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Enabling Reliable Processing-in-Memory Augmented Storage for Spintronic

Domain Wall Memory Through Transverse Read

Sébastien Ollivier, PhD

University of Pittsburgh, 2022

In recent years, more and more proposals have been explored to replace conventional

SRAM, DRAM, and Flash with novel memories. Moreover, the performance gap between

data access latency over a memory bus and high-speed processing continues to grow. Domain

Wall Memory (DWM)—aka Racetrack Memory—is a spintronic memory that stores multiple

data bits in a ferromagnetic nanowire and shifts this data into alignment with one or few

access ports to read/write the data. DWM is non-volatile, highly dense (1-4F2 per cell),

extremely energy efficient (circa 0.1pJ per write), low latency (circa 1ns per access), and

does not suffer from endurance limitations. Domain Wall Memory can serve as an ideal

conventional memory/storage replacement throughout the memory hierarchy from cache

replacement to main memory.

DWM’s main drawback is the latency, energy, and potential reliability concern from

shifting data to align with access points. However, this structure also permits a novel recently

proposed access mode called a Transverse Read (TR), which determines the number of ‘1’s

between two access points without pin-pointing their location. This dissertation leverages

TR to first propose two new reliability schemes that address misalignment and data loss

in DWM due to pinning while shifting. Second, a TR-based Processing-In-Memory (PIM)

architecture is proposed that boasts multi-operand bulk-bitwise operations, logical shifting

and rotation, multi-operand addition, two operand multiplication, and dense accumulators.

The arithmetic operations are shown for Integer/fixed-point and floating-point fidelities.

Third, targeting DWM in size, weight, and power (SWaP) constrained architectures such as

edge systems multiple applications of DWM PIM are explored including machine learning

inference and training for hyperdimensional computing, convolutional neural networks.

The proposed reliability improvements offer 10’s of years of fault free operation with

energy savings and protection over new fault modes compared to prior work. The proposed

iv



PIM provides multiple factors over improvements in performance and energy compared to

prior PIM work dedicated accelerators and often dedicated application specific integrated

circuits (ASICs).
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1.0 Introduction

Spin-transfer torque magnetic memory (STT-MRAM) has gained traction for on-chip

memory deployment due to its near-SRAM performance, CMOS compatibility, low static

power, and good endurance [20]. Unfortunately, STT-MRAM has insufficient density for

main memory or secondary storage applications. Spintronic domain-wall memory—also re-

ferred to as “Racetrack” memory—originally proposed and demonstrated by IBM [56, 54],

retains the static energy benefits of STT-MRAM with a 10× density improvement [7].

RTM was initially proposed as a secondary storage device [56, 55]. However, due to

its promising characteristics, particularly its best-case SRAM class latency and high energy

efficiency, RTM has been considered for application at all levels — from register file and

instruction memory to SSDs — in the memory stack. For instance, Mao and Wang et al.

have proposed RTM-based GPU register files to combat the high leakage and scalability

problems of conventional SRAM-based register files [86, 44]. Xu et al. evaluated RTM at

lower cache levels and reported an energy reduction of 69% with comparable performance

relative to an iso-capacity SRAM [90] and explored the impact of lightweight compression to

allow independent shifting [91]. Venkatesan et al. demonstrated RTM at last-level cache and

reported significant improvements in area (6.4×), energy (1.4×) and performance (25%) [83].

Park advocates the usage of RTM instead of SSD for graph storage which not only expedites

graph processing but also reduces energy by up-to 90% [53]. Besides, RTMs have been

proposed as scratchpad memories [28], content addressable memories [99], reconfigurable

memories [101], and even as network buffers [32, 31]. A recent review on RTMs covers more

details on the latest developments in RTMs and provides an exhaustive list of references on

the application of RTM in the memory subsystem [5].

DWM has a theoretical area per bit as small as 1−4F 2, where F is the technology feature

size [3]. Moreover, DWMs avoids endurance challenges of other emerging memory candidates

such as phase-change [102] and resistive [12] memories. In addition, while DWM shift and

adjacency properties were first seen as a reliability challenge, it can also be used in interesting

ways for processing in memory. Recognizing the potential of DWM, in this dissertation I
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aimed to first solve DWM reliability challenges and, in a second time, I explored the possible

usage of DWM as a PIM memory. Ultimately, this project provides DWM architectures to

improve modern applications efficiency that would normally suffer from the ”memory wall”.

1.1 Contributions

1.1.1 PART 1: Memory Reliability

DWM reliability has been previously studied [97, 52, 2]. However, these techniques

poorly scale with the nanowire size. In addition, none of them take into account the data

loss that can occur while shifting because of the manufacturing variations of the domain

wall. GROGU provides an architecture to improve the reliability while conserving the same

area overhead for different nanowire size. PIETT is the first technique to detect and correct

fault due to pinning, generated by wall manufacturing defects.

1.1.1.1 GROGU

GROGU with DownShift is the first co-design that take into account shifting minimiza-

tion and reliability. When data is randomly written in memory, accessing the information in

DWM requires to shift the data, which can induce faults and performance penalties. When

the system is under a shifting minimization algorithm, it is possible to constraint the reliabil-

ity scheme differently, making it low latency for small shift distance that are more recurrent

and pay an extra latency for larger shift that are infrequent, while maintaining the mean

time to failure.

In this environment generated by the shift minimization algorithm, DownShift, led by

Asif Ali Khan, I proposed GROGU, a novel, more general, and more performant reliability

scheme based on realistic TR distances (from TRD=4 to TRD=7) for position error correc-

tion in RTMs. GROGU consistently outperformed the state-of-the-art reliability schemes for

various nanowire lengths and various TR distances. On average, GROGU consumed 1.13×

less energy than the most energy efficient DECC scheme and reduced the area overhead
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by 2.2× compared to the best case P-ECC-O scheme. From the performance perspective,

GROGU is only 3% slower compared to the best performing P-ECC scheme and 1.38× faster

compared to P-ECC-O.

1.1.1.2 PIETT

PIETT is the first reliability scheme to detect and correct pinning faults, misalignment

faults and bit flip. Unlike misalignment faults, pinning faults manifest due to operating

conditions combined with fabrication imperfections, i.e., where the nanowire is not formed

properly due to variations in the process. These faults manifest either as an erasure where

the pinning point functions as a barrier that prevents shifting within the nanowire. Or as an

insertion, where the pinning point replicates itself and shifting continues through the whole

nanowire. Either pinning fault puts the nanowire in an unrecoverable state.

I demonstrated that PIETT can correct unlimited, potentially multi-position, misalign-

ment faults and either up to three pinning faults or up to two pinning faults with up to

one bit-flip fault using scrubbing. PIETT provides eight to 21 orders of magnitude improve-

ment in mean-time-to-failure with similar or better area overhead and only a 1% system

performance degradation compared to state of the art DWM misalignment correction

1.1.2 PART 2: Processing In Memory

In the first chapter our goal was to provide architectures that would mitigate DWM

weak point, its high fault rate, compare to other novel memories. In this second chapter,

we demonstrate the advantages of leveraging TR to perform PIM operations. This includes

multi-operands bulk-bitwise and addition operation as well as two operands multiplication.

1.1.2.1 CORUSCANT

I propose CORUSCANT, a DWM-based in-memory computing solution that leverages

the properties of DWM nanowires and allows them to serve as polymorphic gates. While

normally DWM is accessed by applying spin polarized currents orthogonal to the nanowire
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at access points to read individual bits, transverse access along the DWM nanowire al-

lows the differentiation of the aggregate resistance of multiple bits in the nanowire, akin

to a multi-level cell. CORUSCANT leverages this transverse reading to directly provide

multi-operand bulk-bitwise logic. Leveraging this multi-operand concept enabled by trans-

verse access, CORUSCANT provides techniques to conduct multi-operand addition and two

operand multiplication much more efficiently than prior digital PIM solutions. CORUS-

CANT provides a 1.6× speedup compared to the leading DRAM PIM technique for query

applications that leverage bulk bitwise operations. Compared to the leading PIM technique

for DWM, CORUSCANT improves performance by 6.9×, 2.3× and energy by 5.5×, 3.4×

for 8-bit addition and multiplication, respectively. For arithmetic heavy benchmarks, COR-

USCANT reduces access latency by 2.1×, while decreasing energy consumption by 25.2×

for a 10% area overhead versus non-PIM DWM

1.1.3 PART 3: PIM Modern Applications

There are two main reasons to use PIM. First, to solve the memory bottleneck or ”mem-

ory wall”, which is the consequence of the growth in data needs of modern applications.

Second, to respect the SWaP (Size, Weight, and Power) constraints imposed by the edge

systems. Thus, in this chapters of my dissertation I demonstrate in HDCR, POD-RACING

and TYR the advantages of using DWM PIM on modern applications as HDC, CNN and

transformer.

1.1.3.1 HDCR

On conventional Von Neumann architectures, the continuous movement of HD vectors

among the processor and the memory can make the cognition task prohibitively slow and

energy-intensive. Hardware accelerators only marginally improve related metrics. In con-

trast, even partial implementations of an HDC framework inside memory can provide con-

siderable performance/energy gains as demonstrated in prior work using memristors.

HDCR proposes to conduct and accelerate the entire HDC framework within memory.

Using language recognition as the example workload, the proposed HDCR system reduces
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the energy consumption by 8.6× compared to the state-of-the-art in-memory implementa-

tion. Compared to dedicated hardware design realized with an FPGA, RTM-based HDC

processing demonstrates 7.8× and 5.3× improvements in the overall runtime and energy

consumption, respectively.

HDCR is a collaborative design between the university of Pittsburgh and the Technische

Universitat Dresden. I proposed the DWM logic operations and counter. Then, with Asif

Ali Khan, we worked on the data placement problem and the result section.

1.1.3.2 POD-RACING

Machine learning using convolutional neural networks (CNN) has become a ubiquitous

algorithm with growing applications in mobile and edge settings. I propose a PIM technique

called POD-RACING using DWM to accelerate CNNs for edge systems. Using transverse

read, POD-RACING can efficiently implement multi-operand bulk-bitwise and addition com-

putations, and two-operand multiplication. Unlike other resistive memory PIM approaches

that leverage analog computations to replace floating-point computations. We discuss how

POD-RACING can implement both variable precision integer and floating-point arithmetic.

This allows both CNN inference and on-device training using back propagation without ex-

pensive data movement to graphics processing units in the cloud. Based on these functions

we demonstrate implementation of several CNNs with back propagation using RM CIM and

compare these to state-of-the-art implementations of CIM inference in DRAM and training

in Field-Programmable Gate Arrays (FPGAs). Using ternary weight for inference, POD-

RACING demonstrates at least 3.9× more frame per second than state of the art DRAM

CIM. During training POD-RACING improves efficiency by 2× improving both throughput

and energy compared to an FPGA.
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2.0 Background

2.1 DWM Memory

2.1.1 Domain Wall Memory Fundamentals

a)

b)

Figure 1: Nanowire geometries

DWM is a spintronic non-volatile memory made of ferromagnetic nanowires. DWM

nanowires consist of many magnetic domains separated by domain walls (DWs) as shown

in Figure 2. Each domain has its own magnetization direction based on either in-plane

(+X/-X) or perpendicular (+Z/-Z) magentic anisotropy (IMA/PMA). Binary values are

represented by the magnetization direction of each domain, either parallel/antiparallel to a

fixed reference.
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Figure 2: Anatomy of a DWM nanowire.

DWM can be built into two different geometries [56]: a U-shaped nanowire shown in

Figure 1(a) or line-shaped nanowire also called planar nanowire shown in Figure 1(b). U-

shaped nanowires is projected to achieve significantly greater density, since more tracks can

be packed per area unit due to its geometry. However, in addition to be more complex to

manufacture, U-shaped nanowire allows only a single read/write port at the bottom of the

U-shaped track. This is a major throw back for DWM reliability and improvement over

DWM leveraging multi-access ports. Thus, for the remaining of this dissertation we only

consider line-shaped nanowire.

For a planar nanowire, several domains share one/few access point(s) for read and write

operations [100]. DW motion is controlled by applying a short current pulse laterally alone

the nanowire governed by SL. Since storage elements and access devices do not have a one-

to-one correspondence, a random access requires two steps to complete: 1○ shift the target

domain and align it to an access port and 2○ apply an appropriate voltage/current like in

STT-MRAM to read or write the target bit.

The blue domains are dedicated for the actual data stored in memory. The grey domains

are extra-domains used to prevent data loss while shifting data into the nanowire towards

the extremities. The dark blue elements are the read or read/write ports. Figure 2 contains

a read-only port that has a fixed magnetic layer, indicated in dark blue, which can be read
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using RWL. The read/write port is shown using shift-based writing [85] where WWL is opened

and the direction of current flows between BL and BL, and reading conducted from BL through

the fin and up through RWL to GND.

DWM-based memories typically use a traditional hierarchical memory organized into

ranks, banks, sub-arrays, tiles, etc. Because a bundle of nanowires contains multiple rows/words

of data whose width is determined by the number of nanowires in the bundle, it is treated

as a domain block cluster [27] or DBC. Thus, data accessed from the memory can directly

select the appropriate DBC in the peripheral circuitry, but to access the actual row/word

requires shifting all the nanowires for alignment with the access point. To align a domain

with an access port, a current needs to be sent from one extremity of the nanowire, shifting

each domain. This inherent behavior of DWM can be imprecise, generating what is known

as a “shifting fault” in the literature. More details on “shifting fault” and the proposed

solutions is provided in Section 2.2.

In the next section, we provide a comparison between DWM and other technologies used

for memory.

2.1.2 DWM Advantages and Developments

Table 1 provides a direct comparison of the latest DWM model, optimized against mag-

netization technology issues, to other memory technologies. DWM offers high-performance

SRAM comparable latency with extremely low leakage power and higher write endurance

compared to other non-volatile memory technologies. However, due to the device’s sequen-

tiality, DWM access latency and energy consumption depend on the number of required shift

operations. In the worst case, the DWM access latency can be 25.6× higher compared to

an iso-capacity SRAM [84]. A number of solutions have been proposed to optimize DWM

performance through shift minimization [5].

In recent years, DWM have seen fundamental breakthroughs in device physics. In the

earliest version of DWM [56], controlled movement of domain walls in the nanowires was not

only challenging but also extremely slow. Later, the same authors demonstrated accurate

movement of domain walls with up to 10× higher velocities [55]. More recently, the field-

8



Table 1: Comparison of DWM with other memory technologies [5]

SRAM DRAM STT-MRAM ReRAM PCM RaceTrack 4.0

Cell Size (F 2) 120-200 4-8 6-50 4-10 4-12 ≤ 2

Write Endurance ≥ 1016 ≥ 1016 4 X 1012 1011 109 ≥ 1016

Read Time (ns) 1–100 30 3–15 10–20 5–20 3–250†

Write Time (ns) 1–100 30 3–15 20 >30 3–250†

Write Energy Low Medium High High High Low

Read Energy Low Medium Medium Medium Medium Low

Leakage Power High Medium Low Low Low Low

Retention Period Voltage-dependent 64–512ms Variable Years Years Years

† including shift latency

driving magnetic domain wall mobility has remarkably enhanced to 20 km/sT [29], more than

20× faster compared to the previous version or a two-order of magnitude improvement over

the original prototypes. Similarly, moving domain walls in ferromagnetic materials with an

exchange coupling torque [6] has shown promise to reduce the critical current density to re-

duce shift energy. The data access devices, MTJ, have also attracted significant interest and

have observed considerable improvements in performance and thermal stability by employing

different materials (e.g., MgO as a tunneling barrier) and adopting different switching mech-

anisms (such as spin-orbit torque instead of spin-transfer torque). These newer MTJ allow

for ultra-fast magnetization switching, in sub-ns, with extremely low incident power [59].

2.1.3 Transverse Read

TR was recently proposed [63] and leveraged to improve reliability via detection and

correction of over/under-shifting faults [52]. TR is akin to using a portion of a DWM

nanowire as a multi-level STT-MRAM cell. Specifically, the idea is to read an aggregate

function of several domains at once along the nanowire. The output of a TR provides

the number of ones stored between two heads or one head and an extremity, but without

information about their positions. As the number of domains in the TR increases, the
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Figure 3: Transverse read example for a full nanowire

minimum sense margin decreases which creates a limit on the number of domains that can

be included in a TR. We refer to this as the maximum TR distance or simply TRD.

Figure 3 presents a segmented TR that can be used to query the full nanowire in the case

that distance from the extremity to the access point is larger than the TRD. Each colored

arrow represents the path taken by the current used to perform the TR. For instance, to

perform a TR on the middle four domains (purple arrow), the transistors M1, M2 and M4 are

open and M3 is closed, thus when a current is sent from BL1, it has to go though the four

middle domains and exit through M3.

The two red and blue arrows indicate TR over regions with the same color can occur

simultaneously. For the red arrows, M2, M3 and SLB transistors are open while M1 and M4 are

closed. The current sent from SL and BL2 will flow to M1 and M4, respectively, reading two

and one ‘1’s as output, respectively. Due to the larger nanowire resistivity between BL0 and

BL2, the leakage current is small enough that the TR can safely be parallelized.
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2.2 Memory Reliability

While shifting the nanowires to access a specific row/words, slight fluctuations in shifting

current can cause shifting faults. These faults include misalignment and pinning faults. Pin-

ning fault definition and characterization is a contribution of this dissertation and described

in more details in Section 4.1. Misalignment takes the form of over- and under-shifting,

which means the data read from the racetrack corresponds to the incorrect position and that

writing to this location will incorrectly overwrite data in an unintended location and fail to

update the appropriate data location.

Misalignment faults is described as a fluctuation in the shifting current originated from

variation in the operating conditions of the system [56]. Zhang et al. [97] characterized the

position errors probability as P1 = 4.55 · 10−5 and P2 = 1.37 · 10−21 for misalignment by one

and two positions, respectively per shift by one position.

Unfortunately, misalignment faults may not immediately result in a detectable error.

For example, the data in the misaligned track may still read the expected value if the

neighboring domain contains the same value as the domain intended to be read. Thus,

additional nanowires containing ECC parity bits are insufficient to detect misalignment.

Moreover, even if the value to be read was different, such ECC would not inform the system

how to add corrective shifts to fix misalignment. In other words, information about the state

along each racetrack is necessary to detect and correct misalignment. There have been three

prior attempts to address this problem.

2.2.1 Hi-Fi

Hi-fi presents two techniques, p-ECC and p-ECC-O, which leverage additional access

points and encoding techniques for misalignment detection and correction. Figure 4 shows a

SECDED for misalignment example for both approaches. Hi-fi corrects faults by encoding the

auxiliary domains with a pattern of alternating groups of two ‘1’s and two ‘0’s. Using the two

adjacent read heads, the system can compare two values from the auxiliary bits and compare

it against the expected system state. For example, if the system was expecting to read “00”
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Read and write head Read head

SECDED

(a)

(b)

Figure 4: Hi-fi fault correction (a) p-ECC (b) p-ECC-O [97]. Data bits shown in white with

dashed line bounding box. Padding bits shown in gray. Additional encoding bits for p-ECC

shown in white.

but rather read “01” the tape is misaligned one position too far left. Similarly, reading “10”

would signify one position too far right. Reading “11” would indicate misalignment by two,

but not which direction.

The main difference between the two Hi-fi techniques is the location where the auxiliary

information is stored in the racetrack. In Figure 4(a), p-ECC adds dedicated domains

and two additional associated read-only ports to access the information, but accommodates

multiple shifts between checks.

In contrast, p-ECC-O, shown in Figure 4(b), uses the already necessitated extra padding

domains for auxiliary information. Unfortunately, one read and one write head are required

at each end of the device to maintain and check the pattern, which only allows a single shift

between checks.

Both schemes may be scaled to detect bit misalignment by two or more steps by modifying

the code and the number of read heads for the auxiliary information. N -domain misalignment

correction with N+1-domain misalignment detection requires a total of N+1 read ports.
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Figure 5: Auxiliary bit ones for different positions in DECC [52]

2.2.2 DECC

DECC leverages TR for shift fault tolerance by using an encoding of the values stored

in the padding bits, which reports the position of the nanowire. In DECC, each nanowire is

constructed with a fixed domain representing a ‘1’ on the right end and another representing

a ‘0’ on the left end. Thus, during left and right shifts, appropriate ‘1’s and ‘0’s are shifted

into the padding bits on the right and left sides of the nanowire, respectively. The number

of ‘1’s indicates the position of the data within the nanowire.

As a result, if an under- or over-shift fault occurs, the calculated number of ones will

differ from the expected value. Using the difference from the expected value, the fault can

be detected and ultimately corrected.

A DECC example is shown in Figure 5 where the data bits di are shown in blue and the

data bit aligned with the access port is shown in navy (dark blue). The padding bits on the

left side (purple) contain ‘0’s and the right side (beige) contain ‘1’s.

The position of the tape corresponds to the number of ‘1’s in the padding bits. DECC

uses the transverse read to check the number of ‘1’s and use this to validate, and if necessary

correct alignment.

One concern about DECC is that it requires a TR over the entire nanowire, which

is often considered to be n=32 or more data domains. Unfortunately, TR has only been
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demonstrated for four domains [62]. Assuming TR could be optimistically scaled to even

seven domains, it would still require four additional read heads to TR the now segmented

nanowire increasing the energy and decreasing the density. This scales poorly to n=64 and

beyond.

2.2.3 GreenFlag and Foosball

GreenFlag is an encoding technique that uses Varshamov-Tenegolts (VT) codes to detect

and correct misalignment in a similar fashion to correcting repeated or dropped bits in a

communication channel. GreenFlag presumes that the track will be read from end to end in

bit serial fashion, reading individual bits and conducting shifts between reads. Thus, under-

shifts appear to be repeated bits and overshifts appear to be dropped bits. To implement

GreenFlag requires storing the data block sequentially inside a track instead of distributing

it across different tracks and to read the entire block in parallel as presumed by most RTM

architectures using something akin to a DBC. Unfortunately, the access mode assumed by

GreenFlag does not take advantage of the RTM architecture, increasing the energy and la-

tency of access and is totally opposed to techniques for shift minimization. Foosball is an

extension of GreenFlag that still uses VT codes and adds a capability to detect misalignment

and a bit-flip simultaneously [2].

2.3 Processing In Memory

The growth in data needs of modern applications has created significant challenges for

modern systems leading to a “memory wall.”. Processing-in-memory (PIM) is a popular

solution to reduce the demands of memory-to-processor communication by offloading com-

putation directly to the memory. PIM has been proposed in multiple technologies including

DRAM, Phase-change memory (PCM), resistive memory (ReRAM), Spin-Transfer Torque

Memory (STT-MRAM), and Domain-Wall Memory (DWM).
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In this section, we first present the state of the art bulk-bitwise operations in DRAM

followed by PIM in emerging technologies while specifically highlighting prior efforts for PIM

in DWM.

2.3.1 PIM with bulk-bitwise operations in DRAM

There have been two major proposals to conduct bulk-bitwise processing directly in

DRAM [68, 89] with some operations having been demonstrated in commercial devices [16].

Bulk-bitwise logic combines two rows “bitwise” with the same logic operation such that

ci = ai OP bi. Ambit proposed to open three DRAM rows simultaneously and compare the

combined voltage to the sensing threshold, i.e., VDD

2
[68]. A majority of ‘1’s results in ≥ 2VDD

3

which would drive the Sense Amplifier (SA) to VDD. A minority of ‘1’s results in ≤ VDD

3

driving the SA to VCC . Computing AND requires a third control row set to ‘0’ so that both

data rows must contain ‘1’s for the result to be ‘1.’ OR is computed setting the control row

to ‘1’ requiring only one data row to be ‘1.’ This process is destructive, as all three rows

now contain the result of the logical operation.

Ambit builds on RowClone [67], which copies the source row by waiting for the SA to

refresh the row and then opens the destination row which is overridden by the SA. Thus,

operands are duplicated in a safe location to conduct the logic operation without destroying

the original data. To create a complete logic set a dual-contact cell (DCC) concept is

employed allowing a cell to be read as the inverted value through BL. A DCC row requires

the same overhead as two regular rows. To execute A XOR B requires using DCC rows to

invert both operands, first computing k = A AND B, followed by k′ = A AND B. The final

answer comes from k OR k′

ELP2IM improves on Ambit by directly performing logic operations without moving the

data. Instead, the technique changes the pseudo-precharge state of the SA to replace the

control row [89]. The process requires multiple comparisons to ultimately determine the final

logic value, but avoids the need for cloning rows. ELP2IM demonstrates a 3.2× performance

improvement over Ambit and a near-data processing approach [39] for bitmap and table scan

applications.

15



Ambit and ELP2IM, insomuch as they are complete logic sets, are capable of computing

more complex arithmetic operations such as addition. More complex logic requires sequential

steps to determine the result similar to the XOR example described for Ambit. Next we discuss

PIM for NVMs.

2.3.2 PIM in emerging memory technologies

Pinatubo is a PIM concept that resembles aspects of Ambit and ELP2IM. Like Ambit,

it opens the two rows for comparison simultaneously, and like ELP2IM it adjusts the sensing

circuitry to conduct different operations [40]. For example, changing the VTH to < VDD

2

allows an OR operation and > VDD

2
allows an AND operation. Pinatubo conceptually applies

to NVMs that distinguish data based on resistive sense margins including PCM, ReRAM,

and STT-MRAM. Pinatubo mentions multi-operand operations in a qualitative scalability

discussion.

MAGIC [76] proposes a novel memristive memory crossbar transpose memory allowing

interesting operation flexibility over rows or columns. It demonstrates addition but is subject

to endurance limitations, operates on one bit per row/column, and is admitted by the authors

to be complicated to program with limited applications. CRAM implements bulk bitwise

operations and uses them as building blocks to implement addition and multiplication in

STT-MRAM [95]. It does this by extending the magneto-tunnel junction (MTJ) with a

second transistor, which unfortunately further decreases the effective density of the already

insufficiently dense memory.

Two techniques have been proposed to augment DWM with PIM capabilities, we describe

them in the next sections.

2.3.3 DW-NN

DW-NN creates a PIM processing element with dedicated circuitry to support current

passing through two stacked domains at once. This allows measurement of the aggregate

giant magnetoresistance (GMR) across the stacked domains [93]. This computes XOR which

is ‘0’ if the data is parallel and ‘1’ if the data is anti-parallel. To conduct addition operand
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bits are stored in consecutive bits within a single nanowire. The XOR operation is used in

combination with a pre-charge sensing amplifier (PCSA) that can compute a function of data

from three nanowires’ access port—sum S is the result of two consecutive XOR, and COUT

is the result of the comparison of PCSA(A,B,CIN) > PCSA(A,B,CIN). Both operations

are bitwise serial since they must be shifted into alignment with the GMR/MTJs. Because

operands are stored within a single nanowire, multiplication is possible using addition of

shifted versions of one operand. Compared to accessing data and using a general purpose

processor for computation, DW-NN claims an energy improvement of 92× and a throughput

improvement of 11.6× for an image processing application.

2.3.4 Skyrmion

SPIM extends DWM storage with dedicated skyrmion-based computing units [41]. Mag-

netic skyrmions are topological particle-like excitations in ferromagnets. Skyrmionics is an

attempt to use magnetic skyrmions as information carriers in next generation spintronic

devices.

Within these units, custom ferromagnetic domains are physically linked together with

channels that support OR and AND operations. By permanently merging many such domains

and channels, full adder circuits are formed to perform addition and multiplication.

2.4 Modern Applications

The success of machine learning has fueled the transformation of industry and society in

recent decades. A key factor for the ubiquity of these learning algorithms is their use in mo-

bile devices such as smartphones, tablets, or sensor networks. However, classic approaches

such as deep learning require enormous computing and power resources [80]. Unfortunately,

these characteristics are at odds with the requirements of many IoT devices, namely limited

bandwidth, memory and compute power, and battery capacity. In other words, edge sys-

tems must adhere to constraints often referred to as SWaP (Size, Weight, and Power). To
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comply with these constraints, researchers proposed architectural innovations such as near-

memory [39, 73] and in-memory computing, as presented in Section 2.3, along with alternate

models for machine learning such as transformers that has been proven to improve the model

quality while significantly decreasing the training time [82], or hyperdimensional computing,

that substantially reduces the area and energy consumption of cognitive-inspired computing

systems without compromising the accuracy [24].

In this section, we first provide background information on the most establish deep learn-

ing model, called Convolutional Neural Network (CNN), followed by details on transformer

and then Hyperdimensional Computing (HDC).

2.4.1 Convolutional Neural Network

CNNs are primarily based on the convolution operation, which is a windowed point-wise

multiplication accumulation of multiple channels of input features with a set of weights to

generate output features. As an example, for the input features I and weights K of size

N × Rin × Cin and M ×N × 3 × 3, respectively, the convolution operation for the window

at m (output channel index), r (row), c (column) is:

Conv(I,K)(m, r, c) =
N−1∑
n=0

2∑
j=0

2∑
t=0

Km,n,j,t × In,r+j,c+t (2.1)

where M is the number of output channels, N is the number of input channels, Rin×Cin

is the size of an input feature map. The inference operation requires convolution steps

broken up with activation layers composed of pooling layers to reduce dimensionality of

input matrices through average or maximum value operations and ReLU function, a linear

function that will output the input if positive and zero otherwise. Once these convolution

layers are completed, fully-connected layers are used to provide the classification result. The

fully-connected layers can be mathematically written as ReLU(Wx + b).

Training of the CNN includes forward-propagation, loss back-propagation, and weight

update as shown in Figure 6. During the forward-propagation, which is same as in inference,

the values at each activation layer are stored for the weight update. The loss is calculated by

a loss function such as Cross-entropy loss [13]. After calculating the loss of the last layer, the
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Figure 6: CNN training overview

loss is propagated layer by layer until reaching the first layer of CNN model, by a process that

includes weight rotation, convolution, and channel-wise accumulation. The weight update

can be briefly described as in Equation 2.2, in which, the Weidiff is calculated via gradient

descent method with activation in the inference stage and the loss in back-propagation stage.

The operations in weight updates are depth-wise convolution, element-wise multiplication,

and element-wise subtraction.

Weinew = Weicur − Lrate ∗Weidiff (2.2)

While deep learning with CNNs presumes calculations with floating-point values, CNN

inference calculations can often be reduced to integer computation with as few as 8-bits

achieving reasonable accuracy. Recent DRAM CIM work has shown that in many cases this

can be further reduced to ternary w ∈ {−1, 0, 1} [14] or even binary w ∈ {0, 1} compu-

tations [71] operations to replace the multiplications. However, online training for all but

the simplest CNNs still requires full 32-bit floating-point computations to work properly.

Without this accuracy, the weight updates can be ineffective and possibly even detrimental.
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Figure 7: HDC overview

2.4.2 Hyperdimensional Computing

Hyperdimensional computing (HDC), also referred to as brain-inspired computing, is

based on the observation that neural activity patterns can be regarded as one fundamental

component behind cognitive processes. These patterns can be modeled by leveraging the

mathematical properties of hyperdimensional spaces. In conjunction with a well-defined

algebra, they can be used to implement machine learning tasks with less computational

effort than other approaches such as the support vector machine (SVM) algorithm [19].

Since the dimension D of the hyperdimensional space is on the order of 104, this approach

is extremely robust to variation and errors within its hypervectors.

In HD computing, each HV describes a unique point in space and encodes either a

feature, a group of features, or a class in the given machine learning problem. As shown in

Figure 7-I, the base or seed hypervectors describe input features, and are randomly generated.

In HDC training, a set of algebraic operations, i.e., binding, bundling, permutation, and

similarity check, are performed on the seed hypervectors and their intermediate results are
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used to generate class hypervectors. Each class hypervector represents a class in the data

set. In HDC inference, the same encoding is applied to the input data to generate a query

hypervector. The query hypervector is then classified into one of the classes by performing a

similarity check operation. In the context of HDC for binary hypervectors, relevant algebraic

operations are:

• Binding is used for combining related hypervectors. This operation is implemented as

an element-wise XOR operation between N hypervectors e.g., c⃗ = x⃗1 ⊕ x⃗2 . . . x⃗N binds

x⃗i : i = 1, 2, ..., N together.

• Permutation is used to generate a new hypervector that is orthogonal to the original

hypervector by performing a reversible operation. The permutation is an operation

x⃗p = ρ(x⃗) such that the resulting vector x⃗p is orthogonal to x⃗. In the context of this

work, we use piece-wise circular shifts to perform this operation. Rotating a hypervector

n times is expressed as x⃗p = ρn(x⃗).

• Bundling is used to generate a hypervector representing a set of hypervectors. This

operation is implemented by performing the vector sum and element-wise thresholding,

also referred to as the majority operation. For an even number of binary hypervectors,

the tie is broken by a fixed random hypervector. The bundling operation generates a

representative hypervector which is non-orthogonal to the operand hypervectors.

• Similarity Check: The similarity check operation compares the query hypervector to

all class hypervectors to find the closest match. Different frameworks use a variety of

similarity metrics. For this work, we use Hamming distance and compare the Hamming

weights of the query and class hypervectors. The operation is implemented as an XOR

followed by the population count operation.
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3.0 GROGU

In parallel data block access RTM systems, any of P-ECC, P-ECC-O, and DECC schemes

are possible. Both P-ECC and DECC lead to less than 5% performance overhead because

they can tolerate an arbitrary number of shifts before checking for fault tolerance. Thus,

both schemes check fault tolerance after reaching the final destination. This way data can

be accessed immediately and only in the case of a fault is an interrupt required to provide

the corrected value. This is a typical operation mode for many kinds of ECC. In contrast,

P-ECC-O must check after each single position shift. Thus, any shift of more than one

position will incur both a shift and read overhead while P-ECC and DECC must only read

once with the delay being hidden except in the case of a fault.

P-ECC adds significant area and energy overhead by increasing the necessary length of

the nanowire from 2K − 1 to 3K + 1, which limits area scalability and increases the shift

current. DECC also adds overhead in STT-MRAM bits but with a lower overall reported

area overhead than P-ECC [50]. However, DECC does not address the scalability of the TR

read operation, which appears limited to around eight domains [51]. This implies that for

DECC to work with larger tracks, many additional APs and TR operations will be required,

resulting in a considerable increase in the area and energy consumption. As a result, while

P-ECC and DECC have minimal impact on the performance, they both scale poorly with the

track size. Moreover, misalignments can accumulate for longer distance shift operations, the

probability of accrued single misalignments in a shift distance > 1 should also be considered.

This probability can be expressed by:

P2+(D) = 1−
[
(1− P1)

D +

(
D

1

)
P1(1− P1)

D−1

]
(3.1)

where D is the number of shifts between the source and destination. For D = 2, P2+ =

2.07 · 10−9. However for long shifts, e.g., for a single track where K = 64, conducting a

shift from end to end of the nanowire, D = 63, P2+ = 4.04 · 10−6. Thus, long shifts without

multiple error correction steps as in DECC and P-ECC, may be impractical because they

can result in high rates (e.g., 0.01%) of uncorrectable faults.
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Figure 8: Prior leading shift minimization approach shift breakdown [11]

The only technique that can scale in terms of area and reliability is P-ECC-O because

it is independent of the track size, it always requires two read-only APs and two read-write

APs. However, P-ECC-O requires a read operation for every shift to check for misalignment

to ensure the pattern written to the overflow bits is not corrupted and write the pattern

on the other side of the nanowire. Figure 8 shows the number of shifts from prior work in

shift minimization [11] summarized for the OffsetStone benchmark suite [38]. The solid line

shows the number of shift operations of a particular length. From this, one might conclude

that P-ECC-O is the right technique because the number of shifts is dominated by shifts

of one or a few positions. The picture is different however, if the total effective shifts are

considered, as shown with the dashed lines (the red line shows prior work [11], and the green

line shows the impact of using DownShift for shift minimization, described in more details

in Section 3.2). These lines show the total shifts for a given distance, that is, the result of

multiplying the number of shifts (y-coordinate) with the shift distance (x-coordinate). This

clearly shows that the overhead of P-ECC-O with the state-of-the-art shifts minimization

solution for shift distances of more than one would be considerable. Even if the reliability

check when reaching the destination is amortized by accessing the data first, as is assumed
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for P-ECC and DECC, only 8% of the reliability checks from P-ECC-O can be amortized.

92% of P-ECC-O shifts incur an additional cycle read/check delay, non-negligibly negatively

impacting performance and energy.

The reliability scheme should minimize overhead data domains and leverage the overflow

bits as much as possible, but provide a tuned shift window to cover a higher proportion of

the shift operations in a way that shift to the final destination without adding performance

and energy overhead as incurred by P-ECC-O. The scheme should be scalable to larger

track lengths. Moreover, the shift window prior to a reliability check must be limited so

as to keep the rate of uncorrectable faults low. Both of these factors cannot be managed

by P-ECC and DECC. For these reasons, we propose Generating Reliability Optimized

Grouped Uniencoding GROGU, is a novel approach to misalignment fault tolerance. It

has been designed collaboratively with DownShift. DownShift, led by Asif Ali Khan, is a

generalized data placement mechanism that is independent of the DWM architecture and

exploits the timing information in memory traces before deciding the layouts. It flattens

the red dotted-line trend to better match the trend of the solid line of Figure 8, hence,

reducing the total number of effective shifts. My work, GROGU, minimizes area and energy

overheads, maximizes nanowire scalability, and allows amortization of performance overhead

while maintaining a shift minimization reliability standard.

3.1 GROGU Architecture

As shown in Figure 9, GROGU uses tan overflow bits appended with w shaded reserved

overflow bits at each extremity of the track to store sequences, i.e., a “uniencoding” pattern,

of ‘1’s and ‘0’s which extend into all of the overflow bits. GROGU relaxes the P-ECC-O

requirement to check the pattern every shift step by introducing a GROGU Transverse AP

(GTAP) using those w reserved overflow bits. The GTAP includes a read-only AP w domains

from each end of the track to allow a TR of the reserved overflow domains within the GTAP.

To ensure the pattern is maintained during shifting, the GTAP includes a shift-write-only

AP added at the extremity allowing control over whether a ‘0’ or ‘1’ is shifted in.
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Given that the shift-controller in RTM maintains the shift position index i for each DBC,

i
w

determines the 1/0 boundaries. It also controls shifting in a ‘0’ or ‘1’ based on whether

i
w

is even or odd. The detailed circuit of a track with GTAPs is shown in Figure 10. The

major changes at the extremity, in addition to the added w domains on each side, is the

decomposition of the shift control transistor at each end. Normally GLW and GRW would

be sufficient to control the shifting with the direction determined by controlling BL and BL.

GROGU adds GLW and GRW which allows shifting in either the ‘0’ or ‘1’ fixed domain from the

shift-write AP determined by the odd/even function of i
w

. The direction of shift is controlled

by BL and BL as in standard racetracks.

The reliability overhead for shift operations of D ≤ w positions allows read accesses to

proceed when reaching the target destination and data is corrected through an interrupt if a

fault is discovered. For longer shifts, the amount of performance overhead is O(D
w

) compared

to O(D) for P-ECC-O. Furthermore, GROGU has fewer additional APs than P-ECC-O, and

many fewer domains/storage overhead compared to P-ECC and DECC, while maintaining a

window of testing reliability that does not generate a high probability of uncorrectable error.

Thus, while GROGU can be applied to any DWM and work effectively, it is designed for a

shift minimized system that favors shifts of short distances.

In the next sections, we demonstrate (i) how GROGU can detect misalignment by three

positions within the w shift window using a single TR operation, (ii) correct encoding errors

from bits shifted into the track, and (iii) correct misalignment by two positions through

corrective shifts.
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3.1.1 Misalignment correction

A concern of GROGU is to ensure that performance overhead is minimized while main-

taining fault tolerance. GROGU directly detects using a TR single misalignments for shifts

of ≤ w positions. This minimizes the performance overhead when there is no misalignment

as additional operations are only required for correction. In the next sections, we first de-

scribe how to detect misalignment and determine corrective shifts followed by determining

and repairing cases where the inserted encoding bits become corrupted.

3.1.1.1 Determining misalignment and required correction

GROGU’s overflow bit uniencoding pattern is inspired by a Johnson counter. For a

GROGU GTAP of size w, the pattern within the GTAP has w 1’s followed by w 0’s and

repeats. For a shift traveling towards the right, the right GTAP cycles between all 0’s with

1’s shifting from the left to all 1’s with 0’s shifting from the left and is mirrored on the

left for left shifting. Each of these unique values in the GTAP can be detected. First,

all neighboring encodings can be detected by a change in the TR, which is conducted by

energizing BL opening GRW and allowing current to exit to GND in Figure 10. This allows

misalignment by one domain to be determined by GROGU with a single TR access.

26



However, GROGU must gather more information to determine more than one misalign-

ment fault and to determine corrective action. Except for the all 0’s or 1’s cases, each TR

value contains two permutations, i.e., “1...0” and “0...1.” These can be distinguished by

reading the innermost bit of the GTAP, or GRR to GND in Figure 10. This allows the detec-

tion of 2w unique values in the GTAP. GROGU leverages that the destination position and

its encoding in the GTAP is known a priori as a function of i. Thus, for w−1 misalignment

faults, we can guarantee that the GTAP can distinguish the actual nanowire position and

determine the necessary corrective shifts to correct alignment. Furthermore, GROGU can

detect misalignment by w positions.

Consider an example shifting data right in the nanowire and presuming a GTAP where

w = 3. Table 2 shows the six possible target codes after a shift of ≤ 3 compared to the

codes if the operation under- or over-shifted up to three times. The value aligned with the

read-only AP is bold/underlined and the TR values are shown in parenthesis. In all cases,

the GTAP code of a single over- or under-shift is distinct from the target code. For up to

two misalignment faults, the direction of the required corrective shift can be determined by

determining how much higher or lower the Johnson counter value (JCV) is compared to the

target, and the same number of shifts in the opposite direction can correct the alignment.

JCV can be determined as a function of the TR and a read of the read-only AP.

For example, consider a shift whose target code is “100” (JCV=1) and the system over-

shifted twice, so the code is actually “111” (JCV=3). Since JCV is two higher than the

target, the system detects an over-shift by two positions. For the same target code, a code

of “001” (JCV=5) can be distinguished from “100” JCV=1 even though the TR=1 in both

cases because of the leading ‘0’. Because a 3-bit Johnson counter is modulo 6, this signals

that (JCV=5) is two less than the target (JCV=1), indicating two under-shifts. The two

boundary cases, noted with gold shading, both under- and over-shift by three have the same

JCV value (JCV=4 in the example). Thus, the w = 3 system detects misalignment by three

but cannot determine correction.

This process works for any value of w for which a TR is possible and works using the

mirror image on the left for left shifts. As w increases, the correction potential increases, but

unlike prior work, the number of access ports does not increase. The number of additional
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Table 2: Ending position after ≤ w = 3 shifts with ±3 misalignment. GTAP code shown

with (TR). JCV is determined using TR and the read-only AP.

UnSh3 110 (2) 100 (1) 000 (0) 001 (1) 011 (2) 111 (3)

UnSh2 111 (3) 110 (2) 100 (1) 000 (0) 001 (1) 011 (2)

UnSh 011 (2) 111 (3) 110 (2) 100 (1) 000 (0) 001 (1)

Target 001 (1) 011 (2) 111 (3) 110 (2) 100 (1) 000 (0)

OvSh 000 (0) 001 (1) 011 (2) 111 (3) 110 (2) 100 (1)

OvSh2 100 (1) 000 (0) 001 (1) 011 (2) 111 (3) 110 (2)

OvSh3 110 (2) 100 (1) 000 (0) 001 (1) 011 (2) 111 (3)

(reserved) overflow domains is 2w, which increases as w increases. Corrective shifts are

protected by the same encoding, so all cases of corrupted codes must first be repaired prior to

corrective shifting. Unfortunately, the encoding inserted on the opposite side of the direction

of motion can be disrupted by over- or under-shifts. In the next section, we demonstrate

the steps necessary to repair corrupted codes prior to corrective shifts ultimately allowing

correction of up to two misalignment faults.

3.1.1.2 Repairing encoding for single misalignment faults

When shifting, new encoding bits must be inserted at the shifting source. When shifting

to the right, new encoding bits must be inserted at the left and vice versa. Because GROGU

encoding requires uniencoding sequences of w bits, many shift operations, particularly of

distances approaching w, which cross 1/0 boundaries, i.e., the point where shifting in ‘1’s

changes to ‘0’s or shifting in ‘0’s changes to ‘1’s. If the misalignment occurs prior to the 1/0

boundary, the code will be corrupted such that an over- or under-shift increases or decreases

the penultimate group of ‘1’s or ‘0’s, respectively. We show this in expression b1...bib1...bj, for

corruption to occur, i<w and the misalignment must have occurred >i shift steps earlier. For

w=3 this can result in codes like “10000111” or “100111” for over-/under-shift, respectively.
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In general, j=w+1 and j=w−1 for over-/under-shift, respectively. However, because the

shift window is limited to w and the GTAP can identify all permutations of the last w

inserted bits, a remnant of the change in the penultimate group can be seen in the GTAP.

To detect corrupted encoding and correct it, the process follows these steps. Using the

methodology in Section 3.1.1.1, it is known if the system over- or under-shifted and the

GTAP encoding should be one Johnson count value higher or lower, respectively, than the

expected value. If the misalignment occurred during the last i shifts, which is to say during

the w uniencoding sequence that is not completed, the GTAP encoding will match the over-

/under-shifted state, and the encoding is not in need of repair. However, if the misalignment

occurred more than i shifts earlier the corrupted penultimate uniencoded sequence will make

the GTAP appear to contain the value expected without misalignment, i.e., the target value.

If the system detected an over-shift, this will manifest as one additional b at the innermost

part of the GTAP. If the system detected an under-shift, this will manifest as one fewer b at

the same place in the GTAP. The solution is to remove or add, respectively, that one b back

into the GTAP. This can be accomplished using segmented shifts.

Segmented shifts shift data in from the nanowire extremity but only allow the domains

in the GTAP to shift by allowing the shifting current to exit the nanowire at the read-only

AP through the GND connection [51]. For example, in a segmented shift in the GTAP that

inserts d′ from the left and the value aligned with the read-only AP is removed, such that

the nanowire changes as shown below:

d0d1d2d2d2 d3d4...⇒ d′d0d1d1d1 d3d4...

Thus, decreasing j → j − 1, i.e., removing one b bit to the penultimate group, the GTAP

value is changed as follows:

001 → 000 ; 011 → 001 ; 111 → 011

by segmented shifting in a ‘0’ while the remainder of the nanowire is unchanged and

110 → 111 ; 100 → 110 ; 000 → 100

by segmented shifting in a ‘1’ corrects over-shifts.
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Figure 11: Example of correcting an over-shift.

Correcting under-shifts requires more steps, but is conceptually the same. For example

001 ⇒ 011 using multiple segmented shift steps corresponds to:

001 → 100 → 110 → 011

Similar under-shift repair operations for w = 3 are:

011 ⇒ 111 ; 110 ⇒ 100 ; 100 ⇒ 000

In general, this process increases j = j + 1, i.e., adding one b bit to the penultimate group.

To demonstrate the concept, consider the example of an over-shift that has occurred

during a shift towards the right as shown in Figure 11. The target shows expected position.

If an over-shift occurs, it is detected by the right GTAP. If the over-shift occurred while

shifting in the current uniencoding group, ‘0’s in the example, then the encoding is correct

and a corrective shift may proceed to fix the over-shift. However, if the over-shift occurred

during the penultimate uniencoding group window, there is an extra b, ‘1’ in the example,

which when testing the left (trailing) GTAP will match the target code not the over-shifted

30



actual code indicating an encoding fault. First, the encoding is corrected using the same

steps as explained above. In the example, there is an additional ‘1’ (b) shown shaded in green

and by segmented shifting in a ‘0’ (b) a ‘1’ (b) is shifted out of the left GTAP indicated by

the red line, without shifting the rest of the nanowire. Now the left and right GTAP codes

match the actual over-shifted code, and the corrective shift may proceed.

To protect these corrective segmented shifts, it is possible to test and adapt each of these

steps by using TR and standard read. Again, for the example 001 ⇒ 011 , the goal is

to input a sequence of “11” and then align in the right of the GTAP. We segment shift in

‘1’s until TR is 2. If an under-shift occurs, it may take additional steps. If an over-shift

occurs, it could happen in the first step. Then we shift in a ‘0’ and if the TR remains 2 and

the standard read changes to ‘1’, the code is correct. If an over-shift had occurred shifting

in a third ‘1’, a TR of 3 detects this, and shifting in a ‘0’ would have been tested to make

sure TR=2, which repairs all groups of “00” and “11” to be of length three. If the sequence

experiences an under-shift, the shift can be reattempted. If there is a shift fault beyond the

simple cases, the GTAP can be (p)reset to “111”/“000”, respectively, and then moved to

the desired configuration.

3.1.1.3 Repairing encoding for two misalignment faults

The previous section demonstrated that corrupted codes dictated by the penultimate

uniencoding group j = w ± 1 were detectable in the GTAP and could be repaired directly

through segmented shifts. In the case of a misalignment by two j ∈ {w − 2, ..., w + 2}

representing cases that may occur from two under-shifts to two over-shifts. Particularly

problematic is the case of two over-shifts because the corrupted pattern may not overlap

with the GTAP, making it undetectable. Additionally, instances of two faults introduce

the case where an over-shift and an under-shift may have occurred, which make the track

properly aligned, but the code may still have been corrupted and require correction. Thus,

we decompose two faults correction into three cases: (1) two over-shifts, (2) both an over-

/under-shift occurs, (3) two under-shifts.
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Case 1: Two over-shifts To correct two over-shifts, it is necessary to ensure that a

potentially corrupted code overlaps with the GTAP so it can be detected and corrected. This

was demonstrated to be the case for j = w + 1 but is not guaranteed for j = w + 2. Thus,

the nanowire must be returned to the position of j = w + 1, which can be accomplished

through a corrective shift. However, the code in the direction of motion must be assumed to

be invalid, so another mechanism is necessary to protect this corrective shift. Because this

is a single corrective shift, not a shift operation of up to w positions, it is possible to protect

this shift with the trailing code and repair it after the corrective shift, if necessary.

For consistency, since the examples have demonstrated right shifts, this corrective shift

requires a left shift and will be protected by the right GTAP. There are three cases of the state

of the code in the GTAP: (i) all bits of the same value or bbb...b , (ii) one bit of a particular

value under the read-only AP and the remaining bits of the opposite value, donated as bbbb...b ,

and (iii) one value under the read-only AP and at least one bit of that value adjacent to it,

with the remaining bits being of the opposite value, represented as bbbb...bb...b . Note, b...b

refers to one or more bits of b.

For case (i), the external shift bit is set to shift in b. Thus, during the corrective shift the

code adds 0, 1, or 2 b’s represented by bbb...b , bbb...bb , and bbb...bbb for an under-shift, correct

shift, and over-shift respectively. Each of these conditions can be detected using TR such

that if b =‘0’ then TR will increase by 0, 1, or 2 for under-shift, correct shift, and over-shift,

respectively. For b =‘1’, the TR value will be reduced by the same amounts. Case (iii) is

somewhat similar to case (i) because there are at least two b buffer bits on the internal side

of the GTAP. Thus, continuing to shift in b values are guaranteed to shift out b values to

allow detection of under-shift, correct shift, and over-shift using TR.

Case (ii) can also be solved by setting the external shifter to insert b. An under-shift,

correct shift, and over-shift result in bbbb...b , bbb...bb , bbb...bbb , respectively. The under-shift

and correct shift will have similar TR values, but the cases can be distinguished because the

standard read switches from b to b. An over-shift is detected by a change in the TR value.

Case (ii) is the only case where the right GTAP code is changed from the expected code to

protect the corrective shift.
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For all cases, once the corrective shift outcome is determined, the system proceeds as

follows: If an under-shift occurred, the state has not changed and the corrective shift is

attempted again. If the shift executed correctly, the system has returned to the single over-

shift case, which can be handled in a similar fashion as the prior section. Finally, if an

over-shift occurs during the corrective shift, the track is now aligned. In both cases, the

right and left GTAP codes can be repaired using segmented shifts as necessary.

Case 2: One over-shift and one under-shift In this case, if both the faults occur

on the same side of the 1/0 boundaries, the code will not be corrupted. However, if the

faults occur on the opposite sides of a 1/0 boundary, then depending on the fault order,

j = ±1. These codes can be detected and corrected through segmented shifts as discussed

in the previous section. No corrective shifts are necessary for the full nanowire.

Case 3: Two under-shifts In this case, the relationship of the faults to a 1/0 boundary

determines j ∈ {−2,−1, 0}. To validate the codes, like in the prior section, with two under-

shifts, the Johnson encoding value of the GTAP should be two less than the target value.

If j = 0, the GTAP will contain the correct encoding, and corrective shifts may proceed

directly. Unfortunately, if j < 0 and the GTAP code is distinct from the correct under-

shifted GTAP code, there is no intuitive way to correct the code. Moreover, the intuitively

correctable under-shifts in the prior section required w segmented shifts due to the GTAP

construction. Thus, in this case, the GTAP is directly set to the correct under-shifted by

two value using w segmented shifts, at which point the full nanowire corrective shifts may

proceed.

3.1.1.4 Extension to more than two faults correction

In general, as the window size increases beyond three (w > 3), there is the potential

to repair more faults using GROGU than 2EC3ED. While detection and determination

of corrective action scales, as discussed in Section 3.1.1.1, the challenge is repairing the

trailing code for ≥2 faults. In particular, the observation in Case 1 makes it possible to

correct multiple over-shifts to ensure the trailing encoding is within the GTAP window. By

repeating the corrective shift process described in Case 1 until it is guaranteed that j ≤ 1,
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it becomes possible to correct >2 over-shifts extending Case 1 to beyond 2 over-shifts. An

extended version of Case 3 to >2 under-shifts can also be envisioned by directly repairing

the trailing code to match the correct JCV.

For three faults, it is necessary to ensure misalignment by ±1 can be repaired along with

canceling faults as described in Case 2. For two over-shifts and an under-shift, to avoid

the corrupted trailing encoding being out of scope of the GTAP, this can be accomplished

by leveraging an adapted form of the solution in Case 1 to correct alignment before fixing

the trailing code. The two under-shift and one over-shift case can be handled by directly

repairing the trailing code prior to a corrective shift. A possible limit is four faults, due to the

potential for two over- and under-shifts. In certain fault ordering in relationship to the 1/0

boundary, then j = 2 which means the corrupted encoding occurs but cannot be detected by

the GTAP. Since no misalignment is detected this is a silent fault. Thus, we study GROGU

window sizes w ∈ {4..7} but presume 2EC3ED protection regardless of window size.

3.2 GROGU Results

This section first describes the experimental setup and then compares GROGU to the

state-of-the-art .

3.2.1 Experimental Setup

For evaluation, we use the racetrack memory simulator RTSim [25] that takes applica-

tion memory traces and produces shifts, latency, and energy results. We simulate all 31

benchmarks of the OffsetStone benchmark suite [38], including real-world application do-

mains such as image, signal, and video processing, and control-dominated applications such

as GZIP, BISON, Flex, and CPP. The misalignment fault occurrence probability is small per

run, we execute each application 100 times to ensure sufficient misalignment faults occur to

exercise reliability detection and correction. The benchmarks vary in the number of access

sequences, the number of program variables per sequence (1 to 1336), and the length of
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access sequences (1 to 3640). The latency, energy and area numbers for DWM are obtained

from the destiny circuit simulator [46] and are listed in Table 3. These values also include

the latency incurred and the energy consumed by the DBC/domain decoders, access ports,

multiplexers, write and shift drivers.

Table 3: Memory system parameters (4 KiB DWM, 45 nm, 32 tracks / DBC)

Domains per DBC 64

Leakage power [mW] 3.39

Write/Read/Shift energy [pJ] 3.42/2.26/2.18

Write/Read/Shift latency [ns] 1.08/0.81/0.99

As a system setup, we simulate DWM as a scratchpad and employ GROGU as a position

error correction scheme. We evaluate four different reliability schemes on three different data

placement solutions. This approach enables the evaluation of first, the reliability solutions

in isolation and, second, how the the reliability schemes interact with the data placement

solutions. Concretely, we evaluate the following:

Reliability schemes:

• P-ECC: The pattern reliability schemes based on Johnson encoding from [97] (Sec-

tion 2.2.1).

• P-ECC-O: The shift and check pattern reliability scheme from [97] (Section 2.2.1).

• DECC: The reliability scheme leveraging infinite Transverse Read distance [50] (Sec-

tion 2.2.2).

• GROGU: Our reliability scheme (Chapter 3).

With these Shift reduction schemes:

• AFD-OFU: The baseline inter-DBC distribution heuristic [11]. The intra-DBC assign-

ment of variables is based on their order of first use (OFU).

• DS-OFU: DownShift separating disjoint memory accesses from non-disjoint accesses with

OFU assignment.

• DS-SR: DownShift paired with the intra-DBC optimization heuristics from ShiftsRe-

duce [26].
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Figure 12: Reliability improvement of GROGU with window sizes w ∈ {4..7} compared to

P-ECC with 2EC3ED

3.2.2 Reliability Analysis

We refer to GROGU as Gw where w is the window sizes. For instance, G4 is GROGU

with w = 4 for scalability analysis.

The reliability of GROGU compared to P-ECC is shown in Figure 12 for 2EC3ED using

window sizes of w ∈ {4...7}. We use P-ECC as the baseline as it is scalable up to 2EC3ED

which is not the case for DECC. GROGU provides more than an order-of-magnitude im-

provement for a large window (w = 7) compared to P-ECC for all shift reduction schemes.

Reducing the window size further provides nominal but non-negligible reliability improve-

ments. Notably, DS-SR-G6 is as reliable as DS-OFU-G7 with DS-SR improving significantly

for all window sizes over DS-OFU. The major outlier is fft which, due to its regularity, for

DS requires nearly all shifts by one. Since shifts by two is a reliability inflection point, and

DS-SR requires 0.09% shifts by two versus 0.03% for DS-OFU, there is a slight benefit to

OFU in this instance, but DS has already achieved more than four orders of improvement

over AFU. GROGU actually helps close the gap on reliability between AFD-based and our

DS-based inter-DBC placement versus to P-ECC.
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3.2.3 Performance Analysis

This section presents the overall performance and energy consumption of DWM for var-

ious configurations. Since, DownShift alone improves the total DWM latency by 47.6%

compared to the baseline AFD solution and, DS-SR further improves the latency by 70.1%,

the reliability schemes applied to DS-SR have on average a lower access latency than AFD-

OFU without protection, as shown in Figure 13. The latency gain primarily stems from a

reduced number of DWM shifts which reduces the DWM access latency and ultimately the

overall runtime.

Overall, DS-SR-P/DS-SR-DECC achieves the best performance results (see Figure 13)

compared to all other configurations. Compared to the DS-SR-PO, it reduces the runtime by

a considerable 42.4%. However, this comes at the cost of compromised reliability (see Fig-

ure 12), increased faults per shift, and increased area utilization (see Figure 15). DS-SR-PO

compared to DS-SR-P significantly improves the reliability and reduces the area utilization

by a nominal 21.25%, at the expense of an order of magnitude higher energy consumption

(see Figure 14). Our collaborative design DS-SR-G fills this void by guaranteeing DS-SR-

PO comparable reliability, the best energy consumption (1.3× and 3.3× less compared to

DS-SR-P and DS-SR-PO). Compared to DECC, GROGU reduces energy consumption and

area overhead by 1.13× and 3.1×, respectively. The reduction in energy consumption of

DS-SR-G, compared to DS-SR-PO, is attributed to the reduced number of reliability checks.

Compared to AFD-O-G, the reduction in energy consumption by DS-SR-G is due to the

smaller size shift distances, which leads to reduced reliability checks in GROGU.

3.2.4 Area Analysis

Figure 15 shows an area comparison of various reliability schemes for different nanowire

size. Since GROGU only employs two read-only APs and 2w additional domains per

nanowire, its area utilization compared to P-ECC and P-ECC-O for a traditional nanowire

size n=32 is 1.75× and 2.22× less, respectively. To improve DWM’s density, the number of

data domains can be increased to n=64 or even n=128. For n=128, G4 area is 2.22×, 5.06×,

and 3.73× smaller than P-ECC-O, P-ECC, and DECC, respectively.
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3.3 Conclusion

GROGU is a novel, more general, and more performant reliability scheme based on

realistic TR distances for position error correction in DWMs. We demonstrated that GROGU

consistently outperformed the state-of-the-art reliability schemes for various nanowire lengths

and various TR distances. On average, GROGU consumed 1.13× less energy than the most

energy-efficient DECC scheme and reduced the area overhead by 2.2× compared to the

best case P-ECC-O scheme. From the performance perspective, GROGU is only 3% slower

compared to the best performing P-ECC scheme and 1.38× faster compared to P-ECC-O.

GROGU and DownShift collaborative design reduces the overall memory system runtime

and energy consumption by 1.9× and 2.8×, respectively, while guaranteeing 2EC3ED.
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4.0 PIETT

4.1 Pinning Fault

4.1.1 Pinning Fault Fundamental

Unlike misalignment faults, pinning faults manifest due to operating conditions com-

bined with fabrication imperfections, i.e., where the nanowire is not formed properly due

to variations in the process. Pinning can take the form of an erasure where shifting stops

in the pinning point of the nanowire [57] or as an insertion where the value is replicated at

the pinning point [56]. These behaviors occur when the shifting current is deflected to be

near the lower or upper bound of tolerance and a variation defect has impacted the local

domain-wall.

1 1d4d3d2d1d000

1 11d4d3d2d1d00(a)(ii)

(a)(i)

1 11d4d3d1d000(b)

1 1d4d3d3d2d1d00(c)

HEAD

Figure 16: Pinning example shifting from position (a)(i) expecting to arrive in position (a)(ii)

where (b) is an example of erasure and (c) is an example of insertion. Pinned domain-walls

shown in red.
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When a defect causes an erasure fault, the domain motion stops at the pin point and can

be overwritten by the domain that follows. We provide a conceptual example of this fault in

Figure 16(b). When shifting from position (a)(i) and expecting to reach position (a)(ii), i.e.,

a shift to the left, one bit, d2, disappears at the pin point (shown in red) and the remaining

domains in the nanowire stop moving as if there is a wall.

In the case of an insertion fault, the domain motion for all domains starts at the same

speed, however, as they interact with a defect the distance traveled is affected. When

sufficiently stretched a replicated (inserted) domain is created. We show this conceptually in

Figure 16(c). In this example, the domain at the pin point (d3) becomes pinned and replicates

itself into the adjacent location. Both types of pinning can be detected because the domain

motion at the extremities of the nanowire will appear as having different alignments.

4.1.2 Pinning Fault Modeling

To create the domain walls that separate domains in a DWM nanowire, equally spaced

fabricated notches are introduced to create pinning sites. The strength or pinning potential

of a pinning site depends on the geometry of the notch, which can be modeled as described

in Equation 4.1 where qpin is the pinning site, Vpin is the pinning potential at that particular

location and Ms is the saturation magnetization of the material used [17, 79, 75]. σd is the

domain-wall width [64, 1] and Epin is the notch energy density [17] presented in Equation 4.2

where Aex, Ku, a, and M are the exchange coefficient, magneto-crystalline anisotropy, ma-

terial lattice constant, and magnetization amplitude, respectively. A current pulse with

adequate amplitude governed by the pinning potential can depin the wall from the notch

positions and cause it to travel along the nanowire to the next pinning site. This is governed

by the Landau-Lifshitz-Gilbert (LLG) equation [78] in Equation 4.3 where Heff , α, γ, and

β are the effective field, Gilbert damping constant, gyromagnetic ratio, and non-adiabatic

spin-torque coefficients, respectively.

Vpin =
2MsEσd

qpin(q − qpin)2

E = Epin, − σd ≤ q ≤ qpin + σd

E = 0, otherwise

(4.1)
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Table 4: Material properties used in MuMax simulation.

Aex(J/m) Ms(A/m) α Ku1(J/m
3) current pulse width

2.0×1011 6.5×105 0.02 106 0.5 ns

σd = πM

√
2Aex

Kua3
and Epin = AexM

2 π
2

aσd
+
σdKu

2
(4.2)

dM⃗

dt
= −γM⃗ × H⃗eff + αM⃗ × dM⃗

dt
− vj

∂M⃗

∂x
+ βvjM⃗ ×

∂M⃗

∂x
(4.3)

To examine the impact of variation, we studied a nanowire with 16 domains where each

domain was 200nm long, the full nanowire is 3200nm and the width and thickness were

set to 100nm and 4nm, respectively. The material properties are listed in Table 4. We

used the most common triangular notches, which are resistant to depinning from thermal

perturbation and require a minimized shift current. The notches are 50nm wide and 30nm

deep. Using Equation 4.3 it is possible to evaluate the critical current for a given set of

nanowire dimensions and material parameters. We then modeled the nanowire using the

micromagnetic simulation program MuMax [81] and varied the notch width and depth by

5%, as described previous modeling work in the literature [21, 17], at each notch position.

A similar distribution as dictated by Equation 4.3 was observed but centered around a

monotonically increasing nominal shift current as the notches were farther along the nanowire

from the current source.

For any given notch, there is lower bound shift current density JL and an upper bound

shift current density JU to depin and shift one position. For a shift current density JS in

A/m2, if JS < JL the domain wall will not depin and if JS > JU it will travel more than one

notch position. Given a notch position i, if ∀i JS < Ji,L or JS > Ji,U then a misalignment

fault—undershift or overshift respectively—has occurred.

To quantify erasure fault probability, we use the total differential method to define the

maximum uncertainty of the actual critical shift current density in terms of each of the

tested system parameters. Our simulation models determine the partial derivative of JL
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with respect to each input parameter. We assume a standard distribution due to process

variation on these parameters. JL is characterized by µ centered on the nominal value and

σ equal to the overall uncertainty. JU is calculated in a similar way.

Since a correct shift operation requires all domain walls to shift in lockstep, for the nth

domain wall to shift properly, domain walls (1, .., n − 1) must also have shifted properly.

Counting starts at one, since at zero if the current is under J0,L it is categorized as an

under-shift. Thus, the probability of fault free shifting at position n can be defined as

P (n) =
∏n

i=1Q(i), where Q(i) is the probability that Ji,L ≤ JS. A successful full nanowire

shift is P (m) where m is the total number of notches in the nanowire. The probability of

erasure fault(s) is 1−P (m). Using a similar approach with JU , we can define the probability

of insertion faults.

Using this model, we verified a similar (same order) misalignment probability as prior

work [97] and obtained a pinning fault probability. These are reported in Table 5. In the

following section, we propose a circuit design for a transverse access point. This TAP forms

the foundation for both pinning and misalignment detection in PIETT.

Table 5: Shift error probabilities.

Shifting Distance Step Fault Rate [97] Pinning Fault Rate
1 4.55·10−5 1.48·10−8

2 9.95·10−5 3.23·10−8

3 2.07·10−4 6.73·10−8

4 3.76·10−4 1.14·10−7

5 5.94·10−4 1.80·10−7

6 8.43·10−4 2.55·10−7

7 1.10·10−3 3.33·10−7
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Figure 17: TAP concept
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Figure 18: Preset with ‘1’s
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Figure 19: Preset with ‘0’s
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Figure 20: Magnetic Simulation for Figure 18

4.2 PIETT Architecture

4.2.1 Transverse Access Point

To enable PIETT’s misalignment and pinning detection we propose a TAP circuit as

shown in Figure 17. The TAP circuit is related to the shift-write access point [85] but

designed along the nanowire to create a segmented, MLC-like device. Our TAP circuit is

constructed at the extremity of the nanowire with a fixed domain (in this case aligned right,

which we correlate to logic ‘1’) at the very end connected to the shift line (SLB). At the other

end of the TAP, we place a fixed left/‘0’ separated by a standard domain-wall orthogonal

to the nanowire and connected to the bit line (BL) through a MOSFET controlled by the

VS signal. Also orthogonal to the nanowire is another fixed layer separated by an insulator

(e.g., MgO) connected to the bit line (BLB) controlled by a MOSFET with the TR signal,

named because it controls the transverse read.

Figure 21: Magnetic Simulation for Figure 19
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Figure 22: Example of how TAPs can detect various shifting faults.

By activating VS and driving current between SLB and BL (domain-motion happens in

the anti-direction of current) and leaving TR off and similarly turning off SL upstream, the

free domains between the fixed ‘1’ layer and the out of plane ‘0’ layer can be set to ‘1’s as

shown in Figure 18. With sufficient current this can occur in a single intrinsic operation and

be slightly overdriven to prevent undershift. Overshift is not a problem because shifting in

an extra ‘1’ through the sink results in the same preset configuration. Reversing the polarity

of BL and SLB will result in resetting these bits to ‘0’ as shown in Figure 19. Thus, the novel

programming concept behind the TAP is the ability to use a multi-domain shift-based write

in a limited subsection of the nanowire.

To verify this capability we conducted a magnetic simulation of the TAP circuit from

Figure 17. In the magnetic simulation we can see the free domains to the left of the TAP

moving right to left contain a ‘1’ (red) adjacent to the TAP, followed by two ‘0’s (blue), and

a ‘1’ at the far left. Figure 20 shows the alignment after a shift current between BL and SLB

showing that all the free domains in the TAP are preset but the free domains outside the

TAP remained undisturbed. Figure 21 shows resetting to ‘0’s again without disturbing the

free domains outside of the TAP.
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To conduct a transverse read in the TAP, the VS MOSFET is turned off and the TR

transistor is turned on and a potential is applied between the bit line (BLB) and SLB. This

allows a detection of the number of parallel or antiparallel (‘0’/‘1’) domains contained in

the TAP. Standard domain wall motion through the entire nanowire, including the TAPs, is

still possible by turning off both VS/TR MOSFETs and allowing current in the appropriate

direction between SL and SLB. Should the wire shift left, ‘1’s are added to the nanowire

similar to the process shown in Figure 18, but they may proceed beyond the fixed ‘0’ do-

main. The transverse read operation of up to four domains needed for the TAP has been

demonstrated [62].

The discussion and simulation show a single TAP added to the right end of a DWM

nanowire. We can build a second mirrored TAP at the left end of the nanowire which can

operate entirely independently and in parallel with the other. Moreover, we can swap the

alignment to place the fixed ‘0’ at the extremity and the fixed ‘1’ on the internal end of the

TAP for either the right or left TAP.

4.2.2 Shift Fault Detection with TAPs

When over-shifting is possible, even with detection, it is necessary to add an additional

padding bit at each end of the nanowire so that if over-shifting occurs when attempting to

reach the extreme left or right data domain, data is not lost at the other end of the nanowire

and corrective shifting is still effective. The TAPs must then be added to each end beyond

this additional padding domain. Each TAP must also contain n+ 1 free domains where n is

the length of the maximum intrinsic shift possible in the system.

The TAPs, shown in Figure 22(a), comprise the outer four padding domains on each side.

To detect and distinguish between under-shift, over-shift, and pinning faults we prepare the

TAP bits prior to shifting. Based on their interaction with the other padding bits and the

external fixed domain during the shift we can determine whether a fault has occurred. If

misalignment occurs, it is reported by either TAP, which will report motion in the nanowire

that either exceeds or is less than the desired shift amount. As two TAPs are placed at

the extremities, the same misalignment is reported in both TAPs. Pinning is indicated if
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part of the nanowire moves a different distance than the other part, indicated by different

motion reported by each TAP. In PIETT, all non-TAP padding bits left of the data are set

to ‘0’ and those right of the data are set to ‘1’. Consider the case that we wish to shift the

nanowire in the position from Figure 22(a) accessing d2 to be able to access d3, requiring a

left shift by one domain. Both TAPs are preset to all ‘1’s by shifting both TAPs from left

to right by four positions in parallel (see Section 4.2.1) as shown in Figure 22(b). Note, if

either TAP was queried at this point with a transverse read, the reported value will be 4 ‘1’s

as shown in the figure. Upon a successful shift, the nanowire ends up in the position shown

in Figure 22(c). Note that both TAPs, now report “1110” or a read count of 3 ‘1’s. On the

left, one of the preset bits was evicted at the left extremity while a ‘0’ padding bit entered

the TAP. On the right side, a ‘0’ was inserted into the TAP from fixed ‘0’ domain on the

right side.

Figure 22(d) shows the case where an under-shift occurs, as indicated by both TAPs

reporting 4 instead of the expected 3 ‘1’s, requiring a corrective left shift. If over-shifting

had occurred, each TAP would read “1100” and report a read count of 2 ‘1’s, requiring a

corrective right shift, as shown in Figure 22(e). Given a TAP contains n + 1 free domains,

a single TAP allows shifting by n domains in a single step protecting against an over- or

under-shift by k = 1. In a system free of pinning faults, with both TAPs, PIETT protects

against a multiposition over-shift k > 1 limited only by potential data loss from exceeding

the padding bits. If the over-shift in the example is more than four domains (k > 3) the

system shifts back by one position until a ‘1’ from the padding bits reenters the right TAP

and places the system in a known state. A single corrective shift completes the correction.

However, given the probability of misalignment by k ≥ 2 is < 10−20 [97] a pinning fault is

more likely to occur.

Figure 22(f) demonstrates an erasure pinning fault where the pinning point, shown in

red, is to the left of the head. Domain motion occurs from left to the pin point and stops.

Thus, the right TAP reports “1110” to indicate motion by one position, while the left TAP

reports “1111” to indicate no motion. The TAPs mismatched reporting signals pinning has

occurred. An insertion pinning fault example shown in Figure 22(g), occurs when the right

portion of the nanowire does not move but domain wall motion starts after the pin point.
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The left TAP reports “1110” while the right TAP reports “1111” again indicating pinning.

In both cases, the pin point cannot be determined and scrubbing is the only option available.

Right shifting follows the same principle except in this case both TAPs are reset to ‘0’s

such that ‘1’s are introduced into the TAPs by domain-wall motion from the leftmost fixed

‘1’ domain or the padding domains right of the data bits but left of the right TAP. We can

guarantee that left non-TAP padding bits hold ‘0’s and right non-TAP padding bits hold

‘1’s by examining the behavior of the system at the extremities. For example when shifting

left to one data extremity d4, all of the ‘1’s preset into the right TAP make their way left

into the non-TAP padding bits [Figure 22(h)], with a similar (complemented) behavior when

shifted to d0.

The shift steps are: 1 the TAPs are preset for a left shift or reset for a right shift, 2 the

shift occurs, 3 if this is a read access and this shift reached the final access location, the read

proceeds1, 4 the TAPs are tested and report one of correct shift, misalignment, or pinning,

5 if necessary, correct misalignment through steps 1 2, 2 , and 4 until all nanowires are

not misaligned, 6 if necessary, correct pinned nanowires. Once these steps are completed

a replacement read can be conducted, or a write or subsequent shift are cleared to proceed.

Of course, the technique for step 6 was not described. We describe that in Section 4.2.3.

However, in the next section we describe a special case pinning detection for 1-bit TAPs,

which can be applied to P-ECC-O from Hi-fi.

4.2.3 Directed Scrubbing

When leveraging nanowires identified by PIETT with pinning and misalignment faults

it is relatively simple to fix misalignment through corrective shifts. It is less straightforward

to correct pinning. We propose a technique, called directed scrubbing which allows the

correction of faults from pinning.

Directed scrubbing requires additional nanowires to store parity data based on SECDED

ECC for the sub-array. First, the sub-array is aligned with the farthest left or right data

1If errors are later detected we assume the system can flush the access and pipeline until the corrected
value is determined and returned prior to proceeding. This is standard practice to hide the fault-tolerance
delay upon a fault-free access.

2Under-shifts may omit repeating step 1 .
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Figure 23: Example access and fault recovery snapshots during scrubbing. (a) Cache line

and parity bits accessed (b) SECDED reports one fault and points in a pinned nanowire (c)

SECDED reports two faults due to the DED bit (d) three nanowires are pinned but no bits

are actually faulty (e) three fault detection because ECC points to a non-pinned nanowire (f)

single fault detected in pinned nanowire while three faults are present (g) two faults detected

with three pinned nanowires (h) a duplicate DED is added to protect DED faults (i) three

pinned nanowires including a DED bit (j) two DED bits are faulty (k) one data fault and

both DED bits are pinned/faulty.

point, whichever is closer, and then read, corrected, and re-written as necessary, moving by

single positions until the other extremity is reached. In completing this traversal, in addition

to repairing the data domains the encoding domains of the pinned nanowires will all naturally

return to the appropriate encoding as described in the discussion of Figure 22(h).

Of course, during scrubbing, there is a probability of misalignment and additional pin-

ning. Misalignment can be checked and corrected during scrubbing, without need to restart

the scrubbing process. If pinning occurs, it can be detected, but scrubbing must start again.

Thus, as pinning faults may occur simultaneously during a single intrinsic shift, they may

also stack during scrubbing. Single correction ECC may not be sufficient to correct faults in

a system with both scrubbing and misalignment protection. By leveraging the location of

the nanowires where pinning has occurred we discuss how we can extend SECDED to detect

and correct as many as three faults.
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4.2.4 Three-fault Correction Guarantee

TAPs report the nanowires that have experienced pinning. However, even if a nanowire

has a pinning fault, it may not report an error during a read while scrubbing. If there are x

pinned nanowires, the worst case is that ECC must protect against x errors, but fewer than

x errors may also occur. SECDED ECC can correct one error when the location of the fault

is unknown. However, if the location of the potential errors is known due to the TAPs, we

can correct more errors.

We show a variety of error cases during the scrubbing process in Figure 23, where data

bits are shown in blue, Hamming Code parity bits are shown in red, and the double error

detection (DED) bit, is shown in gray. Locations of pinned nanowires are illustrated by

yellow boxes and actual errors during this particular access are outlined in red. As PIETT

reports each possible faulty position by noting the pinned nanowires, with SECDED it is

relatively simple to correct faults from two pinned nanowires as follows:

• ECC reports no faults, no re-write is necessary, Figure 23(a).
• There is one pinned nanowire d2, ECC corrects one fault at position d2, the corrected

bit may be directly re-written, Figure 23(b).
• There are two pinned nanowires, d2 and h1 and ECC detects two errors (parity bit reports

two errors shown in green). The correction is made by flipping the two bits belonging to

the pinned nanowires, Figure 23(c).

The most interesting case is the last case, where the DED bit, essentially a parity bit for

all of the other data and Hamming Code parity bits, reports two errors. The code cannot

directly pinpoint which bits are wrong and uses the location of the pinned nanowires to guide

correction. However, with the knowledge of potential error location, it is actually possible

to correct up to three errors.

In the previous example, either we know the number of errors or there is only one

error in the data. In order to correct three errors, we need to reduce the errors to one of

these conditions. While the accessed location (cache line) has three simultaneous errors,

the DED bit will not report a parity problem as would be the case in two errors. As a

consequence, SECDED ECC will report this case as a single error. When combined with

location information of the pinned nanowires resolution of all three errors is possible.
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In this scrubbing example, there are three possible faulty locations due to pinning, bits

2 and 4 of the data, and bit 1 of the Hamming Code. Thus for each scrubbing access, the

possibilities are as follows:

• ECC reports no errors and no bits need to be rewritten [Figure 23(d)].

• ECC reports one error, and it is pointing to a non-pinned nanowire [Figure 23(e)]. The

presumption must be three errors and all three of d′2, d
′
4, h

′
1 must be written.

• ECC reports one error, and it is pointing to a pinned nanowire [Figure 23(f)]. The

presumption is that d′2 must be written. However, if we got unlucky, we may still have

a situation with three faults. The value is updated with d′2 and a second ECC check is

completed. If the DED bit now indicates two faults, then d′2, d
′
4, h

′
1 are written, otherwise

only d′2 is written.

• ECC detects two errors, [Figure 23(g)]. There are three possibilities, faults in d2 & d4,

d2 & h1, or d4 & h1. First we recheck ECC with d′2, d
′
4, then d′2, h

′
1, and finally d′4, h

′
1 and

write back the pair with an error free code.

This technique is successful as long as the nanowire storing DED bits is not pinned. We

can solve this by duplicating the DED bits, requiring one additional nanowire per sub-array

beyond SECDED ECC. Three fault correction including pinning the DED nanowires(s) is

guaranteed as follows:

• Cases with no pinning in either the DED (p0) or DED1 (p1) nanowires—e.g., Fig-

ure 23(h)—resolve to the cases in Figure 23(b)–(g).

• If the p0 nanowire is pinned [Figure 23(i)], p0 is immediately detected and corrected using

p1. If there is one other error in either d4 or h1 it is corrected using the Hamming code.

If SECDED with the corrected DED bit reports two errors both d′4, h
′
1 are written [Fig-

ure 23(i)]. This is similar to the simple case of SECDED ECC described in Figure 23(c).

The case where p1 is pinned and p0 is not follows similarly.

• If both p0 and p1 are pinned and p0=p1 [Figure 23(j)], we cannot know if the DED value

is correct. If p0/p1 report the incorrect parity we write p′0 and p′1.
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• If both p0 and p1 are pinned and there is another pinned nanowire (e.g., d4) [Figure 23(k)],

we use the Hamming code to repair d4 and then determine the parity and, if necessary,

repair the values of p0 and p1.

4.2.5 Handling Bit Flip

As noted in prior work [2] bit flip faults are possible in DWM due to communication

faults over the memory bus when writing, or due to effects like read-disturbance denoted in

DWM’s spintronic cousin STT-MRAM [69, 74]. Using a similar philosophy to Section 4.2.4,

we can still guarantee three error correction if two of the errors come from pinned nanowires

and one comes from a bit flip.

Consider in Figure 23 that d2 is a bit flip fault, thus we do not know its location. Like

any single error, it can be directly corrected by ECC [Figure 23(b),(f)]. However, if one error

is reported, there could be three errors [Figure 23(e)]. We test again after ECC correction.

ECC will report two errors because either one actual error was corrected, or a new error

was added. Either way, the parity will not match signaling that three errors were originally

present. Thus, ECC is tested again with both pinned locations corrected (d′4, h
′
1) and now

ECC corrects the actual flip at d2 so that ultimately d′2, d
′
4, h

′
1 are written. In the case of two

errors [Figure 23(c),(g)] we flip one pinned location and retest. In the case of (c) ECC will

then find bit flip d2 and h′1, d
′
2 are written. In the case of (g), if we test with d′4 we are now

in the case of (b) and if we test with h′1 we are now in the case of (e), which are solved.

If there is a bit flip in a DED bit like Figure 23(i), because p0 ̸= p1 and p1 reports a parity

error we test the pinned locations. If testing with d′4 ECC points to h1 we write d′4, h
′
1, p

′
0.

If not we write (p′1). The remaining DED cases [Figures 23(j) and (k)] follow similarly to

Section 4.2.4.

Thus, log2(data block size)+3 additional nanowires per sub-array enables repair of either

up to three pinned nanowires or up to two pinned nanowires and one bit flip with scrubbing.
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4.3 Results

To evaluate the effectiveness of PIETT, we conducted experiments that study its re-

liability, area, energy consumption, and performance compared to related schemes. Our

DWM memory architecture is based on FusedCache [90], which implements a combination

of a set-associative L1 and last-level cache (LLC) in DWM. The domains aligned with the

access point belong to L1 and all the other domains logically belong to LLC. When L1

misses, shifting occurs in the sub-array in order to access an LLC replacement. Otherwise,

FusedCache has a similar organization to TapeCache [83]. To evaluate the latency and en-

ergy of shifting we used a modified version of NVSIM designed specifically to model DWM

memory [96, 15, 87]. The static energy impact of PIETT is modelled through the inclusion

of additional access points for each nanowire and the inclusion of additional nanowires for

storing the parity data for each sub-array.

As PIETT protects against up to three pinning faults, the size of the data block protected

can have an significant impact on reliability. It is the convention to use 64/72 SECDED ECC

for a cache line (or memory row) rather than 512/523 where the length of a cache line (LCL)

is 512; 64/73 or 512/524 for PIETT for the extra parity bit. We present results for 64/73 as

it best matches the conventional block size.

To model the misalignment and pinning faults during simulation we consider that each

sub-array contains and shifts R racetracks with n data domains per racetrack simultaneously.

We define the probability of misalignment after performing a single shift of distance d as pa,d.

Similarly, we define the probability of pinning faults in one racetrack after performing a single

shift of distance d as pp,d. We use the values for misalignment and pinning from Table 5,

where the pinning probability are obtained through our process discussed Section 4.1.2 and

the misalignment probability is obtained from the literature [97] and corroborated with the

process in Section 4.1.2.

Since, fault probability is highly dependent on parameters such as domain size, process

variation, shift current, etc., we also consider a sensitivity study of fault probabilities for

pp,d from the results in Table 5 (circa 10−8) up to 10−4. Given that correction for misalign-

ment and pinning are corrected orthogonally, we can independently consider pa,d and pp,d as
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similarly orthogonal. Given the previous treatment of pa,d in previous work that achieves

sufficient misalignment protection lifetimes [97, 52, 45, 2], we focus on pp,d here.

Furthermore, given the probability pp,d, m is defined as the number of racetracks (out

of the R racetracks) which are pinned during an intrinsic shift for the sub-array, we can

then define the probability of having m racetracks pinned. Using PIETT, any number of

misalignments can be detected and corrected unless they lead to excessive pinning while

conducting corrective shifts.

The memory and fault model were integrated into and simulated using the Sniper multi-

core simulator [8]. The architecture studied employed an 8-way 4MB LLC cache and a

8-way 32KB L1 cache. We consider n = 32. Thus, the sub-arrays are is composed of

512*32=16384bits . Access latencies are as follows: the data read latency is 0.98ns, write

latency is 0.65ns, shift latency is 0.32ns, and tag access latency is 0.28ns [90]. The CPU

has four out-of-order cores running at a clock speed of 3 GHz. All the benchmarks used to

profile the performances are workloads from SPEC-CPU2006 [18].

4.3.1 Reliability

PIETT provides superior misalignment fault tolerance than DECC and Hi-fi with SECDED.

PIETT is able to natively correct any number of misalignments by at least four. DECC is

limited to correcting up to three misalignment by one faults or one misalignment by two.

Hi-fi requires adding additional access ports to increase the number of positions that can

be corrected in all nanowires and reports results for misalignment by one. PIETT can es-

sentially eliminate misalignment faults with no additional overhead. DECC is limited to 15

year lifetime and Hi-fi for SECDED is limited to 69 year lifetime, while PIETT is essen-

tially unbound, for the misalignment fault rates reported in Table 5. If misalignment fault

probability increases, these lifetimes would decrease, while PIETT would remain essentially

unaffected. As misalignment by two positions is reported as a 10−20 fault rate, and mis-

alignment by more than two positions is reported as unmeasurably low [97], we assume the

misalignment uncorrectable fault rate of PIETT is essentially equivalent to Hi-fi with double

error correction and triple error detection.
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Figure 24: MTTF: PIETT with alignment and pinning faults for different pinning fault rates

of 10−8 up to 10−4.

PIETT also detects and corrects faults of up to three pinned nanowires. In contrast,

P-ECC-O is the only other approach capable (with modification) of detecting pinning faults

but it cannot protect against misalignment by two positions. Therefore their mean-time-to-

failure (MTTF) will be governed by the inherent misalignment by two fault rate.

We calculated the MTTF for pinning incident fault rates ranging from 10−8 (the probabil-

ity obtained from our nanowire model, see Table 5) up to 10−4 (same order as misalignment

fault rates). Without pinning protections, the system MTTF will be between 2s and 20µs

for pinning fault rate of 10−8 and 10−4, respectively.

Figure 24 shows the MTTF for PIETT protection of 14 workloads, where the variance

is related to frequency of LLC access inducing shifts for the same range of incident fault

rates. At 10−4, a particularly high fault rate, PIETT improves MTTF by eight orders of

magnitude to 115 days, but still falls short of a 10 year target. As soon as the fault rate

is ≤ 10−5 PIETT improves the MTTF by 14 orders of magnitude to a time of > 385 years

which is well beyond a standard target of 10 years between failures. PIETT improves the

MTTF by 21 orders of magnitude for a fault rate of 10−8. In the following result sections,

we consider a pinning probability range of 10−8–10−5 to respect the MTTF target.
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Unlike prior work [45, 2] due the TAP concept, bit flips can not be interpreted as shifting

faults in PIETT. In Figure 29 we show the impact to MTTF of PIETT using the shifting and

pinning probabilities from Table 5 with the same range of bit flip probabilities [10−9–10−6]

studied in prior work [2]. PIETT still protects the system well beyond the target 10 years

by several orders of magnitude.

4.3.2 Area overhead

A standard DWM nanowire consists of data domains, padding domains and an access

point. Any additional domains or access points for latency optimization or fault-tolerance,

decreases the area efficiency of DWM. P-ECC-O adds four extra heads, two read only and two

read/write heads to write their alternating pattern and verify its conformity. In comparison

PIETT adds two TAPs with a fixed number of additional padding domains and minimal

additional logic to provide the transverse write and read capabilities. The correction overhead

of PIETT is from the extra nanowires to store the parity bits necessary to scrub when

correcting pinning faults, which is also needed for the modified version of P-ECC-O.

Figure 25 provides the decomposition of the area consumption (units based on feature

size) for the different correction schemes for a nanowire size of n=32. The blue bar represents

the base DWM area (domains plus heads). The orange bar is the area required to detect

and correct misalignment faults and the grey area is the overhead to correct pinning faults.

Furthermore, in the figure we show two overheads of P-ECC and P-ECC-O for protection

against a misalignment of one or two domains, respectively. PIETT has comparable overhead

to P-ECC while providing pinning protection, and scales better to larger misalignment pro-

tection while being 23% less area than pinning modified P-ECC-O. PIETT provides better

misalignment protection for similar area versus DECC.

4.3.3 Performance

PIETT’s improved fault tolerance allows a multi-domain intrinsic shift, but requires

a check and write of the TAPs between shift operations. The access latency and system

performance in cycles per instruction (CPI) results, shown in Figure 26 and 27, respectively,

57



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

DECC P-ECC P-ECC-O PIETT P-ECC P-ECC-O

Fe
at

u
re

 s
q

u
ar

e

Base Misalignment Pinning

Misalignment 
by 1

Misalignment 
by 2

Figure 25: Area comparison. Overhead for misalignment protection shown in orange and

pinning protection where possible shown in gray. Hi-fi (P-ECC) shown for misalignment

correction by 1 and 2 positions.

0

1

2

3

4

5

6

7

N
o

rm
al

iz
ed

 L
at

en
cy

 

DECC* PIETT P-ECC-O

Figure 26: Latency normalized to no correction with misalignment and pinning fault rates
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are compared to the state-of-the-art DWM correction technique DECC. Note, P-ECC has a

similar performance to DECC, but neither can correct pinning faults. PIETT and modified

P-ECC-O are reported for the fault probabilities from Table 5 with error bars to a pinning

probability of 10−5. On average there is a significant latency increase of 1.9× and 2× for

PIETT at these pinning probabilities due to the shift and check nature of TAPs. Fortunately,

due to the fact that this impacts LLC accesses only, the resulting impact in CPI for the same

incident fault rates is only 1% and 2% degradation, respectively. In comparison, P-ECC-O,

the only other approach that can be modified to detect pinning has a latency reduction of

5.0× and 5.4× with a more substantial 7% and 9% CPI degradation, respectively.

4.3.4 Energy overhead

Figure 28 shows the energy overhead of PIETT in comparison to P-ECC-O, P-ECC and

DECC for the fault probabilities in Table 5 with an error bar that increases the pinning fault

probability to 10−5. PIETT is considerably more energy efficient that P-ECC-O, requiring
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1
3

of the energy and reduces energy by more than 35% compared to P-ECC. It does increase

energy by about 20% over DECC, but it is important to note that neither P-ECC nor DECC

can correct pinning faults.

From these results we can observe there is a “fixed” energy overhead (similar to the

latency overhead) due to the additional operations to prepare and check amid shifting and

the additional parity tapes that shift and consume energy in the sub-array, but are necessary

when scrubbing is required. There is also a variable cost based on scrubbing the system.

4.3.5 Bit Flips

Unlike prior work [45, 2] due the TAP concept, bit flips can not be interpreted as shifting

faults in PIETT. In Figure 29 we show the impact to MTTF of PIETT using the shifting and

pinning probabilities from Table 5 with the same range of bit flip probabilities [10−9–10−6]

studied in prior work [2]. PIETT still protects the system well beyond the target 10 years

by several orders of magnitude.
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Figure 29: MTTF: PIETT with bit flips fault rates of 0, 10−9–10−6

4.4 Conclusion

Manufacturing scaled DWMs will introduce more variation, more defects, and lead to a

higher probability for shifting faults to occur. For DWMs to gain traction in real systems,

these faults must be efficiently addressed. We propose PIETT that can address misalignment

and pinning faults as well as bit flips in random access DWM memories. PIETT with TAPs

detects both misalignment and pinning through novel transverse access points placed at the

two nanowire extremities. It uses corrective shifts to repair misalignment. PIETT leverages

knowledge of the location of pinned nanowires to improve the facility of SECDED ECC to

repair errors in three pinned nanowires or two pinned nanowires and no more than one bit flip

per data element. Without protection from pinning faults, our demonstrated 10−8 pinning

fault rate indicates DWM devices fail within seconds without pinning protection. In contrast,

PIETT can provide effective fault tolerance for pinning fault rates ≥ 10−5 with MTTF of

nearly 400 years. For our modeled fault probabilities, we can guarantee a lifetime over 1011

years against pinning faults and a superior protection against misalignment, comparable

performance, and an energy reduction of 35% compared to Hi-fi.
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5.0 CORUSCANT

The growth in data needs of modern applications has created significant challenges for

modern systems leading to a “memory wall.” Processing-in-memory (PIM) [89, 68, 40, 93,

41, 95, 76] and near data processing (NDP) [39, 73] solutions promise to reduce the demands

on the memory bus and can be a solution to efficiently realizing the benefit of increasingly

dense memory from deep scaling and tiered memory solutions. However, leading solutions

for bulk-bitwise PIM in DRAM [89, 68] are limited to two operand operations. Multi-

operand bulk-bitwise PIM has been suggested for Non-Volatile Memories (NVMs) but only

experimentally explored for two-operands [40].

Unfortunately, Phase Change Memory (PCM), the leading commercial candidate in the

tiered memory space, has endurance challenges (circa 108 writes [88]) and relatively high

write energy (up to 29.7pJ per bit [43]) that raise concerns about its effectiveness for PIM.

Resistive memory (ReRAM) has a similar concern. STT-MRAM, which has also proposed for

PIM [23], is a worthy cache candidate and does not suffer from the same endurance challenges

as PCM and ReRAM. However, STT-MRAM has insufficient density, i.e., 28-32F2, to be

deployed at the main memory level of the hierarchy.

Recently, it has become popular to use the analog characteristics of, particularly memristor-

based, crossbar arrays to accelerate neural networks [72, 92] but these techniques can also

lead to endurance as well as fidelity concerns.

Recognizing the potential of DWM-based main memory (see Section 2.1.2) and the need

for PIM to accelerate next-generation data movement constrained applications, in this chap-

ter, I propose CORUSCANT, or Computing Optimized Racetracks Using Specialized Clusters

Accessing Nanowires Transversely. The first section shows the memory design we chose for

DWM as main memory. Then Section 5.2, describes the basic concepts of CORUSCANT,

alongside our modified Sense Amplifier (SA) and supporting circuitry. Furthermore, this

section discusses several approaches to perform smart multiplication with a concrete exam-

ple. Finally, in Section 5.3, I provide a detailed analysis of CORUSCANT compared to

state-of-the-art PIM approaches in terms of energy, performance, and area.
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5.1 Memory Design with DWM

To employ DWM as the sole main memory and to minimize changes to the memory

controller design by maintaining the same I/O interface as used for DRAM, we adopt the

same high-level architecture shown in Figure 30; this approach has been previously proposed

for emerging technologies [94] as well as extended for DWM [26]. The architecture preserves

the bank organization into subarrays as shown in Figure 31. Moreover, it maintains the

same tile size [30] as used in traditional DRAM-based main memory. This also allows for

data movement within the memory such as inter-bank copying that is described in previous

work [67]. Figure 32 shows the DWM subarray breakdown into tiles, which share the same

global wordlines. To facilitate DWM integration we divide tiles into domain block clusters

as also shown in Figure 32. Each DBC shares the same local sensing circuitry and write

driver as described in prior DWM memory proposals [26].

Each DBC, as detailed in Figure 33, consists of X parallel racetracks composed of Y

data domains. X represents the number of bits that can be accessed simultaneously. We

show the example where X = 512 for a typical 512×512 tile. Y represents the distinct row

addresses contained within the DBC. Y is determined based on the data length possible in

a DWM nanowire. We show a conservative example of Y = 32, however, examples of longer

nanowires are used in other DWM memory proposals [97, 26]. This architecture can easily

be scaled such that 32 ≤ Y ≤ 512, allowing for longer nanowires.

While, a single access point (AP) is necessary for each nanowire in the DBC, adding

APs can reduce the delay by reducing the shift distance between accesses [83]. We show

two APs in the example, which would traditionally divide the nanowire length into equal

sections to minimize shift latency and reduce the number of overhead domains required. In

addition, a second AP can also enable the polymorphic gate capability of the nanowire if

placed sufficiently close to allow transverse access. In the next section, we present how the

TR can be used to perform logical and arithmetic operations, forming the foundation of

CORUSCANT.
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5.2 CORUSCANT Architecture

We propose to add PIM capability to a portion of the DBCs in the memory architecture,

see Figure 32. The number of PIM enabled DBCs can be tuned based on the overhead

and the desired PIM parallelism. The detailed DBC shown in Figure 33 shows two access

points. In CORUSCANT, these access points are spaced according to the TRD. While TR

has been demonstrated for a conservative TRD = 4 [63] our experiments using the LLG

magnetic simulator [65] and the resulting resistance levels indicate that TR can be scaled to

a TRD = 7 by increasing the sensing current. This yields eight resistance levels which can

be encoded by three bits. We will see how TRD = 7 is particularly effective for addition.

TRD = 7, while optimistic, is significantly more realistic than the presumed TRD = 32

assumed in prior work [52].

Assuming the distinct row addresses contained within the DBC Y = 32 as discussed in

Section 5.1, and with a single access point, this nanowire would require 63 domains (2Y −1)

to permit shifting data at the extremities to the access point. Normally, adding a second

access point would place ports at positions 9 and 25, reducing the number of overhead

domains from 31 to 16. To enable TR with a TRD = 7, the ports would move to positions

14 and 20 and the overhead domains would only reduce from 31 to 25. Adding ports in this

way provides some reduction of average shift distance while allowing for the TR operation.

For two ports to remain at their optimal shift reduction position would not realistically allow

a TR between them, because their distance would be 14 domains. Our experiments did not

support a such a TRD = 14 at this time to be feasible.

For a tile with the additional access port to conduct TR, we modify the sensing circuitry

as shown in Figure 34 where the tan blocks show the added elements. To enable performing

TR requires each SAi to output seven level bit values such that SAi[j] is ‘1’ if there are ≥ j

‘1’s in the TR and j ∈ 1..7. The extension with additional sensing circuitry is represented by

a hashed tan block. These SA outputs become the seven inputs for the PIM unit described

in Figure 35. The PIM logic output is selected from a multiplexer. Note, the ith multiplexer

selects some values provided by the local PIM block and some that come from (i− 1)st and

(i−2)nd PIM blocks. We will explain the purpose for the color coding and these connections
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in the following sections. There is a direct read from the SA shown in orange that bypasses

the PIM logic and the selector to a single two-way mux that feeds the read port. Thus, either

a direct read or result of PIM logic can be directly forwarded via the hierarchical row-buffer

structure to the memory controller and returned to the processor. The capability is also

added that PIM output can be written back to the memory block so an additional selector

multiplexes the PIM logic with the write port input. As in previous work [68, 67, 40], given

the hierarchical row buffer in the memory, the shared row buffer in the sub-array or across

sub-arrays can be used to move data from non-PIM DBCs to PIM-enabled DBCs.

5.2.1 CORUSCANT Multi-operand Bulk-bitwise Operations

The TR operation described in Section 2.1.3 allows direct implementation of bulk-bitwise

operations. But to accomplish this requires the additional sensing capability discussed in

the last section and a small amount of additional logic shown in Figure 35. If the TR level is

above one, the OR operation is ‘1’ and similarly the inversion of this reports NOR. If a single

data value is stored and the remaining rows are zero padded, this output also reports NOT.
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AND and NAND are obtained in a similar fashion but with the highest TR level. XOR reports

exclusively the odd TR levels computed by relatively simple NAND/NAND implementation.

To save area, XNOR is the inverted value of XOR. While, at first glance, this might appear

like a significant overhead, its important to keep in mind that this logic will compute these

operations for seven operands in parallel. To support addition, the PIM block also contains

a carry C computation which is a function of TR levels above two and not above four or

above six. A super carry C ′ is computed from TR level above 4 and sum S is equivalent to

XOR. Details on the energy consumption and area overhead are discussed in Section 5.3.

We show an example in Figure 36, for the portion of the DBC between the two access

points, denoted by shaded domains where a or g could be directly read, and the rest of

the nanowire is abstracted away for convenience of display. Using a TR, a multi-operand

operation can be directly obtained for bulk-bitwise OR, NOR, AND, NAND, XOR, or XNOR. Because

OR uses the same sensing circuit as a traditional read, but the read is conducted using a TR,

it is made available through the orange path; the remaining five operations are denoted by

the blue output of the PIM block [Figure 34]. Comparing fewer than seven operands can be

accomplished by zero-filling the unused locations in the scope of the TR. The result can be

written over one of the original operands (either a or g) or written into a separate DBC. In

order to minimize the energy and area overhead CORUSCANT will apply this PIM extension

to a subset of the tiles, generally one tile per subarray.

5.2.2 CORUSCANT Multi-operand Addition

Based on the bulk-bitwise operations from the previous section, we show an example

addition operation for five operands in Figure 37. In step 1○, referencing Figure 34, a TR

of dwm0 (first nanowire) is conducted, evaluating bit0 of all operands. S0, which is XOR of

a0...e0, computed by the PIM block and is among the five blue bits.

Simultaneously, carry, C0, is computed and sent to the right to the driver for dwm1

shown in red and super carry, C ′
0 is sent to the driver for dwm2, shown in green in Figure 34

and computed using the logic functions shown in Figure 35. S0, C0, C
′
0 are written into the

left access port (portL) of dwm0, the right access port (portR) of dwm1, and portL of dwm2
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simultaneously. In step 2○, a similar set of steps occurs except the operations include C0 in

addition to a1...e1. Then in step 3○ TR is conducted over C ′
0, a2...e2, C1, seven total elements.

In the general case, for step k+1 (i.e., dwmk), TR is conducted over C ′
k−2, ak...ek, Ck−1 with

Sk written to portL of dwmk, Ck written to portR of dwmk+1 and C ′
k written to portL of

dwmk+2. The control for this operation is a simple counter circuit that provides selectors

values for a window of three nanowires and activates the bit lines for k...k + 2.

Because the carry chain requires keeping the portL and portR clear to write C,C ′, for a

TRD = 7 we can compute a maximum of five-operand addition. While it may be possible

in the future to increase TRD ≥ 8, we explore a technique to efficiently add more than five

operands in the context of CORUSCANT multiplication, which we discuss in detail next.
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5.2.3 CORUSCANT Multiplication

The capability to compute addition in memory, as described in the previous section,

provides the foundation for multiple ways to conduct multiplication. A particularly näıve

method to compute A ∗ B is to add A B times. For example, 3A can be computed as

A+A+A. Thus, we can perform a multiplication by doing several additions. This method

can quickly exceed the capacity of a single multi-operand add. Consider 9A, this can be

computed by computing 5A in one step, and then computing 5A + A + A + A + A. While

this method could be improved by generating 5A in one addition step, then replicating 5A

to generate 25A, and so on, this method is clearly inefficient. One method to accelerate this

process is to shift the copies of A to more quickly achieve the precise partial products that,

when summed, produce the desired product.

In Figure 34, we show how data read from bit i is forwarded to bit i+ 1 using the brown

lines. These lines originate from the same place as the orange lines from i but are shown

coming from the opposite side of the SA for reduced clutter in the figure. This connection

allows a logical left shift which is equivalent to a multiply by 2 or A′. To logically shift by more

than one position, we first write A′ and then shift and write A′′ or A << 2. It is important to

distinguish between these logical shifts being discussed, which move bits between nanowires

and DW shifts, which shift the nanowires to access different data locations. Looking at

Figure 37, logical shifts occur in the Y direction and require the multiplexing logic from

Figure 34, DW shifts move in the X direction. So, to write A << k requires k shifted read

(brown arrows) and write operations. However to write A << k next to A << k+1 requires

k shifted read and followed write steps, an additional shifted read, a DW shift, followed by

a write. Thus, to write y shifted copies with a max logical distance of x requires x − 1

shifted read/write operations and y DW shifts. Based on the logical shifting capabilities we

describe techniques to leverage CORUSCANT to conduct efficient multiplication in different

situations.
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5.2.3.1 Constant Multiplication

When one of the operands of the multiplication operation is known, there are several ways

to efficiently take advantage of CORUSCANT to complete multiplication leveraging shifting.

At compilation time, a method based on Booth multiplication is possible [37, 4] where

numbers can be represented using 0, N, and P, which represent 0, -1, and 1, respectively. For

example, consider a constant multiplier 20061→ “100111001011101,” this can be encoded as

P0P00N0P0N00N0P. It can be decomposed using the pattern P000000P0N, which corresponds

to 515, in positive and negative forms shifted by different amounts: P000000P0N00000 −

P000000P0N + 00P000000000000 = P0P00N0P0N00N0P.

Thus, 20061 times A can be computed in two addition steps: 1○ A << 9 + A <<

1 + A → 512A + 2A + A = 515A, 2○ 515A << 5 − 515A + A << 12 → 16480A − 515A +

4096A = 20061A. Note −515A can be computed by generating 515A + 1 making the last

step 515A << 5 + 515A+ 1 +A << 12 which is still one addition step. This is a significant

improvement over adding 20061 copies of A.

5.2.3.2 Arbitrary Multiplication

A more generic method that can also work for arbitrary multiplications is to use the ‘1’s

in the multiplier to denote which shifted copies of the multiplier to be summed to create

the product. In the 20061 example, there are 9 ‘1’s in the binary form of 20061. Thus, the

method to directly compute the product is logically shift A n times where n is the bit-width

of the multiplier B. When bi = ‘1’ then we also shift the nanowire to retain that “partial

product.” When five partial products have been retained, we generate the sum. In this

example in step 1○ T = A + A << 2 + A << 3 + A << 4 + A << 6, and in step 2○

product P = T + A << 9 + A << 10 + A << 11 + A << 14. Again, this takes only two

addition steps. In the worst case, this takes n
TRD−2

n steps or O(n2) complexity where n is

the bit-width of the operands.
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5.2.3.3 Optimized Multiplication

Arbitrary multiplication based on partial products requires an efficient summation mech-

anism. In CORUSCANT we assume arbitrary partial products are generated by copying one

operand, to a processing tile as in prior work [67]. The value is then logically shifted by one

position and copied n− 1 times. By then bringing B into the rowbuffer we shift back along

the DBC and zero out the ith shifted version of A if that bit of B is ‘0’. This functions like

a predicated copy so we have only the correct shifted copies of A to compute the multiply.

For large cardinality multiplication we are left with many partial products, typically

> (TRD − 2). To sum them efficiently we can borrow from Carry Save Adders (CSAs).

A CSA leverages the three inputs of a full adder A,B,CIN to be used for three operands

X, Y, Z instead of two. This creates an entirely parallel process to reduce three operands to

two in the form of S†, C†. Then a traditional addition using a ripple carry adder can add

S† +C† → S. We can leverage our polymorphic gates in the same way but with more input

operands. Seven rows of packed addition operands, or partial products, can be reduced with

bulk-bitwise parallelism to three rows containing a S,C,C ′, as a 7 → 3 operand reduction

function.

This method accomplishes two things. The need for the sequential carry logic of addition

is not required for the reduction step and the technique can directly be performed on TRD

instead of TRD−2 operands. Furthermore, the 7→ 3 reduction operation can be repeated on

data, including prior output of this reduction function in a previous step. These reductions

are continued until there are ≤ (TRD− 2) operands remaining. The final result can then be

computed with a single addition operation, where one output is generated from ≤ (TRD−2)

inputs. These reductions make multiply an O(n) operation and can also accelerate large

cardinality additions found in many scientific and machine learning algorithms.

Next, we describe new instruction(s) to control the PIM operations through the memory

controller used in CORUSCANT.
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5.2.4 ISA Support

CORUSCANT presumes some portion of the virtual memory space is reserved for PIM

operation and the operating system can manage this space when conducting virtual to phys-

ical address translation as is often the case with memory mapped I/O. Thus, the user can

then schedule PIM operations in memory and align with tile and DBC boundaries. COR-

USCANT also uses one (or more) new instructions that maps the operation to the memory

controller to be issued by the memory controller [68]. This instruction:

cpim dst, src, op, blocksize

communicates to the memory controller to issue the appropriate commands to complete the

operation requested. Each CORUSCANT PIM cpim instruction consists of a source address

src, indicating which DBC and nanowire position to align to the leftmost access port. For

data movement operations, the memory controller can use either AP in pim enabled tiles.

For PIM operations, the operation must be done between the access points. Thus for a bulk

bitwise operation of k operands where k < TRD the user must pad the adjacent locations

with data that does not impact the result, e.g., ‘0’s for OR, XOR, ADD, and ‘1’s for AND, NAND,

et cetera.

The operation op coupled with the block size blocksize are used to program the mul-

tiplexers select bits of Figure 35. Generally, it is presumed that bulk bitwise operations are

done across the entire memory row and packed and padded as necessary by the user. The

block size is most important for operations like add. The memory controller must issue com-

mands that mask different bitlines to form the carry chain as discussed in Section 5.2.2. The

blocksize ∈ {8, 16, 32, 64, 128, 256, 512} allows individual addition of 64 byte sized numbers

packed into a row up to a full 512-bit addition.

These cpim operations can be generated by the compiler either automatically or through

user directives. Furthermore, when standard memory accesses, e.g., load/store instructions

are issued to the memory, the memory controller sets the multiplexer selection bits to bypass

the pim unit as represented by the orange arrow on Figure 34.
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5.3 Results

To experimentally quantify the advantage of CORUSCANT, first, we compare CORUS-

CANT addition and multiplication characteristics against other computing units based on

DWM. Next, we demonstrate the benefit of CORUSCANT PIM on addition/multiplication

oriented benchmarks from polybench [58] versus computing them in the CPU. Third, we

compare bitmap indices [9], a common component of database queries, against Ambit and

ELP2IM to show the benefit over state-of-the-art DRAM PIM. Finally, we implement win-

dowed point-wise multiplication accumulation, used in convolution window and in trans-

former as presented in [98]. To guide our experimental observations, we discuss device-level

modeling assumptions for CORUSCANT in the next section.

5.3.1 CORUSCANT Device Study and Assumptions

Based on the device level information provided in [15, 96, 93] and TR results for TRD = 4

with stated scalability to higher numbers of domains [63], we calculated the timing and

energy of read, write and TR operations for DWM. I have designed CORUSCANT’s sense

circuits for TR and synthesized the PIM logic from Figure 35 in 45nm technology using

FreePDK45 [49] and the Cadence Encounter flow. I then scaled the design by setting F to

32nm as described in prior work [15, 10] to compare with the 32nm results reported in prior

DWM PIM work [93]. To calculate the energy I used a modified version of NVSIM to report

the DWM energy at 32nm and modified the sense amplifier energy using our custom sensing

circuit designed in LTSPICE and scaled energy reported from ASIC synthesis for the PIM

logic gates.

Most PIM work does not address reliability under variation [68, 40, 93, 41]. TR reports

a circa 3% change in resistance under process variation [63]. For completeness, we used

the LLG Micromagnetic Simulator [66] to verify the TR sense margins [63] for Racetrack

Memory 4.0 [54] and conducted an analysis using the total differential method based on

output from LLG. Using this approach we define the maximum uncertainty of the actual

critical read current in terms of current uncertainty and process variation, the latter based on

75



Table 6: Operation Comparison

Scheme CORUSCANT DW-NN SPIM

Unit 2op Add 5op Add Mult 2op Add 5op Add 5 op Add 2op Mult. 2op Add 5op Add 5 op Add 2op Mult.

(TR = 4) (TR = 7) (TR = 7) Area Opt. Lat. Opt. Area Opt. Lat. Opt.

Speed (cycles) 26 26 64 54 264 194 163 49 244 179 149

Energy (pJ) 12.54 22.14 57.39 40 169.6 169.6 308 28 121.6 121.6 196

Area (µm2) 2.16 4.94 5.07 2.6 2.6 5.2 18.9 2 2 4 16.8

widely reported 4% variation of spintronic MTJs [48]. We determined a probability of fault

during a TR of circa 10−6 for 4 domains. Ambit shows a >1% fault rate at 5% variation [89]

and ELP2IM improves on Ambit, but does not provide sufficient visibility into fault rates at

< 10% variation, instead reporting them indistinguishable from zero. The first non-zero data

is circa 0.35% fault rate at 10% variation [89]. Extrapolating the reported error trend [89]

estimates an ELP2IM fault rate of 10−3 at 5% variation.

PIM fault tolerance beyond triple modular replication (TMR) has not been demon-

strated, except in special cases [33], because ECC encoding techniques are not homomorphic

under PIM operations [68]. Using TMR, an 8-bit CORUSCANT add requires 8 TR’s, one

for each bit achieving a 10−10 probability of fault. ELP2IM requires 48 operations such

that reliability with TMR is approximately 10−2. 15-way replication in DRAM is required

to achieve the same reliability as CORUSCANT with TMR. Data movement for enabling

PIM may increase shifts in CORUSCANT, which could induce more faults. Leveraging mis-

alignment fault tolerance [97, 52] that achieves a mean time to failure >10 years provides

sufficient head room for fault free shifting. Furthermore, PIM-initiated shifting faults may

also benefit from TMR.

5.3.2 Comparison with DWM PIM technique

Based on the device level information provided in [63, 15, 96, 93], we calculated the timing

and energy of read, write and TR operations for DWM. We have designed CORUSCANT’s

sense circuits for TR and synthesized the PIM logic from Figure 35 in 45nm technology using

FreePDK45 [49] and the Cadence Encounter flow. We then scaled the design by normalizing
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F 2 to 32nm as described in prior work [15, 10] to compare with the 32nm results reported

in DW-NN [93]. To calculate the energy we used a modified version of NVSIM to report

the DWM energy at 32nm and modified the SA energy using our custom sensing circuit

designed in LTSPICE and scaled energy reported from ASIC synthesis for the PIM logic

gates. Latency is obtained by calculating the number of operations needed to perform a

8-bit adder or multiplier presuming a 1 ns cycle speed. CORUSCANT 8-bit addition shifts

and writes the words between the two heads (10 cycles) and then writes after each TR (16

cycles) which yields to a total of 26 cycles. Table 6 reports the speed, energy, and area

of CORUSCANT, DW-NN and SPIM for two operand addition (2 op add), five operand

addition optimized for area by conducting multiple additions in series (5 op add area), five

operand addition optimized for latency by replicating addition units (5 op add latency), and

two operand multiplication (2 op mult). CORUSCANT is 1.9×, 9.4×, 6.9× and 2.3× faster

and 2.2×, 5.5×, 5.5× and 3.4× less energy than SPIM, the state-of-the-art technique, for

2 op add, 5 op add area optimized, 5 op add latency optimized, and 2 op multiplication,

respectively. CORUSCANT is comparable to DW-NN and requires some area increases over

SPIM for addition, but reduces the multiplication area by 3.7× and 3.3× compared to DW-

NN and SPIM, respectively, while also providing additional processing capabilities such as

bulk-bitwise operations.

5.3.3 Improvement to Memory Wall Versus Non-PIM DWM

We tested our scheme on the standard polyhedral polybench using a modified version

of RTSIM [25]. The Polybench consists of 29 applications from different domains including

linear algebra, data mining, and stencil kernels. From these 29 applications we selected

the benchmarks most heavily focused on matrix addition and multiplication. We provide

energy and queue latency improvement and the area overhead of CORUSCANT at the main

memory granularity. For this simulation we used the parameters of Table 7 [47].
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Table 7: DWM parameters

Memory size 8GB Processor Intel Xeon X5670

Number of Bank 32 Etrans 1250 (pJ/Byte)

Sub-arrays per Bank 64 addition (32 bits) 111 (pJ/op)

Tile per Sub-array 16 multiplication 164 (pJ/op)

DBC per Tile 16

5.3.3.1 Queue Latency

In these experiments, we extract the traces using a pintool, then we examine the accesses

and determine which accesses correspond to additions and multiplications and we determine

if there is an available CORUSCANT PIM-enabled tile to perform the operations in memory

instead of sending it to the processing unit. In order to efficiently use our PIM, we issue

multiple parallel arithmetic instructions from the memory controller to different PIM tiles,

which allows single instruction multiple data (SIMD) operation. Over the benchmarks shown

in Figure 38 we demonstrate an average improvement over the memory latency of 2.1×.

5.3.3.2 Area overhead

Figure 39 shows the area overhead for adding some PIM capability to one tile in each

sub-array of the memory. We see a 10% for our full PIM ISA including multiplication, five

operand addition, and seven operand bulk-bitwise operations. By stripping the bulk-bitwise

operations, this overhead reduces to about 9%, removing the multiplication also keeps us

around 9%. Dropping from a five to two operand adder reduces the overhead to < 4%.

Another way to reduce overhead is to interleave PIM units across only half the sub-arrays

to get an overhead of around 5%, or every fourth sub-array to drop it to 2.5%. Even at this

2.5% overhead, an 8GB CORUSCANT memory would still have 8192 PIM enabled DBCs

and can still operate as a highly parallel SIMD PIM engine.
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Figure 40: Energy Improvement over Polybench bencmark

5.3.3.3 Energy consumption

To perform an energy analysis we compare the energy to send the data from DWM to

the CPU and back plus the energy required to perform a CPU operation to the energy that

CORUSCANT needs to perform the same operation. The data transfer and operations cost

are listed in Table 7. While the energy to perform the operation are the same order of

magnitude in the CPU and in CORUSCANT, the price to send the data is extremely high,

more than 30× the operation cost. Therefore, leveraging PIM as much as possible decreases

the energy consumption by more than 25.2× on average.

5.3.4 Bitmap Indices

While CORUSCANT has significant benefits over SPIM and DW-NN, neither of these

schemes can perform bulk-bitwise logic. Thus, we compare the bulk-bitwise capabilities

of CORUSCANT to the state-of-the-art technique for bulk-bitwise operation in DRAM,

ELP2IM. We make this comparison on a classic PIM application as an indication of what

CORUSCANT could achieve against a scheme similar to a currently deployed memory tech-

nology.
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We repeated the bitmap indices database query [9] experiment from prior DRAM PIM

work [89]. A query from 16 million users’ data requested how many male users were ac-

tive in the past w weeks, where w ∈ {2..4}. Figure 41 shows the latency improvement of

CORUSCANT over ELP2IM normalized to the latency of a standard DRAM CPU system.

For three, four, and five search criteria, i.e., male users for last two, three, and four weeks,

CORUSCANT provides a 1.6×, 2.2×, and 3.4× query speedup, respectively over ELP2IM.

The speedup achieved when including more search criteria demonstrates the benefit of COR-

USCANT given its multi-operand bulk bitwise operations compared to two operand limits

of previous work.

5.3.5 Windowed Point-Wise Multiplication Accumulation

We implemented a custom convolution window computation to demonstrate the benefit

of CORUSCANT over DW-NN and SPIM. The data flow for CORUSCANT is shown for

3x3 convolution windows in Figure 42. Input features and weights can be packed into

memory rows and combined with point-wise multiplication. We assume similar packing

is possible in SPIM and DW-NN. Where CORUSCANT really shines is in the addition

reduction operations. By leveraging multi-operand addition, logical shifting, and a second
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multi-operand reduction, CORUSCANT can reduce up to a 5x5 convolution window in two

addition steps.

Presuming a memory configuration as in Table 7 for all three schemes, we determine

that CORUSCANT is capable of execution convolution at 26 Tera Ops Per Second (TOPS),

while DW-NN and SPIM achieve 2.88 and 2.92 TOPS, respectively, for the same number of

functional units. CORUSCANT is also capable of 108 Giga Ops Per Joule (GOPJ) while

DW-NN and SPIM achieve 17 and 25 GOPJ, respectively. To provide context, a dedicated

FPGA CNN accelerator was able to achieve 0.34 TOPS with 12.5 GOPJ [22].

5.4 Conclusion

CORUSCANT is a significant step forward for PIM in the promising DWM technology.

Our technique takes advantage of the intrinsic proximity of bits in DWM nanowires and the

advantages of TR to build a polymorphic gate that can support myriad PIM operations.

CORUSCANT can perform bulk-bitwise or addition on multiple operands simultaneously,

limited only by the TRD between access ports on DWM. Using carry-save adder inspired
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techniques these multi-operand operations can be used to efficiently implement multiplication

with minimal additional logic. Our results show that CORUSCANT improves over the

state-of-the-art DWM-based PIM by 6.9× and 2.3× in term of speed and 5.5× and 3.4×

in terms of energy for five operand addition (optimized for latency) and multiplication,

respectively. Compared to a standard DWM memory without PIM, CORUSCANT improves

memory latency by 2.1×, decreases energy by 25.2× versus sending the data to the CPU.

CORUSCANT incurs an area overhead of 10% when PIM enabling one tile per subarray.

Using a smaller TRD, this area can be cut in less than half and still provide impressive

speedups over prior work. CORUSCANT bulk-bitwise capabilities are ≥ 1.6× faster than

DRAM PIM.

83



6.0 HDCR

6.1 DWM Counter

Figure 43 presents an overview of the proposed in-DWM counter. It combines the TR

operation in the DWM nanowire with the basic read/write operations to realize counters.

The DWM nanowires used for counters must be equipped with two read-write APs, necessary

for the TR operation. For a base2·X counter, the two access ports in the nanowires must be

X − 2 domains apart, i.e., the TRD in the nanowire must be X.

In HDCR, we prefer decimal counters for the majority operation and the population

count. As such, we use X = 5, delimited by APs in dark blue in Figure 44 and with arrows

in Figure 43. Note that each nanowire in the DWM counter only uses the domain between

the access ports and the number of nanowires in the counter are defined by the counter size.

For instance, in a decimal counter, i.e., X = 5, a single nanowire can only count between 0

and 9 (see Figure 43). If we want to count from 0 and 99, the DWM counter requires at least

two nanowires. In general, for a decimal counter having size C, an DWM counter requires

at least ⌊log10(C)⌋+ 1 nanowires.

The DWM counter operates using the same principle as a Johnson counter. Let us

assume a two-nanowire decimal counter that can count up to 99 and is initially set to 0 (see

Figure 43). The counter value at any instant in time is determined by the number of 1s

between the APs and the state of bit P , the bit under AP2, i.e., the right AP in Figure 44.

The bit P determines if the counter is in the first or second half of counting, in this case

between 0-4 or between 5-9. For the decimal value 0, the X bits are all filled with 0s and

hence the bit P is zero. If we want to increment the counter by four, for instance, four 1s

need to be shifted under AP1, as shown in Figure 43. To count beyond 5, i.e., when all

bits between APs including the P bit are 1, 0s are shifted under AP1. The decision to shift

a 1 or a 0 under AP1 is controlled by the P bit position: when P = 0, we interpret the

counter value as the count of ones between access points, and when P = 1, we interpret

the counter value as ten minus the count of ones (or five plus the count of zeros) between
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access points. To realize this behavior, toggling the value of P also toggles the value pushed

into the nanowire when the counter is incremented, as shown for the decimal value 12 in

Figure 43. The table of Figure 43 represents all TR and P combinations and their associated

values.

The DWM counter requires nanowires in DBCs to be shifted independently. This dras-

tically increases the shift controller complexity since each nanowire AP position needs to be

stored and controlled independently instead of a single position per DBC (512 nanowires).

In order to reduce this impact on the nanowire shifting logic, we also used the notion of

TW [51]. Traditionally, to perform a shift based write under the left AP on Figure 43, RWL0

and one WWL0 would be closed, the current flows through the fixed layer, one domain and

then go to the ground, writing a new value and erasing the previous value under the left AP.

However, by closing one WWL0 and RWL1, while sending a higher current density, our design

can perform a write operation and perform a partial shift along the nanowire rather than

between the fixed layer and ground. We called it partial (i.e., segmented) shift since only

the bits between the heads are shifted. Thus, a TW from the leftmost AP writes a value

under that AP, and shifts the remaining bits between the APs to the right, erasing the bit

that was under the right AP.

In the next section, we use these in-DWM compute-in-memory concepts and present our

proposed architecture for HDCR. Further, we explain how the cim-tile operations implement

each of the fundamental HDC operations.

6.2 HDCR Overview

Figure 45 and 46 presents an overview of the proposed in-RTM HDC system. As ex-

plained in Section 2.4.2, the 27 hypervectors of the input letters are initially mapped to the

item memory, 9 DBCs in each subarray as shown in Figure 45. Note that for simplicity, we

only show the cim-tiles in the subarrays. For the encoding operation, the hypervectors in

the item memory are loaded into the encoder module. This requires the hypervectors in the

item memory to be shifted and aligned to the port positions in their respective DBCs (Step
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1.1 in Figure 46). Subsequently, HDCR copies the hypervectors to the encoder module im-

plemented in DBC9 of the subarray (see Step 1.2 in Figure 46 and Line 36 in Algorithm 1).

HDCR then permutes the hypervectors in the encoder module (see Lines 38-40 in Algo-

rithm 1) and performs the XOR operation to generate their N-gram hypervector (see Step

1.3 in Figure 46 and Line 45 in Algorithm 1). Since the N-grams represent N contiguous

characters in the input text, the encoder module produces a new N-gram hypervector for

each new character in the text. Thus for an input text of S characters, the encoder module

generates S −N + 1 hypervectors in total.

For each new N-gram hypervector, the counters for each bit position implemented in

DBCs10−15 are incremented based on the XOR result (see Step 1.4, Lines 47-49 in Algo-

rithm 1). The counting module performs the majority operation on all N-gram hypervectors

and generates a single hypervector based on the final counters’ state (Step 1.4). In the train-

ing phase of the HDC this generated hypervector represents a language class hypervector

(L⃗i). This is stored in the AM, and the process is repeated for all remaining languages. In

contrast, during the inference phase, the resultant hypervector (T⃗i) represents the input text.
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After generating this hypervector, it is passed on to the similarity search module in Step

2 to classify it into one of the language classes, as shown in Figure 46. In the following

sections, we provide the implementation details of the individual modules.

6.2.1 Item Memory

The HDC framework operates on D = 8192 bit wide binary vectors. Since our DBCs are

only 512 bits wide, this requires dividing the hypervectors into 16 chunks of 512 bits each

to store the complete 8192-bit hypervector. These chunks can be stored in DBC(s) of the

same subarray, or in the same DBC (e.g., DBCi) across 16 different subarrays. However,

for the encoder module in HDCR, to enable performing the TR operation in parallel across

all 8192 bit-positions, the HV chunks need to be distributed across different subarrays, as

shown in Figure 45. This group of 16 subarrays sharing and manipulating chunks of the

same hypervectors is referred to as a processing group (PG). A PG generates the output of

a CIM operation on TRD hypervectors in a single cycle.

For the LR application, the item memory (IM) is composed of 27 hypervectors (HVs),

one for each character of the Latin alphabet plus the space character τ . Since a DBC in our

proposed system has 32 domains per nanowire, the 27 HVs can be stored in a single DBC

(e.g., DBC0) across all subarrays in a PG. However, since each new character consumed from

the input text accesses the IM to retrieve its corresponding HV, this tight packing of HVs

in a single DBC can lead to a significant number of shift operations in RTM. In the worst

case, access to the IM can incur 27 − TRD = 23 shifts, which stalls the other modules in

HDCR and substantially increases the overall runtime. To overcome this, HDCR dedicates

9 DBCs (see Figure 45) to the IM and distributes the HVs in the IM such that accessing an

HV requires at most one RTM shift. That is, by placing each character HV directly at or

adjacent to one of the two access ports, we can access the 18 HVs beneath the access ports

without shifting, and the remaining 9 HVs by shifting by one position.
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Algorithm 1 HDC Procedures

1: Global variables: Vz ← ∅, θ, AM, THR

2: ▷θ = item memory, AM = Associative memory

3: function HDC Train(LS, θ)

4: ▷LS: List of Lang strings

5: for all Li ∈ LS do

6: L⃗i ← Encode(Li)

7: Store L⃗i in AM

8: return AM

9: function HDC Classify(L, θ, AM)

10: ▷L: Text string to be classified

11: T⃗ ← Encode(L)

12: LangLabel← Sim Check(T⃗ )

13: Display: L is LangLabel language.

14: function ρ(e⃗)

15: η⃗ ← [], ψ⃗ ← []

16: PG size ← dim(e⃗)
T

▷T = 512

17: for Itr ← 0 to PG size do

18: ▷Rotate left within each SA

19: η⃗ ← rol ( e⃗[512·Itr]:[512·(Itr+1)]−1)

20: ▷Concatenate rotated chunks

21: ψ⃗[512·Itr]:[512·(Itr+1)]−1 ← η⃗

22: return ψ⃗

23: function Sim Check(T⃗ )

24: for all L⃗i ∈ AM do

25: ▷Implemented with TRs

26: dH(T⃗ , L⃗i)← Hamdist(T⃗ , L⃗i)

27: ▷At the MemControl level

28: ξ = argmini∈{1,...,22}(dH(T⃗ , L⃗i))

29: return Label of language class L⃗ξ

30: function Encode(String L)

31: v⃗0 = v⃗1 = v⃗2 = v⃗3 ← 0

32: N ← 4, D ← 8192

33: charCount← 0

34: counters← 0 ▷D counters in total

35: for all ci ∈ L do

36: c⃗i ← θ(ci) ▷Read HV from IM

37: ▷Rotate HVs in the N-gram

38: v⃗3 ← ρ(v⃗2)

39: v⃗2 ← ρ(v⃗1)

40: v⃗1 ← ρ(v⃗0)

41: v⃗0 ← c⃗i

42: charCount← charCount+ 1

43: if charCount ≥ N then

44: ▷XOR with a TR operation

45: ϕ⃗ = v⃗0 ⊕ v⃗1 ⊕ v⃗2 ⊕ v⃗3
46: ▷Push counters at all bit positions

47: for Itr ← 0 to D do

48: if ϕ⃗Itr == 1 then

49: countersItr + +

50:

51: ▷Check all counters’ state against THR

52: for Itr ← 0 to D do

53: if countersItr > THR then

54: T⃗Itr ← 1

55: else

56: T⃗Itr ← 0

57: return T⃗
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To efficiently map the character HVs into the IM, we profiled each language to rank the

frequency of each character in our corpus. The most frequently occurring characters are then

placed directly under the access ports, and the remaining characters are distributed among

the bit positions adjacent to the access ports.

6.2.2 Encoding

The encoder module transforms the entire language into a representative vector (see

Section 2.4.2).From the implementation perspective, the encoder module performs three

major operations, i.e., binding, permutation and bundling (see Figure 46). In the following

sections, we explain how these operations are implemented.

6.2.2.1 Binding and Permutation in RTM

The binding operation in HDC generates a new hypervector by XORing the permuted

versions of the N character hypervectors which form each N-gram in the input text.

Initially, all hypervectors of the respective N-gram are iteratively loaded into the encoder

module i.e., DBC9 (see step 1.2 in Figure 46). Depending on the HVs position in the IM,

this may require a shift operation in RTM, as demonstrated in Figure 46 (step 1.1). In the

next step, the hypervectors are rotated by M times, where the value of M for a particular

hypervector depends upon its position in the N-gram. This rotation is functionally equivalent

to a bitwise circular shift, where the M most significant bits overwrite the M least significant

bits after shifting the remaining 512−M bits left by M bit positions. Note that this shifting

is different from the RTM nanowire shift operation. In this case, the HV bit positions along

the nanowire do not change, rather the HV representing the character is shifted across all

nanowires it spans, using the peripheral circuitry of the PIM circuitry. For instance, for the

first N-gram “dont” in the running example, the hypervector d⃗ of the first character ‘d’ is

rotated by 3, the hypervector o⃗ is rotated by 2, the hypervector n⃗ is rotated by 1, and the

hypervector t⃗ is taken unchanged. This is important for differentiating this permutation of

these four characters from any other permutation. To efficiently rotate a hypervector, which

spans many DBCs, the rotate control signal is enabled and a read operation is performed
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on all subarrays in a PG. The resultant hypervector in the row-buffer is the rotated-by-one

version of the original hypervector. A subsequent write command is issued to the RTM

controller to update the new value in RTM. To perform a rotation by three, our RTM

architecture will perform three rotated-by-one operations sequentially.

Note that rotating an entire 8192 bit HV in RTM requires considerable modifications to

the RTM row buffer. HDCR performs chunk-wise permutation on all subarrays in a PG

and concatenates the permuted chunks to generate the permuted HV, as demonstrated in

Figure 46 (Step 1.3) and Algorithm 1 (Lines 19-21). This chunk-wise rotation operation is

reversible and the generated hypervector was empirically verified to not adversely impact

the accuracy of the HDC framework.

Once the required N hypervectors for a particular N-gram are loaded and N − 1 (all but

last) hypervectors are permuted, they are XORed together to generate the resultant N-gram

hypervector (ϕ⃗i). A TR operation and sense amplifiers detect how many ones exist between

the TR access ports. When exactly one, three, or five 1s are detected, the logic in the PIM

unit asserts the XOR output, representing the XOR of all TRD operands.

This binding operation is performed iteratively for all N-grams in the input text. As the

input text is consumed, each character hypervector in each N-gram is used at least N times

in different permutations to generate N N-gram vectors. For instance, the hypervector t⃗

is used as-is to generate the first N-gram vector in the running example. However, for the

second N-gram (“ontτ”) vector, t⃗ is rotated by 1. Similarly, for third and fourth N-gram

vectors, t⃗ is rotated by 2 and 3, respectively. Since the sequence of operations is known, we

can reuse each permutation result in the next iteration to save execution cycles.

To accomplish this we leverage both upper and lower access points to align, read/shift

into the row buffer, and then write back the rotated into the access points while minimizing

alignment operations. The detailed approach is described in Algorithm 2. Using the example,

we first read v⃗0 and rotate and then write it back to complete p1(n⃗). We then align v⃗1 with

the lower access point to complete p2(o⃗). We then align the outgoing v⃗3 with the upper access

point to reset it to zero. We then align v⃗2 with the upper access point to complete p3(d⃗)

and then align the lower access point to write t⃗ from the IM. As a result of the binding and

permute operation, a new N-gram vector is generated and is consumed by the bundling unit,
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Algorithm 2 Memory operations required for computing an N-gram HV

1: ▷v⃗i, i ∈ {0, 1, 2, 3, 4} represents HV stored in DBC locations 0,1,2,3,4, i.e., all five loca-

tions between APs (see Step 1.3 in Figure 46)

2: ▷At any time Shift (if necessary) to align c⃗i to AP in IM

3: Algorithm Step: v⃗1 ← ρ(v⃗0) (see Line 40 in Algorithm 1)

4: Memory operations:

(i) Read v⃗0 (with rotate signal enabled)

(ii) Write the row buffer contents to lower access point (old V0, new V1)

5: Algorithm Step: v⃗2 ← ρ(v⃗1) (see Line 39 in Algorithm 1)

6: Memory operations:

(i) Shift down one position to align v⃗1 to lower AP

(ii) Read v⃗1 (with rotate signal enabled)

(iii) Write the row buffer contents to lower access point (old V1, new V2)

7: Clear old v⃗3:

8: Memory Operations

(i) Shift up by three positions to align v⃗3 to upper AP while resetting row buffer

(ii) Write the row buffer contents to upper access point (old V3, new V4)

9: Algorithm Step: v⃗3 ← ρ(v⃗2) (see Line 38 in Algorithm 1)

10: Memory operations:

(i) Shift up by one position to align v⃗2 to AP

(ii) Read v⃗2 (with rotate signal enabled)

(iii) Shift to align DBC location three to AP

(iv) Write the row buffer contents to the DBC upper access point (old V2, new V3)

11: Algorithm Step: v⃗0 ← c⃗i (see Line 41 in Algorithm 1)

12: Memory operations:

(i) Shift down by one position to align DBC new V0 to lower AP and Read c⃗i

(ii) Write the row buffer contents to the DBC V0
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as explained in the next section. For the entire input text, a whole set of N-gram vectors is

generated where each vector corresponds to an N-gram in the text. Vz represents all N-gram

vectors of the input text The bundling operation combines all elements in Vz by taking the

bit-wise majority on each bit position. In the next section, we discuss the implementation

of bundling in HDCR.

6.2.2.2 Bundling Operation in RTM

Bundling in the HDC framework is a conjunctive operation that forms a representative

vector for the set of N-gram hypervectors Vz. Concretely, it computes a new hypervector

Γ⃗ by adding all hypervectors in Vz, i.e., Γ⃗ =
∑

Φ⃗∈Vz
Φ⃗. Each component in Γ⃗ is then

compared to a fixed threshold to make it binary , i.e., ∀i ∈ {1, 2, . . . 8192}, T⃗i = βi, and

βi=1 if Γ⃗i > threshold, βi=0 otherwise (see Algorithm 1, Lines 52-56). The threshold value

for binary hypervectors is typically the greatest integer less than 0.5 times the number

of elements in Vz. For instance, for |Vz| = 55, the threshold value will be ⌊55× 0.5⌋ = 27,

which also means that the resultant hypervector T⃗ is equivalent to the output of the majority

function, i.e., T⃗ = Majority( Φ⃗, ∀Φ⃗ ∈ Vz).

HDCR uses RTM counters (see Section 6.1) for each bit position to implement the

majority function for |Vz| > TRD. As shown in Figure 46 (step 1.2-1.4), each subarray

dedicates DBCs10−15 for RTM counters. At each bit position in a PG, the 6 nanowires in

DBCs10−15 are used to implement the counter for that particular position. With 6 nanowires,

the RTM counters can count from 0 to 106 − 1, far more than what is required for the LR

use case. For each new N-gram hypervector, HDCR updates all counters simultaneously

based on the XOR result. Once a particular counter hits the threshold, it ignores subsequent

incrementing. To simplify the thresholding, the memory controller can preset the state of

the counter to M − T where M is the maximum value represented by the counter and T is

the desired threshold. Thus, the thresholding does not require any additional logic and can

be represented by the status of the P bit of the most-significant digit of the counter.

In our evaluated system, we have 128 PG (see Section 6.3). To reduce the overall runtime,

the input text is divided into 128 chunks, and each chunk is provided to a separate PG. Once

94



the computation in all PG is finished, the majority output of all PG is combined to make a

single final vector. In the training phase of the HDC framework, this final computed hyper-

vector represents the language (class) hypervector and is written to the associative memory

(same DBCs as for item memory, i.e., DBCs0−9 but different positions). In inference, this

hypervector is referred to as the query hypervector and is compared to all class hypervectors

to infer the final result, as shown in Figure 46 (step 2) and explained in the next section.

6.2.3 Inference

The inference phase of the HDC framework uses the same encoding module to generate a

query hypervector for the input text. Since the language class hypervectors are pre-generated

in the training phase and are stored in the pim-tiles, classification is conducted by computing

the Hamming distance of the query vector with all class vectors to find the closest match.

This similarity search is encapsulated in a module which performs three main operations.

First, the query hypervector is XORed with all class hypervectors for bit-wise matching.

Subsequently, the Hamming weight is computed by performing a population count of set

bits within each of the computed hypervectors. Finally, the language with the minimum

Hamming weight is inferred as the output.

From the implementation perspective, HDCR uses one subarray per language hyper-

vector. For the 22 language hypervectors, HDCR uses 22 subarrays (2 PG). As shown in

Figure 47, the language vectors in subarrays are stored across different DBCs of the same

subarray, unlike the encoding module which stores hypervectors across different subarrays.

The query vector is then written to all 22 subarrays to compute the Hamming weights

independently.

The XOR operation generates 16×512 bits for each language. In each subarray (for each

language), the 16 chunks are processed sequentially, with each iteration producing one 512-

bit chunk of the XOR operation in a single cycle, and then storing the results adjacent to one

another in the same DBC (DBC14 in Figure 47) for the subsequent population count opera-

tion. For each of these 16 parallel 512 bit results, the TR operation sequentially performs the

‘1’ counting in DBC14. HDCR uses the TR result to shift bits in the RTM counter imple-
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mented in DBC15, as shown in Figure 47. Since the maximum count value in the similarity

search module can be 8192, HDCR uses four nanowires for the RTM counter in this module.

Note that, unlike the per-bit counting for the majority operation in the encoding module,

the similarity search module uses a single RTM counter per DBC to find a single Hamming

weight value per language. This necessitates the counters to be updated sequentially for all

512 TR outputs after each TR operation.

Once the counting operations of the inference is done, the TR and P values for all

counters are packed and sent sequentially to the memory controller for final input language

selection.

6.3 Results

This section explains our experimental setup, provides details on the dataset, and com-

pares our proposed system to state-of-the-art solutions for performance and energy consump-

tion. Concretely, we evaluate and compare the following designs.

• HDCR: Our proposed in-RTM HDC system.

• FPGA: The FPGA based HDC system from [61].

• PCM: The in-PCM HDC implementation from [24].

6.3.1 Experimental Setup

As a target system, we consider an RTM-based 8Gb main memory that consists of 32

banks, having 64 subarrays each. A subarray consists of 16 tiles composed of 16 DBCs,

which are 512 bits wide and have 32 columns/data domains per racetrack. We assume two

access ports per nanowire and an operating clock frequency of 1000 MHz. The cim-tiles

utilize a high throughput mode proposed in prior PIM work [14]. The peripheral circuitry

in pim-tiles does not affect the storage capability or otherwise prevent its use to store data

beyond the marginal delay of a single multiplexer. The majority of the latency overhead

results from the reducing the number of domains between the ports, from 16 to 5, which
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Table 8: RTM latency and energy parameters

Domains per track 32

Tracks per DBC 512

Background power [mW] 212

Read energy [pJ]/bit 0.5

Shift energy [pJ]/bit 0.3

Shift latency [Cycle] 1

Read latency [Cycle] 1

Write latency [Cycle] 1

increases the average shift distance in the pim-tiles. While the target technologies may be

subject to different types of faults, the experiments here presume fault free operation to

ensure a fair comparison, particularly with respect to PCM which has limited endurance.

However, HDCR is is compatible with previous reliability schemes proposed in the literature

as DECC [52], or Hi-Fi [97] and by employing these techniques the major fault mode of

shift misalignment the intrinsic fault rate of circa 10−5 can be reduced to circa 10−20 with

negligible performance penalty [97]. For the LR use case, the entire training and test data

sets fit in RTM. However, since the proposed solution is generic and use case independent,

the data sets can also be partially loaded into RTM as needed to accommodate larger inputs

with the same size working set. The energy and latency numbers of the memory subsystem

are estimated using the CIM architecture presented in [51], the parameters from [93] and are

shown in Table 8.

Baseline Systems: For the FPGA design, we use the System Verilog implementation

from [61]. We synthesize the design on a Xilinx Virtex 7 FPGA (7vx1140tflg1930) using

Vivado 19.2. The maximum clock frequency was 80 MHz and the device utilization is 61%

and 23%, for LUTs and flip flops, respectively. We get the throughput result from the post

place & route simulation, which was also used to record the switching characteristics of the
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Figure 48: Runtime of HDC training on different platforms

design. The switching activity file is fed to the Vivado power estimator to get the overall

energy consumption. For comparison with the PCM configuration, we used the numbers

reported in [24].

Data Set: The language training data is taken from a corpora [60], which contains

sample texts in 22 languages. For inference, an independent data set from [34] is used,

which comprises 1000 sentences per language. The training, respectively the derivation of

the language hypervectors, was carried out with the entire training data set, which contains

a text of 120000-240000 words per language. The classification and thus the evaluation of

the accuracy is carried out on multiple instances of one sentence per language. Concretely,

1000 tests with one sentence per test are performed for each language. We implement both

the training and the inference phases of the HDC framework and report the results in the

following sections.

6.3.2 Performance Comparison

The runtime comparison for training and inference in HDCR and FPGA designs is pre-

sented in Figure 48 and Figure 49, respectively. The runtime, and also the energy consump-

tion in the next section, for the training and inference phases are computed and reported

separately because training is typically performed once and in advance. In contrast, the

inference is performed more frequently in real-world applications. Therefore, the measured
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Figure 49: Runtime of the HDC inference on different platforms. The results are generated

on average length input text for all languages

values for the inference should be regarded as having a higher relevance. Since the runtime

depends on the number of letters in the input text, which varies for different languages, the

evaluation is performed for each language.

On average (geomean), HDCR is an order of magnitude faster compared to the FPGA

design. Note that the FPGA implementation we used for comparison is already optimized

for a high degree of concurrency and parallelism. All hypervectors are stored in registers,

and encoding an N-gram requires only a single clock cycle, i.e., all N HVs are simultaneously

permuted, and the XOR operation is performed directly in the same combinational path. This

results in long combinational paths, which leads to a lower clock frequency of 80 MHz. The

massively parallel implementation of bit operations on the vectors also results in an enormous

consumption of resources, limiting the given FPGA design to large devices, e.g., from the

Virtex 7 series. Unlike the encoding operation, the similarity check module compares HVs

sequentially and requires 8192 cycles to compare the query HV to a single class HV. This

module is replicated 22 times to compare to all languages simultaneously.

In HDC training, only the encoding module is used to encode large training texts1 into

their respective class vectors. Despite the sequential rotation of hypervectors in HDCR,

it outperforms the FPGA design by a geometric mean of ≈ 10.2× (see Figure 48). This

1The number of characters for the training texts was between 100000 and 200000.

100



Figure 50: Energy consumption of the HDC training

is mainly attributed to the smaller clock period in HDCR 1 ns compared to 12.5 ns in the

FPGA design. In HDC inference, due to the smaller input text2, the overall runtime of the

FPGA design is largely dominated by the similarity checking module. We use an average

sentence size per language generated from all 1000 test sentences per language in the test

data set for this evaluation. Again, despite the sequentiality in population counting, HDCR

on average (geomean) reduces the runtime by ≈ 6× compared to the FPGA design (see

Figure 49). This is because the FPGA design performs the vector comparison sequentially

while HDCR compares in 512-bit chunks, in parallel across languages.

We also synthesized the hardware to an ASIC 65 nm process using Cadence RTL Compiler

to generate a performance comparison point consistent with the ASIC energy comparison

point presented in the next section. The best achievable clock speed was 400 MHz which is

approximately 5× faster than the FPGA implementation. The silicon required an area of

4.37 mm2, which is quite substantial for a single function accelerator. Given HDCR is more

than 6× faster for all operation modes and an ASIC implementation would be limited to the

single task, HDCR provides a substantial benefit over custom silicon.
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6.3.3 Energy Comparison

In terms of energy consumption, HDCR is comparable to the FPGA design during the

HDC training phase (see Figure 50) and ≈ 5.3× better during the inference phase. In the

similarity checking module alone, HDCR reduces the energy consumption by ≈ 95× (see

Figure 51). However, this is masked by the roughly equivalent energy consumption of the

encoder module in both designs. The dominant impact on the energy consumption for the

HDCR encoding phase is attributed to the parallel implementation of the majority operation

with RTM counters. This requires 8192 counters which enable the required number of parallel

bit-write operations. Since the energy consumption for RTM is proportional to such write

operations, it is correspondingly large for the encoding step. The result presented in Figure 50

shows the energy consumption during the training phase, which includes the encoder. While

the results vary less than 1% different between FPGA and HDCR, this analysis does not

consider I/O energy associated with moving data to and from the accelerator. In both cases,

the input letters need to be transferred from the main memory to the computing unit. While

HDCR only needs the input letter to be read and sent to the RTM memory controller,

the FPGA system must also forward the data on the bus to the FPGA implementation.

This omission makes our results more conservative, but independent of how the external

system interfaces the implementation. Regardless, the reduced inference-time energy allows

the HDCR implementation to immediately realize a net energy benefit over the FPGA

implementation as presented in Figure 51.

In the case of inference, the similarity checking in HDRC requires a single counter per

language, and the operation is performed only once. As soon as the bitwise comparison with

the XOR operation is performed, the 1s in the resultant vector are aggregated using the TR

operation and the RTM counter while the FPGA synthesizes a direct 1s counting circuit.

To summarize, with regard to the overall energy efficiency, the HDCR implementation

reduces the energy consumption by 5.3× (geomean).

2The number of characters for the test sentences was between 100 and 200 for all languages.
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Figure 51: Energy consumption of different modules in the HDC inference

6.3.4 HDCR versus PCM implementation

In the paper from Karunaratne et al. [24], they propose to use the novel PCM memory to

implement HDC. This work does not report the latency of their implementation, thus here we

only show the energy comparison. Table 9 compares the inference energy consumption of the

HDCR and PCM designs for an average-sized input text. Overall, HDCR outperforms the

PCM design by 10.1× in the encoding module and 1.08× in the similarity search module.

Although the PCM design reports dramatic reduction in the energy consumption in the

similarity checking module, largely due to parallel multiplications and current accumulation

in the crossbar architecture, its overall energy consumption is still higher than HDCR. This is

due to the higher write energy of the memristive devices compared to RTM. Comparing with

the 65 nm CMOS-only design of the same reference, HDCR achieves a 51.6× improvement.

6.4 Conclusion

The data dimensionality and mathematical properties of the HDC frameworks make them

ideal fits for in-memory computations. Many conventional and emerging memory technolo-

gies allow (partial) implementation of the HDC framework in-memory. In this paper, we

present a complete racetrack memory based HDC system, requiring near-negligible addi-
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Table 9: Average energy per query

Encoder Sim Check Total

all-CMOS [nJ] 1474 1110 2584

PCM [nJ] 420.8 9.44 430.3

HDCR [nJ] 41.4 8.67 50.07

Improvement (PCM / HDCR) 10.1× 1.08× 8.59×

tional CMOS logic. Most of the HDC operations are implemented with the TR operation

that reports the number of 1s in the nanowire, exploiting its properties and magnetic domain

(and domain wall) arrangements. For the majority and the population count operations,

we propose RTM nanowires-based counters that are scaleable and area and energy-efficient

compared to their CMOS counterparts. The hypervectors are organized in RTM in a way

that allows maximum possible parallelism and minimum possible data movement. For the in-

RTM computations, we dedicate one tile per subarray – the cim-tile – and make minimal but

necessary changes to its peripheral circuitry. For the logic operations, a few additional mul-

tiplexing/selection gates are added to the row buffer circuitry to infer the transverse results

into different HDC operations. Our hardware customization and extensions are negligible

compared to other memory technologies, e.g., the power-hungry ADC/DAC converters, etc.,

in memristive devices. For the language recognition use case, our proposed system, on av-

erage, consumes 5.33× and 8.59× less energy compared to the state-of-the-art FPGA and

PCM-crossbar designs, respectively.
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7.0 POD-RACING

As described in Section 2.4.1, a convolutional neural network is constituted of two phases,

CNN inference and CNN training. Thus, in this chapter we start by demonstrating how CNN

inference can be perform in DWM. Then, in a second time, we show how our new DWM

scheme, POD-RACING, which enables multiple precision modes from binary weight used

for inference to floating-point required for effective training. Finally, we show that POD-

RACING outperforms and provides better efficiency for both CIM (inference) and FPGA

(training) targeting edge systems.

7.1 CNN Inference

To demonstrate the potential of DWM, we explore the process of computing a convo-

lutional neural network (CNN) using PIM. CNN inference contains 3 main types of layers:

convolution layers, pooling layers, and fully connected layers, each of which can be completed

in POD-RACING using the operations from CORUSCANT.

7.1.1 Convolution

In prior PIM work, convolution is completed by computing the multiplication and re-

duction additions in parallel [41, 14, 89]. Prior DWM work uses full precision form for

convolution [41]. In full precision (8-bit) mode, to multiply two values requires adding eight

partial products, which using parallel addition can be done in O(n log n) operations. POD-

RACING has a significant advantage using the CSA technique completing the multiplication

in O(n) operations.

The leading DRAM technique implements two approximations, DrAcc [14, 89], which

uses ternary weight neural networks (TWNs), i.e., wi ∈ {−1, 0, 1}, and NID [71, 89] using

binary weight neural networks (BWNs), i.e., wi ∈ {0, 1}, where wi is the ith weight. These
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approximations, which reduce the point-wise multiplication operations to bulk bitwise oper-

ations, (e.g., XNOR), essentially reduce the problem to be governed by the number of addition

operations for reduction. The number of adds Na is governed by:

Na = Os ∗ ((K2 − 1) ∗ Ic + (Ic − 1)) (7.1)

where Os is the number of output values, K is the kernel size, and Ic is the number of input

channels.

Prior work proposes to compute addition using a carry lookahead adder (CLA). In doing

this they compute [14]:

1. Gi = Ai&Bi; 2. Pi = Ai ⊕Bi

3. Ci+1 = Gi||(Pi&Ci); 4. Si = Pi ⊕ Ci

(7.2)

which takes 40 cycles using ELP2IM [89]. We can call this one step. The first reduction

step of Alexnet requires 362 additions, or ⌈log2 362⌉ → 9 steps, where each step requires 40

cycles. Using CORUSCANT operations with CSA approach requires five 7 → 3 operand

reduction steps each of O(1) (4 cycles), followed by one addition that requires 16 cycles.

This results in a circa 10× speedup. For the largest convolution window requiring 4.5 · 108

adds, DRAM PIM requires 29 addition steps, while POD-RACING requires 22 reduction

steps and 1 addition step, achieving more than 11× speedup. Smaller windows generate

more moderate speedups for POD-RACING.

7.1.2 Pooling

During pooling, the dimensionality of an input matrix is reduced by taking the average

or maximum of all values in sub-matrices of a predefined size to generate the output ma-

trix values. Using CORUSCANT, the max function can be realized via TR across all the

candidates evaluating MSB to LSB sequentially. Each step compares the binary weight of

the same bit position in each word, and the TR result determines the subsequent action

via predicated execution with local information. This allows PIM instructions issued by the

memory controller to work in parallel across many subarrays in parallel. First, the values

upon which to compute the max are stored in adjacent positions between the access points.
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Figure 52: Maximum function example

Then a TR is performed across the MSBs; If TR>0 the value under the right head is read

and stored in the rowbuffer. If the MSB is ‘0’ the rowbuffer is reset. This eliminates a value

that is lower than the other values. Then the DBC is shifted right and the value of the

rowbuffer is written to the left head.

All TRD words are processed in this manner. If TR = 0, then each word is read from the

right and re-written to the left access point, while shifting in between. Essentially, the data

remains unchanged. This is necessary because if all values are ‘0’ in this position, it does not

eliminate any values from being the maximum. From a PIM instruction execution perspec-

tive, the memory controller issued instructions are identical for all participating subarrays

by making the rowbuffer reset command predicated on the TR and tested bit. We can use

a DWM AND function in another DBC of the same tile/subarray to store and compute the

logic value governing the predicated execution of the row-buffer reset.

The process is repeated for each bit position and the value is read using TR > 0, so the

max vector is read, regardless of its location between the heads and if > 1 vectors equal the

max value the TR value it is still accessed correctly. Figure 52 depicts a concrete example

for TRD = 4 of the state of words A, B, C, and D as they are processed by the maximum

subroutine, in chronological order from left to right with a different color representing the

values after a bit is processed. At the MSB pass starting with blue, TR> 0. Words A and
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Figure 53: Transverse write and segmented shift.

D have ‘0’ in their MSB, so they are overwritten by the zero vector and B and C are written

back unchanged. The result after the first step is shown in white. For MSB-1, TR = 0. Thus

all words are read and written back unchanged as shown in red. For MSB-2, TR > 0. Words

A, C, and D all have ‘0’ in that bit position, so they are overwritten by the zero vector and

only B is written back unchanged as shown in green. Now the maximum value has been

determined, and will be maintained as all the bits are traversed through the LSB.

The maximum function requires cycling through vectors many times which makes shifting

the entire nanowire impractical. To address this concern, and to reduce delay, we propose the

novel Transverse Write (TW) technique with segmented shifting. This is inspired by the shift-

based writing [85] approach and transverse access techniques [63] previously proposed. We

illustrate this new concept in Figure 53. Two write/read heads are represented in dark blue

separated by data domains in light blue (TRD = 4 is shown instead of TRD = 7 to simplify

the explanation). To perform a classic shift-based write under the left head, WWL1 and RWL0

are closed, thus the current flows from BLB to a fixed layer, to the domain, shifting the dark

red upward orientation of the fixed layer to replace the pink downward orientation in the

nanowire. This operation can be modified to shift the pink orientation along the nanowire

rather than to ground. This TW operation closes WWL1 and RWL1. Thus, the current flows

from BLB through the fixed layer and the four domains before exiting through the right head
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as indicated by the green arrow. By doing so, the fixed layer orientation at WWL1 is written

under the left head, and the pink orientation and those which follow it advance along the

nanowire, forcing the yellow arrow to GND.

Applying this to the majority function, in the context of Figure 53, if TR > 0, POD-

RACING reads from the right head (yellow arrow). The predicated rowbuffer reset command

is executed. Then the value of the word is written via TW from the left head to the right

head. Thus, by reading from the right and conducting TW from the left the segmented shift

ensures each updated operand is returned to its original position along the nanowires and

the remaining locations are not disturbed.

7.1.3 Relu Function

The fully connected layer executes the following function:

ReLU(Wx + b) (7.3)

where W is the weight matrix, x is the input vector and b is the bias vector. The ReLU

function returns zero if
∑i0

i=0Wijxi +bj ≤ 0 and
∑i0

i=0Wijxi +bj otherwise. This function

is implemented by computing
∑i0

i=0Wijxi + bj using CORUSCANT addition and multipli-

cation operations. Using a predicated row refresh based on the MSB, which is ‘1’ for values

< 0 and writing the value back the resulting value from the ReLU function to the array,

repeating ∀j.
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7.2 CNN Training

In the next sections, we describe floating-point multiplication and reduction over addition

required for accurate back propagation used for CNN online training.

7.2.1 Floating Point Two Operands Multiplication

To conduct floating-point multiplication the operands must be separated into their main

components of sign, exponent, and mantissa via masking using bulk-bitwise operation. Using

a combination of integer arithmetic on the extracted elements we can compute floating-point

multiplication. Given the nature of CNN training where point-wise products are reduced

over addition, we leave the products separated to support multi-operand summation.

Algorithm 3 Floating-point Multiplication
1: Global variables: OPA, OPB ,M,E, S
2: ▷Inputs: OPA,B Operands
3: ▷Outputs: M = Mantissa, E = Exponent, S = Sign
4:
5: function FPMultiply(OPA, OPB)
6: ▷Mask off and multiply the mantissas
7: MA ← (OPA AND 0x7FFFFF) OR 0x800000
8: MB ← (OPB AND 0x7FFFFF) OR 0x800000
9: M ← Multiply (MA,MB)
10: ▷normalize if M ≥ 2.0
11: norm← (M AND 0x800000000000)
12: ▷Predicated M normalization shift testing norm
13: norm ? M ←M >> 1
14: ▷Mask off, add the exponents with normalization
15: EA ← (OPA AND 0x7F800000)
16: EB ← (OPB AND 0x7F800000)
17: offset← 0xC0800000 ▷ -127 to correct exponent
18: one← 0x0
19: norm ? one← 0x800000 ▷increase exponent if M≥2.0
20: ▷Add exponents, note overflow if E31 = 1
21: E ← Add(EA, EB , offset, one,0x0,8,23)
22: ▷Mask off and determine final sign
23: SA ← (OPA AND 0x80000000)
24: SB ← (OPB AND 0x80000000)
25: S ← (SA XOR SB)
26: return M,E, S

Presuming the 32-bit floating-point standard of a 23-bit mantissa, an 8-bit exponent

(biased by 28 − 1), packed into 64-bits to provide space for the multiplication. First the

mantissa Mi, exponent Ei, and sign Si of each operand i ∈ {A,B} is masked off with an AND
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operation and stored separately. The implied leading ‘1’ is also restored to each mantissa with

an OR operation, as shown in lines 6–8 of Algorithm 3. Using integer operations we multiply

the two 24-bit mantissas allowing expansion to 48-bits. Because 1.0 ≤ {MA,MB} < 2.0,

then 1.0 ≤ M = MA ×MB < 4. The normalization process checks the 48th bit (line 11)

and uses this to populate the predication register for a predicated shift operation required

to normalize mantissas M ≥ 2.0 (line 13). This requires that the predication register must

be able to select between bit 0 for multiplication or 47 from the row-buffer to populate the

predication register.

Next the new exponent must be calculated we sum using multi-operand integer arith-

metic, the two extracted exponents EA, EB but must subtract (add negative) 127, which

is loaded into the memory location indicated by offset, to deal with the exponent nor-

malization factor. If the mantissa was shifted for normalization, we increase the exponent

by one through a predicated storage of 0x800000 into an otherwise empty location denoted

as one. Executing the Add function sums the exponents EA, EB, 0x7F800000 (-127), and

optionally 0x800000 as a normalization if the mantissa required normalization. With a 5th

0x0 operand, the new exponent is calculated by adding w = 8-bits starting at bit l = 23

(line 21). Note, if E31 is ‘1’ the exponent has gone out of range (overflow) because either

E > 255 or E < 0.

Next, as described in lines 22–25 of Algorithm 3 , the sign bit S = SA XORSB to determine

the resulting sign of the multiplication. We leave M , E, and S, decomposed to facilitate

reduction over floating-point addition described in the next section.

7.2.2 Floating Point Multi-Operands Addition

The addition required in the CNN application is a reduction over addition to combine

products of point-wise multiplication within a convolution window. Given the sign, mantissa,

and exponents of these products are already segregated, we conduct floating-point addition

following the flow in Algorithm 4. The function begins by searching for the maximum

exponent among the operands in groups of TRD= 7 ,positioned between two access points

AP0 and AP1, (lines 6–16) using FindMax from the helper functions in Algorithm 5 as
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follows: Starting with the most significant bit (p) an OR operation (isAnyOne) detects any

‘1’s at that position (line 5). If there is at least one ‘1’ then we eliminate values with ‘0’s at

that position because they will be smaller by resetting the rowbuffer and writing them back

as 0x0. The algorithm does this by reading each exponent in turn from AP0, inverts the

exp with an XOR with 1 (nIsOne) then ANDs this with isAnyOne (lines 7–8). A predication

bit pred is extracted from the row buffer at position p = 31 and controls the rowbuffer

reset (line 10). The nanowires are shifted toward AP0 and the value is written back to AP1

(lines 11–12) such that after a round of TRD (= 7 shown in the algorithm) each exponent is

written back and stored in its correct original position. If there are no ‘1’s in this position,

the predicate logic is never true because isAnyOne is zero (line 5), so none of the exponents

are eliminated (line 10).

Note, each exponent is logically shifted left by one each time, this is to facilitate reading

the predicate from bit p each round. This ensures the predicate is only selected from position

0, 31, and 47. The final result is logically shifted right by eight to put the maximum exponent

value in the correct alignment (line 13). The main function uses FindMax in logTRD=7

fashion to find the overall maximum exponent now stored in E.

Next all of the mantissas must be normalized to the maximum exponent and after nor-

malization if their sign is negative inverted in twos complement for summation (Algorithm 4,

lines 17–22). The first step uses the NormMantissa helper function (Algorithm 5). First

the exponent is subtracted from the maximum exponent (lines 17–18), then each bit is in-

spected to normalize the mantissa. Again the predication bit is extracted from the same

position p as in the FindMax function. If the highest two bits are true, the mantissa is

shifted by 128 or 64 places which results in setting it to 0x0 (lines 19–21). For the next three

bits (5:3) 4, 2, and 1 predicated shifts by 8 are executed (line 27), followed by 4, 2, and 1

predicted shifts by 1 (line 26). Note, these mantissas are still “normalized” to bit position

47 not 23 from the multiplication in a prior step, so a shift by 32 is still in scope. After

normalization, two storage locations for each value are allocated. If the value is positive the

first location gets the mantissa and the second get 0x0. Using predication from the sign

bit (also bit position 31) the mantissa is inverted and the second location is written 0x1

(Algorithm 4 lines 20–22).
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Algorithm 4 Floating-point Addition
1: Global variables: M [0..n− 1], E[0..n− 1], S[0..n− 1]
2: ▷Inputs: M [0..n− 1], E[0..n− 1], S[0..n− 1] Operands
3: ▷Outputs: M = Mantissa, E = Exponent, S = Sign

4: ▷Conduct Floating-Point Addition of n values
5: function FPAdd(M[0..n-1], E[0..n-1], S[0..n-1])
6: ▷Find maximum exponent searching groups of TRD (7)
7: t← ⌈n/7⌉; r ← n mod 7
8: while t > 1 do
9: for i← 0 : t− 1 do
10: E[i] ← FindMax(E[7i..7i+6])

11: for i← 0 : r − 1 do
12: E[t+i] ← E[7*t+i]

13: t← ⌈(t+ r)/7⌉; r ← (t+ r) mod 7

14: for i← r : 6 do
15: E[i] ← 0

16: E = FindMaxE[0..6]
17: ▷Normalize Mantissas and convert to 2’s complement
18: for i← 0 : n− 1 do
19: m[2 ∗ i] = NormMantissa(M[i],E,E[i])
20: m[2 ∗ i+ 1] = 0x0
21: S[i] ? m[2 ∗ i]← m[2 ∗ i] XOR 0xFFFFFFFFFFFFFFFF
22: S[i] ? m[2 ∗ i+ 1]←0x1

23: ▷Sum Mantissas
24: t← ⌈n ∗ 2/7⌉; r ← 2 ∗ n mod 7
25: while (t > 1)||(r > 5) do
26: for i← 0 : t− 1 do
27: m[3i...3i+ 2]← CSA-Reduction(m[7i..7i+ 6])
28: if r > 3 then
29: m[3t...3t+2]←CSA-Reduction(m[7t..7t+r])
30: else
31: m[3t...3t+ r]← m[7t..7t+ r])

32: t← ⌈(t ∗ 3 + r)/7⌉; r ← (t ∗ 3 + r) mod 7

33: M ← Add(m[0..r],64)
34: Sum← NormSum(M,E)
35: return E[0]
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Algorithm 5 Addition Helper Functions

1: ▷Find the Maximum Among 7 values
2: function FindMax(E[0..6],w=8,o=23)
3: p← o+ w
4: for i← o : o+ w − 1 do
5: isAnyOne← OR E[0..6] ▷TR≥ 1
6: for j ← 0 : 6 do
7: nIsOne←E[j]o XOR 0xFFFFFFFFFFFFFFFF
8: pred← isAnyOne AND nIsOne
9: RB ←E[j]<< 1
10: predp ? RESET RB ▷test at bit p =⇒ RB ← 0
11: SHIFT rows upward ▷Shift DWM DBC, reindex E
12: E[6] ← RB

13: return TR E[0..6] >> 8

14: ▷Normalize a Mantissa based on Exponent Difference
15: function NormMantissa(M, Max, E,w=8,o=23)
16: p← o+ w
17: t← E XOR 0xFF800000 ▷Invert Exponent
18: S ←Add(Max,t,0x800000,0,0,w+1,o)
19: for i← 7 : 6 do
20: isOne←Sp;S ← S << 1
21: isOne ? M ← 0x0
22: for i← 5 : 0 do
23: k ← i mod 3
24: isOne←Sp;S ← S << 1
25: for j ← 0 : 2k do
26: if i < 3 then isOne ? M ← M >> 1
27: else isOne ? M ← M >> 8
28: return M

114



Algorithm 6 Addition Helper Functions Part 2

1: ▷Normalize Mantissa based on Summation and prepare Sum
2: function NormSum(M, E)
3: ▷Get sign from MSB and if negative, get 2’s Complement
4: sign← M
5: for i← 0 : 3 do ▷Move the sign to bit 31
6: sign >> 8

7: sign31 ? M ← M XOR 0xFFFFFFFFFFFFFFFF
8: sign31 ? M ← Add(M,0x1,0,0,0,64)
9: ▷Copy mantissa, << to find first ‘1’, norm exp with
10: ▷predicate, shift mantissa to bit 23
11: m←M; m << 1; seenOne← 0x0
12: ▷If Mantissa is higher than bit 47, increase the exp
13: ▷Shift the mantissa right to bit position 47
14: for i← 15 : 0 do
15: seenThisOne← m OR seenOne
16: seenOneFirst← seenThisOne XOR seenOne
17: seenOneFirst63 ? expAdd← i << 23
18: seenOne← seenThisOne
19: seenOne63 ? M ←M >> 1
20: m← m << 1
21: ▷If Mantissa is lower than bit 47, decrease the exp
22: for i← 1 : 47 do
23: seenThisOne← m OR seenOne
24: seenOneFirst← seenThisOne XOR seenOne
25: seenOneFirst63 ? expAdd← −i << 23
26: seenOne← seenThisOne
27: nSeenOne←seenOne XOR 0xFFFFFFFFFFFFFFFF
28: ▷From 47..24, shift the mantissa right to bit position 23
29: if i < 23 then
30: seenOne63 ? M ←M >> 1

31: ▷From 22...0, shift the mantissa left to bit position 23
32: if i > 23 then
33: nSeenOne63 ? M ←M << 1

34: m← m << 1
35: exp← ADD(E,expAdd,0,0,0,8,23) ▷Add offset to exp
36: sum← m AND 0x7FFFFF ▷Strip leading ‘1’
37: sum← sum OR exp OR sign ▷Recombine
38: return sum
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Once normalized and converted to twos complement form, the mantissas can be summed.

Similar to multiply, CSA-Reduction is used to reduce operands from 7 → 3 until there

are TRD − 2 = 5 or fewer which are then summed using Add (lines 23–32). The last step

is to again normalize the resulting mantissa and to reassemble the floating point number.

Normalization is done using NormSum helper function (Algorithm 6). Since this addition

used twos complement logic we extract the sign from most significant bit of the full 64-

bit cell. This becomes the predicate to invert and add 0x1 to make the mantissa positive

(lines 3–8). We then look for the first ‘1’ in the mantissa in relationship to bit 47.

The first bit position requires two storage locations, one to store whether a ‘1’ has

been seen seenOne and a second seenThisOne which looks for a ‘1’ at this bit position.

seenThisOne is true if we have seen a ‘1’ previously or there is a one in this round (line 15.

The predicate seenOneFirst comes from XOR which is only true on the first ‘1’ (line 16) and

the expAdd value is only set once (line 17). Once seenOne is set, we start shifting M to be

aligned with bit 23, which requires right shifts if found before bit 23, shown with predicated

shifts on seenOne for bits 62:48 (line 19) and 47:24 (line 30). If seenOne is still not seen by

bit 22, we start shifting left governed by the seenOne complement nSeenOne until the ‘1’

is found (line 33) . The remainder of the function is to combine the normalization exponent

offset expADD with E, strip bit 23 and combine the sign, exponent, and mantissa per the

floating point standard (lines 35–38).

Note, these algorithms are designed to show the feasibility of the function. In some

cases, optimizations for system performance or code optimizations for expediency may have

been excluded to maintain clarity. For example, while shown here, we can complete the

decomposition and recomposition only at the beginning or ending of the full benchmark

when communicating with a host processor. Additionally, while shown for 63-bits, we can

use the lower 32 bits from the sign shift first and then work from the m to only pull predicates

from position 31 (selecting from three positions, 47, 31, 0).

The control for these algorithms comes from the hosts/memory controller. Control of

for, if, while, etc. control constructs are governed by the host as they are deterministic and

can be entirely unrolled. Moreover, these can be distributed via single instruction multiple

data (SIMD) execution throughout the system (e.g., via different subarrays) for massive
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parallelism. Only the predicated instructions use data-based control, and these presume the

instructions will be executed or a nop in its place to remain in lock step with the SIMD

execution. Finally, while shown for 32/64 bits, given the row size is 512, 8 items can be

packed per row and computed in parallel.

7.2.3 Additional Operation for Back Propagation

During back propagation weight matrices must be rotated 180 degrees, which is equiva-

lent to swapping the values of these relatively small (3×3 up to 11×11) along vertical and

horizontal bisecting line of the matrix. We use POD-RACING PIM to mask off the individ-

ual values of each row using AND, logically shift to the correct position, and recombine using

OR. Additionally, the weight update operation: W ′ = W −LR×∆W where the new weight

W ′ is a function of the previous weight W the learning weight LR and the weight difference

∆W calculated via gradient descent method. We also use floating-point POD-RACING CIM

to compute this function.

7.3 Results

POD-RACING enables multiple precision modes from binary weight used for inference

to floating-point required for effective training. Thus we compare POD-RACING for in-

ference against state-of-the-art DRAM CIM using ternary and binary weights [14, 71, 89],

ReRam crossbar [70] and RM using integer weights [41] as well as POD-RACING for train-

ing using floating-point operations against energy-efficient FPGAs suitable for Edge systems:

Xilinx ZU19EG (Lenet-10) [42] and ZCU102 (Alexnet and VGG-16) [77]. Lenet-5 [36] and

Alexnet [35], are commonly used for image processing, machine learning training on hand-

written digits and on RGB images, respectively.
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7.3.1 CNN Inference Comparison

First, for CNN inference, we compare POD-RACING including a sensitivity study of

POD-RACING-TRD ∈ {3, 5, 7} with SPIM in Table 10. POD-RACING-3 provides a 2.2×

improvement over both Alexnet and Lenet and this grows to 2.8× improvement for increasing

the TRD = 7 due to the 27% performance improvement of POD-RACING with the larger

TRD.

Previous DRAM work, ELP2IM, implements these CNNs using a TWN and BWN ap-

proximation. Binary convolution replaces multiplication with XNOR and ternary weights [103]

also eliminates most multiplication. For direct comparison we implemented the TWN

method modeled after DrAcc [14] using POD-RACING for TRD ∈ {3, 5, 7} and compared it

with both Ambit and ELP2IM implementations of DrAcc as well as the simpler binary im-

plementation modeled after NID [71] shown in Table 10. POD-RACING-3 (DrAcc) provides

significant speedups of 3.7× and 4.2× for ternary implementations while providing 2.6× and

2.9× improvements over the simpler binary implementations of CNN inference for ELP2IM

and Ambit, respectively. This speedup grows to over 5× for Alexnet and approximately

4× for Lenet when using POD-RACING-7. In general, increasing the TRD from 3 → 5

increases POD-RACING performance 30-40%, and increasing from 5 → 7 increases perfor-

mance by another 10-20%. POD-RACING is considerably faster than the ISAAC ReRAM

Crossbar [70], generally achieving an order of magnitude performance improvement. Inter-

estingly POD-RACING-5 at full precision is nearly identical to the ternary approximation

using Ambit, and POD-RACING-7 at full precision is competitive (within 6% performance)

of ELP2IM using the ternary approximation.

For TRD=7, we calculated the power and efficiency (which is equal to the throughput

divided by the power) of POD-RACING for CNN inference and compared it to state-of-the-

art DRAM and DWM PIM technique using ternary and full precision weights, respectively.

The results are shown in Table 11. Using bulk-bitwise ternary weight CNN inference POD-

RACING is approximately 2× power advantage leading to an order of magnitude efficiency

advantage for Alexnet. Using integer operations, POD-RACING provides more than 3× the

efficiency of the latest RM CIM.
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Table 10: CNN Inference Throughput Comparison

Scheme Alexnet Speedup× Lenet5 Speedup×

(FPS) C3 C5 C7 (FPS) C3 C5 C7

Full Precision CNN Inference

SPIM 32.1 2.2 2.6 2.8 59 2.2 2.6 2.8

POD-R-3 71.1 1 1.2 1.3 131 1 1.2 1.3

POD-R-5 84.0 Ø 1 1.1 153 Ø 1 1.1

POD-R-7 90.5 Ø Ø 1 163 Ø Ø 1

ReRAM Crossbar CNN Inference

ISAAC 34.0 10.5 13.2 14.4 2581 8.6 10.3 12.4

Binary Weight Neural Network (BWN) CNN Inference (NID)

Ambit 227 1.6 2.0 2.2 7525 2.9 3.5 4.3

ELP2IM 253 1.4 1.8 1.9 9959 2.2 2.7 3.2

Ternary Weight Neural Network (TWN) Inference (DrAcc)

Ambit 84.8 4.2 5.3 5.8 7697 2.9 3.4 4.2

ELP2IM 96.4 3.7 4.7 5.1 8330 2.6 3.2 3.9

POD-R-3 358 1 1.3 1.4 22172 1 1.2 1.5

POD-R-5 449 Ø 1 1.1 26453 Ø 1 1.2

POD-R-7 490 Ø Ø 1 32075 Ø Ø 1
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Table 11: POD-RACING Efficiency Comparison for CNN Inference

Inference Improvement Compared to CIM

Benchmark Target Throughput Power Efficiency

FPS W FPS/W

Lenet-5 DRAM [89] 8330 – –

Ternary [14] POD-R 32075 0.028 1.1·106

POD-R Improvement 3.85× Ø Ø

Alexnet DRAM [14] 84.8 2 42.4

Ternary [14] POD-R 490 0.93 526

POD-R Improvement 5.78× 1.94× 12.4×

Lenet-5 RM [41] 59 0.017 13291

Integer POD-R 163 0.006 44169

POD-R Improvement 2.76× 2.33× 3.32×

Alexnet RM [41] 32.1 5.89 5.45

Integer POD-R 90.5 4.99 18.13

POD-R Improvement 2.81× 1.18× 3.33×
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7.3.2 CNN Training Comparison

As training requires a high accuracy and large datasets, which typically can be most

efficiently accelerated with a graphics processing unit (GPU). However, given in situ training

for low latency with small batch sizes and to maintain SWaP of edge systems GPUs may

not be practical for their relatively high power. Sending these large datasets to the cloud

for GPU acceleration is also impractical. Given PIM has yet to demonstrate CNN training

with floating-point precision, we compare with FPGAs accelerators, which are emerging for

in situ edge CNN training [42, 77].

POD-RACING is competitive, even outperforming FPGAs by 18–74% with a significant

improvement in power. We demonstrate, in Table 12, more than 2× improvement in effi-

ciency even as the complexity of the CNN increases; POD-RACING for Alexnet is 2× more

efficient, while VGG-16 is 2.36×more efficient. Thus, not only is POD-RACING demonstrat-

ing that CNN training is possible using CIM, it may even be more practical than FPGAs.

When coupled with the high capacity and low energy consumption of RM-based memory,

the capabilities for SWaP constrained edge acceleration of deep learning and beyond are

impressive and worthy of further exploration.

7.4 Conclusion

POD-RACING is the first, to our knowledge, approach to enable full CNN architectures

in memory, with multiple precision capabilities suitable for tuning both inference and training

operations. While floating-point operations have always been a major roadblock for in

memory processing, POD-RACING can perform these operations efficiently at a speed and

energy consumption improving over FPGA technology. In particular, POD-RACING is

between 18% and 74% faster in term of throughput, and at least 26% better in term of

energy, resulting in an efficiency improvement of more than 2× compared to state-of-art

FPGAs for small to moderate sized CNNs.
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Table 12: POD-RACING Efficiency Comparison for CNN Training

Training Improvement Compared to FPGA

Benchmark Target Throughput Power Efficiency

GFLOPS W GFLOPS/W

Lenet-10
FPGA [42] 86.12 14.23 6.05

POD-R 101.5 2.76 36.77

POD-R Improvement 1.18× 5.16× 6.08×

Alexnet
FPGA [77] 34.52 7.74 4.46

POD-R 50.72 5.65 8.97

POD-R Improvement 1.47× 1.36× 2.01×

VGG-16
FPGA [77] 46.99 7.71 6.09

POD-R 81.95 5.7 14.37

POD-R Improvement 1.74× 1.35× 2.36×
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8.0 Overall Conclusion and future work

This dissertation has provided evidences that leveraging transverse read enables reliable

processing in memory for spintronic domain wall memory. Specifically, this PhD demon-

strates the DWM PIM efficiency compared to the state-of-the-art PIM techniques and FPGA

designs.

In particular, my contributions are as follows. First, I present GROGU and PIETT, two

detection and correction codes that can scale with the nanowire, addressing misalignment

and data loss in DWM due to current and process variation, respectively.

Once I could guarantee a mean time to failure above 10 years for a minimal overhead.

I introduce CORUSCANT, a novel architecture inspired from DRAM to simplify the in-

tegration with current technologies. In this second part, I propose the first PIM work in

DWM that can perform multi-operands bulk-bitwise and addition operations, as well as

two-operands multiplication.

Finally, I demonstrated DWM PIM efficiency on modern applications as Hyperdimen-

sional Computing (HDC) in HDCR, and Convolutional Neural Network (CNN) in POD-

RACING. HDCR presents a data placement technique to efficiently process large vectors

in DWM. In addition, HDCR propose the first DWM PIM counter. Additionally, in POD-

RACING, I propose the necessary operations to execute both CNN training and inference:

maximum, Relu, matrix rotation, multi-operands floating point addition and two operands

floating point multiplication in memory.

Along with this dissertation, I have been working on two additional project, applying

DWM counter to a genome matching application, and, computing division in DWM. While

both show promising results, one challenge common to any PIM work remains, finding a

technique to protect against fault while performing PIM in memory.
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terizing the energy consumption of data transfers and arithmetic operations on x86-
64 processors. In International conference on green computing, pages 123–133. IEEE,
2010.

128



[48] Taehui Na, Seung H. Kang, and Seong-Ook Jung. Stt-mram sensing: A review. IEEE
Transactions on Circuits and Systems II: Express Briefs, 68(1):12–18, 2021.

[49] North Carolina State University. Freepdk45.
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