literature. This is 

achieved by identifying the most influential events in the newly extracted information, and then 

scoring these events using the occurrence frequency of events and graph centrality metrics. The 

proposed methodology examines events extracted from literature in the context of a collaboration 

graph and the measure of the occurrence frequency in literature. MELOGRAPH also explores the 

role of several graph centrality metrics in identifying the most influential events. Using 

MELOGRAPH, we propose a heuristic to determine which centrality metrics are crucial for 

finding those influential events. Our methodology takes at most a few seconds to execute 

thousands of in silico experiments, which would otherwise take months, or would be impractical, 

to conduct in a wet lab. We evaluate our method of model assembly using three benchmark models, 

namely, Tcell CESM, TLGL QMed and PCC BMAu (Section 3.3.1). The main contributions of 

MEOGRAPH are: 1) application of the concept of a collaboration graph in guiding model 

extension; 2) a metric for event ranking based on their occurrence frequency in literature; 3) a 

method to evaluate the importance of graph centrality characteristics in finding influential events; 

4) application of the proposed methods on several case studies in biology. 
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4.2 Proposed Methodology 

In this section, we describe the main steps of our proposed methodology, which are also 

outlined in Figure 17. 

4.2.1 ECG Creation 

Following the notion of a collaboration graph that is often used to model social networks 

(Grossman & Ion, 1995), we introduce the Event Collaboration Graph (ECLG). In the social 

network domain, nodes represent participants and edges connect two nodes whenever there is a 

collaborative relationship between them. Similarly, we define the ECLG as an undirected graph 

G(E, C), where E is a set of graph nodes, each representing a distinct event e in CE set, C is a set 

of undirected graph edges, each edge c(ei,ej) indicating a co-occurrence in the same paper of its 

adjacent nodes, ei and ej (i.e., the two events represented by these nodes).  

 

Figure 17 MELOGRAPH methodology workflow 
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4.2.2 Frequency Class Metric and Centrality Metrics 

To measure the frequency of occurrence within CE set of individual distinct events that 

belong to an ECLG, we propose to use a computational linguistic concept for calculating word 

frequency, called Häufigkeitsklasse or frequency class (FC) (P.Brown et al., 1992; Weeber et al., 

2000) Here, given the CE set (with n total events and m distinct events), we compute the frequency 

class value, FCi, for each extracted distinct event ei, where i=1,..,m and ⌊..⌋ is the floor function:   

𝑭𝑪𝒊 = ⌊𝟎. 𝟓 − 𝒍𝒐𝒈𝟐
𝒇𝒊

𝒇𝒎𝒂𝒙
⌋                                                                                                                                      (4.1)14 

We denote the frequency of each distinct event ei, that is, the overall number of occurrences 

of event ei within CE set, as fi. We also identify all distinct events for which fmax = max({fi: 

i=1,..,m}). As can be concluded from the equation above, the most frequent event, that is, any 

event ei for which fi=fmax, will have 𝐹𝐶𝑖 = 0, while any event half as frequent as the most frequent 

event will have 𝐹𝐶𝑖 = 1 (due to logarithm with base 2).  

It is worth mentioning that unlike simple naïve event count, the frequency class-based 

metric helps group the events within a CE set into several categories. This will allow modelers to 

consider the events within or across these categories. Additionally, setting a threshold based on a 

simple event count sounds arbitrary and does not account for the occurrence frequency of the other 

events. In contrast, the frequency class-based metric is computed for each event with respect to the 

most frequent event, which helps modelers to choose a threshold (as will be discussed later in this 

Chapter) and discard the less frequent events. 

A number of centrality metrics have been introduced to identify and rank most influential 

or central nodes in large networks (Das et al., 2018; Koschützki & Schreiber, 2008). For any given 

network, the selection of most suitable centrality metrics is affected by the network’s topology. 
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Here, we are interested in exploring the correlation between several centrality metrics (defined in 

Section 2.5), namely, Degree (D), Neighborhood connectivity (NC), Betweenness centrality (BC), 

Closeness centrality (CC) and Radiality (R), and our proposed frequency class metric.  

4.2.3 Relationship between Centrality and FC metrics 

To determine in an automated way which centrality metrics are most correlated with the FC 

metric for a given network, we use the permutation feature importance (PFI), a machine learning 

technique described in (A. Fisher et al., 2018). A typical supervised machine learning problem is 

composed of: (i) a data set 𝔇, (ii) a set of features 𝛷, and (iii) a corresponding target class 𝒯. For 

the application of the PFI algorithm in this work, the nodes of the ECLG form the data set 𝔇, the 

centrality metric values D, NC, BC, CC, and R form the feature set 𝛷, and the FC metric values 

previously determined for the ECLG nodes are used as the target class value set 𝒯. Next, we use 

the PFI algorithm to determine which feature (i.e., which centrality metric) in 𝛷 contributed the 

most to the target class value (FC) in 𝒯 of each data point in 𝔇 (node in the ECLG). The class of 

each data point in 𝔇 in a supervised machine learning problem is obtained using a trained classifier, 

and we use here the k-nearest neighbor (KNN) classifier (Tan et al., 2007). KNN is considered one 

of the top ten most effective data mining algorithms for their ability to generate simple but 

powerful classifiers (Wu et al., 2008).  

The details of the PFI algorithm are the following. For the given data 𝔇 (i.e., the ECLG nodes) 

and each feature (i.e., centrality metric), we determine the corresponding feature vector, i.e., a 

vector of values for the given feature in each data point. The PFI algorithm then conducts multiple 

iterations, in each iteration randomly shuffling one feature vector to obtain a corrupted version of 
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data 𝔇. For a given feature φ ∈ 𝛷, and an iteration 𝑙 = 1. . 𝐿, the algorithm computes a score 𝑠φ,𝑙, 

which is used to indicate the accuracy of the classifier (how closely it matches the target class). 

The importance score 𝑝φ is then computed for each feature φ using the following equation:  

𝒑𝝋 = 𝒔𝝋,𝟎 −
𝟏

𝑳
∑ 𝒔𝝋,𝒍

𝑳
𝒍=𝟏                                                                                                                                  (4.2)15                                                                  

where 𝑠φ,0 is computed at the beginning of the algorithm, before any shuffling. The PFI 

algorithm provides as output the importance score of each feature (centrality metric), thus 

quantifying the contribution of these features to the given classification of the ECLG.  

4.2.4 Selection of Candidate Extension Events 

The events selected either using the FC metric or the centrality metrics are considered 

potential candidates for model extension or assembly and are selected as follows. 

We rank all the events in the ECLG (i.e., in set E) in ascending order of 𝐹𝐶 values, i.e., 

from the most to the least frequent event. Next, we determine a threshold 𝐹𝐶 value. This threshold 

can be determined in different ways, for example, it can be provided as a fixed input parameter, or 

it can be determined based on the used CE set. As we will discuss later in this chapter, for our case 

studies we consider the threshold to be an average 𝐹𝐶 value, 𝐹𝐶𝑎𝑣𝑔 , computed across all nodes 

(events) in set E. We then create a new set EFC, a subset of E, including all events from E with 

𝐹𝐶 ≤ 𝐹𝐶𝑎𝑣𝑔. We refer to the events in EFC as FC candidate events. In other words, we remove less 

frequent events from the original ECLG to form a smaller graph GFC (EFC, CFC). This step will 

effectively remove edges from the original set C, thus making CFC a subset of C. 
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We also rank all events in the original set E, based on the values of the node centrality 

metric with the highest 𝑝φ, as selected by the PFI algorithm. Next, we choose the cut-off threshold 

for the centrality metric in order to select the most central nodes. We apply the threshold to 

determine a subset of E, a new set ECentral, that includes the most influential nodes, i.e., top ranked 

nodes according to the selected centrality metric. We refer to events in ECentral, as centrality 

candidate events. 

4.3 Results  

We conducted several experiments using the three benchmark models described in Section 

2.6. We explored how well MELOGRAPH performs in various scenarios, small vs. large model 

and controlled vs. query-based CE set. 

4.3.1 FC Candidate Events in three Case Studies 

For the Tcell CESM, TLGL QMed and PCC BMAu cases (Section 3.3.1), we create an ECLG 

for each case. To identify the FC candidate events, we compute the FC value for all nodes (events) 

in the ECLG, according to FC equation. As described earlier in this chapter, events with FC = 0 

are the most frequent ones and are considered to be strongly supported by literature, where multiple 

statements include them. We found that in all three case studies 𝐹𝐶𝑎𝑣𝑔 = 2, and therefore, we will 

use this value as a threshold for removing less frequent events (i.e., all events with 𝐹𝐶 > 2) from 

the ECLG in each case study. We list in Table 4 the number of nodes and edges in the ECLG of 

each case study, both before (ECLGoriginal) and after (ECLGFC) the removal of less frequent nodes, 
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that is, the size of sets E and C, and sets EFC and CFC, respectively. We also show in Table 4 the 

centrality metric values for all ECLGs. To further compare and contrast the two versions of ECLG 

in each case study, ECLGoriginal and ECLGFC, we also show in Table 4values for other commonly 

used graph metrics. As a reminder, the nodes in ECLGFC represent FC candidate events. As can 

be noticed in Table 4, not only there is a difference in size between sets E and EFC, and sets C and 

CFC, but also other graph parameters changed. For instance, the change in the average 

neighborhood connectivity value NCavg ranges from 2% for the T cell use case to 14% in the PCC 

use case. The distribution of FC values within the CE set of each case study is illustrated with pie 

charts in Figure 18(Top). When the percentages in each FC category are averaged across the three 

case studies, the distribution of events with FC=(0, 1, 2, 3, 4, 5) is (7%, 31.3%, 33.6%, 16.3%, 

9.6%, 2.3%), respectively. As expected, consistent across all three case studies, the number of 

distinct events that occur most frequently in literature (FC=0) is small compared to other 

categories. Interestingly, in all three case studies, the number of distinct events that do not have 

many occurrences in literature (FC=4 or FC=5) is also relatively small, while more than half of the 

total number of distinct events is in the higher occurrence frequency categories (FC = 2 or FC = 1).  

4.3.2 Evaluating Centrality of FC Candidate Events 

We investigated the relationship between graph centrality metrics (described in Section 

2.5) and our proposed FC metric. To compare these metrics, we used the golden model and the 

corresponding CE set from each case study. As the values in Table 4 suggest, for each case study, 

the removal of less frequent nodes leads to a denser graph, with strongly connected components, 

which is in agreement with both the increased NCavg value of the nodes and the high clustering 
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coefficient. Moreover, the average node degree Davg in ECLG increased after the removal of less 

frequent nodes. This is due to the high (inverse) correlation between the D value and the event FC 

value, as shown in Figure 18(Middle). Furthermore, the less frequent events (with FC > 2), have 

the lowest D values. The most frequent events in literature, which are at the same time the nodes 

with higher D values, tend to have a greater ability to influence other ECLG nodes. The correlation 

coefficients of different metrics are illustrated in Figure 18(Bottom). The nodes having high D 

values also have FC =0. The strong correlation between FC and D values is also highlighted in the 

D distribution histogram for ECLGoriginal and ECLGFC in Figure 19(Top).  

On the other hand, the closeness centrality CC values and the radiality R values of nodes 

do not seem to correlate with FC values. The R and CC values are highly correlated (Scardoni & 

Lau, 2012), that is, larger R and CC values indicate central position of a node in a graph, and this 

is also clearly seen in Figure 18(Bottom). Interestingly, when we plotted R vs. CC of ECLGoriginal 

and ECLGFC, we found that in ECLGFC the relationship between the R and CC values takes almost 

a linear shape. The removal of the less frequent nodes took out the main outliers that existed in 

ECLGoriginal, while the R and CC values of the remaining nodes did not change much. The reason 

behind small changes in the remaining nodes is that some of the removed nodes were already 

separated from the main connected component of the ECLGoriginal graph. Another centrality 

measure that is not correlated with the literature occurrence frequency is betweenness centrality 

BC. As listed in Table 4, the average BC value is approximately 0.01, both before and after the 

removal of less frequent nodes (i.e., in ECLGoriginal and ECLGFC, respectively).  

As can be seen in the table in Figure 18(Bottom), there is high correlation between NC and 

FC values in ECLG nodes, which is also confirmed by the strong correlation between D and NC 

values, on one side, and the D and FC values, on the other. This is further confirmed using PFI to 
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identify the centrality metric that contributed the most to classifying the CE set – Figure 20 shows 

the importance score 𝑝φ of each centrality metric for all three case studies. We note that degree 

metric has the highest importance score, for all the case studies, the neighborhood connectivity 

centrality metric has the second highest and a non-zero importance score, whereas all the other 

centrality metrics have zero importance score. 

Table 4 Summary of the baseline model graph measures and ECLG metric values before and after the removal 

of less frequent events (ECLGoriginal and ECLGFC, respectively) for T cell, TLGL, and PCC use cases. 
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Figure 18 Comparison of metric values for the three case studies, T cell, T-LGL, and PCC: (Top) Distribution 

of frequency class values within each CE set. (Middle) FC vs. D values of all nodes in ECLGoriginal. (Bottom) 

Correlation coefficients between different metrics. 

4.3.3 Evaluation of the Proposed FC Metric 

For each case study, we compute the precision and recall of the FC metric and the degree 

centrality metric. To determine the precision and recall values, we consider the candidate events 

that are also present in the golden model as true positives or true events, and the remaining 

candidate events as false positives or false events. Similarly, the events that are in the golden model 

and were not selected as candidate events are false negatives and the events that are not in the 

golden model and were not selected as candidate events are true negatives. We will refer to the 
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golden model events as correct events. Precision is the ratio between the number of true events 

and the sum of the number of true events and the number of false events, whereas recall is the ratio 

between the number of true events and the total number of correct events found in the CE set (i.e., 

the sum of the number of true positive and the number of false negative events). 

We show in Figure 21 the precision and recall results for the FC candidate events of the 

three case studies. For the T cell case, we achieved a precision of 0.44. This means that 56% of 

the FC candidate events are false positives (i.e., they are not in the golden model). On the other 

hand, for the T-LGL case, the event precision is 0.3, and in the PCC case, it is 0.25. While in the 

T-LGL and PCC studies more than half of the events and entities are false positives, it is important 

to note that these two studies have much larger CE set, compared to the T cell study, and thus, 

have more candidate events. Moreover, the events that are in the golden models are not necessarily 

the only valid events, as there could be other events in literature that are also useful and important, 

and therefore, should be considered in model assembly. Our proposed methodology is able to 

uncover such events and suggest them as model extension candidates. For instance, in the PCC 

study, the events IL-6 → MMP, STAT3 → Twist, NF-B → Bcl-2, NF-B → Bcl-X L, STAT3 

→ Bcl-2 and STAT3 → Bcl-X L, AID —| P53 (where “→” represents positive regulation, and “—

|” represents negative regulation) were identified as FC candidate events, and their correctness was 

approved by domain expert although they are not in the model. Examples of the evidence 

statements for those events, found in the REACH output, are: “IL-6 promotes MMP expression”, 

“STAT3 mediated induction of Twist transcription”, “the expression of the anti-apoptotic proteins 

Bcl-2 and Bcl-X L are promoted by both NF-B and STAT3 and a novel mouse model of 

hepatocarcinogenesis triggered by AID causing deleterious p53 mutations”. Therefore, the 

precision that we report in Figure 21 is likely smaller than the actual precision of our proposed 



 72 

method due to these additional important events that the method is able to uncover, and which are 

not in the golden model. To elaborate more on this, we conducted the following exercise for the 

PCC study. We used human judgement of candidate events, that is, based on domain expert’s 

opinion, we labeled the candidate events as true or false positives. Interestingly, the domain expert 

identified additional 144 events as true positives (valid FC candidate events, but not in the golden 

model), besides the 151 true events (FC candidate events that are also in the golden model). When 

we changed the status of these 144 events from false positives to true positives, the precision 

increased to 0.65.  

We used INDRA to compute a belief score for each selected event in the T-LGL study, 

where we used a query to search for papers instead of preselected list of papers. INDRA generated 

a belief score with value greater than or equal 0.7 (out of 1) for 22 additional events. When we 

changed the status of these events from false positives to true positives, this has increased the event 

precision from 0.3 to 0.4. 

The recall values for our proposed method are much higher than the precision values 

(Figure 21). This demonstrates the ability of our methodology to identify useful and relevant events 

in a given CE set. In particular, for the T cell study, the recall value is 1, as none of the correct 

events are missed, that is, there are zero false negatives. For PCC case, the recall value is 0.76. 

Finally, for the T-LGL case study, the recall is 0.70, i.e., our method missed approximately 30% 

of correct events. The lower recall in this study is due to removing a large number of events (41%) 

from the golden model to create the baseline model (Table 4), as well as using a large CE set. 

It is worth noting that the values of precision and recall are highly affected by the accuracy 

of machine readers. There are several errors that arise from machine reading output when 

extracting the events from published literature. For instance, a common error that we noticed in 
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the PCC case study is related to the EGFR (epidermal growth factor receptor) protein. When the 

machine reader finds EGFR in a paper, it translates it into EGFrna which is not true and makes 

any event that contains the protein EGFR a false positive. 

 

Figure 19 . Exploration of graph characteristics for the three case studies, T cell model, T-LGL model, and 

PCC model: (Top) distribution of degree (D) values, (Bottom) Radiality (R) vs. closeness centrality (CC) of the 

ECLG network before and after the removal of less frequent events (ECLGoriginal and ECLGFC, respectively). 

 

Figure 20 The importance score 𝒑𝝋, for the centrality metrics D, NC, CC, R, and BC in the three case studies 
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4.3.4 Evaluation of the Degree Centrality Metric 

Since we found that the degree centrality metric highly correlates with our proposed FC 

metric, we were interested in exploring the difference between the set of centrality candidate events 

found using the degree metric and the set of FC candidate events. We ranked the nodes (events) in 

the ECLGoriginal in descending order of D values, i.e., from the event with highest D value to the 

event with lowest D value. Similar to FC, we can set a threshold and remove the events with low 

D values. Therefore, the top ranked nodes are the centrality candidate events to be evaluated. 

For each case study, we computed the threshold as the average D value, and we removed 

all the events that are below this value. The generated set is the set of centrality candidate events. 

As shown in Table 4, the average D values are 10.7, 36 and 54.9 for T cell, T-LGL and PCC case 

studies, respectively. The number of events in the set ECentral, after the removal of the events with 

small D values is 47 for the T cell case study, 215 for the T-LGL case study and 405 for the PCC 

case study. We show in Figure 21 the precision and recall of the centrality candidate events for the 

three case studies. For T cell study, the precision is 0.4 and the recall is 0.9. For the PCC study, 

the precision is very small, it is 0.16, and the recall is 0.6. Similarly, for the T-LGL study, the 

precision value is very small, it is 0.11 and the recall is 0.36. In all case studies, these values are 

smaller than the values reported for the FC metric. This is due to the centrality metric D removing 

a subset of true events that were in the FC candidate event set. These results emphasize the fact 

that the FC metric is more accurate in extracting true events from the CE set, compared to centrality 

metrics.  

Finally, we conducted a two-step exercise, by first selecting the nodes (events) with 𝐹𝐶 ≤

2 from ECLG to form ECLGFC. We then computed the average D value of the nodes in ECLGFC 
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as our new threshold and we removed all the nodes having D value below this threshold. The 

number of events that we obtained are 48, 137 and 255 for the T cell, T-LGL and PCC cases, 

respectively. For those events, we compute the precision and recall as shown in Figure 21. For all 

use cases, the recall values are smaller than FC values of 0.63 for T cell, of 0.25 for T-LGL and of 

0.51 for PCC. This means that more correct events were removed which reduces the recall values. 

However, for the PCC case, the precision value significantly increased to 0.5 since additional 

events that are likely false positives were removed. This suggests that using the two-step selection 

could be beneficial when the CE set is at the order of tens of thousands of interactions or larger. 

 

Figure 21 Precision and recall values when compared to golden models for T cell, T-LGL and PCC use cases 

4.4 Conclusion 

In this chapter, we presented MELOGRAPH, an automated framework for rapid model 

assembly that combines machine reading, the frequency class-based metric, and graph analysis. 

We compared the performance of our proposed frequency class-based metric to four common 

centrality metrics, and we also evaluated the usefulness of the centrality metrics when identifying 

the events that are highly supported in literature. Our results suggest that our proposed frequency 

class-based metric is most useful when the machine reading output has hundreds or thousands of 
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events, while in the case of larger extracted events sets, the event selection can be further improved 

when the frequency class metric is used together with the degree centrality metric. Furthermore, 

our methodology automatically assembles models using the information published in literature 

within several seconds. As such, it facilitates information reuse and data reproducibility, and it 

could replace hundreds or thousands of manual experiments 
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5.0 An efficient Approach for Informing Network Models with Knowledge from Literature 

using CLARINET 

5.1 Objective and Applicability 

CLARINET (CLARIfying NETworks) is a novel method and a tool that automatically and 

efficiently extends existing models, by selecting most relevant and useful information.  

CLARINET explores the vast knowledge in published literature and quickly processes the 

information from hundreds or thousands of papers. CLARINET is a tool that explores the 

knowledge published in literature and suggests top candidate components and relationships to be 

included into models. CLARINET is novel – it combines several approaches into a novel model 

extension methodology: CLARINET compares, evaluates, and integrates the newly extracted 

information into models, utilizing graph-based approaches, return path finding, and scoring based 

on frequency of occurrence and co-occurrence in published literature. CLARINET is 

generalizable: We demonstrate in this chapter the application of CLARINET in modeling cellular 

signaling pathways in immune system and cancer. However, the domain information is not hard-

coded, and CLARINET can be applied in many different domains and to models at different scales, 

from small scale intracellular signaling networks to large scale networks in political or socio-

economic domains. 

The main contributions of CLARINET include:  

1. An automated, fast methodology and a tool that utilizes the knowledge published in 

literature and suggests model extensions. 
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2. A novel approach to study events extracted from literature as a collaboration graph, 

including several metrics that rely on the event occurrence and co-occurrence frequency in 

literature.  

3. A parametrizable tool that allows users to explore different selection criteria, when 

automatically identifying best extensions for their models. 

 

5.2 Proposed Methodology 

The main steps and components of the CLARINET methodology are outlined in Figure 22. 

Similar to ACCORDION and MEOGRAPH, CLARINET has two inputs: a baseline model and 

the candidate event set (CE set). We evaluate CARINET ability to automatically assemble models 

using three benchmark models, namely, Tcell CESM, TLGL QMed and PCC BMAu (Section 3.3.1). 

5.2.1 ECLG Creation and Individual Assessment (IA) 

Following the notion of collaboration graphs that is often used to model social networks 

(Grossman & Ion, 1995), we introduce the Event Collaboration Graph (ECLG). In social 

networks, nodes represent participants and edges connect pairs of nodes that have collaborative 

relationships. Similarly, we define an ECLG as a weighted undirected graph G (V, E, Wv, We), 

where V is a set of graph nodes, each representing a distinct event extracted from literature, E is a 

set of graph edges, each edge indicating a co-occurrence in the same paper of the two events 

corresponding to its adjacent nodes. Wv and We are sets of node and edge weights, respectively.  
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We will refer to the ECLG created from the CE set as an original ECLG. We compute the 

weights Wv and We based on the frequency of the event occurrence and co-occurrence in the CE 

set using several metrics proposed in this chapter. 

In this chapter, we will use the frequency class metric introduced in MELOGRAPH chapter 

(Section 4.2.2) to identify the most and the least frequent events. We will show later that 

CLARINET is able to select the most relevant events in an accurate way using the frequency class 

metric. Given the CE set (with N total events and M distinct events), we compute frequency class 

𝐹𝐶𝑖
𝐼𝐴, for each extracted distinct event, i=1,..,M:   

𝑭𝑪𝒊
𝑰𝑨 = ⌊𝟎. 𝟓 − 𝒍𝒐𝒈𝟐

𝒇𝒊

𝒇𝒎𝒂𝒙
⌋                                                                                                       (5.1)16 

where ⌊..⌋ is the floor function. We denote the frequency of each distinct event i, that is, the overall 

number of occurrences of event i within CE set, as fi. We also identify all distinct events for which 

fmax = max({fi: i=1,..,M}). As can be concluded from the equation above, the FCIA value of the 

most frequent event is 0, while any event half as frequent as the most frequent event will have 

FCIA value equal 1 (due to logarithm with base 2).  

For each node that belongs to the ECLG, we find its FCIA and we rank all the events in 

ascending order, i.e., from the most to the least frequent event. By setting a threshold for FCIA, we 

can remove the least frequent events from the ECLG, i.e., all events with FCIA larger than this 

threshold. This allows for extending models with the high confidence, and likely more relevant, 

events. Additionally, we can keep only the events that co-occur in literature with the most frequent 

event(s), by removing nodes in ECLG that are not connected to the nodes with FCIA =0. 

Thus, using the FCIA metric, we automatically select a subset of EES events to be 

considered for model extension, called candidate extensions. We will refer to the ECLG obtained 

automatically after individual assessments and the removal of selected nodes as a candidate ECLG. 
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We note here that, unlike simple naïve event count, the FC metric helps classify events 

within an EES into several classes, thus allowing modelers to examine events within or across 

these classes. Moreover, setting a threshold based on a simple event count is arbitrary and does 

not account for the occurrence frequency of the other events. On the other hand, FCIA is computed 

for each event with respect to the most frequent event, allowing modelers to use a threshold and 

discard the less frequent events. 

 

Figure 22 Illustration of CLARINET framework: (Left) CLARINET inputs: Candidate event set (CE set) and 

Baseline model. (Right) Flow diagram of the CLARINET processing steps and outputs. 

5.2.2 Pair Assessment (PA) 

To identify groups of events that would be most useful when added to the model together, 

we cluster the candidate ECLG with respect to the weights on its edges (literature co-occurrence-

based links between events).  

We measure the co-occurrence of pairs of events within the CE set, by computing a 

frequency class of pairs, FCPA, and a weighted inverse frequency of pairs, IFPA. We define the 

frequency class of a pair of events i and j within the EES, 𝐹𝐶𝑖,𝑗
𝑃𝐴, as:  

𝑭𝑪𝒊,𝒋
𝑷𝑨 = ⌊𝟎. 𝟓 − 𝒍𝒐𝒈𝟐

𝒇𝒊,𝒋

𝒇𝒎𝒂𝒙,𝒑𝒂𝒊𝒓
⌋                                                                                                                   (5.2)17                            
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where the co-occurrence frequency of events i and j, that is, the number of different papers in 

which both events i and j occur, is denoted as fi,j, while 𝑓max,𝑝𝑎𝑖𝑟 = max({fi,j: i=1,..,M, j=1,..,M, 

i≠j}).  

We also propose an additional pair assessment metric, 𝐼𝐹𝑖,𝑗
𝑃𝐴, that combines the inverse 

relative frequency of events i and j, N/fi and N/fj, respectively, where N is the total number of events 

in the CE set, with a co-occurrence frequency of this pair of events, fi,j: 

𝑰𝑭𝒊,𝒋
𝑷𝑨 = 𝒇𝒊,𝒋 ∗ (𝒍𝒏 (

𝑵

𝒇𝒊
) + 𝒍𝒏 (

𝑵

𝒇𝒋
))                                                                                            (5.3)18 

As can be noticed, the IFPA value increases proportionally to the number of times a pair of 

events occurs, and it is offset by the sum of the logarithms of the inverse occurrence frequencies 

of individual events. This inverse factor in the IFPA metric provides several benefits over the FCPA 

metric, especially in the case of rare but important extracted events. Specifically, using the inverse 

relative frequency of an interaction, N/fi, increases the likelihood of selecting rare events, and 

therefore, their impact on the model. The logarithm is used to dampen the effect of the fraction. 

On the other hand, for frequent events, this fraction is low but still positive. 

5.2.3 Clustering 

In order to identify groups of events that would be most useful when added to the model 

together, we cluster the ECLG using the community detection algorithm proposed by Blondel et 

al. in (Blondel et al., 2008), which has been shown to generate communities of very good quality, 

outperforming other community detection methods. In the context of the ECLG definition from 

Section 3.1, given the graph G (V, E, Wv, We), with the node weight set Wv being a set of FCIA 

values, and the edge weight set We a set of either FCPA or IFPA values, we provide here a brief 
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overview of the community detection algorithm. As defined in (Blondel et al., 2008), modularity 

Q is a measure of the quality of network partitioning into communities (referred to as clusters in 

our work) computed as the density of edges inside communities relative to the edges between 

communities:  

𝑸 =
𝟏

𝟐𝒎
∑ (𝒘𝒖,𝒗 −

𝒖𝒗

𝟐𝒎
)𝒖,𝒗 ∗  𝜹(𝒄𝒖, 𝒄𝒗)                                                                                                   (5.4)19 

where wu,v represents the weight of an edge between nodes u and v, m is the sum of all edge weights 

in the network, cu and cv are communities of nodes u and v, 𝑢 and 𝑣 are sums of the weights of 

the edges connected to nodes u and v, respectively; δ(cu,cv)=1, if u and v belong to the same 

community, otherwise, it is 0. In order to maximize Q, the algorithm has two phases that are 

repeated iteratively. The first phase starts by assigning each node in the network to its own 

community, and then, for each node u, we compute the change in modularity, Qu,v, that would 

occur if node u were to be moved from its current community to the community of each of its 

neighbor nodes in the network: 

𝜟𝑸𝒖,𝒗 = [
𝑺𝒗+𝟐𝒖,𝒗

𝟐𝒎
− (

𝑺𝒗,𝒕𝒐𝒕+𝒖

𝟐𝒎
)

𝟐
] − [

𝑺𝒗

𝟐𝒎
− (

𝑺𝒗,𝒕𝒐𝒕

𝟐𝒎
)

𝟐
− (

𝒖

𝟐𝒎
)

𝟐
]                                                (5.5)20 

where S𝑣 is the sum of weights of the edges inside community cv that node u is moving into, S𝑣,𝑡𝑜𝑡 

is the sum of the weights of the edges incident to nodes in cv, u is the sum of the weights of the 

edges incident to node u, u,v is the sum of the weights of the edges from node u to nodes in cv, 

and m is the sum of all the weights of all the edges in the network. Once this value is calculated 

for all communities that u is connected to, u is placed in the community that resulted in the greatest 

modularity increase. If no increase is possible, u remains in its original community. This process 

is applied repeatedly for all nodes as long as there is increase in Q.  
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After Q reaches a local maximum, the second phase of the algorithm creates a new network 

where nodes are the communities from the previous phase, the first phase proceeds with this new 

network, and the iterations are repeated until there is no more increase in Q. We will refer to the 

communities in the undirected candidate ECLG that result from applying this algorithm as 

generated clusters. We show examples of candidate ECLG and the corresponding ECLG with 

generated clusters in Figure 23. 

Next, from the total NC generated clusters, we are interested in selecting those clusters that 

would be most useful for extending the model and answer the questions that initiated literature 

search. To rank the clusters, we will use the two PA literature support metrics. For each cluster Cl, 

we find the average values of 𝐹𝐶𝑖,𝑗
𝑃𝐴, and 𝐼𝐹𝑖,𝑗

𝑃𝐴, across all pairs (i,j) of connected events i and j 

within the cluster Cl, 𝐹𝐶𝑙𝑎𝑣𝑔

𝑃𝐴 and , 𝐼𝐹𝑙𝑎𝑣𝑔

𝑃𝐴 , respectively: 

 𝑭𝑪𝒍𝒂𝒗𝒈

𝑷𝑨 =
𝟏

𝑷𝒍
∑ (𝑭𝑪𝒊,𝒋

𝑷𝑨)(𝒊,𝒋)                                                                                                         (5.6)21                                    

 𝑰𝑭𝒍𝒂𝒗𝒈

𝑷𝑨 =
𝟏

𝑷𝒍
∑ (𝑰𝑭𝒊,𝒋

𝑷𝑨)  (𝒊,𝒋)                                                                                                         (5.7)22 

where Pl = |El| is the total number of edges in cluster Cl. 

To add events from generated clusters to a baseline model, we convert the generated 

clusters, where nodes are events, and edges are literature-based co-occurrences between events, 

into interpreted clusters (weighted directed graphs), with nodes/edges being entities/events.  

5.2.4 Model Support Metrics 

In addition to ranking the information extracted from literature based on the literature 

support metrics, we also introduce a model support metric, Node Overlap (NO), which measures 

the connectivity of the clusters to the baseline model. More formally, we denote the baseline model 
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graph as GBM(VBM,EBM), and the graph formed by the CE set as GCE(VCE,ECE). For each interpreted 

cluster C𝑙 we can also define GC𝑙(VC𝑙 , EC𝑙), and it is clear from the clustering algorithm that VCE =

⋃ VC𝑙𝑁𝑐
𝑙=1 . We define the set of overlapping nodes between cluster C𝑙 and the baseline model as 

VC𝑙,ON= VBM  VC𝑙  and the set of new nodes in C𝑙 as VC𝑙,new = VC𝑙\ (VBM  VC𝑙). NO is then 

computed for every interpreted cluster C𝑙 to determine the ratio between the overlapping nodes 

and the total number of nodes: 

                        𝑵𝑶𝒍 =
|𝑽𝑪𝒍,𝑶𝑵|

|𝑽𝑪𝒍|
 ×  𝟏𝟎𝟎                                                                                                        (5.8)23                            

We also determine whether there are any return paths between clusters and the baseline 

model. If there exists a path of connected edges epath(vs1,vtp) = (ei1(vs1,vt1), ei2(vs2=vt1,vt2), 

ei3(vs3=vt2,vt3), …, eip(vsp=vtp-1,vtp)), we say that epath(vs1,vtp) is a return path, if {vs1,vtp}∈VBM, and 

all edges ei1, …, eip belong to clusters in the set of interpreted clusters. The baseline model and the 

clusters on such return path form a candidate extended model. 

5.2.5 Selection of Best Cluster 

We rank all generated clusters with respect to each, average FCPA and average IFPA, and 

their corresponding interpreted clusters with respect to the NO value. We also determine which 

clusters belong to return paths. Finally, we say that cluster C𝑙 is assumed to be the best candidate 

for model extension if it satisfies the following rule: 

(𝑭𝑪𝒍𝒂𝒗𝒈

𝑷𝑨 =𝒎𝒊𝒏 ({𝑭𝑪𝒊𝒂𝒗𝒈

𝑷𝑨 : 𝒊 = 𝟏. . 𝑵𝑪}) AND 𝑰𝑭𝒍𝒂𝒗𝒈

𝑷𝑨 =𝒎𝒂𝒙 ({𝑰𝑭𝒊𝒂𝒗𝒈

𝑷𝑨 : 𝒊 = 𝟏. . 𝑵𝑪})) OR 

(𝑵𝑶𝒍 > 𝟓𝟎% AND 𝑪𝒍 belongs to at least one return path)                                                      (5.9) 24 

As can be seen from the equation above, a cluster C𝑙 is considered for model extension if 

it satisfies either both of the literature support criteria or both of the model support criteria. For the 
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literature support criteria, C𝑙 must have the lowest 𝐹𝐶𝑙𝑎𝑣𝑔

𝑃𝐴 value and the highest 𝐼𝐹𝑙𝑎𝑣𝑔

𝑃𝐴 . This means 

that the events belonging to C𝑙 are the most supported in literature, among all the events of the CE 

set. On the other hand, for the model support criteria, if the cluster C𝑙 has more than a 50% node 

overlap with the baseline model and it belongs to at least one return path, then C𝑙 will be highly 

connected to the baseline model. Consequently, the cluster C𝑙 should be considered for model 

extension.  

We introduced this equation in order to provide a guided and comprehensive way to expand 

dynamic network models, by adding the events that are not only just frequent in literature but are 

also connected to the baseline model through return paths. 

5.3 Results and Discussion 

To evaluate CLARINET and demonstrate its features, we conducted several experiments 

using the three models, Tcell CESM, TLGL QMed and PCC BMAu described in Section 3.3.1. We 

explored how well CLARINET performs in various scenarios, small vs. large model extension, 

controlled vs. query-based extension, and extension of a smaller published model vs. 

reconstruction of a truncated model.  

5.3.1 Model Extension with CLARINET 

While CLARINET is fully automated, and parametrizable, to demonstrate its flexibility 

and the outcomes of parametrizations, we also show here results for intermediate steps. For each 

baseline model and CE set, CLARINET creates an ECLG, similar to the one shown in Figure 23 
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(T cell). For all nodes (events) in the original ECLG, CLARINET then computes FCIA. As stated 

previously, events with FCIA = 0 are the most frequent ones, thus strongly supported by literature, 

with multiple evidence statements. The users can enter a value for the FCIA as a threshold for 

removing less frequent events (i.e., events found less often in the selected set of papers), otherwise 

CLARINET assumes the average FCIA value within the CE set as a default threshold. We found 

that an average value in all three case studies is FCIA=2, and using this default threshold, we 

removed events with FCIA>2 from the ECLG. Using FCIA=2, CLARINET removed 20, 150, and 

205 less frequent events from the CE set in the T cell, T-LGL and PCC studies, respectively.  

In Figure 23, we highlight with black color the nodes that are being removed from the 

ECLG for our T cell study. The number of nodes and edges in the ECLG before and after this step 

are shown in Table 5. As can be noticed, after the removal of the less frequent nodes, not only the 

size of the ECLG changed, but also other graph parameters changed. For instance, the mean 

number of papers per interaction, which maps to the average degree of nodes (events), increased 

after the removal of the less frequent nodes. The removal led to a denser graph, with strongly 

connected components, which is in agreement with both the increased neighborhood connectivity 

of the nodes and the high clustering coefficient. 

CLARINET can use an additional selection criterion, to keep only the nodes of the reduced 

ECLG that are neighbors of the nodes representing most frequent (FCIA=0) events, and it removes 

the rest of the nodes from the reduced ECLG. In other words, CLARINET can remove events that 

do not co-occur with any of the most frequent events. In Figure 23, the sub-graph enclosed in a 

green box is an ECLG that we would obtain for the T cell study if we applied this additional 

selection criterion.  
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Table 5 Description of each use case in terms of the size of both baseline and gold standard models, followed by 

the values of several graph metrics for the ECLG before and after the removal of less frequent events, for T 

cell, T-LGL and PCC case studies. 

 

Next, after applying the literature support metrics and obtaining the candidate ECLG, 

CLARINET assigns weights to all edges in the candidate ECLG, using two different sets of 

weights, FCPA and IFPA, for two separate clustering procedures. CLARINET partitioned the 

candidate ECLG into six, nine, and seven edge weighted generated clusters, for T cell, T-LGL and 

PCC, respectively. These clusters include interactions from 6, 18 and 10 out of the 12, 38 and 19 

papers that were selected at the beginning (Table 5). Using the two different metrics (FCPA and 

IFPA) to weigh edges did not affect the number of generated clusters and the edges within each 

cluster for our three studies; however, while the IFPA values had a larger discrepancy between 

clusters, the FCPA values seem to be much closer to one other. 

To select the best generated cluster(s) that would be most useful when added to the baseline 

model, CLARINET computes for each cluster the average FCPA and IFPA values and ranks the 
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clusters according to these values. Since the FCPA and IFPA values computed for any given edge 

are usually different, the clusters’ average FCPA and IFPA values are also different, and therefore, 

the ranking of clusters with respect to these values can differ as well. For each case study, we show 

the average FCPA and IFPA values for generated clusters in Figure 24. As can be noticed, for the T 

cell case, the ranking of clusters from lowest to highest average FCPA value is C2, C6, C4, C1, C5, C3, 

and the ranking of clusters from highest to lowest average IFPA value is C2, C6, C5, C4, C1, C3. From 

these rankings, we see that cluster C2 is suggested as the best cluster in both cases, that is, it has 

the lowest average FCPA value, and the highest average IFPA value among all six clusters. On the 

other hand, in the T-LGL case study (Figure 24), the FCPA-based ranking is C3, C1, C9, C7, C5, C4, C6, 

C2, C8, whereas the IFPA-based ranking is C3, C1, C9, C7, C5, C6, C4, C2, C8. For the PCC model, the 

corresponding cluster rankings are C2, C7, C1, C4, C5, C6, C3 and C2, C7, C5, C6, C3, C1, C4, respectively.   

Next, CLARINET transforms these generated clusters into interpreted clusters, and 

explores the connection between the interpreted clusters and the baseline model. Figure 24 shows 

the NO values for the clusters of each case study. In the T cell case study, clusters C3 and C5 have 

the highest NO value, i.e., the highest percentage overlap with the baseline model. For T-LGL, 

clusters C1 and C2 are the ones with highest NO, whereas for PCC, clusters C2, C4 and C7 all have 

high NO values. We can conclude from these results that the NO measure identifies different 

clusters, compared to the ones with highest FCPA and IFPA weights. This demonstrates the 

versatility of CLARINET and the flexibility it provides to users in choosing different strategies for 

automated model extension.  
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Figure 23 Candidate ECLG for the T cell case study 

In addition to the metrics discussed above, the user may also be interested in extending a 

baseline model to include a particular element and to study its effects on the model. In such cases, 

if there are two or more clusters in the set of interpreted clusters that we obtained, all containing 

regulators and regulated elements of the element of interest, CLARINET can instead consider 

those clusters for extension. We are especially interested in combining these clusters if they can 

be connected through a return path, which starts and ends in the model. If the user selects this 

option, CLARINET can find return paths, thus enabling users to add key regulatory pathways that 

are not in the baseline model. 

To illustrate the return paths, the set of events that is included in the top ECLG cluster 

enclosed by blue box in Figure 23, is also shown as interactions in interpreted cluster C3 in Figure 

25(a). It can be seen from Figure 25(a) that Foxo1_ext, which is a new element in the EES, is 

activating PTEN, which is also an element in the baseline model, Tcellbaseline. If we add only the 

cluster from Figure 25(a) to Tcellbaseline, we will be able to study the effect of Foxo1_ext, as it will 

become an input to Tcellbaseline. However, with such extension, we will not be able to study the 

effect of the other parts of the model on Foxo1_ext, given that Foxo1_ext is not regulated by any 
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other element in Tcellbaseline. Therefore, CLARINET can search for other clusters that include 

Foxo1_ext regulators. One such cluster is C2 (Figure 25(b)). 

 

Figure 24 (Top) Average literature support metrics 𝑭𝑪𝒂𝒗𝒈
𝑷𝑨  and 𝑰𝑭𝒂𝒗𝒈

𝑷𝑨  for generated clusters. (Bottom) Node 

overlap (NO) between the clusters and the baseline model for the three case studies. 

Cluster C2 also corresponds to the bottom cluster enclosed by blue circle in Figure 23. In 

the set of the six interpreted clusters that CLARINET obtained for our T cell model case study, 

clusters C2 and C3 form a return path with Tcellbaseline, as shown in Figure 25. Thus, the final set of 

events that CLARINET formed by merging the two clusters in Figure 25, contains all the elements 

of the full model Tcellgold from (Hawse et al., 2015b) (FOXO1, NEDD4, MEK1, CK2), which 

were missing in Tcellbaseline from(Miskov-Zivanov, Turner, et al., 2013a).  

Similarly, for T-LGL case study, in the set of the nine interpreted clusters that CLARINET 

obtained, clusters C3 and C9 form a return path with the baseline model, TLGLbaseline. Therefore, 

CLARINET provides the set of events formed by merging clusters C3 and C9 as our finally selected 

set of TLGLbaseline extensions. Finally, for the PCC case study, in addition to the return path that 

CLARINET found between clusters C2, C7, and the baseline model, PCCbaseline, making the union 

of these two clusters a good candidate for extension, CLARINET also found return paths between 
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an individual cluster C2 and PCCbaseline. Similar to the T cell study, CLARINET was also able to 

closely reproduce TLGLgold and PCCgold models published in (C. A. Telmer, Sayed, et al., 2019; 

Zhang et al., 2008), as further detailed in the following.  

 

Figure 25 Cluster interpretation and preparation for extension: (a), (b) Interpreted clusters’ influence graphs, 

C3, C2, respectively, for T cell case study, nodes are biological entities, pointed arrows represent activation, 

blunt arrows represent inhibition. Baseline model nodes are in grey and the new nodes with suffix “_ext” are 

in white. (a) cluster C3 with upstream element Foxo1_ext highlighted in yellow, (b) cluster C2 with downstream 

element Foxo1_ext. The return path from C2 to C3 is (“MTOR – TBK1_ext – AKT– Foxo1_ext – PTEN”), 

highlighted in red, the first node and last node of the path are MTOR and PTEN, respectively, (c) the result of 

merging C3 and C2. 

5.3.2 Precision and Recall 

To evaluate the relevance and the completeness of the entities and events that CLARINET 

selects, we computed its precision and recall. This was done by comparing the final models, 

Tcellfinal, TLGLfinal, and PCCfinal, that were obtained using CLARINET, with the gold standard 

models, Tcellgold (Hawse et al., 2015c), TLGLgold (Zhang et al., 2008) and PCCgold (C. Telmer et 

al., 2019), respectively (see Figure 26). The precision value indicates the relevance by determining 

the percent of events (or entities) that are selected by CLARINET, and which are at the same time 

a part of the gold standard model. These are usually called true positives, and therefore, we will 

refer to these entities and events as true entities and events. In Figure 27, we show precision results 
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for all three final models (FCIA=2), for both entities and events. For the T cell case, CLARINET 

achieves high precision for both events and entities, 0.86 and 0.87, respectively. This means that 

just 14% of the events and 13% of the entities that CLARINET selected are false positives (i.e., 

they are not in the gold standard model). On the other hand, for the T-LGL case, the event precision 

is 0.45 and the entity precision is 0.5, and in the PCC case, it is 0.61 and 0.5, respectively. While 

in the T-LGL and PCC studies almost half of the events and entities are false positives, it is 

important to note that these two studies have much larger CE set, compared to the T cell study, 

and also compared to their baseline models, and thus, have more candidates to add to the model. 

Additionally, the events that are in the gold standard models are not necessarily the only valid 

events. In other words, there could be other events in literature, and which CLARINET suggested 

in its output, that are also useful and important, and should be included in the model. Therefore, 

the precision of CLARINET that we report here is likely smaller than its actual precision due to 

these additional important events that CLARINET finds but are not in the gold standard model.  

 

Figure 26 The matrix used to compute precision and recall of CLARINET. 

To investigate this further, we conducted the following exercise for the T-LGL study. We 

used INDRA(Gyori et al., 2017a) to compute a belief score for each event that CLARINET 

selected. Interestingly, we found that INDRA generated a belief score with value greater than or 
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equal 0.7 (out of 1) for 27 events and 21 entities, not all of which were in the CLARINET’s true 

event and true entity sets. When we changed the status of these additional entities and events from 

false positives to true positives, this has increased the entity precision to 0.7 and event precision 

to 0.64. Moreover, these events form more than one return path with the baseline model, i.e., they 

are highly connected to the baseline model. Additionally, if preferable, one can reduce the number 

of false positives by increasing the threshold for the NO value, as will be discussed in the following 

subsection. 

To evaluate the completeness of CLARINET results we computed its recall with respect to 

the gold standard models. We will refer to all entities and events in gold standard models as correct 

entities and events. We compute recall as the ratio between true events (or entities) selected by 

CLARINET and the total number of correct events (or entities) found in the CE set. We note here 

that we only account for those events from the gold standard model that are in the CE set, as it is 

possible that there are events in the gold standard model that are not in the reading output and in 

the baseline model, and therefore, not present in CLARINET’ s input. This is due to reading engine 

not recognizing in papers all the events, while the human reader who cited the papers was able to 

find the events and manually include them in the model. 

For the T cell study, a recall value of 1 has been reported for both events and entities. This 

means that none of the correct events or entities are missed by CLARINET, that is, there are zero 

false negatives. For PCC case, the event recall value is 0.8 and the entity recall value is 0.7. Here, 

CLARINET achieved better values for recall than for precision. This again demonstrates the ability 

of CLARINET in identifying the useful and relevant entities and events in a given CE set. 

Similarly, in the T-LGL case recall values are higher than precision values. As shown in the figure, 

the entity recall is 0.74 and the event recall of 0.63, i.e., CLARINET missed approximately 26% 
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of correct entities and 37% of correct events. The slightly lower recall in this study, when compared 

to the T cell and PCC studies, is not surprising. Given the significant portion of events (41%) 

removed from the TLGLgold model to obtain TLGLbaseline, and the literature co-occurrence criteria, 

it is not surprising that CLARINET found in the large CE set many additional entities and events 

that have stronger connections with the baseline model than the ones that are in the gold model.  

 

Figure 27 Precision and recall of CLARINET when compared to gold standard model for T cell, T-LGL and 

PCC use cases. EnPr, EvPr, EnRe and EvRe denote entity precision, event precision, entity recall and event 

recall, respectively. 

5.3.3 Parameter Selection 

We explored the effect on precision and recall when varying the two key parameters from 

the equation in Section 5.2.5, the thresholds for FCIA and NO values. Varying the FCIA threshold, 

affected the size of candidate ECLG. Consequently, this affected the number and the size of 

generated clusters. Increasing the FCIA threshold, i.e., including more of the less frequent events 

in the analysis, increases the size of the candidate ECLG and will increase the number of generated 

clusters (Table 6). As can be seen from Figure 29, the best results were obtained for FCIA threshold 

of 2 for T cell and PCC cases. For T-LGL, the FCIA threshold of 2 or 3 resulted in similar precision 

and recall, while the threshold equal 2 had a better event recall value.  
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Table 6 Number of generated clusters for T cell, T-LGL and PCC use cases using different frequency class 

values 

 

Overall, the FCIA threshold of 2 achieved the best results for all cases. As a reminder, this 

value is the average FCIA value that we obtained for the EES of each case, and the user can choose 

to specify this threshold value as an input to CLARINET. It is also important to keep in mind that 

the low FCIA threshold results in selecting the most frequent nodes, with the expense of ignoring 

any infrequent nodes that may be of interest, and the high FCIA threshold leads to larger number 

of clusters and longer runtimes, without much benefit.  

In Figure 29, we also show the effect of three different thresholds for NO on precision and 

recall. As can be noticed, any NO threshold below 50%, will not affect the precision and recall 

values. Increasing this NO parameter to a value higher than 50% will ensure a more connected 

cluster to the model, and thus, fewer false positives. However, this may not be a desirable solution 

in the cases when we are interested in identifying other entities and events that are not necessarily 

in the model. Our analysis suggests that an NO value of 50% or more, along with finding return 

paths, is sufficient in determining how well a cluster is connected to the model, while not missing 

potentially useful new information from literature. 
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5.3.4 CLARINET Scalability 

We also investigated how scalable CLARINET is when applied on models and EES with 

different sizes. We have run and tested CLARINET on a 3.3 GHz Intel Core i5 processor. We have 

found that, for the T cell case, having both small model and small CE set (see Table 5), CLARINET 

took 2.5 seconds to run and generate clusters. For the T-LGL study, with only a slightly bigger 

model, but a large CE set, CLARINET took 10.1 seconds. And finally, for the PCC case, when we 

applied CLARINET on a large model and a much larger CE set compared to the previous two 

cases, the runtime was 25.4 seconds. Therefore, CLARINET can very efficiently extend baseline 

models that already have several hundred nodes, while exploring candidates from a CE set with 

tens of thousands of events.   

5.4 Conclusion 

In this chapter, we presented CLARINET and its underlying methodology that integrates 

information from published literature and expert-built models to rapidly assemble or extend 

models. CLARINET is parametrizable, it allows users to select different extension criteria, 

depending on the context, focus and goals of their models. By automatically extending models 

with the information published in literature, our methodology allows for rapid collection of the 

existing information in a consistent and comprehensive way, while facilitating information reuse 

and data reproducibility, and replacing hundreds or thousands of manual experiments, thereby 

reducing the time needed for the advancement of knowledge. We tested CLARINET on three 

previously published biological networks of different sizes with different machine reading outputs 
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that varied in size from hundreds to tens of thousands. CLARINET was able to reproduce these 

manually built networks with an average recall of 0.8, while also identifying new interactions with 

high confidence, all within several seconds. 
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6.0 Comparison with Previously Proposed Model Extension Methods 

6.1 ACCORDION vs. the Layered-based method  

We tested the effectiveness of the layered-based method from (Liang et al., 2017) when 

applied to the T cell case study systems. This is achieved by replacing ACCORDION with the 

method introduced in (Liang et al., 2017), using the same baseline T cell model (described in 

Section 2.6.1.1) and the three CE sets (Tcell CEFA, Tcell CESA and Tcell CESM). In the layered-

based method, the authors described an automated extension method that considers only the 

extensions that are connected to the baseline model. They first identify a set of baseline model 

elements of interest, and then add the extensions based on the proximity to these elements. The 

proximity is measured as a number of edges on a path connecting baseline model elements and 

new elements in extensions, and the extension is conducted in layers, starting from the baseline 

model. Several extension configurations are proposed in (Liang et al., 2017), depending on the 

extension approach that the user could be interested in. For example, the focus of model extension 

can be including the regulation of a certain element or a set of elements, regardless of the number 

of extension layers this would require. Another approach discussed in (Liang et al., 2017) focuses 

on reducing the number of layers while tracking the effect of adding new extensions to the baseline 

model. Since we focus on studying the effect of adding new extensions to the baseline model, 

therefore, we used the latter approach from (Liang et al., 2017) in the comparisons. 

Figure 28 highlights the differences between the results of our method and the method from 

(Liang et al., 2017), when tested using statistical model checking. We compared the goal 

probability values (P𝓉𝑗
) for each property and each CM for the two methods. As can be observed, 
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ACCORDION outperforms the method from (Liang et al., 2017) in the case of Tcell CEFAand 

Tcell CESA. However, in the Tcell CESM case, the method from (Liang et al., 2017) shows slightly 

better results. These results indicate that the layer-based approach is less effective when used on a 

large set of CEIs and without any human intervention.  

 

Figure 28 Comparison of the goal probability estimate 𝐏𝓽𝒋
for all 27 properties, for the golden model, and for 

the best model obtained from each of the three CE sets (Tcell CEFA, Tcell CESA and Tcell CESM) using 

ACCORDION and the method from (Liang et al., 2017) 

The visualization of the topology of the sets of extensions extracted by each method is 

shown in Figure 29. ACCORDION provides concise groups of connected CEs, that are at the same 

time connected to the baseline model through return paths. On the other hand, the networks 

generated by the method from (Liang et al., 2017), show several nodes that are extensions and are 
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downstream from the baseline model, which means they are not affecting the baseline model. Thus, 

the comparisons we conducted suggest that the Liang et al. method has two major limitations that 

ACCORDION overcomes: it is subjective and prone to human judgment variation in selecting the 

number of elements of interest and the number of layers, and it becomes impractical with the large 

number of layers. 

 

Figure 29 Clusters that were included in the final CMs for the Tcell CEFA, Tcell CESA and Tcell CESM cases, 

for ACCORDION and (Liang et al., 2017) (white nodes are new nodes from the CEIs and gray nodes are the 

nodes in the CEIs that also exist in the baseline model). 
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6.2 CLARINET vs. GA-based Method vs. Layered-based Method  

To evaluate CLARINET against the GA-based method and the Layered-based method, we 

applied each method on the CE set that we obtained in the T cell model case study, and we 

compared the selected groups of extensions. We show the selected candidate extensions obtained 

with the GA-method (Section 1.2) and the Layered-based method (Section 1.2) in Figure 30. The 

layered-based method proposed in (Liang et al., 2017) adds candidate extensions to the baseline 

model in layers. For example, all candidate extensions with both nodes in the baseline model 

belong to layer 0, those with one node in the baseline model are in layer 1, and so on. Therefore, 

the output of the layered-based method includes elements that do not regulate other model 

elements (thus, called “hanging”), and they can be seen in Figure 30. This makes their 

methodology less practical, especially if it is applied on a large-scale model and large CE set. 

Compared to the work in (Liang et al., 2017), CLARINET approaches the model extension 

challenge in a more inclusive way, by combining several metrics, based on occurrence and co-

occurrence frequencies in published literature, and the connectivity to the baseline model. This 

way, CLARINET provides groups of connected events that are also well connected with the 

baseline model through return paths Figure 25. 

We also show in Figure 30, several groups of extensions selected by GA-method (Section 

1.2) (Sayed, Bocan, et al., 2018). Due to the non-deterministic behavior of the genetic algorithm, 

there is more than one set of extensions selected with this method. However, all the selected subsets 

share the same characteristics, they contain several disconnected components, and they lack the 

main regulations for PTEN, which is one of the key elements in Tcell gold model (Hawse et al., 

2015b). Interestingly, the extensions are connected through a return path, 

AKT→Foxo1_ext→PTEN, which means the interactions are connected to Tcell baseline model. 
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However, when compared to the manually extended model, there are still some missing 

interactions such as CK2→PTEN, MEK1→PTEN, and NEDD4→PTEN. Moreover, similar to the 

results obtained for the method from the layered-based method, there are several candidate 

extensions that include hanging nodes, and therefore, do not affect the model.  

 

Figure 30 Comparison between the finally selected interactions by the layered-based method [4], (b) GA-based 

method 

As shown in Figure 31, the GA-based method achieves a better entity and event precision 

than the method in the layered-based method. The low event precision 0.3, and low entity precision 

0.21 in the layered-based method, is due to the large number of false positives. On the other hand, 

the entity and event precision of the GA-based method are 0.57 and 0.53, respectively. Both 

methods have similar entity recall values of approximately 0.8 in layered-based and 0.7 in GA-

based, however, the GA-based method missed a number of events, resulting in a low event recall 

of 0.4, whereas the event recall value of the layered-based is 0.8. On the other hand, as shown in 
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Figure 31 and Figure 27, CLARINET outperformed the results in the Layered-based and the GA-

based methods. For the T cell case study, entity and event precision values are 0.87 and 0.86, 

respectively. Moreover, the recall value is 1 for both entities and events. 

Thus, from the comparisons we conducted for this case study, using the literature and 

model support metrics, CLARINET outperforms both Layered-based and the GA-based methods 

in selecting the best set of model extensions.   

 

Figure 31 Precision and recall when compared to gold standard model for T cell use case, for Layered-based 

methods and GA-based method. EnPr, EvPr, EnRe and EvRe denote entity precision, event precision, entity 

recall and event recall, respectively. 

6.3 The Baseline Model (BM) Error vs. CLARINET Error vs. ACCORDION Error vs. 

Layered-based Method Error 

The goal of this section is to explore how each of the proposed methods recapitulates the 

desired system behavior when compared to the baseline model (BM). This is achieved by 
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computing the average model error 휀𝒯,𝑎𝑣𝑔
𝐶𝑀𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 introduced in Section 3.2.7, for the best 

recommended candidate model (CM) by CLARINET, ACCORDION and the Layered-based 

method as well as the baseline model (BM). Figure 32 shows that ACCORDION obtains the lowest  

휀𝒯,𝑎𝑣𝑔
𝐶𝑀𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 . We applied the layered-based approach from (Liang et al., 2017) only on the T 

cell case study, since it has been shown to mainly work on smaller models, and we applied the 

approach from (Ahmed, Telmer, et al., 2021) or CLARINET on all three baseline models. 

CLARINET relies only on the event occurrences and cooccurrences in literature, without 

accounting for dynamic behavior, and therefore, ACCORDION outperforms it, as it is guided by 

the desired system behavior (i.e., the set of properties 𝒯 and their corresponding goal property 

probabilities P𝓉𝑗). 

 

Figure 32 Comparison between BM error and the top recommended model by ACCORDION, CLARINET 

and Layered-based method 
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6.4 The New FIDDLE tool vs. ACCORDION vs. CLARINET vs. Layered-based Method 

tool 

FIDDLE (Finding Interactions using Diagram Driven modeL Extension). A tool described 

in (Butchy & Telmer, n.d.) (Ahmed, Butchy, et al., 2021)that employs two methods based on 

network search algorithms—Breadth First Addition (BFA) and Depth First Addition (DFA)—to 

automatically assemble or extend models with the knowledge extracted from published literature. 

FIDDLE is able to refine models by systematically adding known biological interactions into 

intermediate models, measuring changes in model performance, and then adding or discarding 

interactions based on whether they improve the model performance metric. Both BFA and DFA 

scale linearly with the size of the model they are tasked to extend, and the number of potential 

interactions with which to extend the model. 

To demonstrate the accuracy, efficiency, and utility of each tool, we applied each model 

extension tool on the Tcell CESM case (see Section 2.6.1and Section 3.3.1.1). Our main goal with 

this case study is to show that each tool is able to automatically assemble and extend an existing 

published model into another published and manually built model using new elements and new 

interactions automatically extracted from published literature. Figure 33 highlights the differences 

between the results obtained for each tool when tested using statistical model checking. The GA-

based method features the best performance as scored through statistical model checking. Due to 

its iterative nature, the time required to perform GA-based extension increases with the number of 

possible extensions and can be prohibitively long when applied to large scale models (Sayed, 

Bocan, et al., 2018). Both ACCORDION and CLARINET balance performance with scalability 

and can be applied to large scale models, as well as large scale machine reading output, as 

demonstrated in Chapter 2 and Chapter 4. CLARINET scores the newly extracted events based on 
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both the evidence from literature and the connectivity to the baseline model. If the user is interested 

in collecting new interactions that are strongly connected to each other and strongly connected to 

the baseline model, then, ACCORDION would be a better choice; since it adds paths of connected 

interactions, which are at the same time connected to the baseline model. The layered-based and 

BFA methods perform similarly, despite adding different number of extensions to the baseline 

model. The layer-based method is meant to be applied when the user is interested in collecting 

new, relevant interactions that are directly connected to the baseline model. The DFA method 

performed the worst, scoring below the baseline model. This can be attributed to optimizing a 

scoring metric different than statistical model checking. In fact, both FIDDLE methods attempt to 

optimize the same metric with the fewest number of extensions to the baseline model. Their poor 

performance points to their metric being a poor stand in for statistical model checking, and the 

stipulation to minimize the number of additional extensions as an unnecessary restraint. 
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Figure 33 Comparison of the model checking goal property probability p for the baseline model, golden model, 

and the best candidate model (CM) obtained from each of the five tools: Layer-based, GA-based, 

ACCORDION, CLARINET and FIDDLE (BFA and DFA), when run on a 3.3 GHz Intel Core i5 processor. In 

the last three rows, we show the number of properties with probability estimates >0.85, the length of time for 

each method, and the number of extensions added to the baseline model. 
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7.0 Conclusions and Future Work 

Automatically extending models with the information published in literature allows for 

rapid collection of the existing information in a consistent and comprehensive way. It also 

facilitates information reuse and data reproducibility. In this dissertation, we introduced three 

novel efforts in this direction. We demonstrated the respective benefits and drawbacks of each tool 

and we tested them on a previously published biological models. Moreover, we compared them 

with existing related methods. These methods and software tools represent a novel effort to replace 

hundreds or thousands of manual experiments and have a potential to significantly accelerate the 

advancement of scientific knowledge.  

In this section we explore the possible future directions.  

7.1 Exploring Different Dynamic Network Model Versions and System Property Testing 

Results in order to develop a Heuristic to Modify Model Update Rules 

As discussed before in Chapters 3, 4 and 5, after choosing the extension method, we create 

a set of model candidate extensions. These sets extend the static interaction map of the baseline 

model. Logical rules, on the other hand, allow for dynamic analysis of the model, as variable states 

change in time according to their update functions. Therefore, the set of logic update rules 

represents executable model. Incorporating new components into executable model rules can be 

done in several different ways. For instance, if the original rule is A =BorC, and the extension 

interaction states that D positively regulates A, then the new rule will be either A = (B or C) and 
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D, or A = BorCorD. Other logic functions could be derived as well, but this mainly depends on 

the information available in reading output about these interactions. Given that individual reading 

outputs only provide information of type ’Entity A regulates entity B’ (in our example, D positively 

regulates A), and no additional information about interactions with other regulators is given, we 

add new elements to update rules using either OR or AND operation.  

To automatically find the best set of update rules from thousands of combinations 

generated by incorporating AND or OR operators, we may use the Genetic algorithm (Whitley, 

1994) as a search technique for model selection of update rules (model extension).  

Genetic algorithms (GA) are optimization and search algorithms that are based on the 

mechanisms of natural selection of genetics. Unlike many other search algorithms, GA’s search 

from a population of candidate solutions simultaneously, thus reducing the probability of getting 

stuck in a local optimum. GA has the ability to solve problems with large search spaces, high order, 

multimodality, discontinuity and noise disturbance. 

The basic construction of a simple GA is to consider a population of individuals that each 

represents a potential solution to the given problem. The relative success of each individual that 

each represents a potential solution to the given problem. Each individual has a relative success to 

solve this problem that is considered to be its fitness. The latter is then used to reproduce fitter 

individuals to produce offspring of the next generation that is similar but not identical. Iterating 

this process will efficiently sample the space of potential individuals and converges to the most 

fit. In specific, if we have a population of N individuals, each represents a chromosomal string of 

L values. An initial population g0 is constructed at random, and each individual is evaluated by 

some objective function which is the fitness function.  
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The algorithm then performs two operations: 1- selection algorithm that uses the 

population’s N fitness measures to determine how many offspring from g0 will contribute in g1, 

and 2- a set of genetic operators are applied to the offspring to make their genetic information 

different from their parents. g1 is the resulting population that will be evaluated again, and the 

cycle is repeated until a notification is made by some measure suggesting that the population has 

converged.  

The principal genetic operators are mutation, crossover and reproduction. Mutation is the 

sudden inheritable change of a gene from one form to another, while Crossover is the exchange of 

genetic material between two chromosomes. Reproduction recombines the genetic information of 

two individuals to produce offspring using the genetic operators: mutation and crossover. The 

individuals that are more fit have greater probability of being selected for reproduction than less 

fit individuals. 

In terms of computational efficiency, we will work on parallelization of the GA algorithm 

as well as the model checking algorithm to further increase its execution efficiency. 

7.2 Discovering Patterns in the Machine Reading Output to identify the Most Influential 

Events 

As the amount of biological data in the public domain grows, the need for building better 

modeling and analysis techniques becomes crucial as more cooperation between biology and 

computer algorithms is considered of great importance. Modeling facilitates explaining systems, 

helps in describing the dynamics of systems, and sheds the light on new questions or challenges 

(Epstein, 2008b). However, there are several challenges stemming from limited data quality and 
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standardization coupled with a dramatic increase in data size, in addition to, creating models is 

most often a human dependent task. This leads to the slow development of models. As a 

consequence, there is a pressing need for automating the process of extracting useful information 

from literature and assembling them into models, to enable researchers to understand and reason 

about systems described in the literature. 

We are particularly interested in developing innovative approaches that utilize new or new 

combinations of extracted data to address previously intractable questions. Therefore, we may 

focus on cutting-edge methods aimed at pattern discovery in published literature. Our main goal 

is to make most of this information useful for the analysis of the dynamics of signaling pathways. 

To efficiently achieve that, we construct a network of interactions which gives rise to a signaling 

pathway in a biologically consistent and meaningful manner. This can help identify the properties 

of the network and highlight the information that are mostly supported in literature, among all the 

interactions of the machine reading output. Those interactions would be most useful for extending 

the model in order to answer the questions that initiated literature search.  

Therefore, the main objectives of this study include: 

1. Finding patterns of how the interactions are connected.  

2. Finding patterns in how the interactions are connected through publications. 

3. Finding patterns in terms of how much of the information is relevant to existing 

numerical data. 
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7.3 Expanding Dynamic Network Models using a Vector Space Representation of the 

Events Extracted from Literature 

In Natural language processing (NLP), in particular, while modeling a language, a data 

sparseness problem is caused by the insufficiency of training data (Katz, 1987), which in turn, 

makes the infrequent words have unreliable probability. In order to give the infrequent words more 

significance, several efforts ((Ney & Vi, 1995); (Naptali et al., 2009); (P.Brown et al., 1992)) were 

done to map words into classes. This allowed these infrequent words to rely on other more frequent 

words in the same class. Latent semantic analysis (LSA) (Dumais, 2004), is an NLP technique for 

analyzing relationships between a set of documents and the terms they contain by producing a set 

of concepts (classes) related to the documents and terms. In a typical LSA framework, a word-

document matrix is commonly used to represent a collection of text. This matrix determines how 

many times a word occurs in a certain document without taking the word order in the sentence into 

account. Therefore, a word co-occurrence matrix  (Demeester et al., 2013) has been proposed in 

order to keep the word order.  

As a possible future direction, we propose to inherit some of these NLP concepts to analyze 

machine reading output events. Our proposed pipeline is outlined in Figure 34. We first represent 

the machine reading output set of events as a mathematical entity, a matrix. We then apply Singular 

Value Decomposition (SVD)(GOLUB & REINSCH, 1970) on the matrix. Using the matrices 

obtained from the SVD, every event and paper is projected to the continuous space. Eventually, a 

clustering is applied to get classes of events.  
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Figure 34 Illustration of the proposed methodology 
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