
Evaluating Network Performance of Containerized Test Framework for

Distributed Space Systems

by

Walter Vaughan

B.S. Electrical Engineering, South Dakota School of Mines & Technology, 2019

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2022

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Walter Vaughan

It was defended on

April 5, 2022

and approved by

Jingtong Hu, PhD, Associate Professor,

Department of Electrical & Computer Engineering

Mai Abdelhakim, PhD, Assistant Professor,

Department of Electrical & Computer Engineering

Thesis Advisor: Alan D. George, PhD, FIEEE, Professor, Department Chair,

Department of Electrical & Computer Engineering

ii

Evaluating Network Performance of Containerized Test Framework for

Distributed Space Systems

Walter Vaughan, M.S.

University of Pittsburgh, 2022

Distributed space systems are a mission architecture consisting of multiple spacecraft as a

cohesive system in an attempt to provide multipoint sampling, increased mission coverage, or

improved sample resolution, while reducing mission risk by through redundancy. For these

reasons, distributed space systems are an increasingly common architecture for scientific

space missions and broader space-related mission concepts. To fully realize the potential

of these systems, eventually scaling to large-scale missions with hundreds or thousands of

spacecraft, distributed space systems need to be operated as a single entity, which will enable

a variety of novel scientific space missions.

By leveraging software containers, a technology developed for scalable terrestrial com-

puting, distributed spacecraft systems can be simulated at scale entirely in software. Con-

tainers can run flight software in isolation, with multiple containers operating concurrently

as a facsimile for in-situ spacecraft swarm behavior. This containerization approach allows

developers to identify emergent behavior early and build confidence in the performability of

the system, while limiting development overhead associated with higher system complexity.

For this container-based approach to simulation to be effective, the demonstrated system

behavior must not be artificially influenced by the framework itself. To test this, a series of

experiments are performed to quantify the available virtual network bandwidth on a single-

machine host as a function of spacecraft swarm size, examining up to 32 fully connected

containers. These tests invoke and measure communications throughout a network of con-

tainers in bidirectional network configurations, approximating the upper limit of possible

network strain in such a system.

The container networks tested were able to simultaneously communicate at over 10 Gbps

bidirectionally for up to 4 containers and around 1 Gbps bidirectionally for up to 16 con-

tainers. When containers communicated at fixed bit rates, no packet loss was observed

iii

at 500 kbps in any tested network size. With up to 32 fully connected containers at 10

Mbps, no more than 1.5% loss was recorded, with most connections reporting no packet

loss. These results help clarify the expected fidelity of spacecraft simulation using virtual

networks of containerized spacecraft software and establish expected performance limits for

other containerized flight software development.

iv

Table of Contents

Preface . ix

1.0 Introduction . 1

2.0 Background . 2

2.1 Testing & Development . 2

2.2 Container Virtualization . 2

2.2.1 Docker . 4

2.3 Distributed Space Systems . 4

2.3.1 Swarm Communication . 5

2.4 Core Flight System . 6

2.5 Distributed Spacecraft Autonomy . 8

3.0 Related Work . 10

3.1 Container Performance . 10

3.2 Development Using Containers . 11

3.2.1 Swarm Test Framework . 11

3.3 In-flight Virtualization . 12

3.3.1 In-Flight Container Virtualization . 12

3.3.2 In-Flight Hardware Virtualization . 13

3.3.3 In-Flight Process Virtualization . 13

4.0 Approach . 15

4.1 Container Runtime & Image Building . 15

4.1.1 Container Networking & Orchestration 16

4.1.2 Traffic Control . 17

4.2 Network Profiling . 17

4.3 Test Design . 20

5.0 Results . 21

5.1 TCP Bandwidth . 21

v

5.2 UDP Packet Loss . 24

6.0 Discussion . 27

6.1 Memory & Network Interface Limitations 28

6.2 Conclusion . 29

6.3 Future Work . 30

Appendix A. TCP Connection Benchmark Results 31

Appendix B. UDP Connection Benchmark Results – Highest Loss 32

Appendix C. UDP Connection Benchmark Results – Median Loss 33

Bibliography . 34

vi

List of Tables

1 Feature Comparison of DSS . 6

2 Largest Network per Lossless UDP Bit Rate . 25

3 TCP Bandwidth Results . 31

4 UDP Highest Loss Results . 32

5 UDP Median Loss Results . 33

vii

List of Figures

1 Architectural Differences of VMs and Containers 3

2 cFS Architectural Diagram . 7

3 Challenges in Swarm Development . 8

4 Container Architecture for Network Tests . 19

5 TCP Throughput vs. Scale . 23

6 Total System Throughput vs. Scale . 23

7 Maximum and Median Observed UDP Loss . 26

viii

Preface

This research was supported by the NSF Center for Space, High-performance, and Re-

silient Computing (SHREC) industry and agency members and by the IUCRC Program of

the National Science Foundation under Grant no. CNS-1738783, as well as NASA’s Game

Changing Development Program.

Special acknowledgements are owed to: Dr. Nick Cramer for his persistent guidance

and domain expertise; Brian Kempa for his technical and philosophical contributions; David

Langerman, Marika Schubert, Calvin Gealy, and Rob Esswein for their technical consul-

tations, thorough editing, and friendship; Kali Regenold for keeping the author nourished

and the writing flourished; Dr. Alan George for advising and encouraging the pursuit of

this work; and the students of the University of Pittsburgh NSF SHREC Center for their

resilient camaraderie through an unrelenting pandemic.

ix

1.0 Introduction

The proliferation and popularity of small satellites in use for scientific missions has driven

an increased interest in distributed space missions (DSMs). In particular, more complex and

dynamic DSMs will need to rely increasingly on autonomous commanding, communication,

and cooperation in order to realize sophisticated mission goals [1]. The physical devices

designed and built to actually perform these DSMs are referred to as distributed spacecraft

systems (DSS) and are the technology of interest studied in this paper.

Testing of space systems at the algorithmic, software, and physical levels of functionality

is a critical element of the development process for virtually any space mission [2]. Histori-

cally, testing has relied on facsimile devices such as flatsats, or similar dedicated hardware,

meant to match the system used in-flight as closely as possible [3]. In a broader context,

large-scale software deployment involves the reuse of software components. In contrast to the

traditionally single-purpose nature of spacecraft software systems, software which is widely

reused presents a larger potential failure area, thereby justifying increased attention to the

development of those software components. For distributed spacecraft design, this means

that performing repeatable and detailed testing and simulations of space systems contin-

uously throughout their development is inherently more important. This thesis sets out

to define common motivations and challenges behind DSMs and the development of their

spacecraft software, describe an approach for testing a DSS early in development, and fi-

nally evaluate the fidelity and applicability of this testing system to both the use case it was

originally designed for and generic DSS through a series of benchmarks.

1

2.0 Background

This chapter covers the technology components which form the motivational building

blocks for this research. The sections are organized in order of specificity, starting with the

general problem space and ending in the domain of the specific focus of this research. More

detailed information on virtualization technologies is provided as necessary in Chapter 4: Ap-

proach.

2.1 Testing & Development

Flight software is tested at as many different levels of abstraction as feasible, starting from

unit testing of individual functions of code, through integration tests of larger components,

up to complete testing of the finished system through different scenarios. Typically, as a

project progresses, larger and more complex components of a system are developed, and

upon testing, these components are sometimes found to be unsound or otherwise require

design revisions. By testing the interaction and integration of these complex components

at earlier points in development, those necessary changes can occur while reducing impact

to a project’s schedule or budget [4]. An increased investment in early testing is one of the

central requirements for building complex flight software at scale [5].

2.2 Container Virtualization

Virtualization technologies can be described by a variety of mechanisms, but the central

premise is that certain portions of a computing system’s resources are isolated and managed

by an intermediary tool, in order to enhance system security, limit the execution environ-

ment and available system resources, provide a consistent and artificial interface for system

software, or some combination of each [6]. While container virtualization can be considered a

2

form a virtualization, a fundamental difference from conventional virtualization is that con-

tainers abstract and isolate the operating system from the containerized applications while

still allowing access to the host operating system’s functions and computing resources. The

architectural differences between containers and VMs are shown in Figure 1.

Figure 1: Architectural Differences of VMs and Containers, from [7]

On Linux systems, container virtualization is implemented through mechanisms built into

the kernel, such as cgroups and namespaces. These mechanisms can give processes their

own hierarchical visibility or control of devices, memory, CPU, and network interfaces [8].

Multiple processes can run inside the same container, and just like a normal kernel process

tree, one process is at the “root” of the process tree. From the perspective of the kernel,

processes inside a container are running alongside normal processes on a system and make

the same system calls on the same kernel, but the kernel shows different filesystems, process

trees, network interfaces, and other kernel resources to processes inside a container.

This approach to virtualization avoids the need for a host system to spend time trans-

lating a system call from a virtual system or maintain a virtual state and set of emulated

interfaces. In effect, then, starting a container is no different than simply starting any other

process on a machine [8]. This means that, compared to traditional virtual machines (VMs),

containers offer superior image generation speed and startup time, while also requiring less

processing and memory overhead [6].

3

2.2.1 Docker

As of writing, the Docker ecosystem of container management tools is one of the most

widely used container virtualization technologies, though many other container runtimes have

been developed and are still in active use [9, 10]. Early adopters of container technologies

developed different mechanisms for implementing container isolation. In response to the

splintering paths of each technology stack, industry leaders looked to standardize the format

and operation of containers, and formed the Open Container Initiative (OCI) based on

the existing code and specifications of Docker. The OCI specifies a common format and

functional requirements container technologies can adhere to. This allows complaint tools

to benefit from being interoperable with other tooling in the container ecosystem [11].

Docker comes with a large amount of tooling built around simple command-line inter-

faces for performing the necessary steps to work with containers. These commands serve

functions to acquire and/or build a starting container image, configure network interfaces

or other operating system resources, manage external filesystems which are mounted in a

container, start processes, shutdown, and clean up unused containers or container images.

A full description of Docker tools and related software can be found on the Docker Docs

website [7]. The specific tools used in the context of this research are discussed in more

detail in Chapter 4: Approach.

2.3 Distributed Space Systems

Broadly speaking, DSS comprise a family of system architectures wherein several space-

craft operate to achieve a singular goal. Many basic examples of DSS are currently active

in space missions serving functions across multiple scientific domains. For example, the

following categories of missions include launches spanning several decades into the past:

communications networks, such the Iridium or SpaceX Starlink constellations; position and

navigation, such as the GPS or GLONASS systems; and earth sensing and imaging, such as

Techsat-21 or the Morning Constellation (Landsat-7, EO-1, SAC-C, Terra) [12].

4

While some DSS already serve functions which may not be feasible or even possible

using a monolithic spacecraft, the addition of certain features can fundamentally augment

DSS abilities by facilitating different forms of autonomous operation. Specifically, if given

sufficient computing power and inter-satellite network links (ISLs), a DSS can be designed

to perform automatic workload balancing, respond to sudden opportunities or operational

faults, improve ground-to-swarm network availability, intelligently share data between space-

craft, or potentially avoid communication delays [13]. Given the scientific potential offered

by these capabilities, this research focuses on high computational-performance DSS with

ISLs.

DSS with inter-satellite network links can be further categorized in terms of their mis-

sion goals, homogeneity, relative spatial proximity, collaborative abilities, and mission in-

terdependencies [14]. Satellite constellations use spatially distant spacecraft in fixed orbits,

but seldom include ISLs for collective system decision-making due to their long communi-

cation distance [1]. Federated satellite systems are heterogenous in spacecraft composition

and do not operate towards common system goals, and fractionated satellite systems are

explicitly heterogenous components of a singular system. Satellite clusters are formed by

collections of homogenous spacecraft in fixed, nearby positions, operating on some common

goal. Satellite trains are similar to clusters, but conventionally share the same orbital path,

and do not necessarily function similarly or towards the same mission goal. Swarms are the

most dynamic and flexible taxonomy of DSS, conceptually encompassing both constellations

and clusters, incorporating dynamic spatial distances and optional spacecraft heterogeneity.

Crucially, spacecraft swarms represent the most generic range of network topologies for an

autonomous DSS and are therefore of prime interest for this research. A simplified summary

of these taxonomies is given in Table 1.

2.3.1 Swarm Communication

Communication between spacecraft in a swarm configuration happens in dynamic topolo-

gies, with some connections between spacecraft behaving intermittently, whether intention-

ally part of a mission or incidentally due to flight conditions. These demanding network

5

Table 1: Feature Comparison of DSS simplified from [14]

DSS Architecture Mission Goals Cooperation Homogeneity Inter-Satellite Distance Autonomous/Co-dependent

Constellations Shared Required Homogeneous Regional Autonomous

Trains Independent Both Heterogeneous Local Autonomous

Clusters Shared Required Homogeneous Local Both

Swarms Shared Required Both Both Both

Fractionated Satellites Shared Both Heterogeneous Local Both

Federated Satellites Independent Both Heterogeneous Both Autonomous

conditions require that flight software is capable of dynamically maintaining a useful under-

standing of its present network state, conceptually operating as a Mobile Ad-Hoc NETwork

(MANET). Little flight heritage exists around MANET technologies in space, with only

sparse simulation and theoretical exploration of its applications in a DSS [15].

Even with a MANET in place, spacecraft swarms still require additional functionality

for relaying information across the network in a way which ensures delivery to all connected

systems, regardless of topology, ideally with some guarantee of quality-of-service (QoS). In

terrestrial computing, one approach to solving this communication problem is through the

use of a Data Distribution Service (DDS) standards-compliant networking middleware. DDS

is a platform- and language-agnostic specification that implements a publish-subscribe model

for communication in a dependable manner [16]. This technology lends itself well to the goals

of autonomous DSS and is featured in the mission use case described below.

2.4 Core Flight System

NASA’s core Flight System (cFS), previously known as core Flight Software under the

same acronym, is an open-source, reusable software framework for space missions, distributed

by NASA and used broadly in the space community for various missions [17]. The cFS is a

reusable framework derived from the codebase of historical NASA missions and maintained

agency-wide as a set of centrally maintained open-source components and interfaces, available

6

for reuse and extension across the broader space science domain. NASA’s cFS aims to reduce

development time, improve code quality, and generally reduce cost of space missions by

formally maintaining: a set of commonly needed applications; storage, command, & data-

handling utilities; the core Flight Executive (cFE); and an explicit application programming

interface (API) between each programming layer and component [18]. The layout of the

core Flight System is shown in Figure 2 for reference. By defining a standard, layered

API for components of the core Flight System, scientists can develop new applications,

platform support packages (PSPs), and operating system abstraction layers (OSALs), while

maintaining functional compatibility within the rest of the cFS ecosystem.

Figure 2: General Architecture of cFS Mission Software [18]

7

2.5 Distributed Spacecraft Autonomy

The motivating mission context for this paper is the Distributed Spacecraft Autonomy

project (DSA) at NASA Ames Research Center, which seeks to develop and mature tech-

nologies and methods for autonomous coordination, adaptive reconfiguration, planning, and

swarm commanding [13]. This mission is structured to specifically advance capabilities in

the areas of swarm scale, complexity, and human-swarm interaction. Those capabilities are

visualized in Figure 3.

Figure 3: Challenges in Swarm Development, from [19, 20]

The project is divided into two phases of technology demonstrations: initially, a software

payload on a flight mission consisting of a swarm of 4 spacecraft operated as part of the

Starling1 technical demonstration [15]; and later, a simulation mission involving a much

larger swarm of 100 facsimile spacecraft. The flight software used in each spacecraft is based

on cFS. Each spacecraft is equipped with a uniform set of mission applications designed

8

to handle incoming sensor information, interfacing with the publish-subscribe inter-satellite

network interface, and autonomously computing an execution plan for how to use sensor

data in the next cycle of data collection, based only on data received from other spacecraft

in the swarm [21].

The specific communication mechanisms used in the DSA project are formed from a

multi-layered networking stack. At the lowest level of abstraction, a Mobile Ad-Hoc Net-

work (MANET) is operating using the Better Approach To Mobile Ad-Hoc Networking

(B.A.T.M.A.N.) protocol. This tooling operates the ISL network interface for each space-

craft at the ISO/OSI network layer 2, which avoids a dependence on IP addresses [22]. Above

the MANET, a publish-subscribe Data-Distribution Service (DDS) middleware transparently

handles the distribution of data at scale, abstracting away the process of routing traffic to

other spacecraft. Specifically, the RTI Connext Micro DDS software package is used in the

DSA flight software. This package is specially designed for resource constrained envion-

ments [13, 23].

9

3.0 Related Work

Owing to the generic, lightweight, and flexible nature of container-based virtualization,

containers have seen increasing use in computing since their adoption in a variety of technical

domains. While container virtualization has origins as a general-purpose computing tool,

there have been recent efforts focused on leveraging containers for spacecraft missions. This

chapter will discuss relevant research in the areas of virtualization and the overlap with

spacecraft and distributed spacecraft system development.

3.1 Container Performance

Containerized software performance is usually limited by the underlying hardware owing

to the generally negligible runtime overhead. This assumption is present in most scientific

contexts; containerization is widely considered a cheap, convenient abstraction and is as-

sumed to have a uniform, negligible effect on system performance. However, in some cases

there are performance penalties observed in association with the virtual interfaces and ab-

stractions provided by different container runtimes [10].

In scalable terrestrial computing, monolithic physical systems sometimes run a large

number of virtualized subsystems whether as VMs or containerized applications. An ar-

chitectural approach called microservices, which is growing in popularity, involves system

composition through a large number of small, single-purpose decentralized systems [24].

Traditionally, microservices have been implemented using VMs. However, with the reduc-

tion in overhead from instead using containerization, the downsides of virtualization involved

in a microservices approach are less pronounced, which has facilitated wider adoption of this

architecture.

Microservices can also be seen as a context in which to evaluate containers against equiv-

alent VM-based microservices in terms of their startup time, memory use, caching behavior,

and execution speed. Almost universally, container-based applications are dramatically more

10

performant in each category [25]. The performance difference between containers and VMs,

in both startup time and application performance is particularly pronounced for the virtual

environments with many dependencies. VM overhead can even be so extreme compared

to containers that VMs are simply unable to run the same number of equivalent applica-

tions due to memory requirements. This particular performance effect is a major motivation

behind the container-based software test framework described in this paper.

3.2 Development Using Containers

With software development continuously growing in complexity, particularly in the num-

ber of dependencies used in the design, compilation, and testing of software, replicating

the complete system environment needed for the aforementioned steps is correspondingly

complex. To this end, container images can store complete, ready-to-run versions of an ex-

ecution environment. This ensures consistency across systems and dramatically reduces the

complexity of configuring a new machine for any given software [9].

Perhaps unsurprisingly, containers have already been used in the development process

of other spacecraft software projects. NASA’s cFS project maintainers have made efforts

to facilitate testing cFS mission software in containers, with official support expected to be

included with the release of cFS version 7 (Caelum) [26]. Additionally, Docker in particular

has been used by multiple groups outside of NASA for various components of development

and testing of their spacecraft sytems [4, 27].

3.2.1 Swarm Test Framework

Early into development of the first phase of the DSA mission, a software testing frame-

work based around the concept of containerization was designed and implemented, consisting

of four containers intending to simulate each spacecraft of the flight mission. Each container

is populated by the cFS applications and core Flight Executive (cFE) compiled for the native

11

architecture of the developer’s machine, as well as all other runtime dependencies for the

flight software to function. The ability to compile flight software for native execution in the

host architecture is a feature already built into the cFS framework [18]. More details of the

test framework are given in Chapter 4: Approach.

While this research focuses primarily on the development efforts of the DSA project, it

is worth noting similar development has been ongoing elsewhere for simulating the behavior

of a DSS through containers for testing purposes [28]. This research focuses on common

elements of container-based abstractions for spacecraft systems but also leverages technology

popular in cloud computing to perform software-defined networking, metrics collection, and

network perturbance and failure testing. The application under test is designed around a

fixed constellation network topology, but still shares common design elements of the DSA

flight experiment.

3.3 In-flight Virtualization

Virtualization technologies are mature and have been used for testing software in highly

controlled, reproducible environments, both for terrestrial computing and in space applica-

tions. One of the benefits of virtualization is the ability to bundle software together with all

needed runtime dependencies. This presents an opportunity to improve the similarity of the

software as tested to the software in-flight by using the same virtualized software, requiring

only that the flight system can perform the same virtualization.

3.3.1 In-Flight Container Virtualization

Recently, containers have also been adopted as the actual in-flight mechanism for software

deployment. Unibap is one such organization which has successfully used Docker containers

as the integration interface for software payloads aboard commercial satellites. Their ap-

proach allows multiple software payloads to run on a single spacecraft while avoiding most

of the complexity of software integration between payloads, allowing those payloads to be

12

developed separately by independent groups [27]. Additionally, their experiments demon-

strated negligible overhead being introduced by running applications inside of containers

relative to direct execution on the host machine. Other organizations, such as Advanced

Solutions, Inc., have combined their microservices-based hybrid component testing approach

with flight systems equipped with containerization technology. This allows software to be

flown in the same binary form as it is tested, both in a simulated flight environment and

through hardware-in-the-loop testing [29].

3.3.2 In-Flight Hardware Virtualization

Although hardware virtualization adds extra computational and memory overhead, there

can still be benefits to running flight software using full-hardware virtual machines, even

in-flight. One such effort has approached flight software fault tolerance in radiation en-

vironments by fully virtualizing cFS mission software on a bare-metal hypervisor (Xen)

and executing flight software in triplex redundancy [30]. The Virtualized Space Applica-

tions (ViSA) framework developed in their research was successfully used to mitigate the

effects of radiation-induced faults in both software simulation and radiation beam-testing.

Full hardware virtualization was facilitated by the relatively high-performance nature of the

hardware platform being evaluated for spaceflight, which could withstand the additional com-

putational overhead and still maintain reasonable available system resources for the actual

flight software.

3.3.3 In-Flight Process Virtualization

Whereas hardware virtualization through VMs offers artificial hardware interfaces, and

container virtualization offer artificial operating system environments, process virtual ma-

chines (process VMs) are designed to offer virtual application environments for individual

processes [31]. Some common programming languages (e.g., Python or Java) operate through

the use of a process VM for execution of their software (e.g. CPython, JVM, respectively).

13

Process VMs abstract away most system resources in favor of a unified programming envi-

ronment, which strongly benefits portability and can reduce development efforts. However,

they can also have negative effects on performance and limitations for directly controlling

external devices, which are frequently important considerations for a spacecraft system.

In practice, this tradeoff can still work out to be beneficial. For example, process VMs

have been used to provide a lightweight and high-level API for designing spacecraft software

that can be reused across different missions and hardware platforms [32]. Missions wishing to

reuse code must still ensure that the programming language has a suitable process VM for the

intended flight hardware, which might require extra effort to augment the process VM with

direct device interaction functionality or real-time functionality, if not already incorporated

in the language. While they necessarily require some amount of extra program space, process

VMs for some languages are small enough to embed in even lightweight spacecraft platforms.

14

4.0 Approach

This chapter describes the approach used to understand the abilities and limits of con-

tainers as representative simulated spacecraft. Both the Distributed Spacecraft Autonomy

project and genereralized, scalable autonomous DSS are considered as potential contexts

for containerized testing. An initial set of experiments were designed to quantify the ex-

pected performance limits of a generic simulated DSS being developed in the context of a

communication-intensive distributed spacecraft mission.

Although processing power is an inherent limiting factor of the performance of scalable

systems, the computational requirements of a scalable system tend to be highly mission-

dependent. Accordingly, this experimental approach ignores the effects of computational

load and focuses primarily on a particular component of autonomous DSS: the inter-satellite

network links. Specifically, this paper evaluates the network performance of multiple con-

tainers on a single host system, a context which is realized in the Distributed Spacecraft

Autonomy project software test framework.

4.1 Container Runtime & Image Building

With many different container virtualization technologies being actively developed, there

are ample combinations of container builders and container runtimes which support all the

necessary features for isolating spacecraft software from a host operating system. Since

container virtualization broadly works through simple tooling on top of operating system

features, different container runtimes generally have negligible differences in runtime per-

formance [10]. Therefore, without a compelling reason to compare the performance of the

runtimes themselves, the remaining considerations in choice of a container runtime are around

features and compatibility.

15

Another major component to containerization is the process of building the filesystem

image and execution configuration, which comprise what is known as a container image. In

considering the image building process, lower build times result in faster iterative testing

during development cycles and could therefore have a positive effect on development pro-

ductivity. Different tooling exists for the image generation process, in addition to the default

tool in Docker, docker build. When comparing each of these tools, build times for small

images varies by significant margins, particularly if intermediary images are produced [33].

One of the fastest OCI spec-compliant image builders is BuildKit, which is now incorporated

directly into the Docker software package [34].

Given these considerations, as well as the rich tooling and features of Docker software and

its intrinsic compatibility with the OCI runtime and image specifications, the Distributed

Spacecraft Autonomy project uses the freely available Docker suite for container building

and running. Containers are built starting from an official Docker image based on the same

Linux distribution used for compiling the flight software. This ensures application binary

interface (ABI) compatibility with system libraries used to compile and run cFS software

(i.e. libc/libc++).

4.1.1 Container Networking & Orchestration

Many software packages exist to support the scalable systems envisioned by the original

designers of container virtualization [10]. These tools perform what is referred to as orches-

tration, which is the process of configuring and managing a collection of containers through

a unified system, rather than interacting with each container individually. For this research,

the complexity of orchestration required is relatively simple. Since orchestration tools are

not in any critical performance path, the DSA project uses Docker Compose, as it is already

tightly bundled with the Docker suite [35].

Docker also provides a simplified interface for creating the virtual networks used by their

container runtime. The resulting virtual networks can support different models of operation,

giving container interfaces transparent access to a host’s network interfaces, containers on

other Docker runtimes, including on different systems, or simply other designated networks

16

on a single host [36]. Containers can be added to or removed from networks while running

at any time, offering a way to change network topology on-the-fly, but this offers only

rudimentary network control, falling short of the more dynamic aspects of a DSS swarm

network.

The network configuration used in this research is the bridge mode which forms a virtual

network of every container attached to it, allowing the host to send and receive traffic

through that network interface but providing no explicit routes outside the network to the

containers. For the DSA test framework, Docker Compose is used to specify the container

runtime configuration required for the full flight software, including network device settings

for the MANET and DDS networking stack. Each simulated spacecraft is assigned unique

network IDs and placed on a network bridged to the host, though which commanding and

telemetry can pass.

4.1.2 Traffic Control

Another component to effective swarm simulation is the application of Linux traffic

control through NetEm. The Linux kernel supports the emulation of packet loss, delay,

corruption, and other network failures through its traffic control interface, which was added

as part of the NetEm tools [37]. This feature allows individual Linux network interfaces

to behave more similarly to imperfect, real-world interfaces such as those seen in extreme

network environments like autonomous DSS swarms. While this component of the test

framework is scientifically valuable for testing DSA’s resiliency to network disruptions, it is

not studied in this research and is only mentioned for completeness.

4.2 Network Profiling

A lightweight, common software package used for measuring throughput and other prop-

erties of network connections is iPerf [38]. iPerf3, in particular, allows running a test

between a single client and a server, where a server handles one client at a time, optionally

17

reporting detailed information into JavaScript Object Notation (JSON) format, which is

easily machine-readable. In line with the intuitive definitions of a client and server, upon

receiving a signal from a client, a server sends traffic to the client, and at the end of the test,

returns all network properties measured during the test. In experiments described in this

this paper, iPerf3 was run in single run-mode, at the default duration, so a single test refers

to an individual server-client paired measurement for a duration of 10 seconds.

iPerf3 can be configured to run tests using TCP or UDP traffic, and returns different

metrics depending on which traffic packet types are used. For TCP traffic, the default

behavior is for the server to send as much traffic as possible, yielding an approximate upper-

bound on the available bandwidth for that connection. In contrast, UDP traffic must be

sent at a specified bit rate. In this mode, iPerf will forcefully attempt to match the specified

bit rate rather than negotiating the connection. Since the DDS networking middleware used

in the DSA project relies on UDP, this mode is more likely to better approximate simulated

DSS network traffic.

18

(a) Container-Level View

Container 1

Container 2

Container 3

(b) Process-Level View

Container 1

Container 2

Container 3

iperf3 -c

iperf3 -c

iperf3 -s

iperf3 -s

iperf3 -c

iperf3 -c

iperf3 -s

iperf3 -s

iperf3 -c

iperf3 -c

iperf3 -s

iperf3 -s

Figure 4: Container Architecture for Network Tests, e.g. swarm size of n = 3

19

4.3 Test Design

One of the compelling features of an autonomous distributed autonomous space system

is to enable functional operation even when some spacecraft cannot communicate with each

other. However, this research examines the behavior of the network under the heaviest-

possible network load. All spacecraft are connected to each other and are simultaneously

attempting to transmit to every other spacecraft, forming a fully connected bidirectional

network.

Each container image is built starting from an official Ubuntu Linux 18.04 Docker image,

the operating system used in the DSA test framework. The container image is augmented

with the additions of the iPerf3 software and a script used for orchestration of each container’s

iPerf3 processes. The script acts as an entrypoint to the container and starts the appropriate

number of server instances for a test based on parameters passed in at startup.

For each experiment, the parameters of network size, traffic type, and–for UDP tests–

target bandwidth are passed into a test script. This script starts the specified number of

containers n. Then inside each container, the scripts runs n−1 instances of the iPerf3 process

in server mode, followed by n− 1 instances of the iPerf3 process in client mode, configured

such that each client connects to a server on every other container. Connection tests are

run for the default period of 10 seconds. These steps happen in immediate succession, with

the intention that tests start close enough in proximity and run over a long enough duration

that they can be considered concurrent.

20

5.0 Results

In this chapter, the measurements aggregated from the TCP bandwidth tests are given

for each swarm size, and the data collected from the UDP loss experiments are given for

each swarm size and desired bit rate. Selective emphasis for the UDP loss experimental

results is given, but full tables of all aggregate data are available in the appendices. The test

suites were run inside an Ubuntu Linux 18.04 LTS virtual machine with 16 dedicated Intel

Xeon vCPU cores running at 2.2GHz and 80 GiB of physical memory. While the hardware

configuration used was chosen out of convenience, this paper assumes that the performativity

of this machine is representative of the expected performance from a development server

available to organizations with the resources to build DSMs similar to those described in

this paper.

5.1 TCP Bandwidth

For the first set of experiments, using TCP traffic with no restriction on bandwidth,

the total throughput for each iPerf3 server process was recorded as a single connection’s

bandwidth. Note that this includes throughput in only one direction; data sent in the

opposite direction is considered a distinct connection. From these data points, average

bandwidth for each connection was computed, and the lowest effective bandwidth observed

for a single connection was also recorded for each experiment. These tests were performed

in increasing scale from n = 2 containers up to 32 containers, skipping every other network

after n = 25. The full results of these experiments are available in Appendix A.

As shown in Figure 5, the test framework sustained a minimum throughput above 200

Mbps for each connection in the system for all tested swarm sizes, which supports the notion

that this test framework can support a high ceiling of network performance and complexity.

At a swarm size of n = 4, matching the DSA flight configuration, the system sustained

21

a minimum of 12.9 Mbps on each connection, which is far beyond the capabilities of the

flight hardware network devices, which are rated for only 50 Mbps of traffic. Based on this

observation, the test framework has the potential to support the traffic capacity needed for

effective simulation fidelity of the DSA flight mission.

In the total throughput of all connections (total system bandwidth) in Figure 6, there is a

sharp rise in system bandwidth between n = 2..4 followed by a slow increase in bandwidth for

swarm sizes n > 4. This result somewhat matches expectations; given that the experiment

hardware has a fixed number of CPU cores, it was expected that the network performance

would improve as more CPU cores were used, saturating once the number of processes

communicating exceeds the number of available CPU cores. However, once the available

cores are saturated, total system throughput should stay roughly the same or decrease,

yet this bottleneck was not observed. System bandwidth appeared to steadily increase by

roughly a factor of three from the approximate saturation point of n = 4 to the maximum

swarm of n = 31. This unexpected result suggests a weakness in this experiment design,

which is discussed in more detail in Section 6.1: Memory & Network Interface Limitations.

22

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 29 31
100 Mbps

1 Gbps

10 Gbps

Number of Containers

TCP Throughput Distribution

Figure 5: TCP Throughput of Unidirectional Connections

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 29 31

0 Gbps

100 Gbps

200 Gbps

300 Gbps

400 Gbps

500 Gbps

600 Gbps

Number of Containers

Total System TCP Throughput

Figure 6: Total System TCP Throughput vs. Scale

23

5.2 UDP Packet Loss

In the second set of experiments, using UDP traffic at specified bit rates, the total packet

loss from each iPerf3 server process was recorded as a single connection’s loss percentage. As

in the TCP experiments, each recorded loss value pertains to only one direction of the duplex

communication paths between each container. Unlike the TCP experiments, every network

scale size from 2 containers up through 32 containers was tested, and for each network size,

10 different target bit rates were selected heuristically across a range of feasible network

interface rates. The selected bit rates span from 10 kbps to 10 Gbps. The full results of

these UDP traffic experiments are available in Appendix B and Appendix C.

As shown in Table 2, the test framework was capable of sustained UDP traffic of up 1

Mbps without any observed packet loss for all swarm sizes tested (n ≤ 32). Sustained traffic

of up to 10 Mbps was seen with no observed packet loss for swarm sizes of n ≤ 15, but only

a minimum swarm size of n = 2 could support up to 100 Mbps of sustained traffic with no

packet loss. As expected, the test framework could not sustain the same network throughput

with UDP traffic as it could with TCP traffic. Even when operating at lower target bit rates,

the system dropped substantial proportions of network traffic.

Although results of the TCP experiments suggest that the virtual network interfaces

could support the quantity of traffic for at least 200 Mbps of traffic for all swarm sizes, this

test demonstrated total packet loss for most connections at swarm sizes of n > 27 operating

at 50 Mbps and swarm sizes of n > 19 at 100 Mbps. This is not unexpected, however, due to

the lack of synchronization mechanisms in UDP traffic. Network interfaces communicating

over UDP can attempt to send packets even when a receiving interface might be forced to

drop the traffic, rather than allowing a congestion control scheme to manage the strained

network interface [37].

Fortunately, as shown in Figure 7, all UDP traffic was still delivered with maximum

observed loss rates below 20% for a swarm size of n = 4. The DDS protocol implemented by

the spacecraft networking stack for DSA supports traffic delivery reliability through retry

mechanisms. Therefore some amount of packet loss may be acceptable in the swarm test

network, even if the loss is not intentionally induced.

24

Table 2: Largest Network with No Packet Loss at the Tested UDP Bit Rate

UDP Bit Rate
Largest Network

with No Packet Loss

10 kbps (≥ 32)

100 kbps (≥ 32)

500 kbps (≥ 32)

1 Mbps (≥ 32)

5 Mbps 31

10 Mbps 15

50 Mbps 2

100 Mbps 2

1 Gbps (N/A)

10 Gbps (N/A)

25

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

20

40

60

80

100

Number of Containers

L
os
s
(%

)

UDP Packet Loss – 50 Mbps

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

20

40

60

80

100

Number of Containers

L
os
s
(%

)

UDP Packet Loss – 100 Mbps

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

20

40

60

80

100

Number of Containers

L
os
s
(%

)

UDP Packet Loss – 1 Gbps

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

20

40

60

80

100

Number of Containers

L
os
s
(%

)

UDP Packet Loss – 10 Gbps

Median Loss Maximum Loss

Figure 7: Maximum and Median Observed UDP Loss, ≥ 50 Mbps

26

6.0 Discussion

The results obtained from these tests add valuable insight to the behavior and limitations

of the swarm test framework as well as guidance for other containerized DSS development.

While several issues emerged from the test design, these issues also provide insight to a

category of simulation failures which may affect testing of other DSS software. By evaluating

the behavior of the virtual network interfaces intrinsic to containerized DSS testing, this

research is able to describe expected performance limits for testing DSS in general, in addition

to the system designed in the DSA project.

When performing tests using TCP traffic, the kernel is afforded control over how much

data to send at a time and can therefore shape traffic sent between different processes to

manage congestion and achieve higher throughput [37]. This optimization is not present

for UDP traffic, leading to scenarios where processes send large packets much faster than

they can be processed. When looking only at TCP traffic, each connection was shown to

sustain well over 100 Mbps of traffic at every swarm size tested, but this throughput was

only observed with low loss (< 20%) for networks sizes of n ≤ 13 using UDP traffic.

This finding highlights an important consideration for simulation of containerized DSS.

In contrast to TCP traffic, the performance of equivalently large swarm networks (n ≥ 20)

transmitting UDP traffic at speeds ≥ 50 Mbps showed packet losses so large that most

packets were either dropped or never transmitted at all. The underlying network mechanisms

of a spacecraft in a DSS as implemented at the protocol level can therefore have a significant

effect on the ability for the host system to deliver the traffic in time. If an application designed

for a DSS, such as an event-driven call-and-response across the swarm, could produce a large

(e.g. 100 Mbps) burst of traffic across a significant portion of the swarm and the traffic was

not being delivered with any mechanisms of traffic congestion in place, then the simulation

environment could introduce dropped packets.

As shown with small swarm sizes (n ≤ 4), if the number of active connections is fewer than

the number of logical CPU cores on the test machine, then the containerized DSS simulation

may still be able to handle those large traffic bursts by matching the transmission speed of

27

data. On the other hand, if the traffic produced by DSS applications is effectively limited

at the application level, burst traffic across the entire swarm can be sustained effectively

even when the swarm size exceeds the number of available CPU cores. The exact degree to

which burst traffic could be handled is not addressed in this thesis, but it is highly worthy

of further consideration in future work.

6.1 Memory & Network Interface Limitations

Through the course of this research, several key insights stemming from the design of the

experiment brought to light other considerations for containerized testing of DSS. These is-

sues potentially impacted the scalability of the tests, particularly at higher network through-

put, and reflect limitations which may not be seen in some real DSS. Each issue is discussed

in detail below.

First, each test connection required two iPerf3 processes: one for the server and one

for the client. For a fully connected network, the number of processes required to run an

experiment increases quadratically as a function of network size, an effect which introduces

significant computational and memory overhead. While an individual spacecraft designed as

part of a DSS may operate multiple communication interfaces or channels simultaneously,

this experiment explicitly models network communication through a multiprocessing lens.

In contrast, missions involving lightweight flight software might only generate network traffic

on one network interface at a time, meaning a much larger swarm size could be simulated

than was demonstrated here.

The second issue encountered in this experiment arose as a consequence of modeling the

worst-case, fully connected network topology. Each iPerf3 test was started sequentially, so an

interval of time was present between the first test and the last test starting. For low numbers

of connections, this interval was negligible relative to the duration of the connection tests.

But for larger swarms, the interval grew significantly. As a consequence, some connection

28

tests were necessarily running while others were waiting to be initiated for at least some

portion of the intended window of simultaneous test, which in turn meant that the duration

of the tests was longer, and therefore the true bandwidth sustained by the test system was

lower than reported.

6.2 Conclusion

Industry trends in spacecraft mission design are driving an increased focus on the de-

velopment of autonomous distributed spacecraft systems. These systems present a way

to perform scientific and technical missions which are otherwise infeasible with monolithic

spacecraft architecture. With both DSS design and the categories of missions enabled by

DSS comes inherent flight software complexity. Early testing of these systems is critical, be-

cause complex flight software requires a proportionally higher investment in software testing

architecture to avoid delays and excess development later on.

While it is straightforward to simulate a single spacecraft’s flight applications directly,

DSS application testing requires simulating multiple spacecraft instances interacting over a

network. Recent efforts in the space industry have made headway on addressing this gap in

early testing by using virtualization technologies as part of the simulation environment for

flight software. We investigate a promising approach to this challenge: container virtualiza-

tion, which offers performant, lightweight abstraction of an application from its operating

system. However, there exists limited literature on the limitations and considerations nec-

essary to ensure containerized DSS testing does not introduce artificial failures to those

systems.

To better understand containerized DSS testing, this research presents an experimental

evaluation of containerized DSS performance by measuring the per-connection and total

system bandwidth available in a containerized environment. The results of this research

showed that a containerized DSS test framework can simulate the network behavior of DSS

29

with up to 32 containerized spacecraft producing 1 Mbps of sustained UDP traffic across

the entire swarm without introducing artificial packet loss. Additionally, the experiments

demonstrated the effects of traffic congestion control mechanisms on network performance

and highlight other important considerations for containerized DSS test frameworks.

6.3 Future Work

There are several promising future directions for this work given the results of this re-

search. The next step towards the goal of validating the fidelity of the swarm test framework

would involve profiling the behavior of the DSA flight software during operation. Given up-

per bounds on the burst speed needed for software under simulated conditions, this research

could be leveraged as a point of comparison, ensuring that the operational metrics of the

system are well within established limits.

At a more general level, the behavior of DDS across virtual networks in particular is

also worth specific consideration. While literature exists evaluating the relative performance

of different implementations [16], understanding performance under the context of publish-

subscribe data delivery mechanisms would yield a more precise point of comparison for DSS

which use those DDS for swarm communication. DDS middleware offers a powerful network

abstraction across distributed systems, which will likely be of importance in other many

other DSS missions.

Finally, to further evaluate other categories of DSS, these experiments could be modified

to address broadcast-style communications, where data sent from a spacecraft is delivered

directly to the entire swarm rather than repeated across each connection. One way to achieve

this could be to use multicast UDP traffic in place of the point-to-point TCP or UDP traffic

used in this research. This could present a more accurate baseline of performance for DSS

composed of smaller spacecraft using a simplified communication model.

30

Appendix A TCP Connection Benchmark Results

Table 3: Bandwidth statistics from the TCP network tests for each network size.

Size Connections Median Bandwidth (Gbps) Lowest Bandwidth (Gbps) System Bandwidth (Gbps)

2 2 18.8323 14.2190 37.6646

3 6 17.6804 16.4592 105.1904

4 12 13.6802 12.9940 164.6164

5 20 8.8263 6.1543 178.6603

6 30 6.0532 5.0109 181.8407

7 42 4.4568 3.2934 189.5094

8 56 3.4731 2.5311 196.6594

9 72 2.7885 2.2955 207.8367

10 90 2.3492 1.6958 221.2225

11 110 1.9394 1.4071 230.9353

12 132 1.6989 1.1796 247.7195

13 156 1.5214 0.9759 262.5722

14 182 1.3404 0.8279 279.0934

15 210 1.2050 0.7320 292.0033

16 240 1.0982 0.6226 310.8388

17 272 0.9706 0.6010 325.3151

18 306 0.9266 0.5649 339.2227

19 342 0.8686 0.5086 364.9467

20 380 0.8198 0.4398 372.0635

21 420 0.7501 0.3976 388.9456

22 462 0.7359 0.3919 406.4539

23 506 0.6887 0.4350 426.7384

24 552 0.6601 0.3800 450.0109

25 600 0.6326 0.3362 470.4717

27 702 0.5562 0.3031 486.7664

29 812 0.5322 0.3017 556.8700

31 930 0.4895 0.2212 572.4642

31

Appendix B UDP Connection Benchmark Results – Highest Loss

Table 4: Highest UDP packet loss for each swarm size and network speed.

Highest Connection Packet Loss (%)

Containers 10kbps 100kbps 500kbps 1Mbps 5Mbps 10Mbps 50Mbps 100Mbps 1Gpbs 10Gbps

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.10

3 0.00 0.00 0.00 0.00 0.00 0.00 7.17 0.34 0.42 0.83

4 0.00 0.00 0.00 0.00 0.00 0.00 19.62 16.23 7.06 8.62

5 0.00 0.00 0.00 0.00 0.00 0.00 31.41 15.82 21.31 52.56

6 0.00 0.00 0.00 0.00 0.00 0.00 30.48 19.76 38.04 100.00

7 0.00 0.00 0.00 0.00 0.00 0.00 24.44 37.79 100.00 100.00

8 0.00 0.00 0.00 0.00 0.00 0.00 43.86 32.63 100.00 100.00

9 0.00 0.00 0.00 0.00 0.00 0.00 43.65 28.47 100.00 100.00

10 0.00 0.00 0.00 0.00 0.00 0.00 32.34 20.58 100.00 100.00

11 0.00 0.00 0.00 0.00 0.00 0.00 30.40 22.15 100.00 100.00

12 0.00 0.00 0.00 0.00 0.00 0.00 25.11 32.16 99.39 100.00

13 0.00 0.00 0.00 0.00 0.00 0.00 30.62 29.85 100.00 100.00

14 0.00 0.00 0.00 0.00 0.00 0.07 31.09 100.00 100.00 100.00

15 0.00 0.00 0.00 0.00 0.00 0.00 31.67 100.00 100.00 100.00

16 0.00 0.00 0.00 0.00 0.00 0.07 31.95 100.00 100.00 100.00

17 0.00 0.00 0.00 0.00 0.00 0.07 62.44 100.00 100.00 100.00

18 0.00 0.00 0.00 0.00 0.00 0.07 39.60 100.00 100.00 100.00

19 0.00 0.00 0.00 0.00 0.00 0.07 58.85 100.00 100.00 100.00

20 0.00 0.00 0.00 0.00 0.13 0.13 100.00 100.00 100.00 100.00

21 0.00 0.00 0.00 0.00 0.00 0.13 100.00 100.00 100.00 100.00

22 0.00 0.00 0.00 0.00 0.00 0.13 100.00 100.00 100.00 100.00

23 0.00 0.00 0.00 0.00 0.00 0.86 100.00 100.00 100.00 100.00

24 0.00 0.00 0.00 0.00 0.00 0.20 100.00 100.00 100.00 100.00

25 0.00 0.00 0.00 0.00 0.40 0.79 100.00 100.00 100.00 100.00

26 0.00 0.00 0.00 0.00 0.00 0.86 100.00 100.00 100.00 100.00

27 0.00 0.00 0.00 0.00 0.00 0.79 100.00 100.00 100.00 100.00

28 0.00 0.00 0.00 0.00 0.26 0.66 100.00 100.00 100.00 100.00

29 0.00 0.00 0.00 0.00 0.00 0.46 100.00 100.00 100.00 100.00

30 0.00 0.00 0.00 0.66 0.00 0.33 100.00 100.00 100.00 100.00

31 0.00 0.00 0.00 0.66 0.00 0.73 100.00 100.00 100.00 100.00

32 0.00 0.00 0.00 0.00 0.79 1.06 100.00 100.00 100.00 100.00

32

Appendix C UDP Connection Benchmark Results – Median Loss

Table 5: Median UDP packet loss for each swarm size and network speed.

Median Connection Packet Loss (%)

Containers 10kbps 100kbps 500kbps 1Mbps 5Mbps 10Mbps 50Mbps 100Mbps 1Gpbs 10Gbps

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.60

4 0.00 0.00 0.00 0.00 0.00 0.00 2.03 0.01 3.64 4.77

5 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.45 17.77 30.93

6 0.00 0.00 0.00 0.00 0.00 0.00 3.22 1.30 24.96 99.04

7 0.00 0.00 0.00 0.00 0.00 0.00 12.54 9.23 97.23 100.00

8 0.00 0.00 0.00 0.00 0.00 0.00 15.21 8.21 100.00 100.00

9 0.00 0.00 0.00 0.00 0.00 0.00 14.70 4.35 100.00 100.00

10 0.00 0.00 0.00 0.00 0.00 0.00 11.74 5.96 100.00 100.00

11 0.00 0.00 0.00 0.00 0.00 0.00 12.16 7.84 100.00 100.00

12 0.00 0.00 0.00 0.00 0.00 0.00 13.22 13.54 97.38 100.00

13 0.00 0.00 0.00 0.00 0.00 0.00 12.05 15.16 100.00 100.00

14 0.00 0.00 0.00 0.00 0.00 0.00 12.21 48.04 100.00 100.00

15 0.00 0.00 0.00 0.00 0.00 0.00 12.26 51.29 100.00 100.00

16 0.00 0.00 0.00 0.00 0.00 0.00 15.34 55.30 100.00 100.00

17 0.00 0.00 0.00 0.00 0.00 0.00 25.44 57.28 100.00 100.00

18 0.00 0.00 0.00 0.00 0.00 0.00 20.58 61.44 100.00 100.00

19 0.00 0.00 0.00 0.00 0.00 0.00 31.24 100.00 100.00 100.00

20 0.00 0.00 0.00 0.00 0.00 0.00 48.12 100.00 100.00 100.00

21 0.00 0.00 0.00 0.00 0.00 0.00 52.11 100.00 100.00 100.00

22 0.00 0.00 0.00 0.00 0.00 0.00 52.64 100.00 100.00 100.00

23 0.00 0.00 0.00 0.00 0.00 0.00 51.15 100.00 100.00 100.00

24 0.00 0.00 0.00 0.00 0.00 0.00 57.05 100.00 100.00 100.00

25 0.00 0.00 0.00 0.00 0.00 0.00 66.51 100.00 100.00 100.00

26 0.00 0.00 0.00 0.00 0.00 0.00 69.44 100.00 100.00 100.00

27 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00

28 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00

29 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00

30 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00

31 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00

32 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00

33

Bibliography

[1] C. Araguz, E. Bou-Balust, and E. Alarcón, “Applying autonomy to distributed satel-
lite systems: Trends, challenges, and future prospects,” Systems Engineering, vol. 21,
no. 5, pp. 401–416, 2018.

[2] L. F. Nozhenkova, O. S. Isaeva, and R. V. Vogorovskiy, “Scenario approach to test-
ing spacecraft’s onboard equipment command and software management,” DEStech
Transactions on Engineering and Technology Research, 2017.

[3] M. Wright, “Lunar reconnaissance orbiter flatsat,” presented at the 13th European
Test Symposium IEEE Computer Society and Test Technology Technical Council,
2008.

[4] C. Heistand, J. Thomas, N. H. Tzeng, A. Badger, L. M. Rodriguez, A. Dalton, J. Pai,
A. Bodzas, and D. Thompson, “Devops for spacecraft flight software,” 2019 IEEE
Aerospace Conference, pp. 1–16, 2019.

[5] D. Dvorak, NASA Study on Flight Software Complexity. NASA, 2009. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2009-1882

[6] M. Eder, “Hypervisor- vs. container-based virtualization,” Seminar Future Internet,
Technical University of Munich, 2016, accessed 2022-03-12. [Online]. Available: http:
//www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/NET-2016-07-1 01.pdf

[7] “Use the docker command line,” Docker, Inc., accessed 2022-03-19. [Online].
Available: https://docs.docker.com/engine/reference/commandline/cli/

[8] R. Rosen, “Namespaces and cgroups, the basis of linux containers,” in NetDev 1.1:
The Technical Conference on Linux Networking, Seville, Spain, 02 2016.

[9] M. Koskinen, T. Mikkonen, and P. Abrahamsson, “Containers in software develop-
ment: A systematic mapping study,” in International Conference on Product-Focused
Software Process Improvement, X. Franch, T. Männistö, and S. Mart́ınez-Fernández,
Eds. Cham: Springer International Publishing, 2019, pp. 176–191.

34

https://arc.aiaa.org/doi/abs/10.2514/6.2009-1882
http://www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/NET-2016-07-1_01.pdf
http://www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/NET-2016-07-1_01.pdf
https://docs.docker.com/engine/reference/commandline/cli/

[10] N. G. Bachiega, P. S. L. de Souza, S. M. Bruschi, and S. do Rocio Senger de Souza,
“Container-based performance evaluation: A survey and challenges,” 2018 IEEE In-
ternational Conference on Cloud Engineering (IC2E), pp. 398–403, 2018.

[11] “About the open container initiative,” The Linux Foundation, accessed 2022-03-15.
[Online]. Available: https://opencontainers.org/about/overview/

[12] M. D’Errico and E. Alii, Distributed Space Missions for Earth System Monitoring.
Springer Science and Business Media, 01 2013.

[13] N. Cramer, D. Cellucci, C. Adams, A. Sweet, M. Hejase, J. Frank, R. Levinson,
S. Gridnev, and L. Brown, “Design and testing of autonomous distributed space
systems,” in Proceedings of the AIAA/USU Conference on Small Satellites, 2021.

[14] A. H. Poghosyan, I. Lluch, H. Matevosyan, A. Lamb, C. Moreno, C. Taylor, A. Golkar,
J. Cote, S. Mathieu, S. Pierotti, J.-P. M. Grave, J. Narkiewicz, S. Topczewski,
M. Sochacki, E. Lancheros, H. Park, A. Camps, and Skolkovo, “Unified classifica-
tion for distributed satellite systems,” in 3rd Federated Satellite Systems Workshop,
2016.

[15] H. Sanchez, D. M. McIntosh, H. N. Cannon, C. Pires, J. Sullivan, S. D’Amico, and
B. H. O’Connor, “Starling1: Swarm technology demonstration,” in Proceedings of the
AIAA/USU Conference on Small Satellites, 2018.

[16] P. Bellavista, A. Corradi, L. Foschini, and A. Pernafini, “Data distribution service
(dds): A performance comparison of opensplice and rti implementations,” 2013 IEEE
Symposium on Computers and Communications (ISCC), pp. 000 377–000 383, 2013.

[17] D. McComas, J. Wilmot, and A. Cudmore, “The core flight system (cfs) community:
Providing low cost solutions for small spacecraft,” in Proceedings of the AIAA/USU
Conference on Small Satellites, 2016.

[18] D. McComas, “Increasing flight software reuse with opensatkit,” 2018 IEEE Aerospace
Conference, pp. 1–8, 2018.

[19] D. Cellucci, N. Cramer, and J. Frank, “Distributed spacecraft autonomy,” in 2020
AIAA Ascend Conference. AIAA, 2020.

[20] T. Chung, “Offensive swarm-enabled tactics,” in DARPA Briefing. DARPA, 2017.

35

https://opencontainers.org/about/overview/

[21] J. Fugate, “Distributed spacecraft autonomy (dsa): Development of swarm autonomy
capability and scalability for spacecraft,” in Second AI and Data Science Workshop
for Earth and Space Sciences, 2021.

[22] “batman-adv,” The Kernel development community, accessed 2022-03-18. [Online].
Available: https://www.kernel.org/doc/html/latest/networking/batman-adv.html

[23] “Rti connext micro,” Real Time Innovations, accessed 2022-03-18. [Online]. Available:
https://www.rti.com/products/connext-dds-micro

[24] M. Stocker, O. Zimmermann, U. Zdun, D. Lübke, and C. Pautasso, “Interface
quality patterns: Communicating and improving the quality of microservices apis,”
in Proceedings of the 23rd European Conference on Pattern Languages of Programs,
ser. EuroPLoP ’18. New York, NY, USA: Association for Computing Machinery,
2018. [Online]. Available: https://doi-org.pitt.idm.oclc.org/10.1145/3282308.3282319

[25] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A comparative study
of containers and virtual machines in big data environment,” in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), 2018, pp. 178–185.

[26] “Nasa cfs readme on github,” NASA, accessed 2022-03-19. [Online]. Available:
https://github.com/nasa/cFS

[27] N. Tsog, M. Nolin, and F. Bruhn, “Using docker in process level isolation for
heterogeneous computing on gpu accelerated on-board data processing systems,”
in 12th IAA Symposium on Small Satellites for Earth Observation, 2019. [Online].
Available: http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-45939

[28] E. D. Yuan, J. Neff, and J. Won, “Evaluation of a distributed kalman filter for au-
tonomous satellite navigation using dasee,” in 2018 IEEE Aerospace Conference, 03
2021.

[29] M. Beveridge, “Microservices-based flight software for distributed constellation auton-
omy,” in 15th Annual Workshop on Spacecraft Flight Software. ASI by Rocketlab,
02 2022.

[30] D. Sabogal and A. D. George, “Towards resilient spaceflight systems with virtualiza-
tion,” in 2018 IEEE Aerospace Conference, 2018, pp. 1–8.

36

https://www.kernel.org/doc/html/latest/networking/batman-adv.html
https://www.rti.com/products/connext-dds-micro
https://doi-org.pitt.idm.oclc.org/10.1145/3282308.3282319
https://github.com/nasa/cFS
http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-45939

[31] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38,
pp. 32–38, 2005.

[32] S. Park, H. Kim, S.-Y. Kang, C. hea Koo, and H. Joe, “Lua-based virtual machine
platform for spacecraft on-board control software,” 2015 IEEE 13th International
Conference on Embedded and Ubiquitous Computing, pp. 44–51, 2015.

[33] A. Sudo, “Comparing next-generation container image building tools,” in Open Source
Summit Japan, 2018.

[34] “Build images with buildkit,” Docker, Inc., accessed 2022-03-10. [Online]. Available:
https://docs.docker.com/develop/develop-images/build enhancements/

[35] “Overview of docker compose,” Docker, Inc., accessed 2022-03-19. [Online]. Available:
https://docs.docker.com/compose/

[36] “Networking overview,” Docker, Inc., accessed 2022-03-19. [Online]. Available:
https://docs.docker.com/network/

[37] S. Hemminger, “Network emulation with netem,” in Proceedings of the 6th Australia’s
National Linux Conference (LCA2005), 2005, pp. 18–26.

[38] “iperf3 – iperf3 3.10.1 documentation,” ESNet, accessed 2022-03-18. [Online].
Available: https://software.es.net/iperf/

37

https://docs.docker.com/develop/develop-images/build_enhancements/
https://docs.docker.com/compose/
https://docs.docker.com/network/
https://software.es.net/iperf/

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Feature Comparison of DSS
	2. Largest Network per Lossless UDP Bit Rate
	3. TCP Bandwidth Results
	4. UDP Highest Loss Results
	5. UDP Median Loss Results

	List of Figures
	1. Architectural Differences of VMs and Containers
	2. cFS Architectural Diagram
	3. Challenges in Swarm Development
	4. Container Architecture for Network Tests
	(a). Container-Level View
	(b). Process-Level View
	5. TCP Throughput vs. Scale
	6. Total System Throughput vs. Scale
	7. Maximum and Median Observed UDP Loss

	Preface
	1.0 Introduction
	2.0 Background
	2.1 Testing & Development
	2.2 Container Virtualization
	2.2.1 Docker

	2.3 Distributed Space Systems
	2.3.1 Swarm Communication

	2.4 Core Flight System
	2.5 Distributed Spacecraft Autonomy

	3.0 Related Work
	3.1 Container Performance
	3.2 Development Using Containers
	3.2.1 Swarm Test Framework

	3.3 In-flight Virtualization
	3.3.1 In-Flight Container Virtualization
	3.3.2 In-Flight Hardware Virtualization
	3.3.3 In-Flight Process Virtualization

	4.0 Approach
	4.1 Container Runtime & Image Building
	4.1.1 Container Networking & Orchestration
	4.1.2 Traffic Control

	4.2 Network Profiling
	4.3 Test Design

	5.0 Results
	5.1 TCP Bandwidth
	5.2 UDP Packet Loss

	6.0 Discussion
	6.1 Memory & Network Interface Limitations
	6.2 Conclusion
	6.3 Future Work

	Appendix A. TCP Connection Benchmark Results
	Appendix B. UDP Connection Benchmark Results – Highest Loss
	Appendix C. UDP Connection Benchmark Results – Median Loss
	Bibliography

