
Heterogeneous Model to Heterogeneous System Mapping with Computation

and Communication Awareness

by

Xinyi Zhang

B.E., Southwest Jiaotong University, 2014

M.S., University of New Mexico, 2016

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Xinyi Zhang

It was defended on

February 28 2022

and approved by

Jingtong Hu, Ph.D., Associate Professor

Department of Electrical and Computer Engineering

Alex Jones, Ph.D., Professor

Department of Electrical and Computer Engineering

Samuel Dickerson, Ph.D., Associate Professor

Department of Electrical and Computer Engineering

In Hee Lee, Ph.D., Assistant Professor

Department of Electrical and Computer Engineering

Youtao Zhang, Ph.D., Professor

Department of Computer Science

Callie Hao, Ph.D., Assistant Professor

Georgia Institute of Technology

Dissertation Director: Jingtong Hu, Ph.D., Associate Professor

Department of Electrical and Computer Engineering

ii

Copyright © by Xinyi Zhang

2022

iii

Heterogeneous Model to Heterogeneous System Mapping with Computation

and Communication Awareness

Xinyi Zhang, PhD

University of Pittsburgh, 2022

While machine learning (ML) has been widely used in real-life applications, the complex

nature of real-world problems calls for heterogeneity in both machine learning models and

hardware systems. For the algorithm, the heterogeneity in ML models comes from the multi-

sensor perceiving and multi-task learning, i.e., multi-modality multi-task (MMMT) models,

resulting in diverse Deep Neural Networks (DNNs) with associated DNN layers. For the sys-

tem, as the diverse DNN layers largely increase the heterogeneity of computing and dataflow

patterns, heterogeneous computing becomes a promising solution to address the computa-

tion efficiency. it becomes prevailing to integrate dedicated acceleration components such

as CPU, GPU, ASIC, and FPGA accelerators into one system to improve overall efficiency.

It thus introduces a new problem, heterogeneous model to heterogeneous system mapping

(H2H), in which both computation and communication efficiency need to be considered.

This dissertation proposes three aspects to enable an efficient heterogeneous model to

heterogeneous system mapping. First, a Convolution accelerator design exploration based

on FPGA is proposed to address the efficiency in CNN models. Second, the accelerator

architecture exploration for LSTM and Transformer are proposed based on FPGA to address

the computing efficiency for LSTM and Transformer based models. Third, aiming at system-

level formulation, simulation, and optimization, a computation and communication aware

heterogeneous model to heterogeneous system mapping algorithm with its associated system-

level simulator is proposed. In solving the H2H system mapping, we take the multi-FPGA

system as the multi-accelerator platform due to its flexibility in accelerator architecture

exploration and fast prototyping procedure.

iv

Table of Contents

Preface . xii

1.0 Introduction . 1

1.1 Challenges in Deploying Multi-modal Multi-task Model to Multi-accelerator 3

1.2 Research Contributions . 4

1.3 Dissertation Organization . 5

2.0 Background . 6

2.1 Heterogeneous DNN Model . 6

2.2 Convolution in Computer Vision Domain 9

2.3 LSTM and Transformer in Natural Language Processing Domain 10

2.3.1 Long Short-term Memory . 11

2.3.2 Transformer . 12

2.4 Heterogeneous System . 14

3.0 Accelerator Optimization for Convolution Neural Networks (CNN) . . 18

3.1 Background . 18

3.2 Motivation . 21

3.3 Convolution Accelerator and Analytical Model 22

3.4 Experiment . 29

3.4.1 Experiment Setup . 29

3.4.2 Performance Evaluation . 29

3.5 Summary . 33

4.0 Software/Hardware Co-design for LSTM and Transformer Network . . 35

4.1 Accelerator Design for Long Short-term Memory (LSTM) 35

4.1.1 Background . 35

4.1.2 Motivation and Contribution . 37

4.1.3 LSTM Accelerator and Analytical Model 38

4.1.3.1 Unifying the Computing Patterns 38

v

4.1.3.2 Accelerator based on the Unified Pattern 41

4.1.3.3 Analytical Model . 43

4.1.4 Experiment . 46

4.1.4.1 Experiment Setup . 46

4.1.4.2 Performance Evaluation . 46

4.1.4.3 Analytical Model Accuracy Analysis 49

4.2 Software/Hardware Co-design for Transformer Network 50

4.2.1 Background . 50

4.2.2 Motivation and Contribution . 52

4.2.3 Algorithm Optimization . 53

4.2.3.1 Weight Significance Analysis before Model Compression 53

4.2.3.2 Pruning Strategy . 56

4.2.4 Hardware Optimization . 59

4.2.4.1 Unified Computing Pattern in Sparse Transformer 59

4.2.4.2 Accelerator Design . 60

4.2.4.3 Accelerator Analytical Model 67

4.2.5 Experiment . 68

4.2.5.1 Experiment Setup . 68

4.2.5.2 Model Compression Performance 69

4.2.5.3 Accelerator Performance . 69

4.3 Summary . 75

5.0 Multi-modal Multi-task Model to Multi-accelerator Mapping 76

5.1 Background . 76

5.2 Motivation . 80

5.3 Methodology . 81

5.3.1 System Formulation . 81

5.3.2 Mapping Algorithm . 84

5.3.3 Experiment . 88

5.3.3.1 Experiment Setup . 88

5.3.3.2 Mapping performance . 88

vi

5.3.3.3 Performance comparison and mapping uncertainty discussion . 90

6.0 Conclusion and future work . 98

Bibliography . 99

vii

List of Tables

1 Experimental results of 2-FPGA system with comparisons to the existing designs

in accelerating AlexNet 5 Convolution layers . 31

2 Comparison results on 2-ZCU102 . 32

3 Convolution accelerator performance model accuracy analysis. 34

4 Performance comparison for designs on 7Z020 47

5 Performance details of the proposed design . 48

6 Resource comparison for designs on 7Z020 . 48

7 Power comparison for designs on 7Z020 . 48

8 Accelerators hyperparameters for 7Z020 . 50

9 LSTM accelerator performance model accuracy analysis. 50

10 Transformer parameters . 69

11 Performance of compression and quantization 70

12 Processing element resource breakdown . 70

13 Accelerator buffer allocation . 71

14 Accelerator performance on ZCU102 . 71

15 Transformer accelerator performance model accuracy analysis. 71

16 End-to-end accelerator performance on real Transformer 74

17 System performance modeling parameters . 82

18 Heterogeneous models . 88

19 State-of-the-art FPGA DNN accelerators . 89

20 Latency reduction breakdown comparing with the second step (baseline). 92

21 Latency reduction breakdown comparing with the second step (baseline). 92

22 The mapping performance and searching time performance comparison. 93

23 The mapping performance and searching time performance comparison. 93

24 The mapping uncertainty analysis. 93

viii

List of Figures

1 Multi-modal multi-task model overview. 2

2 VLocNet++:semantic visual localization. 7

3 MMMT model for Camera-Radar data analysis. 7

4 MMMT model for Emotion Recognition. 8

5 A convolution layer and its computing Pseudo code 10

6 Fully connected layer breakdown. 10

7 LSTM architecture. 11

8 Computations in self-attention. 13

9 Multi-head self-attention. 13

10 Transformer encoder and decoder. 14

11 The state-of-the-art multi-accelerator chip . 17

12 Multi-FPGA system. 17

13 AlexNet architecture. 19

14 Convolution operation. 20

15 ReLu activation. 20

16 MaxPool. 20

17 NVDLA and Shi-Dinanao Style Accelerator. 22

18 Convolution layer tiling. 22

19 Convolution accelerator architecture. 24

20 Convolution accelerator computing kernel. 24

21 Optimized Convolution nested loops. 24

22 Convolution accelerator performance bottleneck. 25

23 The transmission and computation workload sharing 28

24 Two-FPGA data sharing examples. 28

25 Two-FPGA system. 29

26 Power measurement of on-board executions. 30

ix

27 Comparisons of predictable models and on-board executions on latency: employ-

ing different designs on single-FPGA and two-FPGA systems. 34

28 The matrix-vector multiplication for Wxxt. 36

29 The matrix-vector multiplication for Whht−1. 36

30 The element-wise addition and multiplication. 36

31 The computing kernels of LSTM accelerator. 37

32 The data dependency of computing kernels in the LSTM accelerator. 37

33 Applying fundamental patterns to wxxt. 40

34 Applying fundamental patterns to whht−1. 40

35 Applying fundamental patterns to a gate. 40

36 Applying fundamental patterns to four gates. 41

37 The unified-kernel LSTM accelerator architecture. 43

38 Physical buffer size and weight size. 44

39 Power measurement of accelerators on 7Z020. 49

40 Related works. 53

41 LayerNorm insertion of the encoder. 55

42 LayerNorm scaling factor visualization. 56

43 Sparse self-attention computations. 59

44 Sparse FFN computations. 60

45 Unified computing pattern. 61

46 Loop iteration of the unified computing pattern. 61

47 INT8 multiplication encoding. 61

48 (a) The PE1 architecture and PE1 mapping to the multiplication in the unified

computing pattern. (b) The PE2 architecture and PE2 mapping to the addition

in the unified computing pattern. 62

49 (a) Computing core hierarchy. (b) Accelerator architecture overview. 63

50 The data flow of the computing core. 63

51 The accelerator running schedule. 67

52 Multi-modal multi-task model. 76

53 The existing multi-modal multi-task models. 78

x

54 Convolution and Fully-connection layer . 79

55 An example of communication-prioritized mapping and communication-aware

mapping. The later slightly sacrifices the computation efficiency but reduces the

overall system latency by avoiding expensive data movement. 80

56 H2Hmapping algorithm visualization. It includes 4 major steps: (1) computation-

prioritized mapping; (2) weight locality optimization; (3) activation transfer op-

timization; (4) data locality aware remapping. 83

57 The latency and energy performance comparison. 90

58 Communication and computation ratio. 91

59 The visualization of system latency non-linear increment 93

xi

Preface

First of all, I want to thank my Ph.D. advisor, Prof. Jingtong Hu, for the continuous

support of my Ph.D. study and research. I appreciate all his ideas, patience, enthusiasm,

and perseverance in academic pursuits. I appreciate his constructive advice on my career

plan and his encouragement when I started my Ph.D. study.

I reserve my sincere gratitude to Prof. Alex Jones, Prof. Samuel Dickerson, Prof. Inhee

Lee, Prof. Youtao Zhang, and Prof. Callie Hao, for serving on my Ph.D. committee and

providing insightful advice and instructions to my research and dissertation.

I have been fortunate to work with my group comrades, Mimi Xie, Chen Pan, Yawen

Wu, Zhenge Jia, Zhepeng Wang, and Yue Tang, who are always generous with their time

and knowledge. They have made my life vivid and beautiful during the past years.

Last but not least, I would also like to thank my parents and grandparents for their

continuous support and unconditional love to me. I dedicate this dissertation to them!

xii

1.0 Introduction

As DNNs are applied in more and more complicated applications, both the models and

hardware acceleration systems call for heterogeneity [1, 2] to address rising challenges.

First, the ML algorithms are evolving from handling single-modality single-task to multi-

modality multi-task (MMMT) [1]. For instance, in the recommendation system, visual and

textual data are jointly learned in a multi-modality fashion for better prediction perfor-

mance [3], and in AR/VR, image, gesture, and speech are jointly learned for better rendering

quality [4]. Such changes result in increasingly complicated DNN models with larger size and

complex inner model dependency. Second, recent advanced systems are introducing great

heterogeneity by integrating different acceleration components with diverse capabilities to

achieve both low latency and high energy efficiency. Microsoft’s Brainwave [5] adopts a hy-

brid CPU-FPGA cloud architecture to accommodate different computation tasks. AWS [6]

integrated multi-FPGA in their cloud to enable heterogeneous computing to improve com-

puting efficiency. Other CPUs, GPUs, and FPGAs based heterogeneous multi-accelerator

designs are seen in [5, 6, 7, 8, 9, 10, 11].

Multi-modality multi-task models usually consist tasks such as image classification, ob-

ject detection, gesture recognition, machine translation, etc., in both CV and NLP do-

mains. This results in diverse DNN layers in the MMMT model, such as Convolution,

Fully-connection (FC), LSTM, Transformer, Pooling, SoftMax, Normalization, etc. Differ-

ent types of DNN layers are specialized in the computation and memory pattern requirement.

Among the DNN layers, Convolution, Fully-connection, LSTM, and Transformer are widely

used as the main modules of multi-modality multi-task models. Convolution is primarily

sliding window based Multiply Accumulate (MAC). Fully-connection is primarily matrix

multiplication. LSTM is primarily matrix multiplication and addition. The Transformer

is primarily matrix multiplication, addition, division, and array transposing. To enhance

the performance, the MMMT models also widely adopt inter-block connection (inner model

dependency) between modality net or task net in order to share data between sub-models.

An example of MMMT for VR is shown in Figure 1. The captured data in visual, audi-

1

tory, thermal, and olfactory are processed by corresponding modality nets and the task nets.

Among the sub-nets, inner model dependencies are applied for better information relation.

The complex inter-block connections in the model lead to more DNN layer dependency and

data movement in MMMT than the general uni-modal uni-task DNN. The computing bur-

den and model dependency of the multi-modality multi-task model increase with the growing

complexity of the application.

Modality Net 1

Modality Net 4

Fusion
Collaborative

Decision
Making

Task Net 1

Task Net 4

Modality Net 2

Modality Net 3

Task Net 2

Task Net 3

Sensor 1

Sensor ..

Sensor 3

Sensor ..

Sensor 1

…

Multi-modality
sensor fusion

Multi-task
learning

Sensing

Action 1

Action 2

Action 3

Decision

Visual

Auditory

Thermal

Olfactory

Figure 1: Multi-modal multi-task model overview.

To address the computing challenges of DNN models, researchers have explored different

accelerator architectures towards different DNN layers. [12, 13, 14, 15, 16, 17] proposed CNN

and FC accelerators with the optimizations such as loop-tiling, loop-reordering, line-buffer,

etc,. [18, 19, 20] proposed LSTM accelerators with the optimizations of the data flow in the

model. [21, 22] proposed Transformer accelerators with the optimization of the computation

parallelism within the self-attention mechanism.

The computing efficiency of the multi-accelerator system in processing multi-DNN is

explored by [5, 23, 24]. However, these works explored the efficiency of processing several

standalone DNN models via a multi-accelerator system simultaneously. [5] improves the

single accelerator computing efficiency in the multi-accelerator system by augmenting the

data flow but system-level cross-accelerator communication is not discussed. [23] maps DNN

layers to different accelerators to fully utilize DSP and block-RAM resources in the individual

accelerator. [24] proposes the computation prioritized mapping, pairing the DNN layers with

preferable accelerator considering both computing pattern and data flow in the accelerator.

Despite the diversity of the computing workload from DNN and multi-DNN are addressed by

multi-accelerator design, the inter-block data sharing in the emerging multi-modal multi-task

2

DNN models cause non-negligible transmission overhead. Deploying the multi-modal multi-

task DNN models to the multi-accelerator system still face challenges from high computation

and communication overhead.

1.1 Challenges in Deploying Multi-modal Multi-task Model to

Multi-accelerator

Deploying a multi-modal multi-task DNN model on a multi-accelerator system needs

an in-depth understanding of accelerators for different DNNs and the architecture of the

multi-accelerator system. This dissertation considers three main challenges in deploying a

multi-modal multi-task DNN model to a multi-accelerator system.

First, the computing efficiency of DNN models in the Computer Vision domain should

be fully addressed. The DNN models in the CV domain are primarily CNN-based models,

which usually face high data computing and transmission burden caused by convolution.

However, hardware accelerators such as ASICs and FPGAs as the on-chip storage scarce

platforms, can hardly accommodate a CNN model or even a single Convolution layer on the

chip. The optimization of Convolution kernel design, Convolution workload partition, and

the associated accelerator performance model is needed.

Second, the computing efficiency of DNN models in Natural Language Processing do-

main on the accelerator should also be fully addressed. The DNN models in the NLP

domain are primarily LSTM or Transformer based models. In the contrast to CNN models,

LSTM and Transformer are generally sophisticated in its algorithm design while demanding

less computation workload. The optimization of the computation and the data flow of the

LSTM and Transformer in the accelerator is needed.

Third, the mapping of multi-modal multi-task DNN model to multi-accelerator that con-

siders both computation and communication efficiency is still missing. The mapping needs

the formulation to depict layer dependency in multi-modal multi-task DNN model, multi-

accelerator system architecture, accelerator performance, and the execution dependency of

the accelerators. Therefore, a system-level formulation, modelling, and optimization are vi-

3

tally needed in the mapping of multi-modal multi-task DNN model to the multi-accelerator.

In this dissertation, these challenges are addressed. The goal is to enable reliable, fast, and

robust mapping of multi-modal multi-task DNN model to multi-accelerator system.

1.2 Research Contributions

Research contributions for this dissertation can be concluded as:

• To address the computing efficiency of DNN models in the Computer Vision domain,

a Convolution accelerator design on the FPGA with a performance model is proposed.

Specifically, the proposed Convolution accelerator makes the following contributions:

– A computing kernel with the associated hardware accelerator is designed that achieves

optimal pipeline performance for Convolution.

– A Convolution tiling strategy is proposed to partition the oversized Convolution

layer to tiles that can be iteratively processed by the accelerator.

– A performance model is developed that formulates the architecture and data flow

of the accelerator, estimating and quantifying the accelerator performance and the

accelerator resource utilization.

• To address the computing efficiency of DNN models in the Natural Language Processing

domain, the LSTM and Transformer accelerators on the FPGA are proposed. Specifically,

the proposed accelerators make the following contributions:

– A unified computing pattern with its associated hardware optimization is proposed

to enable high computing parallelism in the LSTM.

– An algorithm-hardware co-design for Transformer is proposed to prune the algorithm

and enable efficient sparse Transformer acceleration on FPGA.

– The analytical model is developed to determine accelerator parameters and running

schedule, and predict system performance for LSTM and Transformer accelerator.

• To efficiently map a multi-modal multi-task DNN model to a multi-accelerator system,

a mapping framework with both computation and communication awareness aiming at

4

system-level formulation, modelling, and optimization is proposed. Specifically, the het-

erogeneous model to heterogeneous system mapping makes the following contributions:

– The multi-modal multi-task model and the multi-accelerator system are formulated

to graphs to depict the model layer dependency and accelerator execution depen-

dency.

– A low time complexity algorithm that can accurately and quickly detect the opti-

mized mapping solution for the multi-modal multi-task model to multi-accelerator

system is proposed.

– A system-level simulator for system latency and energy simulation for multi-modal

multi-task DNN model to multi-accelerator is proposed which takes customized DNN

model and multi-accelerator system as input.

1.3 Dissertation Organization

This dissertation proposal is organized as follows:

Chapter 2 introduces the background of the multi-modal multi-task DNN model, CNN,

LSTM, Transformer, and multi-accelerator system.

Chapter 3 proposes the FPGA accelerator design for Convolution. The corresponding

architecture design, workload partition, and performance model are explored.

Chapter 4 proposes the FPGA accelerator design for LSTM and Transformer. The co-

design and optimization of the model and accelerator architecture are explored.

Chapter 5 proposes the mapping algorithm of multi-modal multi-task to the multi-

accelerator system. An associated system-level simulator is built for system performance

formulation, simulation, and optimization.

Chapter 6 summarizes this dissertation.

5

2.0 Background

In this chapter, the heterogeneous model (multi-modal multi-task) with its associated

DNNmodels in Computer Vision and Natural Language Processing domain will be presented.

The heterogeneous system (multi-accelerator) will also be explored in this chapter.

2.1 Heterogeneous DNN Model

Multi-modal multi-task DNN enlarges ML the model size and model complexity by jointly

running several tasks simultaneously. The overview of MMMT model is shown in Fig. 1.

Different modalities such as images, videos, speech, text, etc., are processed by their corre-

sponding modality nets first. The modality nets function as the feature extraction module in

the MMMT. Next, the extracted features from different modalities can be selectively fused

and then being processed by the task nets. The task nets are also task-specific while each net

is generally independent of each other in the model type. In both modality net and task net,

the inner model data sharing (inter-block connection) are the common strategy to enhance

the MMMT accuracy, reliability, and robustness. [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

However, such architecture leads to more complex DNN models with more data movement

as different types of DNNs are adopted and mutual dependency is applied between them.

Figure 2 shows VlocNet [35], a real-life MMMT model for semantic visual localization.

In order to conduct the vision, pose and odometry inference, images from different time steps

and angles are processed in a multi-task manner. In this model, three CNN backbones are

placed which consist of Residual layer, Convolution layers, De-convolution layers, warping

layers, and Fully-connection layers. The inner model dependencies are seen in each pair of

the Residual blocks (Res). Though three backbones are in similar architecture, their layer

size and model depth is customized according to their task.

Figure 3 [31] shows a real-life MMMT model to co-process image and radar signal in an

autonomous driving, the image signal is processed by a VGG16 [37] like backbone, in which,

6

Res block

Linear

… …

…

… …

…

Res block

Linear

Figure 2: VLocNet++:semantic visual localization.

vgg16
block1+

vgg16
block2+

vgg16
block3+

vgg16
block4+

vgg16
block5+ +

max
pool

max
pool

max
pool

max
pool

max
pool

max
pool

max
pool

P3 P4 P5 P6 P7

+ + + + +

Classification and Regression

P# Feature Pyramid Network

+ Concatenation

Legend:

Image data

Radar data

Figure 3: MMMT model for Camera-Radar data analysis.

7

Data
Processing

Bidirectional
LSTM

Bidirectional
with Attention

Data
Processing

Data
Processing

LSTM

LSTM

FC with ReLuFC with ReLu

Convolution

Convolution

FC with ReLu

Convolution

Convolution

Convolution

Fusion FC with ReLu

Figure 4: MMMT model for Emotion Recognition.

the VGG16 blocks are Convolution based modules. The radar signals are processed by a

series of MaxPool layers. The extracted radar signals are concatenated to the intermediate

data of image processing at the early stage. When going deeper, the image features and

radar features are jointly processed by Feature Pyramid Network (FPN) [38]. In FPN, Con-

volution layers are adopted to down-sample the features. The final actions are determined

by classification and linear regression steps which are realized by FC layers and SoftMax

modules.

Figure 4 [36] shows an MMMT model for emotion recognition, in which, Convolution

layers and LSTM cells are adopted to analyze the feature of speech, text, and motions. The

Convolution layers in this MMMT model are specified in kernel size and the number of filters.

The data fusion happens at the end of each sub-model. Similar to other MMMT models,

different types of DNN layers are adopted in this model to process different modalities but

the data sharing happens at the end of the model.

As can be seen in the real-life MMMTmodels, the multi-modal multi-task leads to diverse

DNN layers. The diversity of the DNN layer rise challenges in computing efficiency since

different DNN layers are unique in their computation and memory patterns. The inter-block

8

connection in the MMMT leads to complex layer dependency, which may lead to frequent

data movement and accelerator execution dependency due to the mutual dependency between

the layers in the heterogeneous model.

2.2 Convolution in Computer Vision Domain

CNNs are widely used as the model backbone in processing Computer Vision based tasks.

Popular CNNs such as AlexNet [39], VGG16 [37], ResNet [40], YoloNet [41], etc., are the

record breakers in the past years of the vision field. Among all the CNNs, they share the same

core function: Convolution. A convolution layer in CNN is shown in Figure 5, which consists

three parts: input feature maps (IFM), weights (WEI), and output feature maps (OFM).

The output feature maps are the filtered results of input feature maps. The Convolution

layer uses weights to filter the input feature maps, in which, one weight filter can extract

the features across all the input feature map channels and generate one output feature map.

Figure 5a shows a CNN layer with N IFM channels, M weight filters, and M OFM channels.

To generate one pixel in an OFM channel, each input feature map is convolved by a shifting

window in size of K × K and the convolved results from all IFM channels are accumulated, in

which, the sliding window size is consistent with weight filter size K [14, 42, 43]. The depth

of each weight filter is the same as the number of IFM channels N. By processing the input

feature maps with M weight filters, the output feature maps with M channels are generated.

The pseudo-code of a convolution layer is summarized in Fig. 5b. In general, a CNN network

is composed of Convolution and other auxiliary down-sampling layers such as Pooling layers.

The output feature maps of the last CNN layer are usually low-dimensional vectors that

contain the extracted features. Such feature maps will be further fed into FC layers to infer

the relevancy between source data and a target which is shown in Figure 6 . The architecture

of FC is shown in Figure 6a, where a vector is processed by a sequence of the feed-forward

neuron. In an FC layer, elements of the input vector are directed to neurons in the FC layer

respectively. An edge in the FC architecture denotes a weight parameter. For a neuron, its

output can be summarized as y1 = f(w1 ∗x1+w2 ∗x2+w3 ∗x3+w4 ∗x4) [44, 45]. Therefore,

9

the computations in an FC layer can be summarized as matrix multiplication which is shown

in Figure 6b. In practice, the input to an FC layer are vectors, and the number of neurons is

reflected by the number of weight columns. Convolution and FC are usually adopted as the

backbone of DNN models when dealing with different CV tasks while the aforementioned

auxiliary modules are embedded in the backbone for better model performance.

Input feature maps

N

R

C
Output feature maps

M

Weight Weight

N

…

M

K

K

(a) CNN feature maps and weights

For (row=0; row<R; row++) {
for (col=0; col<C; col++) {

for (to=0; to<M; to++) {
for (ti=0; ti<N; ti++) {

for (i=0; i<K; i++) {
for (j=0; j<K; j++) {

Output_fm[to][row][col] +=
weights[to][ti][i][j]*
input_fm[ti][S*row+i][S*col+j]

} } } } } }

(b) CNN nested loops

Figure 5: A convolution layer and its computing Pseudo code

input

FC layer

output

(a) FC neurons.

∙ =

input
weights

output

(b) FC Computations.

Figure 6: Fully connected layer breakdown.

2.3 LSTM and Transformer in Natural Language Processing Domain

Long Short-term Memory (LSTM) [46] and Transformer [47] are the most popular DNN

models in Natural Language Processing domain due to their advantage in contextual data

10

analysis. LSTM outperforms other DNN models due to its unique gate architecture for data

filtering and memorizing. Transformer outperforms other DNN models due to its multi-head

self-attention for contexts correlation. In this section, the two models will be introduced.

2.3.1 Long Short-term Memory

Long Short-term Memory (LSTM) network is a branch of the Recurrent Neural Network

(RNN) which utilizes matrix-multiplication as the internal operations. LSTMs are promising

models in analyzing the data’s context. The cell shown in Figure 7 is the smallest unit in

the LSTM network where its input is xt and output is ht. LSTM cells can also be stacked

to build a deeper LSTM network if needed where the upper cell takes the lower cell’s output

as input and the top cell’s output is the network output. The cells in LSTM networks are

identical in operations and each cell consists of input gate it, forget gate ft, and output

gate ot, corresponding to input data remember, input data forget, and input data to current

inference. LSTM takes a sequence of data X = (x1, x2, ..., xt) as input and processes the

element xt (a vector) in order, generating output Y = [h1, h2, ..., ht]. During the inference of

xt, LSTM also takes xt−1’s inference output ht−1 and cell state ct−1 as the auxiliary inference

input which is represented by the two backward connections in Figure 7. In general, xt is

an embedded vector [x1, x2, ..., xD] in length D and it, ft, ot, c̃t, ct, ht results are vectors in

length H likewise, where H is also the number of hidden states in LSTM. When extracting

features in different gates, the matrix-multiplication based operations are adopted.

(a)

𝑖𝑡 =
𝑓𝑡 =
𝑜𝑡 =
ǁ𝑐𝑡 =
𝑐𝑡 =
ℎ𝑡 =

𝜎 𝑊𝑥𝑖𝑋𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖
𝜎(𝑊𝑥𝑓𝑋𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)
𝜎(𝑊𝑥𝑜𝑋𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)

tanh(𝑊𝑥𝑐𝑋𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)

𝑓𝑡ʘ 𝑐𝑡−1 + 𝑖𝑡ʘ ǁ𝑐𝑡
𝑜𝑡ʘ 𝑡𝑎𝑛ℎ(𝑐𝑡)

(b)

LSTM cell

𝐶𝑡

ℎ𝑡

𝐶𝑡−1

ℎ𝑡−1

𝑡𝑡 − 1

𝑥𝑡

𝑓𝑡 𝑖𝑡

𝑜𝑡
ሚ𝐶𝑡

ʘ

ʘ ʘ

ℎ𝑡

Figure 7: LSTM architecture.

11

it = Sig(Wxixt +Whiht−1 + bi)

ft = Sig(Wxfxt +Whfht−1 + bf)

ot = Sig(Wxoxt +Whoht−1 + bo)

ĉt = tanh(Wxcxt +Whcht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ ĉt

ht = ot ⊙ tanh(ct)

(2.1)

The input xt is processed by gates it, ft, and ot first, which is shown in Equation 2.1. The

three gate-process have same patterns of computation which are matrix-vector multiplica-

tions (Wxxt, Whht−1) and element-wise vector addition, whereWxxt is of size [H×D]∗[D×1],

Whht−1 is of size [H ×H] ∗ [H × 1], and vector addition is of size [H × 1]+ [H × 1]. The similar

computation is also in c̃t, which is the prefix gate to refresh cell state ct. During the four

gates computing, activations such as Sigmoid and tanh are applied to the gate intermedi-

ate results. Then, the cell state ct and inference output ht are computed by element-wise

vector multiplication and addition of size [H × 1]⊙ [H × 1] and [H × 1] + [H × 1]. Herein, the

LSTM cell’s main computing patterns are four-fold: [H × D] ∗ [D × 1] by MAC of size D;

[H×H]∗[H×1] by MAC of size H; [H×1]+[H×1] by element-wise addition; [H×1]⊙[H×1]

by element-wise multiplication. The different computing patterns make it the obstacle when

deploying LSTM network on accelerator as it prevents the accelerator system parallelism.

2.3.2 Transformer

The core of the Transformer is self-attention, which is also called scaled dot-product. The

scaled dot-product is abstracted in Equation 2.2 [47], in which, an input Xin ∈ RN×dmodel

is mapped to an output Oattn ∈ RN×dk via Query (Q), Key (K), and Value (V). The Q,

K, and V are intermediate results that are acquired by multiplying X in with corresponding

weights Qw, Kw, and V w in the same size (w ∈ Rdmodel×dk). Therefore, the computations

can be roughly divided into two parts: the Q, K, and V mapping and scaled dot-product as

shown in Figure 8. In a self-attention, N and dmodel are determined by input dataset and dk

12

is one of the model hyper-parameters that vary in different models. The X in multiplies with

corresponding weights to acquire Q, K, and V. Then, the intermediate result Q multiplies

with the transpose of K (KT). After division and softmax, the result QK multiplies with V

to get Oattn. The overview of multi-head self-attention operations is shown in Figure 9. The

multiple parallel instances of self-attention form multi-head self-attention. The individual

head output Oattn are concatenated and mapped to multi-head output Ohead via weight Ow.

The main computations and the data flow of the multi-head self-attention mechanism is

shown in the Figure 9 (b).

Oattn = softmax(
QKT

√
dk

)V (2.2)

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝐾𝑤 𝐾𝑅

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝑉𝑤 𝑉𝑅

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝑄𝑤 𝑄𝑅

∙ = (b)

(c)(a)

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁 𝑋𝑖𝑛 𝑁

𝑑𝑘

V

𝑑𝑘

𝑉𝑤

K𝐾𝑤

𝑑𝑘

𝑁

𝑁

∙ =Q
𝐾𝑇

𝑁

𝑁

QK

𝑁

𝑁

∙

𝑑𝑘

=

𝑑𝑘

𝑁 𝑂𝑎𝑡𝑡𝑛QK V

𝑋𝑖𝑛

𝑄𝑤 Q𝑋𝑖𝑛

∙ = (b)

(c)(a)

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁 𝑋𝑖𝑛 𝑁

𝑑𝑘

V𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

𝑉𝑤

K𝐾𝑤

𝑑𝑘

𝑁
𝑑𝑘

𝑁

∙Q 𝐾𝑇

𝑁

𝑁

∙

𝑑𝑘

𝑁QK V

𝑋𝑖𝑛

𝑄𝑤 Q𝑋𝑖𝑛

Linear

𝐾𝑇

QK

Linear

Linear

𝑉𝑤
Linear

𝑄𝑤

𝐾𝑤

𝑋𝑖𝑛
K

Q

V

𝐾𝑇

Linear

Linear

So
ft.

D
iv.

QK

Scaled dot-product

Figure 8: Computations in self-attention.

𝑋𝑖𝑛
K

Q

V

𝐾𝑇

Linear

Linear

Scaled dot-product

Division SoftMax𝑄𝐾𝑇

Q

Linear(𝑄𝑤)

Linear

Linear

(𝐾𝑤)

(𝑉𝑤)

Figure 9: Multi-head self-attention.

The self-attention is further assembled as an encoder and decoder, forming the main

layers of a Transformer as shown in Figure 10. In an encoder, addition & normalization

and feed-forward network (FFN) are also placed. The FFN consists of two stacked linear

modules (the same as FC). Compared to encoder in model architecture, decoder has an

extra masked-attention module to build the data dependency in the output sequence. In

[47], the number of heads (Nhead) is 8, the number of the encoders (Nenc) is 6, and the

number of the decoders (Ndec) is 6. The encoders are sequentially connected and decoders

are connected likewise. The last encoder feeds the intermediate data into the decoders. The

13

input data X = (x1, x2, ..., xN) is embedded to X in and processed by encoders first. The

intermediate representation Zin ∈ RN×dmodel generated by the last encoder is further fed

into Ndec decoders.

As a result, the weights in a Transformer can be summarized in six types: Qw,Kw, V w ∈

Rdmodel×dk , Ow ∈ Rdmodel×dmodel , FFN1w ∈ Rdmodel×4dmodel , and FFN2w ∈ R4dmodel×dmodel . With

the multi-head self-attention, encoders, and decoders, the number of different shapes of

weights can be up to hundreds and the total memory footprint size for the Transformer is

176 MB [47]. The large size of memory requirement and various sizes of the weights make it

challenging when deploying Transformer on edge devices as the memory size and computing

resource are usually limited on such platforms.

Add &
Norm

Feed
forward

Multi-head
self-attn.

Add &
Norm

𝑋𝑖𝑛

Add &
Norm

Feed
forward

Add &
Norm

𝑍𝑖𝑛

Add &
Norm

Masked
Attn.

Multi-head
self-attn.

Input
Embedding

Output
Embedding

Linear

Linear

Encoder

Decoder

Lin
ear

Lin
ear

Feed
forward

Figure 10: Transformer encoder and decoder.

2.4 Heterogeneous System

The multi-modal multi-task DNN models rise challenges in both computation and com-

munication during the processing time. Heterogeneous computing is a promising solution to

address the computing efficiency in the heterogeneous model. A DNN layer can be processed

by its preferred accelerator to improve the overall system efficiency.

On the SoC level, Xilinx Versal [48], Nvidia Xavier [49], and Tesla FSD [50] integrated

different accelerators on a single chip. Figure 11 shows the two state-of-the-art architectures:

Tesla FSD [50] and Xilinx Versal [48]. Tesla FSD adopts a heterogeneous accelerator design

which includes GPU, Neural Processing Units (NPU), and CPU cores. Xilinx Versal also

adopts heterogeneous accelerator design which includes AI engines and Configurable Logic

14

Programmable (FPGA) Accelerator. In both designs, the accelerators are linked on the

chip in a network-on-chip (NoC) fashion. On a heterogeneous multi-accelerator platform,

computing tasks can be assigned to different accelerators according to the task type, task

complexity, and workload. Such architecture largely increases the computing efficiency when

dealing with unbalanced workloads.

On the system-level, Microsoft’s Brainwave [5] integrated both CPU and FPGA in the

cloud and AWS [6] integrated multi-FPGA in their cloud. [7] proposed two-FPGA PL

directed connection to achieve near double throughput performance. [8] proposed a workload

sharing strategy between GPUs and FPGAs. [9] proposed a multi-FPGA framework in

accelerating a CNN. [10] proposed a GPU-FPGA framework for the DNN training and

inference process. [11] proposed a CPU, GPU, and FPGA cooperative framework for better

computing performance. While most explorations adopted PCIE as the connection between

accelerators, Microsoft’s Brainwave [5] adopts network connection among the accelerator

to achieve maximum system flexibility. The topology of FPGA based cloud system in [5]

is visualized in Figure 12. Each FPGA can be customized to a specific computing kernel

with dedicated data flow which achieves maximum computing efficiency for the targeting

workload. By assigning the tasks from the host to its preferred FPGA accelerators, the whole

system can get maximum computing efficiency. In this dissertation, we adopt a network

connection for the heterogeneous accelerator which is similar to [5] to ensure the diversity

and flexibility of the multi-accelerator system.

FPGAs are re-configurable devices that outperform GPUs and CPUs in energy efficiency

and ASICs in flexibility. Due to its nature of highly configurable and energy-efficiency

architecture, FPGAs become the promising platform for accelerator prototyping to keep pace

with the rapid evolution of ML algorithms. With the emerging High-level Synthesis (HLS)

tool, the FPGA design time is greatly shortened from days of RTL design to hours of high-

level language programming such as C++ and OpenCL [51, 52]. Such intrinsic features make

FPGAs the promising platforms to keep pace with the rapid development of the machine

learning market. However, as the hardware accelerator, FPGAs also face challenges when

processing DNN models. The architecture of modern FPGAs limits its on-chip memory (L1

in Figure 12) size which is usually dozens of Megabits (Mb) which the DNN models usually

15

requires hundreds of MegaBytes (MB) or even Giga Bytes (GB) [37, 47, 39, 40, 53, 41].

This leads to the requirement of careful design that utilizes both FPGA on-chip resources

and its associated off-chip DRAM. Therefore, the computing pattern and the data flow of

the FPGA accelerator is usually specialized for a pair of FPGA and its targeting DNN

[12, 14, 15, 16, 17, 54, 55, 56, 57, 58, 59]. In this dissertation, we adopt FPGAs as the

accelerator prototyping platforms to explore the suitable architecture for different DNN

computations.

While the heterogeneous multi-accelerator system can greatly increase the computing

efficiency. The transmission between the accelerators can easily become the system bottle-

neck as the accelerator to its local DRAM is usually much faster than the inter-accelerator

bandwidth. For example, the FPGA U280 to its local DRAM bandwidth has reached 460

GB/s [60] while its out of the board bandwidth via PCIE can only achieve 15.8 GB/s; the

GPU A100 to its local DRAM bandwidth has reached 2039 GB/s while its out of the board

bandwidth ’NVLink’ achieves 600 GB/s and PCIE achieves 64 GB/s [61]. A significant gap

lies in between the accelerator to its local DRAM bandwidth and out of the board band-

width. While the inner-block connections in the multi-modal multi-task DNN are widely

applied, the cross-accelerator communication can not be avoided. Therefore, a mapping

of multi-modal multi-task DNN to multi-accelerator with the consideration of the trade-off

between computing and communication is vitally needed.

16

(a) Tesla FSD chip (b) Xilinx ACAP chip

Figure 11: The state-of-the-art multi-accelerator chip

…

…

S0 S0

S1 Network Switches

L1

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

DRAM L1

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

DRAM L1

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

DRAM

FPGA 1 FPGA 2 FPGA 3

Figure 12: Multi-FPGA system.

17

3.0 Accelerator Optimization for Convolution Neural Networks (CNN)

This chapter presents an accelerator design that addresses the computing efficiency of

Convolution on FPGA [62]. It is organized as follows. First, the background of this project

is introduced, and then the motivation is presented. Next, the details of the proposed tech-

niques are presented including the accelerator architecture design and performance modeling.

Finally, the experimental results are presented.

3.1 Background

CNNs are primarily used in vision-related tasks to conduct feature extraction. A CNN

usually consists of sequentially connected Convolution layers, Pooling layers, ReLu, and

Normalization to down-sample the image data. The last Convolution layer is usually followed

by FC layers to further reduce the model output size. Popular CNNs such as AlexNet

[39], VGG16 [37], ResNet [40], YoloNet [41], etc., adopt the similar repeating manner of

‘Convolution-Pooling-ReLu-Normalization’. However, each model greatly differs from others

in the hype-parameters, for example, the Convolution kernel size can be 3, 5, 7, 11, or even

larger; the Convolution channel size can be 16, 32, 64, 128 or even larger; the Pooling

layer can adopt maximum-pooling or average-pooling with different pooling window size.

Among these layers, Convolution layers are the most computing and communication intensive

layers which can easily exceed FPGA’s on-chip capacity. This makes Convolution the main

difficulty when accelerating CNN on an FPGA accelerator.

The AlexNet [39] for image classification is visualized in Fig. 13. In AlexNet, there

are five-stage ‘Convolution’ and three FC layers. The five stages are similar in module

connections and the first stage is depicted in this figure. In one stage, the input features

maps are processed by Convolution, ReLu, MaxPool, and Normalization. Among such layers,

the Convolution down-samples the feature map size and enlarges the activation channel size.

The Convolution operation with the kernel size K*K is visualized in Figure 14. In stage 1

18

Convolution, with the Convolution window of 11*11, the feature map size is down-sampled

from 224*224 to 55*55 while the channel number is enlarged from 3 (RGB image) to 96.

Therefore, in this Convolution layer, the IFM N is 3 and the OFM M is 96, weight kernel

size K is 11, resulting in a weight size of [96][3][11][11] ([M][N][K][K]). According to the

Convolution computing pattern shown in Figures 5 and 14, the number of MAC operations

in this Convolution layer is R*C*K*K*N*M*2, which results in 2.1E+08 number of Multiply

Accumulate. The followed ReLu layer element-wise activates the feature map (55*55*96)

after Convolution which is shown in Figure 15. A MaxPooling further down-samples the

activation size to 27*27*96 by reserving the largest value in a sliding window (3*3 window)

with a stride of 2, which is visualized in Figure 16. The five stages ‘Convolution’ down-

sample the feature map size from 224x224 to 13x13 and up-sample the feature map channels

from 3 to 256. As shown in Fig. 5b and Fig. 14, the size of a Convolution layer input

feature maps (IFM), output feature maps (OFM), and weights are multi-dimension. Even a

single Convolution layer’s memory footprint and workload can easily exceed an accelerator’s

capacity [13, 14]. Further more, the modern CNN based networks are usually designed with

numerous of Convolution layers and dozens or even hundreds of feature maps in a layer to

improve the feature extraction ability. As can be seen in the visualized AlexNet, Convolution

layers are the main workload that needs to be addressed when processing CNN on FPGA,

while other layers are usually fused into the Convolution accelerator.

13

13

384

13

13
384

FC Layers
224

224

55

55

96

27

27

256

13

13
256

C
o
n
v

P
o
o
L

N
o
r
m

27

27

96

27

27

96

C
o
n
v

55

55

96

R
e
L
u

R
e
L
u

27

27

256

P
o
o
L

N
o
r
m

13

13
256

CNN Stage 1 CNN Stage 2

FC Layers
224

224

55

55
96

C
o
n
v

P
o
o
L

N
o
r
m

27

27
96

27

27

96

55

55
96

R
e
L
u

Convolution Stage 1

Conv. Stage 2, 3, 4, 5

Figure 13: AlexNet architecture.

19

Input feature maps

N

R

C
Output feature maps

M

Weight Weight

N

…

M

K

K

Figure 14: Convolution operation.

0 1 2 3-3 -2 -1

𝑓 𝑥 = 𝑀𝑎𝑥(0, 𝑥)

1

2

3

Figure 15: ReLu activation.

1 2 3 4 5 6

7 8 9 1 2 7

3 4 6 4 5 6

1 2 3 4 5 6

1 2 3 4 5

1 3 2 9 2

3 4 6 4 5

2 6 3 4 5

1 8 7 1 3

6 9

8 7

Figure 16: MaxPool.

20

3.2 Motivation

When accelerating the DNN algorithms, the real-time inference has rigorous requirements

of guaranteed latency to ensure user experience, reliability, and even safety. The widely

adopted backbone CNN is computation and transmission intensive. Its intensive computa-

tion workload and memory footprint size need to be addressed for FPGA accelerators consid-

ering the scarce FPGA on-chip resource. An efficient accelerator design and workload parti-

tion towards CNN operations is the key factor to ensure CNN processing. Figure 17 shows

two popular accelerator architecture designs that is observed in the Convolution accelerators

targeting a Convolution layer level processing [12, 14, 15, 16, 17, 54, 55, 56, 57, 58, 59, 63]:

NVDLA [63] and Shi-diannao style [17]. The NVDLA style accelerators primarily target

the computing efficiency of Multiply Accumulate (MAC) in the Convolution layer, achieving

high throughput Convolution kernel. Shi-diannao style [17] accelerators primarily target on

both the memory efficiency and computing efficiency. Its distributed local buffer under Pro-

cessing Element (PE) can maximize the re-use of Convolution weight and its PE topology

can form systolic array architecture that achieves high throughput.

Besides the accelerator architecture, the Convolution workload is usually partitioned to

get processed which is shown in Fig. 18, which is loop-tiling. An OFM tile in green with size

[Tm][Tr][Tc] is shown in this figure. The associated Convolution weights (orange) can be

determined as [Tm][Tn][K][K] and the IFM tile (blue) can be determined as [Tn][Tr’][Tc’].

By carefully determining the tiling parameters Tm, Tn, Tr, and Tc, the FPGA on-chip buffer

and computing kernel can accommodate the workload of one tile. By recursively calling the

accelerator to process the tiles, the workload of a Convolution layer can be processed.

However, an efficient Convolution kernel design with its performance model to determine

the computing and communication efficiency is still missing. In this work, firstly, a Con-

volution FPGA accelerator with its accurate analytical model to quantify the performance-

resource trade-off in terms of computation and communication patterns is proposed. Second,

based on the FPGA accelerator and its performance model, an exploration of increasing the

FPGA throughput by multi-FPGA is conducted.

21

* * * * * * * *

+ + + +
+ +

+

L1

NVDLA Style

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

L1

Shi-dinanao Style

L1

Figure 17: NVDLA and Shi-Dinanao Style Accelerator.

Input feature maps Output feature maps

𝑇𝑚

Weight Weight

…

K

K

𝑇𝑛
𝑇𝑛

Weight Weight

…

𝑇𝑚

𝑇𝑟

𝑇𝑐

Figure 18: Convolution layer tiling.

3.3 Convolution Accelerator and Analytical Model

Accelerator overview. The overview of the proposed Convolution accelerator is shown

in Figure 19. In this figure, the off-chip DRAM and the on-chip computing kernel with

associated buffers are shown. The computing kernel consists of Tm Processing Elements

(PE), in which, a PE performs Tn MAC via DSPs simultaneously. As a result, a total of

Tm*Tn MACs are performed at the same time in the accelerator. The related PE array is

visualized in Figure 20. Each PE consists of multipliers and adders, in which, the adder

tree accumulates the multiplication results. Such architecture maximizes the frequency and

pipeline performance of each PE and the PE array. According to the computing pattern

of the PE array, the order of the Convolution loop is optimized as shown in Figure 21.

Compared with the conventional Convolution loop order which is shown in Figure 5b, the

loops of the Convolution sliding window are pulled to the outer loop. The OFM tiling is

performed at loopR (Tr), loopC (Tc), loopM (Tm), and loopN (Tn), in which, the tiling of

loopM (Tm), and loopN (Tn) can be processed via the PE array in parallel.

22

Besides the PE array, three buffers are allocated on the FPGA, IFM ([Tn][Tr′][Tc′]), WEI

([Tm][Tn][Tr][Tc]), and OFM ([Tm][Tr][Tc]). The FPGA bloc-RAMs (BRAM) are utilized to

build the three buffers. In the proposed accelerator computing pattern, the IFM tiles and

WEI tiles are streamed from the off-chip DRAM into the FPGA until one OFM tile is fully

computed. To hide the transmission overhead between FPGA and the off-chip memory,

double buffer is placed at the interface of buffer IFM, WEI, and OFM.

Convolution layer tiling summary. The volume of the data that can be accom-

modated by the allocated buffers and the PE array should be carefully determined, which

corresponds to loop tiling and loop ordering for the original Convolution nested loop shown

in Figure 5b. A tile of each input feature map, weight, and output feature map is the basic

unit to be moved between off-chip and on-chip memory. The tiling of a Convolution layer

can be described as < Tm, Tn, Tr, Tc > corresponding to tiling parameters on OFM chan-

nel, IFM channel, OFM row, OFM column. Then, we can get the size of IFM tile to be

< Tn, Tr′ , Tc′ > (IFM IFM [N][R′][C ′]) according to the window and stride size, and weight

tile to be < Tm, Tn, K,K > (weight WEI[M][N][K][K]), where the K is the sliding window

size. To accommodate the tiled Convolution layer on the proposed accelerator, the loops

of the Convolution is reordered as it is shown in Figure 21. Such loop re-ordering benefits

the proposed accelerator in processing Convolution layers with different Convolution win-

dow size. This is because the PE array is designed according to the parallelism of channel

direction (Tm and Tn), resulting a 1*1 ‘Convolution’ per execution. The main benefit of such

design is that the Convolution window size of a layer does not affect the efficiency of the

proposed accelerator.

Run-time schedule. The run-time schedule of the Convolution accelerator is shown in

Figure 22, where I, W, PE, O represents the IFM tile transfer time, weight tile transfer time,

PE array execution time, and OFM tile transfer time, respectively. As one OFM tile needs

the multiplication and accumulation of multiple IFM and weight tiles, the OFM buffer will

only off-load once while the IFM buffer and WEI buffer needs to load multiple times. With

the tiling parameters < Tm, Tn, Tr, Tc >, the IFM and weight load time and OFM load time

can be drawn. As shown in Figure 5, Figure 18, and Figure 22, a Convolution layer tiling with

parameters Tm and Tn needs N
Tn

PE executions as per Tn IFM channels can only get partial

23

Figure 19: Convolution accelerator architecture.

+
+
+

* *

+

**

+…

…

𝑇𝑛

+
+
+

* *

+

**

+…

…

𝑇𝑛

+
+
+

* *

+

**

+…

…

𝑇𝑛

𝑇𝑚

…

…

L1

…

…

Figure 20: Convolution accelerator computing kernel.

for (i=0; i<K; i++) {
for (j=0; j<K; j++) {

for (row=0; row<R; row++) {
for (col=0; col<C; col++) {

for (to=0; to<M; to++) {
for (ti=0; ti<N; ti++) {

Output_fm[to][row][col] +=
weights[to][ti][i][j]*
input_fm[ti][S*row+i][S*col+j]

} } } } } }

Figure 21: Optimized Convolution nested loops.

24

Figure 22: Convolution accelerator performance bottleneck.

results of the OFM tile. Per PE execution, a tile of IFM and weight are needed, causing

IFM and WEI buffer loading. After N
Tn

PE executions, the OFM is transferred out which

is shown in Figure 22. After N
Tn

executions, a OFM tile result is computed while the OFM

tiling still needs to traverse along OFM channel, OFM row, and OFM column. To process

the OFM tiles in channel wise, another M
Tm

PE executions are needed; to process the OFM

tiles in row wise, another R
Tr

PE executions are needed; to process the OFM tiles in column

wise, another C
Tc

PE executions are needed. Therefore, a total of N
Tn

M
Tm

R
Tr

C
Tc

executions will

be needed per Convolution layer.

Performance model. The performance model can be used to determine both of the

accelerator latency and resource utilization of the design. For each PE execution, its latency

is determined by the following issues: the PE number, the allocated buffer size, and the

accelerator transmission performance of off-chip memory interface. The number of PEs is

limited by the number of DSPs DSPchip on FPGA, where the fdsp is the offset of DSP

utilization for different data type (e.g. fdsp = 5 in floating point, fdsp = 1 in fix-point). As

there are Tm PE in the accelerator and each PE consists of Tn MAC operation, the PE size

should fulfill the following requirement:

25

Tm ∗ Tn ∗ fdsp < DSPchip (3.1)

The size of buffers is limited by the FPGA’s on-chip buffer capacity where IFM buffer

is declared as a 3-dimension array Bifm[Tn][Tr][Tc]; OFM buffer is declared as a 3-dimension

array Bofm[Tm][Tr][Tc]; Weight buffer is declared as a 4-dimension array Bwei[Tn][Tn][K][K].

In order to support parallel data access of the PE array, these data arrays should be parti-

tioned into different on-chip memories (i.e. BRAM) which can be accessed in parallel. As

shown in Figure 19, the PE array needs the parallel access of Tn pixels in IFM, Tm pixels

in OFM , and Tm*Tn weights in WEI buffers. Therefore, we completely partition IFM and

OFM along their first dimension, and WEI along its first two dimensions. Then, we calculate

the usage of BRAM blocks for IFM, OFM, WEI in Equation 3.2. In this buffer modeling, the

fdata represents the bit-width of the data, BRAMunit represents the a unit BRAM’s depth,

and BRAM represents the number of BRAM blocks on the chip. The allocated BRAMs

for IFM, OFM, and WEI (Bifm, Bofm, and Bwei) should not exceed the FPGA’s BRAM

capacity. Therefore, the buffer allocation of the accelerator should follow:

Bifm = 2 ∗ Tn ∗ [Tr ∗ Tc ∗ fdata/BRAMunit]

Bofm = 2 ∗ Tm ∗ [Tr ∗ Tc ∗ fdata/BRAMunit]

Bwei = 2 ∗ Tm ∗ Tn ∗ [K ∗K ∗ fdata/BRAMunit]

Bifm +Bofm +Bwei < BRAM

(3.2)

The accelerator transmission performance is limited by the chip physical bandwidth limit

and the interface design of the three buffers. The summation of assigned bandwidth to buffer

Bifm, Bofm, and Bwei should be less than the physical bandwidth limit BW which is shown

in Equation 3.3. In general, the physical bandwidth is limited and supported by physical

channels (e.g. 4 128Bit AXI transmission channels for ZYNQ Ultra-Scale FPGAs). As the

buffer size is determined, the transmission performance for the three buffers can be modeled

as in Equation 3.4.

BWifm +BWofm +BWwei < BW (3.3)

26

tMifm = Tn ∗ Tr ∗ Tc ∗ fdata/BWifm

tMofm = Tm ∗ Tr ∗ Tc ∗ fdata/BWifm

tMwei = Tm ∗ Tn ∗K ∗K ∗ fdata/BWifm

(3.4)

The latency (tComp) of one OFM tile processing is determined by the OFM tile row

and column size < Tr, Tc > and the weight kernel size KxK.. Therefore, according to the

execution order which is illustrated in Convolution layer tiling summary and run-time

schedule the latency to process one Convolution layer can be conducted as Equation 3.5.

tComp = K ∗K ∗ Tr ∗ Tc

tPE = max{tComp, tMifm, tMwei}

tT ile = max{ N
Tn
∗ tPE, tMofm}

tLayer =
R

Tr

∗ C

Tc

∗ M

Tm

∗ tT ile

(3.5)

Accelerator optimization in multi-FPGA. While a layer of CNN can be partitioned

to tiles to accommodate workload on a FPGA, it still exists a transmission and computing

balance problem between the on-chip processing and off-chip data transmission. Due to the

highly parallel design of accelerator architecture, the transmission between FPGA and the

off-chip DRAM can easily cause the PE stall as shown in Figure 22, in which, weight trans-

mission causes the accelerator stall in this example. Considering the IFM and weights sharing

mechanism in Convolution, the transmission problem can be relieved by assigning workload

to multiple accelerators when inter-PL (the FPGA chip is also called Programmable Logic,

PL) connections with competitive bandwidth exit. The bottleneck transmission (weight in

Figure 22) can be offloaded to the inter-PL connection. As shown in Figure 23, a Convolution

layer can be processed by two or multiple FPGAs simultaneously. Every two FPGAs are

connected by direct point-to-point communication (‘XFER’) such as optical fiber, in which,

a FPGA fetches data from its off-chip memory and broadcast its data to other FPGAs.

Meanwhile, it receives data that is broadcasted by the connected FPGAs. This benefit in

less transmission time between of-chip memory to on-chip memory as long as the inter-PL

27

(a) Convolution workload weight sharing (b) Convolution workload IFM sharing

Figure 23: The transmission and computation workload sharing

communication bandwidth is larger than the bandwidth assigned to the bottleneck data.

Taking Figure 23a as the example, a CNN layer workload is evenly split to two FPGAs

according to OFM rows. Therefore, when processing the upper half and lower half OFM

workload on two FPGAs, the required weights are identical for the two FPGAs. Therefore,

if the weight transmision causes the accelerator stall, the weights can be split to two different

parts and shared among the point-to-point communication. In such a way, the number of

PEs is doubled and the transmission bottleneck is relieved, which will bring more than 2x

speed as it largely reduces the computing stall.

Figure 24: Two-FPGA data sharing examples.

The most common workload partition is the batch partition, where the IFM and OFM

are divided along batching direction as shown in Figure 24a. The computation of a batch of

OFM only relies on the corresponding batch of IFM and the whole weights. In consequence

these batches can be computed in parallel in multiple FPGAs and the weights are also split

to multiple parts and shared by FPGAs. Partitioning Convolution OFM along rows (R),

columns (C), and channels are shown in Figure 24 b-d. The workload splitting take advantage

of data sharing mechanism in CNN layer and can achieve super-linear system performance.

28

3.4 Experiment

3.4.1 Experiment Setup

The accelerator on FPGA is implemented with Vivado HLS, which generates design’s

IP core from C++ language. In HLS, we apply HLS-defined pragma to implement loop

optimization. Then, the obtained IP cores are connected, synthesized and implemented

in Vivado (v2017.4). In Vivado, we employ Xilinx Aurora IP core to control inter-FPGA

communication and add an axi-timer to capture the exact elapsed time. FPGA boards are

connected through SFP+ cables, as shown in Figure 26. Finally, we employ Xilinx SDK to

program MPSoC on ZCU102, which controls the start-up of the accelerator and off-chip/on-

chip communication.

The Convolution accelerator and the workload assignment is validated on a two-FPGA

system consisting of two Xilinx ZCU102 FPGAs. FPGAs are connected by SFP+ optical

fiber using the Xilinx Aurora IP which is shown in Figure 25. In this way, data in two FPGAs

can be directly moved between their on-chip buffers. The implementation of each FPGA

utilizes the ZYNQ architecture, which controls the startup of Convolution accelerator, the

off-chip/on-chip communications, etc. As shown in this figure, each FPGA has two clock

domains: one for accelerator and the other for board-to-board communication. We employ

asynchronous FIFOs to coordinate data movements in different clock domains.

Figure 25: Two-FPGA system.

3.4.2 Performance Evaluation

Table 1 reports the comparison results in latency, throughput and energy efficiency in

processing the five Convolution layers in AlexNet with a batch size of 1 on different platforms

29

Figure 26: Power measurement of on-board executions.

and designs. The competitors include mobile GPU (Jetson TX2) and GPU (Titan X), single-

FPGA design (FPGA15 [14], ISCA17 [13]), and multi-FPGA design (ISLPED16 [64]). The

power consumption of our implementation is measured by a power meter as demonstrated

in Figure 26. Note that notation “-” indicates that data is not reported in references or

inapplicable.

Latency. Real-time DNN inference requires ultra-low latency to avoid missing deadline.

For 32bits float-point, the proposed design achieves latency of 10.13ms, which is 23.26%,

2.13×, 5.94× less than that of mGPU, FPGA15 [14], and ISCA17 [13]. However, the pro-

posed design with 32bits float-point is slower than Titan X GPU, whose latency is 6.4ms.

This is because such GPU is much more powerful, with the penalty of consuming more than

3× power over the FPGA implementation in the proposed design. Benefiting from the flexi-

bility of FPGAs to apply different data types for computation, it is possible to reduce latency

by using lower-precision data type. As shown in this table, by applying 16bits fix-point, the

proposed design can achieve the lowest latency among all competitors, i.e., 2.27ms.

Throughput. Compared with ISCA17 [13] with 32bits float-point, the proposed design

achieves 5.94× lower latency together with 1.75× higher throughput. The improvement in

throughput is less than that on latency is because ISCA17 aims to improve throughput, but

30

Table 1: Experimental results of 2-FPGA system with comparisons to the existing designs

in accelerating AlexNet 5 Convolution layers

Design mGPU GPU FPGA15 ISCA17 ISLPED16 Ours

Precision 32bits float 32bits float 32bits float 32bits float 16bits fixed 32bits float 16bits fixed

Device Jetson TX2 Titan X VX485T VX485T 4×VX690t 2×ZCU102 2×ZCU102

Freq (MHz) 1300MHz 1139MHz 100MHz 100MHz 150MHz 100MHz 200MHz

Power (Watt) 16.00 162.00 18.61 - 126.00 52.40 54.40

DSP Uti. - - 80% 80% - 90.79% 55.87%

BRAM Uti. - - 49.71% 43.25% - 72.92% 92.43%

Overall Perf.

Lat. Thr. Lat. Thr. Lat. Thr. Lat. Thr. Lat. Thr. Lat. Thr. Lat. Thr.

ms GOPS ms GOPS ms GOPS ms GOPS ms GOPS ms GOPS ms GOPS

11.1 - 13.2 110.75 5.1 - 6.4 235.55 21.62 69.09 60.13 85.47 30.6 128.8 10.13 149.54 2.27 679.04

E.-E. (GOPS/W) 6.88 1.45 3.71 - 1.02 2.85 12.48

its throughput is still less than the proposed design. Similarly, compare with ISLPED16 [64]

with 16bits fix-point, the proposed design achieves 13.48× lower latency together with 5.27×

higher throughput. Benefiting from the higher throughput, the proposed design achieves the

highest energy efficiency than competitors.

Performance breakdown. The performance breakdown of the two-FPGA system when

for the AlexNet’s 5 Convolution layers is listed in Table 2. In this comparison, the perfor-

mance of floating point accelerator and fix point accelerator are compared with the baseline

design FPGA15 [14]. As shown in the table, for each layer of AlexNet, our design achieves

over 2x speedup when compared with the baseline.

Performance model accuracy and effectiveness. The accuracy and effectiveness of

the proposed system-level model is shown in Figure. We will conduct two sets of experiments:

(1) we compare the proposed model with the existing one in predict latency in Figure 27;

(2) we compare the proposed model with the final implementation results from Vivado in

memory resource, computation resource, and on-board execution latency in Table 3.

Figure 27 reports the comparison results among different models and on-board execu-

tion latency. The x-axis and y-axis represent different designs and latency in clock cycles,

respectively. In the first three designs, we employ one FPGA for implementation; while for

the fourth one, we employ 2 FPGAs.

31

Table 2: Comparison results on 2-ZCU102

Design
32bits float 16bits fixed

FPGA15 Ours FPGA15 Ours

⟨Tm, Tn⟩ ⟨64, 7⟩ ⟨64,7⟩ ⟨64, 24⟩ ⟨128,10⟩

Power (W)
25.70 52.40 26.00 54.40

(1 FPGA) (2 FPGAs) (1 FPGA) (2 FPGAs)

Perf.
Lat. Thr. Lat. Thr. Lat. Thr. Lat. Thr.

ms GOPS ms GOPS ms GOPS ms GOPS

conv1 7.36 28.6 3.66 57.6 3.74 56.5 0.94 224.5

conv2 5.20 86.1 2.55 175.5 1.48 302.6 0.48 933.1

conv3 4.50 66.4 1.73 172.7 1.20 249.6 0.33 906.2

conv4 3.41 65.7 1.31 171.0 0.89 252.6 0.35 640.8

conv5 2.28 66.0 0.88 170.9 0.59 251.7 0.17 879.5

overall 22.75 66.6 10.13 149.5 7.90 195.1 2.27 679.0

Perf. Impr. 1.00× 2.25× 1.00× 3.48×

E.-E.
2.59 2.85 7.51 12.48

(GOPS/W)

E.-E. Impr. - 9.21% - 39.86%

Results in Figure 27 show that the latency predicted by our proposed model is always

close to the on-board execution latency, where the average deviation is only 2.53%. In

contrast, the existing model in [14] has larger deviations on designs of ⟨10, 22⟩ and ⟨8, 32⟩

(Tm, Tn), which are 18.49% and 45.47%.

We have another observation from Figure 27. For the design of ⟨12, 16⟩, model in [14]

predicts the same latency with ours. This is because the computation latency dominates

the whole system. In this case, the inaccurate estimation of communication will not affect

prediction accuracy. However, when we employ more computation resource (by increasing

Tm × Tn), the performance bottleneck moves to communication which leads to the large

latency deviations between the existing model and the on-board execution.

The above results verify the accuracy and effectiveness of the proposed system-level

model in predicting system latency. With such an accurate model, it can help designers to

get the accurate system performance to make better design decisions.

32

Table 3 reports the comparison between the proposed model and the final implementation

results from Vivado in BRAMs and DSPs. It is clear that the deviations on BRAM and DSP

usages are less than 7.5% and 3.9%, respectively. These deviations are mainly caused by the

overhead on extra operations besides the accelerator itself, such as DSPs used for address

calculation. The above results further verify the accuracy of the proposed model.

3.5 Summary

The proposed Convolution accelerator with the associated performance model is a promis-

ing accelerator that can be employed in accelerating Convolution layers on FPGA. The ef-

ficient Convolution engine design and the accuracy analytical model can be flexibly applied

to a given set of Convolution layers and FPGA pair, achieving accurate and fast accelerator

prototyping. The explored multi-FPGA design can achieve super-linear performance gain

when there are fast connections between FPGAs.

33

FPGA
15

Figure 27: Comparisons of predictable models and on-board executions on latency: employ-

ing different designs on single-FPGA and two-FPGA systems.

Table 3: Convolution accelerator performance model accuracy analysis.

Design Precision ⟨Tm, Tn⟩ Partition
Our Model On-Board Deviation

Speedup
Cycles BRAM DSPs Bound Cycles BRAM DSPs Cycles BRAM DSPs

A (Single)
32b float

⟨8, 32⟩ - 519168 592 1280 IFM 535530 624 1326 3.06% 5.13% 3.47% baseline

B (2-FPGA) ⟨8, 32⟩ ofm 158880 592 1280 Comp. 162114 640 1331 1.99% 7.50% 3.83% 3.30X

C (Single)
16b fixed

⟨64, 20⟩ - 115200 1448 1280 Weight 118688 1516 1324 2.94% 4.49% 3.32% baseline

D (2-FPGA) ⟨64, 20⟩ row 32760 1448 1280 Comp. 34622 1530 1330 5.38% 5.36% 3.76% 3.43X

34

4.0 Software/Hardware Co-design for LSTM and Transformer Network

This chapter presents the accelerator designs that address the computing efficiency of

DNNs in the Natural Language Processing domain. It is organized as follows. First, the

optimization of LSTM computation and its associated FPGA accelerator [65] is presented.

Second, the Transformer compression with its associated FPGA accelerator [66] design is

presented.

4.1 Accelerator Design for Long Short-term Memory (LSTM)

4.1.1 Background

As it is shown in Figure 7 and Equation 2.1, a LSTM cell includes four gates: input gate

(it), forget gate (ft), output gate (ot), and cell state gate (ĉt). The data flow of the four

gates can run in parallel and they share the same computing pattern:

1○ [H ×D] ∗ [D × 1] by MAC of size D.

2○ [H ×H] ∗ [H × 1] by MAC of size H.

3○ [H × 1] + [H × 1] by element-wise addition.

4○ [H × 1]⊙ [H × 1] by element-wise multiplication.

In the summarized computing pattern, theH represents the LSTMmodel hidden size and

the D represents the LSTM input vector length. The pattern 1○ is visualized in Fig. 28; the

pattern 2○ is visualized in Fig. 29; the pattern 3○ is visualized in Fig. 30 (a); the pattern 4○

is visualized in Fig. 30 (b). As depicted in the figures, the computations in the LSTM cell

are mainly matrix-multiplications, element-wise multiplication, and element-wise addition.

Therefore, each of the four gates it. ft, ot, and c̃t along with ct and ht contains four different

computing patterns. The complex patterns can be realized by building different computing

cores in the hardware. The activations are usually processed in software or approximately

computed in hardware. The eight weight-matrix Wx and Wh are independent of each other

35

but are recurrently used at different times. The cell state ct and output ht are also refreshed

at different times. The FPGA devices with an on-chip buffer can take advantage of such

features, buffering the weights and cell state on the chip according to its buffer capacity.
𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝑫

𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝑫

𝒘𝑯𝟏 𝒘𝑯𝟐 ⋯ 𝒘𝑯𝑫

⋮ ⋮ ⋮

𝒙𝟏
𝒙𝟐

𝒙𝑫

⋮

𝒈𝟏
𝒈𝟐

𝒈𝑯

⋮

𝒘𝟏𝟏𝒙𝟏 +𝒘𝟏𝟐𝒙𝟐 +⋯+𝒘𝟏𝑫 𝒙𝑫
𝒘𝟐𝟏𝒙𝟏 +𝒘𝟐𝟐𝒙𝟐 +⋯+𝒘𝟐𝑫 𝒙𝑫

𝒘𝑯𝟏𝒙𝟏 +𝒘𝑯𝟐𝒙𝟐 +⋯+𝒘𝑯𝑫 𝒙𝑫

⋮ ⋮ ⋮
= =∙

𝑊𝑥𝑔(𝑅
𝐻𝑋𝐷) 𝑥𝑡 𝑅

𝐷𝑋1 𝑔𝑡𝑝(𝑅
𝐻𝑋1)

⋮
↔

𝑴𝑨𝑪 𝒔𝒊𝒛𝒆 𝑫
𝑴𝑨𝑪 𝒔𝒊𝒛𝒆 𝑫

𝑴𝑨𝑪 𝒔𝒊𝒛𝒆 𝑫

Figure 28: The matrix-vector multiplication for Wxxt.

= =∙

𝒈𝟏
𝒈𝟐

𝒈𝑯

⋮

𝒘𝟏𝟏𝒉𝟏 +𝒘𝟏𝟐𝒉𝟐 +⋯+𝒘𝟏𝑯 𝒉𝑯
𝒘𝟐𝟏𝒉𝟏 +𝒘𝟐𝟐𝒉𝟐 +⋯+𝒘𝟐𝑯 𝒉𝑯

𝒘𝑯𝟏𝒉𝟏 +𝒘𝑯𝟐𝒉𝟐 +⋯+𝒘𝑯𝑯 𝒉𝑯

⋮ ⋮ ⋮

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝑯

𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝑯

𝒘𝑯𝟏 𝒘𝑯𝟐 ⋯ 𝒘𝑯𝑯

⋮ ⋮ ⋮

𝑾𝒉𝒈(𝑹
𝑯𝑿𝑯) 𝒉𝒕−𝟏 𝑹𝑯𝑿𝟏 𝒈𝒕𝒑(𝑹

𝑯𝑿𝟏)

𝒉𝟏
𝒉𝟐

𝒉𝑯

⋮

𝑴𝑨𝑪 𝒔𝒊𝒛𝒆 𝑯
𝑴𝑨𝑪 𝒔𝒊𝒛𝒆 𝑯

𝑴𝑨𝑪 𝒔𝒊𝒛𝒆 𝑯

↔ ⋮

Figure 29: The matrix-vector multiplication for Whht−1.

𝒈𝟏
𝒈𝟐

𝒈𝑯

⋮

𝒈𝟏
′

𝒈𝟐
′

𝒈𝑯
′

⋮+ =

𝒈𝟏
𝒈𝟐

𝒈𝑯

⋮ 𝑯

𝒇𝟏
𝒇𝟐

𝒇𝑯

⋮ =

𝒄𝟏
𝒄𝟐

𝒄𝑯

⋮

𝒇𝟏 ∗ 𝒄𝟏
𝒇𝟐 ∗ 𝒄𝟐

𝒇𝑯∗ 𝒄𝑯

⋮=

𝒈𝟏
𝒈𝟐

𝒈𝑯

⋮ 𝑯⊙

(a) (b)

Figure 30: The element-wise addition and multiplication.

To accelerate the four gates in the LSTM, heterogeneous-kernel accelerators are proposed

[19, 67]. Different MAC computing cores which consist of multipliers and an adder tree are

utilized to fit pattern 1○ and 2○. An example of the MAC computing core is shown in Fig. 31

(a). The accelerators of LSTM design kernels for gates and the rest element-wise operations

[19, 67] which is shown in Fig. 31 (b). In the gate kernel, two different MAC computing cores

are placed to mimic pattern 1○ and 2○; a vector adder is placed for element-wise addition;

an activation approximation is placed for Sigmoid or tanh. The adder is idle until both

MAC cores finish. A dedicated kernel is designed for element-wise multiplication, addition,

and activation approximation (mimic ct and ht). The dedicated kernel is idle until all gates

computations are done. The intra-kernel and inter-kernel data dependency are shown in

Fig. 32. Such architecture leads to kernel stall and low resource parallelism. Chang et al.[67]

achieve 142MHz working frequency and 22.73% computing resource utilization; Guan et

al.[19] achieve 150MHz working frequency and 42% computing resource utilization.

36

gate 𝑓𝑡 or 𝑜𝑡

+ + +…

MAC 1 MAC 2

…

gate ǁ𝑐𝑡

+ + +…

MAC 1 MAC 2

…

(a) (b)

∗ ∗
+

∗ ∗
+

∗ ∗
+

+ +

+

MAC

gate 𝑖𝑡

+ + +…

MAC 1 MAC 2

…

gate 𝑓𝑡 or 𝑜𝑡

+ + +…

MAC 1 MAC 2

…

gate Ƹ𝑐𝑡

+ + +…

MAC 1 MAC 2

…

element − wise

∗ ∗ ∗…

+ + +…

…
+ + +…

MAC 1 MAC 2

…

∗ ∗ ∗…

+ + +…

…

Figure 31: The computing kernels of LSTM accelerator.

gate 𝑓𝑡 or 𝑜𝑡

+ + +…

MAC 1 MAC 2

…

gate ǁ𝑐𝑡

+ + +…

MAC 1 MAC 2

…

(a) (b)

∗ ∗
+

∗ ∗
+

∗ ∗
+

+ +

+

MAC

gate 𝑖𝑡

+ + +…

MAC 1 MAC 2

…

gate 𝑓𝑡 or 𝑜𝑡

+ + +…

MAC 1 MAC 2

…

gate Ƹ𝑐𝑡

+ + +…

MAC 1 MAC 2

…

element − wise

∗ ∗ ∗…

+ + +…

…
+ + +…

MAC 1 MAC 2

…

∗ ∗ ∗…

+ + +…

…

Figure 32: The data dependency of computing kernels in the LSTM accelerator.

4.1.2 Motivation and Contribution

How to fully exploit the parallelism in LSTM and maximize resource utilization is the

main concern when deploying LSTM on the accelerator. Furthermore, LSTM contains het-

erogeneous computing patterns and data dependency among operations, which makes the

problem more challenging. The naive solutions [19, 20, 67] that design the dedicated com-

puting kernel to fit computing patterns shows unbalanced resource allocation and costly

kernels stall, where device resource utilization in all the above works is less than 50% and

system running stalls are observed. Without fully exploiting the parallelism in LSTM, these

designs suffer large latency, which cannot satisfy the real-time requirement.

Besides computing resources, the memory in edge devices is also limited. On the other

hand, LSTM has a large memory requirement for storing the model (i.e., weights). With the

growing complexity of applications, the LSTM model size (e.g 3.16 Mb-173.5 Mb [68, 69, 70,

71]) is becoming bigger and may easily exceed the on-chip buffer capacity. In addition, there

is a lack of efficient on-chip buffer management, leading to computing kernel idle to wait for

37

reading weights since the latency of costly data transfer can easily exceed the execution time

[12, 72, 73, 74, 75, 76, 62, 77]. Efficient buffer management can keep weights on the chip

to significantly alleviate the performance bottleneck on data transfer between off-chip and

on-chip memory.

Though the data flow of the LSTM is carefully designed in the existing works, the kernel

stall and low resource parallelism problems are still unsolved and leave space for further

improvement. Instead of reducing the number of computations, this work reduces the number

of computing patterns but keeps LSTM integrity, which will only need single-type kernels in

the accelerator. With the unified kernels, the on-chip buffer management can also be more

efficient.

In this chapter, a novel FPGA-based LSTM accelerator design is proposed which in-

corporates a unified computing kernel to simultaneously execute operations in all LSTM

gates. The unified accelerator design is motivated by the observation that all operations in

LSTM can be conducted by two fundamental computing patterns, the element-wise multi-

plication and element-wise addition. In this way, the resources in accelerators can be fully

utilized, and all operations are conducted in a full parallel way. In addition to the optimiza-

tion of computation, we also propose associated buffer management to maximize the device

buffer utilization and in turn reduce communication latency. Finally, based on the comput-

ing engine design and buffer management, an analytical model is formulated to determine

the optimal accelerator hyper-parameters, schedule accelerator operations, and predict the

overall system performance.

4.1.3 LSTM Accelerator and Analytical Model

4.1.3.1 Unifying the Computing Patterns

Each LSTM gate originally requires two types of MAC and one element-wise vector

addition. However, the weight matrix Wx and Wh share the same parameter H, which is the

number of rows of the weight matrix as shown in Figure 28 and Figure 29. The element-wise

vector addition is of size H as well. For the non-gate ct and ht, the computations are mere

element-wise vector multiplication or addition of size H as shown in Figure30 a and b.

38

Taking advantage of the same number of matrix rows, the MAC operations for matrix-

vector multiplications can be replaced with unified element-wise multiplication followed by

addition. Instead of computing gH element in order, all elements in [g1, g2, ..., gH]
T can

be partially computed by multiplying a column of weight with corresponding xt element

simultaneously. The partial result (Pd) of [g1, g2, ..., gH]
T for Wxxt computed at column d

can be denoted by:

Pd = [w1d, w2d, ..., wHd]
T ⊙ [xd, xd, ..., xd]

T (4.1)

As shown in Figure 33, by accumulating vector Pd from column one to column D, the

full result [g1, g2, ..., gH]
T for Wxxt can be incrementally computed:

Pxt =
D∑

d=1

Pd (4.2)

Herein, as shown in Figure 34, the computation forWhht−1 can also be acquired similarly:

Ph = [w1h, w2h, ..., wHh]
T ⊙ [hh, hh, ..., hh]

T (4.3)

Pht−1 =
H∑

h=1

Ph (4.4)

As shown in equations 4.1 to 4.4, the two sizes of MAC for Wxxt and Whht−1 are re-

placed with element-wise multiplication and addition in the same size H. As such, the gates

computation it, ft, ot, and c̃t before activation can be summarized as:

G =
D∑

d=1

Pd +
H∑

h=1

Ph +Bias (4.5)

The fundamental computing patterns for a gate is further shown in Figure 35. MACs

and addition are replaced with element-wise vector multiplication and addition. As the ct

and ht are originally computed by element-wise multiplication and addition, pattern 1○ and

39

2○ are eliminated in the LSTM. The computing patterns in an LSTM can be summarized as

an element-wise vector multiplication of size H which is shown in equation 4.6; element-wise

vector addition of size H which is shown in equation 4.7. Via the two fundamental patterns

4.6 and 4.7, the gate operation (Equation 4.5) can be fully processed.

[v11, v12, ..., v1H]
T ⊙ [v21, v22, ..., v2H]

T (4.6)

[v11, v12, ..., v1H]
T + [v21, v22, ..., v2H]

T (4.7)

𝒈𝟏
𝒈𝟐

𝒈𝑯

⋮

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝑫

𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝑫

𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝑫

𝒘𝟒𝟏 𝒘𝟒𝟐 ⋯ 𝒘𝟒𝑫

𝒘𝑯𝟏 𝒘𝑯𝟐 ⋯ 𝒘𝑯𝑫

⋮ ⋮ ⋮

𝒙𝟏
𝒙𝟐

𝒙𝑫

⋮ = =∙

𝒘𝟏𝟏𝒙𝟏 𝒘𝟏𝟐𝒙𝟐 ⋯ 𝒘𝟏𝑫𝒙𝑫
𝒘𝟐𝟏𝒙𝟏 𝒘𝟐𝟐𝒙𝟐 ⋯ 𝒘𝟐𝑫𝒙𝑫
𝒘𝟑𝟏𝒙𝟏 𝒘𝟑𝟐𝒙𝟐 ⋯ 𝒘𝟑𝑫𝒙𝑫
𝒘𝟒𝟏𝒙𝟏 𝒘𝟒𝟐𝒙𝟐 ⋯ 𝒘𝟒𝑫𝒙𝑫

𝒘𝑯𝟏𝒙𝟏 𝒘𝑯𝟐𝒙𝟐 ⋯ 𝒘𝑯𝑫𝒙𝑫
⋮ ⋮ ⋮

𝐷

+
+
+
+

+

+
+
+
+

+

+
+
+
+

+

Figure 33: Applying fundamental patterns to wxxt.

𝐻

𝒘𝟏𝟏𝒉𝟏 𝒘𝟏𝟐𝒉𝟐 𝒘𝟏𝑯𝒉𝑯
𝒘𝟐𝟏𝒉𝟏 𝒘𝟐𝟐𝒉𝟐 𝒘𝟐𝑯𝒉𝑯
𝒘𝟑𝟏𝒉𝟏 𝒘𝟑𝟐𝒉𝟐 𝒘𝟑𝑯𝒉𝑯
𝒘𝟒𝟏𝒉𝟏 𝒘𝟒𝟐𝒉𝟐 𝒘𝟒𝑯𝒉𝑯

𝒘𝑯𝟏𝒉𝟏 𝒘𝑯𝟐𝒉𝟐 𝒘𝑯𝑯𝒉𝑯

𝒈𝟏
𝒈𝟐

𝒈𝑯

⋮

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝑯

𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝑯

𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝑯

𝒘𝟒𝟏 𝒘𝟒𝟐 ⋯ 𝒘𝟒𝑯

𝒘𝑯𝟏 𝒘𝑯𝟐 ⋯ 𝒘𝑯𝑯

⋮ ⋮ ⋮

𝒉𝟏
𝒉𝟐
𝒉𝟑
𝒉𝟒

𝒉𝑯

⋮

= =∙

⋯

⋮ ⋮ ⋮

+

+
+
+

+

+

+
+
+

+

+

+
+
+

+

⋯
⋯
⋯

⋯

Figure 34: Applying fundamental patterns to whht−1.

𝑊𝑥𝑔(𝑅
𝐻𝑋𝐷) 𝑥𝑡 𝑅

𝐷𝑋1∙ 𝑊ℎ𝑔(𝑅
𝐻𝑋𝐻) ℎ𝑡−1 𝑅

𝐻𝑋1∙

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝑫

𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝑫

𝒘𝑯𝟏 𝒘𝑯𝟐 ⋯ 𝒘𝑯𝑫

⋮ ⋮ ⋮

𝒙𝟏
𝒙𝟐

𝒙𝑫

⋮∙

𝑊𝑥𝑔(𝑅
𝐻𝑋𝐷) 𝑥𝑡 𝑅

𝐷𝑋1∙ + 𝑊ℎ𝑔(𝑅
𝐻𝑋𝐻) ℎ𝑡−1 𝑅

𝐻𝑋1 + 𝑏𝑔 𝑅𝐻𝑋1∙

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝑯

𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝑯

𝒘𝑯𝟏 𝒘𝑯𝟐 ⋯ 𝒘𝑯𝑯

⋮ ⋮ ⋮

𝒉𝟏
𝒉𝟐

𝒉𝑯

+

𝒃𝒈𝟏
𝒃𝒈𝟐

𝒃𝒈𝑯

∙
⋮

+ ⋮

𝒃𝒈𝟏 𝒘𝟏𝟏𝒙𝟏 ⋯ 𝒘𝟏𝑫𝒙𝑫 𝒘𝟏𝟏𝒉𝟏 ⋯ 𝒘𝟏𝑯𝒉𝑯
𝒃𝒈𝟐 𝒘𝟐𝟏𝒙𝟏 ⋯ 𝒘𝟐𝑫𝒙𝑫 𝒘𝟐𝟏𝒉𝟏 ⋯ 𝒘𝟐𝑯𝒉𝑯

𝒃𝒈𝑯 𝒘𝑯𝟏𝒙𝟏 ⋯ 𝒘𝑯𝑫𝒙𝑫 𝒘𝑯𝟏𝒉𝟏 ⋯ 𝒘𝑯𝑯𝒉𝑯

⋮ ⋮ ⋮ ⋮ ⋮

=

𝑏𝑔1 𝑤11𝑥1 ⋯ 𝑤1𝐷𝑥𝐷 𝑤11ℎ1 ⋯ 𝑤1𝐻ℎ𝐻
𝑏𝑔2 𝑤21𝑥1 ⋯ 𝑤2𝐷𝑥𝐷 𝑤21ℎ1 ⋯ 𝑤2𝐻ℎ𝐻

𝑏𝑔𝐻 𝑤𝐻1𝑥1 ⋯ 𝑤𝐻𝐷𝑥𝐷 𝑤𝐻1ℎ1 ⋯ 𝑤𝐻𝐻ℎ𝐻

⋮ ⋮ ⋮ ⋮ ⋮

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

+
+

+

Figure 35: Applying fundamental patterns to a gate.

With the two fundamental computing patterns, the four gates computation can be com-

bined to achieve higher computing parallelism. As operations in element-wise multiplication

are independent to each other and xt, ht−1 are shared by the four gates, the weights in the

four gates can be stacked vertically to be computed which is shown in Figure 36a. As a

40

result, the cross-gate kernel computing parallelism can be as large as 4H as shown in Figure

36b. Therefore, instead of MAC cores and individual kernels for gates, computations in

LSTM can be processed in parallel via unified element-wise computing kernel(s). The higher

parallelism across gates can also be further taken advantage of parallel-computing devices

like FPGA. It is worth mentioning that the two fundamental computing patterns do not

bring any extra number of computations.

𝐻

𝐷

𝐻

𝐻

4𝐻

𝐷+H

𝑥𝑡 ℎ𝑡−1

(a) (b)

𝑤𝑥𝑖 𝑤ℎ𝑖

𝑤𝑥𝑓 𝑤ℎ𝑓

𝑤𝑥𝑜 𝑤ℎ𝑜

𝑤𝑥𝑐 𝑤ℎ𝑐

4𝐻

𝐷+H

𝑥𝑡 ℎ𝑡−1

(a) (b)

𝑤𝑥𝑖 𝑤ℎ𝑖

𝑤𝑥𝑓 𝑤ℎ𝑓

𝑤𝑥𝑜 𝑤ℎ𝑜

𝑤𝑥𝑐 𝑤ℎ𝑐

𝐻 𝐻

𝐷 𝐻

(c)

1 2 3 4 5 6

7 8 9 10 11 12

2 4 6 7 9 11

𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑏𝑙𝑜𝑐𝑘 2 4 6

𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑏𝑙𝑜𝑐𝑘 7 9 11

𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠

𝑝𝑟𝑢𝑛𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠

(c)

Figure 36: Applying fundamental patterns to four gates.

4.1.3.2 Accelerator based on the Unified Pattern

Thanks to the simplified computing patterns, the accelerator design complexity is re-

duced, bringing chances to build a unified accelerator kernel for all gates, which benefits

accelerator performance in working frequency and resource utilization.

Kernel design: A computing kernel of size 4H to process the two patterns (equations

4.6 and 4.7) is shown in Figure 37a. It contains 4H pairs of multiplier and adder working in

parallel. The multiplier and adder in a pair work in a pipeline fashion. The adder’s input

is from the multiplier and the previous accumulated result. The computing parallelism in

the designed kernel is 4H and pipeline stages are two. Multiple unified kernels can be

instantiated in the accelerator according to device resource constraint.

41

The accelerator with the kernel of size 4H is shown in Figure 37b. Considering the general

resources in FPGA platforms, the accelerator consists of on-chip weight buffer, data swapping

bus (DMA) between off-chip memory and on-chip buffer, data dispatcher to schedule input

data, computing kernel, buffer dispatcher to cache computing results, and routing data bus

between internal modules. The weight buffer keeps or partially keeps the LSTM weights

during inference, which are off-line transferred to the buffer via data bus 1○. During online

inference, the buffered weights are read to the computing kernel via data bus 4○. The

swapping data bus 1○, 2○, and 3○ fetches unbuffered weight, xt, and gate results from

off-chip memory during online inference. Data dispatcher routes data such as xt, buffered

weight, swapped weight, and gate results, sending two vectors into the computing kernel via

data bus 5○ and 6○. It also includes a ping-pong buffer for online data transfer to hide the

transfer time during computing. The computing kernel iteratively computes all the LSTM

computations. The buffer dispatcher uses registers to cache kernel output and keep ht, ct

results on the chip. After finishing off the gate’ computations, the buffer dispatcher transfers

computation results to the accelerator’s master for activations computing in software. Such

architecture eliminates the kernel stall and can be easily scaled up or scaled down according

to device resource constraint.

Buffer management: The example computing kernel consumes 4H weight elements

and an element of vector xt or ht−1 simultaneously. Therefore, if the kernel is in size 4H,

a block of buffers in quantities 4H is designed to support the kernel. The simultaneously

buffer access leads to near-zero reading delay, achieving zero stalls in kernel computing. If

the buffer resource is abundant in the device, multiple buffer blocks can be instantiated to

support more weight buffering, achieving less system stall caused by data transferring. The

buffer depth determines the portion of weight columns that can be buffered on the chip.

Thus, a buffer is further partitioned into sections with unit length D + H to hold more

weights. The buffer blocks and depth partition will be further discussed in section 4.1.3.3.

As the size of xt and kernel output is usually several magnitudes smaller than weights, the

vectors such as xt, ct, and ht are stored in device registers.

42

4𝐻

⑦

(b)

②
4𝐻

4𝐻
4𝐻

(a)

Comp. kernel 2

*

*
*

*
*
*
*

+

+
+

+
+
+
+

4𝐻

4𝐻

4𝐻

4𝐻
(a)(a)

D
at

a
D

is
p

at
ch

e
r

Weight/Bias Buffer

+
𝑣
°
𝑣

Comp. kernel 1
4𝐻

4𝐻

4𝐻

4𝐻
4𝐻 B
u

ff
er

D
is

p
at

ch
er

D
M

A
 S

yn
c

D
at

a
B

u
s

Chip Area

①

②

③

⑥
⑧

⑨

⑤ ⑩

④

⑦

⑪ D
M

A
 S

yn
c

D
at

a
B

u
s

(a)(a)

D
at

a
D

is
p

at
ch

er

Weight/Bias Buffer

𝑣

Comp. kernel 1

4𝐻
4𝐻

4𝐻

4𝐻 4𝐻

B
u

ff
er

D
is

p
at

ch
er

D
M

A
 S

yn
c

D
at

a
B

u
s

Chip Area

①

②

③

⑥ ⑧

⑨

⑤ ⑩

④

⑦

⑪ D
M

A
 S

yn
c

D
at

a
B

u
s

*
𝑣

+
𝑣

𝑣

(a)

*

*
*

*
*
*

+

+
+

+
+
+

4𝐻

4𝐻

4𝐻

4𝐻

… …

Comp. kernel

Figure 37: The unified-kernel LSTM accelerator architecture.

4.1.3.3 Analytical Model

Resources in platforms such as FPGA are usually fixed in memory bandwidth, computing

units like DSP, logic units like LUT, and on-chip buffer block-RAM (BRAM). Therefore, a

device’s capacity may not fit an LSTM cell’s computing and weights size. The analytical

model in this work takes the memory bandwidth (B), the number of DSPs (NDSP), the

number of BRAMs (NBRAM), and unit BRAM’s depth (depth) as the platform parameters.

The LSTM’s hidden state size H, input xt vector length D, and inference data bit-width

(width) are co-considered with the platform parameters.

Hyper-parameters selection. In accelerator parameters selection, the kernel size

Skernel should be selected which is less than NBRAM . However, the synthesis strategy varies

if FPGA is the target device. For example, Xilinx FPGAs need 5 DSP to compute a single

floating-point multiplication and addition in the proposed computing kernel, while 1 DSP

is needed for 16 bit fixed-point data type. Therefore, for the target devices, the effective

number of DSPs are:

N
′

DSP =
NDSP

offset
(4.8)

The offset represents the DSPs consumed by a pair of multiplication and addition. Then,

the upper bound of the kernel size and the number of kernels (Nkernel) can be determined:

43

Kmax = min(N
′

DSP , NBRAM)

Skernel = min(4H,Kmax)

Nkernel = floor(
Kmax

Skernel

)

(4.9)

Considering the target device has NBRAM BRAMs with the unit capacity of depth in bit-

wise. For a certain application, the BRAM’s real unit capacity depth
′
can be represented by

depth
′
= depth

width
, where width is the application data bit-width. Therefore, the device BRAMs

can be modeled as an array with size [NBRAM][depth
′
] as shown in Figure 38. As discussed

in section Buffer Management, the size of weights to be buffered is [4H][DH], where 4H

represents 4 ∗ H and DH represents D + H. Though the physical buffer size and weights

size are usually inconsistent, it can be resolved by our following buffer management.

𝑑𝑒𝑝𝑡ℎ′

𝑁𝐵𝑅𝐴𝑀

𝑆𝑘𝑒𝑟𝑛𝑒𝑙

𝐷𝐻

4𝐻

𝑑𝑒𝑝𝑡ℎ′

𝑑𝑒𝑝𝑡ℎ′

𝑁𝐵𝑅𝐴𝑀

𝐻𝐷

4𝐻

𝑑𝑒𝑝𝑡ℎ′

𝑆𝑘𝑒𝑟𝑛𝑒𝑙

Figure 38: Physical buffer size and weight size.

For the kernel of size Skernel, it reads Skernel buffers simultaneously. Therefore, the

BRAMs are first partitioned to floor(NBRAM

Skernel
) blocks. For the weight matrix with DH

columns, each block can hold depth
′

DH
portion of weight matrix in the column dimension.

Herein, the physical buffer capacity (Nblockp) of the device for the LSTM is determined by

equation 4.10. Meanwhile, the logical buffer blocks (Nblockl) needed is determined by the

number of weight rows 4H and the kernel size Skernel which is shown in equation 4.11.

44

Nblockp = floor(
NBRAM

Skernel

) ∗ depth
′

DH
(4.10)

Nblockl = ceil(
4H

Skernel

) (4.11)

Nblockt = min(Nblockp , Nblockl) (4.12)

Therefore, the total weights can be buffered on the chip (Nblockt) is determined by equa-

tion 4.12. According to Nblockp , Nblockl , and Nblockt , the running schedule can be determined.

Acc. schedule and performance prediction. With the buffered weights, the infer-

ence time for processing these weights on the chip is P1P1P1:

tP1P1P1 = tkernel ∗Nblockt ∗min(DH, depth
′
)/Nkernel (4.13)

tkernel is the latency of kernel’s single execution. If the physical blocks are less than logical

blocks (Nblockp < Nblockl), the non-buffered weighs are transferred from off-chip memory. The

inference time under this period is P2P2P2:

tP2P2P2 = tcomp ∗ |Nblockp −Nblockl | ∗DH/Nkernel (4.14)

tcomp is the execution time considering the transfer cost, which is max(tkernel, ttrans) as

ping-pong buffer is adopted in the data transferring. ttrans is the off-chip weight vector

transfer time. The real execution time is determined by tkernel or ttrans, the one with the

most time cost.

After computing all the computations in the gates, the accelerator takes the gate results

from the master and compute ct and ht. Similarly, ping-pong buffer is adopted in transfer

and inference time is P3P3P3:

tP3P3P3 = tcomp ∗ ceil(
H

Skernel

) ∗ 3 ∗ tcomp (4.15)

After P1P1P1, P2P2P2, and P3P3P3, the LSTM cell gate intermediate results are computed. As the

activations are done by the master, the gate intermediate results are transferred out of

45

FPGA. Therefore, the time cost of data transferring and software activation processing time

can not be neglected. The cost of data transferring and processing activations is:

tact = 5 ∗H ∗ tact uni +
5 ∗H

B/width
(4.16)

5 ∗H represents the number of transferred out data for activation and tact uni represents

the unit activation time cost in the master. Therefore, the inference time for the proposed

accelerator for LSTM is:

tLSTM = tP1P1P1 + tP2P2P2 + tP3P3P3 + tact (4.17)

According to metrics 4.8 to 4.17 in the analytical model, the accelerator parameters,

accelerator running schedule, and accelerator performance can be acquired.

4.1.4 Experiment

4.1.4.1 Experiment Setup

The LSTM FPGA accelerator in both 16-bit fixed-point (named as Uni.16) and 32-bit

floating-point data (named as Uni.32) are built respectively. The accelerator is implemented

on Xilinx PYNQ-Z1 SoC FPGA with a Cortex-A9 ARM processor and FPGA chip XC7Z020-

1CLG400C. The accelerator is designed in Xilinx Vivado HLS (v2018.3) and synthesized by

Vivado (v2018.3). The ARM processor works as the master for scheduling and activation;

the FPGA accelerator works as the slave for computing.

4.1.4.2 Performance Evaluation

We show the performance of our design in inference latency, accelerator throughput,

resource utilization, and power efficiency in processing a real-life LSTM model. The LSTM

has the hidden state size 128 (H) and input size 65 (D). The number of computations

processed by our accelerator in this model is 0.1984M (512*193*2+128*3*2).

The latency performance comparison of our accelerator with an existing accelerator (Ex-

ist.16 [67]) on FPGA in 16-bit fixed-point data is shown in Table 4. The reference design

46

Table 4: Performance comparison for designs on 7Z020

Exist.16[67] Our.16

Chip 7Z020 7Z020

Frequency 142MHz 150MHz

Precision fixed-16 fixed-16

Operations 0.1332M 0.1984M

Latency 466µs 46.7µs

Throughput 0.28GOP/s 4.25GOP/s

adopts the heterogeneous-kernel architecture to process different computing patterns. In this

table, chip name, working frequency, data type, number of operations, inference latency, and

the throughput performance are listed. Towards accelerating the same LSTM on the same

device, the existing design needs 466µs while our design takes 46.7µs to finish the infer-

ence. The latency of our design is 10x faster than the reference. The accelerator throughput

performance is shown in Giga Operations per second (GOP/s). Our accelerator achieves

4.25GOP/s, which is 15.2x higher than the reference design.

To show the superiority of our work, we list our accelerator performance in fixed-point and

floating-point types (Uni.16, Uni.32) in Table 5, while the reference design does not support

floating-point computing. The floating-point accelerator’s inference latency is 458µs because

floating-point computation needs more resources and a longer time. For the throughput per-

formance, the floating-point accelerator achieves 0.43GFLOP/s, where FLOP represents the

floating-point operation. Our works in both fixed-point and floating-point data outperform

the reference design.

The resource utilization of the existing designs and our accelerators are shown in Table 6.

In this table, the resource of computing units (DSP), on-chip buffer (BRAM), flip-flops (FF),

and LUT are listed. As shown in the table, the existing design only utilizes 23% of the DSP

and 11% of the BRAM, while our accelerator achieves 82% and 73% DSP utilization; 64% and

92% BRAM utilization in fixed and floating type respectively. The higher DSP utilization

brings more computing power and the higher BRAM utilization brings less weight transfer

47

Table 5: Performance details of the proposed design

Our.16 Our.32

FPGA chip 7Z020 7Z020

Frequency 150MHz 150MHz

Precision fixed-16 float-32

Operations 0.1984M 0.1984M

Latency 46.7µs 458µs

Throughput 4.25GOP/s 0.43GOP/s

time. The DSP usage is limited by the LUT resource on FPGA, which is the auxiliary logic

resource. We have 3.6x and 3.2x improvement in DSP utilization. Among the utilized DSPs,

all the DSPs in our accelerator can work in parallel, achieving zero hardware idle time. The

DSPs in the existing design can only be partially invoked[67]. Therefore, our accelerator

architecture achieves super-linear inference time speedup in 10x faster while using 3.6x

more DSPs.

Table 6: Resource comparison for designs on 7Z020

Resource DSP BRAM FF LUT

Total 220 280 106400 53200

Exist.16[67] 23% 11% 12% 14%

Our.16 82%(x3.6) 64% 65% 97%

Our.32 73%(x3.2) 92% 58% 100%

Table 7: Power comparison for designs on 7Z020

Exist.16[67] Our.16 Our.32

Power 1.95W 2.29W 2.23W

Efficiency 0.146GOP/s/w 1.86GOP/s/w 0.193GFLOP/s/w

As a result of more resource utilization and less running stall, the proposed accelerator has

slightly higher power consumption which is shown in Table 7. The reference design, our fixed,

floating-point accelerators (Exist.16, Uni.16, Uni.32) have working power 1.95W , 2.29W ,

48

and 2.23W . However, our accelerator is much more power efficiency in Giga Operations

per second per watt (GOP/s/w). Our fixed-point accelerator achieves 1.86GOP/s/w, which

gains 12.7x power efficiency than the reference design. Our floating-point accelerator achieves

0.193GFLOP/s/w. The power measurement via power meter for fixed and floating-point

accelerators is shown in Figure 39.

PowerPower

Floating-pointFixed-point

Figure 39: Power measurement of accelerators on 7Z020.

4.1.4.3 Analytical Model Accuracy Analysis

The hyper parameters of the accelerator are shown in Table 8. According to metric 4.8

and 4.9, the number of computing kernel is 1 for both data types; the upper bound of kernel

size is initialized as 220 and 44 for fixed-point and floating-point data respectively. When

compiling the design template with initialized kernel size, the resource utilization feedback

can be acquired from the tool (HLS) in a few seconds. With the tool, the kernel size for fixed-

point and floating-point accelerators are selected as 180 and 32 under the constraint of LUT

resource. After kernel size selection, according to metrics 4.10, 4.11, and 4.12, the device

buffer capacity Nblockp and logical blocks Nblockl are 9.1 and 3 for fixed-point accelerator;

25.5 and 16 for floating-point accelerator. Therefore, both the fix-point and floating-point

accelerators can buffer all the weights on the chip.

Based on the evaluations above, both accelerators will undergo period P1P1P1 and P3P3P3. For

FPGA chip 7Z020, it takes 5 cycles for one-time kernel execution (tkernel) for fixed-point

and 18 cycles for the floating-point data. The unit activation time in ARM (650MHz) is

equivalent to 3.9 FPGA cycles (150MHz). Via metrics 4.13, 4.15, 4.16, and 4.17, we get

the predicted accelerators’ inference latency in cycles which is shown in Table 9 where the

49

on-board latency is also listed. The analytical model we proposed achieves a performance

prediction deviation of 6.2% in fixed-point accelerator and 2.7% in floating-point accelerator.

As P2P2P2 and P3P3P3 share parameters tkernel, ttrans, and tcomp, the accuracy of P2P2P2 is also verified.

The low deviation proves that our analytical model can accurately determine accelerator

hyper parameters, arrange the running schedule, and predict the system performance.

Table 8: Accelerators hyperparameters for 7Z020

Nkernel Skernel Nblockp Nblockl
Nblockt

Uni.16 1 180 9.1 3 3

Uni.32 1 32 25.5 16 16

Table 9: LSTM accelerator performance model accuracy analysis.

Design
Our Model On-Board Deviation

Cycles BRAM DSPs Cycles BRAM DSPs Cycles BRAM DSPs

Our.16 7864 220 220 8383 180 180 6.2% - -

Our.32 69392 264 220 70296 258 160 2.7% - -

4.2 Software/Hardware Co-design for Transformer Network

4.2.1 Background

Transformer [47] is an emerging DNN model that achieves competitive and even bet-

ter performance than LSTM. It has been widely applied in popular DNN models such as

BERT [78] in language modeling, GPT [79] in the general language model, and DETR [80]

in image processing. The size of the Transformer-based model ranges from million bytes

(Transformer) to billion (GPT-3) bytes.

While large-scale Transformer-based DNN models are developed to break the records in

the Natural Language Processing (NLP) tasks, the computations become more and more

intensive. As the majority of the computations in the self-attention mechanism are matrix

50

multiplications, it has been reported that 10 Giga multiply-accumulate operations (MAC)

are needed when translating a short sentence via Transformer [81]. With such a large number

of weights and MACs, a large memory footprint and high computational cost are demanded

when deploying the mechanism.

Existing works proposed to structurally prune the model weight to keep computing effi-

ciency. The memory footprint and workload are largely reduced after pruning. Such method

focuses on removing the redundant weights without hurting the robustness of the model

architecture, which also avoids the efforts in proposing new models. The efficient pruning

method for attention mechanism has been observed in TransformerZip [82], HAT [83], and

FTRANS [21]. TransformerZip [82] utilizes magnitude-based pruning to reduce weight size;

HAT [83] crops the weights in both dimensions to reduce weight size and form regularly

shaped weights. FTRANS [21] utilized block-circulant matrix to replace selected weights,

which reduces the model memory footprint.

When programming and deploying weight-pruned models in the inference stage on generic

processors, e.g., CPUs and GPUs, it incurs little effort. However, it poses significant pro-

gramming efforts and design challenges on hardware accelerators like ASICs and FPGAs for

the following two reasons: First, the dimension size of different weights can be arbitrary

after compression as the significance or absolute value differs among the weight elements. It

is challenging to efficiently allocate on-chip buffers for different shapes of weight under on-

chip hardware constraints to maximize buffer utilization and improve inference throughput.

Second, the accelerator is usually computing pattern-specific. While the compression causes

arbitrary-sized weight and its associate computing pattern, building a dedicated computing

kernel for each pattern is not feasible. As buffer allocation and computing kernel design on

the hardware accelerator is usually fixed in size and limited in number for specific compu-

tations, these two issues may severely hurt the accelerator efficiency. Therefore, the Trans-

former’s memory footprint and hardware computing pattern should be jointly considered

and optimized when deploying the Transformer on the hardware accelerator.

51

4.2.2 Motivation and Contribution

The existing works proposed efficient methods to address the large memory footprint size

of weights. However, the weight compression and computation are not jointly considered,

which leads to inefficient utilization of on-chip memory and compute resources, resulting

in computing inefficiency. Figure 40 (a) and (b) show the compression result of one self-

attention in [83]. The intermediate results related to the pruned weights are also white-

colored for better illustration. [83] crops the columns of Qw, Kw, and V w. However, the

width of compressed weight is not controlled, which also directly influences the MAC size of

Q∗KTas shown in Figure 40 (b). The linear layer weights in FFN are even arbitrary in both

height and width which are shown in Figure 40 (c). As an attention mechanism consists of 8

heads and the Transformer consists of 6 encoders and 6 decoders, the number shapes of the

compressed weights and the associated computation size can be as high as several hundred.

Such compression method causes severe buffer inefficient usage on the hardware accelerator.

Since MAC is usually executed in parallel on the accelerator, the suitable computing kernel

size also varies for those compressed weights. As a result, the solution adopted in [21] will

cause extreme unbalance computing kernel design and difficult pipeline arrangement. The

accelerator system performance may be largely degraded.

In this work, targeting on Transformer in machine translation task, we propose to com-

press the Transformer model with weight size awareness, leaving weights in similar size. The

similarity of the compressed weights brings more efficient hardware buffer utilization. A

novel computing pattern is also proposed to address the computing heterogeneity and inef-

ficiency in the Transformer after compression. With the compression methodology and the

unified computing pattern, an FPGA accelerator is designed to accelerate the sparse matrix

multiplications of Transformer. The accelerator is recursively called in a mode of streaming

in, computing, and streaming out. In this way, the accelerator with the fixed buffer and the

unified computing core is efficient to handle the deployment of sparse Transformer.

52

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝐾𝑤 𝐾𝑅

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝑉𝑤 𝑉𝑅

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝑄𝑤 𝑄𝑅

=

𝑄𝑤 𝑄

(a)

𝐾𝑤

𝑉𝑤

𝐾

𝑉

FFN1𝑤

FFN2𝑤

(c)

𝑄 𝐾𝑇
𝑄𝐾∙ =

𝑉𝑄𝐾 𝑂𝑎𝑡𝑡𝑛∙ =

(b)

Figure 40: Related works.

4.2.3 Algorithm Optimization

The algorithm optimization is performed according to the means of “Winning Ticket

Hypothesis’ [84]. ‘Winning ticket’ theory proves that the sub-network of a model can have

comparable accuracy by correctly removing the smallest-magnitude weights and training

from original initialization (one-shot pruning [84]). The ‘winning ticket’ theory has been

adopted and validated in the existing works for CNN models [84, 85, 86, 87], in which,

[85] identifies Normalization is efficient in identifying the Convolution weight magnitude

channel-wise. However, Transformer has a different architecture with CNN models, the

existing techniques can not be directly applied to Transformer. In this work, we propose a

novel ‘winning ticket’ finder, in which, layer normalization (LayerNorm) [88] is adopted to

firstly analyze the weight significance in column-wise.

4.2.3.1 Weight Significance Analysis before Model Compression

In order to analyze the weight significance, normalization modules are adopted to ana-

lyze the weight significance in column-wise. As normalization has been proved effective to

reflect the weight channel-significance in the Convolution [84, 85], in this work, layer nor-

malization (LayerNorm) [88] is adopted to identify the weight significance in column-wise.

The developed analysis workflow is shown in Algorithm 1.

LayerNorm is exclusively applied to one encoder or one decoder layer at a time (denoted

as model.layer in the algorithm), in which, LayerNorm is attached to any matrix multiplica-

tion that contains weight (module.weight in the algorithm) in the layer. The Transformer is

53

Algorithm 1: Weight significance analysis

Input: dataset (data), Transformer (model),

Transformer total layer L, LayerNorm.

Output: modelnorm.

modelnorm = model;

for l← 1 to L do

modell = model ;

for module ∈ modell.layer[l] do

if module.weight then

module.attach(LayerNorm);

end

end

while LayerNorm∗ ∈ modell Not Converged do

modell.train;

end

modelnorm.layer[l] = modell.layer[l];

end

54

then trained until the scaling factors γ in the newly attached LayerNorms are converged. The

converged γ is collected as the column significance indicator for the weight. After repeatedly

applying LayerNorms to each encoder and decoder layer and training the Transformer, the

scaling factors γ in all of the attached LayerNorms are collected and stored in a separated

model modelnorm. The visualization of an encoder before and after LayerNorm attachment

is shown in Figure 41 (a) and (b), in which, the newly attached LayerNorm is labeled as

LayerNorm∗.

The LayerNorm takes a vector or a matrix as input and scales the row elements indi-

vidually which is shown in Equation (4.18). In a LayerNorm, the row elements expectation

E and variation V ar are employed; the scaling factors γ and β are dedicated for each row

element but shared among rows. As visualized in Figure 42, a pair of the γ and β can scale a

column of the inputs up or down. When attaching the LayerNorm to matrix multiplication,

a column of the results will be normalized by the same γ and β. Therefore, a pair of the

scaling factor γ and β can reflect the significance of the corresponding column of the weight.

As γ dominates the scaling operation, we take γ value as a significance indicator. The scaling

degree can be reflected by γ value. The weight significance can be ranked via its correspond-

ing γ while weight with larger γ is more important. According to the significance ranking,

the columns of the weights with smaller γ will be pruned. In the next step, the method to

prune the weight in columns-wise with memory footprint awareness will be illustrated.

xscaled =
x− E[x]√
V ar[x] + ϵ

∗ γ + β (4.18)

MatMul

Div

SoftMax

MatMul MatMul MatMul

MatMul

Add

MatMul

MatMul

LayerNorm

Add

LayerNormMatMulAfter head concat

(a)

LayerNormLayerNormLayerNorm

LayerNorm

LayerNorm

LayerNorm

LayerNorm

LayerNorm

(b)

* * *

*

*

*

Figure 41: LayerNorm insertion of the encoder.

55

∙ =
LayerNorm

𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 𝛾6

𝛾
𝛾

Figure 42: LayerNorm scaling factor visualization.

4.2.3.2 Pruning Strategy

To ensure the hardware efficiency after pruning, a two-stage one-shot pruning is per-

formed: coarse-grained pruning to keep the weights of the same type in similar size; fine-tune

to adequately remove the redundant weights without losing accuracy. In each stage, pruning

and training are pairwise performed until the model is adequately pruned within the stage.

Coarse-grained. the coarse-grained pruning prunes each of the weights in the Transformer

with the same ratio. During this stage, the memory footprint size of the weights is evenly re-

duced. Based on the dataset data, the Transformer model, the collected γ data in modelnorm,

and a pre-set pruning speed incrcoarse, coarse-grained pruning will determine the maximum

even pruning ratio. As shown in Algorithm 2, the baseline accuracy is acquired first. Then,

the pruning ratio increases by incrcoarse from 0%. At each pruning ratio, GetIndex will

locate the index of γ ranging in the least ratio% in a LayerNorm. Such index is equivalent to

the index of weight columns. According to the selected index, Mask will mask the indexed

weight columns to enable zero gradient descent during training. The increment of ratio stops

when the sparse model accuracy drops below the baseline accuracy (accuracybase). After this

stage, the maximum size of each weight is bounded.

Fine-tune. In this stage, the masked columns in stage one are considered as already been

removed in both model and modelnorm. As shown in Algorithm 3, fine-tune takes data,

coarsely pruned model, accuracybase, modelnorm, and incrfine as input, performing across

layer pruning based on the rest γ. In fine-tune, encoders and decoders are pruned separately.

Algorithm 3 takes encoders as an example since encoder and decoder are similar in architec-

ture. The γ of LayerNorms in modelnorm for the same type weights cross all encoder layers

are grouped first. For example, the γ for Qw (layer.module.LayerNorm in the algorithm) in

56

Algorithm 2: Coarse-grained pruning

Input: data, model, modelnorm, incrcoarse.

Output: Pruned model, accuracybase, ratiocoarse.

model.train;

accuracybase = model.accuracy;

ratio = 0%;

while True do

ratio = ratio+ incrcoarse;

for module in Encoders do

if module.weight then

GetIndex(Normlayer.module.LayerNorm, ratio);

Mask(model.layer.module.weight);

end

end

model.train;

if model.accuracy < accuracybase then

ratiocoarse = ratio− incrcoarse;

break;

end

end

/* GetIndex: locating the index of γ ranging in the least ratio percent.

*/

/* Mask: masking the selected column to ensure zero gradient descent in

training. */

57

Algorithm 3: Fine-tune pruning

Input: data, coarsely pruned model, accuracybase, modelnorm, incrfine.

Output: Fine pruned model.

EncQnorm; EncKnorm; EncVnorm; EncOnorm; EncFn1norm; EncFn2norm;

for layer in modelnorm.EncoderLayers do

for module ∈ layer do

if module.weight then
switch module.Name do

case Q do
EncQnorm.append (layer.module.LayerNorm);

case K do
EncKnorm.append (layer.module.LayerNorm);

case V do
EncVnorm.append (layer.module.LayerNorm);

case O do
EncOnorm.append (layer.module.LayerNorm);

case Fn1 do
EncFn1norm.append (layer.module.LayerNorm);

case Fn2 do
EncFn2norm.append (layer.module.LayerNorm);

end

end

end

end

ratio = 0%;

while True do

ratio = ratio+ incrfine;

GetIndex(EncQnorm, ratio); Mask(model.EncQ.weight);
GetIndex(EncKnorm, ratio); Mask(model.EncK.weight);
GetIndex(EncVnorm, ratio); Mask(model.EncV.weight);
GetIndex(EncOnorm, ratio); Mask(model.EncO.weight);
GetIndex(EncFn1norm, ratio); Mask(model.EncFn1.weight);
GetIndex(EncFn2norm, ratio); Mask(model.EncFn2.weight);

model.train;

if model.accuracy < accuracy then

ratio = ratio− incrfine;

break;

end

end
/* GetIndex: locating the index of γ ranging in the least ratio% in the group. */

/* Mask: masking the selected column in the group to ensure zero gradient descent in training. */

58

six encoder layers are grouped. After collecting the cross-layer γ for each type of weight, γ for

corresponding weights are stored in EncQnorm, EncKnorm, EncVnorm, EncOnorm, EncFn1norm,

and EncFn2norm. The pruning and training will be executed similarly as in Algorithm 2.

However, in this algorithm, GetIndex will locate the index of rest γ ranging in the least

ratio% in the group. For example, if the model consists of six encoders, the γ in all of the

encoders are compared. Mask also performs cross-layer masking in this stage. After this

stage, the Transformer model size is further reduced with slight size variation.

The two-stage pruning adequately prunes the model without accuracy loss. The pruned

weights in Transformer are illustrated in Figure 43 and Figure 44, in which, the pruned

weights and corresponding results are white-colored for better illustration. As a result, the

weights in same type (e.g., Qw
layer,K

w
layer, V

w
layer, O

w, FFN1w, and FFN2w) in the Transformer

will be in similar size. This will maximize the utilization efficiency of the data buffer on

hardware. The well-trained sparsemodel can be directly quantized to INT8 data via dynamic

quantization with Pytorch [89] without accuracy loss. After quantization, the model size

can be further reduced by 4x, which benefits a smaller memory footprint and more efficient

hardware computing.

4.2.4 Hardware Optimization

4.2.4.1 Unified Computing Pattern in Sparse Transformer

With the observation that compression forms fixed height (N) for multiplicand and

multiplier of the matrix multiplications in the model, the MAC of different sizes can be

replaced by a sequence of uniform element-wise vector multiplication and addition. The

𝑑𝑘𝑑𝑘

∙ =

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁 𝑋𝑖𝑛

𝑉𝑤

𝐾𝑤

𝑄𝑤
Q

𝑑𝑘

𝑁

𝑁

∙ =

𝑁

𝑁

∙

𝑑𝑘

=

𝑑𝑘

𝑁
𝑂𝑎𝑡𝑡𝑛

(b)

(a)

K

V

Q 𝐾𝑇
𝑁

𝑁

QK

QK V

(c)

Figure 43: Sparse self-attention computations.

59

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝐾𝑤 𝐾𝑅

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝑉𝑤 𝑉𝑅

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁
𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑘

∙ =

𝑑𝑘

𝑁𝑋𝑖𝑛 𝑄𝑤 𝑄𝑅

𝑑𝑘𝑑𝑘

∙
=

𝑑𝑚𝑜𝑑𝑒𝑙

𝑁 𝑋𝑖𝑛

𝑄𝑤

𝐾𝑤

𝑉𝑤
V

𝑑𝑘

𝑁

𝑁

∙ =

𝑁

𝑁

∙

𝑑𝑘

=

𝑑𝑘

𝑁

(b)

(a)

K

Q

Q 𝐾𝑇
𝑁

𝑁

QK

QK V

(c)

FFN1

FFN2

𝑂𝑎𝑡𝑡𝑛

4𝑑m

𝑁

𝑁

QK

4𝑑m𝑜𝑑𝑒𝑙𝑑𝑚𝑜𝑑𝑒𝑙

𝑁 FFN𝑖𝑛

𝑑m𝑜𝑑𝑒𝑙

𝑁

4𝑑m𝑜𝑑𝑒𝑙

∙ ∙ ==

4𝑑m𝑜𝑑𝑒𝑙𝑑𝑚𝑜𝑑𝑒𝑙

𝑁 FFN𝑖𝑛

𝑑m𝑜𝑑𝑒𝑙

𝑁

4𝑑m𝑜𝑑𝑒𝑙

∙ ∙ ==

FFN1w FFN2w

Figure 44: Sparse FFN computations.

unified computing pattern is shown in Fig. 45, in which IN/WEI represents the multiplicand

and multiplier respectively and OUT represents the product. OUT is computed column by

column. Each column of OUT is partially computed by multiplying an element in Y and

its corresponding column of IN , the accumulation of column one is shown in this figure

(the element is duplicated to a vector). The pseudocode of this process is also shown in

Figure 46, where the inner loop computes the partial result of a column in OUT and can

execute in parallel on FPGA. After the iterations of the middle loop, a column of Z is

computed. As highlighted in the loops, the iterations of the inner loop are the height of

the multiplicand which is fixed (N) cross all the matrix multiplications in Transformer; the

WEI[rowwei][colwei] is a constant in the inner loop iterations. The efficiency of such unified

computing pattern is validated by my previous work [65].

Such computing pattern can further enlarge the FPGA DSP efficiency. DSP components

in modern FPGAs are usually designed with high bitwidths such as 27b ∗ 18b → 45b [90],

which is redundant for an INT8 operation. The DSP can only be fully utilized by encoding

INT8 multiplication as ((a <<) + b) ∗ c [90] which is shown in Fig. 47. However, the

shared multiplier (c) for multiplicands (a and b) do not exist in the conventional MAC. As

the element WEI[rowwei][colwei] is shared in the inner loop, the DSP bitwidth can be fully

utilized by encoding INT8 as ((a <<) + b) ∗WEI[rowwei][colwei]. The followed addition can

be executed in FPGA LUT.

4.2.4.2 Accelerator Design

Processing element. The diverse computations are unified into patterns: element-wise

vector multiplication and addition, which can be conducted by only two types of Processing

Elements (PE). The element-wise vector multiplication between a multiplicand’s column

60

=

𝒘𝟏𝟏

𝒘𝟐𝟏

𝒘𝒅𝒎𝟏

𝒘𝟏𝟐

𝒘𝟐𝟐

𝒘𝒅𝒎𝟐

⋮

𝒘𝟏𝒅𝒎

𝒘𝟐𝒅𝒎

𝒘𝒅𝒎𝒅𝒎

⋮

⋯

⋯

⋯

𝒙𝟏𝟏𝒘𝟏𝟏 𝒙𝟏𝟐𝒘𝟐𝟏 ⋯ 𝒙𝟏𝒅𝒎𝒘𝒅𝒎𝟏

𝒙𝟐𝟏𝒘𝟏𝟏 𝒙𝟐𝟐𝒘𝟐𝟏 ⋯ 𝒙𝟐𝒅𝒎𝒘𝒅𝒎𝟏

𝒙𝟑𝟏𝒘𝟏𝟏 𝒙𝟑𝟐𝒘𝟐𝟏 ⋯ 𝒙𝟑𝒅𝒎𝒘𝒅𝒎𝟏

𝒙𝟒𝟏𝒘𝟏𝟏 𝒙𝟒𝟐𝒘𝟐𝟏 ⋯ 𝒙𝟒𝒅𝒎𝒘𝒅𝒎𝟏

𝒙𝑵𝟏𝒘𝟏𝟏 𝒙𝑵𝟐𝒘𝟐𝟏 ⋯ 𝒙𝑵𝒅𝒎𝒘𝒅𝒎𝟏

⋮ ⋮ ⋮

𝐶𝑜𝑙𝑢𝑚𝑛1 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑢𝑙𝑡

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

⋯
⋯
⋯
⋯

⋯

IN WEI OUT

∙

𝒙𝟏𝟏 𝒙𝟏𝟐 ⋯ 𝒙𝟏𝒅𝒎
𝒙𝟐𝟏 𝒙𝟐𝟐 ⋯ 𝒙𝟐𝒅𝒎
𝒙𝟑𝟏 𝒙𝟑𝟐 ⋯ 𝒙𝟑𝒅𝒎
𝒙𝟒𝟏 𝒙𝟒𝟐 ⋯ 𝒙𝟒𝒅𝒎

𝒙𝑵𝟏 𝒙𝑵𝟐 ⋯ 𝒙𝑵𝒅𝒎

⋮ ⋮ ⋮

Figure 45: Unified computing pattern.

for (colwei=0; colwei< CWEI; colwei++) {
for (rowwei=0; rowwei< RWEI; rowwei++) {

for (rowin=0; rowin< RIN; rowin++) {
OUT[rowin][colin] +=IN[rowin][rowwei]*WEI[rowwei][colwei]

} } }
/* R represents the number of rows */
/* C represents the number of columns */

Figure 46: Loop iteration of the unified computing pattern.

…

…

…

8 bit8 bit 10 bit

16 bit16 bit

Figure 47: INT8 multiplication encoding.

61

𝒙𝟏𝟏 𝒙𝟏𝟐 ⋯ 𝒙𝟏𝒅𝒎
𝒙𝟐𝟏 𝒙𝟐𝟐 ⋯ 𝒙𝟐𝒅𝒎
𝒙𝟑𝟏 𝒙𝟑𝟐 ⋯ 𝒙𝟑𝒅𝒎
𝒙𝟒𝟏 𝒙𝟒𝟐 ⋯ 𝒙𝟒𝒅𝒎

𝒙𝑵𝟏 𝒙𝑵𝟐 ⋯ 𝒙𝑵𝒅𝒎

⋮ ⋮ ⋮

×

⋮

×

×

×

×

𝒘𝟏𝟏
𝒘𝟐𝟏

𝒘𝒅𝒎𝟏

⋮

⋯

⋯

⋯

(a)

×

⋮

×

×

×

×

+

+

+

+

+
⋮

×

⋮

×

×

×

×

𝒙𝟏𝟏𝒘𝟏𝟏 𝒙𝟏𝟐𝒘𝟐𝟏
𝒙𝟐𝟏𝒘𝟏𝟏 𝒙𝟐𝟐𝒘𝟐𝟏 ⋯
𝒙𝟑𝟏𝒘𝟏𝟏 𝒙𝟑𝟐𝒘𝟐𝟏 ⋯
𝒙𝟒𝟏𝒘𝟏𝟏 𝒙𝟒𝟐𝒘𝟐𝟏 ⋯

𝒙𝑵𝟏𝒘𝟏𝟏 𝒙𝑵𝟐𝒘𝟐𝟏 ⋯
⋮ ⋮

+
+

+
+

+

+
+
+
+

+

⋯

(b)

Figure 48: (a) The PE1 architecture and PE1 mapping to the multiplication in the unified

computing pattern. (b) The PE2 architecture and PE2 mapping to the addition in the

unified computing pattern.

and an element of the multiplier can be executed via multiplication unit PE1, in which,

the parallelism of N (N = RIN) can be performed (illustrated by the inner loop of Figure

46). The architecture of PE1 and PE1 to IN and WEI access is shown in Figure 48 (a).

In PE1, the multiplications are mainly implemented via FPGA DSPs and every two of the

multiplications are packed into one DSP according to the INT8 data packing mechanism

illustrated in section 4.2.4.1. The partial results regarding all multiplicand’s columns can be

accumulated via addition unit PE2 in the parallelism of N as shown in Figure 48 (b). PE2

is implemented via FPGA LUT as INT8 addition is more efficient with LUT resources. More

PE1 can be built with FPGA LUT resource as long as the LUT resource is abundant. By

building and connecting multiple PE1 and PE2, the unified computations can be efficiently

processed.

Computing core. As the height of the multiplicand of matrix multiplications in Trans-

former is fixed at N , a homogeneous PE1 array and homogeneous PE2 array are utilized

to build a multi-stage pipeline computing core. The PE array processes the unified com-

putations in high parallelism. The multiplicand’s columns can be processed simultaneously

via PE1 array and accumulated by the following tree-structured PE2 array. At the lowest

hierarchy of PE2 tree, an additional PE2 accumulates the partial results. A 6-stage com-

puting core with 8 PE1 and 8 PE2 is shown in Figure 49 (a), in which, the parallelism of

PE1 and PE2 is set as N . 8 PE1 work in parallel and produce 8 vectors in length N . Each

PE2 in the “adder-tree” structure accumulates two vectors. Buffers are placed between the

62

hierarchies to support pipeline execution. The accumulation for all PE1 results is acquired

after the data flow reaches the bottom PE2. As a result, after RWEI/8 executions of the

computing core, the first column of the output is acquired.

DDR

Vendor Memory Interface IP

Input Data Output DataWeight Data

On-Chip Memory and Processing Elements

P
E

Sc
h

ed
u

le

Off-Chip Memory

(a) (b)

×

×

×

×

+

+

+

+

PE1 PE2

Vector
Multiplication

Vector
Addition

Data Read Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Figure 49: (a) Computing core hierarchy. (b) Accelerator architecture overview.

Since the size of the computing core is bounded by the device resource, a generic data

flow of the proposed computing core is shown in Figure 50. The pipeline stage M + 1 is

determined by the number of PE1, where the M stages are spent on computation within

PE array and the 1 stage is spent on buffer access. A larger PE1 array only leads to

a slightly deeper pipeline since each hierarchy in “adder-tree” halves the output of PE1.

The computing core enter INITIAL to read input and weight elements in the buffer. In

STAGE 1, PE1 array multiplies the corresponding input columns with weight elements.

In the rest STAGE, PE2 at each hierarchy reads the intermediate results from its higher-

level hierarchy and does the accumulation. Such design can maximize the multiplication

parallelism and pipeline efficiency. By halving the partial results at each STAGE, only

log(2)NPE1 + 2 pipeline stages are needed for the computing core. The pipeline interval of

the proposed computing core architecture can run at II=1 during on-board execution.

Data Fetch Input, weight Input, weight STAGE_1 output STAGE_2 output … STAGE_M-1 output

Computation N/A Multiply (PE1) Add (PE2) Add (PE2) … Add (PE2)

STAGE INITIAL STAGE_1 STAGE_2 STAGE_3 … STAGE_M

Figure 50: The data flow of the computing core.

Accelerator system design. While the memory footprint and the workload are largely

reduced by the proposed compression method, the compressed Transformer may still exceed

FPGA capacity. Therefore, an accelerator system design that includes modules such as data

63

swapping, data computing, and running scheduler is needed. The proposed full system de-

sign is shown in Figure 49 (b) in consideration of off-chip memory (DDR), an input data

buffer (bufin), a weight data buffer (bufwei), an output data buffer (bufout), PE schedule

register, and the computing core. Each buffer utilizes FPGA on-chip block-RAM (BRAM)

and LUT-RAM to store the two-dimension data. At each on-chip buffer to DDR interface,

a dedicated streaming bus with ping-pong buffer is placed to support continuous processing.

The PE schedule register stores the data fetch information and the number of executions

(RWEI/NPE1) to get a single column of output and the whole output columns (CWEI). Per

computing core execution, NPE1 partial results are accumulated. After RWEI/NPE1 execu-

tions, a column of output is acquired. Therefore, after (RWEI/NPE1) ∗ CWEI execution, the

full output elements are acquired. By reading the execution information from PE sched-

ule register, the corresponding address of the input buffer, and the associated elements of

weight buffer, the computing core generates the full elements of the output. In this way,

the proposed accelerator can be recursively called to process the matrix multiplications in

Transformer while minimizing the system stall caused by transmission.

Accelerator buffer allocation. The size of three buffers can be determined by the com-

pressed Transformer size and the computing core. Among the six types of weights, Qw
layer,

Kw
layer, V

w
layer, and Ow are in the same size as Nhead ∗dk = dmodel in Transformer. And the size

FFN1w and FFN2w is quadruple of Qw
layer, K

w
layer, V

w
layer, and Ow. Therefore, before com-

pression, by allocating bufwei of size R
dmodel×dmodel , the accelerator can recursively process the

computations related to all these weights. During compression, the maximum size of Qw
layer,

Kw
layer, V

w
layer, O

w, FF1w, and FF2w is determined by ratiocoarse in the coarse-grained pruning

stage. Though fine-tune pruning unevenly compresses the weights, after compression, the

bufwei of size R
dmodel×(dmodel∗(1−ratiocoarse)) is able to process different weights. After determin-

ing the size of bufwei, the size of bufin and bufout can be determined. The first dimension of

bufin is N since height of the multiplicand of matrix multiplications in Transformer is fixed

at N . The second dimension of bufin is dmodel which is the same as bufwei’s first dimension.

The first dimension of bufout is N , which is consistent to bufin. The second dimension of

bufout is dmodel ∗ (1− ratiocoarse) which is the same as bufwei’s second dimension. The buffer

allocation summary is shown in Equation (4.19).

64

In this way, the matrix multiplications in Transformer such as Xin ∗Qw
layer, X

in ∗Kw
layer,

Xin ∗ V w
layer, Q ∗ KT , QK ∗ V , Oattn

layer ∗ Ow, xFFN1 ∗ FFN1w, and xFFN2 ∗ FFN2w can be

processed via a pipeline processing pattern of streaming in, computing, and streaming out.

When the on-chip buffer size is abundant, the capacity of bufwei can be expanded in its

second dimension. While the original part dmodel ∗ (1 − ratiocoarse) is still used for weight

streaming, the expansion part of bufwei can be used to cache selected weights on the chip to

reduce off-chip transmission overhead.

bufwei[RWEI][CWEI] = bufwei[dmodel][dmodel ∗ (1− ratiocoarse)]

bufin[RIN][CIN] = bufin[N][dmodel]

bufout[ROUT][COUT] = bufout[N][dmodel ∗ (1− ratiocoarse)]

(4.19)

Streaming interface design. As the Transformer’s input and part of the weights are stored

in the off-chip memory, the accelerator buffer design and transmission bandwidth are also

optimized to minimize the transmission latency. Ping-pong buffer is applied on bufwei, bufin,

and bufout, forming bufwei, bufweiDB, bufin, bufinDB, bufout, and bufoutDB at the interface.

The off-chip memory transmission latency is hidden by alternately accessing the ping-pong

buffers in two modes. Mode 1: off-chip to bufwei and bufin transmission, and bufout to

off-chip transmission while the PE array reads/writes data from/to bufweiDB, bufinDB, and

bufoutDB. Mode 2: off-chip to bufweiDB and bufinDB transmission, and bufoutDB to off-chip

transmission while the PE array reads/writes data from/to bufwei, bufin, and bufout. In this

way, the PE array access the ping-pong buffers alternately, hiding the off-chip transmission

latency. In addition to the ping-pong buffer, the streaming interface bandwidth is also

partitioned according to the buffer size. The streaming bandwidth for bufwei, bufin, and

bufout are assigned according to the ratio of a buffer capacity to total buffer capacity (e.g.

streaming bandwidth for bufwei: Bwei = Btotal ∗
Capacitybwei

Capacitybufwei
+Capacitybufin+Capacitybufout

).

Accelerator buffer partition. The input buffer (bufin), weight buffer (bufwei), and the

output buffer (bufout) store two-dimension data via BRAM and LUTRAM. The buffers

should also be carefully partitioned to support the parallel access from the computing cores.

65

For input buffer bufin, since PE1 array accesses multiple columns of input buffer simultane-

ously, the bufin[RIN][CIN] should be partitioned by parameter NPE1 in its second dimension.

As each PE1 access all the elements in a column of bufin, the bufin should be fully par-

titioned in its first dimension. For weight buffer bufwei, since a PE1 access one element

in bufwei[RWEI][CWEI] and the PE1 array access NPE1 elements in bufwei simultaneously,

bufwei should be partitioned by parameter NPE1 in its first dimension. For output buffer

bufout, as the last PE2 write its elements to the first dimension bufout[ROUT][COUT] simul-

taneously, bufout should be fully partitioned in its first dimension.

Accelerator running schedule. With the allocated three buffers and the computing core,

the accelerator can continuously process the matrix multiplications (aka Linear modules).

The running schedule of the accelerator is shown in Figure 51. With the adopted ping-pong

buffer, the streaming of bufin, bufwei, and bufout and the computing core work in parallel.

In each iteration of the accelerator, a matrix multiplication is processed. The streaming

performance for bufin, bufwei, and bufout is determined by the bandwidth of the streaming

interface. As the buffers are partitioned according to PE array’s parallelism, there is no

data fetch delay for the computing core. Benefiting from the pipeline design, the computing

latency (Latcomp) in an iteration is determined by three aspects, pipeline depth Pipedepth

(Latunit), the number of executions for an output column (RWEI/NPE1), and the number of

output columns (CWEI). The computing latency for an accelerator iteration is described by

Equation (4.20). At the run-time, the computing latency and streaming latency may vary

from iteration to iteration as the matrices have different sizes.

Latunit = Pipedepth = log2NPE1 + 2

Latcomp = CWEI ∗ ceil(
RWEI

NPE1

) + Latunit (4.20)

66

Comp.

IN

WEI

OUT

prologue

⋯𝐿𝑎𝑡𝑢𝑛𝑖𝑡 𝑅𝑤𝑒𝑖/𝑁𝑃𝐸1 𝑅𝑤𝑒𝑖/𝑁𝑃𝐸1

𝐿𝑎𝑡𝑐𝑜𝑚𝑝

𝑅𝑤𝑒𝑖

⋯𝐿𝑎𝑡𝑢𝑛𝑖𝑡 𝑅𝑤𝑒𝑖/𝑁𝑃𝐸1 𝑅𝑤𝑒𝑖/𝑁𝑃𝐸1

𝐿𝑎𝑡𝑐𝑜𝑚𝑝

𝑅𝑤𝑒𝑖

⋯

Linear Linear iteration

Figure 51: The accelerator running schedule.

4.2.4.3 Accelerator Analytical Model

As the parameters of attention mechanism vary in different applications while the DSP

and LUT resources are flexible among FPGAs, an analytical model is developed to deter-

mine the design parameters of the accelerator and to analyze the system performance. The

analytical model gives an estimation of the accelerator resource utilization and performance.

The parameters in Figure 46 are used to illustrate the analytical model. The number of PE1

(NPE1) is determined by DSP based PE1 (Ndsp
PE1) and LUT based PE1 (N lut

PE1). In this model,

the parallelism inside PE1 is set to the bufin’s first dimension size N (RIN = N). First, the

Ndsp
PE1 can be determined as the number of DSPs in an FPGA is fixed. After building the

PE1 array in DSP, the number of PE2 can be determined (PE2 hierarchies=log2N
dsp
PE1+1).

Next, if the FPGA LUT resource is still available, more LUT can be used in building PE1

and PE2 as INT8 operation is also efficient with FPGA LUT resources. The accelerator

computing core’s key parameters are summarized in Equation (4.21).

NPE1 = Ndsp
PE1 +N lut

PE1

Ndsp
PE1 = floor(2 ∗Ndsp/N)

(4.21)

The latency of the computing core is determined by the depth of the computing core

which is log2NPE1 + 2. The pipeline design and efficient data flow in the computing core

achieve the minimum pipeline interval (II=1) to maximize the throughput. The run-time

latency Lat∗comp to process a matrix at the run-time is determined as Lat∗comp = C∗
WEI ∗

ceil(
R∗

WEI
NPE1

)+Latunit, in which, C∗ and R∗ is the real size of the loaded weight at the run time.

67

As a result, the accelerator performance in processing a matrix can be modeled in Equa-

tion (4.22). The bottleneck is determined by the worst performance among the comput-

ing core and the buffer transmission. In Equation (4.22), Latintrans can be determined by

Latintrans = R∗
IN ∗ C∗

IN ∗ 8/Bin, in which, Bin represents the streaming bandwidth assigned to

bufin. The Latwei
trans and Latouttrans can be acquired similarly. Then, the system performance

Latsys is determined by Latcomp and Lattrans.

Lattrans = max(Latintrans, Lat
wei
trans, Lat

out
trans)

Latsys = max(Latcomp, Lattrans)
(4.22)

While the proposed computing core achieves ultimate parallelism and pipeline perfor-

mance, an adequate streaming bandwidth between off-chip and on-chip is also important.

To avoid the system stall caused by data transmission, the minimum bandwidth require-

ment of each interface is also analyzed. After building the computing core and corresponding

buffers, the required streaming bandwidth can be determined as Bmin
in ≥ RIN ∗CIN ∗8/Latcomp,

Bmin
wei ≥ RWEI ∗CWEI ∗ 8/Latcomp, and Bmin

out ≥ ROUT ∗COUT ∗ 8/Latcomp for bufin, bufwei, and

bufout, respectively.

4.2.5 Experiment

4.2.5.1 Experiment Setup

We use two datasets from language translation, i.e., the Multi30K [91] (which is the

subset of WMT2014) and the IWSLT’17 [92], to evaluation the accuracy impact brought by

our proposed memory footprint aware compression. The key parameters of Transformer are

listed in Table 10 which are consistent with the settings in [47, 82, 83]. The Transformer

consists of 6 encoders and 6 decoders. The attention mechanism consists of 8 heads with

dk of 64 and dmodel of 512. The compression and training process are performed by using

Pytorch. The evaluation is performed in English-German (En-De) and German-English (De-

En) translation for both datasets. The accelerator is built via Vivado HLS (v2019.1) and

implemented via Vivado on SoC FPGA board ZCU102.

68

4.2.5.2 Model Compression Performance

The evaluation is performed in English-German (En-De) and German-English (De-En)

translation for both datasets. The Transformer is trained to get the baseline accuracy

(BLEU) first and then is applied with compression. The baseline and compression results

such as compression ratio, BLEU score, and BLEU after quantization are shown in Table 11.

In this table, one can observe that our method prunes 80% of the weights in Transformer for

both En-De and De-En tasks in Multi30K without accuracy drop. When comparing with

the state-of-the-art Transformer compression works including HAT [83] and Tran.Zip [82],

we achieve near 10% and 30% higher pruning ratio, respectively. The pruned and trained

model also adopts post-training quantization. The sparse and trained model is quantized to

INT8 in Pytorch without accuracy loss. For dataset IWSLT’17, we achieve 70% and 75%

compression for En-De and De-En tasks, respectively. In the studied machine translation

tasks, the proposed memory footprint aware compression achieves 92.5-95% compression

ratio in different datasets, reducing the Transformer weights to 8.8MB.

As a result of the memory footprint aware compression, the upper bound of the size of

weights Qw, Kw, V w, Ow, FFN1w, and FFN2w within Transformer is 50% of its original

size. This is due to the coarse grained compression prunes half of the columns of each weight.

Therefore, the buffer size for the six types of weight is controlled, and the shape is friendly

to hardware buffer allocation.

Table 10: Transformer parameters

Model Nenc Ndec head dk dmodel

Transformer 6 6 8 64 512

4.2.5.3 Accelerator Performance

An accelerator in INT8 towards Transformer compression ratiocoarse = 50% is built with

Xilinx HLS and synthesized in Vivado (v2019.1).

Computing core implementation. On ZCU102 FPGA, we build the computing core with

74 PE1 (50 Ndsp
PE1 and 24 N lut

PE1) and 73 PE2. The parallelism of each PE is 100 which is the

69

Table 11: Performance of compression and quantization

Param

(MB)

Compression

Ratio (%)
BLEU

Quantized

BLEU

Compression

Ratio* (%)

Multi30K

En-De

Transformer 176 - 28.9 - -

HAT [83] 48 73% (-7%) 28.4 - -

TransformerZip [82] 86 50% (-30%) 26.4 - -

Ours 8.8 80% 29 29 95%

De-En
Transformer 176 - 26 - -

Ours 8.8 80% 25.8 25.8 95%

IWSLT’17

En-De
Transformer 176 - 13 - -

Ours 13.2 70% 13 13 92.5%

De-En
Transformer 176 - 15.5 - -

Ours 11 75% 15.5 15.5 93.75%

maximum sentence length of the dataset. In this design, the ideal “adder-tree” is fine-tuned

in selected hierarchies to fit 74 PE1 outputs into PE2 array’s data flow, resulting in a 10

stage pipeline with pipeline interval II=1. The resource utilization breakdown for PE1 and

PE2 is shown in Table 12. 50 DSPs are used in building a PE1dsp and 5000 LUTs are used

in building PE1lut. 1500 LUTs are used in building a PE2. The developed computing core

fully utilizes the FPGA DSP and LUT resources and can conduct 7400 multiply-accumulate

operations per cycle. The theoretical throughput performance of the computing core is 2.22

Tops at 150 MHz.

Table 12: Processing element resource breakdown

Number Parallelism DSP LUT FF BRAM

PE1dsp 50 100 50 - 1608 0

PE1lut 24 100 - 5000 1608 0

PE2 73 100 - 1500 2400 0

Computing core 1 7400 2500 - - 0

Accelerator buffer allocation. The buffer allocation is conducted by considering both

the computing core and the compressed Transformer size. The parameters of the allocated

buffer bufin, bufwei, and bufout in the accelerator are shown in Table 13. The buffers are

implemented by BRAMs and LUTRAMs. Since 74 PE1 are built, the first dimension of

70

bufwei and the second dimension of bufin is rounded to 518 for ease of PE array access. The

second dimension of bufwei is selected as 256 since the ratiocoarse is 50%. After building the

accelerator, the rest BRAMs on ZCU102 FPGA is utilized to expand the bufwei in its second

dimension. The expansion size of bufwei is 2048, which can store 8.4Mb weights on the chip.

At the interface between ZCU102 on-chip memory and the off-chip DDR, four streaming

buses (128bit each) are available. Therefore, the streaming interface is determined according

to buffer size: one streaming bus for bufin; two streaming buses for bufwei; one streaming

bus for bufout. The streaming bus allocation is represented by ⟨1, 2, 1⟩ in the table.

Table 13: Accelerator buffer allocation

bufin bufwei bufout

Rows 100 518 100

Columns 518 (256+2048) 256

Stream. Bus ⟨1, 2, 1⟩

Table 14: Accelerator performance on ZCU102

Resource
Bus.

⟨⟩

Freq.

(MHz)

Comp.

Through.

End2End

Through.

Latcomp

(ms)

Latsys

(ms)
DSP LUT BRAM FF

Avail 2520 274080 912 548160

design1 99.3% 91.8% 28% 29.3% ⟨1, 2, 1⟩ 150 1.87Tops 794Gops 0.014 0.033

design2 99.3% 91.9% 77% 26.4% ⟨1, 2, 1⟩ 125 1.7Tops 845Gops 0.015 0.031

design2* 99.3% 91.9% 77% 26.4% ⟨2, 0, 2⟩ 125 1.7Tops 1.4Tops 0.015 0.019

Table 15: Transformer accelerator performance model accuracy analysis.

Design
Our Model On-Board Deviation

Latcomp Latsys BRAM DSPs Latcomp Latsys BRAM DSPs Latcomp Latsys BRAM DSPs

Design1 1802 4096 - 2500 2100 4650 256 2503 14% 11.9% - 0.1%

Design2 1802 3238 - 2500 1875 3875 702 2503 3.9% 16.4% - 0.1%

Accelerator performance analysis. Three versions of the accelerator are implemented

to show the superiority of our design. Design1 is built with no bufwei expansion. Design2 is

71

built with bufwei expansion. Design2* is built with bufwei expansion and streaming interface

tuning. In the three designs, we show the computing core’s peak throughput (Comput-

ing Throughput), the accelerator system throughput considering data transfer (End2End

Throughput), the computing latency (Latcomp) in processing a unit matrix multiplication

(bufin[100][518], bufin[518][256], and bufout[100][256]), and the end-to-end latency (Latsys)

in processing the unit matrix multiplication.

Design1 explores the highest throughput that the computing core can achieve. With the

minimum active buffer, it achieves the highest working frequency at 150 MHz working in pure

streaming in, computing, and streaming out mode (stream-in processing). It fully utilizes

the DSP and LUT resource to build computing core, and 28% of BRAM resource to build

buffers. The streaming interface is assigned as ⟨1, 2, 1⟩. At the run-time, design1’s computing

throughput is measured at 1.87 Tops. This is only slightly lower than its theoretical value due

to the initialization of FPGA IP cores. The end-to-end processing throughput is 794 Gops.

The latency Latcomp is 0.014ms and the Latsys is 0.033ms. The significantly lowered end-to-

end throughput is due to the limited streaming interface bandwidth, which causes significant

computing core stall. If the bandwidth is sufficient to support the data consumption of the

computing core, the design1 can work under 150 MHz with a throughput of 1.87 Tops.

Design2 explores the generic acceleration solution which partially stores the model on

the chip. It supports “stream-in processing” and “in-situ processing” modes, in which, “in-

situ processing” consumes the on-chip weights. Compared with design1, design2 utilizes

the spare BRAM resource to expand the bufwei capacity and 77% BRAMs are utilized.

Therefore, 8.5Mb spare buffer spaces are generated to keep selected weights on the chip.

With more active buffer, design2 works under 125 MHz. By partially storing a model on

the chip, only the unbuffered weights need to be streamed in. The streaming interface is

assigned as ⟨1, 2, 1⟩ to support both modes. We report “in-situ processing” performance

in the table. The computing throughput is 1.7 Tops. The end-to-end throughput is 845

Gops. The latency Latcomp is 0.015 ms. The Latsys is 0.031 ms. In this mode, the end-

to-end system performance is moderately improved as bufwei still occupies the streaming

interface, leaving limited streaming bandwidth for other buffers. Therefore, design2’s the

overall performance can benefit from less transmission with the on-chip weights.

72

Design2* explores the accelerator solution for the small model that can be fully stored

on the chip, which works in pure “in-situ processing”. Design2* tunes the streaming in-

terface to ⟨2, 0, 2⟩, more streaming bandwidth is assigned to bufin and bufout as no weight

transfer is needed. After eliminating weight transfer, the end-to-end processing through-

put is greatly improved to 1.4 Tops. The small gap between end-to-end throughput and

computing throughput is due to the transmission initialization between DDR and FPGA.

The performance model accuracy analysis is evaluated in Table 15. As BRAM utilization

can hardly been modeled for INT8 in FPGA, we show the performance model variation for

latency and the DSP usage. We can see that the DSP usage can be successfully estimated and

the performance model’s latency variation is higher than the previous proposed Convolution

and LSTM accelerator. This is due to the Transformer accelerator is assigned one matrix per

execution, leading to less transmission workload. Thus, the uncertainty in the DDR would

show more significant impact on the whole system.

Accelerator performance on real-life Transformer. We accelerate the compressed

Transformer models discussed in Table 11, in which, 80%, 75%, and 70% compression ratios

are achieved. This reduces the number of multiply–accumulate operations to 1.29, 1.65, and

2.04 Giga Operations (Gop). Due to the size of the compressed models, design2 is adopted to

accelerate the three compressed models. The breakdown of accelerator resource utilization

is listed in Table 16. In processing a full encoder layer to decoder layer inference, we achieve

the latency of 6.8ms, 7.2ms, and 8.4ms for the three compression degrees. In this table, we

also list the performance of the state-of-the-art Transformer accelerator [21] and [22]. [21]

accelerated a shallow Transformer with 5.76MB weights and 0.205 Gop. Their accelerator is

built on VCU118 FPGA in fix-point data via Vivado HLS, in which, 5647 DSPs are utilized.

It achieves 2.94ms in accelerating the shallow Transformer. We compare the FPGA area

efficiency via Gop/Latency/Ndsp for fair comparison. As shown in the table, our accelerator

achieves 6.3x, 7.6x, and 8.1x better efficiency at different compression ratios, which is sig-

nificantly higher than the state-of-the-art accelerator [21]. Design [22] is built on XCVU13P

FPGA in INT8 via hardware description language (HDL). The performance is measured by

simulation in Vivado. We report its performance in accelerating a full Transformer, which

achieves 8.9ms in latency. Its latency is significantly higher than our design. Furthermore,

73

the design [22] can hardly utilize its device resource, causing severe resource under-utilization

(27.% LUT utilization, 36.5% BRAM (block-RAM) utilization, and 2% DSP utilization).

Table 16: End-to-end accelerator performance on real Transformer

Standard Transformer (Our Work)

Sparsity Gop DSP LUT BRAM FF Freq. (MHz) Latency Area Efficiency

80% 1.29

2500 251725 699 142723 125

6.8 ms 0.076 (6.3x)

75% 1.65 7.2 ms 0.092 (7.6x)

70% 2.04 8.4 ms 0.097 (8.1x)

Shallow Transformer (Existing design[21])

- 0.205 5647 268933 - 304012 - 2.94 ms 0.012

Standard Transformer (Existing design[22])

- - 129 471563 498 217859 200 8.9 ms -

74

4.3 Summary

The proposed LSTM and Transformer accelerator with the associated performance mod-

els can efficiently address the large memory footprint size as well as the complex computation

patterns of the model. The proposed analytical model can accurately and efficiently deter-

mine the accelerator parameters and the performance of the accelerator.

75

5.0 Multi-modal Multi-task Model to Multi-accelerator Mapping

This chapter presents the multi-modal multi-task model to multi-accelerator system map-

ping algorithm with computation and communication awareness. Besides the algorithm,

aiming at system-level formulation, simulation, and optimization, we build a system-level

simulator for fast mapping optimization and performance estimation.

Modality Net 1

Modality Net 4

Fusion
Collaborative

Decision
Making

Task Net 1

Task Net 4

Modality Net 2

Modality Net 3

Task Net 2

Task Net 3

Multi-modality
sensor fusion

Multi-task
learning

Figure 52: Multi-modal multi-task model.

5.1 Background

Multi-modal learning aims to process and relate information from multiple sources to cap-

ture the correspondences between modalities and gain an in-depth understanding of natural

phenomena and usually focuses on modality representation, translation, alignment, fusion,

and co-learning [1, 2]. In Virtual Reality (VR), the ‘five senses’: visual for sight, auditory

for hearing, olfactory for smell, gustatory for taste, and haptic and thermal for touch, are

necessarily be perceived to reconstruct, augment, and render the content [93]. This leads

to the modalities such as images, videos, speech, text, etc. In autonomous system, sen-

sors such as camera, radar, infrared, thermal, LiDAR, and gyro are placed to perceive the

environment. The multi-modal multi-task structure naturally increases the computation

heterogeneity and complexity, as well as the communication overhead. The difficulties of

76

the model can be summarized in three aspects: the multi-modal multi-task system-level

heterogeneity; the layer heterogeneity in an individual modality/task net; the inter-block

connection in the multi-modal multi-task caused model dependencies..

Model system-level heterogeneity. The multi-modal multi-task learning learns the

features from different sources. Therefore, the architecture of different modality net is spe-

cialized for the target source. Figure 53 shows the existing multi-modal multi-task models

for different applications. Figure 53 (a) shows a radar-image co-learning model, in which, the

VGG16 network and Feature Pyramid Network are adopted as the backbones [31]. Figure

53 (b) shows a Lidar-image feature co-learning model, in which, Convolution, Sep Convo-

lution, ASPP (Dilated Convolution), and LSTM layers are adopted to extract the features

[30]. Figure 53 (c) shows a model for pose and odometry processing, in which, images are

processed by Residual CNNs (ResNet [40] like network) [29]. Among different CNNs, the

intermediate data in different tasks are shared between the Convolution layers. Figure 53 (d)

shows an image-speed feature co-learning, in which, a Convolution and an FC-based back-

bone are adopted [28]. As shown in the existing models, the extreme model heterogeneity

and inner-model dependency are the natural characteristics of an MMMT model.

Extreme heterogeneity in the modality and task net. A multi-modal multi-task

model can be regarded as a superset of standalone DNN models. In general, even in one

modality or task net, different sizes of Convolution, FC, Pooling, dilated Convolution, ReLu,

Normalization, and Softmax is utilized to build a task specific model for a source data. The

computing complexity and computing burden differ significantly even among the same type

of layers as the layer parameters vary layer by layer. The diversity of DNN layers causes

different computing patterns and accelerating efforts. The commonly adopted Convolution

and FC are summarized in Figures 54a and 54b. The other modules such as Pooling and

ReLu are less computation-intensive but own specific features.

Different layers have their own unique characteristics: Convolution is the most data

computation and transmission intensive; FC is less computation-intensive but transmission-

intensive; Pooling usually performs comparison in its function; Dilated Convolution is data

computation and transmission intensive; ReLU only performs comparison in its function;

Normalization and SoftMax is computation complex but less computation and transmis-

77

(a)

(b)

(c) (d)

Figure 53: The existing multi-modal multi-task models.

sion intensive. As a result, accelerating layers such as Convolution, FC, Pooling, Dilated

CNN, ReLu, Normalization, and SoftMax on their computing and memory pattern preferred

accelerators can maximize the hardware computing efficiency. The existing DNN layer het-

78

erogeneity leads to accelerator efficiency differences such as utilization ratio, latency, and

throughput. Furthermore, the inter-block sharing in the multi-modal multi-task model bring

addition logic dependency between these modules and running order of the accelerators.

Input feature maps

N

R

C
Output feature maps

M

Weight Weight

N

…

M

K

K

(a) Convolution layer

feature maps

N

flatten
flatten

(b) Fully-connected layer

Figure 54: Convolution and Fully-connection layer

Extreme heterogeneity in accelerators. The existing DNN accelerators are usually

designed for specific DNN model layers. The change of the layer parameters can easily cause

accelerator performance fluctuation as the computing pattern and transmission pattern in

an accelerator are specialized. Therefore, the changes in characters such as Convolution

IFM/OFM channels, weight filter size K may lead to performance differences on an acceler-

ator. As the NVDLA style architecture shown in Figure 17, it primarily deep Convolution

IFM/OFM channel (< N,M >) optimized architecture. The computing pattern in such ar-

chitecture is optimized for the high parallelism computing in IFM and OFM channels. Such

architecture is observed in designs such as [14, 62, 63, 94]. Shi-dianao style architecture

optimizes the output feature map parallelism in a row and column direction, which may

benefit the Convolution with large size feature map in row and column direction [17, 94].

Other accelerators such as Eyeriss [15] and Google TPU [95] adopt similar architecture in

processing element (PE) array style to Shi-dianao. However, Eyeriss optimizes the PE’s local

buffer arrangement, which may benefit in Convolution layers with heavy weight usage; TPU

adopts systolic array style for the PE array, which will benefit in higher throughput and

lower latency for generic multiply-accumulation operation.

79

Computation
Prioritized Mapping

Heterogeneous
Model

Heterogeneous
System

Weight Locality
Optimization

Activation Transfer
Optimization

Data Locality Aware
Re-Mapping

1 2 3 4

Acc 2

Acc 3

Acc 1

1.1 1.2 1.3 1.4 1.5

2.1 2.2 2.3 2.4 2.5

3.1 3.2 3.3 3.4 3.5

…

2.1 1.1
1.12.2

2.1 1.2 1.3

1.1 1.2 1.3

2.1 2.2 2.3 Acc 2

Acc 1 1.1 2.2 1.3

2.1 1.2 2.3

Acc 2

Acc 1 1.1 2.2 2.3

2.1 1.2 1.3

1.1 1.2 1.3

2.1 2.2 2.3

Latency
reduction

Less across-accelerator
data transfer

1.1 1.2 1.3

2.1 2.2 2.3 Acc 2

Acc 1 1.1 2.2 1.3

2.1 1.2 2.3

Acc 2

Acc 1 1.1 2.2 2.31.1 1.2 1.3

2.1 2.2 2.3

System Latency reduced!

Cross-accelerator
data transfer

Layer
execution

2.1 1.2 1.3

Computation
prioritized
mapping

Communication
aware

mapping

Single layer execution
may slightly increase

Figure 55: An example of communication-prioritized mapping and communication-aware

mapping. The later slightly sacrifices the computation efficiency but reduces the overall

system latency by avoiding expensive data movement.

Though the computing efficiency of normal DNN on the multi-accelerator system is

addressed by [5, 6, 7, 8, 9, 10, 11, 23, 24], the emerging multi-modal multi-task DNNs model

greatly increases the overall computation complexity as well as the communication overhead.

A computation and communication aware mapping and scheduling of multi-modal multi-task

DNNs to the multi-accelerator system is needed.

5.2 Motivation

Fig. 55 demonstrates the difference between computation-prioritized mapping and

communication-aware mapping, where the former maps a layer purely based on its preferable

computing and data flow pattern, while the latter slightly sacrifices computation efficiency

but in turn, reduces the overall system latency by avoiding expensive data transfer. Modern

multi-modal multi-task models tend to have more complex dependencies (e.g., the cross-layer

connections in VlcoNet [35]), largely exaggerating the data transfer overhead.

Given the complexity of DNN models and heterogeneous systems, it is non-trivial to find

a good H2H mapping that well balances computation and communication. First, the

DNN accelerators are highly specialized for certain data flow. For instance, NVDLA [16]

optimizes convolution channel-wise parallelism, while Shi-diannao [17] optimizes feature-

map-wise parallelism. Model layers should be mapped to the accelerators with preferable

80

computation patterns to reduce computation latency. Most existing approaches highly pri-

oritize the computation pattern matching but ignore communication [24]. Second, there are

also communication-prioritized mapping algorithms [96] by forming task clusters and assign-

ing a cluster to a processor. However, this will largely hurt the computing efficiency since

the tasks within the same cluster do not necessarily run efficiently on the same accelerator.

Meanwhile, the heavy cross-model dependency (cross-talk) in the heterogeneous models may

also lead to ineffective clustering. Third, existing mapping algorithms lack the formulation

of DNN models and system-level information such as accelerators’ architecture and data

flow. Without hardware awareness, such mapping algorithms are inefficient for H2H in the

multi-accelerator system. Therefore, a hardware-aware mapping algorithm that considers

both computation and communication simultaneously is needed.

The cornerstone for communication reduction is data locality by efficiently utilizing

accelerators’ local memory. Existing accelerators such as GPUs, ASICs, and FPGAs are

attached with a local DRAM, which can be utilized to store model weights and to buffer

intermediate activations of two adjacent layers to reduce cross-accelerator data movement.

The challenge is that the computation-prioritized mapping can achieve the best efficiency

per accelerator, but the overall performance may be compromised due to the transmission

cost (and vice versa). Therefore, taking the multi-FPGA system as the vehicle, we propose

a joint H2H optimization with both computation and communication awareness, considering

the benefit of high data locality and suitable computation patterns simultaneously.

5.3 Methodology

5.3.1 System Formulation

Heterogeneous Models. A heterogeneous model has complicated dependencies especially

for cross-talk connections. It is natural to formulate such a model as a direct graph Gmodel =

(V,E), where the vertices represent the layers and the edges represent the dependencies. In

Gmodel, each node holds layer information such as Conv, FC, LSTM, etc., as well as their

81

Table 17: System performance modeling parameters

Acc Type Parameters Explanation

Conv <N, M, R, C, K, S>
ofm channel num, ifm channel num,

ofm height, ofm width, kernel size, stride

FC <N,M> in features, out features

LSTM <N,H,L> in size, hidden szie, layers

– Wmem accelerator-to-host bandwidth

– Smem private memory size

data dimension (e.g., feature map size). We consider three types of popular accelerators,

Conv (Convolution), (FC) Fully-connection, and LSTM (Long short-term memory), with

their layer parameters which are summarized in Table 17.

Heterogeneous System. We also formulate the multi-accelerator system as a directed

graph Gsys = {GAcci}, where each sub-graph GAcci is a computation graph representing the

layers’ execution scheduling on the i-th accelerator Acci. Initially, each graph GAcci is empty

without any mapping. An example of Gmodel and initial Gsys with three initial empty Acci

are shown in Fig. 56 input block. After mapping, the Gacc will be filled by nodes from Gmodel

and the edges in Gacc indicate execution order.

In this work, we consider a multi-FPGA system proposed in [5], where each FPGA is

connected to the host via network switches, enabling FPGA-to-FPGA and FPGA-to-host

communication. The main memory at the host distributes the data to FPGAs’ private

memory (DRAM). The private memory capacity ranges from 512MB to 8 GB [97] and

is usually used as additional buffers to mitigate the scarcity of FPGA on-chip memory. In

general, the Ethernet speed ranges from 1 G to 10 G Ethernet (0.125 to 1.25 GB/s) in cloud-

FPGA [6], and the FPGA private memory speed ranges from 6.4 GB/s to 460 GB/s [98].

The system-level configurable parameters include Wmem and Smem, as shown in Table 17,

referring to accelerator-to-host bandwidth and private memory size, respectively.

82

𝟐_𝟏 𝟐_𝟐 𝟐_𝟑 𝟐_𝟒 𝟐_𝟓

𝟏_𝟏 𝟏_𝟐 𝟏_𝟑 𝟏_𝟒 𝟏_𝟓

𝟑_𝟏 𝟑_𝟐 𝟑_𝟑 𝟑_𝟒 𝟑_𝟓 …

…

…

∼

ACC
1
ACC
2
ACC
3

𝟏_𝟏 𝟑_𝟐 𝟏_𝟑 𝟐_𝟒 𝟐_𝟓

𝟑_𝟏 𝟐_𝟐 𝟐_𝟑 𝟏_𝟒 𝟏_𝟓

𝟐_𝟏 𝟏_𝟐 𝟑_𝟑 𝟑_𝟒 𝟑_𝟓

∼ ∼

∼

ACC
1ACC
2
ACC
3

𝟏_𝟏 𝟑_𝟐 𝟏_𝟑 𝟐_𝟒 𝟐_𝟓

𝟑_𝟏 𝟐_𝟐 𝟐_𝟑 𝟏_𝟒 𝟏_𝟓

𝟐_𝟏 𝟏_𝟐 𝟑_𝟑 𝟑_𝟒 𝟑_𝟓

∼ ∼

∼ ∼

∼

∼ ∼∼

∼

ACC
1ACC
2
ACC
3

𝟏_𝟏 𝟑_𝟐 𝟏_𝟑 𝟐_𝟒 𝟐_𝟓

𝟑_𝟏 𝟐_𝟐 𝟐_𝟑 𝟏_𝟒 𝟏_𝟓

𝟐_𝟏 𝟏_𝟐 𝟑_𝟑 𝟑_𝟒 𝟑_𝟓

∼ ∼

∼

𝟐_𝟏 𝟐_𝟐 𝟐_𝟑 𝟐_𝟒 𝟐_𝟓

𝟏_𝟏 𝟏_𝟐 𝟏_𝟑 𝟏_𝟒 𝟏_𝟓

𝟑_𝟏 𝟑_𝟐 𝟑_𝟑 𝟑_𝟒 𝟑_𝟓 …

…

…

∼

ACC
1
ACC
2
ACC
3

𝟏_𝟏 𝟑_𝟐 𝟏_𝟑 𝟐_𝟒 𝟐_𝟓

𝟑_𝟏 𝟐_𝟐 𝟐_𝟑 𝟏_𝟒 𝟏_𝟓

𝟐_𝟏 𝟏_𝟐 𝟑_𝟑 𝟑_𝟒 𝟑_𝟓

∼ ∼

𝟏_𝟐

(d)

ACC
3

ACC
1ACC
2

𝟏_𝟏 𝟑_𝟐 𝟏_𝟑 𝟐_𝟒 𝟐_𝟓

𝟑_𝟏 𝟐_𝟐 𝟐_𝟑 𝟏_𝟒 𝟏_𝟓

𝟐_𝟏 𝟏_𝟐 𝟑_𝟑 𝟑_𝟒 𝟑_𝟓

∼

∼

∼

ACC
3

ACC
1ACC
2

𝟏_𝟏 𝟑_𝟐 𝟏_𝟑 𝟐_𝟒 𝟐_𝟓

𝟑_𝟏 𝟐_𝟐 𝟐_𝟑 𝟏_𝟒 𝟏_𝟓

𝟐_𝟏 𝟏_𝟐 𝟑_𝟑 𝟑_𝟒 𝟑_𝟓

∼

∼

∼

* *

* *

* *

*

*

*

ACC
3

ACC
1ACC
2

𝟏_𝟏 𝟑_𝟐 𝟏_𝟑

𝟑_𝟏 𝟏_𝟒 𝟏_𝟓

𝟐_𝟏 𝟏_𝟐

∼

∼

∼

𝟐_𝟐 𝟐_𝟑*

𝟐_𝟒 𝟐_𝟓* *

𝟑_𝟓𝟑_𝟑 𝟑_𝟒* *

* * *

*

15%(c)

*

3

Colored blocks:
weights

stored on-chip

Marked blocks:
IFM and OFM

fusion

2

…

…

…

…

1.1 1.2 1.3 1.4 1.5

2.1 2.2 2.3 2.4 2.5

3.1 3.2 3.3 3.4 3.5

…

…

…

Acc 2

Acc 3

Acc 1

∼ ∼

1.1 3.2 1.3 2.4 2.5

3.1 2.2 2.3 1.4 1.5

2.1 1.2 3.3 3.4 3.5

Idle Idle

Layer 1.1 mapped to Acc 1

1

Acc 2

Acc 3

Acc 1

∼ ∼

1.1 3.2 1.3 2.4 2.5

3.1 2.2 2.3 1.4 1.5

2.1 1.2 3.3 3.4 3.5

2

Colored blocks:
weights stored on-chip

Latency
reduction

3

Starred blocks:
IFM and OFM fusion

Latency
reduction

Acc 2

Acc 3

Acc 1 1.1 3.2 1.3 2.4 2.5

3.1 2.2 2.3

2.1 1.2 3.3

∼∼∼ 1.4 1.5

3.4 3.5∼

Acc 2

Acc 3

Acc 1 1.1 3.2 1.3 2.4 2.5

3.1 2.2 2.3

2.1 1.2 3.3

∼∼∼ 1.4 1.5

3.4 3.5∼

* *

* *

Acc 2

Acc 3

Acc 1 1.1 3.2 1.3 2.5

3.1 2.2 2.3

2.1 1.2

∼∼∼

∼

2.4

**

1.4 1.5

3.3 3.4 3.5

4
1.1 1.2 1.3 1.4 1.5

2.1 2.2 2.3 2.4 2.5

3.1 3.2 3.3 3.4 3.5

…

…

…

Acc 2

Acc 3

Acc 1

∼

1.1 3.2 1.3 2.4 2.53.1

2.2 2.3 1.4 1.5

2.1 1.2 3.3 3.4 3.5

Idle

Layer 3.1 re-mapped to Acc 1

3.1

To Reduce
IFM/OFM
transfer

Re-mapping algorithm:
• Heuristically pick up a

layer node
• Adjust its mapping

according to its
neighborhood layer
node to reduce
activation transfer

• Repeat step 2 and 3

Acc 2

Acc 3

Acc 1

1.1 1.2 1.3 1.4 1.5

2.1 2.2 2.3 2.4 2.5

3.1 3.2 3.3 3.4 3.5

…

Inputs (initial status)

Computation
Prioritized Mapping

Heterogeneous
Model

Heterogeneous
System

Weight Locality
Optimization

Activation Transfer
Optimization

Data Locality
Aware Re-Mapping

1 2 3 4

In
p

u
ts

Workflow

Figure 56: H2H mapping algorithm visualization. It includes 4 major steps: (1) computation-

prioritized mapping; (2) weight locality optimization; (3) activation transfer optimization;

(4) data locality aware remapping.

83

System Performance Model. We model the overall heterogeneous system performance at

two levels: individual accelerators, and the overall system. First, for individual accelerators,

there are plenty of analytical models PAcc for different designs; we adopt the performance

models from the prior works. For each accelerator, we consider the following configurable

parameters: (1) Wmem, the accelerator to main memory bandwidth; (2) Smem, the private

memory size; (3) Layerpara, the layer parameters as shown in Table 17. For instance, the

analytical model for the accelerator in [14] is PAcc =< Wmem, Smem, Layerpara > with its

with loop tiling setting < Rwei, Dtype, Facc,Wacc, Tm, Tn, Tr, T c >. Second, for the system-

level performance model, we develop simulator for the multi-FPGA system by allowing

customizing the accelerator-to-host bandwidth as Wmem, which is also configurable by users.

5.3.2 Mapping Algorithm

The proposed mapping algorithm includes four steps. 1○ Computation-prioritized map-

ping. The heterogeneous ML model is mapped at layer-granularity, that each layer is mapped

to the accelerator that best fits its computation data flow, ignoring all data movement opti-

mizations (i.e., zero data locality). 2○ Weight locality optimization. Since each accelerator

has its own private memory, we buffer part of the weights in the memory to maximally

avoid weight data movement. 3○ Activation transfer optimization. If two adjacent layers are

mapped to the same accelerator, their intermediate activation, i.e., the output/input feature

maps (OFM/IFM), will no longer need to transfer and thus latency can be reduced. 4○

Data locality aware re-mapping. This step explores the trade-off between computation and

communication, aiming to largely reduce communication cost with only slight computation

efficiency degradation, which still results in overall performance improvement. The H2H

algorithm flow is shown in Algorithm 4. It takes Gmodel, Gsys, and PAcci as its inputs, and

produce a mapped and scheduled solution with estimated system latency and energy.

Computation-prioritized Mapping. In the first step, we perform

Computation Prioritized Mapping. It assigns the model layers to the accelerators that

result in the best computation performance by assuming zero-private memory without any

data locality at the accelerator. We use performance model PAcci to estimate the latency of

84

a layer executing on the i-th accelerator, and assume that all the weights and intermediate

results go to the main memory. To obtain the system overall latency, the layer scheduling on

each accelerator must be determined. To guarantee a valid scheduling considering the layer

dependencies especially across multiple sub-models, the algorithm determines the mapping

and scheduling iteratively. In every iteration, it selects all the nodes without predecessors

from Gmodel as a group, enumerates all possible mappings within the group (e.g., multiple

nodes can be mapped to one or more accelerators), and selects the best one that results in

the smallest system latency increment. .

An example is shown in Fig. 56 1○, where the color of the nodes represents which

accelerator it is mapped to. The gray blocks represent the accelerator executions, where idle

periods are introduced by layer dependency. Note that, in this step, we assume zero-private

memory the latency values include both computation and communication: the latency of

layer computation, weight transfer from the main memory, and IFM/OFM transfer from/to

the main memory.

Weight Locality Optimization. Weight locality Opt is performed after computation

prioritized mapping by utilizing the private memory for each accelerator. With private mem-

ory, weight transfer from main memory can be largely avoided, and it is a common practice

to buffer part (or all) of the weights of the DNN layer(s) [97]. In this system, since multiple

layers are mapped to the same accelerator, the layer weights must be selectively stored in the

private memory, under a certain memory budget. Therefore, we propose to use the Knap-

sack algorithm to bind weights to accelerators to minimize the weight transfer. After weight

binding, we first update each layer’s latency, and then update the system’s scheduling and

overall latency. Note that, since the latency and scheduling change of one layer can affect

its successor layers iteratively, we propose to update the layer scheduling recursively. This is

especially efficient for graph structures by updating a node’s direct successor neighbors with-

out traversing the entire graph every time. The details of Weight Locality Optimization

in building the simulator is shown in Algorithm 5. An example is shown in Fig. 56 2, where

the colored blocks represent the layers whose weights are stored in the private memory with

reduced latency. The system schedule is also updated with reduced overall latency.

85

Activation Transfer Optimization. After weight locality optimization, the activation

(IFM/OFM) transfer will be optimized by Activation Transfer Opt to further reduce the

overall cost. This is based on the assumption that, if two adjacent layers are mapped to the

same accelerator, their intermediate IFM and OFM can be reused locally by taking advan-

tage of the private memory and thus the activation transfer from/to the main memory can

be avoided. We call it activation fusion. It is similar to weight locality optimization in a

recursive manner: for each layer mapped to an accelerator, it checks its successor neighbors

for activation fusion, updates its own and its neighbors’ latency if applicable, and recursively

updates the system’s overall scheduling. The details of Activation Transfer Opt in build-

ing the simulator is shown in Algorithm 6. An example of activation fusion is shown in Fig.

56 3, where the starred blocks indicate the layers that are applicable for fusion.

Data Locality Aware Remapping. The weight and activation optimization are post-

optimization for communication given a mapping solution. In this step, we strive for

communication-oriented remapping (Data Locality Remapping), i.e., initial mapping tun-

ing, aiming at largely reducing communication cost at the cost of slightly increased compu-

tation cost. Specifically, for each layer, we define a remapping operation that re-allocates a

layer from its source accelerator to a new destination accelerator, on which its predecessors

and/or successors are mapped to. This remapping reduces the activation transfer time but

may increase the computation latency. The weight transfer latency may be increased or de-

creased depending on the available private memory capacity of the destination accelerator.

Therefore, to determine the exact effect of a remapping operation, the weight locality and

activation transfer optimization must be re-computed, i.e., the step 2 and 3 must be exe-

cuted for every remapping attempt. We adopt the greedy algorithm and perform remapping

attempt for every layer, and only accept such an attempt only if it reduces the system’s

overall latency, i.e., the benefit of communication reduction outweighs the computation cost

increment. The algorithm terminates when there is no more layer that can be remapped with

reduced overall latency. The details of Data Locality Remapping in building the simulator

is shown in Algorithm 6.

An example of locality-aware remapping is shown in Fig. 56 4○. In this example, layer

3.1 is remapped from Acc2 to Acc1 since its neighbor layer 3.2 resides on Acc1, so that the

86

activation transfer between layer 3.1 and layer 3.2 can be reduced. Although in this example,

the scheduling of layer 2.2 cannot move ahead because of layer dependency, in most cases,

the source accelerator can reduce its latency because of the released memory budget for

weights and can execute earlier because of a removed (remapped) layer.

87

5.3.3 Experiment

5.3.3.1 Experiment Setup

Heterogeneous models. Table 18 summarizes the 6 heterogeneous DNN models from

different domains including AR/VR, Face Recognition, Sentiment Analysis, Activity Recog-

nition, and Emotion Recognition. Most models use Convolution Neural Networks (ResNet,

VGG, VD-CNN, and their variants) as the backbones, and there are typically 3 to 5 back-

bones placed together for MMMT learning with cross-backbone data dependencies.

Heterogeneous accelerators. We survey 12 state-of-the-art FPGA-based Convolution,

FC, and LSTM accelerators and summarize them in Table 19. We replicate their performance

models based on the original papers; we honor the private memory Smem capacity based on

the FPGA board used, ranging from 512 MB to 8 GB [97].

As the existing mapping algorithms are computation-prioritized that strive for finding

the most suitable accelerators based on the data flow patterns [24]. Such mapping strategies

are the same as the first step in our H2H mapping. To make a fair comparison, we take the

results from H2H mapping after the second step including the weight locality optimization,

since existing works can also assume private memory for the accelerators.

Table 18: Heterogeneous models

Domain Model Backbones Para.

Augmented Reality VLocNet [35] ResNet-50 variants 192M
Face Recognition CASUA-SURF [99] ResNet-18 variants 13.2M
Sentiment Analysis VFS [100] VGG and VD-CNN variants 365M
Face Recognition FaceBag [101] ResNet variants 25M

Activity Recognition CNN-LSTM [102] ConvNet and LSTM variants 16M
Emotion Recognition MoCap [36] Convolution and LSTM unit 8M

5.3.3.2 Mapping performance

Latency and Energy Reduction. In Fig. 57 we present the latency and energy reduction

from H2H mapping of the six heterogeneous DNN models. We test the mapping algo-

rithm under different network bandwidth configurations (Wmem): Low- (0.125GB/s); Low

(0.15GB/s); Mid- (0.25GB/s); Mid (0.5GB/s); High (1.25GB/s). The x-axis refers to the

88

Table 19: State-of-the-art FPGA DNN accelerators

Name Accelerator Type Optimization FPGA

J.Z [103] Convolution On-chip memory GX1150
C.Z [14] Convolution Channel parallel. VC707
W.J [62] Convolution Memory and Channel ZCU102
J.Q [104] Conv/FC/(LSTM) Computing Generality ZC706
A.C [58] Convolution Loop Optimization XC7Z045
Y.G [54] Conv/FC/LSTM Computing Generality Stratix-V
T. M [12] Convolution Loop Optimization GX1150
A.P [105] Convolution Winograd Stratix-V
X.W [106] Convolution Systolic Array GT1150
S.H [107] LSTM/FC Deep Pipeline XCKU060
X.Z [65] LSTM Gate Parallelism PYNQ-Z1/VC707
B.L [21] LSTM Deep Pipeline VCU118

four steps in H2H mapping algorithm, and the y-axis is the “simulated” system latency in

seconds and energy in joule. The H2H mapping algorithm achieves 15% to 74% system la-

tency reduction and 23% to 64% energy reduction compared with the baseline mapping [24]

when the system is bandwidth bounded, i.e., under the Bandwidth-Low- setting. With high

bandwidth, the H2H still reduces overall latency by 10% to 50%. In half of the evaluated

cases, we achieved over 60% latency reduction.

The detailed latency reduction after each step is shown in Table 20. Since we regard the

second step as the baseline, we present the absolute latency values (in seconds) for steps 1

and 2 and the relative values for steps 3 and 4 compared with step 2. Apparently, when

the bandwidth increases, the reduction decreases, but even with high bandwidth, network

CNN-LSTM and MoCap still reduce latency by almost half from H2H mapping.

H2H performance analysis. In Fig. 58 (a), we visualize the communication and computa-

tion latency ratio using the mapping results under Bandwidth-Low- of the six models. Note

that after H2H mapping, the computation ratio greatly increases (yellow bars), where Mo-

Cap increases from 21% to 94%, demonstrating that the communication overhead is largely

reduced. We also show the H2H mapping algorithm execution time in Fig. 58. Per DNN

model, the search time is consistently low across different models, less than one second. The

VLocNet needs longer search time than others since it consists of 141 layers; the CNN-LSTM

and MoCap need significantly less search time as they consist of less than 30 layers.

89

Y Axis: Latency (Seconds)
Bandwidth Low Bandwidth Low+ Bandwidth Mid- Bandwidth Mid Bandwidth High

(a) (b) (c)
𝟒𝟐%

Y Axis: Energy (Joule) Bandwidth Low Bandwidth Low+ Bandwidth Mid- Bandwidth Mid Bandwidth High

𝟔𝟒%

𝟐𝟓%

𝟐𝟑%

𝟓𝟐%

𝟑𝟒%

𝟔𝟏%

𝟏𝟓%

𝟏𝟕%

𝟕𝟐%

𝟕𝟒%

Bandwidth High (1.25 GB/s)Bandwidth Low- (0.125 GB/s) Bandwidth Low (0.15 GB/s) Bandwidth Mid- (0.25 GB/s) Bandwidth Mid (0.5 GB/s)
En

er
gy

(J
o

u
le

)
La

te
n

cy
 (

Se
co

n
d

s)

𝟔𝟏%

VLocNet CASUA-SURF VFS FaceBag CNN-LSTM MoCap

Figure 57: The latency and energy performance comparison.

5.3.3.3 Performance comparison and mapping uncertainty discussion

Performance comparison. The proposed computation and communication aware map-

ping can efficiently find an optimized mapping solution between the two heterogeneity. By

heuristically performing mapping and re-mapping in the four steps, we found the optimized

solution in seconds. To show the gap between the proposed method and the optimal solu-

tion, we enumerate all possible mappings and then schedule the execution. To enumerate

all solutions, NM mappings are generated and scheduled, in which, N represent the num-

ber of available accelerators in the heterogeneous system and M represents the number of

layers in the heterogeneous model. As the surveyed heterogeneous model consists of up to

150 layers and the number of surveyed accelerators is 12, we perform the comparison by

mapping the first 9 or 10 layers in different models, to a 2, 3, 4, and 5 accelerator system,

under the system bandwidth setting of Low-. Table 22 and Table 23 show the performance

comparison with the optimal solution acquired via enumerating all possible mappings in all

six models. In this figure, the ‘Optimal’ represents the optimal solution and ‘H2H’ represent

the proposed method. We can see that in the majority of the mapping situations, the H2H

can achieve near-optimal performance. In the worst scenario, the H2H falls 2x˜3x behind

the optimal solution. However, enumerating all possible solutions demands a great mass of

time. For the 10-layer VLocNet to a 5-accelerator system, it takes 5.37 hours to find the

optimal solution via enumeration while the H2H only takes 0.045 seconds. The proposed

H2H achieves 4.3 million speed-up in searching time for VLocNet mapping. In all evaluated

90

High

(a) Communication and computation Ratio (b) H2H searching time

26%

15% 13%

35%

10% 18%
20% 21%

14%
25%

53%

94%

Commu. Comp. Low- Low Mid- Mid

Se
ar

ch
 t

im
e

(S
ec

o
n

d
s)H2HBaseline

Figure 58: Communication and computation ratio.

cases, the proposed H2H can find the optimized solution in less than 0.1 seconds.

Uncertainty discussion. The robustness and efficiency of the H2H method are based on

the established performance model of the accelerators in the system. During the mapping

of H2H, we honor the accuracy of the surveyed accelerators and their performance models.

However, our previous works show that the error between the performance model estimation

and the real hardware performance can not be avoided. In our works, a maximum error

rate of 6% is observed, in which, the performance model predicted latency is usually better

than the hardware’s due to the extra time cost at the run time in the accelerator’s DDR.

In this discussion, we regard such errors as the uncertainty of the performance. Such uncer-

tainty is not considered during the H2H mapping. Therefore, we would analyze the impact

from the uncertainty of the performance model after the H2H mapping. To evaluate the

impact, under the system bandwidth setting of Low-, we take the mapping results of the

H2H on the six heterogeneous models and re-schedule of system execution after applying a

6% performance uncertainty to each layer. Table 24 shows the system latency before and

after applying the error, in which, H2H represents the H2H original performance and H2H*

represents the performance with the 6% uncertainty. We can observe that in most cases, the

system latency is linearly increased by 6% as the latency of each layer increases by 6%. In

VLocNet, the system latency is increased by 10%, this is caused by the layer dependency

in the heterogeneous model. The factor that causes higher system latency is visualized in

Figure 59 In this case, layer 1.1 and layer 2.3 are layer 2.4’s predecessors. Without apply-

91

Table 20: Latency reduction breakdown comparing with the second step (baseline).

Bandwidth
VLocNet CASUA-SURF VFS

1 2 3 4 1 2 3 4 1 2 3 4

Low- 15.27 14.43 99.31% 65.84% 1.07 0.92 83.70% 39.13% 8.84 7.99 99.12% 85.11%
Low 13.10 12.40 99.11% 68.55% 0.91 0.78 84.62% 43.59% 7.26 6.64 97.59% 68.67%
Mid- 8.76 8.33 98.80% 66.87% 0.60 0.52 86.54% 50.00% 4.63 4.24 99.29% 78.07%
Mid 5.51 5.28 98.67% 71.78% 0.36 0.32 87.50% 71.88% 2.64 2.42 95.45% 93.39%
High 3.88 3.76 98.67% 88.03% 0.25 0.22 94.55% 81.82% 1.64 1.53 98.69% 90.20%

Table 21: Latency reduction breakdown comparing with the second step (baseline).

Bandwidth
FaceBag CNN-LSTM MoCap

1 2 3 4 1 2 3 4 1 2 3 4

Low- 0.93 0.63 96.83% 82.54% 0.68 0.34 29.41% 28.24% 8.67 8.63 37.08% 25.49%
Low 0.79 0.54 96.30% 83.33% 0.57 0.29 31.03% 27.59% 7.39 7.35 42.18% 29.39%
Mid- 0.53 0.37 97.30% 86.49% 0.37 0.21 38.10% 33.33% 4.82 4.8 40.83% 21.67%
Mid 0.33 0.25 96.00% 92.00% 0.22 0.14 52.14% 52.14% 2.94 2.92 62.67% 34.25%
High 0.29 0.189 95.24% 89.95% 0.13 0.10 73.00% 70.00% 1.99 1.98 67.68% 50.51%

ing the uncertainty, the system critical path lies on the blue accelerator starting from layer

2.1 to 2.5. After applying the uncertainty, due to the longer execution time of 1.1 and the

dependency between 1.1 and 2.4, a running stall of layer 2.4 on the blue accelerator would

exist. In the figure, the red block represents the additional 6% latency after applying the

uncertainty. As a result, the critical path in the blue accelerator would be influenced by the

uncertainty of layer 1.1, causing a non-linear system latency increase.

92

Table 22: The mapping performance and searching time performance comparison.

VLocNet* CASUA-SURF* VFS*
of Acc. Method Latency(s) Search time Latency(s) Search time Latency(s) Search time

2
Optimal 0.67 1.53s(0.017x) 0.12 0.63s(32x) 0.43 1.49s(114x)
H2H 1.13 0.017s 0.12 0.02s 0.76 0.013s

3
Optimal 0.549 87.72s(6.3e3x) 0.076 24.79s(1.9e3x) 0.355 86.73s(4.3e3x)
H2H 0.56 0.014s 0.076 0.013s 0.42 0.02

4
Optimal 0.549 0.56h(6.7e4x) 0.076 433s(2.1e4x) 0.257 0.57h(5.2e4x)
H2H 1.06 0.03s 0.12 0.02s 0.53 0.039s

5
Optimal 0.549 5.37h(4.3e5x) 0.071 0.91h(9.4e4x) 0.22 5.2h(3.3e5x)
H2H 1.03 0.045s 0.21 0.035s 0.25 0.057s

Table 23: The mapping performance and searching time performance comparison.

FaceBag* CNN-LSTM* MoCap*
of Acc. Method Latency(s) Search time Latency(s) Search time Latency(s) Search time

2
Optimal 0.011 1.52s(89x) 0.058 1.56s(71x) 0.205 0.74s(27x)
H2H 0.015 0.017s 0.065 0.022s 0.73 0.027s

3
Optimal 0.006 88.87s(386x) 0.058 90.45s(3e3x) 0.205 28.72s(1.2e3x)
H2H 0.012 0.023s 0.14 0.028s 0.63 0.024s

4
Optimal 0.006 0.56h(5.7e4x) 0.058 0.58h(6.7e4x) 0.205 494s(1.7e4x)
H2H 0.011 0.035s 0.073 0.031 0.205 0.028s

5
Optimal 0.0068 5.3h(4.4e5x) 0.058 5.43h(4.4e5x) 0.205 1h(7.2e5x)
H2H 0.015 0.043s 0.1 0.044s 0.205 0.005s

Table 24: The mapping uncertainty analysis.

Model VLocNet CASUA-SURF VFS

Method H2H H2H* Sys error H2H H2H* Sys error H2H H2H* Sys error

latency 9.5s 10.5s 10% 0.36s 0.44s 6% 6.8s 7.23s 6%

Model FaceBag CNN-LSTM MoCap

Method H2H H2H* Sys error H2H H2H* Sys error H2H H2H* Sys error

latency 0.52s 0.55s 6% 0.096s 0.114s 6% 2.2s 2.33s 6%

3.1

Acc 2

Acc 1 1.1

2.1 2.3 2.4 2.52.2

…

2.5

Acc 2

Acc 1

2.1 2.3 2.42.2

…

1.1

…

Latency uncertainty System critical path Uncertainty caused accelerator stall

Figure 59: The visualization of system latency non-linear increment

93

Algorithm 4: H2H Mapping and Scheduling

Input: Gmodel, Gsys = {GAcci}, PAcci

Output: G∗
model, G

∗
sys = {G∗

Acci
}, Syslatency, Sysenergy

1 Function Computation Prioritized Mapping():

2 for nodes in Gmodel without predecessors do

3 Enumerate all possible mappings based on PAcci

4 Choose the mapping with minimum ∆Syslatency

5 Function Weight Locality Opt():

6 Knapsack Solver(Gmodel, Gsys)

7 Syslatency, Sysenergy ←− update System Scheduling()

8 Function Activation Transfer Opt():

9 for every node pair adjacent in Gsys do

10 activation Fusion(node pair)

11 Syslatency, Sysenergy ←− update System Scheduling()

12 Function Data Locality Remapping():

13 Repeat

14 for every n ∈ Gmodel do

15 Attempt to remap n to its neighbors’ Acc

16 Weight Locality Opt()

17 Activation Transfer Opt()

18 ∆Syslatency ← update System Scheduling()

19 Accept remap if ∆Syslatency < 0

20 Until no more beneficial remapping operations ;

94

Algorithm 5: Weight Locality Optimization

Input: Gmodel, Gsys, PAcci .

Output: G∗
model, G

∗
sys, Syslatency, Sysenergy.

Gbind
sys = KnapsackSolver(Gsys, PAcci)

Gtmp
sys = Gbind

sys ;

while nodebind exists in Gtmp
sys do

node = findMinNode(Gtmp
sys)

Gmodel.updateNode(node)

Gsys.updateNode(node)

succesors = Successors(Gmodel, node) + Successors(Gsys, node)

for succ in successors: do

NodeShorten(succ)

Gtmp
sys .remove(node)

Function NodeShorten(node):

preds = Predecessors(Gmodel, node) + Predecessors(Gsys, node)

predEndTime = Max(preds.endTime)

if predEndTime < node.startTime then

Gmodel.update(node, predEndT ime)

Gsys.update(node, predEndT ime)

succesors = Successors(Gmodel, node) + Successors(Gsys, node)

for succ in succesors do

NodeShorten(succ)

return

95

Algorithm 6: Activation Transfer Optimization

Input: Gmodel, Gsys, PAcci .

Output: G∗
model, G

∗
sys, Syslatency, Sysenergy.

accInit= Gsys.nodesNoPredecessor()

for node in accInit do

checkFusion(node)

Gtmp
sys = Gsys;

while Gtmp
sys Not empty do

node = findMinNode(Gtmp
sys)

NodesShorten(node)

Gtmp
sys .remove(node)

Function checkFusion(node):

pred = Predecessor(Gsys, node)

succ = Successor(Gsys, node)

try:

checkDependency(pred, node, succ)

Gsys.update(node)

Gmodel.update(node)

accept if Sys∗latency < Syslatency:
Gsys, Gmodel

checkFusion(succ)

return

96

Algorithm 7: Data Locality Remapping

Input: Gmodel, Gsys, PAcci .

Output: G∗
model, G

∗
sys, Syslatency, Sysenergy.

for node in Gmodel do

AccFineTune(node)

Function AccFineTune(node):

neighbors = Predecessors(Gmodel, node) + Successors(Gmodel, node)

for neighbor in neighbors do

if Gsys.node.acc ̸= Gsys.neighbor.acc then

try:

AccAssign(node, neighbor)

accept if Sys∗latency < Syslatency:
Gmodel, Gsys

for succ in Successors(Gmodel, node) do

AccFineTune(succ)

Function AccAssign(node, neighbor):

Gmodel.update(node, neighbor)

Gsys.update(node, neighbor)

Call Algorithm (Weight Locality Optimization)

Call Algorithm (Activation Transfer Optimization)

if Sys∗latency < Syslatency then
accept Gsys, Gmodel

return

97

6.0 Conclusion and future work

In this dissertation, we present a computation and communication aware mapping al-

gorithm to enable an efficient heterogeneous ML model to heterogeneous multi-accelerator

system mapping. With more and more real-life applications are adopting ML algorithms,

the ML algorithm is developing from a single task level to an intelligent agent that can per-

ceive the environment and make decisions, which makes heterogeneous models (multi-modal

multi-task ML algorithm) trend in algorithm design. DNN models from domains such as

Computer Vision, Natural Language Processing, etc., are integrated into a hybrid model.

With the growth of the ML market, both academics and industry are exploring suitable

accelerator architectures for different DNN models/layers. While researchers have been am-

bitiously building individual accelerators for the emerging DNN models, joint processing

of the multi-modal multi-task ML algorithm with both computation and communication

awareness is not explored.

To address the computation and communication efficiency of multi-modal multi-task ML

algorithm, this thesis three techniques. First, the Convolution FPGA accelerator with its

corresponding workload partition and running schedule is proposed to increase the computing

efficiency is proposed. Besides, an accurate performance model is developed to formulate

the accelerator architecture, estimate and quantify the accelerator performance and resource

utilization. Second, the LSTM and Transformer FPGA accelerators are proposed to address

the complex data flow and diverse computing patterns in the algorithm. The algorithm-

hardware co-design is utilized to address the large size algorithm memory footprint and the

computations. Third, based on the in-depth understanding of the FPGA DNN accelerator

design, a computation and communication aware multi-modal multi-task model to multi-

accelerator system mapping is proposed.

The proposed mapping method can efficiently find an optimized mapping solution be-

tween the heterogeneous model and heterogeneous system. We do observe that the perfor-

mance gap exists between the proposed solution and the optimal solution in some cases. In

the future, more efficient re-mapping algorithm will be explored to enhance the performance

of the proposed method.

98

Bibliography

[1] Cong Hao et al. Software/hardware co-design for multi-modal multi-task learning in
autonomous systems. In Proceeding of AICAS, pages 1–5. IEEE, 2021.

[2] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal ma-
chine learning: A survey and taxonomy. IEEE transactions on pattern analysis and
machine intelligence, 41(2):423–443, 2018.

[3] Murium Iqbal et al. A multimodal recommender system for large-scale assortment
generation in e-commerce. arXiv preprint arXiv:1806.11226, 2018.

[4] Alexander Mehler et al. Vannotator: A framework for generating multimodal hyper-
texts. In Proceedings of the Hypertext and Soc. Media, pages 150–154. 2018.

[5] Jeremy Fowers et al. A configurable cloud-scale dnn processor for real-time ai. In
Proceeding of ISCA, pages 1–14. IEEE, 2018.

[6] Aws network. https://aws.amazon.com/blogs/aws/

new-gigabit-connectivity-options-for-amazon-direct-connect/.

[7] Hasitha Muthumala Waidyasooriya and Masanori Hariyama. Multi-fpga accelerator
architecture for stencil computation exploiting spacial and temporal scalability. IEEE
Access, 7:53188–53201, 2019.

[8] Nicola Cadenelli, Zoran Jaksić, Jordà Polo, and David Carrera. Considerations in
using opencl on gpus and fpgas for throughput-oriented genomics workloads. Future
Generation Computer Systems, 94:148–159, 2019.

[9] Saman Biookaghazadeh, Pravin Kumar Ravi, and Ming Zhao. Toward multi-fpga
acceleration of the neural networks. ACM Journal on Emerging Technologies in Com-
puting Systems (JETC), 17(2):1–23, 2021.

[10] Xu Liu, Hibat Allah Ounifi, Abdelouahed Gherbi, Yves Lemieux, and Wubin Li. A
hybrid gpu-fpga-based computing platform for machine learning. Procedia Computer
Science, 141:104–111, 2018.

99

https://aws.amazon.com/blogs/aws/new-gigabit-connectivity-options-for-amazon-direct-connect/
https://aws.amazon.com/blogs/aws/new-gigabit-connectivity-options-for-amazon-direct-connect/

[11] Maŕıa Angélica Dávila Guzmán, Raúl Nozal, Rubén Gran Tejero, Maria Villarroya-
Gaudo, Daŕıo Suárez Gracia, and Jose Luis Bosque. Cooperative cpu, gpu, and fpga
heterogeneous execution with enginecl. The Journal of Supercomputing, 75(3):1732–
1746, 2019.

[12] Yufei Ma et al. Optimizing loop operation and dataflow in fpga acceleration of deep
convolutional neural networks. In Proceedings of the 2017 FPGA, 2017.

[13] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn accelerator effi-
ciency through resource partitioning. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), pages 535–547. IEEE, 2017.

[14] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
Optimizing fpga-based accelerator design for deep convolutional neural networks. In
Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable
gate arrays, pages 161–170, 2015.

[15] Yu-Hsin Chen et al. Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. ACM SIGARCH Computer Architecture News.

[16] Nvidia. Website. http://nvdla.org/.

[17] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing
Feng, Yunji Chen, and Olivier Temam. Shidiannao: Shifting vision processing closer to
the sensor. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture, pages 92–104, 2015.

[18] Andre Xian Ming Chang and Eugenio Culurciello. Hardware accelerators for recurrent
neural networks on fpga. In 2017 IEEE International symposium on circuits and
systems (ISCAS), pages 1–4. IEEE, 2017.

[19] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. Fpga-based accelerator
for long short-term memory recurrent neural networks. In 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 629–634. IEEE, 2017.

[20] Sicheng Li, Chunpeng Wu, Hai Li, Boxun Li, Yu Wang, and Qinru Qiu. Fpga acceler-
ation of recurrent neural network based language model. In 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing Machines, pages
111–118. IEEE, 2015.

100

http://nvdla.org/

[21] Bingbing Li et al. Ftrans: energy-efficient acceleration of transformers using fpga. In
Proceedings of ISLPED, pages 175–180, 2020.

[22] Siyuan Lu, Meiqi Wang, Shuang Liang, Jun Lin, and Zhongfeng Wang. Hardware
accelerator for multi-head attention and position-wise feed-forward in the transformer.
arXiv preprint arXiv:2009.08605, 2020.

[23] Yao Chen et al. Cloud-dnn: An open framework for mapping dnn models to cloud
fpgas. In Proceedings of the 2019 FPGA, pages 73–82, 2019.

[24] Hyoukjun Kwon et al. Heterogeneous dataflow accelerators for multi-dnn workloads.
In Proceedings of HPCA. IEEE, 2021.

[25] Md Shad Akhtar, Dushyant Singh Chauhan, and Asif Ekbal. A deep multi-task
contextual attention framework for multi-modal affect analysis. ACM Transactions
on Knowledge Discovery from Data (TKDD), 14(3):1–27, 2020.

[26] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy. Learning to steer
by mimicking features from heterogeneous auxiliary networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 8433–8440, 2019.

[27] Jose Solomon and Francois Charette. Hierarchical multi-task deep neural network
architecture for end-to-end driving. arXiv preprint arXiv:1902.03466, 2019.

[28] Zhengyuan Yang, Yixuan Zhang, Jerry Yu, Junjie Cai, and Jiebo Luo. End-to-end
multi-modal multi-task vehicle control for self-driving cars with visual perceptions. In
2018 24th International Conference on Pattern Recognition (ICPR), pages 2289–2294.
IEEE, 2018.

[29] Noha Radwan, Abhinav Valada, and Wolfram Burgard. Vlocnet++: Deep multitask
learning for semantic visual localization and odometry. IEEE Robotics and Automa-
tion Letters, 3(4):4407–4414, 2018.

[30] Ruochen Yin, Yong Cheng, Huapeng Wu, Yuntao Song, Biao Yu, and Runxin Niu.
Fusionlane: Multi-sensor fusion for lane marking semantic segmentation using deep
neural networks. IEEE Transactions on Intelligent Transportation Systems, 2020.

[31] Felix Nobis, Maximilian Geisslinger, Markus Weber, Johannes Betz, and Markus
Lienkamp. A deep learning-based radar and camera sensor fusion architecture for ob-

101

ject detection. In 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF),
pages 1–7. IEEE, 2019.

[32] Nhu-Van Nguyen, Christophe Rigaud, and Jean-Christophe Burie. Comic mtl: op-
timized multi-task learning for comic book image analysis. International Journal on
Document Analysis and Recognition (IJDAR), 22(3):265–284, 2019.

[33] Narada Warakagoda, Johann Dirdal, and Erlend Faxvaag. Fusion of lidar and camera
images in end-to-end deep learning for steering an off-road unmanned ground vehicle.
In 2019 22th International Conference on Information Fusion (FUSION), pages 1–8.
IEEE, 2019.

[34] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to
linear regression analysis. John Wiley & Sons, 2021.

[35] Abhinav Valada, Noha Radwan, and Wolfram Burgard. Deep auxiliary learning for
visual localization and odometry. In 2018 ICRA, pages 6939–6946. IEEE, 2018.

[36] Samarth Tripathi et al. Multi-modal emotion recognition on iemocap with neural
networks. arXiv preprint arXiv:1804.05788, 2018.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[38] Selim Seferbekov, Vladimir Iglovikov, Alexander Buslaev, and Alexey Shvets. Fea-
ture pyramid network for multi-class land segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 272–275,
2018.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25:1097–1105, 2012.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

102

[42] Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751, Doha, Qatar, October 2014. Association for Computa-
tional Linguistics.

[43] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3431–3440, 2015.

[44] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric environment,
32(14-15):2627–2636, 1998.

[45] Sankar K Pal and Sushmita Mitra. Multilayer perceptron, fuzzy sets, classifiaction.
1992.

[46] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[48] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. Xilinx adap-
tive compute acceleration platform: Versaltm architecture. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
84–93, 2019.

[49] Michael Ditty et al. Nvidia’s xavier soc. In Hot chips: a symposium on high perfor-
mance chips, 2018.

[50] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon, Bill McGee,
Benjamin Floering, Ankit Jalote, Christopher Hsiong, Sahil Arora, Atchyuth Gorti,
et al. Compute solution for tesla’s full self-driving computer. IEEE Micro, 40(2):25–
35, 2020.

[51] Declan O’Loughlin, Aedan Coffey, Frank Callaly, Darren Lyons, and Fearghal Morgan.
Xilinx vivado high level synthesis: Case studies. 2014.

103

[52] Tomasz S Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman, Michael
Kinsner, David Neto, Jason Wong, Peter Yiannacouras, and Deshanand P Singh.
From opencl to high-performance hardware on fpgas. In 22nd international conference
on field programmable logic and applications (FPL), pages 531–534. IEEE, 2012.

[53] Olaf Ronneberger et al. U-net: Convolutional networks for biomedical image segmen-
tation. In Proceeding of MICCAI, pages 234–241. Springer, 2015.

[54] Yijin Guan et al. Fp-dnn: An automated framework for mapping deep neural networks
onto fpgas with rtl-hls hybrid templates. In 2017 IEEE FCCM.

[55] Chen Zhang et al. Caffeine: Toward uniformed representation and acceleration for
deep convolutional neural networks. IEEE Transactions on TCAD, 38(11):2072–2085,
2018.

[56] Mohammad Motamedi, Philipp Gysel, and Soheil Ghiasi. Placid: A platform for fpga-
based accelerator creation for dcnns. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), 13(4):1–21, 2017.

[57] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1–9, 2015.

[58] Andre Xian Ming Chang et al. Compiling deep learning models for custom hardware
accelerators. arXiv preprint arXiv:1708.00117, 2017.

[59] Atul Rahman, Sangyun Oh, Jongeun Lee, and Kiyoung Choi. Design space exploration
of fpga accelerators for convolutional neural networks. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, pages 1147–1152. IEEE, 2017.

[60] Xilinx. Alveo u280 data center accelerator card data sheet. In Xilinx, 2021.

[61] Nvidia. https://www.nvidia.com/content/dam/en-zz/solutions/data-
center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf. In Nvidia,
2021.

[62] Weiwen Jiang, Edwin H-M Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge, Yiyu Shi,
and Jingtong Hu. Achieving super-linear speedup across multi-fpga for real-time dnn

104

inference. ACM Transactions on Embedded Computing Systems (TECS), 18(5s):1–23,
2019.

[63] Nvdla deep learning accelerator. http://nvdla.org/. Accessed: 2021-03-25.

[64] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason Cong. Energy-
efficient cnn implementation on a deeply pipelined fpga cluster. In Proceedings of the
2016 International Symposium on Low Power Electronics and Design, pages 326–331,
2016.

[65] Xinyi Zhang, Weiwen Jiang, and Jingtong Hu. Achieving full parallelism in lstm via a
unified accelerator design. In 2020 IEEE 38th International Conference on Computer
Design (ICCD), pages 469–477. IEEE, 2020.

[66] Xinyi Zhang, Yawen Wu, Peipei Zhou, Xulong Tang, and Jingtong Hu. Algorithm-
hardware co-design of attention mechanism on fpga devices. ACM Transactions on
Embedded Computing Systems (TECS), 20(5s):1–24, 2021.

[67] Andre Xian Ming Chang and Eugenio Culurciello. Hardware accelerators for recurrent
neural networks on fpga. In 2017 IEEE International symposium on circuits and
systems (ISCAS), pages 1–4. IEEE, 2017.

[68] Shalini Ghosh, Oriol Vinyals, Brian Strope, Scott Roy, Tom Dean, and Larry
Heck. Contextual lstm (clstm) models for large scale nlp tasks. arXiv preprint
arXiv:1602.06291, 2016.

[69] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. Attention-based lstm for
aspect-level sentiment classification. In Proceedings of the 2016 conference on empir-
ical methods in natural language processing, pages 606–615, 2016.

[70] Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai Zhao. A unified tagging
solution: Bidirectional lstm recurrent neural network with word embedding. arXiv
preprint arXiv:1511.00215, 2015.

[71] Yushi Yao and Zheng Huang. Bi-directional lstm recurrent neural network for chinese
word segmentation. In International Conference on Neural Information Processing,
pages 345–353. Springer, 2016.

105

http://nvdla.org/

[72] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy. Data move-
ment aware computation partitioning. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 730–744, 2017.

[73] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing the convolution
operation to accelerate deep neural networks on fpga. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 26(7):1354–1367, 2018.

[74] Weiwen Jiang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Lei Yang, et al. Hetero-
geneous fpga-based cost-optimal design for timing-constrained cnns. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 37(11):2542–
2554, 2018.

[75] Weiwen Jiang, Xinyi Zhang, Edwin H-M Sha, Lei Yang, Qingfeng Zhuge, Yiyu
Shi, and Jingtong Hu. Accuracy vs. efficiency: Achieving both through fpga-
implementation aware neural architecture search. In Proceedings of the 56th Annual
Design Automation Conference 2019, pages 1–6, 2019.

[76] Xinyi Zhang, Weiwen Jiang, Yiyu Shi, and Jingtong Hu. When neural architecture
search meets hardware implementation: from hardware awareness to co-design. In
2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 25–30.
IEEE, 2019.

[77] Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna,
Vikas Chandra, Weiwen Jiang, and Yiyu Shi. Co-exploration of neural architectures
and heterogeneous asic accelerator designs targeting multiple tasks. arXiv preprint
arXiv:2002.04116, 2020.

[78] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[79] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[80] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kir-
illov, and Sergey Zagoruyko. End-to-end object detection with transformers. In
European Conference on Computer Vision, pages 213–229. Springer, 2020.

106

[81] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with
long-short range attention. arXiv preprint arXiv:2004.11886, 2020.

[82] Robin Cheong and Robel Daniel. transformers.zip: Compressing transformers with
pruning and quantization. Technical report, tech. rep., Stanford University, Stanford,
California, 2019.

[83] Hanrui Wang et al. Hat: Hardware-aware transformers for efficient natural language
processing. arXiv preprint arXiv:2005.14187, 2020.

[84] Jonathan Frankle et al. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[85] Haoran You et al. Drawing early-bird tickets: Towards more efficient training of deep
networks. arXiv preprint arXiv:1909.11957, 2019.

[86] Ari S Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to
win them all: generalizing lottery ticket initializations across datasets and optimizers.
arXiv preprint arXiv:1906.02773, 2019.

[87] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the
lottery ticket hypothesis: Pruning is all you need. In International Conference on
Machine Learning, pages 6682–6691. PMLR, 2020.

[88] Jimmy Lei Ba et al. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

[89] Fbgemm. Website. https://github.com/pytorch/FBGEMM.

[90] Xilinx. Deep learning with int8 optimization on xilinx devices. In Xilinx WP486,
2017.

[91] Multi30k. Website. https://github.com/multi30k/dataset.

[92] Iwslt. Website. http://workshop2017.iwslt.org/.

[93] Daniel Martin, Sandra Malpica, Diego Gutierrez, Belen Masia, and Ana Serrano.
Multimodality in vr: A survey. arXiv preprint arXiv:2101.07906, 2021.

107

https://github.com/pytorch/FBGEMM
https://github.com/multi30k/dataset
http://workshop2017.iwslt.org/

[94] Hyoukjun Kwon et al. Heterogeneous dataflow accelerators for multi-dnn workloads.
The 27th IEEE International Symposium on High-Performance Computer Architec-
ture (HPCA 2021).

[95] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. In Proceedings of the
44th annual international symposium on computer architecture, pages 1–12, 2017.

[96] Kenjiro Taura et al. A heuristic algorithm for mapping communicating tasks on
heterogeneous resources. In Proceedings of HCW, pages 102–115. IEEE, 2000.

[97] Kaiyuan Guo et al. A survey of fpga-based neural network inference accelerators.
ACM Transactions on TRETS, 12(1):1–26, 2019.

[98] Chris Riley. Basic tutorial for maximizing memory bandwidth with vitis and xilinx
ultrascale+ hbm devices, 2019.

[99] Shifeng Zhang et al. A dataset and benchmark for large-scale multi-modal face anti-
spoofing. In Proceedings of the CVF, pages 919–928, 2019.

[100] Selvarajah Thuseethan et al. Multimodal deep learning framework for sentiment
analysis from text-image web data. In 2020 WI-IAT. IEEE, 2020.

[101] Tao Shen et al. Facebagnet: Bag-of-local-features model for multi-modal face anti-
spoofing. In Proceedings of the CVF, 2019.

[102] Xinyu Li et al. Concurrent activity recognition with multimodal cnn-lstm structure.
arXiv preprint arXiv:1702.01638, 2017.

[103] Jialiang Zhang et al. Improving the performance of opencl-based fpga accelerator for
convolutional neural network. In Proceedings of the 2017 FPGA, 2017.

[104] Jiantao Qiu et al. Going deeper with embedded fpga platform for convolutional neural
network. In Proceedings of the 2016 FPGA, pages 26–35, 2016.

[105] Abhinav Podili et al. Fast and efficient implementation of convolutional neural net-
works on fpga. In 2017 IEEE ASAP, pages 11–18. IEEE, 2017.

108

[106] Xuechao Wei et al. Automated systolic array architecture synthesis for high through-
put cnn inference on fpgas. In Proceedings of the 54th DAC, 2017.

[107] Song Han et al. Ese: Efficient speech recognition engine with sparse lstm on fpga. In
Proceedings of the 2017 FPGA, pages 75–84, 2017.

109

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Experimental results of 2-FPGA system with comparisons to the existing designs in accelerating AlexNet 5 Convolution layers
	2. Comparison results on 2-ZCU102
	3. Convolution accelerator performance model accuracy analysis.
	4. Performance comparison for designs on 7Z020
	5. Performance details of the proposed design
	6. Resource comparison for designs on 7Z020
	7. Power comparison for designs on 7Z020
	8. Accelerators hyperparameters for 7Z020
	9. LSTM accelerator performance model accuracy analysis.
	10. Transformer parameters
	11. Performance of compression and quantization
	12. Processing element resource breakdown
	13. Accelerator buffer allocation
	14. Accelerator performance on ZCU102
	15. Transformer accelerator performance model accuracy analysis.
	16. End-to-end accelerator performance on real Transformer
	17. System performance modeling parameters
	18. Heterogeneous models
	19. State-of-the-art FPGA DNN accelerators
	20. Latency reduction breakdown comparing with the second step (baseline).
	21. Latency reduction breakdown comparing with the second step (baseline).
	22. The mapping performance and searching time performance comparison.
	23. The mapping performance and searching time performance comparison.
	24. The mapping uncertainty analysis.

	List of Figures
	1. Multi-modal multi-task model overview.
	2. VLocNet++:semantic visual localization.
	3. MMMT model for Camera-Radar data analysis.
	4. MMMT model for Emotion Recognition.
	5. A convolution layer and its computing Pseudo code
	6. Fully connected layer breakdown.
	7. LSTM architecture.
	8. Computations in self-attention.
	9. Multi-head self-attention.
	10. Transformer encoder and decoder.
	11. The state-of-the-art multi-accelerator chip
	12. Multi-FPGA system.
	13. AlexNet architecture.
	14. Convolution operation.
	15. ReLu activation.
	16. MaxPool.
	17. NVDLA and Shi-Dinanao Style Accelerator.
	18. Convolution layer tiling.
	19. Convolution accelerator architecture.
	20. Convolution accelerator computing kernel.
	21. Optimized Convolution nested loops.
	22. Convolution accelerator performance bottleneck.
	23. The transmission and computation workload sharing
	24. Two-FPGA data sharing examples.
	25. Two-FPGA system.
	26. Power measurement of on-board executions.
	27. Comparisons of predictable models and on-board executions on latency: employing different designs on single-FPGA and two-FPGA systems.
	28. The matrix-vector multiplication for Wxxt.
	29. The matrix-vector multiplication for Whht-1.
	30. The element-wise addition and multiplication.
	31. The computing kernels of LSTM accelerator.
	32. The data dependency of computing kernels in the LSTM accelerator.
	33. Applying fundamental patterns to wxxt.
	34. Applying fundamental patterns to whht-1.
	35. Applying fundamental patterns to a gate.
	36. Applying fundamental patterns to four gates.
	37. The unified-kernel LSTM accelerator architecture.
	38. Physical buffer size and weight size.
	39. Power measurement of accelerators on 7Z020.
	40. Related works.
	41. LayerNorm insertion of the encoder.
	42. LayerNorm scaling factor visualization.
	43. Sparse self-attention computations.
	44. Sparse FFN computations.
	45. Unified computing pattern.
	46. Loop iteration of the unified computing pattern.
	47. INT8 multiplication encoding.
	48. (a) The PE1 architecture and PE1 mapping to the multiplication in the unified computing pattern. (b) The PE2 architecture and PE2 mapping to the addition in the unified computing pattern.
	49. (a) Computing core hierarchy. (b) Accelerator architecture overview.
	50. The data flow of the computing core.
	51. The accelerator running schedule.
	52. Multi-modal multi-task model.
	53. The existing multi-modal multi-task models.
	54. Convolution and Fully-connection layer
	55. An example of communication-prioritized mapping and communication-aware mapping. The later slightly sacrifices the computation efficiency but reduces the overall system latency by avoiding expensive data movement.
	56. H2H mapping algorithm visualization. It includes 4 major steps: (1) computation-prioritized mapping; (2) weight locality optimization; (3) activation transfer optimization; (4) data locality aware remapping.
	57. The latency and energy performance comparison.
	58. Communication and computation ratio.
	59. The visualization of system latency non-linear increment

	Preface
	1.0 Introduction
	1.1 Challenges in Deploying Multi-modal Multi-task Model to Multi-accelerator
	1.2 Research Contributions
	1.3 Dissertation Organization

	2.0 Background
	2.1 Heterogeneous DNN Model
	2.2 Convolution in Computer Vision Domain
	2.3 LSTM and Transformer in Natural Language Processing Domain
	2.3.1 Long Short-term Memory
	2.3.2 Transformer

	2.4 Heterogeneous System

	3.0 Accelerator Optimization for Convolution Neural Networks (CNN)
	3.1 Background
	3.2 Motivation
	3.3 Convolution Accelerator and Analytical Model
	3.4 Experiment
	3.4.1 Experiment Setup
	3.4.2 Performance Evaluation

	3.5 Summary

	4.0 Software/Hardware Co-design for LSTM and Transformer Network
	4.1 Accelerator Design for Long Short-term Memory (LSTM)
	4.1.1 Background
	4.1.2 Motivation and Contribution
	4.1.3 LSTM Accelerator and Analytical Model
	4.1.3.1 Unifying the Computing Patterns
	4.1.3.2 Accelerator based on the Unified Pattern
	4.1.3.3 Analytical Model

	4.1.4 Experiment
	4.1.4.1 Experiment Setup
	4.1.4.2 Performance Evaluation
	4.1.4.3 Analytical Model Accuracy Analysis

	4.2 Software/Hardware Co-design for Transformer Network
	4.2.1 Background
	4.2.2 Motivation and Contribution
	4.2.3 Algorithm Optimization
	4.2.3.1 Weight Significance Analysis before Model Compression
	4.2.3.2 Pruning Strategy

	4.2.4 Hardware Optimization
	4.2.4.1 Unified Computing Pattern in Sparse Transformer
	4.2.4.2 Accelerator Design
	4.2.4.3 Accelerator Analytical Model

	4.2.5 Experiment
	4.2.5.1 Experiment Setup
	4.2.5.2 Model Compression Performance
	4.2.5.3 Accelerator Performance

	4.3 Summary

	5.0 Multi-modal Multi-task Model to Multi-accelerator Mapping
	5.1 Background
	5.2 Motivation
	5.3 Methodology
	5.3.1 System Formulation
	5.3.2 Mapping Algorithm
	5.3.3 Experiment
	5.3.3.1 Experiment Setup
	5.3.3.2 Mapping performance
	5.3.3.3 Performance comparison and mapping uncertainty discussion

	6.0 Conclusion and future work
	Bibliography

