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Essays on the Environmental and Behavioral Determinants of Health Outcomes

Kelly Hyde, PhD

University of Pittsburgh, 2022

This dissertation consists of three essays on environmental, behavioral, and health eco-

nomics. Chapter 1 presents an experimental study of how individuals use group-labeled

disaggregated information to form subjective beliefs about their own prospects under uncer-

tainty. This study finds consistent evidence of a “category specificity heuristic”: individuals

assume that information about others who share observable characteristics with them, such

as gender, age, race, or educational attainment, is more informative than information about

others who do not, even in cases where there is no plausible causal relationship between

group membership and outcomes. Implications for individuals’ beliefs about health risks are

discussed. Chapter 2 presents an observational study of the relationship between potable

water availability and heat-related mortality in South Africa which demonstrates that in-

creased potable water supply is an effective community-level adaptation to excess heat. The

findings of this study suggest that investments to increase the reliability and accessibility

of potable water, especially in developing contexts, may ameliorate the long-run mortality

consequences of climate change. Chapter 3 presents a study which establishes a causal link

between water quality violations and food insecurity in the United States. This study finds

that during an active water quality violation in their county of residence, the nutritional

content of lower-income households’ grocery store purchases differentially declines relative

to wealthier households in the same county, with effect sizes that increase with the duration

of the violation.
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1.0 Learning About Subjective Uncertainty: Overinference from Observable

Characteristics in Disaggregated Data

Individuals facing uncertainty frequently use information at varying levels of (dis)aggreg-

ation about others’ realized outcomes in similar environments to form subjective beliefs about

their own prospects. The use of disaggregated information introduces another level of subjec-

tivity: the individual’s beliefs about the informativeness of signals based on the category to

which they pertain. In this paper, I experimentally study individual belief updating in con-

texts where outcomes do not meaningfully differ across categories. I find consistent evidence

of a bias: individuals incorrectly assume that information about someone in a particular

category is more informative about the prospects of others in the same category than about

others in different categories, even when they directly observe the underlying process that

assigns individual prospects. As a result, when they receive noisy disaggregated information,

their posterior frequently features exaggerated differences across categories, especially when

the information reinforces a preexisting misperception in their prior. When these incorrect

beliefs pertain to their own category, individuals subsequently acting on these beliefs take on

a different level of risk than their risk preferences imply they would if their beliefs had been

correct. These results suggest that providers of information that may influence individuals’

risky behaviors should carefully select a level of (dis)aggregation which balances personal

relevance with statistical precision.

1.1 Introduction

Many real-world decisions involving uncertainty require the decision maker to base their

choices on a subjectively perceived likelihood of each possible outcome. These decisions arise

in a variety of contexts and are often consequential: an undergraduate’s choice of major is

1



influenced by their beliefs about the most likely subsequent employment and salary outcomes;

a home buyer’s choice of neighborhood is influenced by their belief about the likelihood of

being a victim of a crime or a natural disaster; and an individual’s choice of whether to wear

a mask in public during a pandemic is influenced by their belief about their risk of exposure

to disease. In all of these cases, the individual cannot observe their own true probability

distribution over outcomes prior to making a decision. Instead, they must form a belief

about this probability distribution based on the information available to them, including

the observable outcomes of others who have already gone through a similar situation. The

formation and validity of subjective probabilities have long been of interest to economists

and psychologists (e.g., Bassett and Lumsdaine 2001, Cerroni 2020, Chiodo 2004, Epstein

and Zhang 2001, Hurd 2009, Hurd and McGarry 2002, Kahneman and Tversky 1972, Kieren

and Weber 2021, Tversky and Kahneman 1974).

When investigating others’ realized outcomes in the same decision environment to guide

their beliefs about their own prospects, the decision maker may encounter information at

varying levels of (dis)aggregation, with categories frequently defined by either demographics,

geographic location, or other identifying characteristics. The relative value of aggregated and

disaggregated information with a fixed sample size is based on a tradeoff between bias and

variance; disaggregating statistics explicitly accounts for heterogeneity across categories (i.e.,

reducing omitted variable bias), but at the cost of increased variance when each category is

a proper subset of the full sample. Thus to effectively incorporate disaggregated information

into their beliefs about their own prospects, the decision maker must have well-calibrated

beliefs about this tradeoff, weighing the gain in personal relevance from focusing on the

outcomes of those in the same category (i.e., the extent to which membership in a particular

category predicts one’s outcomes) against the increased likelihood of observing signals skewed

by noise.

In this paper, I conduct a tightly controlled lab experiment and companion survey on

health outcomes which demonstrate that individuals have biased beliefs about the infor-

mativeness of disaggregated information. In particular, when outcomes do not significantly

2



differ across the categories by which information is disaggregated, individuals nonetheless ap-

pear to believe that information about a particular category is highly informative about the

prospects of individuals in that category and significantly less (or, in some cases, not at all)

informative about the prospects of individuals in other categories. Remarkably, this is true

even when individuals directly observe the underlying process which generates individual

prospects prior to receiving disaggregated information, suggesting that this way of thinking

is a heuristic which individuals apply whether or not there is a plausible reason to believe

outcomes differ across categories. As a result, observing noisy disaggregated information

frequently results in posterior beliefs which exaggerate the differences in outcomes between

categories, especially when the information pertains to the individual’s own category and/or

reinforces a preexisting error in the individual’s prior. When this leads the individual to

have incorrect beliefs about their own prospects, they subsequently take on a different level

of risk than they likely would have if their beliefs had been correct.

The results of this paper are informative for economic theory, as they suggest a benefit of

modeling an additional layer of subjective beliefs that is not typically considered in models

of decision making under uncertainty: their beliefs about the (relative) informativeness of

information about others. When using disaggregated information about others to form

beliefs about their own prospects, the decision maker applies a subjective belief about the

correlations between categories; each subjective correlation implies a weight the individual

should apply to information about others in that category. Prior literature on correlation

neglect (Ellis and Piccione 2017, Enke and Zimmermann 2019, Kallir and Sonsino 2009, Levy

and Razin 2015a,b) suggests individuals frequently underestimate or ignore such correlations.

However, the results of this paper suggest errors in correlation perception in both directions:

individuals underestimate correlations across categories and overestimate correlations within

categories. In other words, individuals appear to believe they are more different from others

in different categories and more similar to others in the same category than they actually are.

This finding is consistent with models of object categorization from psychology. In particular,

Gestalt theory (Ellis 1938, Wertheimer 1938) posits that individuals tend to group together

3



objects that appear similar in some observable characteristic, and contemporary experiments

in sensory perception have found evidence in favor of this hypothesis in the visual, auditory,

and tactile domains (Gallace and Spence 2011, Wagemans et al. 2012). Theories of social

categorization in social psychology (Allport 1924, Campbell 1958, Krueger and DiDonato

2008, Tajfel et al. 1971, Turner et al. 1987) similarly hypothesize that individuals tend to

place other individuals in groups based on shared social identities. Using the language of this

literature, the results of this paper suggest a perception of false consensus among outcomes

within a category and false uniqueness across categories (Mullen et al. 1992, Perloff and

Brickman 1982, Ross et al. 1977, Suls and Wan 1987).

The findings of the paper are also relevant for policy, suggesting additional, psychological

factors to be considered by policy makers when choosing how to provide information. Pro-

viding disaggregated information may seem to offer a benefit in terms of making this more

personally relevant for decision makers, with little downside if individuals are assumed to cor-

rectly account for the additional noise that comes from disaggregated information. Indeed,

potential benefits of the increased personal relevance of information about others who share

an observable characteristic with the decision maker have been demonstrated in recent re-

search on “nudges” involving disaggregated information, such as notifying individuals about

their energy consumption relative to their neighbors to encourage conservation (Allcott and

Rogers 2014), intentionally featuring spokespeople who openly share characteristics with the

target population in a public health campaign (Keene et al. 2021), and using information

about fellow students to correct misperceptions in the frequency of alcohol consumption

among college students (Neighbors et al. 2004, 2006). If, instead, people strongly under-

estimate noise, and furthermore systematically overestimate the extent to which variation

across different categories reflects differences in common unobserved risk, then disaggregated

information may be detrimental. This is especially true because the results of this paper sug-

gest individuals update their beliefs based on these misperceptions even in the ideal scenario

where the underlying process which assigns individual prospects is explained to them prior

to observing the information. In most real-world scenarios, this data-generating process is
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at best imperfectly observable, meaning there is even less discouragement of over-inferring

from observable characteristics in disaggregated data.

The experiment requires participants to guess an unobserved parameter X which has

been randomly assigned to them, and subsequently choose between a range of possible sure

payments and entry into a lottery with X chance of winning $5. Participants are fully

aware of how X is determined, but they do not observe their assigned X at any point in the

experiment. In this way, the experiment emulates real-world risky environments in which the

exact probability of each outcome is unknown. It also deliberately creates an environment in

which there is no rational reason for participants to believe that prospects are significantly

correlated within-category.

Prior to making their guess and decision, participants are shown the outcomes (win or

loss) of six “test runs” of the lottery using the respective assigned X values for six other

individuals in the session, three in-group (defined in this context as individuals who share

their gender identity) and three out-group. Because X is randomly assigned, this signal has

zero informational content and should be disregarded. Despite this, prior literature suggests

many will update their beliefs based on it (Chadd et al. 2021, Flepp 2021, Kieren and Weber

2021, Nimark and Sundaresan 2019). Conditional on treating the signal as informative, it

is in participants’ best interest to ignore the group labeling; segregating the information by

group decreases the effective sample size (thereby increasing the influence of noise) without

increasing the relevance of the information.1

The results suggest a systematic overestimation of in-group correlations and underesti-

mation of correlations between groups. While observing an additional in-group test run win

increases an individual’s guess of their own X by 10 percentage points and their certainty

equivalent of the lottery (i.e., price list switching point) by $0.22 on average, observing an

additional out-group test run win has no significant effect on either outcome. The response

to in-group information is so strong that the number of in-group test run wins observed is

1An implicit assumption here which is true in the experimental design is that individuals regardless of
group are assigned their prospects from the same distribution, meaning that an in-group signal contains
exactly the same amount of information about the underlying distribution as an out-group signal.
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statistically a stronger predictor of a participant’s certainty equivalent of the lottery than

their self-reported general risk tolerance. In summary, individuals’ beliefs about their own

prospects exclusively respond to in-group information, and this belief updating leads them

to take on a different level of risk in subsequent choices.

The results also suggest the individuals most likely to misperceive the relative informa-

tiveness of disaggregated information are those who identify most strongly with their own

category. In particular, inspired by Chen and Li (2009) and Tajfel et al. (1971), participants

in the experiment complete an allocation task between a pair of receivers, one in-group and

one out-group, and are asked to self-report how closely attached they felt to their group

throughout the experiment. The beliefs of individuals who allocated more to the in-group

receiver and/or reported a high degree of attachment to their group during the experiment

responded more strongly to the number of observed in-group wins, while still not responding

to out-group wins. This suggests a potential intuitive mechanism for the observed results:

individuals who identify more strongly with their group are more likely to believe that, for

a particular characteristic, within-category correlations are high (i.e., a generalized “false

consensus” as defined by Ross et al. (1977)) while cross-category correlations are low (i.e., a

generalized “false uniqueness” (Snyder and Shenkel 1978, Suls and Wan 1987)). Given this

belief, it is reasonable for an individual to respond strongly to observed in-group outcomes

while disregarding out-group outcomes.

To supplement the experimental results, I conduct an online survey which asks partic-

ipants to guess the respective prevalences of health conditions among demographic groups

of individuals in the United States. Like the experiment, the survey elicits how individuals

update their beliefs after observing noisy disaggregated signals in an environment where the

true expected value is identical for both groups. This complements the experiment in multi-

ple ways: it includes a broader range of categories, enabling the assessment of heterogeneity

across possible types of categorization; it pertains to information about which participants

are more likely to have meaningful priors; and it directly tests whether the results of the

experiment generalize to the motivating example of health-related beliefs.
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Similar to the experiment, the survey results demonstrate that noisy disaggregated infor-

mation leads individuals to believe that outcomes differ significantly across social categories

when they do not. Across four pairs of health conditions and population groups, after re-

ceiving information about a particular category, individuals’ beliefs moved between two and

ten times more for that category than for the other category. Moreover, I find suggestive

evidence that, at least in some cases, the degree of asymmetric updating is larger among

individuals who received information about their own category. In other words, while indi-

viduals appear to underestimate cross-category correlations in general, they are especially

likely to underestimate the correlation between their own category and another category.

This paper contributes to the literature on the influence of categorizations, such as group

identity, on individual beliefs and behavior. Social scientists have extensively studied group-

related perceptions and behaviors, including distorted beliefs about ability and performance

(Cacault and Grieder 2019, Casoria et al. 2020, Paetzel and Sausgruber 2018, Sandberg

2018), in-group favoritism (Ben-Ner et al. 2009, Chen and Li 2009, Grimm et al. 2017, Güth

et al. 2009, Ockenfels and Werner 2014), and (mis)trust and cooperation (Ahern et al. 2014,

Arbatlı et al. 2020, Delavande and Zafar 2015, Goette et al. 2006, Meier et al. 2016). This

paper applies the consistent finding of bias in favor of one’s own group to an information

processing domain, hypothesizing that the assumptions which lead individuals to favor their

own group over others may also encourage them to regard information about other groups as

irrelevant to themselves, even when it is equally or even more informative. This hypothesis

is also closely related to the literature on peer effects, especially in the risk-taking domain

(Bougheas et al. 2013, Gioia 2019, Lahno and Serra-Garcia 2015, Sontuoso et al. 2021).

While this literature primarily focuses on the influence of information about others’ choices

on an individual’s beliefs and choices in the same domain, this paper focuses on a context

in which the information is about others’ outcomes and the choices that led to those out-

comes are unobserved. This approach more closely represents contexts in which the primary

information available is anonymous statistics, such as determining your risk of exposure to

an infectious disease or predicting your salary after graduating with a particular degree.
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The findings of this paper are also complementary to the literature on errors in informa-

tion processing. Prior literature has demonstrated that individuals update their beliefs based

on information which would optimally be ignored (Chadd et al. 2021, Flepp 2021, Kieren and

Weber 2021), misperceive correlations between signals and risks (Ellis and Piccione 2017,

Enke and Zimmermann 2019, Kallir and Sonsino 2009, Levy and Razin 2015a,b), and disre-

gard or selectively interpret sample bias and noise (Enke 2020, Hamill et al. 1980, Nimark

and Sundaresan 2019, Tversky and Kahneman 1974). This paper studies the effect of these

errors on disaggregated information. Each plays a role in the findings of the experiment

and survey: participants treat noisy, uninformative information as though it is informative,

neglect cross-group correlations, and treat extremely small samples of information about a

group as diagnostic.

The rest of the paper proceeds as follows. Section 2 discusses the design of the ex-

periment. Section 3 summarizes the results of the experiment. Section 4 describes the

supplemental survey design. Section 5 reports the results of the survey. Section 6 concludes.

1.2 Design of Lab Experiment

A total of 232 undergraduate and graduate student participants were recruited from

the Pittsburgh Experimental Economics Laboratory (PEEL) at University of Pittsburgh in

June 2020. By necessity because of the closure of in-person facilities during the COVID-19

pandemic, sessions were conducted virtually over Zoom. Participants progressed through

a series of computerized tasks coded in oTree (Chen et al. 2016). Each session, including

check-in and initial instructions, took 45-60 minutes. The experiment was preregistered with

the AEA RCT Registry under trial number AEARCTR-0007830.

At the very beginning of the experiment, participants are asked about their demograph-

ics, including gender and age. This is done at the beginning deliberately, because participants

are subsequently placed in groups based on shared gender identity. Additionally, participants
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are asked to self-report their risk preferences on a 10-point scale using the question validated

by Dohmen et al. (2011).

Prior to the decision stage, participants were told that they had been placed in a group

with 3 other participants of the same gender. This was done for both practical and inves-

tigative reasons. Gender as a grouping was well suited to the needs of the experiment, which

required exact balance between two groups formed based on shared characteristics. While

the hypothesis tested by the experiment is not specific to gender and intended to be more

general, gender has also been a grouping of particular interest in related literature, which

has documented systematic differences in risk perception between men and women (Finu-

cane et al. 2000, Flynn et al. 1994, Palmer 2003). Thus groups based on gender were both

convenient and of special interest. To avoid confounding effects from overlapping groupings,

participants were not given any information about their group-mates other than their gender,

and every session contained a minimum of 8 participants of each gender so that participants

could not discern who was in their group by looking at others’ video on Zoom. Additionally,

some participants were randomly assigned to one of two priming conditions. Because these

priming conditions did not significantly influence individual behavior in the experiment and

the key results hold in the subsample that did not receive any priming, I pool the data in

the analyses presented in this paper.2

1.2.1 Decision Stage

In the decision stage of the experiment, participants are asked to guess an unobserved,

randomly assigned parameter X, and to choose a switching point in a price list with gradually

increasing sure payments and a fixed lottery with X chance of winning $5. Guesses are

incentivized using the binarized scoring rule (Hossain and Okui 2013), while the switching

point is incentivized by implementing their choice in a randomly selected row of the price

list. Following the recommendation of Danz et al. (2020), the binarized scoring rule was

not explained in detail to participants; instead, participants were simply told that their

2For more information about the priming conditions, see Appendix Section A.1.
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chance of earning the bonus was based on how close their answer was to the correct answer,

and therefore it was in their best interest to report their true best guess. Participants are

informed that X is individually randomly assigned by drawing a number from the uniform

distribution over integers between 0 and 100. However, participants observe neither their

own assigned X nor anyone else’s at any point in the experiment.

Prior to making their guess and choice, participants are shown the outcomes of six

group-labeled “test runs” of the lottery. Each test run uses the actual assigned X of another

participant in the session: the participant’s three group-mates, and three randomly selected

individuals of a different gender. A visual example of actual information a participant saw

in the experiment is provided in Table 1. To rule out salience of left-column information as a

confound, the order of columns was randomized by individual so that half of the participants

saw their own group on the left and the other half saw the other group on the left.

Since X is randomly assigned through independent draws from a uniform distribution,

this information has zero informational content pertaining to the participant’s own X and

should be disregarded. Since the participant does not observe any draws based on their

own X, they have no information beyond the fact that their X was drawn from a uniform

distribution over integers between 0 and 100. Therefore the optimal guess is the expected

value of the distribution, i.e., X = 50. Even if the participant erroneously interprets the

information as informative about their own X (i.e., believes that X is correlated across

participants), the information comprises a very weak, noisy signal about others’ assigned X ;

therefore even guesses of individuals who fail to ignore the information should be close to X

= 50.

Immediately after seeing the information, participants are asked to guess their own X

on a slider between 0 and 100. After submitting this guess, participants are asked to choose

a switching point between Option A and Option B in the price list depicted in Table 2. In

other words, participants are asked to click the smallest value of Option B (the sure payment)

they would prefer over Option A (the fixed lottery with X chance of winning $5).

After guessing their own assigned X and choosing a switching point in the price list,
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participants allocate $1 on a slider in increments of $0.01 between two other participants

in the session: one of their group mates (and thus of the same gender), and one randomly

selected individual of a different gender. As in Tajfel et al. (1971) and Chen and Li (2009),

this allocation task is intended to measure an individual’s degree of in-group favoritism.

Participants are not given any additional information about their assigned receivers aside

from their gender and group membership. To eliminate concerns of retribution, participants

are also reassured that their receivers will not know their identity.

This serves as an established group bias from prior literature which is plausibly correlated

with selective attention to in-group information. While there are several potential reasons

for allocating a larger share to an in-group receiver, including social preferences, desire to

follow norms, or application of a simple heuristic, it is plausible that an individual who

is influenced by group labels in an allocation setting is also influenced by them in other

decision environments in a similar way. For example, if people allocate more to in-group

receivers because they assume individuals in the same group are similar to them, this way

of thinking would likely also influence their perception of the relevance of information about

others to themselves based on their group. Alternatively, if favoring an in-group receiver

in an allocation is a heuristic as argued by Guala and Filippin (2017), applying essentially

the same heuristic (in the absence of other information, look for the one in my group) to

group-labeled information would imply selective attention to in-group information.

At the end of the experiment, participants complete a short survey about their experience

in the study. As a standard test of experimenter demand effects, participants are asked what

they thought the experiment was about in a free-response question. Inspired by the exit

survey in Chen and Li (2009), participants were also asked how closely attached they felt to

their group throughout the experiment on a scale from 1 to 10.
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1.3 Results of Lab Experiment

Figure 1 graphically depicts the main result of the experiment: participants’ average

guesses about their assigned X respond strongly and linearly to in-group test run wins,

while they do not respond at all to out-group test run wins. Each additional in-group test

run win observed increases the average guess of X by about 10 percentage points. Each

pairwise difference in Figure 1a is statistically significant (p ∼ 0.015 for zero wins vs one

win, and p < 0.01 for the rest), while the pairwise differences in Figure 1b are insignificant

and vary in sign.

Table 3 confirms the findings in Figure 1 and extends them to the subsequent price list

switch point. Since each row of the price list increased the sure payment by $0.50, the

coefficient in the second column of Table 3 can be approximately interpreted as an average

increase of $0.22 in the certainty equivalent of the lottery with X chance of winning $5 for

each additional in-group test run win observed. While the Dohmen et al. (2011) measure of

self-reported risk tolerance on a 10-point scale was still positively associated with the switch

point, the number of in-group wins observed was a much stronger predictor, suggesting that

the information caused some individuals to make a choice they would not have if they had

accurate beliefs about X. To rule out salience of left-column information as a mechanism of

the effect, columns 3 and 4 add an interaction term for both in-group and out-group wins

observed with an indicator for the participant seeing their own group’s information on the

left; the interaction terms are insignificant in all cases.

In summary, Figure 1 and Table 3 demonstrate that when provided group-labeled infor-

mation about others’ outcomes in a risky environment, even in the absence of a plausible

reason to believe individual outcomes are predicted by group membership, individuals’ be-

liefs respond strongly to in-group information while ignoring out-group information. As a

consequence, when the in-group information is not representative of the expected value, they

end up with incorrect beliefs. It is important to acknowledge that in this environment, any

updating based on the information is likely to lead to incorrect beliefs, since others’ outcomes
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are entirely irrelevant to an individual’s prospects. However, conditional on failing to rec-

ognize the irrelevance of the information, individuals would have been better off on average

updating based on the proportion of wins among all six test runs observed, regardless of

group. About 30% of participants (69 out of 232) observed 3 total wins out of 6 test run

results. Assuming the participant’s guess of their own X is based on the proportion of wins

they observed, this would coincide with X = 50. Instead, among the 3 in-group test run

wins participants actually took into account, observing 50% wins was not possible,3 meaning

that all possible signals were not representative of the true expected value.

1.3.1 Heterogeneity and Potential Mechanisms

The results in Table 4 reflect two significant moderators of the effect of in-group in-

formation. Column 1 suggests that the effect is strongly positively related to the amount

participants allocated to the in-group receiver. In other words, the more individuals allocated

to their group-mate, the more their X guess responded to observed in-group wins in the de-

cision stage, and vice-versa. Because all participants completed their allocation after seeing

the test runs and guessing their X, it is not technically possible to conclusively determine the

direction of causality in this relationship.4 However, the notion that observing more in-group

wins led participants to allocate more to the in-group receiver is unintuitive; if anything, one

would expect the opposite, as individuals who saw their group-mates losing in the decision

stage might have used the allocation as an opportunity to compensate for this if they are

inequality averse or concerned with fairness (Cappelen et al. 2016, 2017, Charness and Rabin

2002, Fehr and Schmidt 1999). It is more intuitively likely that individuals who came in to

3Since participants observed 3 in-group wins, the possible numbers (percentages) of wins they incorporated
into their guess of their own X were 0 (0%), 1 (33%), 2 (67%), or 3 (100%). None of these outcomes coincide
with the expected value of 50%. Assuming individuals begin with a prior of X = 50, this means that
posterior guesses after observing test runs will always trend away from the true expected value.

4This was purposeful to avoid generating experimenter demand effects. If participants completed the
in-group out-group allocation before seeing the group-labeled information, it may have become obvious that
the experiment was about in-group bias, thereby confounding the main result. While allocations may have
been influenced by test run information, given the central focus of the paper, this is preferable to the other
way around.
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the experiment with a stronger pre-existing group bias, reflected in their allocation, were in

turn more likely to believe in-group information was relevant to them while out-group infor-

mation was not. The results in column 2 of Table 4 reflect a similar, albeit weaker, positive

relationship between the response to in-group information and self-reported attachment to

one’s own group during the experiment. As one would expect, the two measures of group

identification used in columns 1 and 2 respectively are positively correlated (ρ ∼ 0.4), so it is

unsurprising that both interaction effects go in the same direction. Similarly, in both cases,

there is a null effect of group identification on the response to out-group information, ruling

out the possibility that stronger group identifiers simply paid more attention to information

in general.

1.3.2 Session-Level Beliefs

In the exit survey, participants were asked about the average assigned X among men and

women respectively on a 5-point Likert scale ranging from “Women’s average X was much

higher than men’s” to “Men’s average X was much higher than women’s.” These session-

level beliefs complement participants’ guesses of their own X in two ways. First, they shed

light on whether participants apply their belief about their own X to others in the same

broader category, not just those in the same constructed group.5 Second, the session-level

beliefs provide a way to determine whether or not out-group information was maintained in

participants’ working memory during the experiment. The ignoring of out-group information

demonstrated in Figure 1 and Table 3 could be consistent with two possible stories: either

participants completely ignored out-group information, perhaps not even bothering to look

at it; or participants did acknowledge out-group information, but consciously decided it was

not relevant to their own X.

Figure 2 and Table 5 show the responses of session-level beliefs to the test run wins

5Technically, there were two layers of “groups” in the experiment: the broader categories of “men” and
“women” respectively, and then the specific subgroups of 4 into which participants were placed, which were
nested within the broader gender-based groups. Because of this, the session-level beliefs are necessary to rule
out the possibility that individuals considered the information about their specific group of four as diagnostic
of their own prospects, but not reflective of their gender’s prospects as a whole.
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observed in the decision stage. Participants’ beliefs linearly respond to the difference in

wins between men and women, respectively, in the appropriate direction. Across all possible

information observed, there is a slight bias toward men; the average belief among individuals

who observed the same number of wins among men and women is significantly different

from 3 (i.e., “Men and women had roughly the same average X ” on the scale), and among

participants who observed one less win among men than among women, the average belief

is almost exactly 3. The degree of bias toward men was not significantly different between

men and women, as demonstrated by the coefficient on the male indicator in Table 5.

Column 2 of Table 5 adds an interaction term for the participant’s own gender. The coef-

ficient, which is statistically significant, suggests that women’s session-level beliefs responded

about 64% more strongly to the disparities observed in the test runs than men’s. To differ-

entiate between positive and negative belief updating, Appendix Table 16 reports separate

regressions for optimistic and pessimistic beliefs about the average X among a participant’s

own gender respectively. These results suggest that women were significantly more likely to

believe specifically that the average X among women was lower than the average X among

men if they had observed men outperforming women in the test runs (i.e., negative belief

updating). This provides an interesting contrast to the results in Appendix Table 15, which

suggest there was no significant difference between men and women in belief updating about

an participant’s own X or subsequent choices based on the test run information. Taken

together, these results provide suggestive evidence that while men and women’s respective

belief updating patterns about their own individual prospects are similar, their beliefs about

their group as a whole may diverge. In particular, women may be more likely to interpret

“bad news” for themselves as an indication that women in general are or will be worse off in

that context, while men may be more likely to believe that bad news for themselves reflects

an idiosyncratic anomaly.
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1.3.3 Assessing Experimenter Demand

While recent studies have suggested that experimenter demand effects are modest even

when the researcher explicitly signals their hypothesis in the instructions (de Quidt et al.

2018, Mummolo and Peterson 2019), it remains a potential concern for this study. Multiple

features of the experimental design were intended to mitigate this concern. First, partici-

pants’ guess of their own X and subsequent price list decisions were incentivized, making the

distortion of answers to meet the researcher’s perceived expectations financially costly. In

the explanation of these incentives, participants were explicitly told that it was in their best

interest to report their true best guess. Second, the randomized priming conditions6 served

the additional function of muddling the purpose of the experiment, especially because the

priming stages took substantially more time than the decision stage. As discussed in Ap-

pendix Section A.1, the priming appears to have made individuals think about the intended

types of group identification; however, the estimated effects were not significantly different

across treatments. Therefore participants who had demonstrably different beliefs about the

purpose of the experiment exhibited similar responses to in-group information.

Experimenter demand is also unlikely to explain the results in Table 4 on group identifi-

cation as a moderator. The effect of in-group information on individuals’ beliefs about their

own X is almost entirely moderated by the amount allocated to the in-group receiver. As a

result, for experimenter demand to explain the effect, participants must have simultaneously

anticipated that the experimenter wanted them to pay attention to in-group test run wins

and wanted them to allocate more to their in-group receiver. While this is technically possi-

ble, a much more direct explanation is that strength of group identification simultaneously

influences in-group/out-group allocations and belief updating responses to group-labeled in-

formation.

Finally, in the exit survey, participants were asked (and required to answer) what they

thought the experiment was about in an open response question. In addition to assessing

the efficacy of the priming conditions, this provides a way to determine whether participants

6For an explanation of the priming conditions, see Appendix Section A.1.
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could correctly identify the objective of the experiment. The ideal scenario is that partici-

pants thought the experiment was about something unrelated to the primary outcome (the

guess of their own X ) such as gender differences/fairness, teamwork in groups, or risk pref-

erences. In total, 146 participants (63% of the sample) mentioned either the word gender or

a related word, such as men, women, male, or female; 23 (10%) mentioned group or team;

61 (26%) mentioned risk, and 41 (18%) mentioned the word bias. Among those who said

bias—perhaps the closest to the research question—many referred to either the in-group/out-

group allocation or one of the priming conditions. Only one participant explicitly referred

to the test runs, while 32 (14%) mentioned the allocation task. Two participants said guess ;

however, both of these participants were referring to a priming condition as opposed to the

X guess. Overall, participants’ answers suggest that while they understood the purpose of

the priming conditions and allocation task, they could not identify the purpose of the main

decision stage beyond simply measuring “risk preferences,” which was the intended outcome.

1.4 Design of Supplemental Survey

To supplement the lab experiment described and analyzed in the previous sections, I

designed a survey to be run on the online study recruitment platform Prolific in September

2021. In total, 202 participants completed the survey. The survey was coded in Qualtrics and

took an average of 13 minutes to complete. For their participation, survey respondents were

paid a guaranteed $2 and given the opportunity to earn a $1 bonus based on their answers.

The bonus was incentivized using the binarized scoring rule (Hossain and Okui 2013) for

their answer to one randomly selected part of one question. Like the experiment, following

the recommendation of Danz et al. (2020), the binarized scoring rule was not explained in

detail to participants; instead, participants were simply told that their chance of earning the

bonus was based on how close their answer was to the correct answer, and therefore it was

in their best interest to report their true best guess for every question.
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The survey featured 4 two-part questions in which participants guessed the prevalence of

particular health conditions among two demographic groups of Americans. The correct an-

swers were based on the 2019 National Health Interview Survey. The questions pertained to

the following pairs of health conditions and demographic groups: the respective percentages

of men and women who have ever been diagnosed with any type of cancer, the respective

percentages of White and Asian Americans who have ever been diagnosed with any type

of diabetes, the respective percentages of high school graduates and undergraduate degree

holders who have ever been diagnosed with anxiety, and the respective percentages of 18-29

and 30-39 year olds who have ever been diagnosed with depression. These questions were

presented to participants in a random order.

Participants’ guesses in each question were given in the form of a 3x3 matrix which rep-

resented a binned version of their perceived joint probability distribution of health condition

prevalences by demographic group. Figure 3 provides an example taken directly from the

survey of this joint probability distribution matrix. Participants were told that one of the

cells labeled A through I contained the correct answer, and were asked to enter their per-

ceived probability (as a number between 0 and 100) of each particular cell containing the

correct answer.

The pairs of health conditions and demographic groups were deliberately selected so that

the true prevalence in the 2019 NHIS is nearly identical between the two groups, and the

correct answer is always contained in Cell E (both prevalences are between 9% and 16%

when rounded to the nearest whole number). This is done to mirror the environment in the

experiment in which the true expected value is the same for both groups. As a result, in

every question, the “correct answer” places a probability of 0 in all cells except Cell E, which

is assigned a probability of 100.7

In each question, participants filled in this joint probability distribution matrix twice:

once as a prior, and once as a posterior after seeing the prevalence of the health condition

7For simplicity, this assumes the 2019 NHIS is perfectly representative of the population. In the survey,
the question was worded in such a way that it was clear participants were guessing the percentages according
to the survey, as opposed to the true population percentages.
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derived from a subsample of 50 randomly selected individuals in one of the groups. The

process for building this information was to draw ten random subsamples of 50 individuals

in each demographic group from the NHIS with replacement and calculate the prevalence

of the associated health condition for each subsample.8 Then, among these ten subsample

prevalences, the minimum and maximum were selected as information to be shown in the

survey. Thus while this information was truly drawn from a random subsample of 50 in-

dividuals in that group, the information participants were shown was deliberately different

from the true group mean. The outcome of interest is the difference between these posterior

and prior beliefs.

Within each question, participants randomly saw either “low” (a subsample which is

significantly lower than the true group prevalence) or “high” information. Similar to the

experiment, the information given has low informational content.9 Information was given

about women, white Americans, 18-29 year olds, and undergraduate degree holders; in all

cases, a random sample of 50 comprised approximately 1 percent or less of the total number

of NHIS respondents in that group. As a result, the prevalence among a random sample of

50 is a noisy signal of the true group prevalence.

8Participants in the survey were asked to guess the population-level prevalence of a condition based on
a nationally representative sample of Americans. Thus these calculations took survey sampling weights
into account because the correct answers were based on the weighted proportion of individuals reporting a
particular diagnosis in the survey sample. This is why, for example, participants could be shown a subsample
prevalence of 23% of cancer among women even though a raw proportion of 23% would not be possible in a
sample of 50 indivisible units.

9Unlike the experiment, the informational content is not zero. To calculate the probability that the
prevalence among a random subsample of 50 NHIS respondents in a particular group reflected the correct
answer, 10,000 random samples were drawn with replacement. The percentage of samples with a prevalence
between 9% and 16% (the correct answer in all cases) was 51% for cancer among women, 41% for diabetes
among white Americans, 52% for anxiety among college graduates, and 48% for depression among 18-29
year olds. In all cases, this percentage is greater than random chance (1/3).
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1.5 Results of Supplemental Survey

Table 6 reports the demographics recruited from Prolific for the supplemental survey.

The sample skews more female, younger, and more educated than the general population.

However, critically, the survey sample is closer to balanced in terms of “in-group” and “out-

group” relative to the information given in each question. The groups about which infor-

mation was provided were deliberately selected to be the anticipated largest groups in the

study sample so that comparisons of in-group versus out-group responses to information

would have sufficient statistical power. This was achieved across all types of demographic

groups. However, one concern with the sample which is not represented in Table 6 is that

the age-by-gender distributions are not balanced. Women in the sample were significantly

younger on average than men in the sample. Since the main results of the survey are within-

subject difference-in-difference comparisons of priors and posteriors by group, this should not

be a concern for internal validity. However, it does potentially confound between-subject

in-group versus out-group updating comparisons, and may limit the generalizability of the

findings if the belief updating patterns of young women are distinct from other population

groups.

Tables 7 and 8 show the implied expected values10 for each respective group from par-

ticipants’ reported joint probability distributions before and after seeing the information.

The table displays participants’ average prior and posterior for each of the two possible in-

formation treatments (lower or higher prevalence) separately, since the rational direction of

updating differs depending on the information received. Comparing the average priors to the

information provided in each row confirms that in all cases, the lower prevalence information

was less than the average prior and the higher prevalence information was greater, mean-

ing that both upward and downward belief revision can be observed across all four health

condition and demographic group pairs.

In all cases displayed in Tables 7 and 8, individuals significantly update their beliefs

10The expected value was calculated using the midpoint of each interval.
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based on the information, and the magnitude of this updating is significantly larger for the

group to which the information pertained. The rightmost column of the table, “Difference-

in-Differences,” demonstrates that this difference is statistically significant at the α = 0.05

level in every case. Unlike the results of the experiment reported in Section 1.3, participants

in the survey appear not to treat the groups as entirely separate, updating their beliefs to

some extent about the other group after receiving information specific to a particular group.

However, they still appear to believe across all contexts that the information about a group

is substantially more relevant to that group than to the other group.

In terms of the accuracy of individuals’ beliefs, this information is most harmful in cases

where it reinforces an existing error in the prior. For example, participants came into the

experiment believing that the prevalence of diabetes among white Americans was signifi-

cantly higher than the prevalence among Asian Americans, even though the true prevalences

in the 2019 NHIS are nearly identical (both round to 9%). If participants subsequently

saw a random sample of 50 white Americans with a prevalence of 17%, this gap widened,

while participants who saw the alternative sample with a prevalence of 5% end up closer

to the correct answer.11 When individuals’ prior had no significant difference between the

groups, unrepresentative information in either direction resulted in erroneous differences in

the posterior.

The results in Tables 7 and 8 come with two important caveats. The first is that both

priors and posteriors are quite flat, suggesting that individuals had a large degree of un-

certainty. (For visual depictions of the average priors and posteriors for each question, see

Appendix Section A.4.1.) It is likely that unrepresentative information would be easier to

dismiss or have less of an effect in an environment where individuals were more confident

in their prior. However, despite this, the pattern of belief updating on average was sensi-

11Interestingly, in this case, participants’ asymmetric updating across groups actually worked in their
favor when they were shown a subsample of white Americans with a low prevalence of diabetes, because
their posterior ended up both closer to the correct answer because of a general overestimate of diabetes rates
in the prior and because the erroneous perceived difference between white and Asian Americans in the prior
was eliminated in the posterior. While this simply means participants reached the correct conclusion for
the wrong reason, it does suggest that unrepresentative group-labeled information may actually be useful in
some contexts as a brute-force way of correcting erroneous priors.
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ble, suggesting that participants understood what to do with the information and how to

incorporate it into their answers. The second is that in each question, only about half of the

sample reported a different posterior than their prior. While this may suggest they sensibly

disregarded the information, it could also be an artifact of the survey design, which pre-filled

in the participant’s prior when asking them to guess a second time. While this approach

has the advantage of reducing participants’ cognitive load and ensuring that changes in their

answers are conscious and intentional, it also allowed participants who simply wanted to get

through as quickly as possible to proceed without thinking. However, if this is the case, it

simply biases the differences in Tables 7 and 8 toward zero.

Figure 4 graphically depicts the belief updating patterns among survey respondents

whose posterior differed from their prior. In each figure, the dashed line arrow provides

a benchmark for respondents’ belief updating if they had replaced their prior with exactly

the information they were provided (i.e., placed 100% weight on the signal). Across the four

health condition and demographic group pairs, in-group updating based on the information

(i.e., the difference between the prior and posterior divided by the difference between the

prior and the information) varies from 38% to 92%, while out-group updating varies from

4% to 38%.

Table 9 shows that in 3 out of 4 cases, the degree of asymmetric updating between

groups was largest for individuals who are themselves members of the group to which the

information pertained. Put another way, when shown information about their own group,

individuals responded more strongly to the information on average, and their response was

more skewed toward their own group. This demonstrates an intuitive corollary of the results

of the experiment reported in Section 1.3: while in the experiment, individuals treated

information about their own group as highly relevant to them and information about other

groups as irrelevant, in the survey, individuals treated information about their own group as

highly relevant to their group and less relevant to other groups.

The only case in which this did not apply was for college graduates in the question about

the prevalence of anxiety. There are two potential intuitive reasons for this. First, when asked
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at the end of the survey how strong a predictor of health outcomes each of the demographic

groups covered in the survey was, educational attainment scored significantly lower than

the others.12 As a result, college graduates responding to the survey might have been less

likely to think the information about other college graduates was representative of their own

situation, making the information less personally relevant. Second, when compared to high

school graduates who did not go to college, college graduates likely have more experience

with statistical reasoning and therefore may be more likely to realize the information is noisy

and should not strongly influence their beliefs.

While Table 9 provides strong suggestive evidence of an amplifying effect of group mem-

bership on asymmetric responses to group-labeled information, there are limitations to keep

in mind. Perhaps most importantly, information was only given about one group in each

demographic category. As a result, it is not possible to explicitly rule out that the groups se-

lected for the information—women, white Americans, and 18-29 year olds—are simply more

likely than other groups to update based on noisy information. Future iterations of the sur-

vey which include information about other groups within the same demographic categories

can help address this question more conclusively. Additionally, because the pool of survey

respondents was disproportionately young, white, and female, it is difficult to conclusively

disentangle the effect of membership in a particular group from other overlapping group

identities.

1.5.1 Comparing Observed Belief Updating to Bayesian Predictions

In this section, I discuss how survey participants’ observed belief updating compares to

predicted Bayesian posteriors based on the true variation in the NHIS data among random

subsamples of 50 individuals.13 Unlike the information provided in the experiment described

in Section 1.2, this information has nonzero informational content, meaning that a Bayesian

12Each demographic group (age, gender, race, and educational attainment) was scored on a scale from 1
to 5, where 1 was the weakest predictor and 5 was the strongest. For educational attainment, the average
score was 2.77; for race/ethnicity, 3.32; for age group, 3.77; and for gender, 3.45.

13For more details on exactly how the Bayesian posteriors were calculated, see Appendix Section A.2.1.
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participant would be expected to update their beliefs after receiving it. In particular, because

the condition and demographic group pairs in the survey were deliberately selected to be

cases in which expected outcomes are not substantially different across groups, a Bayesian

participant with well-calibrated beliefs about group differences would treat the information

as equally informative about both groups.14

The results in Table 10 indicate that participants’ observed belief updating was not con-

sistent with Bayesian predictions based on well-calibrated beliefs about group differences.

The highly significant coefficient (p < 0.01) on the indicator variable for the group rep-

resented in the information strongly rules out the hypothesis that participants on average

treated the information as equally informative about both groups. Column 2 adds an in-

teraction term to assess differences in asymmetric belief updating across groups based on

whether the participant was a member of the group to which the information pertained.

While the significant positive interaction term is consistent with Table 9 in that membership

in the group to which the information pertained widens the average asymmetry in belief up-

dating, the non-interaction term remains positive and significant, meaning that participants

in other groups still systematically perceived the information as more informative about one

group than the other. Columns 3 and 4 of Table 10 repeat the specifications in columns 1

and 2 restricting to only participants who updated their beliefs after the information. Thus,

unlike the coefficients in columns 1 and 2 which are pulled toward zero by the inclusion

of participants who did not update their beliefs based on the information, the coefficients

in columns 3 and 4 represent the magnitude of asymmetric updating and deviations from

14Whether or not the level of updating is Bayesian is less clear because participants’ beliefs about the
informativeness or representativeness of the information were not elicited. To carefully avoid both deception
and experimenter demand effects, the specific process by which the information was generated was not
revealed to participants; they were simply told that it was “a sample of 50 randomly selected [women/white
Americans/college graduates/18-29 year olds].” As a result, participants could have had varying beliefs
about the representativeness of the information.
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Bayesian predictions among updaters specifically.15 Finally, while the interaction term with

the respondent’s group membership in column 4 remains positive, it is no longer statisti-

cally significant (p = 0.107), suggesting that the amplifying effect of group membership is

predominantly on the extensive margin of belief updating rather than the intensive margin.

These results comparing observed posteriors to Bayesian predictions are explored in more

detail in the Appendix. Appendix Section A.2.1 explains the exact process by which the

Bayesian posteriors used in this section were calculated. Appendix Section A.2.2 reports

the results of an alternative specification based on a different assumption about individuals’

perception of the representativeness of the information. Finally, Appendix Section A.4

provides figures which compare observed posteriors to Bayesian predictions in each condition

and demographic group pair, information treatment, and Bayesian posterior specification,

respectively.

1.6 Conclusion

In a tightly-controlled lab experiment, I find evidence that individuals have biased beliefs

about the relative informativeness of disaggregated information, assuming that information

about an individual in a particular category is more informative about others in that cat-

egory than it is about others in different categories. This bias is apparent even when the

underlying data-generating process that assigns individual prospects is explicitly explained

to be idiosyncratic. As a result, when the information they receive is noisy, their posterior

beliefs frequently feature exaggerated differences between categories, which in turn skews

their beliefs about their own prospects. Subsequently acting on these beliefs results in sub-

optimal choices the individual would not have made if their beliefs had been correct. In the

15The results in this table include participants whose priors assigned zero probability to the interval which
contained the signal. Many of these participants assigned a nonzero probability to the same interval in their
posterior, which is always considered over-inference relative to the Bayesian prediction since Bayes’ rule
requires the posterior to assign zero probability to any event which had been assigned zero probability in
the prior. For an alternative version of the table that excludes individuals with zero priors, see Appendix
Table 18.
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context of the experiment, this meant that individuals incorrectly guessed their prospects in

a lottery with an unobserved, randomly assigned chance of winning, and subsequently took

on a level of risk that was not consistent with their general risk preferences.

In a supplemental survey, I apply the insights of the experiment to real-world health-

related information. In contexts where there is no true meaningful difference between cat-

egories, I find that individuals apply significantly more weight to the information when

updating their beliefs about the category reflected in the information than they do when up-

dating their beliefs about other categories. As a result, after observing the information, they

frequently end up moving further from the correct answer than their prior, especially when

the information reinforces an existing error in their prior. In the context of the survey, this

meant that participants frequently ended up thinking two demographic groups had different

likelihoods of developing a particular health condition when there was no true significant

difference. Even when their beliefs coincidentally move in the right direction, it is for the

wrong reason. I also find suggestive evidence of an amplifying effect of personal relevance on

the response to information, as individuals appear to update their beliefs especially strongly

when the information pertains to their own category. Finally, by simulating Bayesian poste-

riors using the true sampling variation in the National Health Interview Survey data used to

calculate prevalences, I rule out the possibility that the observed belief updating patterns are

consistent with a model of Bayesian updating based on well-calibrated beliefs about group

differences.

These results demonstrate that individuals may respond to disaggregated information

in ways not predicted by models of belief updating and decision-making under uncertainty

if those models do not take into account individuals’ subjective beliefs about the relative

informativeness of each component of a disaggregated signal. In a fully rational model of

belief updating which assumes the receiver has correct beliefs about the (lack of) signifi-

cant heterogeneity in prospects across categories, disaggregated information weakly domi-

nates aggregated information conditional on sample size; in cases where there is significant

heterogeneity, disaggregated information provides a less biased estimate of each category’s
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prospects, and in cases where there is not, the rational receiver will simply re-aggregate

the information by applying the same weight to each component of the signal. Across the

experiment and the survey reported in this paper, participants erroneously assumed that

there was significant heterogeneity when there was not, even when they directly observed

the individually idiosyncratic process from which prospects were assigned. As a result, in

order to accurately predict the observed belief updating in the experiment and survey and

subsequent choices in the experiment, one must account for the possibility of a bias in the

respective weights receivers apply to each component of the disaggregated signal.

In terms of policy implications, the results of the experiment and survey are a cautionary

tale to consider when providing information that informs risky behaviors or the take-up

of risk mitigation strategies. Disaggregations of information by age, sex, race, and other

first-order demographic characteristics are ubiquitous, and it is likely instinctual to provide

them whether or not a difference between subgroups is known or likely. In contexts where

group membership strongly predicts outcomes and each subgroup is sufficiently large to

limit the influence of noise, such disaggregated information clearly dominates aggregate

information for individuals trying to determine their own prospects. However, if either of

these conditions are not met, disaggregated information may be worse, as those who receive it

may inadvertently become convinced of differences that do not exist. This may be especially

true when the information about the receiver’s own group is inaccurate based on the results

in Table 9 or when the errors in the information are directionally similar to errors in the

individual’s prior.

While the results in this paper implicate the receivers of the information in multiple over-

lapping errors in statistical reasoning, it is likely more productive to change the information

that is provided than to try to correct receivers’ processing of it. The interpretation of dis-

aggregated information is nontrivial: it requires not only an understanding of sample bias

and uncertainty as a function of sample size, but also a correct perception of the correlations

across categories, especially when information is incomplete or unavailable for particular

categories of interest. Given the well-documented difficulties people tend to have with accu-
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rately perceiving sample biases and correlations (Ellis and Piccione 2017, Enke 2020, Enke

and Zimmermann 2019, Hamill et al. 1980, Kallir and Sonsino 2009, Levy and Razin 2015a,a,

Tversky and Kahneman 1974), this is unlikely in general. As a result, providers of informa-

tion should take care when disaggregating information, only providing it when the average

receiver is likely to draw correct conclusions from it.

As a proof-of-concept, I use the experiment data to conduct a back-of-the-envelope coun-

terfactual exercise supposing that group labels had not been provided with the information in

the decision stage. For this exercise, I assume that, in the absence of group labels, the effect

of observing any additional test run win would be equal to the observed effect of observing

an in-group test run win . In practice, I fit an alternative version of the regression in column

1 of Table 3 which replaces the number of in-group wins with the percentage of in-group

wins, and then use the resulting coefficients to predict the counterfactual believed X when

replacing the percentage of in-group wins with the percentage of overall wins, regardless of

group. The result suggests that the average deviation (in absolute value) from the optimal

guess of X = 50 would have decreased by about 24%.16 While this is still not the ideal of

everyone ignoring the information and simply guessing X = 50, participants’ beliefs would

have been closer to the correct answer on average if they were encouraged to take a sample of

6 random draws into account instead of 3 simply because increasing the sample size reduces

the noise.17

While the results of the experiment provided suggestive evidence of in-group altruism/fa-

voritism and group identification/attachment as moderators of selective attention to in-group

information, further research is needed to pin down the exact mechanisms which explain the

observed effect. Further research may also extend the design of the survey described in

Section 1.4 to other contexts and group structures to assess generalizability, particularly in

16Because the average deviation from the mean is mechanically lower in a prediction from a linear model
than in the actual data, this compares the prediction using the original data to the prediction using the
counterfactual data to avoid overestimating the reduction.

17Note that this is only true because every participant’s X was assigned from the same distribution,
meaning that increasing the sample size leads to convergence to the true expected value of the distribution
from which the individual’s X was drawn (i.e., the law of large numbers).
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environments where individuals have stronger priors. A greater understanding of how se-

lective attention to in-group information influences individual beliefs across contexts would

contribute to multiple areas of interest to social scientists, including systematic differences

in behavior and outcomes across groups (e.g., the “white male effect” in social psychology18)

as well as the formation of stereotypes and discriminatory beliefs.

Future research may also focus on individuals’ preferences between aggregated and disag-

gregated information in contexts where they choose which type of information to receive. In

the experiment and survey reported in this paper, participants always received disaggregated

information. In this way, the experiment and survey represent contexts in which informa-

tion is designed or curated in a particular way over which the receiver does not have control.

While this is representative of many real-world contexts, such as an individual receiving

daily press releases from their county’s health department about the spread of COVID-19

or reading a report from their local law enforcement agency about crime in their area, there

are also contexts in which the receiver has more direct influence over the structure of the

information, either by creating the information themselves from raw data or by choosing be-

tween multiple available sources with different structures. The results of this paper suggest

that, conditional on receiving disaggregated information in contexts where prospects do not

meaningfully differ across categories, individuals process this information in a biased way.

If this bias also applies to endogenous selection of information—i.e., individuals believe dis-

aggregated information is better because they expect heterogeneity where there is none and

thus believe disaggregated information is more useful than aggregated—this would imply

that simply changing the level of aggregation of a single information source would not be

sufficient to prevent incorrect beliefs about categorical differences if receivers respond to this

change by seeking out disaggregated alternatives. In this case, direct interventions to debias

individuals’ beliefs about heterogeneity and the relative informativeness of each component

of a disaggregated signal may be necessary.

18e.g. Finucane et al. (2000), Flynn et al. (1994), Palmer (2003).
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1.7 Figures

Figure 1: Relationship Between Beliefs About X and Test Run Wins Observed

(a) Response to in-group information
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(b) Response to out-group information
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Notes: “Number of in-group (out-group) test run wins observed” refers to the three in-group (out-group)
hypothetical draws of the lottery with X chance of winning $5 (based on others’ unobserved assigned X
values) which participants observed prior to guessing their own X. Participants were informed that these
draws were for informational purposes only and did not affect others’ payoffs. “Reported belief about own
X” was reported on a slider over integers between 0 to 100.
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Figure 2: Session-Level Beliefs about Men and Women by Test Run Wins Observed
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Figure 3: Example of a Joint Probability Distribution Matrix from the Survey
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Figure 4: Survey Belief Updating Figures (Updaters Only)

(a) Cancer by Gender
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(b) Diabetes by Race
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(c) Anxiety by Education
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(d) Depression by Age Group
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1.8 Tables

Table 1: Example of Decision Stage Test Run Information

Your group of men’s test run results:
Other group of women’s test run

results:

Man 1: Win Woman 1: Lose

Man 2: Lose Woman 2: Win

Man 3: Lose Woman 3: Win
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Table 2: Decision Stage Price List

Option A Option B

X% chance of $5, (100-X )% chance of $0 $0.50 for sure

X% chance of $5, (100-X )% chance of $0 $1.00 for sure

X% chance of $5, (100-X )% chance of $0 $1.50 for sure

X% chance of $5, (100-X )% chance of $0 $2.00 for sure

X% chance of $5, (100-X )% chance of $0 $2.50 for sure

X% chance of $5, (100-X )% chance of $0 $3.00 for sure

X% chance of $5, (100-X )% chance of $0 $3.50 for sure

X% chance of $5, (100-X )% chance of $0 $4.00 for sure

X% chance of $5, (100-X )% chance of $0 $4.50 for sure

X% chance of $5, (100-X )% chance of $0 $5.00 for sure
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Table 3: Regressing Beliefs and Switch Point Choices on Test Run Wins

(1) (2) (3) (4)
Believed
Own X

Switch Point
Believed
Own X

Switch Point

Observed in-group test run wins 10.435*** 0.441*** 10.899*** 0.546**
(1.213) (0.151) (1.850) (0.231)

Observed out-group test run wins 0.189 0.095 1.605 -0.007
(1.188) (0.148) (1.728) (0.216)

In-group wins × In-group
information on left

-0.866 -0.171
(2.504) (0.313)

Out-group wins × In-group
information on left

-2.659 0.199
(2.420) (0.302)

Male indicator 5.077** 0.417 4.678** 0.430
(2.121) (0.264) (2.148) (0.268)

Age in years -0.221 -0.012 -0.311 -0.021
(0.424) (0.053) (0.440) (0.055)

Risk tolerance -0.045 0.145* -0.102 0.143*
(0.661) (0.082) (0.667) (0.083)

Observations 232 232 232 232
Adjusted R2 0.245 0.047 0.241 0.038

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Group-clustered standard errors in parentheses. “Number of
in-group (out-group) test run wins observed” refers to the three in-group (out-group) hypothetical draws of
the lottery with X chance of winning $5 (based on others’ unobserved assigned X values) which participants
observed prior to guessing their own X. Participants were informed that these draws were for informational
purposes only and did not affect others’ payoffs. “Reported belief about own X” was reported on a slider
over integers between 0 to 100. “In-group information on left” is an indicator variable which equals 1 when
the participant saw the information about their own group in the left-hand column of the table in which
test run results were reported. For an example of this table, see Figure 1. All regressions include controls
for priming conditions explained in Appendix Section A.1.
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Table 4: Group Identification as a Moderator of Response to In-Group Information

Believed X Believed X

Observed in-group test run wins 4.226 7.382***
(2.904) (2.357)

In-group wins × Amount allocated to in-group receiver 9.761**
(4.278)

In-group wins × Group identification 0.804*
(0.486)

Observed out-group test run wins 0.350 0.312
(2.859) (1.840)

Out-group wins × Amount allocated to in-group receiver -0.367
(4.315)

Out-group wins × Group identification 0.038
(0.365)

Amount allocated to in-group receiver -8.556
(11.093)

Self-reported group identification -1.763
(1.123)

Observations 232 232
Adjusted R2 0.256 0.253

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Group-clustered standard errors in parentheses. “Num-ber 
of in-group (out-group) test run wins observed” refers to the three in-group (out-group) hypothetical 
draws of the lottery with X chance of winning $5 (based on others’ unobserved assigned X values) which 
participants observed prior to guessing their own X. Participants were informed that these draws were for 
informational purposes only and did not affect others’ payoffs. “Reported belief about own X” was 
reported on a slider over integers between 0 to 100. “Amount allocated to in-group receiver” refers to the 
amount participants allocated to the in-group receiver when asked to allocate $1 between an in-group 
receiver and an out-group receiver. “Group identification” refers to the participants’ response of how 
attached they felt to their group throughout the experiment on a scale from 1 to 10. Controls for gender, 
age, and priming condition are included.
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Table 5: Session-Level Belief Regressions

Dependent variable: Belief about relative average X for men and women
(5-point Likert scale, 1 = Women’s X was much higher than men’s; 5 = Men’s X was much

higher than women’s)
(1) (2)

Men test run wins - Women test run wins 0.402*** 0.503***
(0.041) (0.058)

Men test run wins - Women test run wins
× Male indicator

-0.196**
(0.079)

Male indicator 0.032 0.032
(0.103) (0.099)

Age in years 0.021 0.021
(0.017) (0.016)

Observations 231 231
Adjusted R2 0.288 0.302

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Group-clustered standard errors in parentheses. “Men test run
wins - Women test run wins” refers to the difference in outcomes (an integer between -3 and 3) between men
and women among the six hypothetical draws of the lottery with X chance of winning $5 (based on others’
unobserved assigned X values) which participants observed prior to guessing their own X. For example, if
the participant observed 2 wins among men and 1 win among women, this variable takes a value of 2 - 1 = 1.
Participants were informed that these draws were for informational purposes only and did not affect others’
payoffs. The “Belief about average X for men and women” was reported on a 5-point Likert scale from
“Women’s X was much higher than men’s” to “Men’s X was much higher than women’s” and then assigned
an integer value between 1 and 5. Note that these regressions have one fewer observation (231 vs 232)
than previous tables because one participant disconnected from the session before answering this question.
All regressions included controls for the priming condition. For explanations of the priming conditions, see
Appendix Section A.1.
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Table 6: Survey Sample Demographics

Gender

Male 0.40

Female 0.58

Non-binary or third gender 0.02

Race/Ethnicity

Arab/Middle Eastern 0.00

Asian/Pacific Islander 0.06

Black/African American 0.12

Caucasian/White 0.61

Hispanic/Latino 0.07

Multiple races or other 0.13

Age Group

18-29 0.58

30-39 0.28

40+ 0.13

Education

Less than high school 0.01

High school graduate 0.07

Some college 0.26

Undergraduate degree (associate’s or bachelor’s) 0.36

Advanced degree (Master’s or higher) 0.29
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Table 7: Prior and Posterior Expected Values by Group: Cancer and Diabetes

Cancer (Correct Answers: Men 9%, Women 10%)

Low Prevalence Information (Women = 3%)
Prior Posterior

Difference-in-Differences
Men Women Men Women
12.69 12.91 11.51 10.58

-1.15**
(3.13) (2.88) (3.10) (3.58)

High Prevalence Information (Women = 23%)
Prior Posterior

Difference-in-Difference
Men Women Men Women
12.24 13.36 13.27 15.48

1.09**
(3.13) (2.88) (3.10) (3.58)

Anxiety (Correct Answers: White Americans 9%, Asian Americans 9%)

Low Prevalence Information (White = 5%)
Prior Posterior

Difference-in-Differences
White Asian White Asian
13.88 11.08 10.97 10.70

-2.52***
(3.13) (3.36) (4.10) (3.34)

High Prevalence Information (White = 17%)
Prior Posterior

Difference-in-Difference
White Asian White Asian
13.88 11.11 15.22 11.23

1.22**
(3.13) (2.88) (3.10) (3.58)
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Table 8: Prior and Posterior Expected Values by Group: Anxiety and Depression

Anxiety (Correct Answers: High School Grads 14%, College Grads 14%)

Low Prevalence Information (College Grads = 8%)
Prior Posterior

Difference-in-Difference
High School Grads College Grads High School Grads College Grads

13.31 14.30 12.20 11.56
-1.64***

(3.19) (2.70) (2.95) (3.89)

High Prevalence Information (College Grads = 19%)
Prior Posterior

Difference-in-Differences
High School Grads College Grads High School Grads College Grads

13.39 14.09 13.63 15.40
1.07***

(3.34) (2.65) (2.98) (3.58)

Depression (Correct Answers: 18-29 Year Olds 16%, 30-39 Year Olds 15%)

Low Prevalence Information (18-29 Year Olds = 12%)
Prior Posterior

Difference-in-Differences
18-29 Year Olds 30-39 Year Olds 18-29 Year Olds 30-39 Year Olds

14.08 13.32 13.45 13.16
-0.48**

(2.74) (2.44) (2.10) (2.52)

High Prevalence Information (18-29 Year Olds = 20%)
Prior Posterior

Difference-in-Difference
18-29 Year Olds 30-39 Year Olds 18-29 Year Olds 30-39 Year Olds

13.96 13.17 14.97 13.33
0.85**

(3.40) (3.00) (4.01) (3.00)



Table 9: Effect of Membership in Group to Which Information Pertained on Asymmetric

Belief Updating Patterns

Average Diff-in-Diffs19

Condition Group Represented in Information In-Group Out-Group p-value

Cancer Women 1.86 0.89 0.023**

Diabetes White20 2.25 1.25 0.086*

Anxiety College Grads 1.21 1.42 0.673

Depression 18-29 Year Olds 0.98 0.23 0.026**
8Before taking the average, the difference-in-differences was multiplied by -1 in the case of low preva-
lence information.

9Because races are not mutually exclusive, the definition of “in-group” in this case is ambiguous. For this 
comparison, only individuals who exclusively identified as white are considered “in-group.” (Survey

participants were able to select multiple options in the question about race/ethnicity.) This is in 
keeping with the NHIS from which the correct answers were drawn, which classifies individuals of 
multiple races as separate groups.

Notes: “Difference-in-Differences” reports the following statistic: (Average Posterior Expected Value 
for Group Represented in Information - Average Prior Expected Value for Group Represented in 
Informa-tion) - (Average Posterior Expected Value for Other Group - Average Prior Expected Value 
for Other Group). The stars indicate the p-value comparing this difference to 0 (* p < 0.1, ** p < 
0.05, *** p < 0.01). This table includes all 202 participants who responded to the survey in all reported 
statistics.
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Table 10: Comparing Observed Posteriors to Bayesian Predictions: Baseline Model

Dependent variable: Difference (error) in probability assigned to interval containing the

information between observed posterior and Bayesian prediction

Constant -0.014 -0.019 0.030* 0.037

(0.010) (0.014) (0.016) (0.026)

Group in info 0.124*** 0.086*** 0.227*** 0.197***

(0.014) (0.020) (0.022) (0.036)

Participant in group in info 0.009 -0.012

(0.020) (0.032)

Group in info X Participant in

group in info

0.071** 0.047

(0.028) (0.046)

Sample All All Updaters Updaters

Num.Obs 1616 1616 834 834

R2 Adj. 0.046 0.054 0.111 0.111

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The constant represents the aver-
age error relative to the Bayesian predicted posterior in the group not represented in the in-
formation. Negative values indicate under-inference while positive values indicate over-inference.
“Group in info” is an indicator variable which equals 1 when the observation contains a
belief about the group to which the information pertained. For example, in the cancer prevalence by gender
questiion, “Group in info” equals 1 for beliefs about women and 0 for beliefs about men. “Participant in
group in info” is an indicator variable which equals 1 when the participant to which the observation pertains
is in the group to which the information pertained, regardless of which group the belief is about. In the
same cancer by gender example, “Participant in group in info” equals 1 for all female participants’ beliefs
about men and women. For an explanation of how these Bayesian predictions were calculated, see Appendix
Section A.2.1.
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2.0 Water Availability and Heat-Related Mortality: Evidence from South

Africa

Rising global surface temperatures threaten to reduce precipitation and evaporate sur-

face freshwater in areas already experiencing water stress. In this paper, I demonstrate

that higher upstream water availability significantly reduces the slope of the temperature-

mortality relationship during the summer. This suggests investment in water infrastructure

is an effective community-level adaptation to climate change, especially where the status quo

of water access is relatively poor. As an example of such investment, I show a transnational

water transfer project both increased water availability and reduced hot-season mortality in

receiving districts.

2.1 Introduction

As global surface temperatures rise, adaptations to heat become more important to

survival and quality of life. Excess heat has been shown to decrease cognitive performance

(Zivin et al. 2018), increase cardiovascular and respiratory mortality risk (Basagaña et al.

2011, Curriero et al. 2002), increase incidence and severity of injury during physical exertion

(Nelson et al. 2011), increase incidence of low birth weight (Deschênes et al. 2009) and infant

mortality (Banerjee and Bhowmick 2016), and ultimately, increase overall mortality (Hajat

and Kosatky 2010). Higher temperatures have also been associated with reduced economic

production through effects on time use (Graff Zivin and Neidell 2014), crop yields (Schlenker

and Roberts 2009), and aggregate economic activity (Burke and Emerick 2016).

In this paper, I demonstrate that higher potable water availability significantly reduces

the slope of the heat-mortality relationship. At the status quo median of water availability,

I find a statistically significant, positive relationship between heat and mortality, with effect
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sizes in line with prior literature (Burgess et al. 2017, Hajat et al. 2005). However, at one

standard deviation above the mean of water availability, the heat-mortality relationship is

not statistically significant, with a substantially smaller point estimate. For example, a back-

of-the-envelope calculation suggests the December 2018 heat wave in Pretoria1, despite only

lasting a few days, would on average increase the monthly mortality rate by about 3.2 per

million people (p < 0.01). Increasing potable water availability by one standard deviation

from the mean reduces this point estimate to about 0.8 per million (p ≈ 0.29).

I employ two causal identification strategies. First, I create measures of upstream, down-

stream, and within-district potable water availability for each of the 52 districts of South

Africa, and I isolate the effect of upstream water availability by controlling for within-district

and downstream measures in panel fixed-effects regressions. This strategy has been used in

prior literature (e.g. Jerch (2018), Chakraborti (2016), Garg et al. (2018)) to address con-

founders such as local precipitation, which affects a broad range of local outcomes that may

be correlated with the heat-mortality relationship (e.g. areal flooding, land suitability for

agriculture). To confirm that the estimated effect is specific to heat-related mortality, I

use colder months as a comparison group in a difference-in-difference specification, finding

that upstream water availability differentially reduces mortality in the summer. Finally, I

introduce local precipitation controls and estimate conditional moderating effects of water

availability at varying levels of precipitation. I only find a significant moderating effect when

local precipitation is relatively scarce, suggesting that upstream water availability moderates

heat-related mortality by insuring against local drought.

Second, in the Online Appendix, I use a transnational water transfer project as a natural

experiment that increased potable water availability in receiving districts. The Lesotho

Highlands Water Project, formally inaugurated in 2004, diverted water from the mountains

of Lesotho to Gauteng Province, the densely populated industrial center of South Africa.

In doing so, the transfer created a new way for upstream water sources to reach targeted

1Coverage: https://www.thesouthafrican.com/weathersa/gauteng-weather-heatwave-expected/. The
heat wave resulted in 5 cooling degree days (CDD) in Pretoria in December 2018 at a base temperature
of 90◦F (used throughout this paper as a measure of heat incidence).
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districts as well as those positioned downstream. In a difference-in-difference specification, I

find the slope of the heat-mortality relationship differentially declined in receiving districts

after 2004, and this difference cannot be explained by a decline in overall mortality. In

addition to corroborating the preceding findings of the paper, this suggests investment in

water infrastructure is an effective community-level adaptation to climate change, especially

where the status quo of water access is relatively poor.

This finding contributes to the growing literature on the efficacy of adaptations. Adap-

tations to avoid heat damages can be placed in two broad categories: household-level and

community-level (Deschenes 2014). Household-level adaptations are predominantly based on

heat avoidance, including spending more time indoors; investing in fans, better insulation,

or air conditioning; and migrating away from the heat. Households engaged in agricultural

production can also adapt through crop choice and irrigation (Burke and Emerick 2016,

Di Falco et al. 2011). Community-level adaptations include early-warning systems for ex-

treme weather, building climate-controlled shelters, and increased access to quality water

(Deschenes 2014). This paper provides evidence that increased potable water availability,

which has already been shown to have several other positive effects (e.g. Ao (2016), Devoto

et al. (2012)), is an effective adaptation to heat.

The paper proceeds as follows. Section 2 describes the data and context. Section 3

describes the empirical strategy used to identify the causal effect of water availability on

the heat-mortality relationship. Section 4 presents results. Section 5 uses a water transfer

project as a natural experiment increasing water availability in receiving districts. Section

6 concludes.

2.2 Data

To identify the effect of water availability on the heat-mortality relationship, I have

constructed a panel of mortality, temperature, hydrological, and geographic data. I describe

45



each component of this panel below.

Mortality data. I obtained counts of deaths by district and month from 1997 to 2015

from Statistics South Africa. Since there are many ways excess heat can increase mortality,

including unnatural causes (see Dell et al. (2014) for a review), my dependent variable

includes all deaths, regardless of cause. For a robustness check, I also obtained counts of

deaths attributed to infectious gastroenteritis and diarrhea, a leading waterborne cause of

death in sub-Saharan Africa, to verify that the results hold for causes of mortality more

directly associated with lack of quality water.

Temperature data. I use cooling degree days (CDD) at a base temperature of 90◦F

(with other base temperatures as robustness checks) as a measure of heat. Degree days are

primarily a measure of the energy required to cool or heat a building’s interior to the base

temperature2, but prior literature in environmental economics has used them as a measure

of heat exposure (e.g. Deschênes and Greenstone (2007)). I use CDD in this paper for two

reasons. One, it is a continuous monthly measure of both duration and intensity of heat,

which may have independent or cumulative effects on mortality. Two, as depicted in Figure 5,

the marginal effect of heat on the mortality rate is increasing as the temperature rises above

70◦F, and there is a wide range of temperatures for which the marginal effect is zero or

negative. Because CDD truncates temperatures below the selected threshold, the estimated

coefficient regressing CDD on mortality rates is the average marginal effect of temperature

above the threshold (i.e., the effect of excess heat), which is the effect of interest to this

paper.

I construct monthly CDD measures from the Global Historical Climatology Network

Daily (GHCN-Daily) dataset provided by the National Oceanic and Atmospheric Association

(NOAA). The spatial distribution of weather stations included in this dataset are described

in Section 2.3.1. The base temperature was selected in line with prior literature, which

typically defines “excess heat” as temperatures above the 90th or 95th percentile in a region

(Burgess et al. 2017, Curriero et al. 2002, Hajat and Kosatky 2010). To ensure that the

2Mathematically, one CDD 90◦F is equivalent to one day (24 hours) in a month during which the average
temperature exceeded 90◦F by one degree.
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findings are robust to more flexible measures of heat exposure, I also calculate CDD at a

base temperature of 75◦F. I combine the geographic coordinates of each weather station with

the GIS data described below to create a spatiotemporal measure of heat exposure.

Hydrological data. The South African Department of Water and Sanitation (DWS) main-

tains an online portal of hydrological data collected from dams and monitoring stations. I

retrieved all available water storage levels from 1996 to 2016, resulting in a sample of 773

dams and reservoirs. This data includes the geographic coordinates of each dam, which I

combine with GIS data described in the next paragraph to construct a spatiotemporal mea-

sure of upstream, within-district, and downstream water availability by district. A map of

all dams in the sample and their associated catchment areas is provided in Figure 2.

GIS data. A digital elevation model (DEM) for South Africa was obtained from the

Consortium for Spatial Information (CGIAR-CSI), based on raster data from the NASA

Shuttle Radar Topography Mission (SRTM). Elevation is recorded at a 3 arc-second (90

meter) resolution. A shapefile of rivers and dams was provided by the Department of Water

and Sanitation, and a shapefile of South African district boundaries in 2016 was obtained

from the Humanitarian Data Exchange (HDX).

Table 1 presents pertinent summary statistics by province. The high degree of economic

inequality in South Africa is mirrored in the disparate life expectancies3 across provinces and

sexes, ranging from just 53 years for men in Free State to 70 years for women in Western Cape

between 2011 and 2016 (Stats SA 2018). However, substantial variation in mortality risk

across provinces and population subgroups persists. There are also large differences across

provinces in average educational attainment, population group composition, elevation, and

access to piped water. More than two decades after the end of apartheid, inequality persists

along racial lines, with Black Africans in 2015 being 15 times as likely to be HIV+, twice

as likely to have no schooling, and less than half as likely to have piped water in-residence

3One major driver of life expectancy is the high prevalence of HIV/AIDS, which hit an all-time high
of 13.06% in 2018 (22.32% among women age 15-49) according to Stats SA estimates. The increase in
life expectancy from 2001-2006 to 2011-2016 is also attributable to the high HIV/AIDS prevalence, since
the South African government began ramping up provision of free antiretroviral therapy (ART) drugs for
HIV-positive individuals in the mid-2000s (Haal et al. 2018).
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compared to their White South African counterparts, according to Statistics South Africa’s

General Household Survey.

2.3 Empirical Strategy

The spatial distribution of the 68 weather stations included in the Global Historical

Climatology Network Daily (GHCN-Daily) dataset with temperature data between 1997

and 2016 is depicted in Figure 6. While there is some clustering of weather stations around

population centers and along the southern coastline, there is at least one station within

150 kilometers of the geographic center of each of the 52 districts. To limit the influence

of station-specific measurement error, I remove all observations that fail at least one of

the internal consistency checks included in the GHCN-Daily data before constructing the

distance-weighted average described in Section 2.3.1.

Figure 7 depicts the spatial distribution of the 773 dams, reservoirs, and river flow

stations monitored by the Department of Water and Sanitation (DWS) between 1997 and

2016, their catchment areas, and the surrounding area elevation gradient. The hydrogeology

and climate of South Africa is largely determined by elevation differences and proximity to

the coastline. Smaller dams are scattered across the coastline, where the rivers are densest.

The coastal districts are separated from the inland districts by a skewed U-shape escarpment,

particularly in the southeast, where the elevation peaks in the sovereign kingdom of Lesotho.

The belt of larger catchment area dams through the northwest and center of the country lie

along the Orange River and its largest tributary, the Vaal River. The importance of these

particular rivers will be explored in more detail in Section 5.

2.3.1 Measure of Heat Exposure

To obtain a measure of heat exposure for each district j at month t, I construct a

distance-weighted average of cooling degree days (CDD) at base temperatures of 90◦F and
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75◦F, respectively, from the values observed at each weather station s. The formula for this

weighted average is shown in equation 1, where d (·) represents the geodesic distance function4

(Karney 2013). The distance from each district to each weather station is calculated from

the geographic center of the district.

CDDjt =
∑
s

 [d (j, s)]−4 CDDst∑
s

[d (j, s)]−4

 (1)

I employ a distance-weighted average measure of heat exposure because the death counts

I use to calculate mortality rates only identify the location of the decedent at the district

level. Thus the specific location within the district of each decedent at their time of death

is unobserved. The weights in equation 1 are estimates of the probability that an individual

who died in district j during month t was exposed to the average temperature recorded at

station s during month t, respectively. This relies on the assumption that the unobserved

true temperature experienced by each decedent is a convex combination of contemporaneous

observations from the 68 weather stations in Figure 6. If this assumption is violated, or

if the distance from the center of a district is not an accurate estimate of the probability

an individual in that district experiences the conditions recorded by that weather station

(e.g., if population density is concentrated away from the center), this weighted average

will introduce measurement error. However, the cooling degree day (CDD) measure of heat

exposure is only nonzero if the average temperature exceeds 90◦F, which is uncommon in most

of South Africa; thus the weighted average is more likely to underestimate heat exposure than

to overestimate it, and systematic overestimates caused by using weather data from hotter-

on-average areas will be absorbed by fixed effects. If the true heat-mortality relationship

is significant and positive above the threshold used to calculate CDD, which has been a

robust finding in prior literature, measurement error will attenuate the estimated effect by

undercounting the number of deaths that occur during heat waves. Thus this measurement

error is likely to bias the heat-mortality relationship coefficient toward zero, and thus bias the

4The geodesic distance is the shortest distance between two points on an ellipsoid.
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coefficient on interactions between the heat-mortality relationship and the water availability

measures described in Section 2.3.2 toward zero as well.

2.3.2 Measure of Water Availability

For each district, I classify each dam as upstream, downstream, or within-district, based on

the dam’s elevation relative to the distance from the center of the district. This classification

allows me to isolate the effect of upstream water availability, which is advantageous to both

causal identification and interpretation. In terms of identification, controlling for within-

district and downstream water levels absorbs the effect of local precipitation and other

local hydrological conditions. Prior studies of water-related shocks and their effect on health

outcomes have employed a similar upstream-downstream strategy, such as Jerch (2018) using

variation in downstream population as an instrument to identify the effect of Clean Water

Act compliance on water quality and resident costs, Chakraborti (2016) using downstream

water quality to estimate manufacturing plants’ responses to ambient environmental factors,

and Garg et al. (2018) using upstream polluting behavior to estimate the effect of water

pollution on nearby residents’ health.

While local precipitation certainly affects potable water availability, it is simultaneously

related to other local covariates such as indoor/outdoor time use, cloud cover (and thus

exposure to and intensity of sunlight), and relative humidity, which in turn affect the heat-

mortality relationship. Holding within-district and downstream water levels fixed, an in-

crease in upstream water levels increases potable water availability in a district through the

natural flow of water downstream without changing these confounders. For this reason, the

effect of upstream water availability on the heat-mortality relationship is more plausibly

representative of the effect of increases in water supply through infrastructure, which also

involves moving water into a district without the other effects of precipitation. Since precip-

itation is expected to become less frequent and less predictable in South Africa as climate

change progresses (Nkhonjera 2017), it is important to confirm the effect of water availability

on the heat-mortality relationship is not conditional on the water being delivered through
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local precipitation.

Let E (k) represent the elevation of dam k and E (j) represent the elevation of the

center of district j. Let δujk, δwjk, and δdjk be indicator variables defined by the following

equations 2a-2c:

δujk =

1 if d (j, k) > 1 and E (k) > E (j) + 100;

0 otherwise

(2a)

δdjk =

1 if d (j, k) > 1 and E (k) < E (j)− 100;

0 otherwise

(2b)

δwjk =

1 if d (j, k) < 1

0 otherwise

(2c)

Let vkt denote the mean recorded level of dam k in month t in standard deviations

from its sample mean.5 I construct Vijt, a distance-weighted average of dam levels in each

respective category for each district j, according to equation 3.

Vijt =
∑
k

δijk · [d (j, k)]−4 · vkt∑
k

[d (j, k)]−4

 for i ∈ {u, d, w} (3)

Figure 8 provides a graphical representation of this process for the City of Johannesburg,

depicting dams by category that were assigned a weight of at least 0.01 in equation 3, with

the size of each circle representing the weight. Since Johannesburg is at a high elevation

relative to most of the country, the selected downstream dams form a ring around the district,

5Dam levels are standardized before averaging because heterogeneity in dams, based on their design
capacity, location, and maintenance is endogenous and confounds the effect of water availability.
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and the only selected upstream dams are those constructed for the Lesotho Highlands Water

Project.

Any effect of dam levels on the heat-mortality relationship in month t is unlikely to be

driven by dam levels in month t alone. By design, dams stabilize water supply over time,

storing water during positive shocks to river flow volume to insure against future negative

shocks. This is especially significant in semi-arid South Africa, which relies on recharge

during the rainy season (October to March) to meet water demand throughout the dry

season. This seasonal pattern is illustrated by district in appendix figure 41. It also takes

time for stored water to pass through sanitation facilities and utility pipelines to end users.

Thus I construct a twelve-month lagged median of dam levels, Vijt, described in equation 4.

I use this measure of water availability because it eliminates seasonal variation, which is

correlated with seasonal covariates other than heat that may affect mortality (e.g. short-

run agricultural income), deemphasizes outliers produced by one-off shocks to dam levels

that may also affect mortality (e.g. flooding), and limits the influence of non-systematic

measurement error.

Vijt = med ({Vijt−1, Vijt−2, ... , Vijt−13}) for i ∈ {u, d, w} (4)

2.3.3 Specifications

Let Mjt represent the mortality rate in district j in month t and let y represent the fixed

effect for the year of month t. Equation 5 describes the regression model used to estimate

the effect of potable water availability on the heat-mortality relationship.

Mjt = β0 + βCDDCDDjt + βuVujt + βdVdjt + βwVwjt + γu
(
CDDjt × Vujt

)
+ (5)

γd
(
CDDjt × Vdjt

)
+ γw

(
CDDjt × Vwjt

)
+ Ω(j × y) + ϵjt

The coefficient of interest is γu, the moderating effect of upstream water availability

(Vujt) on the heat-mortality relationship coefficient βCDD. I include the downstream (Vdjt)
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and within-district (Vwjt) dam levels and their interactions with CDDjt in the model as

independent regressors so that γu isolates the effect of upstream water availability.6 While it

is reasonable to expect a mitigating effect of within-district or downstream water availability

as well, γd and in particular γw are confounded by other local factors related to water

availability that are likely to influence the mortality rate, including areal flooding, land

suitability for agriculture, and humidity. Holding within-district dam levels fixed, an increase

in upstream dam levels at a sufficient distance from the district center increases potable water

supply and is unlikely to be related to these confounding factors.

The other controls in equation 5, denoted by Ω (j × y), are district-by-year fixed effects

(FE). I include these in all specifications to absorb the effects of unobserved determinants

of the mortality outcome variable Mjt that changed during the sample period. One such

unobserved source of variation is the rollout of free antiretroviral therapy (ART) drugs for

HIV-positive individuals in the mid-2000s (Haal et al. 2018). The effect of this rollout is

likely to be heterogeneous over time, as the program was rolled out and individuals started

taking the medication, and by location, since the proportion of the population living with

HIV differs by district. It may also vary by location over time if the rollout differed in

timing or take-up across districts. District-by-year FE flexibly absorb the effect of free

ART drugs on mortality rates in the presence of any or all of these potential sources of

heterogeneity. Since Mjt includes all deaths of any cause, this is just one example of many

potential unobserved confounders that are absorbed by district-by-year FE. Because district-

by-year FE are included in all specifications, the estimated effect of water availability on

the heat-mortality relationship is identified by within-district-year variation in temperature,

water availability, and mortality rates.

To isolate the relationship between the mortality rate and excess heat, I restrict the

sample to the October to March summer to estimate equation 5. The temperature-mortality

relationship is typically U-shaped, associating both extreme heat and extreme cold with

higher mortality rates. In the years covered by my data, I find a substantially higher average

6Upstream, downstream, and within-district dam levels as defined in this paper are correlated, but not
perfectly (coefficients ranging from 0.4 to 0.6), as expected.
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mortality rate during the cold season than during the summer. Thus including the cold

season in the estimation sample for equation 5 results in a negative estimate of βCDD, even

at base temperatures as high as 100◦F.7 As a robustness check, I estimate the difference-in-

difference model described in equation 6 to confirm the effect of upstream water availability

is more significant in the summer (H) using the cold season (C) as a comparison group.

Mjt = β′
0 + βH1t∈H + β′

uVujt + β′
dVdjt + β′

wVwjt + γ′
u

(
1t∈H × Vujt

)
+ (6)

γ′
d

(
1t∈H × Vdjt

)
+ γ′

w

(
1t∈H × Vwjt

)
+ Ω(j × y) + ϵjt

In this case, the coefficient of interest is γ′
u, which will be negative and significant if upstream

water availability differentially mitigates the heat-mortality relationship rather than simply

decreasing overall mortality. Aside from replacing CDDjt with an indicator variable that

equals 1 when month t is between October and March (1t∈H), equation 6 is identical to

equation 5.

2.4 Results

Figures 9 and 10 graphically represent the association between upstream water availabil-

ity and the slope of the heat-mortality relationship during the summer. In figure 9, when

upstream water availability is above the 25th percentile, there is no discernible relationship

between the mortality rate and the quartile of heat incidence. By contrast, when upstream

water availability is critically low, the mean, median, and 75th percentile of residual mortality

rates are both substantially higher during periods of excess heat. The same relationship can

be seen in figure 10 with continuous variation in heat incidence rather than quartiles. While

there is no discernible difference between the two curves in the absence of excess heat (i.e.,

7The coefficient of interest γu is still significant and negative when estimating equation 5 on the full
sample.
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CDD 75◦F = 0), the residual mortality rate differentially increases when upstream water

availability is low.

Table 12 presents estimates of equations 5 and 6, respectively. As demonstrated in

table 12, there is a significant and negative interaction between upstream dam levels and the

heat-mortality relationship, including when within-district and downstream dam levels are

included as controls.8 Employing the test of minimum relative selection on unobservables

necessary to nullify the effect estimated in column 3 of Table 12 developed by ?, I obtain a

bound estimate of approximately 10.69, substantially exceeding the recommended minimum

of 1 (proportional selection). Since dam levels are standardized, the point estimates in

Table 12 suggest the slope of the heat-mortality relationship at the mean of upstream water

availability (βCDD) is 0.91 deaths per million per CDD 90◦F, and a one-standard-deviation

increase (decrease) in upstream water availability reduces (increases) this slope by 0.90. In

other words, when upstream water availability is one standard deviation above its mean,

the slope of the heat-mortality relationship is statistically indistinguishable from zero, with

a point estimate very close to zero. In the Online Appendix, Tables 28 through 31 confirm

that this estimate is robust to a number of alternative specifications, including using CDD

75◦F instead of CDD 90◦F to reduce censoring of heat below the extreme threshold of 90◦F,

using standardized temperature values to account for the possibility of acclimatization to

local average temperatures, excluding within-district levels to more closely resemble the

analyses in prior literature (e.g. Garg et al. (2018)), and the inclusion of fixed effects for

each month in the sample.

Column 4 of Table 12 confirms that the effect of residual upstream water availability on

the mortality rate is stronger in the summer. Across all districts, the highest incidence of

temperatures exceeding 90◦F occurs between October and March, usually peaking in Decem-

ber or January. If water availability moderates the heat-mortality relationship specifically,

the effect on mortality should be stronger in months when excess heat occurs more frequently.

8In every table reporting regression results, I include specifications that omit downstream dam levels
alongside specifications that include it because 3 of the 52 districts are at too low an elevation to have any
dams classified as downstream.
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This is evident in column 4 of table 12, in which the coefficient on the interaction between

upstream dam levels and an indicator for the summer is negative and significant (p < 0.05).

2.5 Conclusion

In this paper, I show that investment in water infrastructure can be an effective 

community-level adaptation to heat. I estimate that a one-standard-deviation increase in 

residual up-stream water availability makes the slope of the heat-mortality relationship 

indistinguishable from zero, even in the absence of widespread residential air conditioning. 

In Online Appendix Section A, I find strongest effects for women, who are most likely to 

be responsible for re-trieving water for households without a private connection, and 

infant mortality, which is a natural corollary of the results for women. I also find suggestive 

evidence of heterogeneity by the location of households’ primary water sources, showing 

that maintaining the historical average level of water availability is sufficient to 

eliminate the heat-mortality relationship for population groups more likely to have a 

water source on-premises (e.g. White South Africans), while further increases above the 

historical average are necessary for those less likely (e.g. Black African and Coloured 

South Africans). Finally, in Online Appendix Section B, I confirm that upstream water 

availability is only significant following periods of scarce local precipitation when the local 

water supply is most likely to be insufficient.

I corroborate these findings in Online Appendix Section C using the Lesotho 

Highlands Water Project (LHWP) transfer as a natural experiment increasing potable water 

availability in receiving districts. After the inauguration of the transfer in 2004, 

minimum dam levels increased and summer mortality rates differentially declined in 

districts receiving water. This both lends additional credence to the causal 

interpretation of the panel-fixed-effects estimates in the prior section and demonstrates 

that the mitigating effect of water availability on the heat-mortality relationship is not 

conditional on that water being delivered through naturally-occurring rivers and streams. 

Thus manually increasing water supply and access
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through technology could significantly reduce the long-run mortality consequences of climate

change, as heat waves become more frequent and more intense. I argue this is especially

relevant in South Africa because of the projected effects of climate change on rainfall patterns

(Allen et al. 2014, Nkhonjera 2017), and as demonstrated in Section B.2, the significance of

availability of water from other sources emerges specifically when precipitation is sparse.

As a policy, investment in water access has many potential benefits beyond adaptation.

Improved potable water infrastructure has been shown to improve mental health (Devoto

et al. 2012), human capital accumulation (Beach et al. 2016), cognitive ability (Troesken

et al. 2011), and educational attainment (Ao 2016), as well as agricultural productivity and

resilience to rainfall variation (Duflo and Pande 2007) for its beneficiaries. While other ad-

verse effects of construction are possible, especially for households and local ecosystems dis-

placed by infrastructure (Duflo and Pande 2007, Hitchcock 2012, Keketso 2003), investment

in water is less likely to significantly increase long-run greenhouse gas (GHG) emissions than

encouraging air conditioning (A/C) adoption (Davis and Gertler 2015, Kahn 2016, Wolfram

et al. 2012), which has also been shown to weaken the heat-mortality relationship (Barreca

et al. 2015, 2016).

This paper adds mitigation of heat-related mortality to the already long list of potential

benefits of water, sanitation, and hygiene (WaSH) investment in developing countries. The

status quo of WaSH in South Africa leaves much room for improvement, with only 73% of

households having access to a safely managed source of water versus about 91% in the OECD

(WHO and UNICEF JMP 2015). Investments similar to LHWP to increase water supply

can improve access to safe, potable water, while also reducing heat-related mortality risk as

global surface temperatures rise. In brief, good WaSH policy is good climate policy in the

developing world, and vice-versa.

Future research is needed to identify the mechanisms by which potable water availabil-

ity mitigates heat-related mortality and their relative importance. More detailed microdata

than the panel used in this paper is needed to achieve this. There are several potential chan-

nels by which water could interact with heat-related morbidities: drinking water prevents
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dehydration and lowers the risk of heat stroke; making higher-quality water available reduces

the spread of waterborne diseases more likely to be fatal in heat; sanitary water for cleaning

can prevent the spread of infectious diseases that spread faster in heat. Determining which

of these mechanisms drives the mitigating effect of water availability on heat-related mor-

tality will elucidate which policies and infrastructure projects are most effective to protect

vulnerable populations from climate change.
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2.6 Figures

Figure 5: Temperature-Mortality Relationship for South Africa, 1997-2016
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Figure 6: Map of GHCN-Daily Weather Stations with Non-missing Data, 1997-2016
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Figure 7: Map of All Monitored Dams, Elevation, and Catchment Areas
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Figure 8: Map of Dams Selected for the City of Johannesburg by Weight
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Figure 9: The Distribution of Mortality Rates by Heat Incidence and Water Availability
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Note: “High,” “Mid,” and “Low” heat incidence refer to cooling degree days (CDD) in the top third, middle
third, and bottom third of the October to March sample, respectively. “Higher upstream water availability”
refers to average upstream dam levels above the 25th percentile.
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Figure 10: Local Regression Smoothing (LOESS) of Mortality Rates on Heat Incidence by

Water Availability Level
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“Cooling degree days, base temperature 75◦F” is a measure of duration and intensity of heat exposure above
75◦F. For reference, 1 CDD 75◦F in a particular month is equivalent to the average outdoor temperature
exceeding 75◦F by 1 degree for 1 day during that month. In the above figure, this measure is standardized
by district to remove baseline geographic differences in climate. “Residual daily mortality rate per million”
is the average daily mortality rate per million with district-year fixed effects swept out.

64



65

2.7 Tables

Table 11: Summary Statistics by Province

Province Eastern
Cape

Free
State

Gauteng KwaZulu-
Natal

Limpopo Mpuma-
langa

Northern
Cape

North
West

Western
Cape

Deaths (daily, per
million)

35.41 55.15 34.96 32.56 31.23 28.11 33.65 39.72 24.23
(10.26) (51.71) (22.01) (13.65) (18.10) (9.30) (9.28) (14.26) (8.22)

Deaths, Oct-Mar
(daily, per million)

34.69 52.26 32.45 31.71 29.93 26.96 32.08 37.81 22.83
(10.21) (48.90) (20.27) (13.08) (16.83) (8.93) (8.76) (13.39) (7.43)

Male [female] life exp.,
2000−2006

51.7 46.5 55.8 48.8 52.0 52.0 52.2 49.9 59.2
[54.8] [49.2] [58.6] [54.0] [55.4] [55.6] [57.4] [54.0] [64.1]

Male [female] life exp.,
2011−2016

56.1 53.1 62.0 55.3 56.4 57.6 57.2 55.3 63.9
[62.9] [58.8] [67.2] [61.4] [62.8] [63.2] [63.5] [62.8] [70.3]

CDD base 75◦F
(Oct-Mar, monthly)

3.81 6.74 4.02 12.20 12.84 9.53 13.32 34.25 9.43
(4.62) (9.06) (5.53) (13.04) (12.40) (13.91) (15.27) (32.35) (10.11)

Mean elevation of
dams (m)

584.0 1411.6 1327.5 740.3 838.4 1074.6 900.8 1191.2 305.1
(392.3) (135.6) (122.8) (485.5) (338.8) (438.4) (315.4) (148.5) (241.8)

Gastroenteritis deaths
0.04 0.06 0.04 0.06 0.08 0.07 0.04 0.05 0.02
(0.04) (0.04) (0.03) (0.04) (0.05) (0.05) (0.05) (0.04) (0.03)

Black African pop,
2015

0.87 0.87 0.80 0.87 0.98 0.93 0.55 0.91 0.35
(0.34) (0.34) (0.39) (0.34) (0.15) (0.25) (0.50) (0.29) (0.48)

Head of household
age, 2015

48.2 46.7 44.8 46.9 46.5 45.3 48.1 45.7 46.7
(16.8) (15.5) (14.1) (16.2) (16.9) (15.6) (15.9) (15.4) (14.5)

Educ ≥ HS diploma
0.15 0.18 0.27 0.19 0.14 0.16 0.16 0.15 0.28
(0.12) (0.15) (0.18) (0.16) (0.14) (0.16) (0.13) (0.14) (0.17)

Access to piped water
0.42 0.89 0.89 0.54 0.43 0.68 0.79 0.62 0.9
(0.04) (0.03) (0.02) (0.03) (0.03) (0.02) (0.04) (0.02) (0.02)

Means unless otherwise specified; standard deviations in parentheses.



Table 12: Heat-Mortality Relationship Above 90◦F Interacted with Dam Levels

Dependent variable: average daily deaths per million
(1) (2) (3) (4)

Oct-Mar Oct-Mar Oct-Mar All months

Upstream dam level × CDD
90◦F

−0.87∗∗∗ −0.94∗∗∗ −0.90∗∗∗

(0.17) (0.27) (0.33)
Upstream dam level × Summer
indicator

−0.78∗∗

(0.30)

CDD base temp 90◦F
0.80∗∗∗ 0.80∗∗∗ 0.91∗∗∗

(0.25) (0.27) (0.17)

Upstream dam level
−1.02∗∗∗ −0.33 −0.23 0.84
(0.20) (0.27) (0.31) (0.62)

Within-district dam level ×
CDD 90◦F

0.10 0.13
(0.47) (0.54)

Within-district dam level ×
Summer indicator

0.11
(0.23)

Within-district dam level
-0.95∗∗∗ -0.82∗∗∗ -0.80∗∗

(0.26) (0.29) (0.37)
Downstream dam level × CDD
90◦F

-0.19
(0.42)

Downstream dam level ×
Summer indicator

0.88∗∗∗

(0.27)

Downstream dam level
-0.33 -1.36∗∗

(0.38) (0.54)

Mean of dep. var. 34.12 34.12 34.12 35.37
District-month-of-year FE No No No Yes
Monthly precipitation control No No Yes Yes
N 5474 5474 5474 11649
R2 0.977 0.977 0.977 0.984

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. All columns
include district-year fixed effects. “Average daily deaths per million” is the monthly death rate per million
divided by the number of days in the month to address the fact that, all else equal, more deaths occur
during months with more days. Dam levels are distance-weighted 12-month lagged averages calculated with
equations 2 and 3. A dam is classified as upstream (downstream) of a district if it is at least 100 kilometers
away from and 100 meters higher (lower) in elevation than the geographic center of the district. A dam is
classified as within-district if it is within 100 kilometers and ± 100 meters elevation of the geographic center
of the district. For graphical examples, see figures 7 and 8. Wherever within-district or downstream dam
level controls are included, their interaction with CDD is also included. Cooling degree days (CDD) are a
monthly incidence measure of heat above the base temperature. For reference, 1 CDD at a base temperature
of 90◦F is equivalent to 1 day in a month during which the average outside temperature exceeded 90◦F by
1◦F.
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3.0 The Regressive Costs of Drinking Water Contaminant Avoidance

Up to 45 million Americans in a given year are potentially exposed to contaminated

drinking water, increasing their risk of adverse health outcomes. Existing literature has

demonstrated that individuals respond to drinking water quality violations by increasing

their purchases of bottled water and filtration avoidance, thereby avoiding exposure to con-

taminants. This paper demonstrates that poorer households, for whom the costs of avoidance

comprise a greater share of disposable income, bear disproportionate costs of water quality

violations in the United States. During an active health-based water quality violation in

their county of residence, the nutritional content of poor households’ purchases from grocery

retailers differentially declines by about 22 calories (about 1.8% of the mean) per person per

day on average. Event study estimates indicate the effect size increases with the duration

of the water quality violation. This finding suggests that the indirect costs of drinking wa-

ter contamination through economic channels exacerbate health disparities associated with

poverty.1

3.1 Introduction

According to the Environmental Protection Agency’s budget proposal for fiscal year

2020, over 7% of the United States’ population served by community water systems receives

water that does not meet at least one health-based drinking water standard established

by the Safe Drinking Water Act of 1974—at least the ones we know about. Monitoring

and enforcing water quality standards is a massive undertaking, requiring periodic sample

1Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen Company
(US), LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing
Data Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen
data are those of the researcher(s) and do not reflect the views of Nielsen. Nielsen is not responsible for, had
no role in, and was not involved in analyzing and preparing the results reported herein.
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collection at the almost 400,000 public water systems registered in the EPA’s Safe Drinking

Water Information System (SDWIS), testing by certified labs for a broad panel of regulated

contaminants, and legal proceedings in the event of an unresolved violation. Given the many

layers of coordination required on a national scale, it is unsurprising that an estimated 26-

38% of violations are either unreported or erroneously recorded in SDWIS (Allaire et al.

2018, United States Environmental Protection Agency 2000), and many of those which are

accurately recorded take several months to return to compliance. According to the EPA,

serious health-based violations are “expected to be resolved within six months” (United

States Environmental Protection Agency 2020); however, many are not. For example, during

the high-profile violation of water quality standards in Flint, Michigan, when the maximum

contaminant level for trihalomethanes was exceeded in December 2014, return to compliance

was not achieved until 9 months later.2

As customers wait for the supplier to fix the problem, either voluntarily or following

legal action by the state or federal government, many purchase bottled water in order to

avoid contaminants (Allaire et al. 2019, Marcus 2020, Zivin et al. 2011). Expenditure on

avoidance methods has been used in the environmental economics literature to estimate

the willingness to pay (WTP) for water quality improvements (Brouwer et al. 2015, Brox

et al. 2003, Johnston and Thomassin 2010, Rodriguez-Tapia et al. 2017) and similarly for air

quality improvements (Freeman et al. 2019). Prior literature using survey-based elicitation

methods has estimated average WTP for water quality improvements of between $5 and $15

per month in 2020 U.S. Dollars (Brox et al. 2003).

While enforcement of water quality standards is publicly funded, the costs of avoidance

are privately borne, and do not scale with income in the absence of targeted subsidies. Thus

the need to avoid contaminated water is a regressive income shock. The amount of water

required for survival is not a function of income or preferences, so a wealthy household and

a poor household with the same number of occupants would need to obtain similar amounts

2Perhaps surprisingly, a water quality violation associated with lead levels never appeared in SDWIS,
even though the Flint water crisis is most commonly associated with lead in the water. This is likely in part
because lead typically enters the household water supply through the corrosion of pipes near the household,
rather than contamination occurring earlier in the distribution network.
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of bottled water to replace their tap water consumption. However, the cost of this bottled

water has a different impact on each household’s budget—the wealthy household, unlikely

to be budget-constrained, can add bottled water purchases onto their existing consumption

patterns, while the poor household is much more likely to need to forego other purchases to

fit the cost of avoidance into their budget. Thus poorer households face a difficult trade-off:

either maintain current consumption and risk exposure to contaminated water, or purchase

avoidance and make sacrifices elsewhere. Even among households who do not purchase

bottled water, knowledge of contamination in their tap water may induce other types of

substitution with implications for nutritional quality and food security, such as purchasing

ready-to-eat foods (including food away from home) to avoid cooking with the water. Calorie-

for-calorie, these “convenience foods” are more expensive and of lesser nutritional quality on

average (McDermott and Stephens 2010, Rahkovsky et al. 2018, Saksena et al. 2018).

In this paper, I show that during an active water quality violation in SDWIS, the nutri-

tional content of poor households’ purchases from grocery retailers differentially declines by

about 22 calories per household member per month on average. This effect coincides with an

increase in bottled water purchases and a decrease in calories-purchased-per-dollar among

the same households. Event study estimates indicate the effect is driven by violations which

remain active for longer than 6 months, with significantly larger estimated effect sizes (about

47 calories per person per day, or 3.7% of the mean) beyond month 6 of a long-term violation.

Since treatment is assigned at the county level because the water supplier of each individual

household is unobserved, these results should be interpreted as intent-to-treat estimates and

likely represent a lower bound of the true effect of water quality violations.

This finding contributes to multiple literatures on the economics of natural resources,

poverty, and nutrition. Improvements in potable water supply have been linked to increases

in happiness (Devoto et al. 2012), decreases in obesity risk (Ritter 2019), decreases in overall

mortality risk (Clay et al. 2014, Ferrie and Troesken 2008, Troesken 2004), and increases

in human capital accumulation (Ao 2016, Beach et al. 2016, Troesken et al. 2011). These

outcomes have also been linked to improvements in nutrition, especially among infants and
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children (Adhvaryu et al. 2019, Anderson et al. 2016, Frisvold 2015, Hoynes et al. 2011, 2015,

Hoynes and Schanzenbach 2009, Kohler et al. 2017). The findings in this paper suggest a

potential link between these parallel literatures: in addition to the direct benefits of water

supply improvements, poor households may additionally benefit from a positive income effect

as improvements to water supply allow them to reallocate their spending on avoidance devices

to other nutritious products. Taking this income effect into account increases the long-run

value of residential water infrastructure improvements, for which the EPA requested over $2

billion in fiscal year 2020 citing broad prevalence of outdated water systems.

This paper also contributes to the literature on the spatial and intergenerational nature

of poverty in the United States. The notion that “zipcode is destiny” (Chetty et al. 2018)

may be partially explained by spatial heterogeneity and persistence in the quality of the

residential water supply. For several reasons, including the construction of lead pipes in the

early 20th century (Clay et al. 2014), the location of cities either upstream or downstream of

major sources of pollution (Jerch 2018), and historical to present-day environmental injustice

(Schaider et al. 2019, Switzer and Teodoro 2018), water quality violations are not evenly

distributed across space. Particularly for children, since many of the known health and

developmental conditions caused by contaminated water supply are associated with early-

life exposure (Beach et al. 2016, Clay et al. 2014, Valent et al. 2004), living in an area with

persistent water quality violations increases the risk of conditions that in turn reduce the

likelihood of getting out of poverty. If poor water quality requires families to choose between

avoidance and adequate nutrition, children are placed in a lose-lose situation, as either choice

is likely to have negative consequences for their development. While this paper focuses on

the short-term impacts of water quality violations to limit threats to causal identification,

the results are consistent with correlational disparities in food security based on an area’s

history of water quality violations (see Figure 1).

The paper proceeds as follows. Section 2 describes the data used to construct the water

quality violation and household consumption measures. Section 3 describes the results.

Section 4 discusses the limitations and areas for further research. Section 5 concludes.
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3.2 Data and Empirical Strategy

3.2.1 Data

To assess the differential effect of water quality violations on poor households’ bud-

get constraints and resulting nutrition, this paper combines household-level panel data on

grocery and department store purchases, nutritional information on grocery products, and

administrative records of water quality violations and enforcement activities. Each data

source is described below.

Household consumption data. Measures of monthly household consumption were con-

structed from the Nielsen HomeScan Consumer Panel, a nationally representative panel of

households’ retail purchases, from 2004 to 2016. The panel contains 168,772 unique house-

holds spanning 2,967 counties in the United States, and includes purchase dates, quantities,

and prices paid for about 2.2 million unique Universal Product Codes (UPCs) for grocery

products. Among these UPCs, Nielsen provides “extra attributes” such as flavor, organic

labeling, and container type for about 1.3 million. The demographic information provided

about each household includes number of residents, annual income, and the gender, race,

age, and occupation of each resident. In all analyses reported in this paper, households

were classified as “poor” if their reported income in a given year was less than 200% of the

established federal poverty line in that year based on the household’s number of residents,

including children.

UPC-level nutrition facts data. The UPC-level consumption data in the Nielsen HomeS-

can Consumer Panel was merged with the Nutritionix Consumer Packaged Goods database

purchased from Syndigo Inc. This data includes all information from a product’s legally

mandated nutrition facts label, including calories, fat, carbohydrates, sugars, and protein

per serving, and the number of servings per container. Among the UPCs represented in the

Nielsen data, 305,455 products were directly matched with a product in the Nutritionix data.

To assign nutrition facts to unmatched UPCs, I conduct a two-stage imputation process. In

the first stage, I use a semantic matching technique based on the “extra attributes” Nielsen
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provides for about 1.3 million products to associate each unmatched product with the most

similar matched product.3 Products are semantically matched based on the longest common

substring (LCS) distance between attribute strings, which were constructed by concatenating

all available attribute description fields.4 In the second stage, I compute the median value

by category of each nutrition facts variable among all (directly or semantically) matched

products using 679 “product modules” (e.g. “Ice Cream - Bulk,” “Vegetables - Greens -

Canned”, etc.) pre-defined by Nielsen, and assign these median values to all remaining un-

matched products. To ensure comparability across products of different sizes, all imputation

is based on standardized per-100-gram measures of nutritional content; after imputation, the

total nutritional value for each product is computed by scaling up these per-100-gram values

using the provided metric weight of that product.

Water quality violations and enforcement data. The incidence, timing, and type of water

quality violations were determined at the county level from the EPA Safe Drinking Water

Information System (SDWIS) database, an administrative dataset that records public water

system facility locations and populations served, site visit logs, and various types of water

quality standard violations from 2009 onward. Health-based violations, which are failures

to adhere to established maximum contaminant levels (MCLs) for regulated contaminants

such as lead, arsenic, and nitrates or related treatment protocols, are the focus of this paper.

SDWIS also separately categorizes some health-based violations as acute when the violated

MCL poses an immediate threat to customers’ health.

I classify household i in county j as under an “active violation” in month t if there

exists a health-based water quality violation recorded in SDWIS for a water supplier that

3A similar approach to match nutrition facts to a broader database of products was used in Carlson et al.
(2019).

4An example of an attribute string is PIECE MILK CHM MM SMORES CHOCOLATE CHOCOLATE COVERED

PIECE for a S’mores flavored milk chocolate piece product, which includes its product type, flavor, and
common consumer name.
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serves at least 500 customers5 in county j for which public notification has been requested

by state or federal authorities prior to month t and compliance has not yet been achieved

by month t. Because each individual household’s water supplier is not observed, there is

uncertainty regarding whether or not household i is actually affected by the violation. The

results should thus be interpreted as “intent-to-treat” rather than the “treatment on the

treated.” Because entirely unaffected households should not respond to these violations,

this attenuates estimates, and thus the estimated effects in this paper should be considered

a lower bound.6

To produce the results reported in Section 3.3, I restrict the sample in two ways. First,

I only include households that experience at least one health-based water quality violation

during the sample period, which comprise about 39% of the overall consumer panel sample.

As is evident in Figure 11, many counties do not have any active violations during the

sample period. Those that do are a selected subsample of counties that are more rural and

lower-income than average, meaning that comparisons along the extensive margin of water

quality violations may be confounded by unrelated differences, especially if those differences

are time-varying. Instead, this sample restriction means that the differential timing of water

quality violations across counties is used to identify the effect of those violations on household

consumption. Secondly, I only count violations as “active” if they have both relevant dates

recorded in SDWIS (the date public notification was requested and the date of return to

compliance). This is necessary because it is not possible to differentiate between presently

ongoing violations and missing data.

5This eliminates “Very Small” water suppliers, which include restaurants, office buildings, and other
public institutions that are required to report to state or federal water quality monitors but do not provide
water to households on a large enough scale for households in the panel to plausibly be affected. This cutoff
was also used in Allaire et al. (2018), citing different reporting requirements and less reliable data from “Very
Small” systems.

6It is possible for households which are not directly affected by a water quality violation to respond if
they hear about a violation in their area and thus become more skeptical of their own water supply. This
would simply be a different channel by which local water quality violations affect household consumption
with similar consequences.
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3.2.2 Empirical Strategy

3.2.2.1 Panel Fixed-Effects Regression

Using the above data sources, the following panel fixed-effects model was estimated:

CaloriesPerPersonPerDayit = δ1ActiveV iolationit ×Below200PctFPLi+ (7)

β1ActiveV iolationit + β2Below200PctFPLii+ t+ ϵit

where Below200PctFPLi is a dummy that equals 1 when the household’s total income does

not exceed 200% of the corresponding year’s federal poverty line based on the household’s

number of residents, ActiveV iolationit is a dummy variable that equals 1 when household i

is under an active water quality violation defined above, i and t are vectors of fixed effects

for each household i and time period t respectively, and ϵit is an error term. Standard

errors are clustered at the county level because the treatment varies at the county level. To

address growing concerns of bias in two-way fixed effects (TWFE) linear regressions (Roth

et al. 2022) in a way feasible to implement with high-dimensional data, I apply the weighting

method proposed by Imai and Kim (2019).7

To further investigate the potential causes and consequences of differential changes in

the nutritional makeup of grocery purchases between wealthier and poorer households, the

model in equation 7 is re-estimated with two other dependent variables of interest: reported

expenditure on bottled water, and reported overall grocery product expenditure. I deflate

both of these expenditure measures to 2004 dollars using the annual food-at-home CPI from

USDA (Kuhns et al. 2015). Based on prior literature, I hypothesize that bottled water

purchases will increase among affected households following public notification of a water

quality violation (Allaire et al. 2019, Marcus 2020, Zivin et al. 2011). For budget-constrained

households, this may result in a decrease in calories purchased if bottled water expenditure

crowds out expenditure on more nutrition-dense grocery products. In accordance with this, I

hypothesize that the effect on total expenditure on grocery products excluding bottled water

7This was done with the assistance of Laurent Bergé, author of the R package fixest (Bergé 2018).
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will decline among poorer (and thereby more likely budget-constrained) households during

an active water quality violation.

Because the treatment indicator ActiveV iolationit turns on and off over time within each

unit, a key identifying assumption in this specification is that the effect of a water quality

violation on household consumption is exclusive to the periods in which that violation is

active. In practical terms, this means that households trust that their water is safe to

consume immediately after being notified that the violating water supplier has returned to

compliance. If this assumption is violated, the estimates generated with this specification

are likely to be biased toward zero, since periods in which the treatment indicator is turned

off after a violation returns to compliance will still be affected by the violation. Indeed,

both anecdotal and empirical evidence from the Flint, Michigan water crisis suggest this

assumption may not hold, particularly for severe, high-profile violations; a report by CNN

in April 2018 highlighted that many residents of Flint, Michigan were still avoiding their

tap water despite the government’s declaration that it was safe to drink (Chavez 2018), and

recent work by Christensen et al. (2019) corroborates this by finding that home prices in

Flint remained depressed as a result of the water crisis as late as August 2019.

3.2.2.2 Event Study

To complement the panel fixed-effects regression described in section 3.2.2.1, I conduct

an event study which estimates effects of water quality violations on calories per person per

day, bottled water expenditure, and total non-bottled-water grocery expenditure for each

month relative to the nearest violation’s start date. This allows for the visualization of

heterogeneous treatment effects over time (e.g. more intense effects for violations that take

longer to return to compliance) as well as the assessment of parallel trends pre-violation,

which is necessary to confirm that the panel fixed-effects regression results are not driven

by the continuation of differential trends pre-treatment that would not be absorbed by unit

or time fixed effects. I plot event study coefficients for the 24 months prior and 24 months

after each violation, binning all periods more than 25 months before and 25 months after
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the start date respectively. Like the panel fixed-effects regressions described in the previous

subsection, the event study regressions use the weights proposed by Imai and Kim (2019) to

mitigate bias in two-way fixed effect linear regressions.

In the event study, period 0 represents a month in which public notification of a violation

was requested.8 All other treatment periods are defined as follows: if there is an active

violation in the household’s county of residence in a given month, the household’s treatment

period in that month is the number of months that have elapsed since public notification of

that violation was requested; otherwise, the household’s treatment period in that month is

the (negative) number of months until the next violation occurs in that household’s county

of residence.9 Much like the panel fixed-effects results reported in Section 3.3, the key

identifying assumption of this event study specification is that water quality violations only

affect the outcome of interest while they are active.

3.3 Results

Figure 11 maps the number of health-based violations and the food insecurity rate in

2017, as measured in Feeding America’s 2019 Map the Meal Gap report. The average food

insecurity rate is positively correlated with the number of health-based violations since 2010,

from an average of 12.7% among counties with no recorded violations to 14.2% for counties

with 3 violations or more (the 90th percentile), and this relationship is statistically significant

(p < 0.01). A similar pattern holds for the child food insecurity rate, for which the average

among counties with no violations is 18.6% and the average among counties with 3 violations

8Without data limitations, it would be preferable to set period 0 as the month in which public notification
was issued. However, unfortunately, while some violations do have this date recorded in SDWIS, it is missing
for the vast majority of recorded violations.

9For example, suppose a household’s county of residence is notified of a water quality violation for the first
time in January 2015, the associated water supplier returns to compliance in June 2015, and then commits
another violation about which the public is notified in September 2015. Then for each month between
December 2014 and October 2015, the household is assigned the following treatment periods: -1, 0, 1, 2, 3,
4, 5, -2, -1, 0, 1.
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or more is 20.9% (p < 0.01).

While this strong positive correlation between food insecurity and water quality violations

motivates the research question of this paper, there are many reasons it may not be causal.

Both the history of water quality violations and the rate of food insecurity are correlated

with income-based poverty rates and themselves could be considered dimensions of a broader

definition of poverty. Thus this correlation could be attributable to many other things

associated with poverty, including the possibility that wealthier households move away from

or avoid moving to an area with a history of water quality violations. To causally identify the

effect of water quality violations on household budget constraints and resulting consequences

for nutrition, it is necessary to observe consumption within a household before and after a

water quality issue emerges.

Table 13 reports the results of the panel fixed-effects regression which estimates the dif-

ferential effect of an active water quality violation for households below 200% of the federal

poverty line relative to their wealthier counterparts. The interaction coefficient in Column

1 of Table 13 is positive and statistically significant, confirming that poor households are

responding to county-level water quality violations by increasing their purchases of bottled

water.10 While the point estimate is negative, the interaction coefficient in Column 2 is not

statistically significant, suggesting that monthly non-bottled-water expenditure among poor

households does not significantly differentially decline during a water quality violation. How-

ever, the non-interaction term in Column 2 is negative and statistically significant, suggesting

that non-bottled-water grocery expenditure declines for all households during a water quality

violation. Nonetheless, the nutritional consequences of these consumption differences—the

key result of this paper—are substantially larger for poorer households, as demonstrated in

Columns 3 through 7. During an active water quality violation, calories per person per day

from purchased grocery products differentially declines among poor households by about 22

(1.8% of the mean, p < 0.05), with proportionally similar declines across a range of nutrient

10The statistically insignificant coefficient on bottled water sales for households above 200% of the federal
poverty line is consistent with the finding in Allaire et al. (2019) that the bottled water consumption of
higher-income, nonrural counties respond the least to water quality violations.
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types. Given the coarse county-level assignment of water quality violations in the data used

in this paper, these results should be interpreted as intent-to-treat estimates, and are thus

likely significantly biased toward zero.

Figures 12, 13, and 14 present the event study coefficients for calories per household

member per day, bottled water expenditure, and total non-bottled-water expenditure, re-

spectively. The event studies for both calories per household member per day and total

non-bottled-water expenditure demonstrate no significant pre-trend and effect sizes that in-

crease significantly over the course of a long-lasting violation. While just under half of water

quality violations return to compliance within 6 months, with a mode of 1 month (see Fig-

ure 15 for a histogram), almost half (47%) are not, and these long-term violations may be

especially problematic for poor households. There are multiple potential explanations for

this: longer-term violations may receive more coverage, leading to higher awareness of the

water quality problems and thus stronger incentives to avoid exposure, especially if legal

action is taken against the water system as in Flint, Michigan; longer-lasting violations may

mean greater cumulative exposure to contaminants, creating health problems in affected

customers that cannot afford avoidance, increasing medical expenses and sick time away

from work; or longer-lasting violations may culminate in other forms of economic disruption

(e.g. business closures) that effectuate disproportionate negative income shocks on poorer

households. More research with more granular data is needed to determine the underlying

mechanism of the observed effect heterogeneity with certainty. By contrast, the event study

for bottled water expenditure appears flat over the course of a violation and potentially

influenced by a positive pre-trend. The implications of this result will be discussed in more

detail in the next section.

Finally, Table 14 explicitly tests the time-based heterogeneity suggested by the event

studies by splitting the treatment variable into two indicators: one which turns on during

months 1 through 6 of a water quality violation, and another which turns on during months 7

and beyond. For this table, I restrict the sample to the households which experience at least

one long-term (> 6 month) violation during the study period, which comprise about 54% of
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households which experience a violation of any duration.11 This is done to rule out potential

confounding of duration-based heterogeneity by unobserved differences between households

which experience long-term violations and those which do not. The estimated effect size for

months 7 and beyond of an active water quality violation for calories (a decrease of about

47 per person per day, or 3.7% of the mean) is about 2.7 times larger than the estimate for

months 1-6, and this difference is statistically significant (p ≈ 0.038). However, the increase

in expenditure on bottled water does not significantly differ between months 1-6 and month

7+ respectively, and while the decrease in total expenditure becomes statistically signifi-

cant for month 7+, the difference in interaction coefficients is not statistically significant at

conventional levels (p ≈ 0.15).

3.4 Discussion

While the data used in this paper offers many unique advantages, including the ability

to analyze within-household effects of water quality violations, broad spatial coverage of the

United States, and rich product-level data on household consumption, it also comes with

limitations. Several of these limitations have already been discussed, including ambiguity

over the exact time in which a water quality violation could be expected to change household

behavior, the need to impute nutrition values for the majority of purchased products either

through semantic matching or the use of category medians, and the inability to determine

for sure whether or not a particular household receives water from a source that committed a

quality violation. Further research with more precise and granular data is needed to confirm

these findings. This is especially true of the effect magnitudes, since most of the limitations

introduce uncertainty that is likely to bias the estimated effects toward zero.

This paper also cannot fully address what households are spending money on instead of

nutritive products when a water quality problem emerges. While I do find evidence of in-

11A full sample version can be found in Appendix Table 34.
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creased bottled water purchases during an active water quality violation, the estimated effect

is too small to fully explain the observed concomitant decrease in nutritive purchases. There

are several possible reasons for this: contaminated water may cause health problems requir-

ing expensive treatment, especially if the impacted poor households are uninsured; reduced

trust in household tap water may discourage preparing foods in the home, thus encouraging

households to substitute groceries for fast food and restaurant takeout that would not be

represented in the HomeScan Consumer Panel; or households may be purchasing avoidance

in ways that are not reported as consumption in the panel, by installing water filters in

the home or purchasing water from retailers other than grocery or department stores. The

exact long-run health consequences of the effects presented by this paper depend on which

explanation holds for the majority of households.

Further research is also needed to determine the effect of water quality violations on

consumed calories and other macronutrients rather than purchased quantities at grocery

stores. The United States Department of Agriculture estimates total food waste in the U.S.

between 30 and 40% of the food supply. This suggests that on average, calories consumed

will be a proper subset of calories purchased. At the same time, according to USDA ERS,

half or more of the food consumed in the United States is prepared outside of the home (e.g.

from restaurants) (Saksena et al. 2018) Because the data used in this paper does not include

purchases from restaurants, I cannot observe whether households are engaging in substitution

of food away from home for groceries (perhaps to avoid cooking with contaminated water)

or decreasing their overall food consumption. While food away from home, especially from

fast food establishments, tends to be of lower nutritional quality than food prepared at

home (Saksena et al. 2018), this means that more complete food consumption data would be

required to determine which households or particular household members are facing hunger

versus those that are consuming more unhealthy foods.

Finally, the Nielsen HomeScan Consumer Panel data is self-reported by participating

households, and thus may feature reporting errors and lapses in participation (Einav et al.

2010). The data used in this paper is restricted to the “purchases static” created by Nielsen,
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which restricts the sample to households who report their purchases for at least ten months

of a given year. Nonetheless, this does not guarantee that households record all of their

purchases, and households entering and exiting the panel over time as violations occur may

confound the estimated effects. To address this concern, in the appendix, I report results

based on the Nielsen Retail Scanner data, which comprises all purchases made at 35,000

participating retailers across the United States. This approach is described in more detail

in Appendix Section C.1.

3.5 Conclusion

Using a panel of household retail purchases, nutritional quantities based on UPC-level

nutrition facts, and county-level water quality violations, this paper demonstrates a negative

effect of water supply contamination on household nutritional consumption for households

with income below 200% of the federal poverty line. During an active water quality viola-

tion, calories purchased per household member per day differentially declines among poorer

households by about 22 (1.8% of the mean). Event study coefficients suggest that this ef-

fect accumulates over the duration of water quality violations that take several months to

return to compliance, with significantly larger estimated effect sizes (about 47 calories per

person per day, or 3.7% of the mean) beyond month 6 of a long-term violation. In the same

time period, demand for bottled water, which facilitates avoidance of contaminated water,

increases among poorer households. By virtue of their lower income, comparable absolute

increases in demand for avoidance comprise a larger share of the poorer households’ total

monthly expenditure. However, observed demand for avoidance cannot account for the en-

tire decrease in nutritive purchases, suggesting a change in preferences (such as buying more

food away from home to avoid cooking with the contaminated water) or unobserved avenues

of purchasing avoidance.

These findings suggest multiple potential welfare gains from increased investment in
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water quality monitoring, enforcement, and improvement. An estimated 26-38% of water

quality violations are either incorrectly or never reported to the federal Safe Drinking Water

Information System (SDWIS) (United States Environmental Protection Agency 2000). Since

the findings of this paper focus on the time leading up to the documentation of a water

quality violation rather than the actual public notification of the violation, this suggests

that households in areas with persistent undetected water quality violations may experience

long-term costs that undermine nutrition and other welfare-improving expenditures without

recourse. Even among the violations that are detected, significant delays are likely because

testing is costly and there are a large number of water suppliers to monitor; the longer

these delays are, the more costs accumulate to affected households. Finally, improvements

to residential water supply infrastructure would reduce the likelihood of certain types of

violations such as dissolved lead regardless of monitoring frequency. In addition to the many

known direct benefits of improved water supply (Ao 2016, Clay et al. 2014, Devoto et al.

2012, Ferrie and Troesken 2008, Ritter 2019, Troesken et al. 2011), this paper adds reduced

risk of food insecurity to the list of potential welfare improvements resulting from these

investments.

This paper also provides additional evidence of spatially-determined disparities in the

United States. Much of the residential water infrastructure in centuries-old U.S. cities is

outdated, hence the EPA’s request of more than $2 billion in fiscal year 2020 to fund recon-

struction projects nationwide. The quality of that infrastructure thus to some extent reflects

the historical prosperity of each particular neighborhood. If that infrastructure increases

the likelihood of repeated or persistent water quality violations, it will inhibit economic de-

velopment, as both people and businesses are discouraged from moving in to an area with

unsafe water; this in turn makes it more difficult to replace that infrastructure without public

funding. Meanwhile, this paper suggests those who live in that neighborhood must choose

between exposure to harmful water contaminants or foregoing food on the table to purchase

avoidance. Both options carry a risk of developing health conditions, especially for children,

that increase the difficulty of social mobility.
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3.6 Figures

Figure 11: Maps of 2017 Food Insecurity Rate and Health-Based Violations Since 2010

1 2 3 4 5
2017 Food Insecurity Rate Quintile  

0 5 10 15 20
Number of health−based violations recorded in SDWIS  

Note: A health-based violation is included in a county’s total if it affects at least 500 customers, based on
the population served indicated in SDWIS.
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Figure 12: Event Study of Effect on Total Calories Purchased Per Household Member Per

Day

Differential Effect of Health−based Water Quality Violations
on Total Calories Purchased for Households Below 200% FPL
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Figure 13: Event Study of Effect on Monthly Household Expenditure on Bottled Water

Effect of Health−based Water Quality Violations
on Total Reported Expenditure on Bottled Water

 for Households Below 200% FPL
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Figure 14: Event Study of Effect on Total Monthly Expenditure

Effect of Health−based Water Quality Violations
on Total Reported Non−Water Expenditure

for Households Below 200% FPL
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Figure 15: Histogram of Active Water Quality Violation Durations

47%
longer than 6 months

0

2500

5000

7500

0 25 50 75 100
Duration of active water quality violation (months)

C
ou

nt

87



88

3.7 Tables

Table 13: Differential Effects of Active Health-Based Water Quality Violations

Bottled water
exp.

Other exp. Calories Fat Carbs Sugars Protein

(2004 USD) (2004 USD) (Cal) (Grams) (Grams) (Grams) (Grams)

Active Violation × 0.136*** -0.523 -21.916** -0.970** -2.499** -2.001*** -0.782***
Below 200% FPL (0.048) (1.824) (9.119) (0.443) (1.236) (0.769) (0.296)

Active Violation -0.002 -0.860** -4.913** -0.167 -0.524** -0.277* -0.138**
(0.012) (0.428) (2.159) (0.104) (0.265) (0.155) (0.064)

Below 200% FPL -0.055 -3.925*** -89.615*** -3.777*** -11.318*** -5.022*** -1.980***
(0.048) (1.392) (11.297) (0.498) (1.382) (0.676) (0.329)

Mean of dep. var. 2.03 204.30 1233.78 50.96 152.66 68.19 32.14
Coef. % of mean 6.7% 0.02% 1.8% 1.9% 1.6% 2.9% 2.4%
N 4328963 4328963 4328963 4328963 4328963 4328963 4328963
Adjusted R2 0.374 0.564 0.430 0.417 0.390 0.313 0.438

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. County-clustered standard errors are in parentheses. Expenditure measures were deflated to 2004 USD
using the annual food-at-home CPI measures from USDA (Kuhns et al. 2015). Household and panel month fixed effects are included in all columns.
Regressions were weighted using the method proposed by Imai and Kim (2019) to mitigate bias in two-way fixed effect (TWFE) linear regressions.
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Table 14: Differential Effects of Active Health-Based Water Quality Violations Based on Duration (Restricted Sample)

Bottled
water exp.

Other exp. Calories Fat Carbs Sugars Protein

(2004 USD) (2004 USD) (Cal) (Grams) (Grams) (Grams) (Grams)

Active Violation (Month 7+) × 0.169*** -3.839** -46.569*** -1.657** -5.627*** -3.218*** -1.172**
Below 200% FPL (0.064) (1.773) (14.309) (0.682) (1.818) (1.008) (0.471)

Active Violation (Month 7+) 0.006 0.170 -4.237 -0.209 -0.341 0.084 -0.243**
(0.018) (0.648) (3.430) (0.154) (0.435) (0.242) (0.106)

Active Violation (Month 1-6) × 0.201*** -1.469 -17.175 -0.355 -1.781 -1.285 -0.695*
Below 200% FPL (0.064) (1.575) (12.324) (0.582) (1.725) (1.048) (0.375)

Active Violation (Month 1-6) 0.002 -0.464 0.821 0.062 0.174 -0.009 -0.033
(0.015) (0.760) (2.685) (0.125) (0.323) (0.186) (0.078)

Below 200% FPL -0.115** -1.915 -80.755*** -3.674*** -10.435*** -4.545*** -1.838***
(0.053) (1.470) (14.621) (0.651) (1.784) (0.902) (0.422)

Mean of dep. var. 2.05 204.30 1258.37 52.22 155.15 76.66 31.74
P-value: Short-term vs. long-term 0.594 0.161 0.038 0.046 0.042 0.079 0.275
N 2469983 2469983 2469983 2469983 2469983 2469983 2469983
Adjusted R2 0.356 0.549 0.412 0.399 0.372 0.294 0.422

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. County-clustered standard errors are in parentheses. “Restricted Sample” refers to the subset of
households who experience at least one long-term (> 6 month) water quality violation during the sample period. Expenditure measures were deflated
to 2004 USD using the annual food-at-home CPI measures from USDA (Kuhns et al. 2015). Household and panel month fixed effects are included in
all columns. Regressions were weighted using the method proposed by Imai and Kim (2019) to mitigate bias in two-way fixed effect (TWFE) linear
regressions. The row “P-value: short-term vs. long-term” reports statistical comparison tests between the coefficient for “Active Violation (Month
7+) × Below 200% FPL” and the coefficient for “Active Violation (Month 1-6) × Below 200% FPL.” For a full-sample version of this table, see
Appendix Table 34.



Appendix A - Learning About Subjective Uncertainty: Overinference from

Observable Characteristics in Disaggregated Data

A.1 Experiment Priming Conditions

Each session was randomly assigned one of three priming conditions: a questionnaire

on gender differences based on real-world survey data (GenderDiffs), a button-pressing task

with group-based incentives (ButtonTask), or nothing as a control condition (NoStage1 ). In

NoStage1 sessions, subsequent stages of the experiment were relabeled so that participants

were not aware other sessions had an additional stage. Across all sessions, 88 participants

completed GenderDiffs, 64 participants completed ButtonTask, and 80 participants were

assigned NoStage1.

In GenderDiffs, participants are asked to guess the percentage of men and women, re-

spectively, to which a particular statement applies. Each statement is related to a health

or economic outcome, such as life expectancy and average salary for workers in a particular

industry, in which men and women significantly differ. The correct answers are drawn from

the 2018 General Social Survey, U.S. Census Bureau, and CDC. Immediately after making

their guesses, participants are shown the correct answers. At the end of the study, a bonus

payment of $2 based on the binarized scoring rule (Hossain and Okui 2013) is calculated

based on a randomly selected guess (i.e., one part, men or women, of one statement).

In ButtonTask, participants complete two five-minute rounds of the key-pressing task

in Ariely et al. (2009) and DellaVigna and Pope (2018). The task requires participants to

alternately press the “a” and “b” keys on their keyboard to earn payments. The incentive

structure is inspired by Babcock et al. (2015). Specifically, in round 1 of the task, participants

earn a piece rate per 100 key presses up to a threshold, and a one-time bonus for meeting or

exceeding the threshold as an individual. In round 2, participants earn the same piece rate

up to the threshold, but the bonus is only earned if everyone in their group meet or exceed
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the threshold. Participants are not informed of whether or not they earned this bonus until

the end of the experiment session.1

GenderDiffs and ButtonTask are designed to prime different types of group identifica-

tion. GenderDiffs calls participants’ attention to the differences between men and women

in various contexts. Because participants are shown the correct answers immediately after

each guess, they receive 10 consecutive informative signals with different information about

men and women; thus when they receive information about men and women in the decision

stage, they might be habituated to discard information about the other gender as irrelevant

to them. By contrast, ButtonTask encourages individuals to feel attached to their group in

a way that is not explicitly related to gender. Instead of encouraging participants to dis-

regard information about other genders, ButtonTask encourages participants to pay special

attention to information about their group through a sense of camaraderie.

In summary, the randomized priming conditions are intended to shed light on the un-

derlying mechanism of the result found in the decision stage. If participants in GenderDiffs

sessions responded more strongly to in-group information than others, this would suggest

identification with one’s own gender (and lack of identification with other genders) drives

the effect. Alternatively, if participants in ButtonTask responded more strongly, this would

suggest identification with a particular assigned group, possibly irrespective of the trait on

which that group assignment was based, drives the effect. Finally, if there is no difference

between either condition and NoStage1, this implies that either baseline group identification

is strong enough that priming is not required (i.e., a ceiling effect), or selective attention to

in-group information is driven by a belief or trait which is not influenced by these priming

tasks.

Tables 17 adds interaction terms between observed in-group and out-group wins, respec-

1The incentives paid in ButtonTask varied across the two sessions to which it was assigned. In the first,
participants earned $0.10 per 100 presses up to 1,000, and a $1 bonus for meeting or exceeding 1,000 presses.
In the second, because 100% of participants met or exceeded the threshold of 1,000 in the first session,
incentives were reduced to $0.05 per 100 presses up to 2,000 and a bonus of $1 for meeting or exceeding
2,000 presses. While this means any analysis based on participants’ actual performance in ButtonTask cannot
be pooled across sessions, it should not significantly impact the priming effect of the stage.
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tively, and the randomized priming conditions, the amount allocated to the in-group re-

ceiver, and self-reported attachment to one’s own group throughout the experiment. While

the interaction terms between observed in-group wins and assignment to GenderDiffs and

ButtonTask respectively (with the NoStage1 control condition as the reference group) have

the expected positive sign, they are not statistically significant. This is despite the fact that

the priming appeared to be effective: when asked what the experiment was about in the exit

survey, GenderDiffs participants were 16 percentage points more likely to mention gender,

while ButtonTask participants were 20.5 percentage points less likely compared to NoStage1

(both differences p < 0.05). There are multiple possible interpretations of this result. First,

the effect of observed in-group wins on an individual’s X guess was quite strong in NoStage1 ;

the non-interaction term in Table 17 implies that even without a priming task, observing

an additional in-group win increased participants’ average X guess by about 8.7 percentage

points. Thus the lack of significance of priming could reflect a ceiling effect. Alternatively,

taken at face value, the lack of a significant effect of priming may indicate that the types

of group identification primed by the priming conditions are unrelated to the mechanism(s)

behind selective attention to in-group information.
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A.2 Observed Belief Updating and Bayesian Posteriors Continued

A.2.1 Explanation of Bayesian Posterior Calculation

To calculate Bayesian posteriors from participants’ reported priors, it is necessary to esti-

mate the respective probabilities of observing a signal within each interval conditional on the

correct answer being within a particular interval, i.e., P (signal in interval x | correct answer

in interval y) ∀x, y ∈ {1, 2, 3}. Additionally, because survey participants were asked to guess

the population prevalence of a health condition among all individuals in a particular demo-

graphic group based on a nationally representative survey sample, it is necessary to take

the survey sampling weights into account when estimating these probabilities, since the cor-

rect answer is the weighted proportion of individuals reporting a particular diagnosis in the

sample.2

To estimate the necessary probabilities to calculate Bayesian posteriors, I implement a

bootstrap approach with constructed counterfactual datasets derived from the NHIS which

simulate the correct answer being in each respective interval. In the results reported in

Section 1.5.1, I assume that participants’ beliefs about the proportional likelihood of each

integer within a particular interval are uniformly distributed; in other words, if a participant

assigns probability x to the correct answer being in the first interval (0% to 8%), I assume

they assign probability x
9
to each integer {0, 1, 2, ..., 7, 8}. In accordance with this, the

counterfactual NHIS datasets simulate true prevalences that are uniformly distributed within

each interval respectively. Later in this section, I report results based on an alternative

assumption that participants’ beliefs are skewed toward the closest values within each interval

to the midpoint (12.5%) of the entire range of possible percentages (0% to 25%), thus using

counterfactual datasets simulating true prevalences of 8%, 12.5%, and 17%, respectively.

These counterfactual datasets are constructed by replacing the value of the binary out-

come variable for a randomly selected subsample of individuals within the relevant demo-

2If survey weights were not used, the expected value for the prevalence among a subsample of 50 would
be the raw frequency of the condition in the survey sample rather than the population estimate.
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graphic group (women, white Americans, college graduates, and 18-29 year olds) until the

prevalence is contained within the intended interval. In other words, I first specify a target

interval (low, middle, or high), then randomly select a specific target prevalence from the

uniform distribution over that interval, and then randomly select a subset of individuals

whose diagnoses (or lack thereof) are replaced in the counterfactual dataset so that the re-

sulting prevalence approximates the target. As an example, in the true 2019 NHIS data,

the prevalence of any type of cancer among women is approximately 10.2%. To construct a

counterfactual dataset which simulates a prevalence in the low interval, I first make one draw

of a target prevalence from the uniform distribution U (0, 8.5).3 Suppose the draw is 4%.

I then randomly select approximately 10.2−4
10.2

= 60.8% of women in the NHIS who indicate

a cancer diagnosis and replace this value with a non-diagnosis so that the resulting preva-

lence is approximately 4%. To simulate a higher prevalence, I replace values of the outcome

variable for a random subset of individuals in the opposite way; for example, to simulate

a prevalence of 21%, I randomly select approximately 10.8
89.2

= 12.1% of women without a

cancer diagnosis and replace this value with a diagnosis. I then draw a random sample of 50

women from each of these counterfactual datasets and record the prevalence derived from

this subsample. This entire process, including the random draw of target prevalence from

the uniform distribution over the interval, random reassignment of diagnosis values, and the

subsequent random subsample of 50, is repeated 10,000 times for each interval.

Under the assumption that participants correctly perceived the way the information was

generated, the main effect of the information for a Bayesian updater is reducing the likelihood

that the correct answer is contained in the diametrically opposed interval. In other words,

receiving a signal in the low interval means it is less likely that the correct answer is in the

3I include prevalences up to, but not including, 8.5 because the correct answer is rounded to the nearest
integer, meaning that e.g. a prevalence of 8.3% is contained in the low interval.
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high interval, and vice-versa.4 Most importantly, since the health condition and demographic

group pairs in the survey were deliberately selected to be cases in which the true prevalence

is nearly identical across groups, they should proportionally update their beliefs about both

groups in the question if they have well-calibrated beliefs about group differences.

After calculating the likelihood of observing each possible signal, the Bayesian posterior

for each interval is simply:

P (correct answer in x | signal in y) =

P (signal in y | correct answer in x)× P (correct answer in x)∑
m∈{1,2,3}

(
P (signal in y | correct answer in m)× P (correct answer in m)

)
Because all three possible signals have a nonzero probability of occurring regardless of the

interval containing the correct answer, this posterior is well-defined everywhere. However, in

cases where the prior assigns probability zero to the particular interval containing the signal,

the Bayesian posterior is always zero, even though participants’ posteriors may be likely to

assign nonzero probability (Basieva et al. 2017). Since comparing observed posteriors to the

Bayesian posterior is a primary objective of Section 1.5.1 and this section, this introduces

a concern: if a sufficient number of participants assigned probability zero to a signal they

received but do not follow Bayes’ rule, including individuals with a prior of zero in the

interval containing the signal may make belief updating look non-Bayesian on average, even if

updating from nonzero priors is approximately Bayesian.5 To address this concern, Table 18

replicates the specifications in Table 10 while excluding participants whose priors assigned

4The likelihood of the minimum prevalence among 10 random samples of 50 drawn from the NHIS being
in the low interval rounds to 100% if the correct answer is in the low interval, 95% if the correct answer is
in the middle interval, and 24% is the correct answer is in the high interval. Likewise, the likelihood of the
maximum prevalence among 10 random samples of 50 drawn from the NHIS being in the high interval rounds
to 100% if the correct answer is in the high interval, 93% if the correct answer is in the middle interval,
and 14% if the correct answer is in the low interval. As a result, a low-prevalence signal is unlikely if the
true prevalence is high and vice-versa, but in both cases, the information does not substantially distinguish
between the interval that contains it and the middle interval.

5For example, an individual who assigned probability zero to the interval containing the signal and
assigned a probability of 50% to this interval in the posterior is considered to have overinferred by 50
percentage points, which is a large positive outlier.
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zero probability to the interval containing the signal. Among this subsample, the non-

Bayesian difference in updating across groups remains highly statistically significant (p <

0.01).

A.2.2 Alternative Specification

The results reported in Section 1.5.1 assume that participants correctly identified the

information as non-representative. However, because individuals’ beliefs about the repre-

sentativeness and/or informativeness of the information were not explicitly elicited, this

is uncertain. To account for the possibility that participants considered the information

representative and updated their beliefs accordingly, the results of this subsection compare

observed posteriors to Bayesian posteriors based on the assumption that the information was

derived from a single random sample drawn from the NHIS of 50 individuals in a particular

group.

Under the assumptions of uniform within-interval beliefs and participants perceiving the

information as the result of one random draw from the NHIS, the respective probabilities of

receiving a signal which coincides with the simulated correct answer (P (signal in interval x |

correct answer in interval x) ∀x ∈ {1, 2, 3}) are approximately 81% for the low interval, 50%

for the middle interval, and 71% for the high interval. As a result, if participants are

Bayesian, they should increase the probability they assign to the interval containing the

signal, especially since their priors are quite flat. Additionally, since the health condition

and demographic group pairs in the survey were deliberately selected to be cases in which

the true prevalence is nearly identical across groups, they should proportionally update their

beliefs about both groups in the question if they have well-calibrated beliefs about group

differences. The results in Tables 19 and 20 confirm that this key result holds under this

alternative assumption, since the coefficient on “Group represented in information” remains

highly statistically significant across all columns of both tables.
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A.3 Additional Tables

Table 15: Gender Differences in Belief Updating and Switch Point Choices

Believed X Price List Switch Point

Observed in-group test run wins 10.123*** 0.443**

(1.502) (0.214)

In-group wins × Male indicator 0.632 0.027

(2.129) (0.319)

Observed out-group test run wins -0.811 0.212

(1.776) (0.192)

Out-group wins × Male indicator 1.830 -0.207

(2.372) (0.254)

Male indicator 1.507 0.732

(4.786) (0.568)

Age in years -0.264 -0.006

(0.361) (0.063)

Observations 232 232

Adjusted R2 0.244 0.032

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Group-clustered standard errors in parentheses. “Number of
in-group (out-group) test run wins observed” refers to the three in-group (out-group) hypothetical draws of
the lottery with X chance of winning $5 (based on others’ unobserved assigned X values) which participants
observed prior to guessing their own X. Participants were informed that these draws were for informational
purposes only and did not affect others’ payoffs. “Reported belief about own X” was reported on a slider
over integers between 0 to 100. “In-group information on left” is an indicator variable which equals 1 when
the participant saw the information about their own group in the left-hand column of the table in which
test run results were reported. For an example of this table, see Figure 1. All regressions include controls
for priming condition. For an explanation of the priming conditions, see Appendix Section A.1.
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Table 16: Alternative Session-Level Belief Regressions

Own group’s

X was higher

Own group’s

X was lower

In-group test run wins - Out-group test run wins 0.155*** -0.207***

(0.029) (0.024)

(In-group test run wins - Out-group test

run wins) × Male indicator

0.008 0.115***

(0.038) (0.035)

Male indicator 0.173*** -0.283***

(0.049) (0.052)

Observations 231 231

Adjusted R2 0.219 0.273

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Group-clustered standard errors in parentheses. “In-
group test run wins - Out-group test run wins” refers to the difference in outcomes (an integer between
-3 and 3) between the three in-group and three out-group outcomes among the six hypo-thetical draws
of the lottery with X chance of winning $5 (based on others’ unobserved assigned X values) which
participants observed prior to guessing their own X. For example, if the participant observed 2 wins
among their own group and 1 win among the other group, this variable takes a value of 2 - 1 = 1.
Participants were informed that these draws were for informational purposes only and did not affect
others’ payoffs. The “Belief about average X for men and women” was reported on a 5-point Likert
scale from “Women’s X was much higher than men’s” to “Men’s X was much higher than women’s”
and then assigned an integer value between 1 and 5. To form the dependent variables in these
regressions, two indicator variables were created: one for participants believing their own gender’s
assigned X was at least slightly higher than the other gender’s on average (i.e., women answering 1 or 2,
and men answering 4 or 5), and one for the opposite (i.e., women answering 4 or 5, and men answering 1
or 2). Note that these regressions have one fewer observation (231 vs 232) than previous tables because
one participant disconnected from the session before answering this question. All regressions included
controls for the priming condition. For explanations of the priming conditions, see Appendix Section
A.1.
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Table 17: Effect of Priming Conditions on Responses to Test Run Wins

(1)
Believed X

Observed in-group test run wins 8.721***
(1.280)

In-group wins × Gender differences questionnaire 2.413
(2.374)

In-group wins × Button-pressing task 3.477
(2.651)

Observed out-group test run wins 0.046
(1.915)

Out-group wins × Gender differences questionnaire 1.006
(2.644)

Out-group wins × Button-pressing task -1.373
(3.029)

Priming: Gender differences questionnaire -5.892
(5.788)

Priming: Button-pressing task -2.972
(5.407)

Observations 232
Adjusted R2 0.242

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Group-clustered standard errors in parentheses. 
“Number of in-group (out-group) test run wins observed” refers to the three in-group (out-group) 
hypothetical draws of the lottery with X chance of winning $5 (based on others’ unobserved assigned 
X values) which participants observed prior to guessing their own X. Participants were informed that 
these draws were for informational purposes only and did not affect others’ payoffs. “Reported belief 
about own X” was reported on a slider over integers between 0 to 100. For an explanation of each 
priming condition, see Section 1.2. Controls for gender and age are included.
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Table 18: Comparing Observed Posteriors to Bayesian Predictions: Baseline Model

(Excludes Zero Priors)

Dependent variable: Difference (error) in probability assigned to interval containing the
information between observed posterior and Bayesian prediction

Constant
-0.033*** -0.039*** -0.003 -0.003
(0.009) (0.014) (0.015) (0.025)

Group in info
0.114*** 0.080*** 0.210*** 0.188***
(0.013) (0.019) (0.021) (0.035)

Respondent is in group in info
0.011 0.000
(0.019) (0.031)

Group in info X Participant is in
group in info

0.064** 0.036
(0.026) (0.044)

Sample All All Updaters Updaters
Num.Obs 1493 1493 747 747
R2 Adj. 0.047 0.056 0.118 0.117

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The constant represents the average error relative to the
Bayesian predicted posterior in the group not represented in the information. Negative values indicate
under-inference while positive values indicate over-inference. “Group in info” is an indicator variable which
equals 1 when the observation contains a belief about the group to which the information pertained. For
example, in the cancer prevalence by gender questiion, “Group in info” equals 1 for beliefs about women and
0 for beliefs about men. “Participant is in group represented in information” is an indicator variable which
equals 1 when the participant to which the observation pertains is in the group to which the information
pertained, regardless of which group the belief is about. In the same cancer by gender example, “Participant
is in group in info” equals 1 for all female participants’ beliefs about men and women. For an explanation
of how these Bayesian predictions were calculated, see Appendix Section A.2.1.
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Table 19: Comparing Observed Posteriors to Bayesian Predictions: Alternative Model

Dependent variable: Difference (error) in probability assigned to interval containing the
information between observed posterior and Bayesian prediction

Constant
-0.291*** -0.283*** -0.247*** -0.215***
(0.011) (0.017) (0.018) (0.030)

Group in info
0.120*** 0.060** 0.234*** 0.180***
(0.016) (0.024) (0.026) (0.043)

Participant is in group in info
-0.015 -0.052
(0.023) (0.038)

Group in info X Participant is in
group in info

0.112*** 0.087
(0.032) (0.054)

Sample All All Updaters Updaters
Num.Obs 1616 1616 834 834
R2 Adj. 0.033 0.043 0.088 0.088

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The constant represents the average error relative to the
Bayesian predicted posterior in the group not represented in the information. Negative values indicate
under-inference while positive values indicate over-inference. “Group in info” is an indicator variable which
equals 1 when the observation contains a belief about the group to which the information pertained. For
example, in the cancer prevalence by gender questiion, “Group in info” equals 1 for beliefs about women and
0 for beliefs about men. “Participant is in group represented in information” is an indicator variable which
equals 1 when the participant to which the observation pertains is in the group to which the information
pertained, regardless of which group the belief is about. In the same cancer by gender example, “Participant
is in group in info” equals 1 for all female participants’ beliefs about men and women. For an explanation
of how these Bayesian predictions were calculated, see Appendix Section A.2.1.
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Table 20: Comparing Observed Posteriors to Bayesian Predictions: Alternative Model

(Excludes Zero Priors)

Dependent variable: Difference (error) in probability assigned to interval containing the
information between observed posterior and Bayesian prediction

Constant
-0.336*** -0.331*** -0.311*** -0.296***
(0.010) (0.014) (0.016) (0.026)

Group in info
0.112*** 0.061*** 0.216*** 0.177***
(0.014) (0.020) (0.022) (0.037)

Respondent is in group in info
-0.009 -0.023
(0.019) (0.033)

Group in info X Participant is in
group in info

0.096*** 0.063
(0.027) (0.046)

Sample All All Updaters Updaters
Num.Obs 1493 1493 747 747
R2 Adj. 0.042 0.054 0.112 0.112

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. The constant represents the average error relative to the
Bayesian predicted posterior in the group not represented in the information. Negative values indicate
under-inference while positive values indicate over-inference. “Group in info” is an indicator variable which
equals 1 when the observation contains a belief about the group to which the information pertained. For
example, in the cancer prevalence by gender question, “Group in info” equals 1 for beliefs about women and
0 for beliefs about men. “Participant is in group represented in information” is an indicator variable which
equals 1 when the participant to which the observation pertains is in the group to which the information
pertained, regardless of which group the belief is about. In the same cancer by gender example, “Participant
is in group in info” equals 1 for all female participants’ beliefs about men and women. For an explanation
of how these Bayesian predictions were calculated, see Appendix Section A.2.1.
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A.4 Additional Figures

Figure 16: Main Specification Bayesian Comparisons, Cancer by Gender, All Participants
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Figure 17: Main Specification Bayesian Comparisons, Diabetes by Race, All Participants
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Figure 18: Main Specification Bayesian Comparisons, Anxiety by Education, All

Participants
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Figure 19: Main Specification Bayesian Comparisons, Depression by Age, All Participants
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Figure 20: Main Specification Bayesian Comparisons, Cancer by Gender, Updaters Only
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Figure 21: Main Specification Bayesian Comparisons, Diabetes by Race, Updaters Only

0.00

0.25

0.50

0.75

1.00

Low Interval
(0% to 8%)

Mid Interval
(9% to 16%)

High Interval
(17% to 25%)

P
os

te
rio

r 
P

ro
ba

bi
lit

y

White (Observed) White (Bayesian)

Asian (Observed) Asian (Bayesian)

Info: White = 5% (Low), Updaters

0.00

0.25

0.50

0.75

1.00

Low Interval
(0% to 8%)

Mid Interval
(9% to 16%)

High Interval
(17% to 25%)

P
os

te
rio

r 
P

ro
ba

bi
lit

y

White (Observed) White (Bayesian)

Asian (Observed) Asian (Bayesian)

Info: White = 17% (High), Updaters

108



Figure 22: Main Specification Bayesian Comparisons, Anxiety by Education, Updaters

Only
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Figure 23: Main Specification Bayesian Comparisons, Depression by Age, Updaters Only
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Figure 24: Alternative Specification Bayesian Comparisons, Diabetes by Race, All

Participants
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Figure 25: Alternative Specification Bayesian Comparisons, Anxiety by Education, All
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Figure 26: Alternative Specification Bayesian Comparisons, Depression by Age, All
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Figure 27: Alternative Specification Bayesian Comparisons, Cancer by Gender, Updaters

Only
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Figure 28: Alternative Specification Bayesian Comparisons, Diabetes by Race, Updaters

Only
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Figure 29: Alternative Specification Bayesian Comparisons, Anxiety by Education,

Updaters Only
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Figure 30: Alternative Specification Bayesian Comparisons, Depression by Age, Updaters

Only
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Figure 31: Survey Belief Updating Figures, Cancer and Diabetes (All Respondents)

(a) Cancer by Gender
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Figure 32: Survey Belief Updating Figures, Anxiety and Depression (All Respondents)

(a) Anxiety by Education
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A.4.1 Survey Prior and Posterior Figures

Figure 33: Cancer Prevalence by Gender
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Figure 34: Diabetes Prevalence by Race
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Figure 35: Anxiety Prevalence by Education

(a) Prior (Info: College = 8%)
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Figure 36: Depression Prevalence by Age Group

(a) Prior (Info: 18-29 Year Olds = 12%)
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Appendix B - Water Availability and Heat-Related Mortality: Evidence from

South Africa

B.1 Heterogeneity

I hypothesize two main types of heterogeneity in the effect of water availability on the

heat-mortality relationship. First, in South Africa, water bearers are almost exclusively

women and children (Graham et al. 2016). As natural water availability increases, households

are more likely to have a sufficient water source nearby. Thus in households that rely

on external sources, the physical cost of retrieving water decreases. Since heat exposure

increases the risk of injury during physical exertion (Nelson et al. 2011), water availability is

likely to have an especially strong effect on the heat-related mortality risk of water bearers.

Second, the degree to which water availability reduces the heat-related mortality risk of

a household is likely influenced by its primary source of water, particularly whether that

source is internal or external to the household. However, the direction of this heterogeneity

is uncertain, and depends on the predominant mechanisms. Households with a piped water

connection are less likely to be affected by variation in water availability on the intensive

margin; the faucet either turns on or it does not. For households relying on external sources of

water, in addition to decreasing the physical cost of retrieving water, increased natural water

availability also decreases stagnation in smaller rivers. Since stagnant water has a higher risk

of contamination, an increase in water availability is likely to decrease the risk of waterborne

disease and resulting mortality. However, households with a piped water connection could

be even more vulnerable to variation in water availability on the extensive margin, since

they are unaccustomed to retrieving water from outside the home and may need to do so

suddenly and unexpectedly if their pipes shut off. This source of heterogeneity may lead to

heterogeneous estimated effects by population group, since as discussed in section 2, Black

South Africans are less than half as likely to have piped water in-residence than their white
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counterparts, while Coloured1 South Africans are less than three-quarters as likely.

Tables 21 through 24 test for the expected heterogeneous treatment effects. As expected,

the mitigating effect of upstream water availability on the heat-mortality relationship is

significantly larger for women. Because the dam level measures are mean-centered, the non-

interaction coefficient on CDD 90◦F is the estimated effect of one CDD 90◦F at the status

quo average of water availability; this coefficient is indistinguishable from zero for men, but

positive and highly significant (p < 0.01) for women. This suggests that variation in water

availability along the intensive margin is more significant for women’s mortality risk during

heat waves, which is consistent with their higher likelihood of being the primary water bearer

for households relying on external sources and the associated hypothesis for water bearers.

The results in Table 22 on population group are less clear, but also appear broadly

consistent with the intensive and extensive margin hypotheses for households with and with-

out a potable water source on-premises, respectively. The non-interaction coefficient on

CDD 90◦F is positive and very close to significance at conventional levels (p = 0.104 and

p = 0.16, respectively) for Black Africans and Coloured South Africans, while the coefficient

of the interaction between upstream water availability and CDD 90◦F is negative and sig-

nificant (p < 0.05) for both. While the interaction coefficient is also negative and significant

(p < 0.01) for White South Africans, the non-interaction coefficient on CDD 90◦F is indistin-

guishable from zero. Similar to the results by sex, this suggests that variation in upstream

water availability on the intensive margin is more significant to the mortality risk of Black

African and Coloured South Africans than for White South Africans, which is consistent

with their lower likelihood of having a piped water source on-premises and the associated

hypothesis for households relying on external water sources. In other words, to eliminate

increases in mortality risk during heat waves, maintaining the historical average is sufficient

for White South Africans, while further increases above the historical average are necessary

for Black African and Coloured South Africans.

Table 23 presents an especially strong mitigating effect on infant mortality, with a coef-

1the official term used by the South African government for individuals of mixed African and European
descent
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ficient size of about 28.6% of the mean infant mortality rate per million. Given the intuitive

relationship between women’s health outcomes and the health outcomes of infants, this is

consistent with the previous finding of stronger effects for women. The mitigating effects are

fairly proportional across the rest of the age distribution except for those above age 65, for

whom the mitigating effect is (albeit barely) not significant at conventional levels (p ∼ 0.12)

and the point estimate is only about 2.4% of the mean. For this age group, the estimated

mitigating effect of local contemporaneous precipitation is significantly larger than for any

other age group, and the coefficient on the interaction with upstream dam levels becomes

significant when the control for precipitation is removed. If the effect of heat waves on mor-

tality risk for the elderly is primarily driven by harvesting, i.e., displacing deaths in time that

would counterfactually have occurred soon after instead of causing new deaths, upstream

water availability on the heat-mortality relationship may only prevent deaths that would

not otherwise be likely to occur. This is reasonable to expect given that water takes time

to flow from upstream sources into a particular district for consumption, while precipitation

is more immediate. However, without more specific data on the health status of elderly

individuals upon their deaths and the causes of their deaths, it is not possible to estimate

the ex-ante risk of death for these individuals, which is necessary to disentangle harvesting

from causing deaths of otherwise healthy individuals. Thus further research is needed to

determine why potable water availability does not significantly reduce the mortality risk of

the elderly during heat waves.

B.1.1 Examining Heterogeneity by Household Water Source with DHS Data

The mortality records used to produce Tables 12-23 are simply monthly death counts by

district, sex, age group, and population group, and do not include any additional information

on each decedent included in those counts. Thus additional data is needed to estimate

heterogeneous treatment effects by other household characteristics, such as the location of

the household’s primary water source. To accomplish this, I use Demographic and Health

Survey (DHS) data from 2016 in South Africa to construct a measure of child mortality that
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can be linked to household-level covariates. The DHS includes records of up to 20 births

for each surveyed woman with the birth date, current survival status, and, if applicable,

the age upon death of each birthed child. Thus this data can be used to reconstruct child

mortality rates over time for many years before the survey was administered. Prior literature

has employed a similar strategy using DHS data to analyze mortality rates over time in sub-

Saharan Africa (Garenne and Gakusi 2006).

The result of this reconstruction is a panel of 549 deaths of children under 5 years of age

from 1998 to 2015, with the month of death, DHS sampling cluster location, and primary

water source of the household for each child. There are 462 DHS sampling clusters with at

least one child death in the sample, and despite the exact location being displaced to protect

the privacy of DHS respondents, the location of each DHS cluster is substantially more

precisely identified than the location of each decedent in Tables 12-23. Thus, in addition

to enabling analysis of heterogeneity by household water source, using this data allows for

the construction of much finer-grained measures of heat exposure and water availability,

thereby replicating the results of Tables 12-23 with reduced spatial uncertainty. To this end,

I reconstruct the measures of heat exposure and water availability according to the formulas

in Section 2.3 using the displaced coordinates of each DHS sampling cluster.

Table 24 presents Poisson regression estimates using this panel of child death counts and

the DHS-level measures of heat exposure and water availability. In column 1, the dependent

variable includes children under 5 who were reported as siblings of a DHS respondent rather

than children of a respondent, while column 2 excludes siblings. This is because the location

of each sibling at their time of death is not provided in the data, so it is uncertain whether or

not the sibling died in the same DHS sampling cluster as the respondent’s primary residence.

Columns 3 and 4 replicate columns 1 and 2 for children under 1 at their times of death to

obtain a more exact replication of column 1 of Table 23.

In all columns, the mitigating effect of upstream water availability on mortality risk

during heat waves is exclusive to households with a water source on-premises (about 62.4%

of the sample of households reporting at least one child death). This suggests that, for
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infants and children, upstream water availability only reduces the risk of mortality during

heat waves if that water does not need to be retrieved from outside the home for consumption.

Most of these children are too young to be tasked with retrieving water by themselves, so this

heterogeneity is more likely to arise indirectly via the health status of the mother. As before,

I do not observe the health status of the child upon their death or the cause of their death,

so further research with more specific data is needed to pin down mechanisms to explain

this with certainty. In particular, an analysis of whether or not upstream water availability

mitigates negative effects of heat exposure on prenatal health, and for whom, would shed

light on why on-premises access to potable water is a prerequisite for this mitigating effect

to reduce infant mortality risk.

B.2 Treatment Effects Conditional on Local Precipitation

The results in Tables 12-23 show that the estimated mitigating effect of upstream water

availability on heat-related mortality is robust to the inclusion of precipitation controls.

This means that the estimated effect of upstream water availability on the heat-mortality

relationship cannot be explained by contemporaneous precipitation. However, this does

not rule out the possibility of an interaction. For example, if upstream water availability

and local precipitation are potable water source substitutes, the effect of upstream water

availability on the heat-mortality relationship will be concentrated in periods of sparse local

precipitation.

Figure 37 graphically represents the interaction between CDD 75◦F and upstream dam

levels with respect to the mortality rate, conditional on higher and lower precipitation re-

spectively. When the precipitation in a district, as measured by the lagged 12-month mean

of monthly total precipitation, is more abundant, there is no significant interaction between

CDD 75◦F and upstream dam levels. The key result of Section 2.4, the significant negative

interaction between upstream dam levels and the slope of the heat-mortality relationship,
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only arises when precipitation is below the district’s historical average. The size of the effect

depicted in Figure 37(b) (a marginal effect of CDD 75◦F of 0.05, 0.025, and 0 deaths per

million at low, medium, and high levels of water availability, respectively) is much smaller

than the size of the coefficient in Table 12 because, as depicted in Figure 5, the marginal

effects of temperature on mortality increase above 70◦F. Thus using CDD 75◦F as a measure

of heat exposure instead of CDD 90◦F results in smaller coefficients when using a linear

estimator. Figure 37 also demonstrates that the distributions of upstream dam levels condi-

tional on higher and lower precipitation, respectively, are comparable, which confirms that

the measure of water availability used in this paper is independent of local precipitation and

its associated confounders.

The finding that upstream water availability and local precipitation are substitutes with

respect to their effect on heat-related mortality risk is especially relevant to the climate

change policy implications of this paper. Precipitation is projected to become more sparse

and less predictable as climate change progresses (Allen et al. 2014), especially in the semi-

arid climate of South Africa (Nkhonjera 2017), which already has spatially heterogeneous

rainfall and a history of droughts. As this occurs, the availability of water from other sources

will determine the degree to which heat-related mortality risk increases as a consequence.

The measure of potable water availability used in this paper is one particular example of a

source that is independent of local precipitation, but it is unlikely that the estimated effect

is driven by anything specific to the process of water flowing downstream through naturally-

occurring rivers and streams. I confirm this in Section B.3 using the Lesotho Highlands

Water Project, a transnational water transfer, as a natural experiment increasing potable

water availability from upstream sources in receiving districts through man-made means.
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B.3 The Lesotho Highlands Water Project (LHWP)

In this section, I exploit a transnational water transfer inaugurated in 2004 as a natural

experiment increasing upstream water availability in receiving districts. This serves two

main functions. One, it is a robustness check to the results of section 4, which imply hot-

season mortality should decline as a result of the water transfer. Two, it is an example

of large-scale investment in water infrastructure. Thus, if the water transfer reduces heat-

related mortality, it is evidence that investment in water infrastructure can be an effective

community-level adaptation to heat.

The most densely populated province and industrial center of South Africa, Gauteng, is

built on rocky, water-scarce, and high-elevation land. To meet the region’s water needs, the

government of South Africa and kingdom of Lesotho negotiated an agreement that led to the

Lesotho Highlands Water Project (LHWP), the largest water transfer in the country. LHWP

enables bilateral trade in which Lesotho diverts purchased water from the Senqunyane and

Malibamat’so rivers toward the Vaal Dam in South Africa, and in return, South Africa gen-

erates hydroelectric power that is transferred back to Lesotho. The project was officially

inaugurated in 2004, after which South Africa began purchasing water from Lesotho under

the terms of the agreement. Once it reaches the Vaal Dam, a portion of the water is trans-

ferred to the cities of Johannesburg and Tshwane (Pretoria) in Gauteng for consumption.

The remainder is stored in the Vaal Dam or released downstream, where it continues down

the Vaal river to meet the Orange river at its confluence. For a detailed review of LHWP,

including the reasons for its construction and political context, see Hitchcock (2012).

By diverting water from the highlands of Lesotho downstream to South Africa in a

specific direction, LHWP constitutes a natural experiment that increased the supply of water

in treated districts from upstream. As illustrated in the map in figure 38, I classify a district

as “treated” by LHWP if it is either part of Gauteng Province or positioned downstream of

the Vaal Dam along the Vaal and Orange rivers. In Figure 39, I confirm that twelve-month

minimum dam levels increased in treated districts after the inauguration of LHWP. I then
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estimate the following difference-in-difference regression model described in equation 8. Let

τj be an indicator variable that equals 1 if district j is treated by LHWP and zero otherwise.

Mjt = βLHWP
0 + βττj + βLHWP

CDD CDDjt + β20041y≥2004 + γτ,2004 (τj × 1y≥2004)+

γτ,CDD (τj × CDDjt) + γCDD,2004 (1y≥2004 × CDDjt) + ϕτ (τj × CDDjt × 1y≥2004)

(8)

+ Ω (j × y) + ϵjt

In equation 8, the coefficient of interest to the main hypothesis is ϕτ , which will be

negative if the increase in upstream water supply resulting from LHWP reduced the slope of

the heat-mortality relationship in treated districts. Figure 40 shows the hot-season mortality

rate in treated and untreated districts over time with local regression smoothing (LOESS)

curves to show trends. The figure provides evidence in favor of the necessary assumption of

parallel trends before 2004, and the average death rates appear roughly equal across treated

and non-treated districts. The parallel-trends test is presented explicitly in Table 25. After

2004, the average hot-season mortality rate in treated districts becomes significantly lower.

While Figure 40 does not account for differences in excess heat incidence across years, the

hypothesized difference-in-difference appears to be confirmed. The comparison in Figure 40

confirms that the magnitude of this difference does not emerge outside of the summer.

As a robustness check to further verify that the difference between treated and un-

treated groups is caused by LHWP’s effect on upstream water availability, I also estimate

a quadruple-difference model that interacts all terms in equation 8 with an indicator that

equals 1 when the high-elevation water availability is above the 25th percentile and 0 other-

wise. Since the dams supplying LHWP need to be high enough to divert water for LHWP

to have a significant effect on upstream water availability, the coefficient on the quadruple-

interaction term should be negative, and ϕτ itself should no longer be distinguishable from

zero.
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Table 26 provides the results of estimating equation 8 and the extended quadruple-

difference model on the sample. The estimated ϕt is negative and statistically significant at

the α = 0.1 level. When the quadruple-interaction term with the high-elevation dam level

indicator is introduced, ϕt loses statistical significance, and the quadruple-interaction term

is negative and significant at the α = 0.05 level. In sum, Table 26 confirms that the slope

of the heat-mortality relationship differentially declined in treated districts following the

inauguration of LHWP, and this differential decline was conditional on the source dam levels

being high enough to supply the transfer with water. The size of the coefficients in Table 26

are similar to the coefficients in Table 28 (which shows the main specification described

in Section 2.3.3 with CDD 75◦F as the measure of heat exposure), suggesting that LHWP

reduced the marginal effect of CDD 75◦F in receiving districts by about 0.05 per million.

This coefficient is much smaller than the coefficient in Table 12 because of the nonlinear

effects of temperature on mortality. Since the marginal effect of temperature on mortality is

increasing above 70◦F, as depicted in Figure 5, using CDD 75◦F instead of CDD 90◦F results

in smaller coefficients using a linear estimator.
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B.4 Additional Figures

Figure 37: Effects of Upstream Water Availability on the Heat-Mortality Relationship

Conditional on Contemporaneous Local Precipitation
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(b) Lower precipitation
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Notes: Graphical representation of the interaction between upstream dam levels and CDD 75◦F achieved with
the Stata interflex package (Hainmueller et al. 2016). “L,” “M,” and “H” refer to the respective medians
of pre-specified bins of upstream dam levels with cutoffs at the 33rd and 66th percentiles (low, medium, and
high). The line and associated confidence interval represents the conventional linear multiplicative interaction
estimator. The distribution of upstream dam levels conditional on higher and lower precipitation respectively
is displayed below the interaction estimates in each graph. CDD 75◦F is used in this figure instead of CDD
90◦F to ensure an adequate number of nonzero observations in each bin to obtain meaningful estimates with
the binning estimator.
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Figure 38: Map of the Lesotho Highlands Water Project
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Figure 39: Minimum Dam Levels Before and After LHWP Treatment
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Figure 40: Trends in Hot-Season Mortality Before and After LHWP Treatment
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Figure 41: Seasonality of Dam Levels by District
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B.5 Additional Tables

Table 21: Sex-Specific Effects of Water Availability on the Heat-Mortality Relationship

Dependent variable: average daily deaths per million
(1) (2) (3)
Men Women All

Upstream dam level × CDD 90◦F
−9.23∗∗∗ −13.78∗∗∗ −9.23∗∗∗

(1.36) (1.17) (1.36)

Female × Upstream dam level
× CDD 90◦F

−4.56∗∗∗

(1.30)

Female × CDD 90◦F
4.04∗∗∗

(0.89)

Female × Upstream dam level
1.04
(1.21)

Upstream dam level
−4.73∗∗∗ −3.70∗∗∗ −4.73∗∗∗

(1.16) (1.23) (1.16)

CDD base temp 90◦F
−0.26 3.84∗∗∗ −0.26
(0.89) (1.15) (0.89)

Mean of dep. var. 65.07 53.09 59.20
N 88960 85685 174645
R2 0.921 0.913 0.918

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. “Average
daily deaths per million” is the monthly death rate per million divided by the number of days in the month
to address the fact that, all else equal, more deaths occur during months with more days. Dam levels
are distance-weighted 12-month lagged averages calculated with equations 2 and 3. A dam is classified as
upstream (downstream) of a district if it is at least 100 kilometers away from and 100 meters higher (lower)
in elevation than the geographic center of the district. A dam is classified as within-district if it is within 100
kilometers and ± 100 meters elevation of the geographic center of the district. For graphical examples, see
figures 7 and 8. Wherever within-district or downstream dam level controls are included, their interaction
with CDD is also included. Cooling degree days (CDD) are a monthly incidence measure of heat above
the base temperature. For reference, 1 CDD at a base temperature of 90◦F is equivalent to 1 day in a
month during which the average outside temperature exceeded 90◦F by 1◦F. The number of observations in
this table is based on the number of population-subgroup-by-month observations, where each “population
subgroup” is a possible permutation of sex, age group, and race. District-subgroup-year fixed effects, which
absorb idiosyncratic annual level variation in mortality for each subgroup within each district, as well as
controls for within-district dam levels, downstream dam levels, and monthly precipitation are included in all
columns.
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Table 22: Population Group-Specific Effects of Water Availability on the Heat-Mortality

Relationship

Dependent variable: average daily deaths per million
(1) (2) (3) (4)

Black African Coloured Asian/Indian White

Upstream dam level × CDD 90◦F
−12.37∗∗ −20.56∗∗ −0.48 −5.38∗∗∗

(5.00) (9.38) (0.98) (1.43)

Upstream dam level
−12.01∗∗∗ −0.45 −0.22 −2.01∗∗

(2.94) (1.18) (0.24) (0.76)

CDD base temp 90◦F
2.49 3.09 1.05∗∗∗ −0.25
(1.51) (2.17) (0.39) (0.45)

Mean of dep. var. 153.22 29.15 4.76 23.91
District-subgroup-year FE Yes Yes Yes Yes
Within-district dam level control Yes Yes Yes Yes
Downstream dam level control Yes Yes Yes Yes
Monthly precipitation control Yes Yes Yes Yes
N 50676 46040 33006 44923
R2 0.927 0.766 0.814 0.894

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. “Av-
erage daily deaths per million” is the monthly death rate per million divided by the number of days in
the month to address the fact that, all else equal, more deaths occur during months with more days.
Dam levels are distance-weighted 12-month lagged averages calculated with equations 2 and 3. A dam
is classified as upstream (downstream) of a district if it is at least 100 kilometers away from and 100
meters higher (lower) in elevation than the geographic center of the district. A dam is classified as within-
district if it is within 100 kilometers and ± 100 meters elevation of the geographic center of the district.
For graphical examples, see figures 7 and 8. Wherever within-district or downstream dam level controls
are included, their interaction with CDD is also included. Cooling degree days (CDD) are a monthly
incidence measure of heat above the base temperature. For reference, 1 CDD at a base temperature of
90◦F is equivalent to 1 day in a month during which the average outside temperature exceeded 90◦F
by 1◦F. The number of observations in this table is based on the number of population-subgroup-by-
month observations, where each “population subgroup” is a possible permutation of sex, age group, and
race. “District-subgroup-year fixed effects” absorb idiosyncratic annual level variation in mortality for each
subgroup within each district.
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Table 23: Age-Specific Effects of Water Availability on the Heat-Mortality Relationship

Dep. var.: average daily deaths per million
(1) (2) (3) (4) (5)

Infant 1−14 15−44 45−64 65+

Upstream dam level × CDD
90◦F

−49.52∗∗∗ −0.55∗∗∗ −1.56∗∗∗ −4.89∗∗ −2.24
(8.47) (0.19) (0.41) (1.91) (1.41)

Upstream dam level
−14.72∗∗∗ −0.26∗∗∗ −0.47∗∗ −1.25∗∗ −6.05∗∗∗

(4.50) (0.10) (0.22) (0.47) (1.64)

CDD base temp 90◦F
9.34∗∗ 0.21∗ 0.33∗∗ 0.41 1.11∗

(4.59) (0.11) (0.15) (0.42) (0.57)

Mean of dep. var. 173.43 2.96 13.22 32.47 91.75
District-subgroup-year FE Yes Yes Yes Yes Yes
Within-district dam control Yes Yes Yes Yes Yes
Downstream dam control Yes Yes Yes Yes Yes
Monthly precipitation control Yes Yes Yes Yes Yes
N 27673 26688 36388 36429 36504
R2 0.898 0.848 0.968 0.961 0.937

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. “Average
daily deaths per million” is the monthly death rate per million divided by the number of days in the month
to address the fact that, all else equal, more deaths occur during months with more days. Dam levels
are distance-weighted 12-month lagged averages calculated with equations 2 and 3. A dam is classified
as upstream (downstream) of a district if it is at least 100 kilometers away from and 100 meters higher
(lower) in elevation than the geographic center of the district. A dam is classified as within-district if it
is within 100 kilometers and ± 100 meters elevation of the geographic center of the district. For graphical
examples, see figures 7 and 8. Wherever within-district or downstream dam level controls are included, their
interaction with CDD is also included. Cooling degree days (CDD) are a monthly incidence measure of heat
above the base temperature. For reference, 1 CDD at a base temperature of 90◦F is equivalent to 1 day in a
month during which the average outside temperature exceeded 90◦F by 1◦F. “Downstream control” indicates
whether or not downstream dam levels and their interaction with CDD were included as covariates in the
regression model. The number of observations in this table is based on the number of population-subgroup-
by-month observations, where each “population subgroup” is a possible permutation of sex, age group, and
race. “District-subgroup-year fixed effects” absorb idiosyncratic annual level variation in mortality for each
subgroup within each district.
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Table 24: Poisson Regression Estimates with Reconstructed Child Mortality Rates from

DHS Data

Dependent variable: Count of deaths
(1) (2) (3) (4)

Under 5 Under 5 Under 1 Under 1

CDD base temp 75ºF × Upstream dam levels ×
Household water source on-premises

−0.15∗∗∗ −0.17∗∗∗ −0.14∗∗∗ −0.18∗∗∗

(0.06) (0.05) (0.05) (0.06)
CDD base temp 75ºF × Household water source
on-premises

−0.008 −0.01 −0.005 −0.01
(0.009) (0.009) (0.009) (0.009)

CDD base temp 75ºF × Upstream dam levels
−0.02 −0.02 −0.04 −0.02
(0.06) (0.06) (0.06) (0.06)

Upstream dam levels × Household water source
on-premises

3.59 3.31 4.53∗∗ 4.04
(2.18) (2.47) (2.26) (2.58)

CDD base temp 75ºF 0.002 0.0006 0.002 0.0001
(0.006) (0.005) (0.006) (0.006)

Upstream dam levels
−1.44 −0.22 −2.32 −0.52
(1.83) (1.98) (1.95) (2.13)

Household water source on-premises
0.03 0.14 −0.05 0.09
(0.20) (0.20) (0.21) (0.21)

Siblings included Yes No Yes No
DHS sampling cluster fixed-effects Yes Yes Yes Yes
Year fixed-effects Yes Yes Yes Yes
Month fixed-effects Yes Yes Yes Yes
N (full) 34,558 30,366 29,614 26,710
N (non-zero dependent variable) 526 444 421 369
Pseudo R2 0.072 0.039 0.075 0.043

Clustered (DHSID) standard-errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 25: Parallel Trends Tests for Lesotho Highlands Water Project (LHWP)

Difference-in-Difference

Dependent variable: average daily deaths per million
(1) (2) (3) (4)

1997-2003 1997-2003 1997-2003 1997-2003

District treated by LHWP ×
Time trend

−0.25 −0.32
(0.32) (0.35)

District treated by LHWP ×
1998

−0.29 −1.14
(2.38) (2.59)

District treated by LHWP ×
1999

−0.79 −1.48
(2.38) (2.60)

District treated by LHWP ×
2000

−1.59 −1.31
(2.38) (2.55)

District treated by LHWP ×
2001

−1.92 −2.22
(2.38) (2.58)

District treated by LHWP ×
2002

−1.26 −2.32
(2.38) (2.60)

District treated by LHWP ×
2003

−1.33 −1.96
(2.38) (2.64)

District treated by LHWP ×
Time trend × CDD 75◦ F

−0.00
(0.02)

District treated by LHWP ×
1998 × CDD 75◦ F

0.07
(0.16)

District treated by LHWP ×
1999 × CDD 75◦ F

−0.02
(0.16)

District treated by LHWP ×
2000 × CDD 75◦ F

0.01
(0.16)

District treated by LHWP ×
2001 × CDD 75◦ F

−0.03
(0.16)

District treated by LHWP ×
2002 × CDD 75◦ F

0.09
(0.16)

District treated by LHWP ×
2003 × CDD 75◦ F

−0.01
(0.15)

Observations 1,421 1,421 812 812
Joint signif. test P-value 0.53 0.98 0.97 0.98

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. “District treated by LHWP” means that a district received
water from LHWP, i.e., was either in Gauteng province or positioned downstream of the Vaal Dam along
the Vaal river basin.
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Table 26: DiD and DDD Effects of Lesotho Highlands Water Project (LHWP) on

Heat-Mortality Relationship in Treated Districts

Dependent variable: daily death rate
per million

(1) (2)

Treated × After LHWP inauguration ×
CDD 75◦F

−0.05∗∗∗ −0.01
(0.02) (0.03)

Dam levels near Lesotho above 25th
percentile × Treated × After LHWP
inauguration × CDD 75◦F

−0.06∗∗

(0.03)

Treated × CDD 75◦F
0.08∗∗∗ 0.07∗∗

(0.02) (0.03)

Treated × Dam levels near Lesotho above
25th percentile

−0.89
(0.69)

Dam levels near Lesotho above 25th
percentile × CDD 75◦F

−0.04∗

(0.02)

Dam levels near Lesotho above 25th
percentile × Treated × CDD 75◦F

0.01
(0.03)

After LHWP inauguration × CDD 75◦F
0.05∗∗∗ 0.00
(0.01) (0.02)

CDD base temp 75◦F
−3.41∗∗ 14.80∗∗∗

(1.53) (3.72)

Mean of dep. var. 33.31 34.01
District-year FE Yes Yes
N 5833 5526
R2 0.977 0.977

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. “Average
daily deaths per million” is the monthly death rate per million divided by the number of days in the month
to address the fact that, all else equal, more deaths occur during months with more days. Dam levels are
distance-weighted 12-month lagged averages calculated with equations 2 and 3. A dam is classified as “near
Lesotho” if it is within 200 kilometers of either of the two dams serving the Lesotho Highlands Water Project
included in the hydrological data from South Africa’s Department of Water and Sanitation. Cooling degree
days (CDD) are a monthly incidence measure of heat above the base temperature. For reference, 1 CDD at
a base temperature of 75◦F is equivalent to 1 day in a month during which the average outside temperature
exceeded 75◦F by 1◦F.
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Table 27: Data Description

Data Source Notes

Daily dam and reservoir levels (% of de-
sign capacity) at 773 monitoring stations
throughout South Africa, 1996−2016

Department of Water and Sanitation
(DWS) Hydrological Services

Aggregated to monthly means

Administrative death counts by district,
month, population group, sex, and age
group, 1997−2016

Statistics South Africa

Monthly cooling degree days (CDD) at
base temperatures of 90◦F and 75◦F at
68 weather stations throughout South
Africa, 1997−2016

NOAA Global Historical Climatology
Network (GHCN-Daily)

Elevation extracted from NASA Shut-
tle Radar Topography Mission (SRTM)
3 arc-second (90m) raster data

Consortium for Spatial Information
(CGIAR-CSI)

Covers entirety of South Africa and
Lesotho

General Household Survey data, 2004
−2016

Statistics South Africa
Only available at the province level, thus
not used in regressions



Table 28: Heat-Mortality Relationship Above 75◦F Interacted with Dam Levels

Dependent variable: average daily deaths per million
(1) (2) (3) (4)

Oct-Mar Oct-Mar Oct-Mar All months

Upstream dam level × CDD 75◦F
−0.02 −0.03∗∗∗ −0.02∗∗

(0.01) (0.01) (0.01)
Upstream dam level × Summer
indicator

−0.78∗∗

(0.30)

CDD base temp 75◦F
0.01 0.01 0.01
(0.01) (0.01) (0.01)

Upstream dam level
−0.85∗∗∗ −0.04 −0.01 0.84
(0.22) (0.31) (0.35) (0.62)

Within-district dam level × CDD
75◦F

0.02 0.02
(0.01) (0.01)

Within-district dam level × Summer
indicator

0.11
(0.23)

Within-district dam level
−1.13∗∗∗ −1.11∗∗∗ −0.80∗∗

(0.33) (0.39) (0.37)

Downstream dam level × CDD 75◦F
−0.02
(0.02)

Downstream dam level × Summer
indicator

0.88∗∗∗

(0.27)

Downstream dam level
−0.05 −1.36∗∗

(0.44) (0.54)

Mean of dep. var. 34.12 34.12 34.12 35.70
District-month-of-year FE No No No Yes
Within-district dam level control No Yes Yes Yes
Downstream dam level control No No Yes Yes
Monthly precipitation control No No Yes Yes
N 5474 5474 5474 11090
R2 0.977 0.977 0.977 0.984

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. “Average
daily deaths per million” is the monthly death rate per million divided by the number of days in the month
to address the fact that, all else equal, more deaths occur during months with more days. Dam levels
are distance-weighted 12-month lagged averages calculated with equations 2 and 3. A dam is classified as
upstream (downstream) of a district if it is at least 100 kilometers away from and 100 meters higher (lower)
in elevation than the geographic center of the district. A dam is classified as within-district if it is within 100
kilometers and ± 100 meters elevation of the geographic center of the district. For graphical examples, see
figures 7 and 8. Wherever within-district or downstream dam level controls are included, their interaction
with CDD is also included. Cooling degree days (CDD) are a monthly incidence measure of heat above the
base temperature. District-year FE are included in all columns.
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Table 29: Heat-Mortality Relationship Above 75◦F (Within-District Standard Deviations)

Interacted with Dam Levels

Dependent variable: average daily deaths per million

(1) (2) (3)

Upstream dam level × Std. CDD
75◦F

−0.26∗∗∗ −0.37∗∗∗ −0.31∗∗

(0.08) (0.13) (0.15)

Std. CDD base temp 75◦F
−0.02 −0.02 0.09
(0.07) (0.07) (0.09)

Upstream dam level
−0.86∗∗∗ −0.10 −0.02
(0.21) (0.31) (0.35)

Within-district dam level × Std.
CDD 75◦F

0.15 0.17
(0.12) (0.14)

Within-district dam level
−1.03∗∗∗ −0.94∗∗∗

(0.28) (0.29)

Downstream dam level × Std. CDD
75◦F

−0.09
(0.18)

Downstream dam level
−0.25
(0.36)

Mean of dep. var. 34.12 34.12 34.12
District-year FE Yes Yes Yes
N 5474 5474 5474
R2 0.977 0.977 0.977

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. “Av-
erage daily deaths per million” is the monthly death rate per million divided by the number of days in
the month to address the fact that, all else equal, more deaths occur during months with more days.
Dam levels are distance-weighted 12-month lagged averages calculated with equations 2 and 3. A dam
is classified as upstream (downstream) of a district if it is at least 100 kilometers away from and 100
meters higher (lower) in elevation than the geographic center of the district. A dam is classified as within-
district if it is within 100 kilometers and ± 100 meters elevation of the geographic center of the district.
For graphical examples, see figures 7 and 8. Wherever within-district or downstream dam level controls
are included, their interaction with CDD is also included. Cooling degree days (CDD) are a monthly
incidence measure of heat above the base temperature. For reference, 1 CDD at a base temperature of 75◦F
is equivalent to 1 day in a month during which the average outside temperature exceeded 75◦F by 1◦F.
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Table 30: Heat-Mortality Relationship Above 90◦F Interacted with Dam Levels (Excluding

Within-District)

Dependent variable: log(avg daily deaths per million)
(1) (2) (3) (4)

Oct-Mar Oct-Mar Oct-Mar All months

Upstream dam level × CDD 90◦F
−0.87∗∗∗ −0.90∗∗∗ −0.83∗∗∗

(0.17) (0.18) (0.28)

Upstream dam level × Summer
indicator

−0.78∗∗

(0.30)

CDD base temp 90◦F
0.80∗∗∗ 0.81∗∗∗ 0.91∗∗∗

(0.25) (0.26) (0.15)

Upstream dam level
−1.02∗∗∗ −0.49 −0.49 0.63
(0.20) (0.30) (0.30) (0.60)

Downstream dam level × CDD 90◦F 0.00 −0.13
(0.29) (0.34)

Downstream dam level × Summer
indicator

0.95∗∗∗

(0.26)

Downstream dam level −0.89∗∗ −0.89∗∗ −1.89∗∗∗

(0.34) (0.34) (0.57)

Mean of dep. var. 34.12 34.12 34.12 35.37
District-year FE Yes Yes Yes Yes
District-month-of-year FE No No No Yes
Monthly precipitation control No No Yes Yes
N 5474 5474 5474 11649
R2 0.977 0.977 0.977 0.984

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. “Av-
erage daily deaths per million” is the monthly death rate per million divided by the number of days in
the month to address the fact that, all else equal, more deaths occur during months with more days.
Dam levels are distance-weighted 12-month lagged averages calculated with equations 2 and 3. A dam
is classified as upstream (downstream) of a district if it is at least 100 kilometers away from and 100
meters higher (lower) in elevation than the geographic center of the district. A dam is classified as within-
district if it is within 100 kilometers and ± 100 meters elevation of the geographic center of the district.
For graphical examples, see figures 7 and 8. Wherever within-district or downstream dam level controls
are included, their interaction with CDD is also included. Cooling degree days (CDD) are a monthly
incidence measure of heat above the base temperature. For reference, 1 CDD at a base temperature of 90◦F
is equivalent to 1 day in a month during which the average outside temperature exceeded 90◦F by 1◦F.
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Table 31: Heat-Mortality Relationship Above 90◦F Interacted with Dam Levels (Including

Month Fixed Effects)

Dependent variable: average daily deaths per million

(1) (2) (3)

Upstream dam level × CDD 90◦F
−0.65∗∗ −0.68∗∗ −0.68∗

(0.28) (0.28) (0.38)

CDD base temp 90◦F
0.77∗∗∗ 0.77∗∗ 0.78∗∗∗

(0.28) (0.35) (0.26)

Upstream dam level
−0.05 0.15 0.15
(0.30) (0.32) (0.33)

Within-district dam level × CDD
90◦F

0.02 0.02
(0.64) (0.68)

Within-district dam level
−0.48∗∗ −0.47∗

(0.22) (0.26)

Downstream dam level × CDD 90◦F
−0.02
(0.44)

Downstream dam level
−0.04
(0.37)

Mean of dep. var. 34.12 34.12 34.12
District-year FE Yes Yes Yes
Month FE Yes Yes Yes
Monthly precipitation control No No Yes
N 5474 5474 5474
R2 0.981 0.981 0.981

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. District-clustered standard errors in parentheses. “Average
daily deaths per million” is the monthly death rate per million divided by the number of days in the month
to address the fact that, all else equal, more deaths occur during months with more days. Dam levels
are distance-weighted 12-month lagged averages calculated with equations 2 and 3. A dam is classified as
upstream (downstream) of a district if it is at least 100 kilometers away from and 100 meters higher (lower)
in elevation than the geographic center of the district. A dam is classified as within-district if it is within 100
kilometers and ± 100 meters elevation of the geographic center of the district. For graphical examples, see
figures 7 and 8. Wherever within-district or downstream dam level controls are included, their interaction
with CDD is also included. Cooling degree days (CDD) are a monthly incidence measure of heat above the
base temperature. For reference, 1 CDD at a base temperature of 90◦F is equivalent to 1 day in a month
during which the average outside temperature exceeded 90◦F by 1◦F.
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Appendix C - The Regressive Costs of Drinking Water Contaminant Avoidance

C.1 Alternative Data Source: Nielsen Retail Scanner Data

In this section, I report the results of the panel fixed-effects regression approach described

in Section 3.2.2 using the Nielsen Retail Scanner dataset in place of the HomeScan Consumer

Panel. The main advantage of using this dataset is that, unlike the Consumer Panel, it

records transactions directly from retailers and thus should provide a more complete and

precise representation of consumption in a particular area. However, because no information

is provided on the purchaser, I cannot distinguish between purchases made by lower- and

higher-income households respectively. As a result, in place of the “Below 200% FPL”

indicator variable used in Section 3.3, I use a continuous variable indicating the percentage

of individuals in a county who are below 200% of the federal poverty line in a given year

according to the 5-year American Community Survey, which was available from 2009 to

present. The results presented in Table use the Retail Scanner data from 2009 to 2016,

which spans 2,671 counties.

The results in Table 32 are consistent with the results in Table 13 from the main text

in the estimated effects on total Other expenditure (negative and marginally not signifi-

cant, p ≈ 0.104) and nutrition values (negative and significant across the board). Table 33

discretizes the poverty measure into quartiles, demonstrating that the negative effects on nu-

trition values are strongest (in terms of both magnitude and statistical significance) among

observations in the top quartile of poverty rates. However, the interaction coefficient for wa-

ter expenditure is not statistically significant, nor does the point estimate have the expected

sign, providing more evidence in favor of considering alternative mechanisms for the effect

on calories such as health-related income effects and avoidance of foods that require water

to prepare in-home.

These results share many of the limitations described in Section 3.4. Like the panel data,
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the scanner data does not contain information on households’ restaurant takeout and fast

food purchases, meaning it is not possible to distinguish between overall declines in food

consumption and substitution of food away from home for grocery purchases. Additionally,

because treatment is assigned at the county level and the location of stores reporting data

to Nielsen is only specified at the first-three-digits-of-ZIP-code level (similar to metro area),

it is not possible to ascertain whether the stores reflected in the scanner data are in the

neighborhood(s) affected by each violation. However, as before, these limitations are likely

to work against finding a significant effect.
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C.2 Additional Tables

Table 32: Differential Effects of Active Health-Based Water Quality Violations (Scanner Data)

Water exp. Other exp. Calories Fat Carbs Sugars Protein
(2004 USD) (2004 USD) (Cal) (Grams) (Grams) (Grams) (Grams)

Active Violation × -0.001 -0.076 -1.335** -0.056** -0.171** -0.088** -0.035*
Pct. Below 200% FPL (0.001) (0.047) (0.618) (0.027) (0.076) (0.035) (0.018)

Active Violation 0.007 0.806 14.070** 0.579** 1.835** 0.946** 0.351*
(0.011) (0.523) (6.689) (0.291) (0.814) (0.373) (0.199)

Pct. Below 200% FPL 0.001 -0.112 -2.746* -0.086 -0.368** -0.162** -0.069*
(0.002) (0.0100) (1.462) (0.061) (0.182) (0.080) (0.040)

Mean of dep. var. 0.43 36.76 410.62 16.75 51.38 23.79 10.94
N 149868 149868 149868 149868 149868 149868 149868
Adjusted R2 0.883 0.946 0.942 0.936 0.944 0.942 0.930

* p < 0.1, ** p < 0.05, *** p < 0.01. County-clustered standard errors are in parentheses. All variables in this table are in per-capita 
terms. Expenditure measures were deflated to 2004 USD using the annual food-at-home CPI measures from USDA (Kuhns et al. 
2015). County and panel month fixed effects are included in all columns. Regressions were weighted using the method proposed by 
Imai and Kim (2019) to mitigate bias in two-way fixed effects (TWFE) linear regressions.
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Table 33: Differential Effects of Active Health-Based Water Quality Violations (Scanner Data)

Water exp. Other exp. Calories Fat Carbs Sugars Protein
(2004 USD) (2004 USD) (Cal) (Grams) (Grams) (Grams) (Grams)

Active Violation × -0.004 -0.238 -4.868 -0.143 -0.771 -0.392 -0.071
Second Poverty Quartile (0.008) (0.397) (5.068) (0.217) (0.626) (0.289) (0.149)

Active Violation × 0.000 -0.492 -4.708 -0.153 -0.756 -0.447 -0.077
Third Poverty Quartile (0.009) (0.415) (5.501) (0.240) (0.671) (0.310) (0.160)

Active Violation × -0.006 -0.641 -11.419** -0.465** -1.530** -0.805*** -0.268*
Fourth Poverty Quartile (0.011) (0.411) (5.414) (0.236) (0.658) (0.302) (0.158)

Active Violation 0.002 0.356 5.535 0.194 0.831* 0.444* 0.097
(0.008) (0.330) (4.091) (0.182) (0.489) (0.227) (0.125)

Second Poverty Quartile 0.011 0.017 1.646 0.113 0.119 0.036 0.078
(0.007) (0.357) (4.489) (0.185) (0.570) (0.259) (0.127)

Third Poverty Quartile 0.008 -0.447 -8.536 -0.245 -1.235 -0.499 -0.192
(0.010) (0.436) (5.879) (0.238) (0.759) (0.332) (0.167)

Fourth Poverty Quartile 0.018 -0.302 -8.658 -0.189 -1.302 -0.493 -0.178
(0.013) (0.608) (8.612) (0.360) (1.080) (0.474) (0.238)

Mean of dep. var. 0.43 36.76 410.62 16.75 51.38 23.79 10.94
N 149868 149868 149868 149868 149868 149868 149868
Adjusted R2 0.882 0.946 0.941 0.935 0.944 0.941 0.930

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. County-clustered standard errors are in parentheses. All variables in this table are in per-capita terms.
Expenditure measures were deflated to 2004 USD using the annual food-at-home CPI measures from USDA (Kuhns et al. 2015). County and panel
month fixed effects are included in all columns. Regressions were weighted using the method proposed by Imai and Kim (2019) to mitigate bias in
two-way fixed effects (TWFE) linear regressions.
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Table 34: Differential Effects of Active Health-Based Water Quality Violations Based on Duration (Full Sample)

Water exp. Other exp. Calories Fat Carbs Sugars Protein
(2004 USD) (2004 USD) (Cal) (Grams) (Grams) (Grams) (Grams)

Active Violation (Month 7+) 0.132** -2.328 -42.154*** -1.670*** -5.201*** -3.073*** -1.101**
× Below 200% FPL (0.061) (1.767) (13.779) (0.643) (1.752) (0.961) (0.442)

Active Violation (Month 7+) 0.008 0.116 -4.156 -0.211 -0.305 0.138 -0.214**
(0.017) (0.631) (3.277) (0.147) (0.424) (0.243) (0.102)

Active Violation (Month 1-6) 0.139*** 0.529 -13.601 -0.681 -1.391 -1.570* -0.649*
× Below 200% FPL (0.051) (2.084) (10.208) (0.491) (1.402) (0.896) (0.332)

Active Violation (Month 1-6) -0.005 -1.147** -5.225** -0.153 -0.607** -0.427*** -0.112
(0.013) (0.457) (2.298) (0.114) (0.282) (0.164) (0.069)

Below 200% FPL -0.055 -3.820*** -88.995*** -3.756*** -11.234*** -4.986*** -1.971***
(0.047) (1.346) (11.313) (0.498) (1.383) (0.676) (0.331)

Mean of dep. var. 2.03 204.30 1233.78 50.96 152.66 68.19 32.14
P-value: Short vs. long 0.882 0.153 0.055 0.150 0.049 0.171 0.353
N 4328963 4328963 4328963 4328963 4328963 4328963 4328963
Adjusted R2 0.374 0.564 0.430 0.417 0.390 0.313 0.438

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. County-clustered standard errors are in parentheses. “Full Sample” refers to the complete sample
included in Table 13, which includes all households who experienced at least one water quality violation (regardless of duration) during the study
period. Expenditure measures were deflated to 2004 USD using the annual food-at-home CPI measures from USDA (Kuhns et al. 2015). Household
and panel month fixed effects are included in all columns. Regressions were weighted using the method proposed by Imai and Kim (2019) to mitigate
bias in two-way fixed effect (TWFE) linear regressions. The row “P-value: short vs. long” reports statistical comparison tests between the coefficient
for “Active Violation (Month 7+) × Below 200% FPL” and the coefficient for “Active Violation (Month 1-6) × Below 200% FPL.”
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Bart Ostro, Jordi Sunyer, and Mercedes Medina-Ramón. Heat Waves and Cause-specific
Mortality at all Ages. Epidemiology, 22(6):765–772, 2011. ISSN 10443983.

Irina Basieva, Emmanuel Pothos, Jennifer Trueblood, Andrei Khrennikov, and Jerome
Busemeyer. Quantum probability updating from zero priors (by-passing Cromwell’s
rule). Journal of Mathematical Psychology, 77:58–69, April 2017. ISSN 0022-2496. doi:
10.1016/j.jmp.2016.08.005.

William F. Bassett and Robin L. Lumsdaine. Probability Limits: Are Subjective Assessments
Adequately Accurate? Journal of Human Resources, 36(2):327–363, 2001. ISSN 0022166X.

Brian Beach, Joseph Ferrie, Martin Saavedra, and Werner Troesken. Typhoid Fever, Water
Quality, and Human Capital Formation. The Journal of Economic History, 76(01):41–75,
March 2016.

Avner Ben-Ner, Brian P. McCall, Massoud Stephane, and Hua Wang. Identity and in-
group/out-group differentiation in work and giving behaviors: Experimental evidence.
Journal of Economic Behavior & Organization, 72(1):153–170, October 2009. ISSN 0167-
2681. doi: 10.1016/j.jebo.2009.05.007.
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