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Today, quantum devices are comprised of qubits ranging from dozens to hundreds in

number. There is a class of problems that cannot be solved using classical computing.

Whereas, it’s expected that these tasks can be solved by the current and the future quantum

devices achieving supremacy over classical computing. However, the current state-of-the-art

quantum computing is riddled with qubit mapping problem. CNOT gates, that take two

logical qubits as input, can only be mapped to a physical qubit pair, adjacent to each other.

But the physical layout of the current quantum hardware is normally irregular. This renders

executing quantum programs directly on current quantum devices infeasible. Moreover,

the available quantum error correction is not adequate. This leads the state of quantum

computing to the Noisy Intermediate-Scale Quantum (NISQ) era, yielding the need of smaller

sized quantum circuits to be mapped onto the hardware. This requires thorough investigations

into designing solutions to achieve effective mapping strategy between logical and physical

qubits.

In this proposal, we are looking into four strategies to partially address the qubit mapping

problem namely – (i) a depth-aware SWAP insertion scheme, (ii) a slack-based qubit mapper,

(iii) the first time-optimal qubit mapping solution, and (iv) a crosstalk-aware decoherence-

mitigating qubit mapping compilation framework.
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1.0 Introduction

Quantum computing is a promising method to speed up important applications. These

applications include factoring large numbers [24], searching a database [8], and simulating

quantum systems [20]. With around 100 reliable qubits, quantum computers can already

solve useful problems that are out of reach for classical computers.

Recently quantum systems with 49-72 qubits have been announced by IBM, Google and

Intel. A number of quantum computers with around or less than 20 qubits are available to

the public [1] through IBM Q experience. Programmers can run programs on these quantum

computers. Despite the existence of certain tools such as IBM Qiskit [22], code must be

written with respect to low-level specifications. A complete quantum compiler tool-chain

needs to be built such that programmers can develop quantum algorithms that take full

advantage of the potentially disruptive computing paradigm without having to worry about

low level machine details.

The compilation of a quantum program is decomposed into two levels of translation. First,

it converts an algorithm into a logical circuit composed of universal gates. These circuits

are formulated independently of the hardware implementation. Second, it converts a logical

circuit into a physical circuit with respect to hardware constraints. The problems in the

first abstraction layer have been extensively [8, 20, 24] studied by theoreticians. However,

less attention has been paid to the second abstraction layer, which is critical to the efficient

execution of programs on real quantum computers.

This dissertation addresses the second level of translation: from a logical circuit to a

hardware-compliant physical circuit. In particular, we tackle the qubit mapping problem. In

realistic architecture, it is not possible to establish direct interactions between every pair of

qubits. In the superconducting quantum computers, qubits operate in the nearest neighbor

manner, in which direct interactions form a bounded degree graph. An example is shown in

Fig. 1 (a).

However, a logical circuit independent of hardware implementation assumes an unrestricted

architecture, where every two qubits are connected. A logical circuit must be modified to
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account for the coupling constraints in quantum hardware. The common practice is to

dynamically remap logical qubits to physical qubits via SWAP gates such that each two-qubit

gate is applied to two physically connected qubits. An example is shown in Fig. 1. If two

logical interacting qubits q1 and q4 are respectively mapped to Q1 and Q4, one of them has

to be “moved” closer to the other. For instance, by swapping q2 with q4, we can move q4

closer to q1.

Q1

Q2

Q3

Q4

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

H H X

X

(Q2)

(Q1)

H

X

X

(Q4)

(Q2)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

(a) (b) (c) (d)

Figure 1: (a) Hardware coupling graph, (b) the logical circuit which cannot run due to qubit

coupling constraints, (c) one possible way to make the circuit executable by swapping Q1

with Q2, and (d) another possible way to make the circuit executable by swapping Q2 with

Q4. Upper case Q represents a physical qubit while lower case q represents a logical qubit.

1.1 Circuit Noise Model

In quantum computer system, one of the major different between QC system and classical

system is that quantum computer suffers a lot from different type of noise (or errors), we will

introduce them one by one.

Single-qubit gates and decoherence noise: In superconducting transom systems,

single-qubit gates are implemented by driving the target qubit via the microwave. For example,

Rx and Ry totations can be implemented by sending microwave voltage singals. However all

these implementation might lead to some errors which is called single qubit error. Another

important qubit property is that the qubit is not stable and can have decay. Such decay can

happen in two ways: i) T1 relaxation (i.e. spontaneous loss of energy causing decay from |1 >
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to |0 >, and ii) T2 dephasing time (i.e. loss of relative quantum phase between |0 > and |1 >.

We can model both decays in a combined decoherence error: q(t) = (1− e−t/T1)(1− e−t/T2),

where t is qubit life time, and T1, T2 are constants characterizing the speed of the decays,

for some qubit q.

Q0 Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8 Q9

Q10 Q11 Q12 Q13 Q14

Q15 Q16 Q17 Q18 Q19

Crosstalk

Figure 2: Tokyo architecture and some crosstalk errors.

Two-qubit gates noise and cross-talk noise: Two-qubit gates play important roles

in quantum computation, as they implement entangling operations, that is, transformations

of one qubit conditioned on the state of the other qubit. Some commonly used two-qubit

gates include CNOT (controlled-not) gate and SWAP gate. Since two qubit gate needs two

corresponding qubits and it cause more errors, typically two qubit gate in most cases are the

major error in the whole quantum program, and there are plenty of studies to mitigation two

qubit error in both mapping and scheduling. Two-qubit gates are implemented by tuning the

frequencies of the two interacting qubits to the interaction frequencies. Then, the qubits are

held at that frequency for a duration of time t. Crosstalk occurs when a pair of two-qubit

gates (on connected qubits simultaneously) happened to use very close interaction frequencies.

The quantum state decays and crosstalk errors among two-qubit gates, are the noise my

works are primarily considering. All these two kinds of errors are related to the execution

time, such that reducing the entire circuit execution time is of very high significance. All

3



previous works try to minimize the gate count while no considering the possible prolonged

circuite depth, which could greatly increase the state decays and crosstalk errors. Our work

makes more sense in this perspective than the previously gate focused works.

1.2 Gate Optimality v.s. Time Optimality

Most previous studies on the qubit mapping problem [14,26,27,30,36,37] have focused

on gate-optimal solutions. They minimize the number of inserted SWAP gates. Some [14, 37]

enhance the parallelism among the inserted SWAP gates while aiming to minimize the gate

count. Zulehner et al. [37] proposed an algorithm using the A-star paradigm to minimize the

number of swap gates for a local layer of concurrent CNOT gates. Li et al. [14] formulate a

multi-objective function for exploiting the trade-off between different swap insertion strategies.

The study by Siraichi et al. [26] models the swap-insertion problem as a subgraph isomorphism

problem. Wille et al. [30] propose a model for global gate-optimal mapping using the SAT

solver. A number of studies [17, 29] note the variability of qubit error rates in the IBM

quantum computers and develop variability-aware qubit mapping strategies.

There are very few studies focusing on time-optimal qubit mapping. A time-optimal

solution minimizes the depth of the entire transformed circuit rather than the depth or the

number of the inserted SWAPs. OLSQ [28] is the only study that solves for optimal depth of

the entire circuit. It is based on a constraint solver and its mapping overhead depends on the

how far the optimal depth is from the ideal depth assuming every two qubits are connected.

The work by Childs et al. [2] forms the foundation of IBM Qiskit’s qubit mapper, however, it

uses a heuristic approach to minimize the depth of the inserted SWAPs rather than that of

the entire circuit. Lao et al. [13] introduces a framework that considers gate selection, qubit

mapping, and classical control constraints. Their qubit mapping heuristic aims to improve

the depth of the entire circuit by overlapping swaps with original gates in the circuit. But it

does not guarantee an optimal mapping solution.

To see why it is important to consider the interaction between inserted swap operations

and the original circuit, we use an example in Fig. 1. The original circuit in Fig. 1 (b) is not

4



executable. The transformed circuits in (c) and (d) are both gate optimal. However, only one

of them is time optimal. That is because the solution in Fig. 1 (c) inserts a swap involving

the slowest qubit, and as a result delays the execution of the entire circuit, while the solution

in Fig. 1 (d) does not.

A time-optimal solution not only reduces the execution time, but also improves the

reliability of the transformed circuit. It mitigates the decoherence effect. Qubits are error

prone. A qubit decoheres over time. It gradually lose its state information. The longer

a qubit operates, the less reliable it is. A time-optimal solution minimizes the impact of

decoherence for the qubits in the circuit, and results in higher fidelity of the circuit as a

whole.

Time-optimal qubit mapping is in general challenging. There are many possible permu-

tations of SWAPs to achieve the same desired qubit mapping and there are many possible

qubit mappings that can satisfy two-qubit gates in a given circuit. Even properly modeling

the problem is a challenge.

1.3 Crosstalk-Awareness

The states of qubits in NISQ devices, however, are quite volatile. A quantum system

can be affected by various types of quantum errors including decoherence error, readout

error, gate error, crosstalk error, among which the impact from crosstalk error has been

reported to be significant. Crosstalk exists due to unwanted coupling between concurrently

qubit operations, including both single-qubit and two-qubit gates. However, crosstalk for

single-gate is negligible compared to two-qubit gates. Therefore, crosstalk commonly refers

to the interference between concurrent two-qubit gates, which is also the focus of this work,

shown in Figure 3.

An example in Fig. 3 (a) shows two pairs of qubits (q1, q2) and (q3, q4) have crosstalk,

which means it will have higher error rate if two two-qubit gates run simultaneously than

independently on these two pairs of qubits. Among all error sources, crosstalk error dominates

the overall fidelity of the circuit.

5
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Figure 3: Crosstalk example: (a) Hardware coupling graph (b) Program IR, and initial qubit

mapping; (c) Crosstalk-oblivious hardware mapping of the program IR, where at least one

two-qubit gate needs to be delayed to avoid crosstalk; (d) Crosstalk-aware hardware mapping,

where no delay of gate is necessary.

Previous studies aiming at crosstalk mitigation can be categorized into two approaches:

(i) Hardware approach: Ding et al. [6] tune the frequency of each qubit in a program-aware

manner to alleviate the crosstalk. However this method relies on hardware to be capable of

tuning the frequency of qubits while not every quantum computer has such capability, for

instance, most IBM quantum computers use fixed frequency qubits [6]; (ii) Software approach:

Murali et al. [17] avoid running two gates that cause crosstalk at the same time by delaying

one of them to a later time step. Their approach uses a SMT solver to find the best timing

for each gate in the circuit to maximize the overall fidelity. However, their approach performs

gate scheduling only after the program has been compiled into a hardware-compliant circuit.

We find that we can mitigate crosstalk at a much earlier stage, the program compilation

stage, where hardware mapping and routing is determined for a given program IR. It can

already reduce a lot of crosstalk errors before it comes to the scheduling process.

We give an example in Fig. 3 to better demonstrate the idea of compile-time crosstalk

mitigation. Fig. 3 (a) shows an architecture with 6 physical qubits, and Fig. 3 (b) a program
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IR with two CX gates. Two pairs of links are prone to crosstalk error, which are {(Q0, Q1),

(Q4, Q5)} and {(Q1, Q2), (Q3, Q4)} marked in Fig. 3 (a). As shown in the program IR, there

are two CX gates CX(q0, q2) and CX(q3, q5), which cannot run immediately due to the qubit

coupling constraint that only two neighboring hardware qubits can communicate, and due to

the initial mapping qi → Qi (i=0 to 5). After performing hardware mapping and routing,

there are two candidate hardware-compliant circuits in Fig. 3 (c) and (d) which are both

executable. In Fig. 3 (c), it performs SWAP(q1, q2) and SWAP(q3, q4), and in Fig. 3 (d)

it performs SWAP(q0, q1) and SWAP(q3, q4). However, for Fig. 3 (c), SWAP(q1, q2) and

SWAP(q3, q4) are on two links that are prone to crosstalk, and hence one of them has to

be delayed with an instruction barrier, no matter how good the runtime scheduler is in the

next stage. But, for Fig. 3 (d), SWAP(q0, q1) and SWAP(q3, q4) are not on crosstalk-prone

links, and hence neither gate needs to be delayed. Overall the hardware mapping in Fig. 3

(d) suits better for crosstalk mitigation than that in Fig. 3 (c).

Hardware mapping is an important component in the workflow of quantum program

compilation and execution as shown in Fig. 4. A quantum program is compiled into a

quantum IR (in terms of quantum circuit) and then the IR mapped to a hardware compliant

circuit with proper mapping and routing through swap gates insertion (as of Qubit Mapping).

Current qubit mapping techniques [14,32–34,37] are crosstalk-oblivious. Crosstalk is typically

postponed to the runtime scheduling stage of the quantum program, and hence misses

crosstalk optimization opportunities across the compilation stack.

1.4 Overview

In this dissertation, we aim to address the problems of time-aware and crosstalk-aware

qubit mapping. The dissertation can be partitioned into four major works:

• First, a depth-aware SWAP insertion scheme that yields promising results in reducing the

depth of generated circuit. Our results show we can reduce the depth of the transformed

circuit by up to 30% compared with two best known qubit mappers [14,30], and in the

meantime, have on average less than 3% additional gates over a large set of representative
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Figure 4: Quantum Program Compilation Workflow

benchmarks.

• Then, a slack-ware qubit mapping solution. We discover the key is to find intervals

with slack in the circuit and to use the slack to hide the latency of inserted swap

operations. Our implemented qubit mapper named SlackQ automatically searches for

dynamic qubit mappings given an input program on a quantum architecture with arbitrary

qubit connectivity. The experiments show that SlackQ improves performance by up to

2.36X, by 1.62X on average, over 106 representative benchmarks from RevLib [31], IBM

Qiskit [22], and ScaffCC [10]

• Furthermore, a time-optimal qubit mapper which guarantees its optimality. We present

the first theoretical model for time-optimal qubit mapping without any implicit constraints.

The theoretical model can be flexibly extended to practical algorithms. e discovered

time-optimal solutions for quantum fourier transformation (QFT) on both 1D and 2D

nearest neighbor architecture (using our search framework). Our solution for 1D nearest

neighbor architecture is the same as a manual solution reported by Maslov [16]. But our
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optimal solution for 2D architecture is for the first time reported.

• Lastly, a crosstalk-aware qubit mapping framework that takes not only circuit depth but

also circuit fidelity by reducing the crosstalk of the generated circuit. We propose an

optimal solution and a reasonable heuristic solution to tackle the crosstalk problem.

All the four works focus on addressing the qubit-mapping problems. The first three

works aimed to adresses mainly the time-awareness aspects of the qubit mapping problem.

These three works gradually improved the performance one by one, with depth-aware and

slack-aware work in non-optimal ways and TOQM works in the optimal way. After addressing

the time-awareness aspects, we integrate the consideration of fidelity of the circuit into our

works by trying to tackle the crosstalk errors in qubit mapper as well. which is the fourth

work. The fourth work is based on the three previous works and produced a time-aware and

crosstalk-aware solution in the end.
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2.0 Background and Related Work

2.1 Quantum Computing Basics

2.1.1 Qubit

A quantum bit or qubit, is the counterpart to classical bit in the realm of quantum

computing. Different from a classical bit that represents either ‘1’ or ‘0’, a qubit is in the

coherent superposition of both states. It is considered as a two-state quantum system that

exhibits the peculiarity of quantum mechanics [19]. An example is the spin of the electron

that the two states can be spin up and spin down.

The mathematical form of a qubit is represented as a combination of |1⟩ and |0⟩, which is

shown as |Φ⟩ = α |1⟩+ β |0⟩. α and β are the probability amplitudes and are both complex

numbers, which have to comply with the constraint: |α|2 + |β|2 = 1. With the increasing of

the number of qubits, the total number of states that can be represented grow exponentially.

For n qubits, there are at most 2n states that can be represented at the same time.

2.1.2 Quantum Gates

There are two types of basic quantum gates. One type of basic gates is the single-qubit

gate, a unitary quantum operation that can be abstracted as the rotation around the axis of

the Bloch sphere [19] which represents the state space of one qubit. A single qubit-gate can

be parameterized using two rotation angles around the axes. There are several elementary

single-qubit gates including the Hadamard (H) gate, the phase (S) gate, and the π/8 (T)

gate [19]. The other type of basic gates is the multi-qubit gate. However, all complex quantum

gates can be decomposed into a sequence of single qubit gates H, S, T, and the two-qubit

CNOT gate. Thus we only focus on the two-qubit CNOT gate. The CNOT gate operates on

two qubits which are distinguished as a control qubit and a target qubit. If the control qubit

is 1, the CNOT gate flips the state of the target qubit, otherwise, the target qubit remains

the same.
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2.1.3 Quantum Circuit

Quantum circuit is composed of a set of qubits and a sequence of quantum operations on

these qubits. There are various ways to describe the quantum circuits. One way is to use

the quantum assembly language called OpenQASM [4] released by IBM. Another way is to

use the circuit diagram, in which qubits are represented as horizontal lines and quantum

operations are the different blocks on those lines. In Fig. 5 (b), we show a simple example of

quantum circuit diagram. A single-qubit gate is denoted as a square on the line, and one

CNOT gate is represented by a line connecting two qubits and a circle enclosing a plus sign.

2.2 Noisy Intermediate-scale Quantum Hardware

The concept of Noisy Intermediate-scale Quantum (NISQ) device was first proposed

by John Preskill [21], that represents the kind of quantum computer with limited number

(dozens to hundreds) of qubits and also with limited reliability due to the physical qubits

being implemented without quantum error correction. NISQ devices may be able to exhibit

quantum supremacy over classical computing on certain computation tasks, but the lack of

reliability would make the circuit difficult to scale. The NISQ technology may not change

the world immediately, but it’s a good first step towards the more powerful quantum devices

in the future.

The industry has been deeply involved in the development of NISQ devices. Google,

Microsoft, IBM all released their NISQ devices [9,11,12], with qubits number ranging from 14

to more than 70. Among these devices, IBM’s QX series stand out as are the first quantum

chips available to public via cloud access. It has been intensively used by more than 100,000

users since 2017 [30]..
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2.3 Qubit Mapping Problem

To execute a quantum circuit on a real machine, logical qubits must be mapped to

physical qubit on the target hardware. When applying a two-qubit gate, the two participating

logical qubits must be mapped to physically connected qubits. Due to the bounded degree

connectivity of physical qubits on current devices, it is generally considered impossible to

find an initial qubit mapping that satisfies all two-qubit gates in the entire circuit.

A common practice is to dynamically map the logical qubits by inserting SWAP gates.

A swap gate exchanges the states of the two operand qubits. There are different ways to

implement a SWAP. A typical way to implement a SWAP is to use 3 CNOT gates if the links

between physical qubits are bidirectional. Our model does not impose constraints on how a

SWAP is implemented. Rather, we set the latency of a SWAP as a parameter in our model.

We use various SWAP latencies according to the architectures we are evaluating.

The qubit mapping problem takes a logical circuit and a hardware coupling graph as

input, outputs a transformed circuit. Only swap operations are allowed to be added into the

transformed circuit. After transformation, all two-qubit gates must be hardware compliant.

If a two-qubit gate g is performed on logical qubits q1 and q2, when running g, q1 and q2

must be physically connected.

One logical qubit can be mapped to different physical qubits at different points of circuit

execution. Once a two-qubit gate is completed, both of its logical qubits can be remapped to

some other physical qubits in the future. An example of qubit mapping is shown in Fig. 5 (c)

and (d).

2.4 Parallelism in Quantum Circuit

Like in classical computers, parallelism is also important in quantum computers. Paral-

lelism comes from independent operations on different qubits. Gates on the same qubit have

to run sequentially. For instance, if a and b are two consecutive gates on the same qubit, and

a is before b in the program, then gate b depends on a. Gates that do not share a single
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Figure 5: (a) Physical qubit connectivity; (b) the original logical circuit (logical qubits q1,

q2, q3, q4, q5 are mapped to physical qubits Q1, Q2, Q3, Q4, Q5); The gate marked in red

is the CNOT gate that cannot be executed due to a connectivity constraint (as Q2 and Q5

are not physically connected). (c) uses 1 swap but the execution time of the circuit is not

increased; (d) uses 1 swap but the execution time of the circuit is increased. The operations

marked in blue are swap operations. We assume a swap operation can be decomposed into

three CNOT gates and each gate takes 1 cycle in this example.

qubit are independent. A two-qubit gate depend on up to two gates since it involves two

qubits. A dependence graph can be built with respect to the partial order between gates

mentioned above. It is a directed acyclic graph (DAG) as the edges have directions and there

are no cycles in the graph.

In a transformed circuit, the parallelism could be between the gates in the original circuit

(as g2 and g3 in Fig. 5 (b)), between the gates that are inserted to the original circuit,or

between a gate in the original circuit and a newly inserted gate (as swap 3,5 and g1 in Fig.

5(c)). A good qubit mapping algorithm should consider all types of parallelism. However,

most existing studies only consider the first types of parallelism. Our work is the first one

that systematically exploits all type of parallelism and builds a formal model for the overall

performance of the transformed circuit.

Noisy Intermediate-Scale Quantum (NISQ [21]) represents the standard of current

mainstream quantum computers with the capacity of from dozens to hundreds of qubits.

This type of QC lacks the ability to self-correct its bit errors, which makes it vulnerable to

the ambient noise and unstable to maintain its integrity.
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Table 1: The bottlenecks of current NISQ devices

NISQ bottlenecks

Low fidelity
High error rate of quantum gates: 2% for CNOT gates, 0.3% for

single-qubit gate on average

Time-sensitive
Short qubit lifetime (couple of ∼us), unsuitable for long-run quantum

circuit

Unreliable Need large number of trials for consolidating final result

Error-prone Error in one quantum gate can lead to incorrectness of the entire circuit

Unscalable Unable to scale to large quantum circuits

The NISQ devices exhibit traits of being unreliable, low fidelity, time-sensitive and error-

prone, unscalable (explained in table 1). A qubit is volatile and error prone. It gradually

decays over time and may have phase and bit flip errors. It may completely lose its state after

a certain period of time, called coherence time. Quantum error correction (QEC) codes can

detect error syndromes and fix them. However, QEC needs to use a large number of redundant

physical qubits. A realistic QEC circuit may need more than 10,000 physical qubits, which is

not possible for today’s NISQ device. Without QEC, a program must terminate within a

threshold amount of time. IBM proposed the metric of quantum volume [3] for evaluating

the effectiveness of quantum computers which accounts for not only the width of the circuit

(the number of qubits), but also the depth, how much time the circuit can execute. It’s of

great urgency to build a compilation system that we can map the logical circuit to physical

quantum device in a way that targets less execution time. An execution-time aware mapping

strategy can make the program less vulnerable to the drawbacks of the NISQ devices.
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2.5 Quantum Program Transpile Process

From high level programming language to quantum gates which ready to be executed on

hardware quantum machine, there are several critical process in the middle. The process is

shown in Fig.3, we first need to transfer the high level program language into intermediate

representation (IR) shown in Fig.3. To enable the execution of a quantum circuit, the logical

qubits in the circuit must be mapped to the physical qubit on the target hardware. When

applying a two-qubit gate, the two participating qubits need to be physically connected to

each other. Due to the bounded degree connectivity of physical qubits on current devices, it

is generally considered impossible to find an initial mapping that makes the entire circuit

hardware-compliant.

The qubit mapping process takes a logical circuit and a hardware coupling graph as

input, outputs a transformed circuit. Only swap operations are allowed to be added into the

transformed circuit. After transformation, all two-qubit gates must be hardware compliant.

The common practice is to remap the logical qubits is inserting SWAP gates. A swap gate

exchanges the states of the two input qubits. There are different ways to implement a

SWAP. One way is to insert three CNOTs to implement a SWAP. However, prior study uses

crosstalk-oblivious mapping for mitigating the crosstalks. We are first try to mitigate crosstalk

errors at this process which can have multiple advantages. For the example we shown in

Fig.3, there are several different choices to insert swaps, instead of using the swap-oblivious

way, we try to use the swaps which does not cause or cause tiny crosstalk errors, and we

called this method crosstalk-aware mapping approach.

After the mapping process, it comes to gate scheduling process. The crosstalk-adaptive

schedule will choose to delay the gates which cause the crosstalk errors. And our approach has

two benefits, we mitigate the crosstalk errors prior to mapping process, so it will mitigate some

crosstalk errors caused by swaps, then we don not need to worry about these gates. Another

benefit is that we can set some crosstalk tolerance, find the trade-off between crosstalk errors

and depths overhead, which try to maximize the overal fidelity instead of just delaying the

gates.
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3.0 A Depth-Aware SWAP Insertion Scheme

3.1 Introduction

In this chapter, we propose the one of the first depth-aware qubit mapping schemes for

quantum circuits running on arbitrary qubit connectivity hardware. Our depth-aware qubit

mapper searches for the mapping that minimizes the transformed circuit depth and keeps

the gate count within a reasonable range. Our results show we can reduce the depth of the

transformed circuit by up to 30% compared with two best known qubit mappers [14, 30],

and in the meantime, have on average less than 3% additional gates over a large set of

representative benchmarks.

3.2 Insight and Design

3.2.1 Metric

As our work is a depth-aware SWAP insertion scheme, we first precisely define the metric

for characterizing the depth of a circuit. In order to fully explain the metric, we need to

introduce the concepts of dependency graph and critical path.

The dependency graph represents the precedence relation between quantum gates in a

logical quantum circuit. The critical path is referred to as the longest path in the dependency

graph.

Definition 1. Dependency Graph : The dependency graph of a quantum circuit C with a

set of gates Ψ is a Directed Acyclic Graph Gψ = (Ψ, Eψ), Eψ ⊆ ψ × ψ. A directed edge from

node ψ1 to node ψ2 exists if and only if the output of gate ψ1 is (part of) the input of gate ψ2

in the quantum circuit C.
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Definition 2. Critical Path : Given a dependency graph Gψ = (Ψ, Eψ) of a quantum circuit.

The critical path is CP =Max(Path(ψ1, ψ2)) s.t. ψ1, ψ2 ∈ Eψ and ψ1 ̸= ψ2

The depth is characterizing the number of execution steps of a quantum circuit, which is

tantamount to the critical path length of the circuit. The longest path in the dependence

graph describes the minimal number of steps the circuit needs in order for every gate’s data

dependence be resolved. In Algorithm 1, we show how we calculate the critical path.

We first sort the nodes in the directed acyclic graph in topological order. Then we process

the nodes in that order. For each node, we check the earliest start time for each of its

predecessors, and add it by the latency of that predecessor, then we choose the maximum

and use it as the earliest start time of this node. The maximum of all nodes’ earliest start

time added by their latency is the critical path length.

We use the critical path length as the metric for ranking different swap insertion options.

3.2.2 Framework Design

With the metric precisely explained in previous section, now we continue to explain the

work flow of our framework and the intuitions behind it.

Before delving into the details of this framework, we need to define the layer and the

coupling graph.

Definition 3. Coupling Graph : The coupling graph of a quantum architecture X with a set

of physical qubits Q is a directed graph G = (Q,E), E ⊆ Q×Q. The edge Ex = (Q1, Q2) ∈ E

if and only if a CNOT gate can be applied to Q1 and Q2 in X with Q1 being the control qubit

and Q2 being the target qubit.

Definition 4. Layer : A quantum circuit C can be divided into layers L = l1, l2, l3, ..., lm,

while
⋃m
i=1 li = C and

⋂m
i=1 li = ∅. The set of gates at layer li can run concurrently and act

on distinct sets of qubits.
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Algorithm 1: Calculate the Critical Path of a Circuit

Input :The circuit’s dependency graph G(V,E)

Output :The critical path CP

earliest start = {};

CP = 0;

for n ∈ V in topological order do

temp = 0;

for p ∈ V’s predecessors do

if temp < earliest start[p] + latency[p] then

temp = earliest start[p] + latency[p];

end

end

earliest start[n] = temp;

if CP < temp + latency[n] then

CP = temp;

end

end

return CP ;

To divide a circuit into layers, we group the gates that have the same earliest start time

(defined in Algorithm 1) into the same layer. The order of the layers is thus determined by

the order of the earliest start times.

We use an iterative process to find the mapping. Our framework is depicted in Fig. 6.

And this iterative process is explained as below. We start the framework by taking the input

of the coupling graph (also denoted as Qubit Connectivity) and the original circuit’s initial

layer.

We process the circuit layer by layer. Given a layer, we perform the following steps.

• We check the layer to see if it is hardware-compliant based on the coupling graph and

the qubit mapping before current layer is scheduled.
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Figure 6: The Qubit Mapping Framework

• If YES, we move on to next layer.

• If NO, we invoke our mapping searcher to search for (the set of) swaps that are necessary

to solve the current layer. We consider depth-awareness during the selection of the set of

swap gates – the resulted mapping of which generates the smallest critical path length

(described in Section 3.2.3). After we find a hardware-compliant mapping, we move to

the next layer.

After all layers are processed, the mapping terminates.

3.2.3 Circuit Mapping Searcher

Here we describe the specific mapping searcher we use to overcome the coupling constraint

for a given layer.

We build our method upon the A-star algorithm for finding valid mappings that minimize

the number of only the inserted SWAP gates [37]. We extend it by changing the ranking

metric and allowing it to search for feasible mappings that do not necessarily have the smallest

SWAP gate counts. It will help us search in a way that minimizes the depth while not

significantly increasing the gate count.

We rank the swap options by the increase in the critical path length. Since it is an iterative
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process that handles the gates layer by layer, it is tempting to consider only minimizing the

depth of the already processed circuit when deciding which swaps to use.
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Figure 7: (a) Layout of an example architecture with 4 physical qubits (b) Example of a

quantum circuit, the dashed line separates the processed circuit and the remaining circuit (c)

Inserted SWAP overlaps with remaining circuit instead of existing processed circuit

But the example in Fig. 7 shows that not only the processed circuit, but also the remaining

circuit can help overlap the SWAPs with existing gates in the circuit without affecting the

critical path. As shown in Fig. 7, for the CNOT gate (in red), there is no way it can overlap

the necessary SWAPs with the processed circuit (dubbed as the circuit before the dashed

line). But when we look after the dashed line, the three single-qubit gates can overlap with

inserted SWAP. And this renders less impact to the depth of the resulting circuit, compared

to if we insert the SWAP on Q1 and Q2.

Based on this intuition, we design our scheme of choosing the SWAP candidate as in

Fig. 8. For each of the hardware-compliant remapping candidates that we acquire from the

A-star searcher, we calculate the critical path after merging the candidate (set of) swap(s)

with both the processed circuit and the not-processed circuit. We choose the mapping that

yields the shortest critical path.

3.2.4 Optimizations

We use two ways to optimize our proposed solution. One is to expand more nodes during

the A-star search, and another one is to search into deeper levels.
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3.2.4.1 Expand More Nodes

In the search process for A-star, the normal routine is to expand the one node of least

cost at each step. Here, we can expand more than one node at each step and increase the

search space. The number of nodes that can be expanded at a time can go from 1 to larger

number.

3.2.4.2 Deeper Search

We increase the depth of the A-star search tree. In normal case, the search process ends

when it finds the first node that minimizes the number of SWAPs, which is reflected as a

certain level of the A-star tree. To this end, the second optimization that we applied here is

to continue the search into a deeper level of the A-star tree. We can specify and tune the
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parameter of the deeper search.

By tuning these parameters, there are more possible nodes added into our search space.

With a larger search space, we have a larger possibility to jump out of one local optima and

go to the global optima.

3.3 Evaluation

In this section, we evaluate our depth-aware swap insertion scheme (denoted as DPS)

and compare it with the two state-of-the-art qubit mappers. The experiment setup is listed

below:

• Benchmarks: We use the quantum circuits from RevLib [31], IBM Qiskit [22], and

ScaffCC [10].

• Hardware Model: We use IBM’s 20-qubit Q20 Tokyo architecture, which was used

in [14]’s work. The qubit connectivity graph is shown in Fig. 9.

• Evaluation Platform: The mapping experiments are conducted on a Intel 2.4 GHz

Core i5 machine, with 8 GB 1600 MHz DDR3 memory. The operating system is MacOS

Mojave. We use IBM’s Qiskit [22] to evaluate the depth of the transformed circuit.

• Baselines: We compare our work with two best know qubit mapping solutions, the work

by Zulehner and others [37] (denoted as Zulehner), the Sabre qubit mapper from [14]

(denoted as Sabre), and IBM’s stochastic mapper in Qiskit. Since IBM’s Qiskit mapper is

significantly worse in terms of gate count and depth than all other mappers we evaluate,

as also evidenced in the work by Zulehner et al. [37], we do not present Qiskit results.

• Metrics: We are comparing the depth and gate count of the transformed circuit circuits

for all different strategies.

Table. 2 shows a summary experimental results. For gate count, we compare the total

gate count generated in the transformed circuit. For depth, we compare the increased depth

for each benchmark, denoted as “Depth-delta” in Table 2. The improvement columns provides

the ratio between one of the two baseline’s depth-delta and our depth-delta. We use the term
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minimum improvement to denote the improvement over the best of the two baselines, and the

term maximum improvement to denote the improvement over the worse of the two baselines.

We discuss our findings from the following three aspects: depth reduction, gate count

change, and the trade-off between gate count and depth.

3.3.1 Depth Reduction

For depth reduction, as shown in Table 2, our proposed solution outperforms the two

baselines Zulehner and Sabre. Comparing depth-delta, the added depth of the circuit, our

approach outperforms the better of the two baselines by more than 20% and up to 3X. For

five out of the twenty-three benchmarks, our improvement on depth-delta is less than 20%

compared with the better of the two baselines. However, for these cases, our approach still

achieves considerable improvement over the worse of the two baselines. In these cases, it is

possible that one of the two baselines happen to achieve very good depth in the transformed

circuit and there is not much potential to improve. But our approach is still able to find a

good mapping for these benchmarks and the performance is on par with the better of the

two baselines.

3.3.2 Gates Count Changes

The primary goal of our depth-aware qubit mapper is to minimize the depth of the

circuit. However, we discover that our qubit mapper can sometimes reduce the gate count.

We discover that four out of the twenty three (17%) benchmarks, our qubit mapper yields

the smallest number of gates among all three versions of qubit mappers. For 57% of these

benchmarks, our method is ranked among top-2 of the three qubit mappers in terms of gate

count. For the benchmarks where our method yields the largest gate count, the increased

gate count percentage is negligible. On average, our depth-aware qubit mapper adds 3% gate

count. From the experiment results, we can see that our solution does not greatly increase

the number of gates while reducing the depth of the circuit.
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3.3.3 Trade-off between Gate Count and Depth

While all previous works focus on reducing the total gate count (and the depth among the

inserted gates themselves) after qubit mapping transformation, it is crucial to think about

the trade-off between the resulted gate count and depth. Sometimes the choice made during

the search process that favors the reduced gate count, might adversely affect the critical

path. In Table 2, the Sabre mapper reduces the number of gates for 10-qubit QFT by 1.1%

compared with Zulehner ’s mapper, but increases the depth by 44.5%. For the sym 9 246

benchmark, Sabre reduces the gate count by 3.8% compared with our approach, but increases

the depth by 25.5%. Therefore a small reduction in the gate count may not be worthwhile if

it increases the circuit depth significantly.
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Table 2: Summary of Experiment results of Work One

Benchmark Total Gate # Depth Depth-delta Improvement
name n Z S DPS Original Z S DPS Min Max
4gt5 75 5 131 122 119 47 44 44 29 1.52 1.52
mini-alu 167 5 435 396 432 162 131 125 119 1.05 1.10
mod10 171 5 361 328 298 139 117 89 39 2.28 3
alu-v2 30 6 804 717 795 285 261 241 201 1.20 1.30
decod24 6 533 476 509 190 187 150 141 1.06 1.33
mod5adder 6 849 780 858 302 256 256 222 1.15 1.15
4mod5-bdd 7 94 94 94 41 18 23 17 1.06 1.35
alu-bdd 288 7 126 117 135 48 36 36 30 1.2 1.2
majority 239 7 915 780 885 344 265 194 182 1.06 1.46
rd53 130 7 1619 1508 1619 569 529 482 384 1.26 1.38
rd53 135 7 419 410 422 159 116 112 109 1.03 1.06
rd53 138 8 186 183 174 56 37 40 21 1.76 1.90
cm82a 208 8 899 944 1007 337 219 295 213 1.03 1.38
qft 10 10 266 263 281 63 47 96 44 1.07 2.18
rd73 140 10 347 329 338 92 84 79 67 1.18 1.25
dc1 220 11 2868 2685 3129 1038 820 697 681 1.02 1.20
wim 266 11 1505 1415 1511 514 431 450 311 1.39 1.45
z4 268 11 4453 4477 4972 1644 1162 1492 1076 1.08 1.39
cycle10 2 110 12 9143 8666 10115 3386 2467 2640 2421 1.02 1.09
sym9 146 12 493 454 472 127 118 138 86 1.37 1.60
adr4 197 13 5299 5017 5530 1839 1439 1599 1210 1.19 1.32
rd53 311 13 467 413 446 124 138 157 87 1.59 1.80
cnt3-5 179 16 325 238 286 61 79 59 43 1.37 1.84

We compare the total gate count generated. For depth, we compare the increased depth for each benchmark,
denoted as “Depth-delta” here. The improvement represents the ratio of a baseline’s depth-delta divided by
DPS’s depth-delta. Min/Max represents the improvement over the best/worst baseline.
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Figure 9: IBM Q20 Tokyo Physical Layout [14]
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4.0 SlackQ: Slack-Aware SWAP Insertion Scheme

4.1 Introduction

A good time-aware qubit mapper needs to yield a hardware-compliant circuit while having

optimal or near-optimal execution time. In this chapter, we discover the key is to find

intervals with slack in the circuit and to use the slack to hide the latency of inserted swap

operations. We present important considerations for detecting and exploiting slack in the

circuit. Our implemented qubit mapper named SlackQ automatically searches for dynamic

qubit mappings given an input program on a quantum architecture with arbitrary qubit

connectivity. The experiments show that SlackQ improves performance by up to 2.36X, by

1.62X on average, over 106 representative benchmarks from RevLib [31], IBM Qiskit [22],

and ScaffCC [10].

4.2 Insight and Design

To improve the parallelism between the inserted SWAP operation and the gates in the

original circuit, we discover that it is important to exploit the slack intervals in the circuit.

The slack represents the idle time in the original circuit for a given set of qubits. The key

is to hide the latency of inserted swap operations by using the qubits that are idle at that

time of the circuit execution. This forms the main idea of this paper and we insert SWAP

operations such that they leverage slack in the circuit as much as possible.

4.2.1 Slack

We define slack as the idle time between two consecutive gates on the same qubit(s) and

can be used to perform SWAP operation without affecting the total execution time of the

entire circuit. The slack time is usually caused by dependence between gates and/or variation
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of gate count on individual qubits.

The slack time due to dependence between gates only occurs when there are two-qubit

gates in the circuit. Recall that a CNOT gate depends on up to two other gates, since

CNOT is a two-qubit gate. If the qubits are running at different speeds, one of the other

qubits might be ready earlier than the other. The faster qubit thus needs to wait for the

slow qubit to finish before the CNOT gate can be executed. On the other hand, if a circuit

has a number of qubits, and the number of gates on each qubit is different (even if they are

all independent), then some qubits will inevitably be idle at some point of the execution.

The slack intervals can be used for inserting swap operations that resolve qubit mapping

constraints. An example of slack in the circuit is shown in Fig. 10.

Hq1  

q2  

q3  

q4  

S H

g3

g2

g1

slack

Figure 10: Slack in the circuit: Since g3 depends on g1 and g2, g1 finishes earlier than g2,

therefore, for qubit q3, there is a slack interval of three cycles (assuming each gate takes one

cycle) between g1 and g3 in the circuit.

There are two types of slacks in the circuit. One type does not require the rescheduling of

the gates, and we define it as fixed slack. The other type of slacks may have variable number

of cycles, and we denote it as flexible slack. A good qubit mapper needs to search globally

and exploit both fixed and flexible slack.

An example of fixed slack is shown in Fig. 11 (b). Assuming each gate takes one cycle,

there is a fixed slack between g1 and g2 on qubit q2. Here it cannot delay g2 or start g1 early

if the total execution time needs to remain unchanged. If qubit q2 is used to perform another

gate such as the swap operation during the three cycles, it will not affect the execution time
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of the entire circuit. In this case, the number of cycles that can be used on q2 between g1

and g2 is fixed.

Sometimes fixed slack does not always exist. It is necessary to move the gates in order to

create slacks for latency hiding purpose. We show an example Fig. 11 (c) and (d), where slack

can be created by moving g1. Let’s say cnot(q1, q2) and cnot(q3, q4) are scheduled on cycle

1. The three single-qubit gates on Q1 are scheduled on cycle 2,3,4 respectively. With this

going on, g3 expects to be executed on cycle 5 at the earliest. g3 depends on g1. g1 can be

scheduled at the second cycle, the third cycle (Fig. 11 (c) ) or the fourth cycle (Fig. 11 (d))

without delaying g5. To this end, a slack with zero, one or two cycles can be created between

g2 and g1, depending on when g1 is scheduled. And this type of slack between g2 and g1

is flexible. On the other hand, since g1 is not directly executable due to the connectivity

constraint in Fig. 11 (a), the more slack intervals before g1 there are, the better it is for

hiding the swap latency. In Fig. 13, we show that by moving g1 forward, q2 and q3 can have

more slack intervals before g1, and swap(3,4) is inserted which utilizes the slack, resulting in

a total circuit time of 6 cycles only, which is optimal in this case.

It is worth mentioning flexible slack could be cascading as the rescheduling of one gate

might affect its descendants or predecessors. For the fixed slack, the gates involved cannot

be delayed without affecting the circuit time. Flexible slack allows one or multiple gates to

delay start within reasonable time window(s). Flexible slack are more complicated than fixed

slack. It is necessary to analyze and exploit flexible slack in a systematic way.

4.2.2 Dynamic Gate Scheduler

We model the resolution of qubit mapping conflicts as a dynamic scheduling process.

Gates in the circuit are scheduled as soon as their dependencies are resolved. When a gate

cannot be scheduled due to a connectivity problem, we insert a (combination of) swap(s) to

change the qubit mapping so that the gate can be executed on the physical device. All the

gates that have already been scheduled at one point of scheduling are called the Processed

Circuit, and the gates that still await scheduling are called the Remaining Circuit.

Fig. 13 shows an example of how the scheduling works. With initial mapping of

{q1, q2, q3, q4} → {Q1, Q2, Q3, Q4}, the first two CNOTs cnot(q1, q2) and cnot(q3, q4) and the
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three single-qubit gates on Q1 can be scheduled without remapping. At this point, those

gates that are scheduled are part of the Processed Circuit. The remaining two CNOT gates

(g1 and g3) that cannot be scheduled are part of the Remaining Circuit. Gate g1 cannot be

scheduled because Q2 and Q3 are not connected in the device. Gate g3 cannot be scheduled

because g1 must be scheduled before g3 (write-after-read dependency on Q2). The dashed

lines divide the circuit into processed part and remaining part.

To minimize the circuit time, we search for swap candidates for g1 that results in maximally

hiding swap latencies using circuit slack. Fig. 12 shows the key idea behind the searching for

optimal swap candidates. The search reveals multiple hardware-compliant candidates that

utilize different sequences of swaps to achieve compliance. We choose the optimal candidate

by calculating the Slack Utilization of each candidate, and choosing the one with the best

utilization. In Fig. 13, we choose swap candidate swap(q3, q4) since it best hides the swap

latency behind the 2-cycle slack shown in Fig. 11 (d). Now g1 is satisfied and scheduling can

proceed.

4.2.3 Critical Gates

The gates in the remaining circuit pending scheduling whose dependences have been

resolved but connectivity problems haven’t been can be divided into two groups: those on

the critical path and those that are not. We denote the gates on the critical path as critical

gates, and the others as non-critical gates. In parallel computing, the critical path length is

equal to the execution time when there is enough parallelism. In this case, the critical path

is equal to execution time as the maximum parallelism (the maximum number of gates that

can run concurrently) is at most the same as the number of qubits. Thus it is important to

prioritize the scheduling of critical gates over non-critical gates.

To prioritize critical gates, what we need to do is to resolve the connectivity problems

of critical gates as early as possible. Imagine a scenario where two gates have connectivity

problems, one gate is critical and the other is non-critical gate. Their connectivity issues

cannot be resolved at the same time. Under this situation, we should resolve the critical gate

first, as resolving the non-critical gates can be likely delayed without affecting the overall
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execution time.

We use an example from Fig. 14 to show how criticality can play an important role in

determining the overall circuit time. We use a five-qubit quantum machine, whose connectivity

is shown in Fig. 14 (a). This example circuit consists of 4 CNOTs and 3 single-qubit gates,

with g1, g2 scheduled, and g3, g4 not yet scheduled due to connectivity issues. It’s crucial

to note that g3 is on the critical path, while g4 is not. The two gates g3 and g4 cannot be

resolved at the same time if both of them want to use only one swap, since qubit C is the

on the path from T1 to T2, and from X1 to X2. Whether to prioritize g3 over g4 when

using the hub qubit C for swap, makes a big difference in terms of circuit time. We show

this discrepancy by illustrating two strategies and their resulting circuits.

• Strategy One - Prioritizing critical gates Resolve g3 first. Shown in Fig 14 (c), it is

necessary to insert swap(q2, q3) before g3. After g3 is resolved and scheduled, swap(q2,

q4) is inserted such that g4 can be resolved. swap(q2, q4) can take advantage of the slack

on logical qubits q2 and q4, as logical qubit q1 is processing three single-qubit gates. This

strategy results in total circuit time of 10 cycles, assuming CNOT and single-qubit gate

both have latencies of one cycle.

• Strategy Two - Not distinguishing critical gates from non-critical path Resolve

g4 first. Shown in Fig 14 (d), it is necessary to insert swap(q3, q4) before g4, and let g4

be scheduled. In the meantime, g3 has to wait, which results in the critical path being

elongated due to the delay of the execution time of g4 and swap(q3, q4). It is because

when g4 is being executed, the mapping that allows g4 must be kept, which will delay all

the remaining gates. In this case, it is not desirable to delay all the remaining gates as

they are on critical path. Delaying gates that are critical will have a more detrimental

impact than delaying gates not on critical path. After g4 is resolved, the fastest way to

resolve g3 is to swap(q2, q4) before g3. This strategy as a whole results in total circuit

time of 13 cycles, which is 30% more than strategy one.

It can be seen from this example the later resolving of the non-critical gates are highly

likely to overlap with the gates on the critical path, resulting in less impact to overall depth.
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4.3 Implementation

Based on the design consideration on Section 4.2, we implement a slack-aware qubit

mapping framework called SlackQ.

4.3.1 Overview of SlackQ

Our algorithm is an iterative gate scheduler which dynamically resolves the connectivity

issues encountered during the scheduling process. Initially, a dependency graph of the circuit

is built. Then we traverse the dependency graph of the circuit and schedule the gates

one by one. We keep a frontier set of gates ready to be scheduled. When resolving the

connectivity issues, we invoke a priority-queue based searcher for swap candidates. It returns

hardware-compliant candidates. Among these hardware-compliant candidates, the one that

has the best slack utilization is chosen, and the scheduling process proceeds. We describe the

algorithm below with respect to the pseudo-code shown in Algorithm 2:

Step One - Initialization This step prepares for the searching process. It builds the

dependency graph of circuit. It finds the gates that do not depend on any other gates. Then

it places those gates into the frontier F . It also initializes the processed gate set P as empty

set, and the remaining gate sets R as the entire circuit.

Step Two - Schedule Ready Gates This step goes through frontier list F . It finds all

gates in F that can be scheduled immediately due to having no connectivity issues according

to the current mapping π. It schedules all these gates. When finishing the scheduling of one

gate, it finds the descendant gate and see if this descendant’s other parent has also been

scheduled. If this is the case, the descendant gate’s dependency is resolved. It then places

this descendant gate into F . This step is repeated until F contains no gate that can be

scheduled with respect to the current qubit mapping.

Step Three - Resolve Qubit Mapping Conflicts We go through the frontier F again,

finding the gates with resolved dependencies but are constrained by the current mapping and

are on the critical path of the remaining circuit. Put those gates into a set called Fcritical.

Run a priority queue based searcher for hardware-compliant mappings. Our mapping searcher
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here returns a list of hardware-compliant mappings candidates, called M . Among these

candidates, it finds the one (call it m) with the best slack utilization. Then we use the swap

sequence associated with m to update the mapping π and add the swap sequence into the

processed circuit P.

Step Four Repeat Step Two and Three until all gates are scheduled in the circuit. Return

transformed circuit.

In Sections 4.3.2 to 4.3.3, we describe a few important aspects of this algorithm.

4.3.2 Choosing the Best Mapping Candidate

With multiple hardware-compliant mappings, it is necessary to determine the candidate

that has the best slack utilization. The best slack utilization means the inserted swap sequence

makes best use of the slack currently existing in the circuit. To evaluate these mapping

candidates, for each of them, we tentatively insert the associated swap sequence and monitor

how the swap insertions affect the dependence graph and the critical path. We trace the

nodes that are affected due to the inserted swaps and detect how much their start/ending

time changes.

We again use the example circuit and qubit coupling graph in Fig. 5 to show how our

evaluation approach works. We first show the original dependency graph in Fig. 15 (a). The

numbers on gates denote the start/end cycle of each gate. For instance, [0, 1] represents the

start cycle as 0 and the ending cycle as 1. We assign a dummy gate node at the beginning of

the circuit for each qubit q1 ˜ q5, for the sake of illustration. The dummy node starts at time

0 and takes 0 cycles. In this example, we have two possible mapping candidates whose swap

sequences are to be inserted on different qubits. We need to choose the better one out of the

two mapping candidates. The first mapping candidate shown in Fig. 15 (b) inserts one swap

on logical qubits q2 (the qubit for g4) and q3 in between gates g4 and g5, corresponding

to the circuit in Fig. 5 (d). It affects gates g5 and g6, which are marked in red. For each

affected node in the dependence graph, to calculate its earliest start time, one needs to check

each of its parent nodes’ ending time, choose the maximum one, and use it as its own start

time. In this example, added swap result in change in g5’s start time as well as the change in
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Algorithm 2: Dynamic Gate Scheduler

Input :Frontier F , initial mapping π, processed circuit P , remaining circuit R

Output :Transformed circuit T

while F not empty do

E = getSchedulableGates(F, π);

while E not empty do

F.remove(E);

P.add(E);

R.remove(E);

for g ∈ E do

for d ∈ g.children do

if d’s dependency is resolved then

F.add(d);

end

end

end

E = getSchedulableGates(F, π);

end

Fcritical = select critical gates (F );

mapping candidates = resolve conflicts (Fcritical, π);

m = best slack utilization (mapping candidates, P, R);

π = update mapping with swaps(m, π);

P.add(m.swaps);

end

return P;

g6’start time, and delays the entire circuit by 3 cycles. Here we assume each gate takes one

cycle. We assume a swap is implemented using 3 CNOT gates and thus is 3 cycles.

The second mapping candidate shown in Fig. 15 (c) inserts one swap on logical qubits
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q3 and q5 placed right in front of g5. It results in no changes to the start/end cycles of the

entire circuit, since there is slack on physical qubits q3 and q5. Obviously, it should choose

the mapping candidate illustrated in Fig. 15 (c).

4.3.3 Navigating the Candidate Search Space

We use a priority queue based searcher for qubit mapping candidates. The search space

consists of state nodes that represent possible mappings from logical qubits to physical

qubits. A mapping can be represented as π : {q1, q2, ..., qn} → {Q1, Q2, ..., Qn}. Applying

swaps on top of a mapping can convert it into another mapping. Specifically, if we apply

”swap qi, qj” on a certain mapping πold and create the resulting mapping πnew, we will have

πnew[qi] = πold[qj] and πnew[qj] = πold[qi]. Given Fcritical and current mapping π, it starts

searching the state space of all feasible mappings that satisfy Fcritical. It picks a node to

expand and enumerate all possible parallel one-step swaps as the node’s successors.

We use a priority queue that is similar to that in [37]. Unlike the work by [37] where

the search stops when the first state node that resolves all connectivity conflicts is retrieve

from the priority queue, our search stops after m expansions since the mapping candidate

with minimal swap count is found, or when the gate count of the mapping candidate that is

just retrieve has less than or equal to k times more gates than the minimal swap count. We

set m = 20 and k = 2 such that the returned mapping candidate will have reasonable gate

counts. After all mapping candidates have been retrieved, we rank them with respect to the

metric of best slack utilization discussed above.

The priority queue based search returns a set of hardware-compliant mappings for which

the gate count is bounded with respect to the minimal gate count by k times.

It will expand the state node of π by doing the following: It enumerates all possible

one concurrent swap, two concurrent swaps, three concurrent swaps, all the wap up to n/2

concurrent swaps, where n is the number of qubits in the circuit; Each set of concurrent

swaps lead to a new mapping, and the new mapping becomes a child of π. The total number

of successors of π is up to
(
n
1

)
+

(
n
2

)
+ ... +

(
n
n

)
. In this process, we only keep the nodes

that at least have a swap that involves a logical qubit in Fcritical to prune the search space.
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All newly generated successors will be checked to see if it resolves qubit mapping conflicts in

Fcritical. Each successor of π can be further expanded in the same way. The search goes on

until it finds a set of state nodes which meets our criteria. The state nodes would have the

mapping that solves all conflicts. Exhaustive search in this space is prohibitive. We use a

priority queue to guide the expanding of nodes in the frontier of the search tree. The nodes

that need to be expanded are placed into the priority queue with respect to a cost function

f(x) = g(x) + h(x), with g(x) representing the cost of the path from root node to x and

h(x) representing the estimate cost from x to target node. In our implementation, g(x) is

the number of swaps that have already incurred for state node x. The h(x) estimates at

least how many more swaps are still needed, which is approximated as the shortest physical

distance of the qubits for at least one CNOT that is in the Fcritical set and hasn’t be resolved.

The heuristic function is similar to a classical A-star algorithm. Unlike A-star, our algorithm

does not terminate when the mapping candidate with minimal cost function is achieve when

d, i.e., when the mapping candidate with minimal swap gate count is achieved. Instead,

we continue the search and keep expanding nodes from the priority queue up to a certain

point when we have enough feasible mapping candidates. The output will be a list mapping

candidates sorted with respect to the swap gate count in ascending order.

4.4 Evaluation

In this section, we evaluate our slack-aware swap insertion scheme (SlackQ) and compare

it with the two state-of-the-art qubit mappers, respectively by [37] and [14].

4.4.1 Experiment Setup

Benchmark. We use 106 benchmarks from RevLib [31], IBM Qiskit [22], and ScaffCC [10].

Baseline. We compare our work with two best known qubit mapping solutions [37] (denoted

as Zulehner) and the Sabre qubit mapper from [14] (denoted as Sabre). Metrics. We compare

the execution time of the transformed circuits generated by different qubit mapping strategies.
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It is worth mentioning that our approach can take any gate latency as input parameters and

generate transformed circuits based on the input. However, to make evaluation results as close

to real machines as possible, we use the results from the study by [15]. In this study, different

types of quantum architecture are investigated, and the studies reveal that two-qubit gates

usually takes around twice as much time as single-qubit gates. Hence we assume single-qubit

gates take 1 cycle and two-qubit CNOT gates take 2 cycles in our experiments. The time is

reported as the total number of executed cycles. Platform. We use IBM’s 20-qubit Q20

Tokyo architecture [14] as the underlying quantum hardware. The qubit mapping approach

is implemented in C++.

4.4.2 Experiment Analysis

We categorize the 106 benchmarks into four categories. Benchmarks in the first category

each has less than 200 gates, and we denote them as mini benchmarks. There are 22 mini

benchmarks. The second category has benchmarks with 200 to 1,000 gates. We name

this category as small benchmarks. There are 39 small benchmarks. The third category of

benchmarks have 1,000 to 10,000 gates. We name it as medium benchmarks and there are

21 benchmarks in this category. The fourth category of benchmarks have 10,000 to 200,000

gates. We refer to it as large benchmarks and there are 24 benchmarks in this category. The

results for mini, small, medium, and large benchmarks are presented in Fig. 16, Fig. 17, Fig.

18, and Fig. 19 respectively.

It can be observed from the results that as the problem size scales, the performance

improvement brought by SlackQ improves. For most benchmarks in the mini and small

category, the speedup is between 1.1X and 1.5X. However, for the medium and large category,

the speedup for most benchmarks is above or around 1.5X. The average speedup for mini

benchmarks is 1.45X and for small, medium, and large benchmarks, the average speedup

becomes 1.55X, 1.70X, and 1.86X respectively. The results show that our approach works

well in general, and in particular for larger benchmarks.
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Figure 11: (a) Qubit coupling graph; (b) An example of fixed slack in the quantum circuit;

(c) and (d) Examples of flexible slacks, where g1 can be moved within a time window without

affecting the circuit execution time, the slack before g1 can be either 1 cycle or 2 cycles

assuming every gate takes one cycle. Note the slack between g1 and g3 may also vary due to

scheduling of g1.
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40



[0, 1]

Dummy

Dummy

Dummy

Dummy

Dummy

[1, 2]

[2, 3]

[3, 4]

[4, 5] [0, 1]

Dummy

Dummy

Dummy

Dummy

Dummy

[1, 2]

[1, 2]
[2, 3]

[6, 7]

[7, 8]

SWAP

[3, 6]

[0, 1]

Dummy

Dummy

Dummy

Dummy

Dummy

[1, 2]

[1, 2]

[2, 3]

[3, 4]

[4, 5]

SWAP

[0, 3]

(a) (b) (c)

g1 g2

g3

g4

g5

g6 g1 g2

g3

g4

g5

g6 g1 g2

g3

g4

g5

g6

[1, 2]

(q1)

(q2)

(q3)

(q4)

(q5)

(q1)

(q2)

(q3)

(q4)

(q5)

(q1)

(q2)

(q3)

(q4)

(q5)

Figure 15: (a) The generated dependency graph from the example of Fig. 5. The numbers

displayed on each gate refer to the start/end cycle of this gate. (b) One mapping candidate

whose inserted swap results in two later gates delaying its start/end cycles. (C) Another

mapping candidate whose inserted swap does not affect the start/end cycles of the entire

circuit.
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Figure 16: Speedup for Mini Benchmarks (< 200 gates)
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Figure 17: Speedup for Small Benchmarks (< 1000 gates)
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Figure 18: Speedup for Medium Benchmarks (< 10000 gates)
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5.0 Time-Optimal Qubit Mapping

5.1 Introduction

In this section, we tackle the time-optimal qubit mapping problem. We first present a

simple and effective model for representing the complete search space. The search space is

constructed with respect to an input logical circuit and a bounded degree hardware coupling

graph. We then propose a search algorithm that is complete and optimal. Our contributions

are summarized as follows:

• We present the first theoretical model for time-optimal qubit mapping without any implicit

constraints. The theoretical model can be flexibly extended to practical algorithms.

• We present a search framework based on our time-optimal model. It consists of space

pruning, redundancy elimination, and comparative filtering. It significantly reduces the

time complexity and makes time-optimal search feasible.

• We discovered time-optimal solutions for quantum fourier transformation (QFT) on both

1D and 2D nearest neighbor architecture (using our search framework). Our solution for

1D nearest neighbor architecture is the same as a manual solution reported by Maslov [16].

But our optimal solution for 2D architecture is for the first time reported. Interested

readers for QFT solutions can refer to Section 5.7.1.1.

• We present a practical extension of our theoretical model. It prunes the branches in the

search space unlikely to yield effective mapping solutions. Our practical implementation is

not guaranteed to be optimal, however, it still outperforms state-of-the-art qubit mappers

with speedups ranging from 0.99X to 1.36X, and on average 1.21x, over representative

benchmarks from RevLib, IBM Qiskit, and ScaffCC.

• We implemented our search framework for both optimal and practical solutions. We open

sourced the code at GitHub1.

1Our implementation is made publicly available at the GitHub repository: https://github.com/time-
optimal-qmapper/TOQM.
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5.2 Motivation

It is non-trivial to achieve time optimality for the qubit mapping solution. As there are

many possible permutations of circuit gates and inserted swaps, the search space is large even

for small input. We use quantum fourier transform (QFT) to demonstrate the challenges in

finding a time-optimal solution.

QFT is at the heart of integer factorization [25]. It serves as the basis for many important

quantum algorithms. QFT is also one of the most challenging benchmarks for qubit mapping.

It is because QFT requires all-to-all qubit connection. Each qubit needs to interact with

every other qubit in the program.

The QFT circuit has a regular pattern. It has n qubits and n(n− 1)/2 generic two-qubit

gates. We follow the convention by Maslov et al. [16] for describing a QFT skeleton circuit.

A concrete QFT circuit includes Hadamard (H) gates and controlled phase gates. Following

this convention, a single-qubit is absorbed into a nearby two-qubit gate to form a generic

two-qubit gate. Any two-qubit gate can be efficiently implemented and we assume they have

the same latency as in [16]. Hence the entire circuit is described using generic two-qubit

gates of the same latency. We denote the original two-qubit computation gate as GT gates

for the simplicity of discussion.

Each logical qubit qi interacts with every other logical qubit qj, denoted as GT (qi, qj)

where j ̸= i. The logical QFT circuit with 6 qubits is shown in Fig. 20 (b).

Let’s look at the simple linear nearest neighbor (LNN) architecture as shown in Fig. 20

(a), where the capital case Q represents physical qubits. In this architecture, the physical

qubits are arranged on a straight line. Each physical qubit only communicates with the qubit

on its left or right. However, the logical QFT circuit requires each qubit to interact with

every other qubit. The logical circuit in Fig. 20 (b) cannot directly run on Fig. 20 (a) no

matter which initial qubit mapping is used.

Due to the all-to-all qubit interaction pattern in QFT, it is hard to obtain an effective

qubit mapping on LNN, let alone an optimal solution. Using our search algorithm described

in the next section, we find an optimally transformed QFT-6 circuit. The solution is shown

in Fig. 20 (c). Although the circuit size is small, it is not difficult to see a butterfly pattern
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Figure 20: Adapting QFT logical circuit to LNN architecture: (a) 6-qubit LNN and initial

mapping, (b) logical qft-6 circuit where each line represents a logical qubit qi, and (c) physical

qft-6 circuit where each line represents a physical qubit Qi. The last swap gate in red in

(c) is added for showing the symmetric pattern. Our solver does not have the swap in its

returned solution.

in the transformed circuit represented using physical qubits. With further analysis in Section

5.7, this pattern can generalize to larger QFT circuits and ensure linear depths.

We note that our solution for QFT in LNN is the same as the manual solution by

Maslov [16]. However Maslov [16] cannot find an optimal solution manually for 2D architecture

due to the complexity of the architecture, while our mapper can, as described below.

Another prototypical hardware architecture is a structured two-dimensional lattice. Each

qubit has up to 4 neighbors. For instance, IBM Melbourne architecture has a 2×N grid

like topology, as shown in Fig. 21. Maslov [16] did not provide a manual solution for the

2D architecture. But the paper predicts a lower bound depth of 3n + O(1). Using our

algorithm, we found a generalizable pattern for arbitrary size QFT. Our generalized solution

has 3n+O(1) depth which matches the lower bound depth provided by Maslov [16]. The

asymptotic term is only at the constant component. Hence our solution is not only confirmed

to be optimal for small inputs but also for arbitrary size inputs. Our solution is presented in

Section 5.7.

Time-optimal solutions, even for small size circuit, could be very useful. If an optimal

solution for a logical circuit has recurring pattern, we can obtain the optimal solution for
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Figure 21: 2×N Qubit Coupling Graph

small-size inputs, and use that to deduce the generalized solution. The solutions to the

QFT program on two types of architectures demonstrate the effectiveness of our algorithm

in discovering such patterns for circuit families. For finding a solution to QFT-6 on LNN,

our mapper takes less than 1 second. For finding a solution to QFT-8 on 2D architecture, it

takes less than 30 seconds. In the following, we will describe our model and search algorithm

in details.

5.3 Time-Optimal Mapping Framework

In this section, we define a time-optimal model for the qubit mapping problem. We first

define the search space. Then we present a guided search framework. We prove the optimality

of the framework in Section 5.4 and Appendix 5.5.

5.3.1 Search Space

We discover that any valid execution of a circuit can be partitioned into a sequence of

states. We refer to cycle as a unit of time. A circuit is decomposed with respect to its state

at each cycle. A state of the circuit represents a qubit mapping and the specific busy/idle
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status of each qubit. The status of a qubit is represented as which gate it is executing if the

qubit is busy, or which gate it has just completed if the qubit is idle. An example is shown in

Fig. 22 (a).

1 2 3 4 5

q1
g1

g2
g6

q2 g3 g4 g5

q3 swap(3,5)

q4
q5 swap(3,5) g5

A B C D E

(a) (b)

R

A

B
C

D

E

………..
…

…
…

…

Figure 22: (a) Cycle-by-cycle partition of a 5-cycle circuit, (b) the search path representing

the execution in (a). R is the root node. E is a terminal node.

We define our search graph. Each node in the search graph represents a state of the

circuit (which also includes a cycle number).

A node expands into one or multiple children nodes. Each child node represents a possible

state the circuit will be in at the next cycle. A child node’s cycle number is its parent’s

cycle number + 1. The executing gate(s) of a child node in its own cycle must satisfy the

constraints of the qubit coupling and gate dependence.

By enumerating all possible combinations of gates and swaps in next cycle, a node can

determine its complete set of child node(s). The circuit makes progress when a gate in the

original circuit executes. The circuit updates its qubit mapping when an inserted SWAP

finishes its execution.

We let the root node be the initial state of the circuit at cycle 0 where all qubits are idle
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and no gate in the original circuit has been scheduled.

We say a node is terminal, if all logical qubits have completed their gates in the original

circuit, and the last gate of all just finished at the cycle of this node.

The goal is to find a terminal node such that its path to the root node is the shortest.

There is only one root node but there could be more than one terminal node. An optimal

solution corresponds to an optimal terminal node. The path from the root node to a terminal

node represents a transformed circuit.

Fig. 22 (b) shows a valid path from the root node to a terminal node. It corresponds to

the example circuit in Fig. 25 and the execution in Fig. 22 (a). The node E is a terminal

node, and R is the root node.

5.3.2 Guided Search Framework

Since there is a finite number of gates and physical qubits, there is only a finite number of

combinations of gates and swaps that can be executed simultaneously at any given moment.

Thus each node in the search graph has only a finite number of child nodes. An exhaustive

breadth-first search (BFS) algorithm is guaranteed to find the optimal terminal node in finite

time. However, BFS search is not realistic as it is brute-force and search space is large even

when the input is small.

We present a guided search framework. It uses a priority queue to keep track of the nodes

that need to be expanded. We show our framework in Fig. 24. It first initializes the priority

queue to be empty and then inserts the root node into the priority queue.

Next it extracts a node from the priority queue, expands it, and push new nodes into

the queue. The three steps repeat until a terminal node is for the first time popped out of

the priority queue. It is based on A* search. Each node is associated with a priority (cost).

We set the priority (cost) function to be admissible to ensure the the A* search returns an

optimal solution. The detailed definition of the priority function and the proof for optimality

is shown in Section 5.4 and Appendix 5.5.

Using A* guarantees optimality. We also ensure efficiency by space pruning techniques. It

is often possible that the circuit reaches the same state using different combinations of gates
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and swaps. If the only difference between two nodes is their timestamps, then the slower one

of the two nodes can be dismissed without affecting optimality. We prune these nodes in the

Expanding component and the Filtering component in Fig. 24.

The node expander is responsible for expanding the node extracted from the priority

queue. After expansion, the children nodes of the expanded nodes will be collected. We apply

several restrictions on top of these children nodes. Below are the criteria that we want these

children nodes to meet:

• Coupling One node needs to satisfy the current qubit coupling constraints. Thus we

first filter out the nodes that cannot satisfy coupling constraint.

• Dependency The gates scheduled in a child node should also have their dependency

resolved. This means all parent gates of any newly added active gate should be finished

prior to the child node’s cycle.

• Redundancy Check We check two kinds of redundancy. First we check that whether

at least one active gate of the child node depend on some gate in the parent node’s active

gates (except that the active gate is the first gate on a qubit). This criteria is based on

the fact that any non-depending gate in the child node could have been placed earlier in

the parent’s sibling nodes.

Second we check if there are cyclic swaps, which means identical swaps applied con-

secutively to the same two qubits. It does nothing but cancel out the previous swap

effect.

We have a filtering pass on the expanded nodes that meet the criteria we listed above. In

this filtering pass, every expanded node has its hash value calculated based on its current

qubit mapping (assuming all active swaps have taken effect). For each node, we look at its

hash value and compare it to all the previous nodes (in the priority queue) that have the

same hash value. When comparing one expanded node with all the previous nodes that have

the same hash value, we check for equivalence and relative goodness.

• Equivalence Check We check if this expanded node is equivalent to any previous node.

Equivalence means the two nodes will have finished the same set of gates assuming all

active gates have taken effect. The active gates on same qubits will finish in the same
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exact cycle. The current cycle must be the same. If we find this equivalence, we filter out

this expanded node. An example is shown in Fig. 23 (a).

• Comparative Analysis If there’s no equivalence found, we then switch to comparative

analysis between the expanded node and the previous node with same hash value. We

look at the projected finish cycle on each qubit (if the qubit is busy). If, for all qubits,

the expanded node has fewer finished gates but longer projected finishing time, we know

that this expanded node is less desirable than this previous node. We then filter out

this expanded node as itself and its sub-tree will not lead to a better solution than one

previous node. An example is shown in Fig. 23 (b).

5.4 Optimality Guarantee

5.4.1 Admissible Cost Function

We assign each search node v in the search graph a cost f(v). The cost f(v) consists of

two parts g(v), h(v) such that

f(v) = g(v) + h(v) (1)

g(v) represents the length of the path from the root node to v, which is the number of cycles

already executed. h(v) is a heuristic cost function as a lower bound on the number of cycles

from v to any terminal node.

The circuit now contains two parts with respect to a search node v: (1) the part that has

been scheduled due to v and v’s ancestor nodes, and (2) the remaining circuit that hasn’t

been scheduled. The cost g(v) is for part (1), and cost h(v) is for part (2). An example is

shown in Fig. 25.

The cost for part (1) is trivial as a search node contains a time stamp. The cost h(v) for

part (2) is more complex.

Our heuristic function h(v) is defined with respect to the dependency graph Grem and

the qubit mapping πrem of the remaining circuit. If the node v contain any active swap that

hasn’t been completed, we assume swap has taken effect for calculating πrem. As it is not
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difficult to obtain remaining dependence graph from search node v and v’s ancestor nodes,

we omit the details here.

Let Grem = (Vrem, Erem) be the dependency graph of the gates in the remaining circuit.

Thus Vrem consists of the gates that haven’t been scheduled or have been scheduled but

executed in part, and Grem is a directed acyclic graph. We define the heuristic function h(v)

via induction on Grem.

Let g1, g2, · · · , gn be a topological ordering on the vertices (gates) in Grem. For each gate

g,let len(g) be the number of cycles that g needs to execute (if len(g) is partially executed,

len(g) is equal to the length of the unexecuted part). We will define tmin(g), which is a lower

bound on the time when g begins to execute.

Base case: If gi is a single-qubit gate that has no predecessors in Grem, then tmin(gi) = 0,

meaning, gi may begin to execute immediately.

Inductive case: Suppose gate gi depends on gate h1, h2, · · · , then gi can only begin after

these gates have finished. First let u = maxi tmin(hi) + len(hi). We must have tmin(gi) ≥ u.

If gi is a single-qubit gate, then we simply take tmin(gi) = u.

If gi involves two qubits, then we also have to consider the delay caused by inserting

SWAP gates. Suppose that gate gi involves qubits qa and qb. Let Ha be the set of gates (in

Grem) that involve qa and are direct or indirect predecessors of gi. Similarly we may define

the set Hb. Let Ta be the sum of the number of cycles needed by the gates in Ha. Then u−Ta
represents the “slack” space that may be used by qubit qa to perform SWAPs. Similarly we

define Tb.

Now, in the current qubit mapping πrem, let d(a, b) be the shortest distance between

qubit qa, qb. Then we need at least d(a, b)− 1 SWAPs in total on qubit qa with some other

qubit, and on qb with some other qubit. We are only concerned with the delay on qa and qb

but not the delay on the qubit which they have SWAP with. Suppose we place r SWAPs

on qa and s SWAPs on qb, then the delay on qa is max{r · len(SWAP )− (u− Ta), 0}, and

the delay on qb is max{s · len(SWAP )− (u− Tb), 0}. We have r + s ≥ d(a, b)− 1. We let

r+ s = d(a, b)− 1 as it will not increase the cost, and enumerate all possible combinations of

(r, s) with r = 0 . . . d(a, b)− 1. We take the pair (r, s) that minimizes the larger of the two

delays. Let u′ be the minimized delay, then we take tmin(gi) = u+ u′.
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Definition 5. (Heuristic cost function h(v)) Having computed tmin(g) for each gate g, we

define the heuristic cost h(v) to be

h(v) = max
g∈Vrem

tmin(g) + len(g)

An example of calculating the cost function with respect to a CNOT gate is shown in Fig.

26. The state node F we focus on is in Fig. 26 (a), where it has already scheduled the g1

and started SWAP Q4, Q5. We assume each single original gate in the circuit takes 1 cycle

and each swap takes 3 cycles.

The remaining dependency graph of the circuit is shown in Fig. 26 (c). Since g1 is

completed, s45 has executed in part, Grem consists of the remaining gates and part of s45.

First we set tmin(g2) = tmin(g3) = 0 as they have no predecessors. tmin(s45) is also 0. Then

tmin(g4) = 1 as it depends on the single-cycle gate g3.

The qubit mapping πrem after gate s45 is shown in Fig. 26 (b). g5 is not immediately

executable, as q2 and q5 are not adjacent to each other. The shortest path between them is

Q2 → Q3 → Q4 with a distance of d = 2. Now at least d− 1 = 1 total SWAP needs to be

inserted in total on q2 with some other qubit, and on q5 with some other qubit.

Suppose g5 could be executed immediately, then it would have got start time as u = 2.

On the part of qubit q2, gate g5 depends on g3 and g4, 2− 2 = 0, so there’s no slack space on

q2. On the part of qubit q5 the predecessor is part of s45, which is 2 cycles. Therefore, the

slack space on qubit q5 is 0 cycle too. Hence tmin(g5) = 2 + 3 = 5, as inserting SWAP on

either q2 or q5 introduces a delay of 3.

Finally, tmin(g6) = 6 since q1, q2 are adjacent, and the cost for search node F is 8.

Another example is for the search node A in Fig. 26 (e) where g1 and swap(3, 5) is

scheduled in cycle 1. The induced qubit mapping is in Fig. 26 (f). Since each CNOT in

remaining circuit can be immediately executed, the cost of A is the critical path of the

remaining circuit plus 1, which is 5. Therefore search node A is better than search node F as

its cost is lower.

It is tempting to assume that, since two qubits can move towards each other by performing

SWAPs simultaneously, the optimal position for two qubits to meet is always at exactly the
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middle of the shortest path between them. Hence one may simply need to insert dummy

gates of length (d− 1) · len(SWAP )/2. This is not true as it is oblivious to the slack in the

original circuit that can potentially absorb SWAP overhead. An example is demonstrated in

Fig. 27. Here we assume that, in the initial mapping, the distance between the two qubits

is 5, so at least 4 SWAPs are needed. Suppose we let the two qubits meet in the middle.

Assume a SWAP takes 2 cycles. Then we need to insert a 4-cycle delay for each qubit. The

length of the critical path is 8 cycles. However, suppose we let the first qubit do 1 SWAP, and

let the second qubit do 3 SWAPs. Then the length of the critical path becomes 6 cycles. This

demonstrates the necessity of trying all possibilities of splitting delay to two participating

qubits when calculating the cost.

5.4.2 Optimality

Our heuristic cost function h(v), in effect, computes a lower bound on the time needed

by the remaining circuit through two different ways, and takes the larger of the two bounds.

The first way considers the immediate predecessors of each gate. The second way considers

the indirect predecessors and potential SWAPs. We prove rigorously it is a lower bound time

of the remaining circuit in Appendix through Lemma 5.5.1. We relegate the details to the

Appendix.

Lemma 5.4.1. The cost function defined in Eq. 1, f(v) = g(v) + h(v) is admissible.

Proof. We’ve shown in Lemma 5.5.1 that the heuristic function h(v) never overestimates

the execution time of the remaining circuit. And also g(v) is the number of cycles already

executed till node v. Therefore the cost function f(P ) is admissible.

Theorem 5.4.2. The A-star search algorithm we proposed here is complete and optimal.
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Proof. It has been shown that A-star search will find an optimal solution if the problem

satisfies the following conditions:

1. Each node in the search graph only branches into a finite number of child nodes. This is

true, because the set of gates that can possibly execute at any given moment is finite.

2. Each transition increases the cost of the path. This is true for our problem, because each

gate takes at least one cycle to execute, and so increases the cost by at least 1.

3. The heuristic cost function is admissible. This is proven in the lemma above.

Thus our algorithm satisfies all conditions for optimality.

5.4.3 Initial Mapping

Our optimal mapper works in two different modes: (1) It finds an optimal solution given

an input initial mapping, and (2) It finds both optimal initial mapping and the transformed

circuit.

For (1), it is trivial. Our previous technical description already addressed how to find the

solution after initial mapping is given. For (2), we start with a random initial mapping. Then

we allow at most d consecutive cycles of pure swaps before any original gate is scheduled,

which represents a search for initial mapping. In the meantime, we modified our cost function

such that the pure swap cycles at the beginning are not counted, as if the circuit starts

at some initial mapping resulted from these consecutive pure swap cycles. The parameter

d is defined as the maximum of the longest path (without going through any node twice)

between any two qubits in the physical architecture. It is because one mapping layout could

be transformed into another mapping layout with at most the number of cycles equivalent to

the maximum longest path length in the graph, assuming swaps on disjoint qubits run in

parallel.

For the pure swap cycles, our hash filter is also applied, ensuring that no unique initial

mapping will appear twice in the priority queue. It is because one initial mapping can be

achieved through different ways of swap combinations.
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5.5 Proof of Optimality

Lemma 5.5.1. For each state node P , the heuristic cost function h(P ) is a lower bound of

the length of all paths from P to a terminal node in the search graph.

Proof. Let Grem = (Vrem, Erem) be the dependency graph of the remaining circuit. For each

gate g ∈ Vrem, let t
∗
min(g) be the length of the actual shortest path from P to any state node

where gate g has already been scheduled to execute. In the next few paragraphs we will prove

that tmin(g) ≤ t∗min(g) for every gate g. Let X be any terminal node in the search graph, and

let t∗ be the distance between P and X. Since each gate must finish execution at state X,

for each gate g we have t∗ ≥ t∗min(g) + len(g). Together, for each gate g we have

tmin(g) + len(g) ≤ t∗min(g) + len(g) ≤ t∗

Thus h(P ) = maxg tmin(g) + len(g) ≤ t∗. This shows that h(P ) is a lower bound on the

length from P to any terminal node.

Base case: If g is a single-qubit gate that has no predecessors, then t∗min(g) = 0, since it

can be scheduled to execute immediately. Note that our definition of Grem includes gates

which are only partially executed, so gates which have no predecessors do not need to wait

current gates to finish.

Inductive case: Suppose gate g depends on a number of other gates. If g is a two-qubit

gate then we also have to consider potential SWAPs before g, even if g has no apparent

predecessor in Grem. We will give two lower bounds on t∗min(g) and show that tmin(g) is equal

to the larger of the two bounds.

The first bound is derived from the immediate predecessors of g. If h1, h2, · · · are the

immediate predecessors of g in Grem, then g cannot be scheduled until all these gates have

finished. Thus t∗min(g) ≥ t∗min(hi) + len(hi) for each gate hi. This gives the first bound

t∗min(g) ≥ max
i
t∗min(hi) + len(hi)
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The second bound comes from gates which operate on the some same qubit as g. Suppose

g involves two qubits qa, qb. Let Ha be the set of all gates on qa which are direct or indirect

predecessors of g. Since they all operate on the same qubit, they must be executed in the

order they appear in the circuit. Suppose this ordering is h1, h2, · · · , hn. We have

t∗min(h2) ≥ t∗min(h1) + len(h1)

t∗min(h3) ≥ t∗min(h2) + len(h2) ≥ t∗min(h1) + len(h1) + len(h2)

...

By induction we have t∗min(g) ≥ t∗min(h1) +
∑

i len(hi) ≥
∑

i len(hi). Now suppose we place r

SWAPs before gate g on qubit qa. They also cannot execute simultaneously with any of the

gates in Ha. Thus

t∗min(g) ≥ r · len(SWAP ) +
∑
h∈Ha

len(h) = u1

Similarly we may define the set Hb, and if we place s SWAPs on qb before g we have

t∗min(g) ≥ s · len(SWAP ) +
∑
h∈Hb

len(h) = u2

Let d(a, b) be the distance between qubit qa, qb in the qubit mapping πrem. Then at least

d(a, b) − 1 SWAPs are needed before gate g, so r + s ≥ d(a, b) − 1. Since u1, u2 increases

linearly with r, s, we fix r + s = d(a, b)− 1 to minimize them. We choose the pair (r, s) such

that max{u1, u2} is minimized. We take the minimized max{u1, u2} to be the second bound.

In the above we have derived two lower bounds on t∗min(g). If we compare them with

the definition of tmin(g), we see that tmin(g) is exactly equal to the larger of the two bounds.

Therefore tmin(g) ≤ t∗min(g). This finishes the proof.
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5.6 Multiple Optimal Solutions

In certain benchmarks, multiple depth-optimal solutions exist. Our tool can be easily

tuned to find all of them. Our algorithm waits until the first optimal solution is found.

Typically in A*, one terminate the algorithm as long as the first solution is found. But it is

not necessary. We then record the depth of the first optimal solution, and continue to run

the extract-expand-push process as shown in Fig. 24 and report more solutions. We stop

reporting solutions whenever an extracted node from the queue suggests a solution with a

larger depth than the optimal one. At this time, our algorithm has found all solutions.

We need multiple optimal solutions because not all optimal solutions for small circuits

have a recurring pattern. Hence, it is necessary to generate all optimal solutions and discover

the one with recurring pattern to generalize to larger circuits. For instance, for QFT-8 on

2×4 architecture (without allowing CNOT and swap at the same cycle) only one solution

among the eight optimal solutions shows the pattern in Fig. 32.

Another issue that arises when we try to manually generalize a solution is that the solution

circuit might need slight transformation. It is possible that an optimal solution returned by

our tool has cancelable swap gates (which usually involves multiple qubits and cannot be

automatically found like cyclic swaps). However, it is easy to discover them when visualizing

the small solution circuit. Further, certain gates can be scheduled earlier or later without

affecting the overall mapping or depth. We show an example in Fig. 40. As can be seen

in step (5), the two-qubit gate for {q2, q3} can be moved to step (6) without affecting the

overall depth. Similarly, in step (11), the two-qubit gate or {q4, q5} can be moved to step

(12). This transformation is inferred from step (3) and (9). At this point, we are doing

the generalization/inference of recurring patterns manually, but this could potentially done

automatically. We leave it as our future work.Last but not least, if a swap is followed by a

two-qubit gate, the two-qubit can be moved in front of the swap by reversing the control and

target, and the transformed circuit is equivalent. Similarly when a two-qubit is followed by a

swap. We show a solution for QFT-6 on LNN in Fig. 41, where if in layers L2 to L8, the

order of swap and two-qubit gate can be swapped to be consistent with L1 and L9, the entire

solution is the same as we show in Fig. 20.
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5.7 Analysis

5.7.1 Exact Analysis

When the number of qubits is small, our algorithm can find (a set of) exact optimal

solution(s). This is helpful in the applications where optimal solution has a recurring pattern.

We use a two-step approach. We first find optimal solution(s) for small inputs. Then we

generalize the solution(s) to larger inputs. We demonstrate it using QFT program. We also

show the optimal results for small logical reversible circuits.

5.7.1.1 Optimal QFT Mapping

Recall that QFT has a regular structure, with n qubits and n(n− 1)/2 generic two-qubit

gates ( Section 5.2). QFT has an all-to-all qubit interaction pattern. Every two qubits need

to interact. The QFT circuit with 6 qubits is shown in Fig. 20.

We present a different representation of the QFT circuit in Fig. 28 (a) to facilitate

discussion. As gates that operate on non-intersecting qubits commute, a QFT program can

run in linear depth if the underlying architecture is fully connected. Fig. 28 (a) is equivalent

to the circuit in Fig. 20 (b) except that it is organized into parallel layers such that each

layer consists of concurrent two-qubit gates, and the affine loop representation is shown in

Fig. 28 (b).

Recall that in LNN, the physical qubits are arranged on a (conceptual) straight line, and

each qubit may only interact with the qubit on its left or right. For QFT, the logical qubits

are initially mapped according to its natural order such that logical qubit q0 is mapped to

the leftmost physical qubit and q5 is mapped to the rightmost physical qubit as shown in Fig.

29 (step 0).

The LNN architecture is often considered as a good approximation to what a scalable

quantum architecture may be. If a circuit can be adapted well to LNN, it typically can be

adapted to other architectures represented by a bounded degree graph [16].

Our search algorithm finds an optimal solution2 for QFT with 6 qubits, visualized in Fig.

2There might be multiple optimal solutions, but not all of them have a recurring pattern. However, our
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29. We next show that the discovered pattern for 6-qubit QFT can be generalized to n-qubit

QFT.

The qubit mapping changes every two consecutive steps (from step 0). In every two

consecutive cycles, a set of GT gate(s) first operate on some qubits, then a set of swaps

on exactly the same qubits. At the end of these steps, the layout of the logical qubits are

reversed such that q5 is placed at the left end of the LNN, and q0 is placed at the right end

of the LNN. Each qubit first shifts to left until it hits the left end of the LNN, and then to

right until it reaches its destination.

To generalize this, we assume a sequence of logical qubits on the chain at a cycle m where

m is even and m/2 is also even, and we let i = m/2, the qubit placement from left to right is

q i
2
, q i

2
+1, q i

2
−1, q i

2
+2, ...., qi, q0, qi+1, qi+2, qi+3, qi+4, ...., qn−1

At the step m, it is a parallel computation stage of two-qubit gates. We have GT(q0, qi+1),

GT(q1, qi), ..., GT(q i
2
, q i

2
+1) scheduled. Then at the step m + 1, we have SWAP(q0, qi+1),

SWAP(q1, qi), ..., SWAP(q i
2
, q i

2
+1). For each pair of qubits, their subscript adds up to i+ 1,

which is m/2 + 1.

At the step m+ 2 where m is even and now (m+ 2)/2 is odd, we still let i = m/2. The

qubit placement from left to right is:

q i
2
+1, q i

2
, q i

2
+2, q i

2
−1, ...., qi+1, q0, qi+2, qi+3, qi+4, ...., qn−1

At step m+ 2, the operations are GT(q0, qi+2), GT(q1, qi+1), ..., GT(q i
2
, q i

2
+2). At step

m+ 3, it performs parallel swaps: SWAP(q0, qi+2), SWAP(q1, qi+1), ..., SWAP(q i
2
, q i

2
+2). For

each pair of qubits, their subscript adds up to i+2, which is (m+ 2)/2+1 or ⌊(m+3)/2⌋+1.

Now the pattern is clear from Fig. 29. It repeats the two above sets of operations, and

each pair of qubits that perform GT or swap their subscripts sum up to ⌊m/2⌋+1 if m is the

iteration number. The generalized strategy can be applied to QFT with arbitrary number of

qubits. We describe it using an affine loop in Fig. 31 (a).

algorithm can be adapted to find all optimal solutions such that the solution with recurring pattern can
be easily obtained. On the other hand, even some solutions do not have a strict recurring pattern, but the
pattern can be inferred by performing some transformation based on gate commutativity or cancel-able swaps.
We demonstrate this in Appendix 5.6.
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Note that the swap gate(s) in the last step is not necessary. But we add it because it fits

into the pattern, and also that after the last swap, the physical connectivity graph of the

logical qubits is isomorphic to the one right before step 0.

Our generalized solution for QFT on LNN is the same as that found by Maslov [16].

However, that solution is found manually and the author proved the solution is at most a

constant factor away from the optimal solution. Our qubit mapper at least confirmed that

this solution is optimal for small input size of QFT.

Now we describe our generalized solution for QFT on 2×N architecture (where N =

n/2). Maslov [16] does not report a generalized solution for this, but predicts a lower bound

of 3n+O(1) circuit depth. Our solution is 3n+O(1), which is the same (asymptotically at

the constant component). This is discovered for the first time as far as we can tell for QFT

on a 2D architecture.

We visualize the solution of QFT-8 on a 2x4 architecture in Fig. 30. We denote the

physical qubit on the j-th column and the i-th row as Qi,j. Initial placement is a column

major order such that q2j+i → Qi,j as shown in step (1) of Fig. 30.

With column major order, it takes 17 cycles, and the pattern is generalizable. We also

tried the row major order, it takes 21 cycles, and the pattern is not generalizable. We only

present the result of column-major initial qubit placement here. It is worth mentioning that

we also tried the version which does not allow concurrent swap and computation gates to

run. It takes 19 cycles and is generizable too. The generalized solution is shown later in this

section.

With some analysis, it can be shown that the 2×N solution is a non-trivial extended

version of 1× n. If we look at the qubit layout at steps (2), (5), (8), (11), (14), and (17) in

Fig. 30, placement of pairs of qubits on (Q0,i, Q1,i) resembles placement of qubits on Qi in

LNN as the circuit makes progresses.

We let every three steps starting from step (2) in Fig. 30 form one iteration (iteration is

indexed from 0). Let iteration number be i. If i is even, at the first step of iteration i and at

the top row of the qubit layout, the placement of qubits is as follows:

q2( i
2
), q2( i

2
+1), q2( i

2
−1), q2( i

2
+2), .., q0, q2(i+1), q2(i+2), .., q2(N−1)
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We present it on purpose such that the subscript is a multiply of 2 and a number (the

number need not to be integer).

The placement of logical qubits on the bottom of row is similar except that q’s subscript

increases by 1.

At the first step of the iteration i, swap and GT are performed simultaneously such that

GT is on top row, and swap on the bottom row. GT is on even-index qubits, and swap on

odd-index qubits.

For GTs, they are on {q2( i
2
), q2( i

2
+1)}, {q2( i

2
−1), q2( i

2
+2)}, ..., {q0, q2(i+1)}. And for swaps,

they are on {q2( i
2
)+1, q2( i

2
+1)+1},

{q2( i
2
−1)+1, q2( i

2
+2)+1}, ..., {q2∗0+1, q2(i+1)+1}.

At the second step of iteration i, the placement of logical qubits on bottom row changes

to the following:

qi+3, qi+1, qi+5, qi−1, .., q2(i+1)+1, q1, q2(i+2)+1, .., q2(N−1)+1

GT gates are performed between two qubits at the same column on { qi, qi+3 }, { qi+2,

qi+1}, ..., {q0, q2i+3 }.

In the third step of the iteration i, swaps and GT are performed in parallel on top

row and bottom row separately. This time, top row performs swaps and bottom row

performs GT. Swaps are on {qi, qi+2}, {qi−2, qi+4}, ...{q0, q2∗(i+1)}. GTs are on {qi+3, qi+1},

{qi+5, qi−1}, ...{q2i+3, q1}.

With these steps, the even iteration completes. It will go to an odd iteration i+1. Before

operations at iteration i+ 1 start, the qubit layout at the top row now becomes

qi+2, qi, qi+4, qi−2, .., q2(i+1), q0, q2(i+2), .., q2(N−1)

The steps in the even iteration complete a part of GTs such for which the subscript

summation of each pair of qubits is 2i+ 2, and all GTs such that the subscript summation

2i+ 3, and a part of GTs for which each pair’s subscripts sum to 2i+ 4.

The odd iterations are similar. It is just that the pairs of qubits should start from the

second column from the left end of the grid when doing GT or SWAP for the step 1 and step

3 in the iteration, which we will not discuss in details here.
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By repeating this pattern, all GT gates can be performed with respect to the loop in Fig.

28 (b). It is just that one parallel iteration in that loop might be split into two parts to be

distributed into an even iteration and an odd iteration.

Asymptotically, every two parallel layers in Fig. 28 (b) take 3 cycles using the transfor-

mation pattern in Fig. 30. The total number of layers is 2n− 3 when the number of qubits is

n. Our generalized solution then takes 3n+O(1) cycles.

Our generalized solution is presented in Fig. 31 (b).

In some scenarios, it does not allow concurrent swaps and two-qubit gates. Hence, we

added the constraint that either GT gates or swap gates in each cycle (but not both). Under

this constraint, we solve for an optimal solution. And we visualize such a solution of QFT-8

on a 2x4 architecture in Fig. 32.

Initial placement is column major as shown in Fig. 32 step (1).

Now a more elegant pattern shows and the depth is still 3n+O(1). We still form every

three steps as one iteration ( starting from step 1). We let iteration index be i, starting from

0. For each iteration, the first step only perform GTs and all GTs applied to qubits on the

same column. The number of GT performed increases by 1 at each iteration until about half

way of the iterations and then decreases by 1 at each iteration. The second step of each

iteration only performs swap gates. All swaps only happen to qubits on the same row. The

third step of each iteration performs GT gates only.

It is worth noting that the layout of these logical qubits form a graph that is isomorphic

to that at the beginning (as if the layout is mirrored, similar to the case in LNN). This is a

nice property of the structured QFT transformation methods we discovered.

We show the pseudocode of this solution in Fig. 31 (c).

5.7.1.2 Building Block Circuits

We show results for the building block circuits that include adders, modular function,

and various counters in Table 3. These are also the benchmarks used in the work by Wille et

al. [30] for gate-optimal qubit mapping. Our mapper finds time-optimal solution very fast,

usually in less than one second. The quantum architecture is IBM’s QX2. Note that for this
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set of benchmarks, both initial mapping and transformed circuit are determined optimally,

while for QFT experiments in Section 5.7.1.1, we tried different initial mappings (row major

and column major) just for discovering the patterns.

In this table, ideal cycle refers to how many cycles the original circuit would take on

an ideal architecture where every two qubits are connected; optimal cycle is the number of

cycles we found for the target architecture; mapper overhead is the time the mapper takes to

find the optimal solution. We implemented the mapper using C++ and it was running on

Intel Xeon E5-2620v2 CPU.

5.7.1.3 Comparison with OLSQ

In Table 4 we show our results compared against OLSQ’s depth-optimal results [28] on

the benchmarks used in that paper. We correctly find the same optimal depths, but are able

to do so around 9 to 1500 times faster depending on the benchmark. For this experiment,

swaps were treated as having a latency of 3 cycles, and all other gates as having a latency of

1 cycle. When using our program we first tried to find an initial mapping that could satisfy

all CNOTs in the circuit without swaps – if that failed, then we reran our mapper program

with pure initial swaps allowed, and added together the times in our overhead column of

Table 4. Our output circuit includes both a selected initial mapping and inserted swaps using

the approach defined in Section 5.4.3.

5.7.2 Approximate Analysis

We relax our model to solve for large benchmarks. We aim to find a good solution within

reasonable amount of time while not sacrificing the search quality too much.

We approximate it in the following ways. When an original gate is ready to execute

with respect to dependence and coupling constraints, we immediately schedule it. Thus we

eliminate the expanded nodes which do not schedule all ready original gates implied by their

parent node (the state node).

We also reduce the number of expanded nodes by not allowing swaps that cause the

executable gates on the CNOT frontier not executable. By executable we meant the coupling
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and dependence constraints are resolved. We rank the expanded nodes and only push the

top-k into the priority queue. When the priority queue size reaches a threshold q, we cut it

by a fixed number v through deleting the nodes that made the least progress in the circuit.

If we need a tie breaker, we just rank them by the cost function. We choose the parameters

k, q, and v as 10, 2000, and 1000.

We handle initial mapping on-the-fly in a greedy manner. Before calculating the cost of a

node, we look at the qubits in each of its CNOT gates that are executable with respect to

dependence constraints: if one or both of its qubits are not yet mapped, then we pick an

assignment that minimizes their physical distance. If at the end of the program there are any

qubits that were never mapped (due to never being used in CNOT gates), then we assign

them arbitrarily.

This method scales better than the optimal search method. It is non-optimal, but in

practice it performs well.
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Equivalent  Snodes 
A.mapping = B.mapping 
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Comparative Snodes 
A.mapping = B.mapping 

: regular gate

Figure 23: Filtering example (a) Two equivalent search nodes. Both A and B will finish

the same number of original gates. They also have achieved the same mapping assuming all

active swaps immediately take effect. But the order of the gates is different. (b) The two

state nodes will have to take different number of cycles to achieve the same state. But B is

faster, A can be safely pruned without affecting optimality.
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Figure 24: Our Optimal Search Framework

66



1 2 3 4 5
q1

g1
q2
q3
q4
q5

q1

q2

q3

q4

q5

g2

g3 g4

g1 g5 g6

(a) Circuit (c) Entire Dependence graph
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Induced Dependence Graph 

Figure 25: Two components of a circuit with respect to a search node: (a) logical circuit,

(b) a search node S for cycle 1 indicating already scheduled gates by cycle 1, and (c) the

dependence graph, where the part after the dashed line is remaining circuit to be executed.
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Figure 26: Cost calculation (a) Search node F, (b) qubit mapping for remaining circuit induced

by F, (c) remaining dependency graph marked with tmin, and (d) circuit representation; (e)

search node A, (f) qubit mapping for remaining circuit induced by A.
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(a) (b)

g1 g2 g3 g4
CNOT

SWP SWP

SWP SWP

g1 g2 g3 g4 g1 g2 g3 g4
CNOT

SWP SWP

SWP

SWP

(c)

Figure 27: An example circuit, demonstrating a common fallacy in reasoning about the

heuristic function. (a) Logical circuit, assuming that the distance between the two qubits is

5. (b) The dependency graph of the circuit, if we choose to place 1 SWAP on the first qubit,

and 3 SWAPs on the second. (c) The dependency graph of the circuit, if we choose to insert

two swaps on each qubit. Assuming each SWAP takes 2 cycles and each original gate takes 1

cycle in this example.
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(a) (b)

Loop representation: 

  for k = 1 to 2n-3 

     forall i = 0 to  ⌈k/2⌉ - 1          

        if ( 0 ≤ i < n &&  i < k-i <n)  

            GT( q[i], q[k - i] );

Figure 28: (a) QFT-6 circuit rearranged to exploit parallelism; (b) Affine loop representation

of re-arranged n-qubit circuit.
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q0 q1 q2 q3 q4 q5

q0 q1 q2 q3 q4 q5

q0q1 q2 q3 q4 q5

q0q1 q2 q3 q4 q5

q0q1 q2 q3 q4 q5

q0q1 q2 q3 q4 q5

q0q1q2 q3 q4 q5

q0q1q2 q3 q4 q5

q0q1q2 q3 q4 q5

q0q1q2 q3 q4 q5

q0q1q2q3 q4 q5

q0q1q2q3 q4 q5

q0q1q2q3 q4 q5

q0q1q2q3 q4 q5

q0q1q2q3q4 q5

q0q1q2q3q4 q5

q0q1q2q3q4 q5

Two-qubit gate: 
SWAP:

step(0)

step(1)

step(2)

step(3)

step(4)

step(5)

step(8)

step(7)

step(6)

step(9)

step(10)

step(11)

step(12)

step(13)

step(14)

step(16)

step(15)

q0q1q2q3q4 q5
step(17)

Figure 29: QFT-6 on LNN. Step (17) is not necessary. We are adding it to show the pattern.
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q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6
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Two-qubit 
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SWAP:

Step (1)

Step (3)

Step (2) Step (5)

Step (4) Step (7)

Step (6) Step (9)

Step (8) Step (11)

Step (10) Step (13)

Step (12) Step (15)

Step (14)

Step (16)
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Figure 30: Optimal scheme for QFT-8 with 2× 4 qubits. Each sub-figure represents a step of

the execution, which takes one cycle. It also represents the state of the circuit at each cycle.

There are in total 17 steps, and thus 17 cycles.

for i = 0; i++; 2*i+2 < 2n - 1 do           

      for j = 0; j += 2; j < i  do 

         if (2i - j) < n && j < n, then GT( q [j], q [2i-j] );  

         if (2i -j + 1) < n && j+1 <n, then SWAP( q[j+1], q[2i - j + 1] ); 

      for j = 0; j += 2; j < 2*i+1, do      

         if (2i+1-j) <n && j < n, then GT( q[j], q[2i+1-j] ); 

      for j = 1; j += 2; j <= i , do 

         if (2i+2-j) <n, then  GT( q[j], q [2i + 2 - j] ); 

         if (2i+1-j) <n, then  SWAP( q[j-1], q[2i+1-j] ); 

for m = 0; m+=2; m < 4n - 6 do 

     k = (m/2)+1; 

     for i= 0; i++; i < (k - i) do 

         if  i < n && k - i < n, then 

             GT( q[i], q[k - I] ); 

     for i = 0; i++; i < (k - i) do  

          if  i < n &&  k - i < n, then 

             SWAP( q[i], q[k - I] ); 

for i = 0; i++; i <= n-2 do 

    for j = 0; j++; j < i, do 

       if  j < n && (2i-j) < n, then SWAP( q[j], q[2i-j] ); 

    for j = 0; j++; j < i do 

       if  j < n && (2i-j) < n, then GT( q[j], q[2i-j] ); 

    for j = 0; j++; j < i+1 do 

       if  j < n && (2i+1-j) < n, then GT( q[j], q[2i+1-j] );

(a) (b) (c)

Figure 31: Generalized solution for optimal schemes of QFT: (a) n-qubit QFT on LNN; (b)

n-qubit QFT on 2×N architecture where N = n/2; (c) n-qubit QFT on 2×N architecture

where swaps and CNOT cannot be mixed in one cycle.
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Figure 32: An alternative optimal scheme for QFT-8 with 2 × 4 qubits. Each sub-figure

represents a step of the execution, which takes one cycle. It also represents the state of the

circuit at each cycle. There are in total 19 steps, and thus 19 cycles.

72



Table 3: Summary of optimal analysis on Wille’s [30] benchmarks for IBM QX2 architecture,

with swap latency of 6 cycles and CX latency of 2 cycles; n denotes the number of qubits;

Mapper Overhead, measured in seconds, is how long it took to generate the mapping.

Name n
Gate Ideal Optimal Mapper
Count Cycle Cycle Overhead (s)

3 17 13 3 36 39 39 0.012
4gt11 82 5 27 38 40 0.044
4gt11 84 5 18 19 19 0.011
4gt13 92 5 66 64 64 0.014
4mod5-v0 19 5 35 37 45 0.075
4mod5-v0 20 5 20 21 27 0.052
4mod5-v1 22 5 21 22 28 0.053
4mod5-v1 24 5 36 36 42 0.085
alu-v0 27 5 36 35 40 0.043
alu-v1 28 5 37 37 42 0.029
alu-v1 29 5 37 36 41 0.052
alu-v2 33 5 37 36 41 0.036
alu-v3 34 5 52 53 59 0.314
alu-v3 35 5 37 37 42 0.038
alu-v4 37 5 37 37 42 0.038
ex-1 166 3 19 21 21 0.013
ham3 102 3 20 24 24 0.013
miller 11 3 50 52 52 0.016
mod5d1 63 5 22 24 34 0.076
mod5mils 65 5 35 37 46 0.115
qft 4 4 6 10 16 0.035
rd32-v0 66 4 34 36 41 0.045
rd32-v1 68 4 36 36 41 0.042
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Table 4: Comparison of our results against OLSQ’s depth-optimal results; We let each gate

take 1 cycle as the setup of OLSQ [28]. Mapper overhead is measured in seconds. OLSQ is

using a different CPU for qubit mapper implementation which is Intel Xeon E5-2699v3.

Name Arch Ideal Cycle
OLSQ Ours

Cycle Overhead Cycle Overhead

4gt13 92 ibmqx2 38 38 145.74 38 0.01

4mod5-v1 22 grid2by3 12 20 90.20 20 0.64

4mod5-v1 22 grid2by4 12 20 151.28 20 17.35

4mod5-v1 22 ibmqx2 12 15 21.60 15 0.03

adder grid2by3 11 11 10.95 11 0.03

adder grid2by4 11 11 13.45 11 0.01

adder ibmqx2 11 15 39.71 15 0.06

mod5mils 65 ibmqx2 21 24 87.76 24 0.05

or ibmqx2 8 8 3.55 8 0.01

qaoa5 ibmqx2 14 14 10.41 14 0.01

queko 05 0 aspen-4 5 5 68.89 5 0.01

queko 10 3 aspen-4 10 10 592.91 10 1.02

queko 15 1 aspen-4 15 15 4912.35 15 26.70
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6.0 Crosstalk-aware Qubit Mapping

6.1 Introduction

We propose an optimal solution to tackle the crosstalk problem. The contributions are

summarized as follows:

1. We reveal that crosstalk can be mitigated as early as at the hardware mapping process.

Based on this finding, we build a crosstalk-aware hardware mapping framework to address

crosstalk.

2. We consider two methods with different tolerances of crosstalk. One method allows zero

crosstalk while the other allows crosstalk to some extent. We aim to achieve a good

tradeoff between crosstalk tolerance and overall circuit fidelity. Zero crosstalk tolerance

may lead to unnecessarily long circuit and result in decoherence errors, which lead to low

overall circuit fidelity, while tolerating a small amount of crosstalk may improve circuit

depth significantly, and hence improve overall fidelity.

3. We evaluate our method in fidelity, depth, and compilation overhead. The result not only

shows the promising improvement in fidelity for an average of 20% but also only takes

10% of the compilation time.

6.2 Framework Overview

In this section we introduce our crosstalk-aware program compilation framework. The

framework contains a swap insertion component, and a scheduling component. We take a

quantum program as input and produce a hardware-compliant circuit with timing information

as output. We show the framework in Fig.33.

We first analyze the dependency of the input program since a quantum gate can only be

executed if and only if its dependency has been resolved. We construct a directed acyclic

graph (DAG) for all quantum gates.
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Figure 33: Overview of our crosstalk-aware compiler framework. The grayed part denotes our

new contributions in this work, which will be discussed in detail. The dashed part is optional,

which is applicable when application-specific optimization opportunities can be found, such

as in the VQE application study.

With the aim of inserting fewer swaps, we implement an initial mapping component by

the subgraph isomorphic method. We take a subset of gates from the beginning of the circuit

and try to construct a subgraph embedding with respect to the architecture coupling graph.

Among all different subgraph embeddings, we pick the one that has minimal crosstalk.

Next we introduce our swap insertion and scheduling components. This is a repetitive

process based on the ready gates in the frontier. We first schedule ready single-qubit gates in

ready-gate-set. Then we will schedule the ready two-qubit gates and insert swaps if necessary.

Moving to the next cycle, we update the qubit mapping and the ready-gate-set with respect

to the DAG. We check whether there is any remaining gate in the DAG. If so, we repeat the

process. Otherwise, we output the hardware-compliant circuit with inserted swaps and the

timing information for each gate. To insert swaps and schedule gates efficiently, we have the

following considerations:

We aim to schedule as many two-qubit gates simultaneously while maximally mitigate

the crosstalk errors. Our main goal is to minimize the depth of the circuit while tolerating

minimal crosstalk. In another word, we minimize the decoherence errors under a strict

crosstalk-tolerance constraint.

While it is important to mitigate crosstalk error, it might be important to consider

mitigating the decoherence error, and in particular the trade-off between decoherence error

and crosstalk error. We discovered that by relaxing the crosstalk constraint to some extent,
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we we can significantly reduce the depth of a circuit which contributes to significant reduction

in the decoherence error. In order to achieve maximal fidelity of the overall circuit, we need

to find a sweet spot between crosstalk error mitigation and decoherence error mitigation.

We exploit the gate-reordering feature in quantum programs for some particular. In an

important class of applications called quantum approximate optimiztion algorithm (QAOA),

gates can commute or even be reordered with respect to a certain rule. With the consideration

of the gate-reordering feature in quantum programs, we can avoid crosstalk error without

having to incur the cost of delayed gate execution.

We discuss in details each of the component in Section 6.3.

6.3 Crosstalk-aware compilation

In this section, we will talk about all details which have shown in our framework, and

also we will introduce some considerations with tricks which can better improve our result.

We use an example shown in Fig. 34 to clarify our different technique process.

6.3.1 Execute single qubit gates

We first execute the single qubit gates which are ready to be executed from the DAG

information, we schedule the single qubit gate which is shown in Fig.34. We know that

single qubit gate can always be executed as long as there is no dependency constraint in the

dependency graph. From the Fig.34, we know that the first Hadamard gate H(0) can be

execute and there is no cross-talk caused by single qubit gate. After schedule the single-qubit

gates we want to schedule the two-qubit gates and inserting swaps.
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6.3.2 Scheduling two-qubit gates and swap insertion

6.3.2.1 Strict Crosstalk Constraint

Based on our framework consideration, we first want to find the minimum depth given

strict crosstalk constraint which we do not allow any crosstalk happens. Since there is a

finite number of gates and physical qubits, there is only a finite number of combinations

of gates and swaps that can be executed simultaneously at any given moment. The most

common traditional solution for this problem is to use A* search from time-optimal mapping

work [35]. We modified the original method by adding the crosstalk constraint. Then we find

the optimal schedule choices which can minimize the depths. Previous work has been proved

that this result is optimal and we can use this to find the minimum depths. However, due

to the program size, using the optimal method to solve the mapping problem is not always

practical in large quantum program, so we also introduce a reasonable heuristic solution

suit for more complex program. We will show our solutions in details. We introduce a

heuristic solution to deal with scheduling two-qubit gates and swap insertion. Since only

adjacent qubits can be implemented the two-qubit gate operations. We will first schedule the

two-qubit gates which do not need extra swaps, so our heuristic approach can be divided

into two steps: 1) Execute two-qubit gates(Chromatic method). 2) Rank and choose swaps.

Given a quantum machine architecture we will have its connectivity information from the

coupling graph shown in Fig.34(a), it shows a Melbourne quantum machine architecture

and its connectivity information. We first try to schedule the two-qubit gates by using

the chromatic method shown in Fig.34(e), each vertex of graph represent a two-qubit gate

operations, and they have edges if and only if they have crosstalk errors when executing

them simultaneously. We color the vertex under the constraint that vertices can not have the

same color if they share an edge, we pick the most vertices with the same color and execute

the two-qubit gates. Which in Fig.34(e). CX(5,6) has the crosstalk with CX(8,9) so these

two vertices has an edge. Also CX(10,11) has edge with CX(8,9). After coloring, we pick

CX(5,6),CX(10,11).

After consider executing the single qubit gate and the cnots which does not need extra

swaps, we need to consider all other cnots who need extra swaps before they can be executed.
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Although there are huge search space for backtracking all the swap combinations, we have

several constraints which can greatly prune the unwanted combinations and shrink the search

space: 1) All swaps must contain the qubit relate to CX gate which need swaps. 2) All swaps

can not use the qubit which has been used in executing single qubit gate and scheduling

two-qubit gate process. 3) All swaps must meet the coupling constraint. So based on these

three constraints, we can significantly shrink the search space and solve the search time

overhead.

To properly evaluate which combination of swap insertion for the current and next cycles,

we define the cost function shown in equation 2 . If the distance does not change or even

increase after swaps, then it means the swap of qubits no longer get closer and we will ignore

them. We want to see the distance will decrease after the swap operations, and it will decrease

the distance for cnots in next layer. We set the weight w for different purpose, for here we

set strict crosstalk constraint, so we set w to be the number of qubits. Then it means if any

crosstalk happens, it will give us a big number which we will never use that. We use the cost

function and rank all the combinations of swap insertion, choose the combination with lowest

score.

We show an example in Fig. 35, we can see we have crosstalk between coupling quibts(1,2)

and (11,12). And we score all the combinations after pruning by our three constraints talked

before. There are mainly three types, 1)the first type is called depth overhead, although it

does not arise extra crosstalk and really decrease the distance of the two qubits. However

only one swap can happen at the same time. So the depth overhead will be huge and the

score is -1 since it only decrease 1 distance at a time. 2)The second type is some swaps which

are executed at the same time can cause crosstalk, we can see if we execute swap(1,2) and

swap(11,12) at the same time. We will have crosstalk errors, so based on our cost function,

we will give a large score. 3) Then for the third type is swap(11,10) and swap(0,1), this

combination actually increases the distance of CX gates. So we score them as 2. Finally

is our optimal choice which are swap(1,2) and swap(3,11), these swaps not only decrease 3

distance of CX gates but also will not cause any crosstalk errors, so we score them -3 and

they have highest priority.

After choosing the swaps, we should update the coupling map which correspond to logical
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qubits map to physical qubits. And if there are still gates remaining, we will repeat this loop

until we execute all the gates.

Cost swap(Ci) =Num(crosstalk) ∗W−
n∑
i=1

(original distance(CNOTi)−

Update distance(CNOTi))−

α ∗
m∑
i=1

(original distance(CNOTi)−

Update distance(CNOTi))

(2)

We show an algorithm below, the P is the quantum program and we want a crosstalk

free program schedule:

6.3.2.2 trade-off between crosstalk errors and decoherence errors

To further seek the trade-off between depths and crosstalk errors. By allowing some

crosstalk tolerances, we can further decrease the depths which is to decrease the decoherence

error. In order to find the maximum fidelity of the overall circuit, we need to find a sweet

point between crosstalk errors and decoherence errors.

We show an example below in Fig. 36, we show the trade-off between crosstalk error and

depths. The input circuit is shown in (a) with two CX gates. If we use the strict constraint

with no crosstalk, then our scheduled circuit will be like in Fig. 36(b). Since execute swap(0,1)

and swap(2,3) will have crosstalk error, so we must execute them one by one which will cuase

the increasing the depth to 11.

However if we allow some crosstalk tolerance, then we can find that we can execute

swap(0,1) and swap(2,3) at the same time shown in Fig. 36(b). Which can significantly

decrease the total depth which is also decreasing which only takes 5 depths. This will also

lead to the decreasing for deocherence error. We want to evaluate these two methods in

fidelity for overall circuit based on the equation 3.
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Algorithm 3: Heuristic solution

Function get cycles(P):
cycles = 0;

schedule = Map[cycles,set of CNOTs];

global min = Max Int;

min set = ∅;

unused qubit set Q =all qubits;

Priority Queue pq;

for CNOTs i in P do

if i.indegree == 0 then

pq.insert(i);

while !pq.isEmpty() do

for each set s in all combination of CNOTs in pq without swaps) do

if cost cnot(s) ¡ global min then

global min=cost cnot(s); min set=s;

schedule[cycles].append(CNOTs in min set);

update dependency(min set);

update pq(min set);

Q.delete(qubits in min set);

global min = max integer;

min set = ∅;

for each set t in all combination of swapping two-qubits in Q do

if swap cost(t) ¡ global min then

global min=swap cost(t); min set=t;

schedule[cycles:cycles+2].append(CNOTs in min set);

cycles++;
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Based on this consideration, we want to introduce our method for maximizing the fidelity

of the overall circuit. By allowing crosstalk tolerance, we start from 0 which is zero crosstalk,

then we increase the number of crosstalk tolerance, since with more crosstalk tolerance, we

will further decrease the decoherence error but will lead to more crosstalk errors at the same

time. we try to find a sweet point which can maximize the fidelity of overall circuit.

6.4 Evaluation

6.4.1 Experiment setup

We evaluate our new crosstalk-aware mapping method and present the results here. The

benchmarks are selected from RevLib [31], IBM Qiskit [22], and ScaffCC [10]. And to suit for

larger benchmarks, we range the backend from ibmQ5 to large circuit Melbourne and Tokyo,

which has different connectivity and our method can scale for different kind of architecture.

For crosstalk prop, it is generated by machine experiment, for different time and date, the

crosstalk error may vary significantly, we can manually input the crosstalk prop based on the

machine back-end properties provided by qiskit.

Baseline We use the best known prior approach crosstalk-adaptive schedule as our baseline.

Since their method mainly focus on the gate scheduling, for the swap and mapper part we

choose Sabre’s method [14]. It is worth mentioning that our approach can take any gate

latency as input parameters and generate transformed circuits based on the input. To make

evaluation results as close to real machines as possible. We use IBM’s 14-qubit Melborune

and 20-qubit Q20 Tokyo architecture [14] as the underlying quantum hardware for different

benchmark sizes. We assume each gate takes unit time and swap gate is implemented by

three CX gates.

6.4.2 Experiment result

We will show our experiments based on our methods from last section. We first show

the result which try to minimize the depths under zero-crosstalk constraint. Then we will
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show the result for maximizing the fidelity of the overall circuit by given some crosstalk

tolerance. We also want to show the compilation time advantage of our work compared with

the baseline.

6.4.2.1 Zero-crosstalk

We try to test our method on different benchmarks, it consists of different well known

benchmarks QAOA, QFT and some small elementary building blocks. We want to compare

the circuit execution depths to the baseline under strict zero crosstalk constraint, to quantify

the result, we evaluate each single qubit gate as 1 depth, CNOT gate and other two qubit

gate as 2 depths and swap consists of three CNOTs.

We compared our crosstalk-aware mapping method with the both optimal and heuristic

method under zero crosstalk requirement, and we compare these two methods with the

baseline to find minimum depths by using the crosstalk-aware mapping. Less depths not only

execute the circuit in a more efficiently way, it also leads to less deocherence errors. The result

is shown in Table. 5. We find that even our heuristic method can have better performance or

at least the same as the prior work. Since sometimes there does not always exist pattern

which needs to do the crosstalk-aware mapping. However for most of the benchmark our

heuristic method and optimal one both has great improvement from 1.2 to 1.88.

6.4.2.2 Fidelity analysis

We show the result in Table. 6. The fidelity is calculated by the Formula. 3. It will

calculate all the errors caused by decoherence error, read out error and gate error, and

crosstalk error is already calculated in the gate error.

fidelity =
n∏
i=1

(1− ErrorDecoherence)∗

(1− ErrorMeasurement)∗

(1− ErrorGate)∗

(1− ErrorCrosstalk)

(3)
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6.4.2.3 Compilation time analysis

To test the compilation time overhead, we want to carefully evaluate both our heuristic

and optimal method compilation time with the baseline, since baseline use SMT solver and

it has compilation time overhead, we want to compare the compilation time using their

method. We show the result using a bar plot at Figure. 39, we found that the prior works

take exponentially longer time than our heuristic and optimal solution. Our heuristic method

only takes like 0.1% of the prior work’s compilation time, and even our optimal solution takes

1-10% compilation time compared to baseline. The efficiency of the compilation time will

make the quantum circuit’s advantage stand out.
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Output: 
H(0); 

Output 
H(0); 

CX(5,6); 
CX(10,11); 
Swap(2,3) 

Q0 Q1 Q2 Q3 Q4 Q5 Q6

Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7

Execute Single  
qubit gates

Execute two-qubit gates 
(Chromatic method)

A B

C

Output: 
H(0); 

CX(5,6); 
CX(10,11); 

Rank and choose swaps
Generate swap 

combinations and rank: 
Swap(2,3) : -1 
Swap(3,4) : 0 
Swap(2,1) : 1 
Swap(4,5) : 1 

(a)

(b) (c) (d) (e)

(f)

Figure 34: This is an example to show how our crosstalk-aware mapping approach:it will

divided into three parts(b). (1) We first schedule the single qubit gate since single qubit gate

does not need to worry about swaps and crosstalk error.(c) (2)Then we use the chromatic

method to schedule the two-qubit gates which are adjacent to each other and do not need

extra swaps(d)(3) After the first two steps, there are few unused qubits, and based on the

connectivity, there are few choices of combination we can do the swap operations and only

several swaps can help decrease the distance of those cnots which are not adjacent and need

swap operations. we rank the swap combination by swap cost function, pick the combination

which has the lowest score(f). We repeat this process until there are no more gates remaining.
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Figure 35: crosstalk-aware mapping: (a) is the input program IR with two CX gate (b) is

the crosstalk-oblivious mapping which will choose swap(1,2) together with swap(3,4) since

these two swap has crosstalk error, so adaptive schedule will delay these gates. (c) is our

crosstalk-aware mapping will choose swap(0,1) together with swap(3,4)
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(a) Input circuit (b) Zero crosstalk (c)Crosstalk-tolerance

Crosstalk

Q0 Q1 Q2 Q3 Q1 Q0 Q3 Q2

S0 S1 S0

S0S0

S1

Q1 Q2 Q0 Q3

Q1 Q0 Q2 Q3Q0 Q1 Q2 Q3 Q1 Q0 Q3 Q2S0

Figure 36: An example for showing trade-off between crosstalk error and depths. We show

the input circuit in (a), and the scheduled gates in (b) if we set zero crosstalk error and

the depth of the overall circuit is 11. However if we allow the crosstalk error in (c), we can

greatly decrease the total depths to only 5.
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(a)  Input circuit (b) Use commutative

High 
Crosstalk

No 
Crosstalk

Figure 37: An example for showing adding commutative, (a) is the original input circuit

which has high crosstalk error. If we use commutative to change the order of the gates, then

in(b) we will find there is no more crosstalk error.
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Figure 38: An example for showing we use graph coloring to find the schedule of the QAOA

control rotation gates
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Table 5: Summary of Experiment Results of Work Four

Benchmark
Crosstalk-
aware
(optimal)

Crosstalk-
aware
(heuristic)

Baseline Speed up

QFT4 10 12 12 1.2
QFT10 130 140 192 1.47
QFT13 141 150 221 1.56
QFT20 289 311 418 1.44
QAOA3 13 16 16 1.23
QAOA6 102 161 192 1.88
QAOA10 175 183 220 1.25
rd32-v0.66 38 46 52 1.52
rd32-v1 68 31 32 42 1.38
4gt11 84 19 20 22 1.15
urf2 268 14116 20112 22592 1.60
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Figure 39: Compilation time sensitive analysis: the x axis is the different benchmarks and y

axis is the compilation time in seconds, we find our heuristic and optimal methods mainly

takes less than 1 second to finish and we have only used 0.1% of the baseline, which shows

exponential speed up in compilation time
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Table 6: Summary of Fidelity

Benchmark
Optimal
Depth

Optimal
fidelity

Heuristic
depth

Heuristic
fidelity

Baseline
depth

Baseline
fidelity

QFT4 10 0.41 30 0.34 36 0.34
QFT10 130 1.00E-05 170 4.50E-06 192 4.70E-08
QFT13 141 4.16E-06 200 1.89E-06 221 3.68E-09
QFT20 289 9.35E-12 311 1.35E-12 418 1.12E-16
QAOA3 13 0.319067 16 0.245128 16 0.245128
QAOA6 102 0.00012805 161 7.17E-07 192 4.71E-08
QAOA10 175 2.10E-07 213 1.04E-07 233 4.02E-09
rd32-v0.66 38 0.0354656 46 0.0175592 52 0.010364
rd32-v1 68 31 0.0656067 32 0.0600877 42 0.0249549
4gt11 84 19 0.188323 20 0.172481 22 0.144682
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7.0 Related Work

7.1 Time-Optimal Related Work

Early studies on qubit mapping problem focus on linear nearest neighbor architectures,

that is when qubits are placed in a one dimensional grid, and one qubit has at most two

neighbors. In this type of architecture, Shafei et al. [23] have modeled the qubit mapping

problem as constraint solving problem and use satisfiability (SAT) solvers to solve for qubit

mapping. It works well when the number of qubits is small and the search space is small.

Maslov [16] has obtained and proved optimal qubit mapping for the quantum fourier transform

(QFT) algorithm for LNN.

As quantum computers with more complex connectivity structure are built, a larger

number of studies investigate the qubit mapping problem. However, most of these studies

[14,26,27,30,36,37] focus on minimizing the number of inserted swap gates and enhancing

the parallelism among the swaps, but not the time of the entire circuit. Zulehner et al. [37]

proposes a systematic A* algorithm for optimizing the number of swap gates for a fixed layer

of CNOT gates that need to run concurrently. It pre-processes the circuit by partitioning the

circuit into different layers, and solve the mapping problem layer by layer. Li et al. [14] use a

frontier to keep track of the CNOT gates that cannot be scheduled on the fly and formulates

a multi-objective function for ranking different SWAP insertion strategies. Li et al. [14] has

briefly discussed the trade-off between the inserted SWAP number and the depth of the

circuit, but not systematically addressed the time-optimal problem. Siraichi et al. [26] notes

the similarity between the swap insertion problem and the subgraph isomorphism problem,

which is essentially fitting a program qubit interaction graph into the physical qubit coupling

graph. But they do not provide optimal solutions. The studies [17,29] observed the variability

of qubit error rates in IBM quantum computer and develop variability-aware qubit mapping

strategies.

The study that is most relevant to ours is OLSQ by Tan et al. [28]. OLSQ is a constrained

based solver. It solves for the time coordinate of each gate (including swap gate) and the
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qubit mapping at every time coordinate, and the objective function is the total depth. It is

optimal with respect to a depth upper-bound. It tests different upper bounds of the circuit

depth until it finds a solution. If the preset depth upper-bound is smaller than the actual

optimal depth, it will not return a solution. They start from the the longest weighted path

T in the DAG, since a circuit runs at least T cycles. If it does not return a solution with

depth ≤ T, it changes the upper bound to T+1. If with T+1, it is still unsatisfiable, it goes

to T+2, T+3, and so on until a feasible solution is found. While their method can find

optimal solutions, it may suffer from scalability issues when the optimal circuit time is not

close to T. Therefore they geometrically increase T each time by (1 + ϵ)x until an optimal

solution is found. Our model explicitly solves for an optimal solution and does not impose

any constraints.

The study by Childs et al. [2] aims to minimize the depth. But it minimizes the depth of

inserted swaps. Each set of co-running swaps is modeled as a graph matching (as no two

parallel swaps share a qubit), then it tries to find a minimal sequence of matchings to achieve

the desired permutation. Their theoretical model does not consider the parallelism between

inserted swaps and original gates. Lao et al. [13] considers the parallelism between inserted

swaps ad original gates, but their approach is not theoretically optimal.
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Figure 40: One possible solution for QFT-8 on 2×4 allowing two-qubit gate and swap on one

cycle.
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Figure 41: One possible solution for QFT-6 on LNN.

7.2 Fidelity-Optimal Related Work

A vast body of prior work exists on physical and software have been proposed to mitigate

the crosstalk problem. There are mainly two categories of studies which focus on different

parts: physical level mitigation: connectivity reduction or frequency tuning [7], and the other

kind focuses on the software level which is to delay gates [18]. The first study focus on

physical level which has strict physical constraints, the methods might not suit for all the

machines. For some machine, the architectures have been decided and there are some extra

costs when tuning the frequency of the qubits. The second study is at the software level.

Although delaying gate seems promising to reduce the crosstalk-error but this increase the

de-coherence error due to longer execution depths. So there’s a lack of an optimal solution

which can suit for all the quantum machines with trade-off between decoherence error and

crosstalk-error.

The study by Moinuddin et al. [5] is a framework that reduces the impact of measurement

errors by running a program in two modes. This work first runs the entire program and

measuring all the qubits to produce a noise histogram. And then, it runs a partial copy of the

program and produced localized histograms. In the end, it employs a Bayesian post-processing

step, that the subset measurements are used to update the global histogram. This is one sort

of software-based approach to address the fidelity problem, though it focuses on measurement

error while my dissertation focuses on crosstalk error.

95



8.0 Conclusion

The physical layout of contemporary quantum devices imposes limitations for mapping

a high level quantum program to the hardware. It is critical to develop an efficient qubit

mapper in the NISQ era. Existing studies aim to reduce the gate count but are oblivious to

the depth of the transformed circuit. The first work depth-aware qubit mapping presents the

design of the first depth-aware swap insertion scheme. The second work slack-aware qubit

mapping presents the design of the first time-efficient slack-aware swap insertion scheme.

Experiment results show that our first and second works generate hardware-compliant circuits

with reduced depth compared with state-of-the-art mapping schemes, with negligible overhead

of increased gate count.

The third work presents a time-optimal qubit mapping model scheme. We present the

first theoretical model for time-optimal qubit mapping without any implicit constraints.

The theoretical model can be flexibly extended to practical algorithms. We discovered

time-optimal solutions for quantum fourier transformation (QFT) on both 1D and 2D nearest

neighbor architecture (using our search framework). Our solution for 1D nearest neighbor

architecture is the same as a manual solution reported by Maslov [16]. But our optimal

solution for 2D architecture is for the first time reported. We have a plot that depicts the

comparison among all the three works above in Figure. 42. In this figure, we chose 10

benchmarks with gate size ranging from 200 to 4000. And we can see that depth-aware

provides speedup and slack-aware shows improvement on top of depth-aware qubit mapper.

The fourth work, we focus on reducing the crosstalk errors in the qubit mapping process.

We observe that most existing studies miss the great opportunities in mitigating the crosstalk

effect during program compilation. Therefore, we propose a crosstalk-aware qubit mapping

framework that reduces the crosstalk during mapping. Evaluations show that our novel

crosstalk-aware compilation can significantly reduce the error rate, with only incurring

minimal circuit depth compare to state-of-the-art gate scheduling approaches.
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