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Abstract 

Bottom-up and top-down contributions to the organization and dynamics of ventral 

temporal cortex 

 

Matthew J. Boring, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

Ventral visual cortex is a hierarchical recursive network that facilitates object recognition. 

Many questions regarding the balance between bottom-up and top-down constraints on the 

functional organization and response dynamics of ventral temporal cortex (VTC) remain 

unanswered. Here, we map spatial and temporal properties of category-selective neural 

populations in VTC and investigate long-range functional connectivity patterns that are associated 

with key neural dynamics in these populations. These maps demonstrate systematic changes in 

neural dynamics and functional connectivity patterns at successive stages of the ventral visual 

hierarchy, which are not well characterized by fast feedforward models. Regions within VTC that 

were highly selective for specific object categories demonstrated a complex organization, with 

multiple adjoining patches selective for words and faces, each with distinct dynamics.  

To understand how bottom-up and top-down interactions influence local neural 

representations, we specifically examined the responses of one key region involved in reading, 

word-selective ventral occipitotemporal cortex (wVOT), sometimes referred to as the Visual Word 

Form Area. We replicate the finding that activity in this region demonstrates a dynamic shift in its 

representation 250 ms after viewing real words. Early activity from wVOT was sufficient to 

disambiguate visually dissimilar words, whereas later activity could disambiguate words sharing 

all but one letter. This transition was strongest for real words compared to pseudowords, consonant 

strings, and false fonts and was associated with increased functional connectivity with anterior 
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VTC and early visual cortices. This suggests that bottom-up information, potentially across 

multiple eye movements, and top-down information, like phonology and semantics, encourage 

dynamic shifts in wVOT representations.  

Finally, we review recent and seminal findings of wVOT’s development and response 

properties. In doing so, we arrive at a model wherein wVOT’s localization is constrained by 

preexisting white matter pathways specialized for evolutionarily older functions, including visual 

to phonological transformations necessary for lip/speech reading and visual to semantic 

transformations necessary for object naming. This model help explains why wVOT responds to 

non-visual linguistic stimuli and why it has a consistent localization across individuals. Together, 

this work provides a systematic investigation into how bottom-up and top-down influences shape 

the organization and dynamics of category-selective VTC.  
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1.0 Introduction 

Ventral temporal cortex (VTC) is a critical hub for object recognition in humans. In 

macaques, lesions to the functionally homologous inferotemporal cortex results in a marked deficit 

in the ability of animals to recognize visual objects, while preserving visuospatial cognition [1]. 

In humans, more localized damage to VTC causes category-specific deficits in object recognition, 

such as the specific inability to recognize tools, animals, faces or words [2–6]. Early observations 

of category-selective deficits in object recognition lead to the hypothesis that the visual system 

was organized into domain specific modules, damage to which leads to the observed category 

specific deficits [2,3,7]. More recently, advances in neuroimaging have confirmed the existence of 

areas in VTC that respond selectively to certain categories of objects, including words, faces, 

places, and tools [8–15]. Electrical brain stimulation of these category-selective regions, including 

those selective for faces [16–18] and words [19–25], has been shown to specifically disrupt 

processing of the category that region is selective for, without evoking deficits in the processing 

of other categories. The degree to which these results support domain specific processing in VTC 

or whether this selectivity arises from more general principles remains debated [26–32], in addition 

to many other open questions regarding the bottom-up and top-down factors that influence the 

organization and dynamics of category-selective activity in VTC. 
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1.1 Bottom-up contributions to VTC dynamics and organization 

Single unit studies in macaques have been instrumental in elucidating the hierarchical 

organization of ventral visual cortex [33–37]. Neurons along the ventral visual stream demonstrate 

hierarchical responses, with neurons in more anterior regions pooling over neurons from more 

posterior regions to form increasingly complex representations over increasingly large portions of 

the visual field [34,38]. These hierarchical neural responses only take approximately 10 ms to 

propagate to the next processing layer [39] and these early responses are sufficient to decode what 

category of object macaques are viewing [40]. This rapid propagation of activity and the 

hierarchical nature of ventral visual responses has led to the influential perspective that object 

recognition is achieved through fast, feedforward, hierarchical computations [34,38,40–42]. This 

perspective is useful for explaining early VTC response dynamics but, as we will see in the next 

section, fails to capture important top-down influences on extended VTC processing dynamics. 

In addition to explaining early neural responses collected throughout inferotemporal 

cortex, the feedforward view also offers potential mechanisms whereby ecological categories of 

objects tend to be clustered together in mature visual cortex. Primary visual cortex is organized 

according to a topographic map of retinotopic space, which is conserved through several layers of 

the ventral visual hierarchy [34,43–48]. This retinotopic map biases where patches of category-

selective neurons are located, depending on where their preferred objects tend to fall on the retina 

[9,43,49,50]. For example, humans tend to foveate faces and words throughout visual 

development, which can help explain why face- and word-selective regions tend to be constrained 

to lateral aspects of VTC, which has foveal receptive fields [9,43,46,47,49,51]. On the other hand, 

navigationally relevant information, like places, are not typically foveated and are therefore 

constrained to be represented in more medial aspects of VTC [9,15,49,51,52]. Other low-level 



  

 3 

visual features like curvature [53] and shape [54] have also been suggested to influence where 

category-selective regions are localized in VTC. The weight of each of these bottom-up features 

in determining category-selective VTC organization remains an open question. 

In addition to being constrained by low-level visual features, some argue that category-

selective regions in VTC require visual experience to develop [31,32,44,48,55–57]. Macaques 

without exposure to faces for the first year of life did not develop face-selective patches seen in 

macaques with normal experiences, but they did develop patches selective for other objects that 

they were exposed to, like hands [58]. Conversely, macaques that underwent extensive training to 

discriminate between abstract symbols including Latin letters or Arabic numerals developed 

patches selective for these stimuli, which were not seen in untrained animals [55,56]. These 

symbol-selective patches developed in similar locations across animals, which was argued to 

suggest that this patch of inferotemporal cortex is innately specialized to process foveal 

information with the low-level shape characteristics of the learned symbols [55,56]. Together, 

studies like these suggest that extensive visual experience with specific object categories is 

necessary for the formation of category-selective patches in VTC, the organization of which are 

constrained by the topographical projections of low-level visual features throughout the ventral 

visual hierarchy [27,44,55,56]. However, bottom-up models like these fail to capture the potential 

influence of top-down interactions, including connectivity between higher-order social/affective 

processing centers and VTC face-selective regions or semantic/phonological centers and VTC 

word-selective regions, on the organization and dynamics of VTC [29,59–65]. 
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1.2 Top-down contributions to VTC dynamics and organization 

Most feedforward models of ventral visual processing consist of homogenous hierarchical 

layers, which pool inputs solely from the previous layer and output solely to the next layer 

[37,38,41]. Units in these layers quickly evaluate incoming stimuli for the presence of their 

preferred feature and pass that output to the next layer, without further contributing to later stages 

of processing [37,38,41]. This feedforward architecture ignores the fact that the majority of 

anatomical projections in the ventral visual pathway are reciprocal or feedback [34,35]. 

Feedforward models also fail to capture shifts in representations that occur within VTC regions 

after the first 250 ms after seeing a stimulus [19,66–68], the increasing timescales over which 

regions process information when moving up the ventral visual hierarchy [69–77], and the 

differences exhibited in long range connectivity patterns across layers of VTC [70,78–80].  

In humans and macaques, face processing regions in the ventral visual stream undergo 

dynamic shifts in the information they represent after the first 150-250 ms after being exposed to 

a face [66–68]. When macaques were shown images of faces, face-selective neurons demonstrated 

a coarse representation at 100 ms that could disambiguate faces from shapes and whether the face 

was human or macaque. 50 ms later, the same neurons coded much more fine-grained information 

like facial identity and expression [67]. Similarly in humans, early face-selective responses in 

ventral occipitotemporal cortex (VOT) can disambiguate between faces versus other categories, 

but become more refined after 250 ms, when they can discriminate between faces with different 

expressions [66]. A similar phenomenon has also been demonstrated in word-selective VOT, 

where early activity (within 250 ms after seeing a word) is sufficient to discriminate between 

visually dissimilar words, but is later refined (after 250 ms) to disambiguate words sharing all but 

one letter [19]. The interactions that facilitate the sharpening of these representations are not well 
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understood, but could include the accumulation of bottom-up information (e.g., across eye 

movements) and top-down information (e.g., from centers that specialize in emotional processing 

for faces [61,81], or semantic and phonological processing for words [62,82,83]). 

In addition to failing to capture the extended processing dynamics of VTC, fast 

feedforward models also do not capture the heterogeneity in processing dynamics demonstrated 

across layers of the ventral stream [69–77]. Studies mapping out the dynamics of hierarchical brain 

networks have consistently identified systematic differences in the timescales over which regions 

integrate information [69,73,77]. Specifically, resting state neural dynamics slow when moving 

along the axis extending from primary sensory/motor to association cortices [69], which has been 

assumed to correlate with how these regions integrate information over time [73]. For example, 

higher order visual cortices demonstrate slower cortical fluctuations at rest [84] and have been 

shown to integrate dynamic visual information over relatively long timescales using fMRI [76]. 

On the other hand, primary visual cortices have much faster resting state dynamics [84] and 

integrate information over much shorter timescales [76]. Again, these differences in neural 

timescales are not well captured by fast feedforward models, which posit that visual 

representations are built through quick and automatic evaluation of stimuli for the presence of their 

preferred visual features, without any differences in processing dynamics across layers [37,38,41]. 

It has also been shown that functional connectivity patterns are heterogeneous across layers 

of the ventral visual hierarchy [70,78–80], which is also not captured by fast feedforward models. 

In humans, functional connectivity to visual areas systematically decreases along the hierarchical 

axis of VTC, whereas functional connectivity to heteromodal association cortices increases 

[78,80]. These gradients in long range functional connectivity are thought to interact with local 

neural dynamics, but evidence for this association from neuroimaging modalities with high 
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temporal resolution is lacking [85]. In silica, circuit models of the macaque brain have 

demonstrated potential mechanisms linking connectivity gradients and resting-state neural 

dynamics [70]. However, in traditional fast-feedforward models, the connections of each layer are 

relatively homogeneous, they link the previous layer with the next without recursion from higher 

layers [37,38,41]. 

Long-range bidirectional connectivity between VTC and higher-level cognitive centers 

likely also plays an important role in constraining the organization of category-selective regions 

[29,59–65]. Although bottom-up models capture the importance of low-level features in 

constraining where category-selective regions are located [44,48,55–57], they fail to explain how 

congenitally blind individuals demonstrate category-selective VTC responses to auditory stimuli 

like laughing, car sounds, and clapping in similar locations as face-, object-, and body-selective 

regions in sighted individuals [86,87]. Similarly, braille reading in blind individuals evokes 

responses from regions of VOT that selectively respond to printed words in sighted literate 

individuals [88,89]. On the other hand, a model whereby cortical organization is jointly 

constrained by bottom-up factors as well as connectivity to higher-order processing circuits is 

better-able to explain these results through top-down interactive processes [61–63,90–93]. 

Specifically, long-range bidirectional anatomical pathways underlying transformations 

between visual to semantic, phonological, navigational, social, and other representations may help 

constrain where category-selective patches end up in VTC, in addition to the low-level visual 

properties of stimuli [61–63]. For example, preexisting white matter pathways connecting VTC to 

frontal, lateral temporal, and parietal language regions may bias the localization of word-selective 

VOT [29,60,64,65]. This is supported by diffusion weighted imaging in preliterate children, which 

can predict where word-selective VOT will develop after children learned to read [65]. Anatomical 
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connectivity to language centers in lateral prefrontal cortex, lateral temporal cortex, and parietal 

cortex was greater for the region of VOT that would become word-selective after children learned 

to read compared to adjacent face-selective cortex [65]. In summary, a balance between bottom-

up properties of visual stimuli and top-down influences from other cognitive systems likely 

constrains VTC organization and dynamics. 

1.3 Overview of the contributions and structure of this dissertation 

In this dissertation we will investigate how long-range cortical interactions influence the 

dynamics and organization of VTC at several levels, with a particular emphasis on word-selective 

circuits. In Chapter 2, we map local prestimulus dynamics, information processing dynamics, and 

long-range functional connectivity patterns that systematically change across layers of the ventral 

visual hierarchy. This allows us to investigate the relationships between prestimulus and 

information processing dynamics, and whether either of these are associated with differences in 

patterns of functional connectivity. Additionally, we tested whether any of these functional 

gradients were associated with a region’s ability to predict patient response time to determine if 

these factors help constrain a region’s role in cognitive behavior. 

In Chapter 3, we focus our attention on the organization and dynamics of VTC networks 

responsible for face and word processing. Face and word processing offer an especially interesting 

comparison for investigating how ventral visual cortex is organized. Faces and words are very 

different along several low-level visual features like contrast, spatial frequency, curvilinearity, as 

well as several high-level properties like when expertise develops for these stimuli during 

childhood, their evolutionary age, and their roles in social and linguistic cognition. Despite these 
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differences, they share a remarkably close cortical localization in VTC that is highly consistent 

across individuals [94]. Their localization is so close that the degree to which they are represented 

by the same cortical areas is debated [60]. Here, we investigate the degree to which face and word 

processing networks in VTC are separable within individuals, how these networks are organized 

relative to one another, and how their functional dynamics compare. 

In Chapter 4, we zoom in on the information processing dynamics of an important word-

selective region in VOT, sometimes referred to as the Visual Word Form Area (VWFA). Previous 

studies from our group examining intracranial recordings from epilepsy patients identified a 

dynamic shift in the representations in this region from an early coarse-level, which was sufficient 

to disambiguate visually dissimilar words from one another, to a later (after 250 ms) fine-grained 

representation, which was sufficient to disambiguate words sharing all but one letter [19]. Here, 

we investigate whether this dynamic shift in representation is also exhibited in healthy individuals, 

whether it generalizes to other word-like stimuli that vary in their semantic and/or phonological 

associations (including false fonts, pseudowords, and consonant strings), and examine the 

functional interactions that occurred while this region sharpens its representation. 

Finally in Chapter 5, we review recent and seminal findings regarding the anatomy of 

word-selective VOT and its role in reading. In reviewing these data, we present a model of how 

reading networks develop by adapting visual to phonological pathways involved in lip/speech 

reading and visual to semantic pathways involved in object naming to accomplish similar 

transformations for printed words. The long-range white matter projections facilitating these 

transformations, including the arcuate, inferior longitudinal, and frontooccipital fasciculi, in turn 

constrain where printed words are represented in VTC, in addition to the low-level visual 

properties of words. This model helps explain why, in addition to demonstrating selectivity for 
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printed words, word-selective VOT also responds to non-visual stimuli, like braille in the 

congenitally blind [88,89], through top-down interactions with other language regions. This model 

also explains how visual word recognition circuits develop in similar localizations across 

individuals despite literacy being in its evolutionary infancy, due to the consistency of these long-

range white matter projections in neonates [64]. Ultimately, this model demonstrates joint 

contributions of bottom-up and top-down influences on the organization and dynamics of 

category-selective regions in VTC. 
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2.0 Interacting cortical gradients of neural timescales and functional connectivity and their 

relationship to perceptual behavior 

We begin our investigation into the spatial and temporal organization of object processing 

in ventral visual cortex by mapping several aspects of local neural dynamics and long-range 

functional connectivity along the hierarchical axis of VTC. Several studies have identified 

increasing timescales of neural dynamics, decreasing connectivity to unimodal sensory regions, 

and increasing connectivity to heteromodal regions across sensory and motor hierarchies 

[69,74,80]. However, it is unclear how these properties interact with one another or how they 

influence perceptual behavior. In this chapter, we demonstrate several functional gradients in 

prestimulus dynamics, information processing, and functional connectivity extending along the 

hierarchical axis of VTC. Gradients in local prestimulus dynamics were associated with changes 

in functional connectivity beyond shared correlations with anatomical position. Prestimulus 

dynamics and connectivity to visually responsive regions were also associated with how well a 

region’s activity predicts patient response time during a 1-back task. That suggests that these 

properties arise from shared neurophysiological mechanisms, which may constrain a region’s role 

in perceptual behavior. This functional map of category-selective VTC provides characteristics for 

future hierarchical models of the ventral stream to consider, including increasing recursive 

connectivity and extended processing dynamics in higher layers. At the time of writing this 

dissertation, this chapter has not been peer-reviewed but was coauthored by Mark R. Richardson 

and Avniel Singh Ghuman. 
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2.1 Introduction 

A neural population’s functional properties, including its dynamics and its functional 

connectivity to other brain regions, are ultimately linked to that population’s role in cognition and 

perception. Several gradients in functional properties have been shown to exist along the cortical 

axis spanning from primary sensory/motor areas to association cortices [79,80,95,96]. For 

example, gradients in the timescales over which neural populations endogenously fluctuate and 

process information are demonstrated along this axis, with longer timescales further along cortical 

hierarchies [69,73–75,97,98]. Gradients of functional connectivity are also seen along this axis, 

with decreasing unimodal connectivity and increasing transmodal connectivity along cortical 

hierarchies [78,80]. These network-level neural properties likely influence local timescales, other 

computational characteristics of neural populations, and these populations’ relationship to 

behavior [79,80,85,96].  However, empirical evidence linking functional gradients in local 

dynamics with gradients in the long-range connectivity of neural populations is limited. 

Additionally, it is unknown to what degree these gradients relate to a neural population’s role in 

behavior. 

One prevalent functional gradient in cortex is the increasing timescales over which neural 

populations integrate information when moving from primary sensory/motor to association 

cortices [69,72,74,76,97,99]. For example, rapidly varying acoustic inputs represented in low-level 

auditory cortex are combined into more complex representations in higher order auditory cortex, 

which operates over longer timescales [98]. These neural timescales, or temporal receptive 

windows, are related to the rate of decay of representations, or autocorrelation, within neural 

populations [69,74,76,97], because longer decay rates allow for more pieces of information to be 

integrated into a single representation.  
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Another key aspect of neural dynamics, which is less well understood, is information 

processing dynamics, including the initial rate at which neural populations discriminate between 

stimuli (i.e., the rise time of discriminant information in neural activity). These information 

processing dynamics relate to the speed of cortical computation and thus, ultimately limit the speed 

of decision and action processes [40]. Despite the importance of a neural population’s information 

processing dynamics in cognition and perception, the functional characteristics that are associated 

with neural populations that processes information more quickly or slowly remain unclear 

[69,97,99]. 

In addition to anatomical gradients in neural dynamics, opposing anatomical gradients in 

connectivity to association versus primary sensory/motor cortices have also been demonstrated in 

human cortex. Unimodal connectivity, primarily within sensorimotor regions, decreases when 

moving up cortical processing hierarchies while transmodal connectivity linking multiple sensory 

domains increases [80,95]. However, it is unclear how gradients in local dynamics interact with 

gradients in long-range functional connectivity. In silica, circuit models of cortical processing 

suggest that inter- and intra-areal connectivity patterns help constrain a neural population’s 

timescale [70,79], which has received some support from low temporal resolution measures of 

brain activity [85]. 

Finally, the functional properties that constrain a neural population’s dynamics and long-

range cortical connectivity ultimately constrain how that population contributes to cognition and 

perception. However, it is unknown whether the degree to which a neural population’s activity 

predicts behavior displays anatomical gradients and/or correlates with that population’s 

neurodynamics and functional connectivity. 
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In the current study, category-selective neural populations in ventral temporal cortex 

(VTC) were used as a model to examine the relationship between anatomical gradients in local 

cortical processing and long-range cortical interactions. We also explored how information 

processing dynamics, endogenous timescales (i.e., neural dynamics not directly linked to the 

exogenous, stimulus-evoked response; which we estimate using the prestimulus period when no 

stimulus was being presented), and long-range cortical connectivity interact with each other 

beyond any shared anatomical gradients, and which of these gradients were associated with the 

ability of a population’s activity to predict response time during single trials of a visual 1-back 

task. 

2.2 Methods 

2.2.1 Intracranial electroencephalography (iEEG) patients 

Stereotactic depth and surface electrocorticography (ECoG) electrodes were implanted in 

ventral temporal cortex (VTC) of 41 patients (15 males, ages 19-65) for the localization of 

pharmacologically intractable epileptiform activity. Different aspects of these recordings from 38 

of these patients were previously reported in [100]. All patients gave written informed consent 

under protocols approved by the University of Pittsburgh’s Institutional Review Board.  Electrode 

contacts that were identified as belonging to the seizure onset zone were not included in the 

analysis.  

Electrodes were localized via postoperative CT scans or postoperative magnetic resonance 

images (MRI). Postoperative CT scans were co-registered to preoperative MRIs using Brainstorm 
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[101]. Surface electrode contacts were projected to the nearest reconstructed cortical voxel of the 

preoperative MRI scan to correct for brain-shift [102,103]. These electrode locations were then 

registered to the Montreal Neurological Institute (MNI) common space via patient-specific linear 

interpolations [104]. VTC was defined as grey matter below the inferior temporal gyrus spanning 

from the posterior edge of the fusiform gyrus to the anterior temporal lobe in MNI common space.  

Cortical distance between each electrode contact and the patient’s occipital pole was 

computed using the patient’s native neural anatomy. The occipital pole was defined as the 

intersection of the calcarine sulcus, inferior occipital gyrus, and superior occipital gyrus. The 

geodesic (cortical) distance between this point and the cortical surface coordinate nearest to each 

VTC electrode contact was computed using custom MATLAB scripts [105]. 

2.2.2 Experimental paradigm 

All patients underwent a category localizer task containing images occupying 

approximately 6° x 6° of visual angle at the center of a stimulus display monitor positioned 2 

meters from the patient’s eyes. Each stimulus was presented for 900 ms on a black background. 

Inter-stimulus intervals were 1500 ms with a random 0-400 ms jitter during which the patient saw 

a white fixation cross.  Patients were instructed to press a button every time an image was presented 

twice in a row (1/6 of all trials). Repeat trials were excluded from further analysis. This left 70 

trials per category to train and test the classifiers described in 2.2.4. Several patients underwent 

more than one run of this experiment and therefore had 140 or 210 trials per category. All 

experimental paradigms were presented via custom MATLAB scripts running the Psychophysics 

toolbox [106]. 
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35 patients underwent a category localizer task consisting of pictures of bodies, faces, 

hammers, houses, words, and non-objects. Six patients underwent category localizer tasks with 

slightly different object categories but with identical stimulus parameters. One of these patients 

viewed pictures of bodies, faces, shoes, hammers, houses, and phase-scrambled objects. One 

viewed pictures of bodies, faces, consonant-strings, pseudowords, real words, houses, and phase-

scrambled objects. One patient viewed pictures of faces, bodies, consonant-strings, words, 

hammers, and phase-scrambled objects. One viewed pictures of faces, bodies, words, 

pseudowords, houses, and phase-scrambled objects. One viewed pictures of faces, bodies, words, 

tools, animals, houses, and phase-scrambled objects. One viewed pictures of faces, bodies, words, 

tools, animals, numbers, houses, and phase-scrambled objects.  

2.2.3 Intracranial recordings 

Local field potentials were collected from iEEG electrodes via a GrapeVine Neural 

Interface (Ripple, LLC) sampling at 1 kHz. Notch filters at 60/120/180 Hz were applied online. 

Stimulus presentation was synchronized to the neural recordings via parallel port triggers sent from 

the stimulus displaying computer to the neural data acquisition computer. The signal was off-line 

filtered from 0.2-115 Hz using two-pass fourth order butter-worth filters via the FieldTrip toolbox 

[107]. In addition to analyzing these single trial potentials (stP), we also extracted and analyzed 

the single trial high frequency broadband (stHFBB) activity of these electrodes, since these two 

components of the local field potential have been shown to contain complimentary information 

[108].  

StHFBB activity was extracted via Morlet wavelet decompositions from 70-150 Hz over 

200 ms Hanning windows with 10 ms spacing. The resulting power spectral densities were then 
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averaged over these frequency components and normalized to a baseline period from 500 ms to 50 

ms prior to stimulus onset to yield the stHFBB activity. Data was then epoched from -500 to 1500 

ms around stimulus presentation. Trials during which the stP amplitude changed more than 25 

microvolts across a 1 ms sample, or during which stPs exceeded an absolute value greater than 

350 microvolts, or during which either the stHFBB or stPs deviated more than 3 standard 

deviations from the mean were all assumed to contain noise and were therefore excluded.  

2.2.4 Multivariate temporal pattern analysis 

Sliding, leave-one-out cross-validated, Gaussian Naïve Bayes classifiers were applied to 

100 ms time windows with 10 ms stride to determine if stHFBB or stP recorded from individual 

VTC contacts contained category-discriminant information. The input to these classifiers was 100 

ms (100 samples) of stP and 100 ms (10 samples) of stHFBB from a single electrode contact. The 

output of the classifier was the category of object presented during the corresponding trial. This 

procedure was repeated for all VTC contacts from time windows beginning at 100 ms prior to 

stimulus onset to 1000 ms after stimulus onset. 

The category-discriminant information content within each neural population was 

estimated by computing the mutual information (I(S’,S)) between the output of the Gaussian Naïve 

Bayes classifiers (predicted category labels, S’) for a given 100 ms time window of neural activity 

and the actual presented stimulus (S): 

𝐼(𝑆′, 𝑆) =  𝑃(𝑆) 𝑙𝑜𝑔2(
𝑃(𝑆′,𝑆)

𝑃(𝑆′)𝑃(𝑆)
), 

where P(S’,S) is the joint probability of the classifier correctly predicting the stimulus 

category S when the category was S, P(S’) is the proportion of times the classifier guessed a trial 
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was of stimulus S, and P(S) is the proportion of trials which the stimulus presented was S. This 

allowed us to estimate the category-discriminant information contained within 100 ms time 

windows without estimating a joint probability table of neural responses that was intractable 

[109,110]. It has been shown that this estimate of information, which relies on a P(S’,S) derived 

by an external classifier and not the actual neural code, is an underestimate of the neural 

information content [111]. Therefore, our calculated information is a lower bound for the actual 

neural information content.  

Information content was averaged across all stimulus categories presented to the patient so 

as not to preclude electrode contacts as being selective for only one object category [28]. A 

threshold for significant category-discriminant information was determined by randomly shuffling 

stimulus labels for a subset of VTC electrode contacts and repeating the same classification 

analysis 1,000 times for each electrode contact [112]. Electrode contacts with the same number of 

runs of the category-localizer task demonstrated very similar null distributions and therefore we 

applied the result of this permutation test to all VTC electrode contacts. The threshold was chosen 

such that none of the random permutations for any electrode contacts in the subset reached the 

threshold, which corresponds to p < .001, corrected for multiple temporal comparisons.  Electrode 

contacts with peak category-discriminant neural information exceeding this threshold were defined 

as category-discriminant.  

We performed a similar decoding analysis to determine the time-course of visual responses 

in individual VTC contacts. This was done by classifying single trial baseline periods (100 ms to 

0 ms prestimulus presentation) of neural activity from these neural populations against sliding 100 

ms time-windows from -90 to 1000 ms post-stimulus presentation for all object categories treated 

as one class. This yielded a time-course of visual responses in each sampled neural population.  By 
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randomly permuting the label of the baseline versus evoked data and repeating the analysis in a 

subset of electrode contacts 1,000 times, we defined a threshold of visual information that no 

random permutation of the data achieved, corresponding to the p < .001, chance level, corrected 

for multiple temporal comparisons. We used this threshold to define visually responsive brain 

regions and those that were not, which were separated to calculate their differential contributions 

of functional connectivity to VTC electrode contacts with significant category-discriminant 

information. 

2.2.5 Estimating the dynamic properties of neural information processing 

To estimate properties of the information processing dynamics of neural populations across 

VTC, the information time-courses derived from the Naïve-Bayes classifiers were first smoothed 

with a running average filter (width 50 ms). Next, onset latency of category-discriminant 

information was defined as the last time point that an electrode contact was below 10 % of the 

maximum information prior to the peak information. The initial rise in category-discriminant 

information was defined as the time between the onset and the point where the information time-

course first exceeded 90 % of the peak information. These cutoffs were chosen to ensure that small 

deviations from chance-level information and peak information did not affect the estimated 

quantities. Our main findings were robust to specific choices in threshold (Figure 29). Finally, we 

estimated the duration of information maintenance as the time between when the neural population 

first reached 90% of its peak information to when the neural population’s information first fell 

below 50% of this maximum after peaking. Similar dynamic properties were also estimated for 

visual response time-courses (Figure 3) and information processing time-courses for specific 

object categories (Figure 26 & Table 4). 
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2.2.6 Defining category-selective VTC electrode contacts 

To determine if neural populations with sensitivity to different object categories 

demonstrated differences in the gradients of their local dynamics or long-range functional 

connectivity, we isolated category-discriminant VTC neural populations that responded primarily 

to one object category. To do this we computed the event related potential and event related 

broadband responses to each category during the 1-back task. Next, any of the previously defined 

category-discriminant neural populations that contained maximum information to the same 

category that evoked the maximum response across either of these averages was classified as 

selective to that object category. We then characterized the information onset latency, slope, and 

connectivity of these neural populations using the procedures described above. For these analyses 

we used the category-specific information processing time-course derived from the Naïve Bayes 

classifiers prior to averaging over all categories in the main analysis.  

2.2.7 Information processing simulations 

Simulations were used to test if increases in information processing duration exhibited 

along the ventral visual hierarchy could be explained by differences in peak information 

magnitude. Specifically, information time-courses were approximated as normal probability 

density functions (PDFs) parameterized by a mean, standard deviation, and magnitude (constant 

scaling). Normally distributed noise with the same standard deviation as prestimulus (-400 to 0 

ms) information in category-selective VTC electrode contacts was then added to these curves. 

1000 simulated signals were computed for each different PDF magnitude and standard deviation. 
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Information processing duration was calculated using the same procedure described for the 

actual signal, by calculating the time between when the signal first reached 90 % of its maximum 

amplitude and the last time it was below 10 % of its maximum before that. We then calculated the 

Spearman correlation between information processing duration when varying the PDF’s standard 

deviation (to mimic changes in slope of the information processing time-course) and when varying 

the information’s peak amplitude. Peak amplitude was varied from the minimum to maximum 

peak information in category-selective VTC electrode contacts. During the simulation 

investigating the effect of slope on information processing duration, signal amplitude was fixed at 

the average peak information in category-selective VTC electrode contacts. 

2.2.8 Characterizing endogenous neural timescales 

The endogenous timescales of VTC populations were characterized by computing the 

autocorrelation of prestimulus (-500 ms to stimulus onset) stPs and stHFBB activity from 1-250 

ms lags during each clean trial of the 1-back task. These prestimulus autocorrelation functions 

were then averaged over all trials. The average autocorrelation function for each electrode contact 

was then fit with a single exponential decay function: 

𝐴𝐶𝐹(𝑡) = 𝑡0 +  𝑁0𝑒−𝑡/𝜏 

The neural timescale (tau), which measures the rate at which the autocorrelation function 

decays, was then correlated with several other functional properties of the neural population. This 

estimation of neural autocorrelations and computation of tau is similar to the procedure described 

in [74]. 
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2.2.9 Functional connectivity 

To determine the connectedness of VTC neural populations to the rest of the brain, phase-

locking values (PLVs) were calculated between neural populations with above chance levels of 

category-discriminant information and all other electrodes within the same patient (regardless of 

category-discriminant information content). Electrode contacts within 1 cm of the category-

discriminant electrode were not included in the analysis to rule out effects caused purely by volume 

conduction. PLVs measure instantaneous phase-coupling across different brain regions 

independent of differences in amplitude, unlike coherence metrics [113]. This makes PLVs more 

sensitive to detecting weakly coupled oscillators despite differences in amplitude [114]. This 

coupling of oscillations is thought to indicate event-related communication between electrode 

contacts. 

The instantaneous phase of each electrode contact during all category-localizer trials was 

computed via convolution of the filtered neural activity (from 1-115 Hz) with Morlet wavelets of 

frequencies ranging from 1-60 Hz (width = 5). This convolution allowed the separation of signal 

phase from envelope at each frequency [115]. Next, the PLV was computed by taking the vector 

average of the phase difference between two electrode contacts at each time point. PLVs close to 

1 indicate two electrode contacts have similar phase differences at this frequency and time point 

across all trials. Conversely, if this number is close to 0, the phase difference between these 

electrode contacts is random at this given frequency and time point.  

A spectral window of interest was defined to capture the part of the PLV spectrogram that 

showed increased functional connectivity across all category-discriminant VTC neural 

populations. We chose to focus on the time windows from -450 to 0 ms before stimulus onset to 

capture prestimulus functional connectivity of the neural populations. Next, we determined which 
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frequency components demonstrated increased stimulus-evoked functional connectivity across 

VTC. To do this we averaged the PLVs from 50 to 500 ms and performed a paired t-test against 

the average PLV from -450 ms to 0 ms before stimulus presentation between the category-selective 

VTC electrode contacts and the rest of the electrode contacts in the same patient. This analysis 

revealed that frequency components between 1 and 22 Hz all had significantly greater phase-

locking across all category-discriminant VTC electrode contacts relative to baseline on average 

from 50 to 500 ms after stimulus presentation (p < .001, corrected).  

Therefore, we averaged the PLVs across electrode contacts from 2 to 22 Hz (discarding 1 

Hz frequency band to increase the temporal precision of our estimated phase-locking), and -450 to 

0 ms before stimulus onset to calculate the functional connectedness of these same regions. We 

separately averaged the connectivity of category-discriminant VTC neural populations with 

visually responsive regions (defined above) and those that were not to determine if there were 

connectivity differences across these neural populations. Average functional connectivity from -

450 to 0 ms prestimulus and 50-500 ms after stimulus presentation were strongly correlated with 

one another (ρ = .96, p < .001). Thus, results do not substantially change if either the prestimulus 

or post stimulus PLV is used. 

2.2.10 Predicting patient response time from category-selective VTC 

To test for differences in the correlation between category-selective VTC population 

activity and behavior, patient RT was predicted using the neural activity from each category-

selective contact. Specifically, a sliding window L2-regularized multiple regression (100 ms 

window, 10 ms stride) was used to predict patient RT from stP and stHFBB activity using a leave-

one-trial-out cross-validation procedure. Only trials when the patient correctly reported that an 
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object was repeated twice in a row were included in the analysis. The maximum Spearman 

correlation between the patient’s RTs and the sliding-window RT predictions from 0-1000 ms after 

stimulus presentation was considered as the neural population’s correlation with behavior. This 

correlation was then correlated with that population’s dynamics, connectivity, and anatomical 

location. 

2.2.11 Statistics 

Spearman rank-order correlations were used to calculate the correlations between 

anatomical position and aspects of the neural information time-courses calculated above. 

Spearman rank-order partial correlations were used to calculate the correlation between variables 

while correcting for correlations shared with other variables. Benjamini-Hochberg False 

Discovery Rate estimation which is valid for dependent hypothesis tests was used where noted 

[116]. Paired T-tests were used to determine if there were differences in the dynamics of processing 

different levels of information (visual vs. category-discriminant) in the same electrode contacts.  

Rank-order mixed-effects models were used to control for random effects of cross-patient 

variability while examining the main effects of connectivity and anatomical position on 

information processing dynamics. We chose to fit these mixed-effects models with equal slopes 

but random intercepts across patients to ensure the models converged. Because observations in 

mixed-effects models are not independent, it is difficult to determine the appropriate degrees of 

freedom. This makes estimation of p-values impossible without appropriate approximation. 

Therefore, to derive p-values for the main effects of the mixed-effects models, we use the 

Satterthwaite approximation, which has been shown to produce acceptable Type 1 error rates with 

relatively few samples [117].  
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Linear multiple regression models were used to compare gradients of information 

processing in VTC neural populations that were selective for different object categories. We only 

included the categories that most patients saw (bodies, words, faces, hammers, houses, and phase-

scrambled objects). Specifically, linear models were used to predict information onset latency, 

peak, processing duration, maintenance duration, and connectedness as a function of the category-

selective neural populations’ distance from the occipital pole with an added factor indicating which 

category the neural population was selective for (Figure 26). Linear mixed-effects models were 

initially used for this analysis to simultaneously control for random effects across patients. 

However, these models failed to converge, likely indicating an insufficient number of data points 

per category and patient to estimate these random effects. Because face-selective electrode 

contacts were most prevalent in our population we used this as our baseline and compared all other 

categories to face-selective electrode contacts (Table 4). Analysis of covariance was also used to 

determine if there was a significant difference in information processing gradients or 

connectedness across hemispheres (Appendix A.1.1). 

2.3 Results 

Activity was recorded from 1,955 VTC electrode contacts (out of a total of 4,090 

intracranial electrode contacts distributed throughout the brain) in 35 patients with 

pharmacologically intractable epilepsy (Figure 23) as they viewed images of objects (face, body, 

word, hammer, house, or phase scrambled image) during a 1-back task. Multivariate Naïve Bayes 

classifiers were used to predict the category of object participants were viewing during individual 

trials of the task using sliding 100 ms windows of single trial potentials (stP) and single trial high 
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frequency broadband activity (stHFBB) recorded from individual electrode contacts. At this stage 

of the analysis, these signal components were combined since previous studies have suggested that 

they contain complementary information [108], though in further analyses they were examined 

separately. Out of the 1,955 VTC electrode contacts, activity recorded from 390 electrode contacts 

(mean = 11; SD = 14 electrode contacts per patient) could reliably predict (p < .001, corrected via 

permutation testing) which category participants were viewing during single trials of the task 

(Figure 1). The time-course of category-discriminant information processing in these category-

discriminant neural populations was calculated by computing the mutual information (in bits) 

between the classifier outputs and the true category labels. The functional properties of these 

populations were computed to examine the relationship between these variables and anatomical 

axes of VTC (see Methods). Specifically, we examined gradients of, and interactions between, 

nine factors: two stimulus response timescales (factors 1 and 2): initial rise duration and 

maintanence of category-discriminant information (see Figure 2A for illustration); category-

discriminant information onset time and peak magnitude (factors 3 and 4; see Figure 2A for 

illustration); two endogenous (prestimulus) timescales (factors 5 and 6): the timescale of decay, 

“tau”, for the prestimulus stP and stHFBB autocorrelation functions (see Figure 4A for 

illustration); functional connectivity to visually responsive populations and to populations that 

were not significantly visually responsive (factors 7 and 8); and the accuracy of a neural 

population’s activity for predicting behavioral response time (RT; factor 9). 
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Figure 1. Category discriminant electrode contacts.  Spatial topography of electrode contacts recording from 

neural populations that achieved peak category-discriminant information greater than chance at the p < .001 

level corrected for multiple temporal comparisons. The proportion of left vs. right hemisphere category-

discriminant contacts was comparable to the proportion of total left vs. right hemisphere VTC implants (see 

Appendix A.1). 

 

The cortical distance from the occipital pole, which roughly corresponds to the fovea in 

primary visual cortex, was used to approximate the position of neural populations along the 

hierarchical axis of the ventral visual stream [34]. Distance along this axis was correlated with 

several aspects of information processing in these category-discriminant neural populations 
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(Figure 2; see Figure 24 for an example from a single subject). Along this axis, neural populations 

demonstrated increasing onset latencies and increasing durations of their initial rises in category-

discriminant information. Additionally, neural populations maintained category-discriminant 

information longer after peaking, despite reaching smaller peak magnitudes, when moving along 

the visual hierarchy. See Figure 28 for simulations demonstrating the independence of peak 

magnitude and rise duration metrics.   

In addition to examining discriminant information, we also examined the dynamics of the 

non-discriminant neural responses. Specifically, gradients in category-indiscriminant visual 

responses (discriminating all categories from baseline rather than categories from one another as 

in Figure 2) in the same neural populations were examined (Figure 3). Populations demonstrated 

increasing onset latencies and decreasing peak magnitudes of visual responsiveness when moving 

along the ventral visual hierarchy, like the gradients observed for category-discriminant 

information. However, there was no comparable increase in the duration of the initial rise in visual 

responsiveness along this axis and visual responsiveness was maintained for shorter durations in 

populations further along the visual hierarchy, which was opposite of the gradient observed for 

category-discriminant information. The contrast between visual response dynamics and category-

discriminant information processing dynamics highlight differences in the neural encoding of these 

two levels of stimulus information [39,67].  
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Figure 2. Category-discriminant information processing gradients along the ventral visual hierarchy. A) The 

time-course of category-discriminant information processing was computed for each neural population. The 

average time-course across category-discriminant VTC populations is illustrated here. From each neural 

population’s information processing time-course, the information onset time (panel B), processing duration 

(C), peak magnitude (D), and maintenance duration (E) were computed. Simulations confirmed that 

decreases in information amplitude and information processing duration are independent using our methods 

(Figure 28). B) The onset of category-discriminant information, defined as the timepoint the information 

reached 10% of the maximum before peaking, was significantly correlated with the position of that neural 

population along the ventral visual hierarchy. The black line indicates the least-squares regression fit. 

Spearman’s ρ and associated p-value shown on top right (n = 390). Spearman correlation was used because it 

is both more robust to outliers relative to Pearson’s and is sensitive to non-linear monotonic relationships 

between variables, though this also means that the line drawn is not representative of the ρ. Slope of the least-

squares regression line (m) indicated a 13 ms per centimeter increase in onset latency moving along VTC. 

Information onset was significantly associated with distance along the visual hierarchy even after correcting 

for cross-patient differences in onset latency (T(388) = 7.20, p < .001, tied-rank mixed-effects model). C) The 

duration of the initial rise in category-discriminant information, defined as the time between the onset of 

information and the time it took the population to reach 90% of its peak information, was negatively 
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correlated with distance along the visual hierarchy. The 90% threshold is used for the peak time because it 

better captures the initial rise in cases where there is a shallow peak among an extended plateau in the 

discriminant information time-course. Note: All correlations remain significant across a substantial range of 

the heuristic thresholds chosen to define them (Figure 29), thus the selection of 10% and 90% as thresholds 

for onset and peak time do not drive these effects. The slope of the least-squares regression line indicated a 6 

ms increase in the duration of the initial rise of information per cm of VTC. This relationship did not reach p 

< .05 when correcting for random cross-patient effects (T(388) = -1.55, p = .12, tied-rank mixed-effects 

model). D) Peak category-discriminant information was negatively correlated with distance along the visual 

hierarchy, with a decrease of -0.0035 bits/cm. This relationship did not reach p < .05 when correcting for 

random cross-patient effects (T(388) = -1.62, p = .11, tied-rank mixed-effects model). E) Information 

maintenance duration, defined as the time between when the information first reached 90% and the time 

when it first decayed to 50% of the peak, was positively correlated with distance along the visual hierarchy. 

The slope of the least-squares regression line indicated a 7 ms increase in the duration of maintenance of 

information per cm of VTC. This relationship trended to p < .05 significance when correcting for random 

cross-patient effects (T(388) = 1.87, p = .063, tied-rank mixed-effects model). 
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Figure 3. Visual response dynamics along the ventral visual hierarchy.  Visual response dynamics were 

extracted by classifying all stimulus categories versus baseline with similar classifiers used to extract 

category-discriminant information (Figure 2). A) Onset of the visual response was positively correlated with a 

neural population’s distance along the visual hierarchy. This effect held when correcting for random cross-

patient effects (T(388) = 6.23, p < .001, tied-rank mixed-effects model). Onset latency of the visual response 

was not significantly different than the onset of category-discriminant information (T(389) = 0.11, p = .91, 

paired T-test). B) Duration of the initial increase in visual responsiveness was not significantly correlated with 

distance along the visual hierarchy, unlike the significant positive correlation observed for category-

discriminant information (Figure 2C). C) Peak magnitude of visual responsiveness was negatively correlated 

with distance along the visual hierarchy. This effect held when correcting for random cross-patient effects 

(T(388) = -2.26, p < .001, tied-rank mixed-effects model). D) Visual response maintenance duration was also 

negatively correlated with distance along the visual hierarchy, which held when correcting for random cross-

patient effects (T(388) = 5.45, p < .001, tied-rank mixed-effects model). This was opposite of the relationship 

between information maintenance duration and distance along the visual hierarchy observed for category-

discriminant information (Figure 2E). 
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Next, the endogenous neural timescales of VTC populations were quantified by computing 

the autocorrelation of prestimulus activity at multiple temporal lags and modelling the resulting 

autocorrelation function with an exponential decay function (Figure 4). When moving along the 

visual hierarchy, neural populations demonstrated increasing time-constants of decay (tau) in the 

autocorrelation function of their prestimulus stP, indicating that their activity exhibited longer 

timescales/slower dynamics along this axis. This is consistent with previous studies observing 

slower timescales when moving up sensory processing hierarchies [74,76,77,80,96,99]. 

Conversely, neural populations demonstrated shorter timescales in their prestimulus stHFBB 

activity when moving along the ventral visual hierarchy. Time-constants across stP and stHFBB 

signal components were not significantly correlated with one another across electrode contacts 

(ρ(390) = -0.05, p = .33), highlighting the differentiability of these two aspects of the neural signal 

[100,119,120]. These results show that these components of the endogenous neural activity 

demonstrate distinct timescales that have opposite gradients along the ventral visual hierarchy.  
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Figure 4. Prestimulus neural timescales along the ventral visual hierarchy.  A) For each neural population, 

the autocorrelation function during the -500 to 0 ms prestimulus period was computed for temporal lags 

ranging from 1 to 250 ms, averaged across trials (black line is the average across populations), and fit with a 

single exponential decay function (gray line). The timescale (tau) indicates how fast the fitted exponential 

function decays (red dashed line; computed like those in [74]) and was correlated with other functional 

properties of the category-discriminant neural populations’ activity. B) The autocorrelation function of single 

trial potentials (stP) decayed more slowly when moving up the visual hierarchy, indicating that stP in more 

anterior VTC had higher autocorrelations at greater lags (longer timescales) relative to more posterior neural 

populations. This relationship held when correcting for random cross-patient effects (T(388) = 8.03, p < .001, 

tied-rank mixed-effects model). C) The autocorrelation function of single trial high frequency broadband 

(stHFBB) decayed more quickly when moving up the visual hierarchy, indicating that stHFBB in more 

anterior VTC had lower autocorrelations at greater lags (shorter timescales) relative to more posterior neural 

populations. This relationship also held when correcting for random cross-patient effects (T(388) = -5.32, p < 

.001, tied-rank mixed-effects model). 

 

Gradients in both information processing dynamics and neural timescales were present in 

individual patients (Figure 24) and several generalized across patients (linear mixed-effects models 

Figure 2 & Figure 3 captions). The gradient of information processing onset was stronger in the 

left compared to the right hemisphere (Appendix A.1.1). Notably, neural populations selective for 

individual categories demonstrated different gradients in neural dynamics relative to those 
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selective for other categories along the ventral visual hierarchy, with face-selective populations 

generally displaying shallower posterior-anterior gradients Appendix A.1.2, Figure 25, Table 4). 

Given the differences in prestimulus neural timescales exhibited in stP and stHFBB, we 

recomputed gradients in information processing dynamics from these signal components 

separately. With a few notable exceptions, stimulus related information processing dynamics 

demonstrated similar gradients for stP and stHFBB across these components when moving along 

the visual hierarchy (Appendix A.1.3 and Figure 26). 

After examining gradients in information processing and endogenous timescales, we 

examined gradients in functional connectivity along the ventral visual hierarchy. Specifically, a 

measure of functional connectedness to the rest of the brain, the average prestimulus phase-locking 

value (PLV), was calculated between the 390 category-discriminant VTC electrode contacts and 

all other electrode contacts implanted within the same patient (on average 115 electrode contacts, 

SD = 41; note that none of the results reported below change substantially whether functional 

connectivity was calculated during the prestimulus or the poststimulus period as the Spearman 

correlation between the prestimulus and poststimulus connectivity metrics was > 0.95). These 

“other” electrode contacts were located across the entire brain, not only in VTC (Figure 23). 

Previous fMRI studies suggest opposite gradients in functional connectivity to unimodal sensory 

vs. association and transmodal areas when moving along sensory processing streams [80,95]. 

Therefore, we separately computed the functional connectivity of VTC category-selective contacts 

to visually responsive contacts (p<0.001, for visual response vs. baseline, corrected for multiple 

temporal comparisons) and to those that were not visually responsive. Also, given the wide 

variability of electrode coverage across patients, pooling connectivity across visually responsive 
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and not visually responsive contacts allowed us to partially overcome this cross-patient anatomical 

heterogeneity.  

Connectivity between VTC electrode contacts and visually responsive contacts decreased 

when moving up the visual hierarchy. In contrast, the connectivity between VTC contacts and 

contacts that were not significantly visually responsive increased when moving up the visual 

hierarchy (Figure 5). Decreasing functional connectivity to visually responsive regions and 

increasing functional connectivity to regions that do not demonstrate strong visual responses is 

generally consistent with previous fMRI studies showing opposing anatomical gradients along 

VTC for functional connectivity to unimodal versus transmodal regions [80]. 

Additionally, gradients in local neural dynamics and long-range cortical interactions were 

examined to determine how they correlate to a neural population’s role in visual perceptual 

behavior. This was done by predicting the RT of patients, using sliding windows of neural activity 

recorded at each category-selective VTC electrode contact, during trials of the 1-back task where 

patients correctly responded that an object was presented twice in a row. How predictive the 

activity in an electrode contact was of RT was used as a measure of how much the activity from 

that neural population contributed to perceptual behavior. When considering stP and stHFBB 

together, the ability of a VTC neural population’s activity to predict RT was not significantly 

correlated with distance along the visual hierarchy (ρ(390) = .02, p = .75). However, when 

considering them separately, a neural population’s ability to predict RT decreased along the visual 

hierarchy when looking at stHFBB but increased when looking at stP. These differences highlight 

nuances in large-scale neuroanatomical gradients when considering different aspects of the neural 

signal [100,119,120]. 
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Figure 5. Gradients in long-range functional connectivity along the ventral visual hierarchy.  The change in 

connectivity to visually responsive regions moving along VTC was opposite of the change in connectivity to 

populations that were not visually responsive. Connectivity to significantly visually responsive regions 

decreased along this axis, even when accounting for random cross-patient effects (T(388) = -4.42, p < .001, 

tied-rank mixed-effects model). On the other hand, connectivity to regions that were not significantly visually 

responsive increased along this axis, even when accounting for random cross-patient effects (T(388) = 3.98, p 

< .001, tied-rank mixed-effects model). 

 

Given corresponding anatomical gradients in local dynamics and long-range cortical 

interactions, a key question is, to what degree these gradients are interrelated beyond shared 

anatomical axes. To explore this question, the partial correlations between these functional 

properties of category-selective VTC populations were calculated after removing the effects of 

distance along the visual hierarchy (Figure 6). Note that Spearman’s partial correlation was used 
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to remove any monotonic relationship to distance along the visual hierarchy, not only linear 

relationships (see Figure 27 for the non-partialed correlations).  

The negative partial correlation between a neural population’s stP timescale and its 

functional connectivity to visually responsive populations throughout the brain was significant. 

This suggest that parts of VTC that communicate strongly with other visually responsive regions 

have shorter timescales. Furthermore, the negative partial correlations were significant between 

the magnitude of a neural population’s peak category-discriminant information and both its 

connectivity to visually responsive regions and those that were not. This shows that neural 

populations with stronger connectivity, especially to non-visual areas have less category-

discriminant activity.  

None of the measures of endogenous or stimulus-response timescale (prestimulus stP and 

stHFBB tau, initial rise duration, and maintenance) were significantly correlated with one another, 

with or without removing the effects of distance along the visual hierarchy (Figure 6 and Figure 

27). Thus, though there are gradients in neural timescales across VTC using each of these 

measures, neither these timescales nor their gradients are significantly correlated to one another 

even though they were measured from the same neural populations. This indicates that neural 

timescales are context dependent (prestimulus vs stimulus response, initial rise duration vs. 

maintenance, stP vs. stHFBB, etc. are all not significantly correlated) and measuring one type of 

timescale cannot be used to infer the general timescale of a neural population. 
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Figure 6. Interactions between local dynamics, long-range cortical interactions, and behavioral correlations.  

Partial correlation matrix between local dynamic properties and long-range cortical interactions after 

removing the effect of cortical distance along the visual hierarchy (see Figure 27 for non-partialed 

correlations). Colored squares are significant at the p < .05 level (uncorrected). The false-discovery rate 

adjusted critical value corresponds to ρ = ± .146. Within each square is the partial Spearman correlation 

coefficient for the variables in the corresponding row and column. The matrix is symmetric across the 

diagonal. Several properties of the local information processing dynamics, including information onset, peak 

magnitude, duration of the initial rise, and the amount of time the information was maintained, were related 

to one another besides sharing a common anatomical gradient. The partial correlation between peak 

information and functional connectivity was also significant after removing the effect of distance along the 

visual hierarchy. The partial correlation between neural timescale (stP tau) and connectivity to visually 

responsive regions (PLVv) was also significant as was the partial correlation between both connectivity to 

visual regions and stP timescale and a neural populations ability to predict patient response time (RT) during 

the 1-back task. 
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Partial correlations between nearly all the stimulus response variables (peak information, 

onset time, initial rise duration, and maintenance duration), other than the two timescales discussed 

in the previous paragraph (initial rise duration vs. maintenance duration), were significantly 

correlated with one another. This suggests that there are interactive factors driving these different 

aspects of the stimulus response.  

The partial correlation between the ability of a neural population to predict RT and that 

neural population’s connectivity to visually responsive brain regions and the partial correlation 

between a neural population’s ability to predict RT and that neural population’s prestimulus stP 

timescale after removing the effect of distance along the visual hierarchy were both significant 

(Figure 6). Thus, neural populations which integrate information over visual brain regions with 

short stP timescales were more predictive of behavior during the 1-back task observed here. This 

demonstrates that aspects of both local neural dynamics and long-range cortical interactions are 

intimately linked to a neural population’s role in visual perceptual behavior. 

2.4 Discussion 

Taken together, these results illustrate interrelationships between a neural population’s 

anatomical location, its local dynamics, and its long-range functional connectivity, which 

ultimately influence that population’s role in perception. In the current study, progressing along 

the ventral visual hierarchy was associated with decreases in peak category-discriminant 

information, longer information onsets, longer durations of initial information processing, longer 

periods of information maintenance, longer prestimulus stP timescales but shorter prestimulus 

stHFBB timescales, and opposing changes in connectivity to visual and non-visual brain regions. 
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These results suggest that the anatomical and physiological gradients that exist along the visual 

hierarchy influence almost all aspects of prestimulus and information processing dynamics, which 

may constrain how these neural populations process information and their computational role in 

cognition. Indeed, a subset of these functional gradients were correlated with the ability of a neural 

population’s activity to predict the speed of behavioral responses during a visual 1-back task. 

Furthermore, many aspects of stimulus response dynamics shared significant interrelationships 

with one another beyond any shared relationship with anatomical location. Functional connectivity 

was correlated to aspects of both the stimulus response and prestimulus timescales, demonstrating 

how long-distance interactions can influence local neurodynamics. However, prestimulus and 

poststimulus information processing timescales were not strongly correlated to one another, nor 

were the initial rise and maintenance of the visual response, suggesting that different aspects of 

neural dynamics arise through different processes and mechanisms.  

Previous studies have observed that neural populations demonstrate longer timescales 

when moving from primary sensory and motor regions to association cortices [69,74,76,97,99]. 

The increasing endogenous timescales of stP activity along the ventral visual hierarchy observed 

here further support this organizing principle of cortex. Notably though, the endogenous stHFBB 

timescales demonstrated the opposite relationship along VTC, with shorter timescales in more 

anterior parts of VTC. Furthermore, the timescale of the stP and stHFBB were uncorrelated, 

demonstrating a dissociation between the dynamics of these two signal components recorded from 

the same neural population. This highlights a need to better understand the differences in the 

physiological origins of stP and stHFBB signal components [100,119,120].  

The duration that category-discriminant neural populations initially process category-

selective information increased along the ventral visual hierarchy, which may be the result of 
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increased computational demands involved in forming more complex and individuated 

representations in more anterior category-selective neural populations [121–124]. However, in 

traditional models of perception, neural units are passive visual feature detectors, that either fire 

or not depending on the presence or absence of their preferred features [125]. In these models, 

little difference should be seen in the speed that neural populations process information further 

downstream because these passive feature detectors, even if they are sensitive to complex features, 

should respond rapidly and automatically to the presence of that feature [125]. In this study, the 

duration of the initial rise in visual responsiveness did not change along the hierarchy, which fits 

with these traditional models. However, the divergence in the duration of category-discriminant 

versus visual response dynamics does not fit with these models. Instead, these results support a 

model of ventral visual representations that evolve through time, with information processing 

dynamics governed by interactions between the information being processed locally and globally 

through long-range connections, which reflect top-down and recurrent interactions [19,66–68].  

Long-range functional connectivity demonstrated a crossover effect along the ventral 

visual hierarchy, with decreasing connectivity to visually responsive regions and increasing 

connectivity to those that were not, consistent with previous fMRI studies [80,95]. Some of these 

gradients in functional connectivity were also associated with gradients in neural timescales even 

after controlling for effects of distance along the visual hierarchy. Specifically, neural populations 

that were more strongly connected to visually responsive regions demonstrated shorter endogenous 

stP timescales. One potential explanation for this result is that neural populations which integrate 

primarily visual inputs have faster timescales compared to neural populations that have more 

diverse inputs so that they are prepared to rapidly process incoming visual information [34,69,80]. 

Notably, the partial correlation between connectivity to regions that did not demonstrate strong 
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visual responses and poststimulus stP timescale was not significant. Previous models have not 

investigated differential effects of long-range cortical interactions with visual versus non-visual 

regions on the timescale of neural populations [70]. This may be an important consideration for 

future models. Given the variable coverage of brain regions across patients in the current study, 

future studies are necessary to tease apart the impact that connectivity with specific brain regions 

has on local cortical dynamics.  

Neural populations that demonstrated higher peak category-discriminant neural activity 

had earlier onsets, shorter durations of initial rise, and maintained that information longer. Our 

simulations demonstrated that our measures of peak and duration are independent, confirming that 

this correlation is physiological and not an artifact of the analysis (Figure 28). Longer initial rises 

in category-discriminant information with smaller peak information may reflect evidence 

accumulation over longer timescales in these neural populations [69]. Whereas partial correlations 

between local neural dynamics and long-range cortical interactions demonstrates that, in addition 

to sharing strong gradients along the primary axis of sensory processing systems, these properties 

of neural populations are closely linked to each other. These links between local dynamics and 

long-range cortical interactions are likely conferred in part by shared biochemical, microstructural, 

and macrostructural connectivity gradients that exist along the ventral visual axis beginning early 

in cortical development [79,80,95,126,127].   

Functional gradients in VTC were also correlated with the degree to which a neural 

population’s activity could predict perceptual behavior. In the current study, increased functional 

connectivity to visually responsive regions and shorter prestimulus stP timescales were associated 

with a greater ability for a neural population’s activity to predict RT after removing the effect of 

distance along VTC. This suggests that these neural populations may play a larger role in the basic 
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visual discrimination task studied here. Behaviors involving more complex perceptual 

representations and/or more complex behavioral decisions may rely more heavily on neural 

populations with longer timescales and on higher order cortical regions [19,66,128–131]. Future 

studies are required to determine if finer level of visual discrimination involving longer response 

times [132] reflect contributions from neural populations with different information processing 

timescales and functional connectivity patterns compared to those involved in the 1-back task 

studied here. 

There were not significant correlations between stimulus response timescales and 

endogenous timescales, or between onset dynamics and maintenance dynamics. Different aspects 

of task-evoked timescales were not closely linked to one another, suggesting the physiological 

drivers of initial information processing and maintenance may be independent. Additionally, 

endogenous neurodynamic timescales did not generalize to stimulus related information 

processing timescales. Notably, this is unlike functional connectivity patterns, which were highly 

correlated across the stimulus response and prestimulus periods. The lack of significant correlation 

highlights that endogenous neural timescales are not necessarily tightly related to task-evoked 

information processing dynamics [71,75,133,134]. Thus, inferences about a region’s 

computational role in cognition, including its temporal integration and segregation [73] or 

temporal response windows [76,77], cannot be inferred from endogenous dynamics alone, as 

stimulus response and endogenous timescales are not necessarily strongly correlated. There is no 

single principle or process that governs a neural population's timescales, e.g. timescales are not a 

static and inherent property of a neural population [73]. Rather, these results suggest that different 

kinds of timescales are governed by different combinations of factors that can depend on cognitive 

and neural context. 
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The current study highlights how large-scale anatomical and functional gradients interact 

to constrain local neural processing dynamics and computation. The anatomical gradients of 

dynamics and connectivity demonstrated here impose important constraints for future 

neurobiological models of visual perception. This architecture may help the brain achieve abstract 

and conceptual representations seen in more anterior VTC neural populations [121,123,124]. 

While the present study examined these effects in visual processing, it is likely that similar 

principles apply to other hierarchically organized sensory and cognitive systems [80,97,98]. 

Indeed, gradients in physiological, and thus functional, organization are likely in part conferred by 

corresponding gradients in growth factors and, in turn, gene expression during and persisting after 

cortical development [80,96,126,127]. Interactions among response properties and functional 

connectivity patterns of neural populations suggest that shared neurophysiological mechanisms tie 

large-scale and local processing dynamics together. Distinctions among and between endogenous 

and stimulus response timescales suggest that these neurodynamics are caused by distinct 

neurobiological mechanisms and play different roles in the brain. These results highlight the 

mutual interrelationships between a neural population’s position in the processing hierarchy, its 

functional connectivity, and its local dynamics, constraining its role in cognition. 
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3.0 Multiple adjoining word- and face-selective regions in ventral temporal cortex exhibit 

distinct dynamics 

Next, we sought to map out the VTC circuits responsible for face and word processing. 

Faces and words vary significantly along several axes, including their low-level visual properties, 

when expertise for these stimuli develops during childhood, and their evolutionary age [94]. 

However, their cortical localizations in VTC are remarkably close to one another, leading some to 

believe they are processed by the same visual circuits [60]. In this investigation, we isolated several 

neural populations highly selective for either words or faces that were not selective to the other 

category, demonstrating that the processing circuits for these objects are, at least, partially 

separable. Further, the maps drawn here illustrate a mosaic of word-selective regions across VTC 

which demonstrate distinct temporal dynamics, suggesting that they play different roles in word-

processing. This highlights the importance of an extended basal temporal language system in 

reading. This chapter was published as MJ Boring, EH Silson, MJ Ward, RM Richardson, JA 

Fiez, CI Baker, AS Ghuman. Multiple adjoining word- and face-selective regions in ventral 

temporal cortex exhibit distinct dynamics. J. Neurosci. 41, 6314–6327 (2021). 

3.1 Introduction 

Investigations into the spatial organization of category-selectivity in ventral temporal 

cortex (VTC) have been instrumental in establishing several organizational principles of the visual 

system. Functional magnetic resonance imaging (fMRI) studies have helped identify lateral-
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medial biases in ventral stream responses to objects depending on where they typically appear in 

the visual field (retinotopic eccentricity) [9,49,135]. Specifically, lateral regions of VTC are 

selective for objects that tend to be viewed centrally (foveated), like words and faces, whereas 

more medial regions are selective for objects that tend to fall on the periphery of the retina, like 

navigationally relevant information such as buildings [49,136–138]. This broad principle of 

organization by eccentricity fails to inform us about how representations of different stimuli that 

are foveated, like words and faces, are organized in VTC relative to one another.  

Despite sharing similar typical retinotopic eccentricity, word and face stimuli are highly 

distinct along several axes that are also hypothesized to influence where they are processed in VTC 

[94]. Word- and face-processing operate on very different low-level visual properties [139], follow 

different developmental trajectories [65], and feed into distinct networks that support either 

language or social interactions [140,141], respectively. Despite this, the cortical localizations for 

word- and face-processing in VTC are remarkably close together, and it remains debated whether 

or not there are regions in VTC that independently encode word or face information at all [28].  

 Neuroimaging studies have separately mapped word- and face-processing networks in 

VTC. Printed word recognition is thought to be carried out in part by a network of regions along 

the left occipitotemporal sulcus, that differ in the complexity of their responses and are thought to 

be hierarchically organized [122,136,142–144]. Face-processing is thought to be carried out in part 

by a network of regions distributed bilaterally along the midfusiform sulcus [145,146]. However, 

few studies have investigated VTC’s responses to word and face stimuli within the same 

participants [8,147–150]. Those that have, have relied on low sample sizes or imaging modalities 

with differential sensitivity to different aspects of neural activity (like high and low-frequency 

neural activity [151,152]). Therefore, much remains unknown about how visual word- and face-
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processing networks organize relative to one another, and to what degree they overlap [8,148–

150,153]. 

Further, word- and face-selective regions have primarily been mapped using methods 

lacking high spatiotemporal resolution. Therefore, it is unclear if the nodes within these processing 

networks differ in the temporal dynamics of their responses, although previous studies have 

suggested that different regions may contribute to distinct stages of word- and face-processing 

[122,129,154]. Further, category-selective maps derived from BOLD responses may be 

incomplete due to BOLD’s increased sensitivity to early stimulus evoked activity (100-300 ms 

after stimulus presentations) relative to later responses [128,155] and greater correlation with high 

frequency broadband activity in invasive neural recordings compared to lower-frequency electrical 

potentials [152,155].  

In the present study, we characterized the spatial organization and functional dynamics of 

word- and face-processing networks within VTC using intracranial electroencephalography 

(iEEG) data collected from 36 patients with pharmacologically intractable epilepsy and 7 T fMRI 

data collected from eight healthy participants.  

3.2 Methods 

3.2.1 Intracranial EEG data collection and preprocessing 

3.2.1.1 Participants 

38 patients (14 males, ages 19-65, 32 righthanded) had intracranial surface and/or depth 

electrodes implanted for the treatment of pharmacologically intractable epilepsy. Depth electrodes 
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were produced by Ad-Tech Medical and PMT Corporation and were 0.86 and 0.8 mm in diameter, 

respectively. Grid electrodes were produced by PMT Corporation and were 4 mm in diameter. 

Because depth electrode contacts are cylindrical, the surface area of the recording site was similar 

across grid and strip electrode contacts. To be concise, “electrode contacts” are referenced to as 

“electrodes” throughout the manuscript. No consistent differences in neural responses were 

observed between grid and depth electrodes. Only electrodes implanted in ventral temporal cortex, 

defined as below the inferior temporal gyrus and anterior to the posterior tip of the fusiform in the 

participant-centered space, were considered in this study. Two patients did not have any electrodes 

within this region of interest, therefore only data from 36 participants were analyzed for this study. 

Electrodes identified as belonging to the seizure onset zone based on the clinical report or showing 

epileptiform activity during the tasks were excluded from the analysis. All participants gave 

written informed consent. The study was approved by the University of Pittsburgh Institutional 

Review Board. Patients were monetarily compensated for their time. 

Electrodes were localized via either post-operative magnetic resonance imaging (MRI) or 

computed tomography scans co-registered to the pre-operative MRI using Brainstorm [101]. 

Surface electrodes were projected to the nearest point on the pre-operative cortical surface 

automatically parcellated via Freesurfer [102] to correct for brain shift [103]. Electrode coordinates 

were then co-registered via surface-based transformations to the fsaverage template using 

Freesurfer cortical reconstructions.  

3.2.1.2 Experimental design 

All participants underwent a category localizer task where they viewed grayscale images 

presented on a computer screen positioned two meters from their face. Images occupied 

approximately 6 x 6 degrees of visual angle and were presented for 900 ms with 1500 ms inter-
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stimulus interval with random 400 ms jitter. Participants were instructed to press a button every 

time an image was presented twice in a row (1/6 of the trials). These repeat trials were excluded 

from the analysis yielding 70 trials per stimulus category left for analysis. Several participants 

underwent multiple runs of this task and therefore had 140-210 trials per stimulus category. 

31 of the participants saw pictures of faces, words, bodies, hammers, houses, and phase-

scrambled faces. The remaining participants viewed a modified set of stimuli with the same 

viewing parameters described above. One participant viewed pictures of consonant-strings and 

pseudowords instead of hammers, two viewed shoes instead of words, one viewed consonant-

strings and pseudowords instead of hammers and houses, and one viewed general tools and animals 

instead of hammers. 

A subset of the participants that underwent the category localizer task also participated in 

word and/or face individuation tasks (Table 1). These tasks shared identical presentation 

parameters as the category-localizer task (i.e., inter-stimulus interval, stimulus-on time, and 

viewing angle) but contained different images. Twelve underwent a word individuation task that 

included pictures of real words, pseudowords, and consonant-strings or false fonts. Participants 

again were instructed to respond if a given stimulus was repeated twice in a row. Every stimulus 

(i.e., individual word) was presented sixty times. Twenty underwent a face individuation task 

where they viewed individuals of varying identity and emotions. Participants were instructed to 

indicate if each face was male or female during this task. Each identity was repeated 60 times. 
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Table 1. iEEG participant coverage. 

Number 
Tasks 
completed 

Electrodes in 
VTC 

Face-
selective  

Word-
selective  

House-
selective  

Word 

medial to 
face-

selective  

Alternating 

word- and face-

selective  

1 CL L: 6 0 0 0 N/A N/A 

2 CL L: 11 0 0 0 N/A N/A 

3 CL  L: 34, R: 18 0 0 L: 2, R: 2 N/A N/A 

4 CL L: 20, R: 14 0 0 R: 2 N/A N/A 

5 CL R: 18 R: 2 0 0 N/A N/A 

6 (Figure 10B) CL  L: 11 L: 1 L: 1 0 Yes N/A 

7 CL, WID L: 17 L: 2 L: 1 0 No No 

8 CL R: 9 0 0 R: 2 N/A N/A 

9 CL, WID R: 21 0 R: 1 0 N/A N/A 

10 (Figure 
10B) 

CL, WID, 
FID 

L: 25, R: 16 L: 2, R:1 L: 2 0 Yes Yes 

11 CL, FID L: 4, R: 23 R: 5 L: 1, R: 1 R: 5 Yes Yes 

12 CL, FID R: 42 R: 8 R: 4 R: 6 Yes Yes 

13 CL, FID L: 38 0 L: 2 L: 2 N/A N/A 

14 CL, FID L: 23, R: 24 L:2, R: 1 0 L: 2, R: 2 N/A N/A 

15 CL, FID L: 30 L: 1 0 L: 2 N/A N/A 

16 CL, FID L: 23, R: 11 0 L: 1 R: 3 N/A N/A 

17 (Figure 

10B) 

CL, WID, 

FID 
L: 48 L: 6 L: 4 L: 2 Yes Yes 

18 CL, FID L: 23 0 0 L: 7 N/A N/A 

19 CL L: 4 0 L: 2 L: 2 N/A N/A 

20 CL L: 23 0 0 0 N/A N/A 

21 CL R: 11 0 0 R: 1 N/A N/A 

22 
CL, WID, 
FID 

R: 41 0 R: 6 0 N/A N/A 

23 CL L: 10 L: 1 L: 2 0 No No 

24 CL, FID L: 26, R: 25 L: 3, R: 1 R: 2 R: 1 Yes Yes 
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Number of word-, face-, and house-selective electrodes in the left (L) and right I hemisphere of each iEEG 

participant out of the total number of implanted VTC electrodes. All participants underwent a category 

localizer task (CL) from which word, face, and house-selectivity was determined by comparing electrode 

responses to six categories of objects (see 3.2.1.4 and Figure 7B). The table indicates whether any word-

selective electrodes were medial to any face-selective electrodes in participants that had at least one word- 

and one face-selective electrode within the same hemisphere. The table also indicates whether there was 

alternation of word- and face-selective electrodes along the medial to lateral axis within participants that had 

at least two word-selective electrodes and one face-selective electrode within the same hemisphere or vice-

versa. Participants with insufficient coverage word or face-selective regions to determine their relative 

anatomical location are listed as not available (N/A). A subset of participants also participated in a face 

Individuation task (FID) or word individuation task (WID) from which the individuation capacity of word- 

and face-selective electrodes was tested. Participants illustrated in figures are noted next to the corresponding 

participant number. 

 

Table 1 continued 

25 
CL, WID, 

FID 
L: 21, R: 19 0 L: 6, R: 1 0 N/A N/A 

26 CL L: 21, R: 28 L: 2 L: 3 R: 3 No No 

27 CL, FID L: 5, R: 18 
0 L: 1, R: 5 R: 3 N/A N/A 

28 (Figure 

10A) 

CL, WID, 

FID 
L: 55 

L: 6 L: 4 0 Yes Yes 

29 CL, FID L: 42 
L: 2 L: 2 0 Yes No 

30 CL, FID L: 26, R: 28 
L: 1, R: 2 R: 1 L: 2, R: 1 Yes No 

31  
CL, WID, 

FID 
L: 19, R: 36 

L: 1, R: 6 0 R: 2 N/A N/A 

32 CL, WID L: 10, R: 34 
L: 1 0 L: 1, R: 3 N/A N/A 

33 
CL, WID, 

FID 
L 39, R 50 

0 L: 4 L: 3, R:2 N/A N/A 

34 CL, WID L 24, R: 27 
R: 2 L: 5, R: 2 L: 1, R: 3 No No 

35  CL, FID L: 116 
L: 16 L: 8 L: 6 Yes Yes 

36 
CL, WID, 

FID 
L: 129 

L: 33 L: 15 L: 12 Yes Yes 

Total: 36 

CL: 32, 

WID: 12, 
FID: 20 

L 883, R: 513 L: 80, R: 28 L: 64, R: 23 L: 44, R: 41 
L: 7/10,  

R: 4/5 

L: 5/9, 

R: 3/5 
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Local field potentials were recorded via a GrapeVine Neural Interface (Ripple, LLC) 

sampling at 1 kHz. Notch filters at 60/120/180 Hz were applied online. Data was subsequently 

filtered from 0.1-115 Hz to isolate single trial potentials (stP) or decomposed via Morlet wave 

convolution to determine the power from 40-100 Hz to isolate single trial high frequency broad-

band activity (stHFBB). These stHFBB responses were then Z-scored based on the baseline period 

from 500-0 ms proceeding stimulus onsets. It has been previously shown that these two aspects of 

the local-field potential, stP and stHFBB, contain complementary information [108], though also 

potentially arise from different neurophysiological generators [120,152,155,156]. Therefore, to 

assess the overall selectivity across VTC we use both as features in the classifiers described in 

3.2.1.4. We also investigated the independent contributions of these signal components to our 

category-selectivity maps (Figure 12). Trials where the stHFBB or stP exceeded 5 standard 

deviations from the mean were thought to contain noise and therefore excluded from further 

analysis. 

3.2.1.3 Determining language laterality 

Records from preclinical magnetoencephalography (MEG) language mapping sessions 

were used to determine the laterality of language function for 30 of the 36 iEEG participants. 

Language mapping records for the remainder of the participants could not be located. The 

preclinical language mapping records contained laboratory technician notes indicating whether 

MEG activity during reading, listening, and word-repetition tasks was lateralized to the left or right 

hemisphere. The original data from these sessions was not available to conduct more precise 

analyses of language laterality for these participants.   
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3.2.1.4 Multivariate temporal pattern analysis 

To determine which electrodes contained information about word and face categories, 

leave-one trial out cross-validated Gaussian Naïve Bayes classifiers were used to predict the 

category of object participants were viewing given a sliding 100 ms of neural activity from one 

iEEG electrode during the category-localizer task (six-way classification). Signals from stP and 

stHFBB were both fed in as features to a single classifier for the main selectivity maps. This 

procedure was repeated from 100 ms prior to 900 ms after stimulus onset with 10 ms time-step to 

derive a time-course of decoding at each VTC electrode. We also ran separate classifiers on only 

features from stP or stHFBB to investigate the independent sources of information contained 

within these signal components. We ensured the number of features fed into these two types of 

classifiers was consistent by averaging 10 ms bins of stP, since stHFBB was sampled only every 

10 ms, before classification. 

Face-selective iEEG electrodes were defined as those that achieved a peak sensitivity (d’) 

of decoding for faces greater than the chance at the p < .05 level, Bonferroni corrected for multiple 

comparisons in time and across the total number of electrodes within a participant. Sensitivity (d’) 

describes the separation between a classifier’s noise and signal distributions and is defined as the 

inverse normal cumulative distribution function (Z’) of the true positive rate (TPR) minus the 

inverse normal cumulative distribution function of the false positive rate (FPR),  

𝑍′(𝑇𝑃𝑅) − 𝑍′(𝐹𝑃𝑅). 

The Bonferroni corrected d’ sensitivity threshold was found by performing a binomial test 

on a null distribution of 1 million d’ sensitivities that were obtained by randomly classifying 

permutations of the trial labels. A small number of electrodes responded to all categories except 

faces, which resulted in above-chance face classification, since the distribution of responses to 
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faces was significantly different from the responses to other object categories. Therefore, we 

imposed an additional criterion to determine selectivity: face-selective channels had to 

demonstrate a maximum peak event-related potential or event-related broadband response to faces 

relative to the other object categories. An identical procedure was done to define word- and house-

selective electrodes. 

To determine the independence of word and face selectivity within electrodes, we repeated 

the above multivariate pattern analysis for word- and face-selective electrodes after removing trials 

from the category they were most selective to. Word-selective electrodes were determined to also 

be selective for face stimuli if, after removing trials when words were presented, we could reliably 

predict trials where faces were presented from the other object categories (d’ sensitivity 

corresponding to p < .05, Bonferroni corrected for multiple temporal and electrode comparisons 

within participants using the same permutation test described above). Further, we stipulated that 

this d’ for faces must be greater than the d’ for all the remaining object categories. An identical 

procedure was used to define face-selective electrodes that were also selective for words.  

To determine if word- and face-selective electrodes contained exemplar-level information 

about either faces or words, we performed pairwise classification of the face and word 

individuation stimuli for the electrodes on which we had data (Table 1). Specifically, in the case 

of word individuation, we used three-fold cross-validated Gaussian Naïve Bayes classifiers to 

predict which of two real words a participant was viewing based on sliding 100 ms of data from 

the word-selective electrodes. Three-fold cross-validation was used instead of leave-one-out cross 

validation (which was used for assessing category-level selectivity) to save computational time as 

there were many more models (stimulus pairs) tested with the exemplar classifier. We repeated 

this procedure across all pairs of real words of the same length and averaged the time-courses of 
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this pairwise decoding (56 pairs of words). We determined the p < .05 chance-level of this average 

pairwise decoding by repeating this procedure 1,000 times on data with shuffled trial labels in a 

subset of the word-selective electrodes [112]. These global null distributions were similar across 

the randomly subsampled electrodes and therefore we chose a d’ threshold corresponding to the 

highest p < .05 level obtained from this randomly chosen subset. We ran similar pairwise decoding 

and threshold definition on real word versus pseudowords of the same length (36 pairs) and real 

word versus false font stimuli (136 pairs) to determine if electrodes that could not individuate real 

words could perform these finer discriminations compared to those tested in the category localizer 

task. 

Similarly, for face individuation we performed pairwise decoding of face stimuli during 

sliding 100 ms time-windows of face-selective electrode activity. We then averaged these time-

courses across all 120 pairwise face classifications and calculated the p < .05 corrected level by 

repeating the permutation analysis described for the word individuation task on a random subset 

of face-selective electrodes. 

3.2.1.5 Spatiotemporal k-means clustering 

We used a spatiotemporal variant of k-means clustering to determine if spatially contiguous 

word- or face-selective regions demonstrated distinct temporal dynamics. For word- and face-

selective electrodes, we separately standardized the d’ sensitivity time-courses derived from the 

category-level multivariate classifiers of left and right hemisphere electrodes from 100 to 600 ms 

post stimulus onset. We then concatenated this matrix with the electrodes’ MNI-coordinate, which 

was multiplied by a constant (spatial weighting parameter) that modulated the weight of the spatial 

versus temporal components of the signal to the clustering algorithm. We then performed k-means 

clustering using Euclidean distances and 100 repeats with random initializations to determine 
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clusters of nearby word- or face-selective electrodes within each hemisphere that demonstrated 

correlated dynamics. Because the d’ time-courses were standardized, Euclidean distances were 

equivalent to correlation distance for the temporal data and Euclidean distance for the spatial data.  

To determine the optimal weighting of spatial and temporal signal components and optimal 

number of clusters, we calculated the total spatial and temporal variance explained by the 

clustering solutions run with several spatial weighting parameters. This was performed for k = 1 

to 10 clusters per hemisphere per faces or words. The elbow method was used to determine the 

optimal number of clusters per hemisphere. The optimal number of clusters was 4 for right 

hemisphere face-selective electrodes, 3 for right hemisphere word-selective electrodes, 3 for left 

hemisphere face-selective electrodes, and 4 for left hemisphere word-selective electrodes. We 

chose the spatial weighting parameter that explained the maximum amount of variance across k = 

3 to 4 clusters per hemisphere per category (spatial weight = 300). Small deviations in the 

spatiotemporal weighting parameter did not strongly affect the overall organization of 

spatiotemporal clusters. The dynamics of these electrode clusters were then determined by 

averaging the selectivity time-courses (d’ derived using Multivariate temporal pattern analysis) 

across the electrodes belonging to each cluster.  

3.2.1.6 Statistical analyses 

Two sample T-tests were used to compare peak d’ sensitivity, peak latency, and onset 

latency for right versus left word- and face-selective electrodes. Onset latency was defined as the 

first time point that the d’ sensitivity reached a p < .001 threshold, which was non-parametrically 

defined using the d’ sensitivities of all object-selective electrodes from 500-0 ms prior to stimulus 

onset. Spearman’s rank-order correlations were used to test for relationships between peak d’ 

sensitivities and latency. We used linear mixed effects models to compare face and real word 
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individuation in the category-selective clusters identified by the spatiotemporal k-means 

algorithm. Linear mixed effects models allowed us to determine if there were differences in peak 

individuation d’ or latency across these clusters while correcting for cross-subject differences. We 

only compared spatiotemporal clusters with greater than 10 electrodes with individuation data. The 

Satterthwaite approximation was used to estimate the degrees of freedom in these linear mixed 

effects models to compute the reported p-values. The time points corresponding to the leading 

edge of the classification window were used for all temporal statistical analyses. 

3.2.2 fMRI data collection and preprocessing 

3.2.2.1 Participants 

Eight participants (six females, mean age 25 years) participated in the fMRI experiment. 

All participants were right-handed, had normal or corrected to normal vision and gave written 

informed consent. The National institutes of Health Institutional review Board approved the 

consent and protocol (protocol 93 M-0170, clinical trials #NCT00001360). Participants were 

monetarily compensated for their time. 

3.2.2.2 fMRI scanning parameters 

All fMRI scans were conducted on a 7 T Siemens Mangetom scanner at the Clinical 

Research Center on the National Institutes of Health campus. Partial volumes of the occipital and 

temporal cortices were acquired using a 32-channel head-coil (42 slices, 1.2x1.2x1.2 mm; 10% 

interslice gap; TR = 2 s, TE = 27 ms; matrix size = 170x170). 

https://clinicaltrials.gov/ct2/show/NCT00001360
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3.2.2.3 Experimental paradigm 

Participants fixated centrally whilst images of words, faces and houses were presented in 

blocks (16 seconds per block). These images were taken from the same category localizer task 

presented to iEEG patients. In each block 20 exemplar stimuli were presented (300 ms with a 500 

ms ISI). Participants performed a one-back task, responding, via MRI compatible response box, 

whenever the same image appeared twice in a row. Participants completed 10 runs of the localizer.   

3.2.2.4 fMRI data preprocessing 

All data were analyzed using the Analysis of Functional NeuroImages (AFNI) software 

package [157]. Prior to statistical analysis, all images were motion corrected to the first volume of 

the first run. Post motion-correction data were detrended.  

3.2.2.5 Statistical analysis 

To identify word-, face- and house-selective regions, we performed a general linear model 

(GLM) analysis using the AFNI functions 3ddeconvolve and 3dREMLfit. The data at each time-

point were treated as the sum of all effects thought to be present at that time point and the time 

series was compared against a Generalized Least Squares Regression model fit with REML 

estimation of the temporal auto-correlation structure. Responses were modelled by convolving a 

standard gamma function with a 16 second square wave for each condition (words, faces & 

houses). Estimated motion parameters were included as additional regressors of no-interest and 

fourth-order polynomials were included to account for any slow drifts in the MRI signal over time. 

Significance was determined by comparing the beta estimates for each condition (normalized by 

the grand mean of each voxel for each run) against baseline.  
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3.2.2.6 Split-half analysis 

For each participant, the ten localizer runs were divided into odd and even splits. In each 

split, we performed the same GLM analysis as described above and looked for significant voxels 

for the contrast of words versus faces. Despite having only half of the data, we observed significant 

word selectivity that was medial of face selectivity consistently across participants. To quantify 

this selectivity in an independent manner, we first defined medial word-selective regions within a 

split (e.g., odd) and then sampled the data from the other half (e.g., even). ROIs were defined using 

data spatially smoothed with a 2 mm Gaussian kernel to generate spatially contiguous clusters, 

whereas the test data was not spatially smoothed. To avoid any bias in node selection, this process 

was then reversed, and the average computed. Within each ROI we calculated the average T-value 

for each condition versus baseline.  

3.3 Results 

From 1,396 intracranial electrode contacts implanted within or on the surface of VTC of 

36 patients, we isolated those implanted in regions that were highly selective for either faces, 

words, or houses. Highly face-selective electrodes were defined as those that had both (1) single-

trial responses that could significantly discriminate face presentations from presentations of five 

other object categories (words, houses, bodies, hammers, and phase-scrambled objects; p < .05 

level, Bonferroni corrected for multiple spatial and temporal comparisons within participant; see 

Methods) and (2) responded maximally to faces compared to all other object categories on average. 

This ensured that electrodes designated as highly “face-selective” were those that responded 
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maximally and were significantly selective for faces compared to the five other object categories. 

An identical procedure was used to define word- and house-selective electrodes.  

108 electrodes demonstrated primarily face-selective responses (80 in the left, 28 in the 

right), 87 demonstrated primarily word-selective responses (64 in the left, 23 in the right), and 85 

demonstrated primarily house-selective responses (44 in the left, and 41 in the right) (Figure 7). 

Figure 8 and Table 1 illustrate the distribution of object-selective electrodes across participants. 

The greater number of left versus right object-selective electrodes was comparable to the greater 

coverage of left VTC relative to right VTC in our patient population (883 electrodes implanted in 

the left, 513 in the right, Figure 7A). Although some word- and face-selective electrodes 

demonstrated partial selectivity for the other object category, there were several examples of 

electrodes that were strongly tuned to only words or faces (Figure 9). This suggests that the neural 

circuits responsible for processing words and faces are, at least, partially dissociable [4,28,158]. 
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Figure 7. Spatial topography of word- and face-selective iEEG electrodes. A) Heat map of electrode coverage 

(both category-selective and non-selective) across 36 iEEG participants. Electrodes below the inferior 

temporal sulcus and anterior to the posterior edge of the fusiform gyrus on the participant’s native space 

were considered VTC. There was a greater proportion of left hemisphere coverage relative to right 

hemisphere coverage. B) Electrodes that responded preferentially to words, faces, or houses and could 

significantly discriminate these stimuli from all others using six-way Naïve Bayes classification (p < .05, 

Bonferroni corrected within participant). House-selective electrodes are primarily medial to word- and face-

selective electrodes. Multiple adjoining word- and face-selective patches are found along the medio-lateral 

axis of ventral temporal cortex, bilaterally. Depth stereotactic EEG electrodes have been brought to the 

ventral surface for clarity. 
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Figure 8. Distribution of face-selective and word-selective electrodes by participant. Distribution of highly 

face-selective (left) and word-selective (right) electrodes by participant. Color represents individual 

participants and corresponds across figure panels. Each group-level cluster of word- and face-selective 

electrodes is represented by data from multiple participants. 
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Figure 9. Independence of word- and face-processing networks. A) Average decoding time-course for word- 

(top, n = 39) and face- (bottom, n = 75) selective electrodes that contained significant amounts of information 

about the other object category. 21 out of 28 (75 %) face-selective electrodes in the right hemisphere and 54 

out of 80 (66 %) in the left hemisphere could significantly discriminate words from the other object categories 

excluding faces (e.g. d’ sensitivity for words was above chance for 5-way classification of the non-face object 

categories) at the p < .05 level (Bonferroni corrected for multiple comparisons in time and electrodes within 

participant, see Methods). 9 out of 23 (39 %) word-selective electrodes in the right hemisphere and 30 out of 

64 (47 %) in the left hemisphere could discriminate faces from the other object categories excluding words. 

Error bars indicate standard error from the mean across electrodes. Colored bars under the curves indicate 

times where the average selectivity is above chance (p < .001 corrected for temporal comparisons). B) 

Average decoding time-course for word- (top, n = 48) and face- (bottom, n = 33) selective electrodes that did 

not contain above chance information for the other object category. Although decoding accuracy was above 

chance at later time points for the non-preferred category across the population of electrodes, decoding 

accuracy was much smaller for the non-preferred compared to preferred category. C) Example decoding 

time-courses from three highly word-selective electrodes that did not display face selectivity. D) Decoding 

time-courses of three highly face-selective electrodes that did not display word selectivity. The patient from 

which the middle electrode recording was obtained was not presented with pictures of hammers. 
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To assess how word- and face-processing networks organize relative to one another, the 

spatial topography of word-, face-, and house-selective electrodes was examined. At the group 

level, selectivity to house stimuli was found primarily along the left and right parahippocampal 

gyrus, with some cases where selectivity extended into the collateral sulcus and medial fusiform 

gyrus. These patches were generally medial to word- and face-selective locations, consistent with 

previous fMRI and iEEG studies [136–138,143,159]. Face selectivity was found primarily along 

the left and right fusiform gyrus with some face-selective regions within the lingual gyrus, and 

occipitotemporal sulcus (Figure 7B). Consistent with prior findings [136], word-selective regions 

were found on the lateral bank of the fusiform and into the occipitotemporal sulcus in the left 

hemisphere. Word-selective regions were also found anterior to most prior reports from fMRI, in 

locations that generally have poor signal due to susceptibility artifacts [160]. In contrast to most 

maps of word- and face-selective regions obtained from fMRI [8,65,147–149,161,162], a mosaic 

of word-selective regions were also found medial to face-selective regions, on the medial bank of 

the fusiform and into the collateral sulcus. Each of these face-, word-, and house-selective regions 

were found in multiple participants (Figure 8), demonstrating relatively consistent localization of 

these regions at a group level. 

Interdigitation of word- and face-selective regions was seen in the left hemisphere of 5 out 

of 9 participants with at least two word-selective electrodes and one face-selective electrode or 

vice-versa and in the right hemisphere of 3 out of 5 such participants (Table 1, see Figure 10 for 

examples). Word-selective regions were found strictly medial to face-selective regions in the left 

hemisphere of 7 out of 10 participants with at least one word- and one face-selective electrode and 

in right hemisphere of 4 out of 5 participants (Table 1, see Figure 10 for an example). Thus, highly 

word-selective regions medial to face-selective regions were not simply a consequence of 
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individual variability in a group-level map but instead was detected in most participants that had 

coverage of both face- and word-selective VTC.  

Because word-selective patches were found medial to face-selective patches in the iEEG 

data, which is generally not observed in 3 T fMRI studies [8,148,153], we sought to determine if 

a similar organization existed in healthy participants using the higher resolution of 7 T fMRI. 

When contrasting responses to words and faces in eight participants, face selectivity was primarily 

centered on the midfusiform sulcus while word selectivity was greatest in the occipitotemporal 

sulcus (Figure 11). Consistent with the iEEG results, six of the eight participants demonstrated left 

word-selective regions medial to face-selective regions on the fusiform gyrus. In these medial 

word-selective patches, responses to words were significantly greater than responses to both face 

and house stimuli (p < .001, split-halves analysis). These medial word-selective regions were 

approximately 1/3rd the size of more lateral word-selective regions (mean size of lateral word-

selective regions: 398 voxels; std. error: 43 versus medial regions: 139 voxels; std. error: 29 voxels; 

p < .01). Also, 7 out of 8 of the healthy participants demonstrated word-selective patches near the 

anterior tip of the fusiform, despite susceptibility artifacts [160], consistent with the iEEG data 

(Figure 7B). Altogether, the map of word- and face-selective regions of the left hemisphere derived 

from 7 T fMRI were consistent with those derived from iEEG, medial and anterior word-selective 

regions are not seen in most maps drawn from 3 T fMRI [8,148,153]. 
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Figure 10. Multiple adjoining word- and face-selective patches in individual participants. A) Representative 

single participant demonstrated alternating bands of word- and face selectivity along the left fusiform gyrus. 

Shaded electrodes are those selective to words (yellow) and faces (blue). Non-filled circles represent ventral 

temporal electrodes that did not reach the selectivity criterion for either of these categories. Raw event-
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related broadband activity is shown for each of the numbered electrodes in the right panel. Moving from 

medial to lateral, electrodes demonstrate a preferential response to words, mixed response to both words and 

faces, preferential response to faces then preferential response to words. Abbreviations: collateral sulcus 

(COS), midfusiform sulcus (MFS), occipitotemporal sulcus (OTS). B) Three additional examples of patients 

with multiple adjoining word- and face-selective regions or word selectivity medial to face selectivity in VTC. 

Major VTC sulci have been labeled for clarity. 
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Figure 11. Interdigitation of BOLD responses to words and faces across eight healthy participants. Eight 

healthy participants that underwent an identical category localizer task as the iEEG participants 

demonstrated similar category selectivity. A) Individual maps demonstrate word versus face selectivity across 

left VTC. In six out of eight of these participants there was strong word selectivity medial to face selectivity 

along the midfusiform sulcus. The bar graphs below each participant indicates the selectivity of these word-

selective regions when defining them based on one half of the data and testing on the other half of the data. 

Word-selective responses were less consistent in the right hemisphere across participants. B) Bar graph of 

word selectivity in left hemisphere medial word-selective regions across participants for the left-out half of 

the data. Symbols: ** p < .01, *** p < .001. 

 

The map in Figure 7 was made by combining two key aspects of the iEEG signals, the 

single trial potentials (stP) and the single trial high frequency broadband activity (stHFBB), to 

examine the category-selectivity of the underlying VTC neural populations in aggregate across 

these signal components. Studies have shown that while category-selectivity demonstrated in stP 

and stHFBB often overlaps, they are not redundant [108,119,152], suggesting that stP and stHFBB 



  

 68 

have at least partially distinct physiological generators. To examine these signal components 

separately, we trained multivariate classifiers solely on stP or stHFBB and isolated electrodes that 

were selective in either signal component using the same criteria as before (single-trial 

discriminability and highest signal amplitude for words, faces, or houses). 58 electrodes showed 

significant selectivity in both stP and stHFBB (Figure 12A). Notably, the regions that 

demonstrated selectivity in both stP and stHFBB were those most often identified in canonical 

maps of category-selectivity based on fMRI [122,136,142,145,146]. Specifically, house-

selectivity was restricted to the parahippocampal cortex, face selectivity was primarily restricted 

to the fusiform bilaterally, and word selectivity was restricted primarily to the left posterior-lateral 

fusiform and occipitotemporal sulcus. Regions that were less consistent with canonical fMRI maps 

tended to be those that were not significantly selective in both stP and stHFBB. For example, the 

medial word-selective patches were primarily seen in stP alone (Figure 12B), whereas anterior and 

right hemisphere word selectivity was prevalent in either stP or stHFBB alone (Figure 12B and 

Figure 12C). Broadly, more electrodes demonstrated selectivity in stP (232 electrodes from 32 

participants, Figure 12B) compared to stHFBB (115 electrodes from 24 participants, Figure 12C). 

More widespread stP selectivity is consistent with a previous study comparing stP and stHFBB 

responses for faces in VTC, though that study did not observe any cases where selectivity for faces 

was demonstrated in stHFBB but not stP [119]. The similarities and differences in selectivity 

demonstrated in stHFBB and stP are consistent with the hypothesis that these signals have different 

physiological generators [163], which may differ in their laminar distribution [120] and spatial 

signal-to-noise falloff [119]. Additionally, different category-selectivity across these iEEG signal 

components may also help explain differences between category-selectivity maps drawn from 
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iEEG and fMRI, as some studies suggest fMRI has differential sensitivity to these aspects of the 

iEEG signal [152,155,164]. 

One question is whether word- and face-selective regions identified using iEEG 

discriminate between individual face and word exemplars, respectively. Classifying at the 

exemplar level also can address the potential concern that the word- and face-selective regions 

identified using iEEG may be responding to low-level features that drastically differ between the 

sampled image categories. A subset of the iEEG participants underwent independent word and 

face individuation tasks (see Methods, Table 1). Activity from 85 out of 97 sampled face-selective 

electrodes in 13 participants could be used to reliably predict the identity of a presented face. 

Similarly, activity from 40 out of 53 sampled word-selective electrodes from 10 participants could 

be used to discriminate single words of the same length from one another. Of those 13 word-

selective electrodes that could not reliably achieve word individuation, six could reliably 

discriminate pseudowords from real words of the same length, seven could reliably discriminate 

false fonts from real words. Therefore, most of the word- and face-selective regions mapped with 

iEEG contained reliable exemplar-level information specific to the categories they were selective 

to.  

Peak word and face individuation was significantly correlated with peak category-

selectivity in word and face-selective regions for which we had individuation data (word-selective: 

Spearman’s ρ(53) = .50, p < .0001, face-selective: ρ(97) = .48, p < .0001). Note that correlations 

in peak category selectivity and within-category individuation may arise due to similar differences 

in measurement noise across recording contacts (for example, due to the distance the electrode was 

placed from the underlying face or word-selective neural populations), underlying 

neural/physiological factors, or some mix of both. 
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Figure 12. Comparing category-selectivity in single-trial potentials and high-frequency broadband. Differing 

spatial distribution of electrodes that demonstrated selectivity in single-trial potentials (stP) and single-trial 

high-frequency broadband activity (stHFBB). A) Electrodes that demonstrated selectivity in both stP and 

stHFBB were clustered around the fusiform and parahippocampal gyri. B) Electrodes selective in only stP 

were much more widely distributed and included medial and anterior word-selective regions not typically 

seen in fMRI. C) Electrodes that were only selective in stHFBB were less prevalent than those only selective in 

stP, but also extended outside of the fusiform and parahippocampal gyri. 

 

In addition to the medial band of word-selective regions, there were a high proportion of 

right word-selective electrodes in our iEEG population (Figure 7B, Table 1). Although this finding 

is consistent with some other fMRI [165,166] and iEEG studies [143,167], right hemisphere word 

selectivity is often not seen in neuroimaging [136,168] and was not very strong in our 7 T fMRI 

data either (Figure 11). 23 word-selective electrodes were found across nine participants in right 

VTC, out of 21 participants with right VTC object-selectivity. This discrepancy between right 

word selectivity observed in fMRI and iEEG was also not attributable to participant handedness, 

since no participant with right word-selective regions was lefthanded. Three out of nine of these 
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participants demonstrated evidence for bilateral language function while the other six 

demonstrated left dominant language function determined by preclinical magnetoencephalography 

(MEG, see Methods). Across the entire participant population, seven out of 30 iEEG participants 

with preclinical MEG demonstrated bilateral language function, the others were considered left 

dominant. One participant with bilateral language function and right hemisphere object-selectivity 

did not demonstrate right word selectivity. Overall, neither participant handedness nor language 

dominance sufficiently explains the high proportion of word-selective regions found in right VTC. 

While neither language laterality nor handedness explained right word selectivity, 

substantial differences were seen in the dynamics of neural activity recorded from left versus right 

word-selective regions (Figure 13).  Latency to word selectivity onset and peak was shorter in left 

compared to right hemisphere word-selective regions (mean onset latency difference +/- 95 % CI: 

-133 +/- 61 ms, T(85) = -4.4, p < .0001, mean peak latency difference: -138 +/- 63 ms, T(85) = -

4.3, p < .0001, Figure 13). These relationships held when taking into account potential differences 

in posterior to anterior coordinate of word-selective regions across hemispheres (onset: T(85) = -

4.01, p = .0001, peak: T(85) = -3.97, p = .0002). There was no significant difference between the 

latency to peak d’ sensitivity or sensitivity onset for right and left face-selective regions (mean 

onset latency difference: -29 +/- 53 ms, T(106) = -1.1, p = .28, mean peak latency difference: 18 

+/- 57 ms, T(106) = 0.63, p = .53, Figure 13). Additionally, the amplitude of peak d’ sensitivity 

for words was significantly greater in the left compared to right hemisphere word-selective regions 

(mean peak d’ sensitivity difference: 0.66 +/- 0.37, T(85) = 3.5, p = .0006). The amplitude of peak 

d’ sensitivity to faces was also significantly greater in the left compared to right hemisphere face-

selective regions (mean peak d’ sensitivity difference: 0.58 +/- 0.39, T(85) = 3.0, p = .0037). There 

was a significant correlation between peak latency and peak magnitude within face-selective 
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regions in the left (ρ(80) = -0.61, p < .0001) and right (ρ(28) = -0.79, p < .0001) hemisphere and 

word-selective regions in the left (ρ(64) = -0.68, p < .0001), but not right (ρ(23) = -0.15, p = .48) 

hemisphere, suggesting that longer peak latencies were associated with smaller peak selectivity. 

These correlations were not significantly different between face-selective regions in the left and 

right hemisphere (T(85) = -1.56, p = .058), but there was a greater correlation between peak latency 

and magnitude in left compared to right hemisphere word-selective regions (T(85) = 2.63, p = 

.004) Given that it was only true for word-selective electrodes, the relatively slower response of 

right versus left word-selective regions may potentially explain differences in word selectivity 

maps derived from iEEG and fMRI and may reflect the left hemisphere bias for language. 

Finally, using the iEEG data, we sought to determine if there were any differences in the 

temporal dynamics of neural responses across word or face-selective regions within the same 

hemisphere. We used a spatiotemporal k-means clustering algorithm to find spatially contiguous 

regions of left and right VTC which demonstrated correlated category-selective dynamics. After 

optimizing the algorithm to capture the most spatiotemporal variance with the optimal number of 

clusters (see Methods), we could compare the dynamics of distinct word- and face-selective 

clusters within VTC.  
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Figure 13. Differences in the dynamics of left versus right word- and face-selective regions. Latency of word 

(yellow) and face (blue) sensitivity onset, latency of peak sensitivity, and magnitude of peak sensitivity across 

hemispheres. Latency of sensitivity onset is defined as the first timepoint that reached a d’ corresponding to p 

< .001 non-parametrically defined by the pre-stimulus baseline period. All time points reference the leading 

edge of the classification window. Box plots represent median, 25th and 75th percentiles. Summary statistics of 

each box plot are presented in the table. Abbreviations: confidence interval (CI), degrees of freedom (d.f.), 

left (L), right I. Symbols: n.s. p > 0.05, * p < .05, ** p < .01, *** p < .001. 

 

Word-selective regions were clustered into 4 distinct left hemisphere clusters and 3 right 

hemisphere clusters (Figure 14A). Word-selective regions on the left fusiform gyrus demonstrated 

the earliest and strongest selectivity, peaking around 200 ms (Figure 14B, gray). Left hemisphere 
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medial word-selective regions and right hemisphere word-selective regions came next, peaking 

around 300 ms (Figure 14B, green and cyan) followed by lateral regions around 350 ms (Figure 

14B, red). Word-selective regions in left anterior VTC peaked around 400-450 ms (Figure 14B, 

blue); right more anterior regions peaked around 600 ms (Figure 14B, magenta). When considering 

word selectivity dynamics exhibited independently in stP and stHFBB signal components, word-

selective electrodes on the fusiform demonstrated strong selectivity in both signal components, 

whereas other regions displayed distinct dynamics across these signal components (Figure 14C-

D). 

Face-selective regions were organized into 3 distinct clusters in the left hemisphere and 4 

distinct clusters in the right hemisphere (Figure 14E). Face-selective regions of the left and right 

fusiform gyrus demonstrated the earliest and largest peak selectivity around 200-250 ms (Figure 

14F, gray and cyan). More anterior right hemisphere regions and a cluster of electrodes in left 

posteromedial VTC (Figure 14F, yellow and green) peaked around 300 ms. Finally, more anterior 

face-selective electrodes in left and right VTC peaked around 400 ms (Figure 14F, blue, black, 

and magenta). When considering face-selectivity dynamics exhibited independently in stP and 

stHFBB signal components, electrodes on the fusiform demonstrated strong selectivity in both 

components, whereas other regions displayed distinct dynamics across these signal components 

(Figure 14G-H). 
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Figure 14. Spatiotemporal clustering of word- and face-selective regions. A) Spatiotemporal clustering of 

word-selective VTC electrodes. The illustrated clustering solution was robust to different weightings of 

spatial and temporal information. Left hemisphere word-selective electrodes were clustered into four spatial 

clusters. A cluster was found on the fusiform gyrus (gray, 21 electrodes from 5 participants), as well as medial 
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(green, 20 electrodes from 10 participants), anterior (blue, 11 electrodes from 5 participants), and lateral 

(red, 12 electrodes from 7 participants) to the fusiform gyrus. Right hemisphere word-selective regions had 

later onsets and were more clearly separated along the posterior to anterior axis (posterior: cyan; 8 electrodes 

from 4 participants, mid: yellow; 8 electrodes from 3 participants, anterior: magenta; 7 electrodes from 6 

participants). B) Average d’ time-course of each group of electrodes in A when jointly classifying stP and 

stHFBB. Error bars represent standard error across electrodes. C) Average d’ time-course of each group of 

electrodes when classifying only stP. D) Average d’ time-course of each electrodes when classifying only stBB. 

Word-selective electrodes on the fusiform demonstrate strong selectivity in both stP and stHFBB, whereas 

other regions display distinct dynamics across these signal components. E) Spatiotemporal clustering of face-

selective VTC electrodes. Left hemisphere electrodes were clustered into three spatial clusters roughly 

posterior to (green, 21 electrodes from 3 participants), on (gray, 46 electrodes from 12 participants), and 

anterior to the fusiform gyrus (blue, 13 electrodes from 7 participants). Right hemisphere, face-selective 

electrodes were primarily clustered along the posterior to anterior VTC axis into four clusters (posterior: 

cyan; 9 electrodes from 5 participants, mid: yellow; 13 electrodes from 6 participants and black; 3 electrodes 

from 2 participants, anterior: magenta; n = 3 electrodes from 3 participants). F) Average d’ time-course of 

each group of electrodes illustrated in E when jointly classifying stP and stHFBB. G) Average d’ time-course 

of each group of electrodes when classifying only stP. H) Average d’ time-course of each group of electrodes 

when classifying only stBB. Face-selective electrodes on the fusiform demonstrate strong selectivity in both 

stP and stHFBB, whereas other regions display distinct dynamics across these signal components.  

 

From electrodes sampled in the word individuation task, we observed stronger word 

individuation in left word-selective regions on the fusiform compared to the more medial word-

selective cluster illustrated in Figure 14A (peak d’ of fusiform minus medial regions: T(30) = 3.62, 

p = .001, linear mixed-effects model). There was no significant difference between the latency to 

peak word individuation across these clusters (T(30) = 2.91, p = .68). There were not sufficient 

subjects with electrodes in the other word-selective clusters with word individuation data to make 

comparisons between all clusters. Neither peak face individuation (T(50) = 1.03, p = .31) nor 
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latency to peak face individuation (T(50) = -0.21, p = .84) was significantly different between face-

selective regions along the left fusiform gyrus and the posteromedial face-selective cluster 

observed in Figure 14E. There were not sufficient subjects with electrodes in the other face-

selective clusters with face individuation data to make comparisons between all clusters.  

Overall, for both faces and words, these results suggest a cascade of processing that begins 

in the fusiform. Notably, the dynamics of these clusters suggest that they contribute to distinct 

stages of face- and word-processing, since the latencies of their responses are far longer than would 

be expected from feedforward visual transmission delays alone [34,40], but not long enough to 

exclude them from being relevant to perceptual behavior [130,131] . 

3.4 Discussion 

In the current study, we found several VTC regions that demonstrated strong word-, face- 

and house-selective responses. Although activity recorded from VTC electrodes often contained 

information about multiple object categories, several selectively responded only to faces or words 

(Figure 9). Electrodes which demonstrated preference to only words or faces suggests that VTC 

word- and face-processing networks are not entirely overlapping [28], but instead involve at least 

some independent nodes [4,158], which is also supported by stimulation and lesion evidence [19]. 

In both the iEEG and fMRI data, strong face selectivity along the fusiform gyrus was 

adjoining with highly word-selective regions in and around the occipitotemporal and collateral 

sulci. House-selective regions were found primarily along the parahippocampal gyrus. This 

organization of house- versus word- and face-selective regions supports that typical retinotopic 

eccentricity is an important organizing principle of VTC [9]. The word-selective regions around 
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the occipitotemporal sulcus are consistent with prior studies showing word selectivity within 

lateral aspects of VTC [169,170]. Due to sparse and variable sampling across participants, the data 

cannot address the question of whether there is a gradient of word selectivity along the 

occipitotemporal sulcus [122] or distinct patches [142,165].  

Despite some similarities with previous neuroimaging work, the iEEG and 7 T fMRI data 

here are inconsistent with a map of VTC wherein word-selective regions are strictly lateral to face-

selective regions [8,148,153]. While there has been some mixed reporting of word selectivity in 

anterior and medial VTC regions [8,65,147–149,161,162], most models of orthographic-

processing within VTC consider only the more lateral, traditional “visual word form area” 

[169,170]. The disagreement between the observed organization of face- and word-processing 

networks in VTC and most previous maps drawn from fMRI may be the product of spatial 

smoothing commonly applied during fMRI data analysis [171], signal dropout induced by 

susceptibility artifacts [160], or the inferior sensitivity of 3 T fMRI relative to 7 T fMRI. Here, a 

mosaic of word-selective regions was found medial and anterior to face-selective regions at the 

group level and within multiple iEEG patients and in 7 T fMRI in healthy individuals. This 

evidence makes it unlikely that our observations are the product of inter-participant variability or 

differences between healthy controls and patients with intractable epilepsy (see also 

[150,151,159,167]). This mosaic organization of visual word-selective regions is similar to the 

mosaic organization of auditory language processing networks [172], suggesting this pattern of 

organization may not be specific to the visual system. 

Medial word-selective regions may reflect differential mediolateral VTC selectivity to 

object rectilinearity, with more medial VTC being more responsive to straight over curvy objects 

[54,55]. However, the interdigitation of word- and face-selective regions along the mediolateral 
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axis is not well captured solely by this rectilinear model or the retinotopic model. Instead, medial 

and lateral word-selective regions with distinct dynamics may indicate an interaction between 

multiple representational axes in VTC [9,135] and possibly competition between faces and words 

for cortical space [60]. 

Previous studies have used electrical stimulation to demonstrate that a large portion of 

VTC, sometimes termed the “basal temporal language area,” plays a role in language processing 

[22,23,173,174]. However, generalized language deficits after lesions of the basal temporal 

language area are relatively minor [173] and the relationship between reading deficits and VTC 

lesions, other than the visual word form area [19,25], is unclear. A recent study reported 

differential language-related deficits during reading, repetition, and picture naming depending on 

the area of VTC stimulated [21]. Future studies are necessary to understand the precise relationship 

between medial, lateral, and anterior word-selective VTC dynamics and these regions’ functional 

contribution to reading and/or language processing. 

Category-selective regions most consistent with prior fMRI studies were those that 

demonstrated selectivity in both stHFBB and stP iEEG signal components. In contrast, we found 

that medial word selectivity was primarily demonstrated in stP rather than stHFBB. Previous 

studies have suggested that fMRI BOLD have differential sensitivity to stHFBB versus stP [156], 

with some suggesting greater sensitivity to stHFBB [152,155]. Differential sensitivity to stP and 

stHFBB may explain why previous fMRI studies have only inconsistently observed medial word-

selective regions. Our 7 T fMRI data shows that, with adequate power, both lateral and medial 

word-selective regions are seen in the left hemisphere using BOLD within individual participants. 

Future studies are necessary to fully understand the functional characteristics and 
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neurophysiological generators of stP and stHFBB iEEG components [120,175,176] and how they 

relate to any differential roles that medial and lateral word-selective regions play in reading.  

In addition to this complex organization of word- and face selectivity within hemispheres, 

our iEEG analyses suggest that right word-selective regions demonstrate longer latencies and 

lower amplitudes of peak selectivity compared to left word-selective regions, which may reflect 

the primary role the left, language dominant, hemisphere plays in word-processing [177]. Previous 

studies have demonstrated weaker correlations between object-selectivity measured with iEEG 

and fMRI correlations at later time windows [155]. This may explain why bilateral selectivity to 

words is inconsistent across neuroimaging studies.  

It has previously been suggested that right word-selective regions (along with left posterior 

word-selective regions) are involved in relatively early visual processing of words and then this 

information flows to left anterior word-selective regions [165]. However, the dynamics observed 

here do not support this hypothesis, because left word selectivity substantially preceded right word 

selectivity. Instead, the time-course of right hemisphere activation is coincident with P300 and 

N400 potentials observed during reading, suggesting that right hemisphere word-selective regions 

may support the left hemisphere in later computations, such as those involving word syntax, 

memory encoding, and/or semantic processing [154,178–181].  

Word- and face-selective regions within hemispheres also demonstrated distinct dynamics. 

Word-selective regions on the left fusiform gyrus demonstrated the earliest and strongest word-

selective responses. This was followed by word-selective activity in left occipitotemporal and 

collateral sulcus as well as right posterior word-selective regions. Finally, word-selective activity 

spread to anterior VTC between 400-600 ms. Further, the relatively later responses of word-
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selective regions outside of the fusiform may also contribute to differences in category-selective 

maps drawn from iEEG and fMRI [155].  

Face-selective responses were strongest and earliest on the fusiform gyrus bilaterally. A 

cluster of posteromedial face-selective electrodes was found in early visual cortex. The slower 

time-course of these regions compared to face-selective regions on the fusiform suggests this 

posterior face selectivity is a result of top-down attentional effects previously reported during face-

viewing [182]. Following fusiform responses, face selectivity was then seen in more anterior VTC.  

While delays in processing along the posterior-to-anterior VTC axis for both faces and 

words is somewhat consistent with feedforward models of visual processing, the relative latencies 

are far longer than would be expected in these models [34,40]. These results instead suggest more 

extended dynamics, perhaps governed by recurrent processes [34], with different category-

selective regions contributing differentially to multiple, temporally extended stages of face- and 

word-processing [19,66,129]. Further studies are required to identify these stages and link them to 

different spatiotemporal patterns of VTC activity. It is important to acknowledge that when 

analyzing the data at this fine granularity, between-participant variability in neural organization 

may influence the differences observed in dynamics across regions [183,184]. 

The high-resolution maps of category-selectivity within VTC provided here suggest that in 

addition to more extensively studied word-selective patches within the occipitotemporal sulcus, 

additional patches of word selectivity exist along the mid and anterior fusiform gyrus. These 

patches of word selectivity differ in their temporal dynamics from word-selective patches along 

the occipitotemporal sulcus, but still contain information about word identity. How these word-

selective regions differentially contribute to reading and the factors that lead to the development 

of adjoining patches of word- and face-selective regions remain as important outstanding 
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questions. Understanding this complex and dynamic map of selectivity in VTC is necessary to 

fully understand the organizational and computational principles governing object recognition.  
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4.0 Left word-selective ventral occipitotemporal cortex interacts with early visual cortex 

and the anterior temporal lobe to support word recognition 

 Last chapter we explored how face and word processing circuits in VTC are organized and 

their temporal dynamics. Next, we focus on how single word representations evolve in one 

important word-selective region in ventral occipitotemporal cortex (wVOT), sometimes referred 

to as the Visual Word Form Area. A previous iEEG study from our lab demonstrated that 

representations within wVOT undergo a dynamic shift over time, from a coarse level that can be 

used to discriminate between visually dissimilar words, and a later (after 250 ms) fine level 

representation that can differentiate between visually similar words [19]. Here, we replicate this 

finding in healthy individuals using magnetoencephalography (MEG) and demonstrate that this 

shift is stronger for real words compared to other word-like stimuli including pseudowords, false 

fonts, and consonant strings, which lack the semantic and/or phonological associations of real 

words. During this shift, increased connectivity to early visual cortex and anterior temporal lobe 

regions was observed. These results suggest that bottom-up and top-down interactions facilitate 

the disambiguation of word representations in wVOT. This chapter is available on the preprint 

server bioRxiv: MJ Boring, EA Hirshorn, Y Li, MJ Ward, RM Richardson, JA Fiez, AS Ghuman. 

Left mid-ventral temporal cortex interacts with early visual cortex and the anterior temporal lobe 

to support word individuation. bioRxiv, 411579 (2018).  
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4.1 Introduction 

A word-selective region in the left ventral occipitotemporal cortex (wVOT), sometimes 

referred to as the “Visual Word Form Area (VWFA),” responds preferentially to words over other 

object categories [168,185] and is thought to play a key role in reading [25,62,144,168,185,186]. 

It has been shown that damage to [19,25,187,188] or stimulation of [19,22] the wVOT can cause 

pure alexia, and there is evidence that reading expertise shapes response properties of the wVOT, 

including differential activation to real words versus pseudowords (pronounceable but 

meaningless letter strings) [141,153,189–193]. However, there is still debate over the nature of 

orthographic representation in the wVOT. Specifically, does the wVOT encode whole-words 

[14,193,194], sub-lexical features [19,136,144,169,195,196], or purely visual statistics that are 

preferentially fed into higher-order language centers [62,170]? 

A recent intracranial electroencephalography (iEEG) study demonstrated that early activity 

in the wVOT only allowed the decoding of words that were orthographically dissimilar (hint vs. 

dome). The activity then evolved in a way that also allowed orthographically similar real words 

(hint vs. lint) to be disambiguated after 200 ms  [19]. These results suggest that representations in 

the wVOT are initially coarse but evolve over time, eventually allowing for the disambiguation of 

orthographically similar word forms. However, the degree to which this process is specific to 

known printed words, which have learned semantic and phonological associations in addition to 

their visual properties, has not yet been determined. Further, it is unknown if word individuation 

is achieved solely through hierarchical visual processing [194] or is instead driven by interactions 

between the wVOT and other parts of the language network that underpin phonological and/or 

semantic knowledge about words [141,177,197,198]. 
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The current study probes these questions by examining the wVOT response to visually 

similar real words, pseudowords (pronounceable but meaningless letter strings), consonant strings 

(meaningless and unpronounceable letter strings), and false fonts (orthographic stimuli of an 

unfamiliar alphabet) using source-localized magnetoencephalography (MEG) and iEEG. We 

hypothesized that if the disambiguation of orthographic representations in the wVOT relies on 

learned semantic or phonological associations inherent to real words, then orthographically similar 

pseudowords and/or consonant strings would not be disambiguated by wVOT activity. In contrast, 

if the refinement of wVOT representation is independent of learned semantic or phonological 

knowledge, then we would expect to see a similar disambiguation for orthographically similar 

consonant strings and pseudowords. Additionally, we examined the functional connectivity 

between wVOT and the rest of the cortex during the transition between coarse and individuated 

representations to assess the extent to which the disambiguation of orthographic representations is 

a network-level process. 

Our results demonstrate that wVOT responses to real words, pseudowords, consonant 

strings and false fonts allowed for reliable decoding of orthographically dissimilar stimuli from 

one another. However, while orthographically similar real words could be discriminated from 

wVOT activity from 200-350 ms, orthographically similar pseudowords, consonant strings, and 

false fonts could not. Functional connectivity analysis in MEG revealed increased phase-locking 

between the wVOT and left anterior temporal lobe and early visual cortex during the transition 

from these coarse to individuated real word representations. Taken together, these results support 

the idea of early, coarse wVOT representations that subsequently evolve through interactions with 

visual and semantic networks to allow for the disambiguation of orthographically similar real 

words.  
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4.2 Methods 

4.2.1 MEG data collection and preprocessing 

4.2.1.1 Participants 

16 participants gave written informed consent to participate in the MEG portion of the 

experiment consistent with protocol approved by the University of Pittsburgh’s Internal Review 

Board. One participant was removed from the analysis due to poor cortical surface reconstruction 

leaving 15 (5 males, ages 19-29) for the remaining analyses.  

4.2.1.2 Experimental paradigm 

First, a category localizer consisting of words, hammers, houses, and false fonts was 

administered to identify word-selective cortical sources and constrain the word-individuation 

analysis. Then, a word individuation task was administered to probe the dynamics of word 

representation across different types of orthographic stimuli. For both the category localizer and 

word-individuation tasks stimuli were presented via custom scripted code in Psychtoolbox [106] 

on a screen one meter in front of the participants. Stimuli occupied approximately 6 x 6° of visual 

angle and were shown for 300 ms with a variable inter-stimulus interval of approximately 1.5 s. 

One-sixth of the time a stimulus would be repeated, to which the participant responded with a 

button press. These trials were removed from the subsequent analyses. Three blocks of 140 trials 

each were performed for the category localizer and 5 blocks of 264 trials each were performed for 

the word individuation task. In total there were 90 trials per stimulus category in the category 

localizer and 30 trials per stimulus in the word-individuation task, after removing repeated trials. 
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In the word-individuation task, word and word-like stimuli consisted of four pairs of real 

words, pseudowords, false fonts (Old Hungarian alphabet) and consonant-strings each differing 

from each other in only one symbol or letter within pairs. All false fonts and consonant-strings had 

five symbols or letters, pseudowords had either four of five letters, and words had either three or 

four letters. Decoding analysis within stimulus categories were only performed across stimuli with 

the same number of letters and symbols to prevent length effects. Real word stimuli were selected 

to have similar log frequency, mean bigram frequency and bigram frequency by position across 

similar and dissimilar word pairs (measured using the English Lexicon Project [199]). 

Pseudowords were selected to have similar orthographic neighborhood size and bigram frequency 

by position across similar and dissimilar pseudoword pairs.  

4.2.1.3 Structural MRI acquisition and preprocessing 

T1 structural MRIs were used to constrain the cortical source estimates of the current study. 

Images were acquired with a Siemens 3T Tim Trio system scanner using a magnetization-prepared 

rapid acquisition with gradient echo sequence (TR = 2100 ms, T1 = 1050 ms, TE = 3.42 ms. 8° 

flip angle, 256x256x192 acquisition matrices, FOV = 256 mm, and 1 mm isotropic voxels). 

Cortical surface reconstructions were extracted via Freesurfer [102]. 

4.2.1.4 MEG acquisition, preprocessing, and source localization 

MEG data were collected on an Elekta Neuromag VectorView MEG system (Elekta Oy, 

Helsinki, Finland) with 306 sensors (triplets of two orthogonal gradiometers and one 

magnetometer). Data were sampled at 1000 Hz with simultaneous recording of head position, 

electrooculogram, and electrocardiogram which were all corrected for off-line. The data were 
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processed with temporal signal-space separation [200], a 1-50 Hz bandpass filter, and down-

sampled to 250 Hz for subsequent analyses.  

Minimum norm estimate (MNE) software [201] was used to project the sensor data onto 

Freesurfer cortical reconstructions. Regions of interest were manually drawn around the left 

fusiform gyrus for each subject. Single compartment boundary-element models were calculated 

from the Freesurfer segmentation and used to compute forward solutions separately for each block, 

taking shifts in head position into account. Noise covariance matrices were computed from the 

inter-stimulus interval period, 500 to 30 ms prior to each stimulus presentation. Inverse operators 

were constructed using the computed noise covariance and forward solutions to obtain source 

estimates for approximately 7,600 vertices on the cortical surface reconstruction of each subject. 

Because magnetic sources originating from cortical neurons are typically normal to the cortical 

surface, tangential source components were scaled by a factor of .4 during the calculation of the 

inverse solution [202,203]. This procedure resulted in activity of 50-150 wVOT sources during 

the category localizer and word-individuation tasks for each subject. 

4.2.1.5 Identification of word-sensitive wVOT sources 

Sources in the wVOT were screened for word selectivity using four-way support vector 

machines [SVM] applied to 100 ms sliding time windows independently for each source. If the d’ 

sensitivity index, defined as the inverse of the cumulative normal distribution for true positives for 

words minus the inverse of the cumulative normal distribution for false positives for words, 

exceeded chance with p < .05 (uncorrected) a particular source it was considered “word-selective” 

and belonging to the wVOT. This yielded a mean +/- standard deviation of 42.4 +/- 32.7 word-

selective channels per subject. Only these sources were used for word-individuation decoding. 

Figure 15 shows the location of these word-sensitive sources across the group. Figure 30 shows 
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the mean event-related field of these word-selective sources to the different stimuli presented in 

the category localizer task. 

4.2.2 Intracranial EEG data collection and preprocessing 

4.2.2.1 Participants 

Three right-handed patients (2 females, ages 38-64) with intractable epilepsy were included 

in the study. Inclusion was based on iEEG coverage in left mid-ventral temporal cortex that 

demonstrated selectivity to words over the other stimulus categories, as defined by the broadband 

gamma response, event-related potential amplitude, and d’ sensitivity index in an independent 

category localizer containing words, faces, bodies, houses, hammers, and phase-scrambled objects. 

Figure 31 shows the d’ sensitivity of each word-selective electrode. Figure 32 shows the event 

related potential or broadband response of each word-selective electrode to words and other object 

categories presented during the category localizer task. Figure 16 shows the average d’ sensitivity 

of the seven word-sensitive electrodes identified across the three subjects. These electrodes were 

localized using either post-operative T1 structural MRI’s or CT scans. Figure 15 illustrates the 

location of the word-sensitive electrodes in Montreal Neurological Institute (MNI) stereotaxic-

space. Figure 33 illustrates the location of each electrode on the individual patient’s anatomy. None 

of the electrodes presented here demonstrated ictal activity during the recording sessions, nor were 

they near the patient’s seizure onset zone. One of the three patients (P1) was included in a previous 

study [19]; however, data from non-word orthographic stimuli in P1 were not previously reported. 

The other two participants from that previous study were not shown non-word stimuli, and 

therefore are not reported here. All patients gave written informed consent under protocols 

approved by the University of Pittsburgh Medical Center’s Internal Review Board.  
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Figure 15. Word-selective MEG sources and iEEG electrodes in wVOT. Word-selective electrodes and 

sources in Montreal Neurological Institute common space. Dots are electrodes from the three iEEG patients 

(P1-green, P2-dark blue, P3-light blue). Number of MEG subjects with word-selective sources localized to a 

given region of the fusiform represented by color intensity. All sources are constrained to the left fusiform 

gyrus of the individual’s anatomy. 
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Figure 16. Average d’ sensitivity of word-selective iEEG electrodes and MEG sources. A) Average sensitivity 

(norminv(true positive for words) – norminv(false positive for words)) of word-selective electrodes in a six-

way SVM classifier across all three iEEG participants. Grey represents standard error from the mean across 

all electrodes. B) Average sensitivity across word-selective MEG sources in wVOT in a four-way SVM 

classifier. Grey represents standard error across all subjects. 

4.2.2.2 Experimental paradigm 

The experimental paradigm for intracranial subjects was the same as that of the MEG 

participants besides the following differences: The intracranial category localizer consisted of 

words, bodies, faces, hammers, houses, and phase scrambled objects. Stimulus on-times for both 

the category localizer and word-individuation task were increased to 900 ms with 1.8 s mean inter-

stimulus interval. The word-individuation task contained the same stimuli as the MEG version; 

however, to maximize the number of trials per remaining stimuli, consonant-strings were dropped 

from the stimulus set. Overall, there were approximately 25, 45, and 30 trials per word-

individuation stimulus for P1, P2 and P3 respectively, varying according to number of blocks of 

the task completed.  
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4.2.2.3 iEEG acquisition and preprocessing 

Local field potentials were collected using a Grapevine Neural Interface Processor (Ripple, 

LLC) at 1000 Hz. Data was bandpass filtered offline from 0.2-115 Hz and notch filtered to exclude 

60 Hz line noise using a fourth-order Butterworth filter implemented with FieldTrip [107]. In 

addition to this, broadband gamma amplitude, defined as the average increase in power from 40-

100 Hz, was extracted and normalized to baseline (from 300-50 ms prior to stimulus presentation). 

Trials with peak amplitudes exceeding 5 standard deviations above or below the mean or 

exceeding 350 microvolts were eliminated to reduce potential artifacts.  

4.2.3 Multivariate temporal pattern analysis 

Data from MEG sources and iEEG electrodes identified as word-selective in the category-

localizer task were used for all possible pairwise decoding of the word-individuation stimuli. For 

example, all word-selective sources in one subject were used as features to a two-class, 3-fold 

cross-validated SVM classification problem applied to two independent time windows to 

determine whether the participant was seeing stimulus A or B. Time windows were chosen based 

on the results from our previous study [19]: 50-200 ms and 200-350 ms for early and late stages 

of wVOT processing. LIBLINEAR [204] was used to implement the SVMs. This resulted in 

classification accuracy and d’ sensitivity for each pairwise classification problem (44 x 43 / 2) 

across both time windows. We choose to report d’ sensitivity here because it is normally 

distributed, unlike classification accuracy, which allows for parametric statistical testing across 

subjects. Additionally, d’ sensitivity captures effect sizes on the same scale as Cohen’s d, making 

it easily interpretable. Pairwise d’ sensitivities in the early and late time windows are averaged 

according to the contrast of interest. For example, when determining the classifier sensitivity to 
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real words versus false fonts, all possible pairwise d’ sensitivities between word and false font 

stimuli were averaged to create one average d’ sensitivity per subject per time window.  

Statistical significance of classification accuracy was determined via non-parametric 

permutation tests. Specifically, category labels were permuted randomly across each pairwise 

comparison then the two-class SVM was trained on data from the randomly permuted class labels. 

Classification accuracy for both time windows were computed for 1000 random permutations on 

the iEEG data and MEG data then averaged over the contrast of interest. Maximum classification 

accuracy across both time windows was used to construct the null-distribution of classification 

accuracy and then compared with the corresponding real-label time-course. For the MEG data, to 

obtain the statistical significance of group-wise average classification accuracy, the permuted 

time-courses were also averaged across subject before calculating the maximum accuracy for each 

of the 1000 random permutations. 

4.2.4 Functional connectivity analysis 

Functional connectivity analysis was carried out on the MEG data to evaluate the 

connectivity dynamics of the wVOT to the rest of cortex that facilitates real word individuation. 

Specifically, activity of word-selective sources in wVOT were averaged and phase-locking values 

(PLV) [113] were calculated between this activity and all other cortical sources during the word-

individuation task. PLVs were normalized by taking their square root and standardizing relative to 

a baseline period from 500 to 0 ms prior to stimulus presentation [115].  

Numerous previous non-invasive EEG studies have demonstrated functional connectivity 

differences in the delta, theta, alpha, and beta frequency bands related to various aspects of reading 

[205–207]. Therefore, we hypothesized communication between the wVOT and rest of the 
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language network would be most likely to occur in this frequency range. However, when 

calculating the phase of low frequency oscillations (i.e., delta and theta bands) using wavelets, 

these calculations have less temporal resolution than the higher frequency alpha and beta 

components. Therefore, transformed PLVs were averaged over only the canonical alpha and beta 

frequency bands (8-30 Hz) then co-registered to the MNI common brain.  

To determine spatiotemporal clusters of sources whose PLV to the wVOT was significantly 

greater than baseline during the transition from coarse to fine representations (which occurred at 

approximately 175-225 ms post-stimulus presentation), cluster statistics were determined via a 

within-subjects permutation test. Specifically, T-statistics were computed for each source and 

clustered based on adjacency in time and cortical space. The sum of T-values within each cluster 

was then compared with the maximum cluster T-value of 10,000 randomly generated sign flipped 

matrices. This procedure has been shown to effectively correct for multiple spatiotemporal 

comparisons [112]. 

4.3 Results 

4.3.1 Decoding real words from other orthographic stimuli 

A support vector machine was trained to discriminate between pairs of word versus other 

orthographic stimuli using both word sensitive MEG sources and word sensitive iEEG electrodes 

in wVOT. Real words could be discriminated from false fonts, consonant-strings and pseudowords 

from MEG source activity during both the early (50-200 ms) and late (200-350 ms) time windows 
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(p < .001). Comparable results were seen for word-selective iEEG electrodes in the wVOT besides 

null results for words versus pseudowords in both windows for patient 3 (Table 2).  

 

Table 2. Decoding real words from other stimuli (mean pairwise d’ sensitivity). 

      *p<.05 **p<.01 ***p<.001 

 

 A one-way ANOVA indicated a significant difference between mean MEG d’ sensitivity 

for false fonts, consonant strings, and pseudowords versus real words in the early time window (F 

= 5.29, p < .01). A post-hoc T-test demonstrated that false fonts versus real words displayed higher 

d’ sensitivity than pseudowords versus real words across MEG participants in the early time 

window(p < .01, Bonferroni corrected). Sensitivity for consonant strings versus real words was 

not significantly different than either false fonts versus real words (p > .2, Bonferroni corrected) 

or pseudowords versus real words (p > .5) in the early time window. A one-way ANOVA on the 

late time window also revealed a significant difference between mean MEG d’ sensitivity for false 

fonts, consonant strings, and pseudowords versus real words (F = 3.47, p < .05). A post-hoc T-test 

demonstrated that false fonts versus real words displayed higher d’ sensitivity than pseudowords 

versus real words across MEG participants during the late time window (p < .05, Bonferroni 

corrected). However, there was no significant difference between the decoding accuracy of 

False fonts vs real words Pseudowords vs real words 

 50-200 ms 200-350 ms   50-200 ms 200-350 ms 

Patient 1 0.80*** 1.5 *** 
 

Patient 1 0.40***  1.1*** 

Patient 2 0.72 *** 1.3 ***  Patient 2 0.36***  0.54 *** 

Patient 3 0.13*** 0.11**  Patient 3 0.046 -0.034 

MEG 0.26*** 0.40***  MEG 0.051**  0.16*** 

Consonant-strings vs real words 
     

 50-200 ms 200-350 ms      

MEG 0.17***  0.28***         
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consonant strings versus real words and false fonts versus real words (p > .5, Bonferroni corrected) 

or pseudowords versus real words (p > .6, Bonferroni corrected) in the late time window. 

4.3.2 Decoding orthographically similar and dissimilar stimuli 

Table 3. Decoding orthographically similar and dissimilar stimuli (mean pairwise d’ sensitivity). 

*p<.05 **p<.01 ***p<.001 

 

First we determined if we could replicate our previous iEEG results regarding the dynamics 

of similar and dissimilar individual word decoding [19] using source localized MEG. Using 

activity evoked from word-selective MEG sources in wVOT, orthographically dissimilar real 

Orthographically similar real words  Orthographically dissimilar real words 

 50-200 ms 200-350 ms   50-200 ms 200-350 ms 

Patient 1 -0.0006  0.56**  Patient 1  0.41***  0.96*** 

Patient 2 -0.075  0.85***  Patient 2  0.62***  0.60*** 

Patient 3 -0.13 -0.26  Patient 3 -0.12 -0.028 

MEG -.048  0.10*  MEG  0.091***  0.14*** 

Orthographically similar pseudowords  Orthographically dissimilar pseudowords 

 50-200 ms 200-350 ms   50-200 ms 200-350 ms 

Patient 1 -0.049 0.040  Patient 1 0.29** 0.72*** 

Patient 2 -0.041 0.089  Patient 2 0.17 0.19* 

Patient 3 -0.0002 0.061  Patient 3 0.48054 0.016 

MEG  0.087 0.040  MEG 0.090** 0.13*** 

Orthographically similar consonant-strings  Orthographically dissimilar consonant-strings 

  50-200 ms 200-350 ms    50-200 ms 200-350 ms 

MEG 

ONLY -0.079      0.048  

MEG 

ONLY 0.040     0.13*** 

Orthographically similar false fonts  Orthographically dissimilar false fonts 

 50-200 ms 200-350 ms   50-200 ms 200-350 ms 

Patient 1  0.029   0.43*  Patient 1 0.13* 0.70*** 

Patient 2  0.47* -0.092  Patient 2 0.11 0.35*** 

Patient 3 -0.049 -0.083  Patient 3 -0.018 0.19* 

MEG 0.017 0.069  MEG 0.10*** 0.18*** 
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words could be decoded from one another in the early and late time windows (p < .001 in both 

windows, see Table 3). However, orthographically similar real words could not be significantly 

decoded from each other until the late time window from 200-350 ms (p < .05). A similar pattern 

was seen in 4 of 5 iEEG subjects (2/3 reported here and 3/3 reported previously [19], with one 

subject shared between the two studies, see Methods). This pattern is consistent with our previous 

iEEG results regarding the dynamics of similar and dissimilar individual word decoding [19].  

Like real words, orthographically dissimilar pseudowords (p < .01 early, p < .001 late), 

consonant-strings (p < .001 only in the late time window), and false fonts (p < .001 in both 

windows) could be significantly discriminated within wVOT activity using MEG and in most 

iEEG cases, particularly in the late time window (Table 3). In contrast to real words, 

orthographically similar consonant-strings, pseudowords and false fonts could not be consistently 

decoded with MEG or iEEG at either time window (Table 3).  

4.3.3 Functional connectivity between the wVOT and rest of the brain during the 

disambiguation of real word stimuli 

An open question is whether the individuation of real word stimuli is achieved locally 

within wVOT or involves a network level process that wVOT contributes to. To determine 

functional interactions that occur during the transition from coarse to fine orthographic 

representations in the wVOT, phase locking values (PLVs) were calculated between the average 

activity of word-selective sources localized to wVOT and the rest of the cortical sources from 175-

225 ms post stimulus presentation. Normalizing these PLVs with respect to baseline and averaging 

over canonical alpha and beta frequency bands (see Methods) gave two clusters of sources that 

demonstrated above chance connectivity relative to pre-stimulus baseline at the cluster-level (p < 
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.05). Figure 17 illustrates the spatial locus of these clusters, which includes one that extends from 

right early visual cortex to right lateral occipital cortex and one encompassing a region anterior to 

the left fusiform gyrus, extending from the parahippocampal gyrus to the inferior temporal sulcus. 

No significant clusters were seen when directly contrasting the PLVs evoked by real words to 

those evoked by pseudowords, consonant strings, or false fonts.  

4.4 Discussion 

We found that wVOT representations of real words, pseudowords, consonant strings and 

false fonts were all initially coarse, allowing only for decoding of visually dissimilar stimuli from 

each other. Real word representations in the wVOT became disambiguated over time, allowing for 

reliable decoding of orthographically similar real words from wVOT activity after 200 ms post-

stimulus presentation. However, decoding of visually similar pseudowords, letter strings and false 

fonts from wVOT activity did not rise above chance during either the early or late time window. 

Finally, in the transition period between coarse and individuated representations of real words, we 

observed significant functional connectivity between the wVOT and early visual cortex and 

between the wVOT and more anterior regions of the left temporal lobe. 
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Figure 17. Significant clusters of phase-locking between the wVOT and rest of cortex 175-225 ms after real 

word presentation. Spatiotemporal clusters of significant phase-locking values (PLV) to the word-selective 

sources in wVOT during the individuation of real word representations (175-225 ms). Color intensity 

illustrates the duration each source had elevated PLV (p < .01, uncorrected) during real word trials versus 

baseline with 50 ms being the maximum possible duration. Significant clusters (p < .05, corrected) include one 

in right early visual cortex and in the left anterior temporal lobe. 

 

Our decoding analyses for orthographically similar versus dissimilar real words replicate a 

previous finding from our group: real word representations in the wVOT are initially coarse but 

disambiguate with time to allow for the reliable representation of orthographically similar real 

words [19]. This replication, in addition to the high correspondence between the MEG and iEEG 

results presented here, provide an important cross-validation of iEEG and source-localized MEG. 

Specifically, these results demonstrate the sensitivity of MEG to subtle stimulus-induced changes 

in neural activity and source-localization’s ability to approximately identify the neuroanatomical 
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origins of those neural signatures. Furthermore, the correspondence between source-localized 

MEG and iEEG validate iEEG results using data from a healthy population with larger sample 

size. Additionally, MEG supplements sensitive iEEG data with full brain coverage, facilitating 

analyses that require broader coverage, like the functional connectivity analysis presented here. 

Thus, combining iEEG and MEG with similar experiments is a potentially powerful paradigm to 

cross-validate, replicate, and extend findings by leveraging the respective strengths of these two 

recording techniques. 

By combining MEG and iEEG in the current study, we were able to demonstrate that early, 

coarse coding in the wVOT exists not only for real words, but also false fonts, consonant-strings 

and pseudowords. This early representation may support rapid disambiguation of orthographically 

dissimilar stimuli. However, our data suggests that these coarse wVOT representations are 

subsequently disambiguated through interactions between visual and semantic networks, which 

allows the reliable individuation of orthographically similar real words. Given that we were only 

able to decode visually similar real words from late wVOT activity, and not visually similar stimuli 

from other orthographic categories, this suggests that wVOT representations of learned word forms 

are individuated to a greater degree than unfamiliar orthographic entities.  

This conclusion is supported by previous studies observing decreases in wVOT BOLD 

responses for learned relative to unfamiliar orthographic entities [14,193], which may reflect more 

individuated wVOT representations for learned word forms in the later stages of processing. 

Further, the time-course of real word individuation in the wVOT is supported by scalp EEG 

evidence demonstrating lexical-semantic influences on visual word recognition that are observed 

approximately 250 ms post-stimulus presentation, as shown by studies involving transposed letter 

[208] and morphological primes [209]. However, the current study cannot rule out the possibility 
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that the wVOT has the capacity to individuate unfamiliar orthographically stimuli, either through 

purely bottom-up visual mechanisms or interactions with phonological processing networks, since 

care must be taken when interpreting null results. With that in mind, the results reported here do 

suggest that these stimuli are likely represented less robustly than known word forms. 

Our results, which support early, coarse orthographic coding in the wVOT, contrasts with 

previous results obtained from rapid adaptation functional magnetic resonance imaging (fMRI) 

studies. [194] reported no effect of orthographic similarity on the on the adaptation of BOLD 

response to successively presented real words. Based on these results, the authors suggested that 

wVOT representations of real words are not coarse, but rather based on individuated whole word 

templates, hierarchically assembled from rapid, bottom-up visual information processing [194]. 

The results reported here show that the early response of wVOT is coarse, potentially reflecting 

an orthographic similarity space [196]. It has been suggested that the early response of an area 

reflects its intrinsic coding, since later activity is more susceptible to top-down and network-level 

influences [144]. Thus, these results suggest that wVOT’s intrinsic code does not reflect 

individuated whole word templates. A potential explanation for the conflicting results is the 

difference in temporal resolution afforded by fMRI relative to MEG and iEEG. The sluggish 

hemodynamic response measured by fMRI may be disproportionately sensitive to the late stage of 

wVOT processing, when visually similar real words can be disambiguated from each other. Our 

results suggest that the early representations in the wVOT, which potentially arise from bottom-

up visual processing, are consistent with coarse orthographic coding. Whole word representations 

emerge in the wVOT over time, however they likely require network interactions with semantic 

and visual regions to reliably disambiguate orthographically similar real words [197]. 
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Functional connectivity analyses presented also support this conclusion. During real word 

trials, differences in phase-locking between two spatially distinct clusters, one centered on early 

visual areas (early visual cortex and right lateral occipital cortex) and the other on the left anterior 

temporal lobe, were present during the 50 ms transition from early to late decoding windows. This 

suggests that the individuation of real word representations in the wVOT takes place through 

recurrent interactions between regions both earlier in the ventral visual hierarchy and higher-level 

processing regions. Interactions with occipital regions may reflect continued accumulation of 

visual information over time, while anterior temporal regions may contribute learned information 

about real words that support the disambiguation of word forms through semantic properties which 

are largely orthogonal to the orthographic properties of printed words [197]. This role for the 

anterior temporal cortex in reading is supported by studies demonstrating increased BOLD 

activation of this region to pseudowords trained to have semantic associations [210] and studies 

of sentence comprehension [211].  

However, no clusters of wVOT functional connectivity were found to be significantly 

different between real words and the other word-like stimuli at the group level. Thus, it may be 

that neural communication is shared among a similar set of regions regardless of the stimuli, but 

only supports individuated representations in the wVOT if there is useful stored information in a 

given node of the network. Notably, these functional connectivity results suggest that individuated 

representations are an emergent property of network interactions, with multiple nodes of the 

network contributing to and reflecting individuated representations. Thus, individuation of real 

words in the wVOT is unlikely to be a result of solely visual processing occurring in this region, 

but rather a local reflection of a network-level computation. A similar timing pattern has been 

reported for face individuation in the fusiform gyrus, where early activity in response to faces is 
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coarse and later activity is individuated [66] and may also reflect network-level interactions [212]. 

This suggests that a similar dynamic process is conserved between both word and face stimuli and 

may reflect a general principle of visual processing for other visual stimuli as well.  

Taken together, our results support the idea of an early, coarse code in the wVOT that is 

sharpened through recurrent interactions between occipital and anterior temporal regions. First, a 

coarse level representation in the wVOT, built through bottom-up visual processing, allows for 

decoding of visually dissimilar stimuli within 200 ms of stimulus presentation. Next, interactions 

between anterior ventral temporal regions, possibly containing stored knowledge about words, and 

low-order visual regions assist in disambiguating real word representations over time. This 

information ultimately allows the individuation of visually similar real words. Further work 

investigating to what degree this process is sensitive to word context (i.e., when a word is presented 

in a meaningful sentence) and whether individuated word representations are conveyed throughout 

the language network is necessary to better understand the computations which facilitate expert 

reading. 
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5.0 How function, connectivity, and dynamics situate the ventral visual stream in 

neurocognitive models of reading and language 

Finally, after investigating word-processing in the extended basal temporal language 

system and focusing on how long-range functional interactions may help refine representations in 

wVOT, we present a model for how visual word processing circuits develop. This model aims to 

reconcile apparently conflicting data demonstrating the specificity of wVOT responses to written 

words but also its responses during non-visual linguistic tasks, like reading braille in blind 

individuals [88]. Further, the model explains why wVOT demonstrates a consistent localization 

across individuals despite an apparent lack of evolutionary pressures on the development of 

literacy, which has only become widespread over the last 200 years. The model suggests that word-

selective networks rely on preexisting circuits involved in visual to phonological transformations 

involved in speech reading and visual to semantic transformation involved in object naming. These 

pathways rely on prevalent bidirectional white matter projections that exist in neonates [64,65], 

which constrain the localization of wVOT and can activate this region through top-down 

interactions when the brain processes non-visual lexical information. At the time of writing this 

dissertation, this chapter has not been peer reviewed, but was coauthored by Julie A. Fiez and 

Avniel Singh Ghuman. 
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5.1 History and overview 

Reading involves the visual identification of orthographic forms (letters up to words, 

sentences, and paragraphs) and mapping those forms onto their sounds and meaning. The fact that 

we hear words in our heads while we read has led to a nearly 150-year debate regarding the extent 

to which we represent visual words in our minds at all. This debate harkens back to Joseph Jules 

Dejeriné’s report in the 1890s of a case of alexia, an inability to read words holistically, instead 

reading letter-by-letter, without agraphia (no disturbance in writing) [213]. Indeed, individuals 

with what has since been termed “pure alexia” cannot even read things they themselves have 

written. This led Dejeriné and Jean-Martin Charcot to posit that the brain had a center for the 

“optical images of words” in their models of how the brain processes language [213]. Carl 

Wernicke firmly rejected this notion, instead arguing that only letters are represented visually and 

are directly mapped onto their phonological forms, evident by the fact that we hear words in our 

head as we read. Therefore, he argued the brain has no visual center for whole words, only an 

auditory one [214]. 

In the century following the original reports by Dejeriné, studies of individuals with alexia 

probed the extent to which the disorder is specific to reading versus a more general deficit in visual 

recognition that reading happens to rely heavily upon. These studies examined whether alexia 

could be disentangled from object naming [215–217], non-specific visual simultagnosia [218,219] 

(a disorder where multiple objects cannot be perceived simultaneously), and other naming and/or 

visual deficits [219,220]. While some debate continued regarding whether sub-clinical deficits in 

non-reading visual and/or naming in alexic patients indicates that the disorder is more general, 

these studies ultimately led to the “visual word form hypothesis,” which states that there is a 
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“visual word form system…which parses (multiple and in parallel) letter strings into ordered 

familiar units and categorizes these units visually. The components can range in size from 

graphemes, syllables, morphemes to whole words” [219]. 

With the advent of modern neuroimaging, allowing for precise in vivo measurements of 

brain damage and neural activity, much of the debate around the visual word form hypothesis has 

revolved around a word sensitive area of left ventral occipitotemporal cortex (wVOT, Figure 18), 

sometimes referred to as the Visual Word Form Area [136,221,222]. There is general agreement 

that wVOT responds more strongly to words than other visual stimuli [136,221,222], and damage 

to this region causes reading deficits [19,220,223]. However, there remains great debate as to 

whether wVOT specifically represents visual word forms, or whether this region plays a more 

general role in cognitive processing that reading relies particularly heavily upon [28,62,170], a 

continuation of the debate on how “pure” a deficit alexia is.  
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Figure 18. Localization of wVOT.  A) Probabilistic maps for real words greater than pseudowords/consonant 

strings/false fonts (lexical contrast) and real words greater than checkerboards/scrambled words/phase 

scrambled words (perceptual contrast) in the occipitotemporal sulcus (OTS) across 66 participants adapted 

from [142]. Red and blue hexagons illustrate clusters containing the peaks of the three lexical and perceptual 

contrasts across participants, respectively. WVOT contains multiple representational spaces for orthographic 

stimuli, with lower-level visual form analysis more prevalent in posterior aspects and lexical analysis 

constrained to more anterior areas.  

 

A key aspect of the debate around the existence of the visual word form system is that 

reading is a relatively recent phenomenon; written language was invented approximately five 

thousand years ago, and literacy only became widespread in the past couple hundred years. 

Therefore, there is no plausible mechanism by which a visual word form system could be 

evolutionarily/genetically predefined for reading [224]. This is distinct from other forms of visual 



  

 108 

specialization, such as face recognition or visual navigation, that also occur in our evolutionary 

ancestors. Instead, reading expertise must be acquired during development and the circuit used for 

reading is developed and tuned by this extended learning process. The fact that this system is not 

predefined for reading by evolution, yet wVOT is located in a relatively consistent place in the 

brain across people, has led to debate around which neurocomputational constraints cause wVOT 

to become word sensitive and whether these constraints cause this region to become domain 

specific for reading or not. Here, we contend that the localization of wVOT is constrained by the 

confluence of two evolutionarily older pathways that have been adapted to process written 

language, one for visual to phonological transformations and another for visual to semantic 

transformations. Understanding the neural circuitry of reading, and wVOT’s role in this circuit, 

strikes at the heart of the question of the balance between nature and nurture in the brain by 

illustrating how intrinsic functional brain architecture shapes, and is shaped by learning, skill 

acquisition, and expertise [225]. 

 

5.2 Is wVOT specifically tuned for reading? 

 

Several hypotheses posit that wVOT ends up where it does because this area of the brain 

is specialized to perform computations that are particularly important for reading but are not 

specific to the domain of orthography. These proposals come in two different types: one which 

posits that wVOT is specialized for particular visual computations, like extracting particular shape 

combinations or high contrast information, that are particularly useful for, but not specific to, 
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processing words [55,226] and another type that posits that wVOT is involved in visual naming, 

which involves interactions between visual, phonological, and semantic circuits, but is also not 

specific to words [62]. 

The first model of non-specific wVOT function suggests that wVOT is specialized for 

processing specific visual features, like high contrast, complex, groupable shapes, which word-

processing relies particularly heavily upon [226]. The consistent cortical location of word-selective 

patches across humans could be explained by the properties of the visual features themselves, i.e., 

they are sampled foveally and have a consistent curvilinear visual appearance across exemplars 

[55], which are important organizing principles across visual categories in ventral temporal cortex 

(VTC) [9]. Support for this hypothesis was gathered from macaques trained to associate English 

letters and Arabic numerals with varying levels of juice reward. After extensive training, juvenile 

macaques demonstrated domain-specific functional activations for the trained but not similar non-

trained symbols. Further, the locus of cortical activation was consistent across seven monkeys 

[55]. The data were interpreted to suggest that wVOT responses in humans arise from extensive 

experience with stimuli with visual features typical of words, which leads to the development of 

patches of neurons that selectively process that domain of stimuli.  

However, neuroimaging in children has demonstrated that the region which eventually 

becomes wVOT demonstrates increased connectivity to the broader language network prior to 

learning how to read (Figure 19) [64,65]. This suggests that the localization of wVOT is not strictly 

constrained by bottom-up constraints of visual processing, but also top-down connectivity to the 

broader language system. Existing studies of wVOT development in non-human primates are 

unable to speak to the importance of these top-down constraints, since macaques were not required 

to associate letter stimuli with phonological or semantic information, besides varying levels of 
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juice reward [55]. Additionally, several studies have demonstrated that in humans wVOT is 

insensitive to various low-level features of printed words including font and case [227,228].  

Selective wVOT responses have also been demonstrated while deaf individuals read sign 

language or fingerspelling [231] and after individuals have been trained to associate artificial 

orthographies composed of objects represented elsewhere in the brain, such as faces and houses, 

with phonology and semantics (Figure 20A) [232,233]. These studies argue for a remarkable 

degree of local plasticity in the visual features wVOT can process, despite the specificity of its role 

in orthographic processing.  Additionally, non-visual orthographic processing has been shown to 

recruit wVOT while sighted and blind individuals read braille (Figure 20B) [88,234]. Although it 

is unclear to what degree wVOT activation in blind individuals is a signature of more general 

language processes beyond orthography [235]. These studies demonstrate that wVOT is not strictly 

sensitive to the visual features of an orthographic system that it represents. 
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Figure 19. Preexisting connectivity to language regions constrains the localization of wVOT.  A) Difference 

between the strength of diffusion weighted connectivity between the region that would become wVOT and 

left-lateralized brain regions compared to the corresponding connectivity of adjacent face-selective cortex in 

preliterate five-year-olds (from [65]). The region that would become wVOT demonstrated increased 

connectivity relative to face-selective regions to several left-lateralized language regions prior to the 

acquisition of literacy. Notably, these regions lie along the prominent white matter tracts examined in panel 

B. B) Prominent white matter pathways link wVOT to other important language regions in the adult brain. 

The arcuate fasciculus (AF, blue) links wVOT with frontal and temporal regions important for orthographic-

to-phonological conversion. The inferior frontooccipital fasciculus (IFOF, green) and inferior longitudinal 

fasciculus (ILF, pink) connects wVOT with anterior regions of ventral temporal cortex and frontal lobe, 

which likely play important roles in the lexical-to-semantic pathway. The vertical occipital fasciculus (VOF, 

red) connects wVOT with dorsal visual regions, which may play an important role in coordinating eye 

movements during reading. This illustration was built using DSI-studio [229] and the included ICBM 152 

Atlas [230]. 
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Another characterization of wVOT’s role in reading highlights the relationship between 

visual word and face processing networks [28,60]. Although face and word stimuli are very 

different in terms of their visual appearance, their importance to our evolutionary ancestors, and 

feed into distinct brain networks supporting either social interactions or language, their cortical 

localizations are remarkably close together [94]. Some argue that this phenomenon is caused by 

both systems requiring input from regions with foveal receptive fields, which leads to competition 

between neurons that become selective for orthographic vs. facial stimuli [27]. Throughout the 

acquisition of literacy, this competition leads to a graded asymmetry in face and word perception, 

as wVOT neurons edge-out face-selective representations in the left hemisphere, due to its closer 

proximity with other left lateralized language areas [29]. After the acquisition of literacy, 

proponents of this account argue for roles of both the left and right VTC in face and word-

processing, supported by graded deficits in both domains after lateralized lesions to VTC [60].  

However, neuroimaging results in children beg the question, to what degree are 

connections between wVOT and the broader language network established purely as a result of 

visual experience with words or do they exist before children learn to read [64,65]. In particular, 

face-selective VOT in preliterate children has significantly less structural connectivity to lateral 

temporal and frontal language regions compared to the parts of VOT that become word-selective 

upon the acquisition of literacy [64,65]. Additionally, recent intracranial and stimulation evidence 

in literate adults demonstrate the insensitivity of neural responses recorded from wVOT to face 

stimuli, thus challenging the claim of graded specificity of wVOT [19,24,100]. In these studies, 

word-selective responses recorded from some left hemisphere regions demonstrated no degree of 

face selectivity [100] and cortical stimulation and lesioning of wVOT selectively impaired reading 

but not famous face recognition (Figure 20C & D) [19,24]. 
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Figure 20. Functional properties of wVOT. A) Participants learning to read artificial orthographies 

composed of houses demonstrated significant changes in neural activation relative to untrained Korean 

orthography (blue) in areas overlapping (red) with wVOT (green) (adapted from [232]). B) Parametric map 

of braille reading over nonsense braille reading in 8 blind individuals (from [88]). Peak BOLD activations in 

blind individuals reading braille was highly consistent with peak activations in sighted individuals 

performing an orthographic task (isolating words with descenders—letters extending below written baseline 

[g,j,p,q,y]) both at the group level and across individuals. C) Electrical brain stimulation through electrode 

contacts implanted in wVOT profoundly delayed word and letter naming but not famous face naming 

(adapted from [19]). D) Focal resection including wVOT caused profound and persistent alexia-like 

impairments in word naming which is exacerbated by word-length (adapted from [19]). Response time 

impairments were greatest for words, but also extended to letters and numbers but not faces, musical 

notation, or pictures of other objects. 
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Regarding the proposal of graded hemispheric specialization for words, word-selective 

responses invasively recorded in the right hemisphere did not onset until approximately 400 ms 

after word presentation, whereas left hemisphere word-selective responses onset at approximately 

200 ms (Figure 21C) [100]. These later, right hemisphere responses may be involved in integrating 

words into context, reflected in the N400 event-related potential component recorded using non-

invasive EEG [154], but not necessarily the bottom-up processing of word forms [165]. Right 

hemisphere word sensitive regions have also been shown to be more sensitive to differences in 

font and case, unlike left hemisphere wVOT responses [228]. The results discussed here 

demonstrate that there are regions of VTC selective to words and not faces, and that the right and 

left hemisphere have qualitative, rather than graded, differences in their contributions to reading 

based on the differences in their responses and processing dynamics. While these results speak 

against truly joint circuits for face and word processing [59,60], we later discuss how the close 

proximity and analogous computations required to process faces and words provide clues as to the 

function and localization of reading pathways. 
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Figure 21. The dynamics and function of the basal temporal language system.  A) Electrical brain stimulation 

across VTC of 70 patients elicited various semantic, phonological, and motor language deficits. The bottom 

panel shows regions that, when stimulated, evoked deficits in the ability to define objects based on their 

names and name objects in pictures without corresponding deficits to sentence repetition or motor function 

(adapted from [21]). Large swaths of VTC, the basal temporal language system, participates in 

lexicosemantic processing. B) Ventral surface of inflated brain. Dots represent word-selective intracranial 

electrodes across 36 patients (taken from [100]). These contacts were clustered based on their spatial location 

and the time-course of their word-selective responses. Color represents the spatiotemporal cluster they belong 

to, the average time-course of which are illustrated in panel C. Word-selective contacts are found throughout 

VTC. C) Average time-course of word-selective responses recorded from intracranial contacts in panel B. 

Word-selective responses are strongest and earliest along the left posterior fusiform gyrus, before spreading 
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medially and laterally from there. Finally, anterior word-selective responses peak around 400 ms after word 

presentation. Right hemisphere word-selective VOT responses did not peak until approximately 400 ms. 

 

Finally, extending Wernicke’s perspective of the importance of phonology in reading to 

the visual word form debate, the “interactive account” posits that wVOT does not contain visual 

word form representations, but instead contains “general purpose analyzers of visual forms” [62]. 

These non-specific, bottom-up feature detectors derive their observed selectivity for words through 

top-down interactions with brain regions that contain phonological and semantic associations that 

are established during the acquisition of language [62,170]. Proponents of this theory point to 

evidence that wVOT is active during various tasks that do not involve reading, like picture naming, 

auditory language tasks, or even thinking about the manipulability of objects [62,170]. The theory 

can also explain the consistent localization of wVOT across individuals due to its evolutionarily 

preserved role of linking visual inputs to the broader language system [62], and why prereading 

children already demonstrate preferential connectivity between wVOT and the broader language 

network [64,65].   

However, disrupting wVOT activity through lesions or precise cortical stimulation can lead 

to selective deficits in reading but not picture naming (Figure 20C & D) [19,22,24,25]. Further, 

intracranial recordings collected from wVOT show selective responses to words but not to other 

nameable objects [19], making it implausible that wVOT responses represent non-specific 

interactions between bottom-up processing of complex visual forms and top-down contributions 

of semantics and phonology. 
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5.3 Preexisting anatomical pathways constrain wVOT’s localization 

Given that wVOT seems to contain domain-specific orthographic representations, the 

question then remains: why does wVOT end up in a similar location consistently from person-to-

person? As previously mentioned, recent studies suggest that the area that becomes wVOT has 

preferential neural connectivity to the broader reading and language network even before a child 

learns to read (Figure 19) [64,65]. These studies used fMRI to show that in pre-reading children 

there was no region in VTC that responded preferentially to words versus other visual categories. 

However, when these same children were scanned after skilled reading had been achieved, there 

was an area in VTC that became selective for words. Looking at this region using diffusion 

weighted imaging of its structural connectivity during the first scan session, when the children 

were still pre-readers, it had preferential anatomical connectivity to the broader reading and 

language network before it became word-selective [65]. Furthermore, fMRI scans in young infants 

show that the region that is likely to become wVOT, based on the average location of this region 

in adults, showed functional connectivity to the broader reading and language network even at this 

young age [64]. These studies lend strong support to the hypothesis that the location of wVOT is 

consistent across people because this part of VTC has preexisting connections to the broader 

reading and language network. 

Although studies examining connectivity during development provide important clues as 

to why wVOT ends up where it does in the brain, they have not addressed the question of why 

connectivity exists between this region and the broader reading and language networks prior to 

learning to read. Clues to answering this question may come from understanding parallels in the 

computations involved in reading versus evolutionarily older visual processes involved in 

language and communication.  
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Models of reading posit multiple processing routes linking orthography, phonology, and 

semantics: at least one pathway involves a rule based orthographic-to-phonological mapping 

(orthophonological pathway), which is in turn linked to a word’s meaning, and another pathway 

that relies more heavily on a direct link from orthography to the name and/or meaning of the word 

(lexicosemantic pathway) [236]. Support for the existence of the orthophonological pathway 

includes the fact that we can pronounce non-words that follow linguistic rules (e.g. lerm) but that 

we have not experienced before, which presumably can be achieved through the rule-based 

orthographic-to-phonological mapping [236]. Disruption to these rule-based phonological 

mappings is thought to underly reading disorders like phonological dyslexia [237]. On the other 

hand, there are words we can pronounce that do not follow these rules (e.g., yacht). These 

exception words necessitate the existence of the lexicosemantic pathway, which is selectively 

impaired in patients with surface dyslexia. One feature of this disorder is “regularization” of 

exception words (pronouncing “yacht” as “ya-ch-it”) [237], presumably because of dysfunctional 

lexicosemantic mappings while the orthophonological mapping remains intact. “Dual route” 

models treat these as two distinct paths (an indirect nonlexical orthophonological pathway and a 

direct lexical pathway) [238,239] whereas “Connectionist” models treat these as an interconnected 

set of paths between critical orthographic, phonological, and semantic processing systems 

[240,241]. The intricacies of the debate surrounding these competing models of reading are outside 

of the scope of this review, however, we argue that wVOT’s response properties and anatomical 

location make it a prime candidate for containing the orthographic representations associated with 

either model. 

Both the orthophonological and lexicosemantic mappings have parallels in evolutionarily 

older visual processes. Specifically, a system that maps visual forms to their corresponding sounds 
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is not only core to orthographic reading, but also to mapping the visual forms of lips, tongue, and 

teeth to their corresponding sounds during lip/speech reading [242]. Furthermore, a direct, non-

systematic/arbitrary mapping from visual forms to words is seen not only for exception word 

reading, but also for object, place, and person naming [243]. Notably, these properties can also 

explain why face and word-selective areas are remarkably close together in VOT since speech 

reading involves extracting representations of different facial features and both orthographic and 

face processing benefit from exemplar-level recognition and naming. Below we detail a hypothesis 

that learning to read is constrained by preexisting neuroanatomical circuits for visual to 

phonological and visual to semantic transformations, with wVOT being a key hub with remarkable 

local plasticity in the visual forms it can learn to associate with these transformations, and present 

evidence for co-occurring neurocognitive deficits in reading and related visual processes when 

these networks are disrupted.  

5.3.1 The anatomy of the orthographic-to-phonological pathway  

Substantial evidence points to connections between wVOT and lateral temporal and frontal 

regions involved in phonological processing as the key pathway for orthophonological mapping 

[244–246], likely via the posterior arcuate fasciculus that has terminations in anterior wVOT 

[142,247]. Specifically, functional and anatomic connectivity studies implicate these regions in 

orthophonological mapping during reading [245,246,248], especially during pseudoword reading 

[249–251], which can only be achieved through orthophonological mapping. Furthermore, 

aberrant activity in these regions and abnormal connectivity in this pathway are associated with 

developmental and phonological dyslexia [245,252].  
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A few studies implicate a putatively similar pathway for speech reading [253,254], though 

evidence for colocalization of speech reading and word reading pathways within subjects is 

lacking. In particular, regions of the superior temporal sulcus that show connectivity to wVOT 

prior to learning to read (Figure 19) are similar to the regions strongly implicated in vocal audio-

visual integration and the McGurk effect [254]. Studies have shown correlations between speech 

reading and word reading deficits, with some evidence implicating wVOT and the 

orthophonological pathway. Specifically, individuals with developmental and phonological 

dyslexia also have deficits in speech reading [255,256] and do not benefit as much as non-dyslexic 

individuals from viewing speakers while listening to their speech in noise [257].  One caveat being 

that these are correlational studies and therefore it is not certain that the relationship between them 

is due to dysfunction in a shared pathway. For example, poor phonological representations could 

impact both speech reading and word reading ability without the two sharing a common pathway. 

Additionally, neuropsychological studies provide evidence that a single lesion can cause both 

speech reading and word reading deficits [242,258]. In one of these studies, two patients were 

studied who had strokes in an artery that caused damage to VTC, though one had their stroke in 

the left hemisphere and the other in the right hemisphere. The patient with right hemisphere 

damage was prosopagnosic but had intact speech reading ability. The patient with left hemisphere 

damage was alexic and had substantial deficits in speech reading ability as well [242]. These results 

provide evidence for similar pathways for orthophonological mapping and speech reading, though 

it is unclear how this pathway develops when children learn to read. Specifically, it is unknown if 

the pathways responsible for speech reading and word reading are overlapping or if this pathway 

subdivides while individuals learn to read, leaving parallel but non-overlapping pathways for these 

skills. Functional and anatomical mapping studies of speech reading and word reading within the 
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same subjects, particularly in children learning to read, are required to assess whether these 

processes use joint or non-overlapping, but parallel pathways. 

5.3.2 The anatomy of the lexical-to-semantic pathway  

Some studies have implicated a pathway connecting wVOT to tempero-parietal and frontal 

regions in lexicosemantic processing [259,260], with particular emphasis on the angular gyrus 

[261,262]. However, several neurological, intracranial electrophysiology, and neuroimaging 

studies suggest that another pathway through left medial and anterior VTC via the inferior 

longitudinal fasciculus, that parallels the object naming pathway, is also a key part of the 

lexicosemantic pathway [21,259,263,264]. The neurological literature has long appreciated that 

stimulation of many places along VTC can cause speech and language dysfunction and has termed 

this area the “basal temporal language area.” This “area” has been defined as spanning from 1 to 

9 cm from the tip of the temporal lobe [259] and therefore likely consists of multiple areas along 

a basal temporal language system (BTLS), potentially including wVOT. Indeed, recent studies 

using intracranial recordings and stimulation have highlighted that BTLS consists of multiple areas 

contributing to multiple, temporally extended aspects of reading and language [21,100,265] 

(Figure 21). Furthermore, an area that shows connectivity to what becomes wVOT prior to learning 

to read is in anterior BTLS (Figure 19), suggesting that the connectivity between BTLS may help 

constrain the location of wVOT once reading expertise is acquired.  

Despite the BTLS having been described using intracranial recordings and stimulation for 

at least 30 years [21,100,143,147,259,260,265], most models of the neural underpinnings of the 

reading pathways have not considered VTC regions medial and anterior to wVOT. Many of these 

models are built on meta-analyses of fMRI studies and may neglect BTLS due to susceptibility 
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artifacts in anterior temporal cortex [160] or differential sensitivity of the fMRI signal to different 

aspects of the electrophysiological response [155]. Additionally these other BTLS patches may be 

smaller and somewhat less word-selective than wVOT [100], or involved in reading processes, 

like semantic encoding, that not all imaging contrasts are sensitive to [21,266]. Indeed, a few 

studies of reading that used fMRI techniques designed to increase signal-to-noise ratio in VTC 

have observed the extended BTLS [100,249].  

Evidence suggests that the medial-to-anterior BTLS plays a critical role in the 

lexicosemantic pathway. Neuroimaging studies that have used scan parameters associated with 

high SNR in VTC and anterior temporal cortex and intracranial recording studies have suggested 

that BTLS is involved in exception word processing [249,267,268]. Damage to BTLS and the 

inferior longitudinal fasciculus is associated with surface dyslexia [269–271]. Additionally, 

transcranial magnetic stimulation of anterior BTLS causes regularization errors of exception words 

[264] (e.g. temporary surface dyslexia) and a consistent early symptom of anterior temporal lobe 

degeneration in primary progressive aphasia (also called “semantic dementia”) is surface dyslexia 

[272]. Taken together, these studies strongly suggest that BTLS, particularly anterior BTLS, is a 

key part of the lexicosemantic pathway, along with temporoparietal cortex near or in angular gyrus 

[261,262] and inferior frontal cortex regions near or in pars triangularis [262,273], which are also 

associated with surface dyslexia and exception word reading.  

It is well established that left VTC also plays a critical role in object and proper naming 

[274] and that objects, people, and places, like exception words, cannot be named using rule-based 

processes [243]. Thus, the lexicosemantic pathway may be parallel to, and/or overlapping with, 

the broader visual naming pathway. Much as developmental dyslexia and lip-reading deficits co-

occur [255,256], surface dyslexia co-occurs with anomia in early stage primary progressive 
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aphasia [275], in developmental anomia [276], and in acquired anomia [277]. Furthermore, unlike 

stimulation of wVOT, which impairs reading, but not visual naming [19,22], disruptive stimulation 

of the rest of the BTLS, particularly anterior BTLS, impairs both reading and visual naming 

[21,264,278]. Additionally, surgical resection of the left anterior temporal lobes, including parts 

of the BTLS, can cause visual anomia with no auditory naming deficit [263,279], and there has 

been at least one report of surface dyslexia after this region was resected (data not yet published). 

One hypothesis from this model would be that those patients with the greatest visual anomia also 

display surface dyslexia. A key open question is whether exception word reading through anterior 

BTLS more closely resembles object naming per se, or specifically proper naming, because regions 

of anterior BTLS are associated with proper naming more so than general object naming [123] and 

these types of naming deficits may be dissociable [280]. A shared reliance on pathways specialized 

for proper naming could be another factor that drives the close proximity of face and word-

selective regions in VOT. 

The position of wVOT in these broader reading networks may be inferred both by its 

connectivity and its activity relative to the rest of the BTLS and VTC. WVOT lies at an opportune 

place along VTC, with access to the arcuate fasciculus, inferior frontal occipital fasciculus, vertical 

occipital fasciculus, and the inferior longitudinal fasciculus [247,281]. Additionally, results from 

intracranial recordings of VTC shows that wVOT has the strongest (by approximately a factor of 

2) and earliest word selectivity in VTC, followed by lateral and medial VTC regions about 100 ms 

later, and anterior VTC ~150 ms after that (Figure 21C) [100]. This strong and early selectivity 

suggests that wVOT is a key hub for orthographic processing from which processing interactively 

proceeds medially, laterally, and anteriorly down the broader reading pathways. Indeed, the frank 

reading deficits that arise from lesions or stimulation to wVOT [19,22,25] supports the idea that it 
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is a key hub for reading. One open question is the role of posterior wVOT connectivity to dorsal 

visual processing regions via the vertical occipital fasciculus [281]. These regions have been 

associated with attentional deployment during reading [282] and therefore connections between 

wVOT and these areas may be key to saccade programming during natural reading. Regardless, 

the results reviewed here suggest wVOT is a key node of orthographic processing that is involved 

in multiple stages of the extended reading process through recurrent interactions with the broader 

language system. 

5.4 Conclusion 

Recent findings support a model in which wVOT is a key hub for orthographic processing 

that receives output from lower-level visual processing circuits and is a waypoint for reading to 

leverage preexisting higher-level visual processing circuitry (Figure 22). Specifically, the wVOT-

lateral temporal and frontal cortex pathway underlying rule based, orthographic-to-phonological 

mappings for reading leverages an existing pathway for rule-based mapping between visual 

representation of lip, tongue, and teeth forms to phonology. Additionally, the wVOT-BTLS, lateral 

temporal, and frontal cortex pathway underlying the orthographic-to-lexicosemantic mapping 

leverages an existing pathway for visual naming. The degree to which these orthophonological 

and lexicosemantic pathways are innate or shaped by experience is an open question. 
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Figure 22. WVOT’s position in the language system.  A) Low-level visual feature detectors in early visual 

cortex interact with wVOT to form visual representations of words. These in turn feed into and interact with 

higher order centers for semantics and phonology. Potential interactions between phonological and semantic 

centers (dashed line) are beyond the scope of this review. Interactions between visual, semantic, and 

phonological systems can lead to differing amounts of ambiguity in word-form representations, which may be 

used to program later information gathering eye-movements. B) WVOT lies at a critical junction in visual, 

semantic, and phonological processing circuits in the brain. White matter pathways, which are prevalent 

before children learn to read, may help explain why wVOT shares a consistent localization across individuals, 

despite widespread literacy being an evolutionarily recent phenomenon. Abbreviations: AF-arcuate 

fasciculus, EVC-early visual cortex, IFOF-inferior frontooccipital fasciculus, ILF-inferior longitudinal 

fasciculus, VOF-vertical occipital fasciculus. 

 

The connectivity in this model is fully bidirectional. This is supported both by 

neuroanatomy, where studies have shown very few cortical connections are unidirectional [34], 

and by functional studies suggesting recurrence. Specifically, the finding that the representation in 

wVOT shifts from being coarse to individuated over the period of hundreds of milliseconds [19] 

suggests that the mutual constraints applied by orthography, phonology, and lexicosemantics filter 

through the entire BTLS over time. This recurrent computation is in contrast with traditional feed-
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forward models of visual processing, wherein areas complete their local computation and pass the 

information on to the next brain region and do not contribute to further visual processing [125]; a 

model that is not well supported by the anatomical connectivity of the visual stream [34]. Rather, 

the evidence presented here suggests that many parts of the network contribute to multiple stages 

of word recognition over time. Bidirectional connectivity also provides a pathway for top-down 

constraints to be applied to the reading process, for example by sentence context [283], and 

provides a pathway to explain how braille reading activates wVOT in the blind without visual 

input [88]. 

This model emphasizes the role of connectivity and the compatibility of the types of 

mapping between representations needed for reading, and de-emphasizes local computational 

compatibility, in constraining the location of wVOT. That said, local computational compatibility 

and bottom-up constraints likely also play a role in where wVOT ends up. This area of VTC is 

preferentially responsive to foveal parts of the visual field [43] and seems to be involved in holistic 

and configural processing [19,30]. This is not only true for words, but also for faces in neighboring 

face-selective regions [284], and other neighboring regions, which develop holistic and configural 

processing characteristics for stimuli of acquired visual expertise [30]. However, local 

computational compatibility lacks explanatory power for why braille reading in the blind, sign 

language in the deaf, or faces and houses in individuals trained to read artificial orthographies 

preferentially activate wVOT [88,231].  WVOT’s positioning at the intersection of bidirectional 

projections via the inferior longitudinal fasciculus, inferior frontooccipital fasciculus, and arcuate 

fasciculus can explain these results. Furthermore, local computational compatibility cannot explain 

the co-occurrence of disorders such as developmental dyslexia and speech reading deficits 

[255,256], nor the co-occurrence of anomia and surface dyslexia [277]. This model, which 
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emphasizes the compatibility of representational transformations, rather than local visual 

computations, can explain these co-occurrences. A key open question is: what is the balance 

between local computational compatibility and the compatibility of representational 

transformations and connectivity in determining the location of wVOT? 

More generally, reading may represent a special case of a broad principle for how acquiring 

expert skills leverages existing brain circuitry. Specifically, acquiring expertise involves adapting 

existing neural processing pathways to perform computationally similar transformations [285], 

whereas representations within brain regions have a remarkable degree of plasticity during skill 

acquisition [232,233,286]. This model bears some resemblance to the cultural recycling hypothesis 

[224], which hypothesizes that wVOT occupies a similar region across people due to that region’s 

position in a circuit whose original function is sufficiently close to that required by reading. 

However, the cultural recycling hypothesis necessitates that those local cortical computations, 

“local combination detectors” in wVOT, are compatible with the skill being learned. The 

hypothesis presented here instead suggests that existing processing circuits within regions are less 

critical in defining function after acquiring expertise. For example, wVOT demonstrates 

remarkable local plasticity in adapting its computations for facial features important for speech 

reading to visual word forms. This model also bears some resemblance to theories of cortical 

specialization that emphasize the role of connectivity between areas [63,287], though these 

theories have not necessarily specified critical transformations between aspects of the neural 

representation or particular processes associated with acquired skills. The model for reading 

presented here suggests a merging of the recycling and connectivity hypotheses for expert skill 

acquisition, demonstrating a potential principle for how nurture creates neural changes that 

leverage the intrinsic nature of brain circuits. 
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6.0 Conclusion and future directions 

Together, the works presented in this dissertation help illustrate ways in which bottom-up 

and top-down interactions jointly influence VTC structure and function. In Chapter 2, intracranial 

data across a large patient population helped identify functional principles organizing VTC, 

including gradients in local prestimulus dynamics, information processing dynamics, and long-

range functional connectivity. In these data, the onset latency of category-selective information 

increased across VTC layers, consistent with fast feedforward models of the ventral stream 

[40,42]. However, there were also increases in the duration neural populations took to form their 

initial category-selective representations and increases in the length of time neural populations 

maintained those representations when moving along VTC. Also along this axis, there were 

systematic increases in connectivity to regions that were not visually responsive. Together, these 

results suggests that top-down interactions differentially impact hierarchical layers of VTC.  

Next, we focused our attention on word- and face-selective neural populations in VTC. We 

identified several populations that responded preferentially to only words or faces, but not the 

other, arguing for, at least, partial separability of these networks. Word-selective regions were 

found medial, lateral, and anterior to face-selective regions on the fusiform gyrus, highlighting the 

existence of a large basal temporal language system [22,23,259,260], which we replicated in 

healthy participants using fMRI. These word-selective regions demonstrated distinct dynamics 

from one another, with strong early responses along the fusiform gyrus and later responses in 

medial, lateral, and anterior regions. These distinct time-courses suggest that these regions play 

different roles in reading. 
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Chapter 4 presented a case-study for how long-range interactions can influence extended 

processing dynamics and local representations in VTC using a key node in visual word processing, 

wVOT. In this study, we demonstrated that within the wVOT of healthy individuals, there is a shift 

from coarse to fine representations over the first 500 ms of word processing, similar to those 

originally identified using intracranial recordings in epilepsy patients [19]. This shift in 

representations was strongest for real word stimuli compared to other word-like stimuli including 

pseudowords, consonant-strings, and false fonts, which lack the semantic and/or phonological 

associations of real words. Further, the sharpening of real word representations was accompanied 

by increased connectivity between the wVOT and early visual cortex and anterior temporal lobe 

regions around the same time window, suggesting that bottom-up and top-down mechanisms help 

disambiguate representations in this region. 

Finally, in Chapter 5 we presented a model for the development of wVOT in which the 

localization of this region is constrained based on long-range bidirectional white matter pathways 

underlying computational transformations necessary for reading. Specifically, the model suggests 

that wVOT is consistently localized to the intersection of several important white-matter pathways, 

including the arcuate fasciculus which facilitates visual-phonological transformations originally 

used for speech reading, inferior longitudinal and frontooccipital fasciculi which facilitate visual-

semantic transformations originally used for object naming, and bottom-up pathways organized 

by the retinotopic projections of early visual cortical areas. This model helps explain why wVOT 

demonstrates selectivity for printed words in the visual domain, but also responds via top-down 

activation of non-visual stimuli like braille in the congenitally blind [88,89], and how reading can 

occupy similar circuits across individuals despite a lack of direct evolutionary constraints 

[144,169,185]. Additionally, the proximity of word and face processing networks in VTC can be 
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explained by wVOT’s original function in speech reading and exemplar level naming, which 

requires visual and naming circuits similar to those involved in face recognition [94,243].  

This model is in contrast to models of VTC organization that suggest bottom-up constraints 

imposed by topographical maps alone is sufficient for establishing a protoarchitecture of category-

selective regions in VTC [44,48,55–58,288]. Additionally, the model argues for a tremendous 

amount of plasticity in local cortical representations, e.g. the appropriation of speech reading 

cortex to process word stimuli. This strong degree of local plasticity is supported by studies 

demonstrating that participants trained to associate artificial orthographies of faces and houses 

with semantic information demonstrated wVOT responses to faces and houses [232,233]. The 

congruence of high-order cortical transformations (orthographic to phonological or lexical to 

semantic in the case of written words) are more important in constraining the localization of 

acquired expertise compared to the specific visual features of the input stimulus.  

The model may represent a general principle of how visual expertise develops and is 

constrained by adapting existing, computationally compatible information transformations that 

occur via the connections between brain regions. For example, in face processing, innate 

connectivity between VTC and higher order regions like medial prefrontal cortex may help orient 

infants to high-valence social interactions associated with faces [94,289,290]. Connectivity 

between these regions not only facilitates more experience with faces, and thus more bottom-up 

tuning of face-selective VOT, but also constrains the localization of face-selective VTC areas to 

those with direct cortical projections to other important face processing regions [50,61], in addition 

to the bottom-up constraint imposed by foveal receptive fields [43,49,51,61]. Similar principles 

may also apply to the development of tool-selective cortex, biased by bidirectional projections 

with sensorimotor regions associated with tool utility [63,291] and to the development of place-
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selective cortex, biased by connectivity to dorsal spatial navigation networks [50,292,293]. Future 

studies examining the development of face patches in animals exposed to faces in the absense of 

meaningful social interactions, or animals trained to perform face/social computations on non-face 

stimuli may help further elucidate how top-down and bottom-up processes precisely constrain 

VTC organization [61], in addition to studies examining the specific constraints imposed on 

processing circuits for other categories of objects. 

The results described here help identify ways in which we can extend current hierarchical 

models of ventral visual function. Future models should attempt to capture the diversity of 

dynamics and connectivity patterns exhibited across layers of the ventral visual hierarchy. Higher 

layers should demonstrate increasingly deliberative processing and increasing connectivity to units 

with non-visual response properties, like viewpoint invariance [121] or semantic similarity [124]. 

In fact, recursive connectivity in deep neural network models has been shown to better explain 

fMRI responses from anterior VTC regions compared to purely feedforward models [294]. Future 

models should also attempt to capture the dynamic shifts in representation exhibited within VTC 

regions, like the shifts from coarse to fine representations in face- and word-selective VOT [19,66–

68]. In the future, we can combine insights derived from these computational models with studies 

investigating the effects of electrical or optogenetic stimulation of VTC layers to elucidate the 

specific contributions of bottom-up and top-down interactions on local information processing in 

the ventral visual stream. 

These studies also highlight interesting differences in single trial potentials (stP) and high 

frequency broadband (stHFBB) activity recorded from the local field potentials of neural 

populations. For example, prestimulus neural dynamics in these two signal components were not 

not well correlated with one another across VTC and these components demonstrated spatial and 
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temporal differences in their word- and face-selective responses. Category-selective regions that 

demonstrated selectivity in both stP and stHFBB activity were those that are typically observed 

using fMRI [119,155,295], which has been shown to be differentially sensitive to different time 

periods and frequency components of the iEEG signal [155]. This is an important limitation to 

consider when interpreting maps of category-selectivity derived from fMRI [128]. StP and stHFBB 

are thought to be generated by different physiological generators, with stHFBB itself having 

multiple distinct components, including an early feedforward component and a later feedback 

component [120].  A deeper understanding of how these signal components are generated would 

enable a deeper understanding of the local computations that facilitate visual processing within 

category-selective regions.  

More generally, the physiological properties of neural circuits that process category-

selective information (i.e., their laminar organization, concentration of interneurons, and 

morphological properties of the neurons themselves) are also not well understood. Changes in 

cytoarchitecture, myelination, and neural growth factors are observed along hierarchical networks 

across the brain, which may influence long range functional connectivity patterns and local neural 

dynamics [80,95,96]. Furthermore, category-selective regions in VTC have been shown to have 

differences in their cytoarchitecture compared to one another [9,296–298]. Future studies are 

necessary to understand the cytoarchitectural properties that predispose regions of cortex to be 

specialized for specific visual computations and the degree to which local plasticity of VTC 

regions is constrained by the physiology of these local neural circuits.  

Finally, much more work is necessary to understand how ventral visual cortex interacts 

with circuits involved in coordinating eye movements. The process of object recognition is 

accompanied by highly stereotypical patterns of eye movements which vary across object 
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categories [299–305]. Regions in parietal and frontal cortices have traditionally been implicated 

in guiding eye movements and allocating visual attention [282,306,307]. However, temporal 

cortex regions have recently been shown to be sensitive to various aspects of visual sampling 

behavior. For example, neurons in entorhinal cortex demonstrate grid-cell like firing patterns 

coding the position macaques are fixating in an image [308], BOLD activation in category-

selective VTC has been shown to be sensitive to where objects are likely to be located in natural 

scenes [309], and face- and house-selective regions are activated when people mimic stereotypical 

eye movement patterns used to recognize these objects even when the objects themselves are not 

shown [305]. Further, damage to VTC resulting in agnosia also leads to less efficient eye 

movement patterns while searching for objects in natural scenes [310]. Better understanding the 

links between eye movements and object recognition may greatly increase our understanding of 

how top-down attentional effects interact with bottom-up visual information accumulation to 

achieve object recognition. 

In summary, the work presented here suggests that non-feedforward interactions play 

critical roles in constraining the organization and extended information processing dynamics in 

VTC. Several open questions remain regarding the balance between top-down and bottom-up 

contributions to visual processing. But we have identified several specific ways in which we can 

improve the fast feedforward model of the ventral visual hierarchy. 



  

 134 

Appendix A Supplementary materials for Chapter 2 

Appendix A.1 Supplementary text 

Appendix A.1.1 Interhemispheric differences in ventral stream information processing 

dynamics. 

Given asymmetries in anatomical organization and response tuning across hemispheres 

[311], we sought to determine if there were differences in information processing or functional 

connectivity gradients in left versus right VTC. We found 263 electrode contacts with significant 

category-discriminant information in left VTC and 127 in the right. The disparity in left and right 

hemisphere contacts is proportional to the different proportion of total contacts implanted in the 

left versus right VTC across patients (1,258 in left, 698 in right). Using these category-discriminant 

electrode contacts, we ran an analysis of covariance to determine if there was an interaction 

between anatomical position and hemisphere when predicting information processing dynamics or 

functional connectedness. There was a significant interaction between cortical distance along the 

visual hierarchy and hemisphere when predicting onset latency, indicating a more dramatic 

gradient in the right compared to left hemisphere (F(1) = 16.19, p < .001), and connectivity to 

regions that were not visually responsive, indicating a more dramatic gradient in the left compared 

to right hemisphere (F(1) = 11.76, p < .001). There were no significant interactions between 

hemisphere and distance along the visual hierarchy in predicting peak information (F(1) = 1.25, p 

= .26), average PLV to visually responsive regions (F(1) = 0.44, p = .51), or duration of initial rise 

in information (F(1) = 0.91, p = .34). The interaction between hemisphere and distance along the 
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visual hierarchy was trending when predicting information maintenance duration (F(1) = 4.49, p 

= .035, uncorrected). This suggests that there were differences in anatomical gradients of 

information onset and connectivity with regions that were not visually responsive across 

hemispheres in our sampled neural populations.  

Appendix A.1.2 Differences in functional anatomical gradients for different object 

categories 

It has previously been suggested that VTC circuits responsible for processing different 

categories of objects exhibit different processing dynamics related to the rate at which those objects 

are encountered during natural vision [312]. To investigate differences in information dynamics 

between neural populations tuned primarily to single object categories, we identified category-

discriminant VTC electrode contacts that demonstrated maximum evoked responses to the object 

category which also had the most information (see Methods). This procedure revealed that 246 of 

the 390 category-discriminant VTC neural populations were predominantly selective for a single 

object category: 66 were selective for faces, 50 for words, 47 for houses, 31 for phase-scrambled 

objects, 21 for bodies, 20 for hammers, 7 for tools, 3 for pseudowords, and 1 for consonant-strings 

(Figure 25). Next, we fit linear multiple regression models to explain information processing 

dynamics of the neural populations that were selective to the object categories that most patients 

saw (bodies, faces, words, hammers, houses, and phase-scrambled objects) as a function of the 

neural population’s distance from the occipital pole and the category it was selective for (see 

Methods). This allowed us to compare the functional anatomical gradients specific to different 

categories of objects in VTC.  
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The main effects revealed by this procedure are contained in Table 4 and Figure 25. The 

information onset of face-selective neural populations increased at a rate of 11 ms per cm traveled 

along VTC. Neural populations selective for all other categories demonstrated faster increases in 

onset latency along this axis compared to face-selective neural populations. Peak face-selective 

information was not significantly different when moving along the ventral visual hierarchy. 

However, peak information for the other observed categories decreased faster along this axis. 

There was no significant change in the duration of the initial rise of face-selective information 

when moving up the visual hierarchy, nor was the gradient for any category significantly different 

from faces. There was also no significant change in the duration that face-selective information 

was maintained in neural populations further up the visual hierarchy, but information was 

maintained for shorter durations moving along this axis for all other object categories. 

Functional connectivity to visually responsive regions did not significantly decrease along 

the ventral visual hierarchy when looking at face-selective information. However, visual 

connectivity decreased more quickly when moving along VTC in word-, hammer-, and house-

selective populations compared to face-selective populations. Finally, there was not a significant 

gradient in the functional connectivity of face-selective populations to regions that were not 

visually responsive along the visual hierarchy, nor were there any significant differences observed 

for the other object categories. 

In summary, at the level of individual categories, face-selective neural populations 

demonstrated faster onsets of information processing, larger peaks, longer durations, and increased 

connectivity to visually responsive neural populations compared to the other object categories. 

These differences in information processing dynamics across category-selective neural 

populations is consistent with previous fMRI studies demonstrating different preferential rates of 
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stimulus presentation for different categories of objects [312]. Together, these results suggest 

differences in information processing dynamics for different categories of objects, which may be 

related to the functional interactions that facilitate their recognition or how these stimuli are 

naturally encountered in the real world [312].  

Appendix A.1.3 Comparing neuroanatomical gradients exhibited in single trial potentials 

versus high frequency broadband activity 

Previous studies have identified differences in the information contained within single trial 

potentials (stP) and single trial high frequency broadband activity (stHFBB) [100,119] and others 

have suggested that these components of have different physiological generators [120,163]. To 

investigate the degree to which neuroanatomical gradients in neural dynamics and long-range 

functional interactions were consistent across these signal components, we re-ran the main 

analyses of this study using stP and stHFBB activity separately. We isolated 380 electrode contacts 

that demonstrated above-chance category-discriminant activity (p < .001, permutation test) in their 

stP and 150 contacts that were discriminant in their stHFBB activity (Figure 26).  

In contacts selective in their stP, gradients in the onset, duration of initial rise, peak 

magnitude, and maintenance duration of category-selective information were consistent with those 

identified when jointly classifying stP and stHFBB activity. The gradients in stP timescale as well 

as connectivity to visually responsive regions and connectivity to regions that were not visually 

responsive were also consistent. Unlike the jointly classified data, electrodes selective in their stP 

demonstrated a decreasing ability to predict patient RT along the visual hierarchy (ρ(380) = -0.11, 

p = .026, uncorrected).   
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In contacts selective in their stHFBB activity, the correlations between local neural 

dynamics and long-range functional connectivity were smaller but were mostly consistent with 

those observed on the jointly classified data. However, connectivity to regions that were not 

visually responsive had the opposite relationship with distance along VTC compared to the jointly 

classified contacts (ρ(150) = .30, p < .001). Additionally, contacts that were sensitive to object 

category in their stHFBB activity demonstrated increasing ability to classify patient RT from the 

stHFBB activity when moving up the visual hierarchy (ρ(150) = .24, p = .0026). These results 

illustrate that functional anatomical gradients in information processing dynamics in ventral visual 

cortex are largely consistent across stP and stHFBB activity; however, these signal components do 

demonstrate differences in their anatomical gradients in timescales, connectivity to regions that 

are not visually response, and ability to predict patient response time during a visual 1-back task. 
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Appendix A.2 Supplementary figures 

 

Figure 23. Intracranial electrode contact coverage of 35 patients with category-discriminant VTC electrode 

contacts. Contacts that appeared to be outside of the MNI standard brain due to differences in individual 

brain sizes were projected to the nearest MNI cortical vertex in this figure solely for illustrative purposes.  
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Figure 24. Information processing and neural timescales in VTC of one patient. A) Spatial topography of 

VTC electrode contacts with above chance (p < .001, corrected for multiple temporal comparisons) category-

discriminant information on the individual’s anatomy. B) Relationship between information processing 

dynamics and neural timescales examined in Figure 2 and Figure 3 and the cortical distance along VTC. 

Spearman correlation coefficient displayed in the top right of each panel. Line represents least-squares 

approximate fit. Information onset, peak information, and stP timescale (tau) were all significantly correlated 

with distance along VTC with the same direction as the group-level gradients. Other properties of the neural 

population’s dynamics demonstrated similar gradients with distance along VTC as the group-level data but 

were not significant across these 24 electrodes.  
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Figure 25. Differences in functional anatomical gradients across regions selective for different object 

categories. A) Spatial topography of electrode contacts predominantly selective for one object category. Grey 

electrode contacts contained a significant amount of category-discriminant neural information but were 

sensitive to more than one image category. B) Onset of category-discriminant information processing as a 

function of cortical distance along the ventral visual hierarchy for neural populations selective for faces, 

bodies, words, hammers, houses, and phase-scrambled objects. Lines are derived from multiple linear 

regression analyses. Corresponding statistics are contained in Table 4. Face-selective information 

demonstrated faster propagation along the visual hierarchy compared to the other object categories. C) 

Relationship between the duration of the initial rise in category-selective information versus distance along 

VTC. There was no significant difference in this gradient between neural populations selective for different 

object categories. D) Peak category-discriminant information as a function of distance along the visual 

hierarchy for VTC neural populations selective for different object categories. Face-selective information 

decayed less when moving down the ventral visual hierarchy compared to the other object categories. E) 

Maintenance duration of category-selective information as a function of distance along VTC. Face-selective 

neural populations demonstrated the greatest increase in information maintenance duration when moving 



  

 142 

along VTC compared to the other object categories. F) Relationship between connectedness to visually 

responsive regions and distance along the visual hierarchy for VTC neural populations selective for different 

object categories. Word-, hammer-, and house-selective neural populations demonstrated greater decreases in 

connectivity to visually responsive regions when moving along VTC compared to face-selective neural 

populations. E) Relationship between connectedness to regions that were not visually responsive and position 

in the visual hierarchy for VTC neural populations selective for different object categories. There was no 

significant difference in this anatomical gradient across neural populations selective for different object 

categories.  
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Table 4. Statistically evaluating differences in functional anatomical gradients across processing hierarchies 

for different categories of objects. 

  Estimate St. Error T-stat Estimate St. Error T-stat 

  Information onset (ms/cm) Duration of initial rise (ms/cm) 

Faces 11.46 2.83 4.04*** 5.42 3.38 1.60 

Bodies (difference from 

faces) 9.15 1.98 4.61*** -0.56 2.37 -0.24 

Words (difference from 

faces) 4.72 1.37 3.46*** 0.01 1.63 0.01 

Hammers (difference 

from faces) 6.52 2.06 3.16** 0.22 2.46 0.09 

Houses (difference from 

faces) 3.60 1.43 2.51* 2.99 1.71 1.75 

Scrambled (difference 

from faces) 5.56 1.72 3.23** -3.18 2.06 -1.55 

  Peak information magnitude (bits/cm) Duration of maintenance (ms/cm) 

Faces -0.0051 0.0035 -1.48 8.64 5.76 1.50 

Bodies (difference from 

faces) -0.0105 0.0024 -4.32*** -8.73 4.03 -2.17* 

Words (difference from 

faces) -0.0041 0.0017 -2.419* -10.39 2.77 -3.74*** 

Hammers (difference 

from faces) -0.0111 0.0025 -4.39*** -13.53 4.19 -3.23** 

Houses (difference from 

faces) -0.0098 0.0018 -5.59*** -9.44 2.91 -3.24** 

Scrambled (difference 

from faces) -0.0064 0.0021 -3.04** -11.57 3.50 -3.3017** 

  

Connectivity to visually responsive 

regions (a.u.) 

Connectivity to regions that were not 

visually responsive (a.u.) 

Faces -0.0004 0.0033 -0.12 0.0036 0.0020 1.79 

Bodies (difference from 

faces) -0.0031 0.0023 -1.32 -0.0004 0.0014 -0.28 

Words (difference from 

faces) -0.0034 0.0016 -2.09* 0.0012 0.0010 1.24 

Hammers (difference 

from faces)  -0.0055 0.0024 -2.24* -0.0001 0.0015 -0.10 

Houses (difference from 

faces) -0.0060 0.0017 -3.57*** 0.0002 0.0010 0.20 

Scrambled (difference 

from faces) -0.0011 0.0020 -0.54 0.0005 0.0012 0.38 

 

This table summarizes the statistical effects of the models illustrated in Figure 25B-G. Contacts with mixed 

selectivity were not included in the models. Face-selective neural populations were used as the base-level of 
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the analyses because they were the most prevalent. Therefore, all other rows indicate the difference between 

the slope of the gradient in face-selective versus other category-selective populations. There were significant 

differences in the anatomical gradients of information onset, peak, duration of maintenance, and connectivity 

to visual neural populations across neural populations selective for different object categories. Significant 

effects are highlighted in bold. (* p < .05, ** p < .01, *** p < .001)  
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Figure 26. Differences in functional anatomical gradients across neural populations selective in their stP 

versus stHFBB. A) Electrode contacts demonstrating above-chance levels of category-discriminant 

information in single trial potentials (stP; n = 380) and single trial high frequency broadband (stHFBB; n = 

150) when these signal components are classified separately. B) Pairwise Spearman correlations (ρ) between 

gradients in the corresponding row and column computed using electrode contacts selective in stP. 

Information processing metrics (onset, peak, maintenance, and rise durations) were computed for decoding 

time-courses derived from each signal separately. Shading indicates strength and direction of pairwise 

correlation. Grey squares indicate pairwise correlations that were not significant at the p < .05 level, 

uncorrected. The false-discovery rate adjusted critical value was estimated to be ρ = ± .138. C) Same as panel 
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B, but for contacts selective in their stHFBB activity. The false-discovery rate adjusted critical value was 

estimated to be ρ = ± .269. The pairwise correlation for jointly classified stP and stHFBB data is available in 

Figure 27. 
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Figure 27. Pairwise correlations between dynamic and functional properties of VTC neural populations. 

Within each box is the pairwise correlation (ρ) between the variables in the corresponding row and column, 

like Figure 4, without removing the shared correlations with distance along VTC. Shading indicates strength 

and direction of pairwise correlation. Grey squares indicate pairwise correlations that were not significant at 

the p < .05 level, uncorrected. The false-discovery rate adjusted critical value was estimated to be ρ = ± .154. 
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Figure 28. Simulating the effects of changes in information slope and peak amplitude on information 

processing duration. Information time-courses were simulated using a normal probability density function 

with similar signal to noise properties as category-selective information time-courses obtained from VTC. A) 

The slope of the information time-course was strongly correlated with the duration of information processing 

as expected. B) The duration of information processing was not correlated with changes in peak information. 

These simulations support that increases in information processing duration along the ventral visual 

hierarchy is not driven by differences in peak information amplitude. 
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Figure 29. Anatomical gradients in information processing dynamics are robust to choices of onset and peak 

threshold. A) Spearman’s correlation between a neural population’s cortical distance along the visual 

hierarchy and its onset latency derived using different cutoff thresholds for onset and peak. Color of each 

square indicates p-value (color-bar on the right, log-scale). Inset of each square is the corresponding 

Spearman’s ρ (n = 390). Gray square indicates result reported in the main text. Correlations derived from all 

criteria are very strong. B) Correlation between the duration of the initial rise in category-discriminant 

information and distance along the visual hierarchy with different onset and peak thresholds. Black squares 

indicate p-values greater than 0.05 uncorrected. C) Correlation between the duration of information 

maintenance and distance along VTC using different peak and decay thresholds. Decay was measured as the 

time between the reaching the peak threshold and the time the signal decayed below the decay threshold after 

reaching its absolute peak. 
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Appendix B Supplementary materials for Chapter 4 

 

Figure 30. ERF of word-selective MEG wVOT sources. Average event-related field (ERF) of word-selective 

MEG wVOT sources across subjects. Error bars represent standard error across subjects. 
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Figure 31. Sensitivity of word-selective iEEG electrodes. Sensitivity of six-way (words, bodies, hammers, 

houses, faces, phase-scrambled objects) decoding for the word-selective electrodes used in the word-

individuation task. Electrodes with d’ greater than one were considered word-selective. 



  

 152 

 
Figure 32. ERP/ERBB of word-selective iEEG electrodes. Event-related broad band (ERBB) or event-related 

potential (ERP) response to words, bodies and phase scrambled objects in word-selective electrodes used in 

the word-individuation task. For all electrodes either the ERP or ERBB for words was greater than for all 

other object categories. Error bars represent standard error across trials for each electrode. 
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Figure 33. Localization of word-sensitive iEEG electrode localizations within patients. Word sensitive 

electrode localizations for the three iEEG participants. Red arrows indicate the contacts used in the word-

individuation task. 
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