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Abstract 

End-Point Free Energy Prediction using PB and MSSAS 

 

Yuchen Sun, B.S. 

 

University of Pittsburgh, 2022 

 

 

 

ABSTRACT 

Solvation free energy (SFE) is a basic concept used in many areas. The accurate prediction 

of SFE lays the foundation for binding free energy prediction and it is also useful for the calculation 

of logarithm of 1-octanol-water partition coefficient (logP) which is a frequently used parameter 

in drug discovery. In this work, the performance of ABCG2 (AM1-BCC-GAFF2) charge model 

as well as other two charge models, i.e., RESP (Restrained Electrostatic Potential) and AM1-BCC 

(Austin Model 1-bond charge corrections) on SFE prediction of 633 small molecules in water by 

MM-PB/GBSA was evaluated. AM1-BCC charge model has the best performance of SFE 

prediction using GB1, PB_DELPHI methods with root mean square error (RMSE) of 1.88 

kcal/mol, and 2.70 kcal/mol, respectively. Meanwhile, ABCG2 charge model performed better 

using GB2 and GB5 methods with RMSE of 2.06 kcal/mol and 2.17 kcal/mol, respectively. We 

further explored the influence of atom radii on the prediction accuracy and yielded a set of atom 

radii parameters suitable for more accurate SFE prediction using ABCG2 charge model by MM-

PBSA method. Then, we tuned the nonpolar model for SFE calculation. Using our new model and 

parameters, for 544 training set molecules, the mean signed error (MSE) and RMSE of the SFE 

calculation decreased from -1.59 kcal/mol to 0 kcal/mol, and 2.38 kcal/mol to 1.05 kcal/mol, 

respectively. We then tested the new atom radii parameters on other charge models and found the 

new radii parameters also outperformed old ones in SFE prediction. Finally, the new radii 

parameters were adopted in the prediction of protein ligand binding free energy using MM-PBSA 



 iv 

method. For the four systems tested, there is improved correlation between experiment and 

calculation results. And smaller error for absolute binding free energy were also observed, except 

for JNK1. We then applied the new radii parameters and adopted same approach to generate 

nonpolar SFE model for octanol SFE prediction. Based on that, a mix logP prediction model using 

physical method supported with empirical corrections was built. The superiority of our logP model 

was validated by smaller prediction error to drug-like molecules in ZINC database compared to 

other commonly used methods.  
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1.0 INTRODUCTION 

1.1 Solvation Free Energy 

Free energy is the driving force in many biological processes such as protein folding and 

receptor ligand binding. Solvation free energy (SFE) is the change of free energy in the solvation 

process. It is a crucial property which is useful in many aspects. In the drug development campaign, 

the accurate prediction of SFE not only enables better prediction of the binding of protein and 

ligand (since the binding process usually happens in the aqueous environment) but also helps the 

prediction of the solubility of drug candidates and guides the selection of candidates in early drug-

discovery stage[1].  

1.2 Free Energy Calculation Methods 

The pursuit of accurate and efficient SFE calculation methods never stops. Currently, various 

approaches to predict the SFE are available, ranging from simple structure-based prediction 

models to complex alchemical perturbation methods. The Quantitative Structure Activity 

Relationships (QSAR) and Quantitative Structure Property Relationships (QSPR) methods are 

widely used methods in this field. They can achieve good prediction with relatively low 

computational cost. But these methods are prone to have better performance for molecules which 

are similar to the molecules in the training set[1]. Alchemical simulation methods like free energy 

perturbation (FEP) and thermodynamic integration (TI) are also used in SFE estimation, but these 
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methods are generally much more computationally demanding and the sampling and assessment 

of convergence remain a problem for users[2]. Molecular mechanics Poisson-Boltzmann surface 

area (MM-PBSA) calculation and molecular mechanics generalized Born surface area (MM-

GBSA) calculation are among the popular and widely used methods for calculation of the SFE. 

The methods gain their popularity because of perfect balance between accuracy and computation 

cost. Compared to rigorous alchemical free energy methods like FEP or TI, MM-PBSA and MM-

GBSA methods can greatly reduce the computation cost as they are based on samplings from the 

“end points” (the receptor-ligand complex and the free receptor and ligand) without the 

intermediate states[3, 4].  

1.2.1 MM-PB/GBSA 

In theory, the free energy of solvation process is divided into the polarization free energies 

and cavity, dispersion and solvent structure free energies[5]. MM-PBSA and MM-GBSA methods 

decompose binding free energy into several different terms: the gas phase molecular mechanics 

energy (ΔEMM), SFE (ΔGsolv), and the entropy change due to the change in conformation of the 

molecules (-TΔS)[4]:  

𝛥𝐺𝑏𝑖𝑛𝑑 =  𝛥𝐸𝑀𝑀 +  𝛥𝐺𝑠𝑜𝑙𝑣 − 𝑇𝛥𝑆 

Equation 1 Binding free energy calculation 

The SFE part can be further divided into the polar and nonpolar terms. The polar part of 

the SFE (ΔGPB/GB) is usually calculated using the Poisson-Boltzmann (PB) or Generalized Born 

(GB) model, while the nonpolar part (ΔGSA) is estimated through solvent accessible surface area 

(SASA)[6].  

𝛥𝐺𝑠𝑜𝑙𝑣 =  𝛥𝐺𝑃𝐵/𝐺𝐵 +  𝛥𝐺𝑆𝐴𝑆𝐴 
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Equation 2 Solvation free energy calculation 

In a PBSA model, the polar term is calculated by solving the PB equation, either 

numerically or analytically, while in a GBSA model, an alternative GB approximation of the PB 

model, which requires less computation time, is applied to calculate the polar term. The nonpolar 

term of a PBSA or a GBSA model is usually estimated by SASA to account for the cavity, 

dispersion and solvent structure free energies in the solvation process[7]. In most applications, the 

contribution due to the different conformations in gas and solvent is typically ignored. In the 

current drug discovery efforts, MM-PBSA and MM-GBSA methods are prominent methods in the 

computer-aided drug design (CADD) area with various applications including study of ligand 

binding[8], macromolecule interactions[9] and virtual screening[10]. Prediction of receptor-ligand 

binding is one of the most important topics in CADD. MM-PBSA and MM-GBSA have been 

extensively applied in this area as it is generally more reliable than the docking method and more 

practical than the extremely time-consuming alchemical methods. Further, the ability of analyzing 

the contribution of each individual receptor residue to the total binding free energy enables this 

method for more in-depth analysis of the detail about ligand-receptor interaction. Macromolecule 

interactions, such as protein-protein, protein-RNA/DNA interactions, are important for drug 

discovery as they are involved in a lot of disease mechanisms. MM-PB/GBSA is widely used and 

might be the best approach available for this kind of study[9].  

The accuracy of SFE prediction by MM-PB/GBSA is determined by various factors[6, 11], 

including force fields, charge methods, the strategies of sampling, the definition of dielectric 

boundary in the continuum solvent model, the dielectric constant of solutes, the atom radii 

parameters, etc[12, 13]. In this study the following influencing factors are addressed. First of all, 

the different calculation methods for polar contributions can yield different results. As mentioned 

above, the polar part of SFE can be calculated using a PB approach or an alternative GB approach 
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which is more efficient in terms of computational cost. Different GB methods are also available. 

For example, in the AMBER program package, when it comes to the calculation of SFE, 

practitioners can choose GB1 (the most extensively tested version of GB model), GB2 and GB5 

(newer model using the “OBC” models which improve the performance dramatically)[14]. 

Secondly, different approaches exist for the nonpolar part. Although the nonpolar contribution is 

often calculated using SASA, molecular volume is also applied to more accurately estimate the 

cavity term[15]. Moreover, there are several formulas developed for predicting the nonpolar part 

using SASA. Thirdly, the different charge methods and different radius parameters for the atoms 

also play critical role in the SFE calculation[16]. Restrained electrostatic potential (RESP) charge 

model can fit the atomic charges to the electrostatic potential calculated by quantum mechanics 

(QM) at the HF/6-31G∗ level of theory[17, 18] and it is compatible with the force fields in the 

AMBER family including the General AMBER Force Field (GAFF) for arbitrary organic small 

molecules[19]. However, in order to avoid the high computational cost of QM calculations, the 

semi-empirical Austin Model 1 with bond charge corrections (AM1-BCC)[20, 21] is more widely 

used in the simulations using GAFF because it is more efficient and less dependent on the input 

molecule conformation[22]. The newly introduced ABCG2 charge model was recently developed 

to much better reproduce SFEs through TI by adjusting BCC parameters compatible to GAFF2[22].  

1.2.2 TI 

TI stands for thermodynamic integration. It is one of the most popular methods used to 

compare the free energy difference between two states, 0 and 1. Due to the fact that it is not feasible 

to calculate the free energy difference just based on the simulation of the two end states[23], it is 

necessary to define the thermodynamic path between the end states and integrate the enthalpy 
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changes along the path. The simulation of the intermediate states are characterized by coupling 

parameter λ, which range from 0 to 1. The initial state correspond to λ = 0, while in the final state 

1, λ = 1.  

In this work, for the integral of the total free energy, the numerical quadrature is used as 

Equation 3 (1-3) demonstrates: 

𝑉(𝜆) = (1 − 𝜆)𝑉0 +  𝜆𝑉1     (1) 

𝛥𝐺 = 𝐺(𝜆 = 1) − 𝐺(𝜆 = 0) = ∫ 〈
𝜕𝑉

𝜕𝜆𝜆
〉 𝑑𝜆 ≈ ∑ 𝑊𝑖

1

0
〈𝜕𝑉/𝜕𝜆〉𝑖     (2) 

𝜕𝑉

𝜕𝜆
= 𝑉1 − 𝑉0     (3) 

Equation 3 Free energy integration using numerical quadrature 

The V(λ) in equations are the mixed potential of the initial state V0 and the final state V1. 

1.3 Solvation Free Energy and logP 

Partition coefficient is defined as the ratio of a molecule’s solubility in two immiscible 

solvents. The logarithm of partition coefficient (logP) between 1-octanol and water is a critical 

property which closely related to the solubility, permeability, ADME and affinity of the molecule 

to the target[24-27], thus frequently used in describing the druggability. The importance of logP 

among other physical chemical properties in determine the fate of drug candidates are recognized 

long time ago. Back in the 1960s, the calculation of logP was first reported by Fujita et.al[28, 29] 

and was regarded as key factors in determination of the drug ADME properties. The well-known 

Lipinski’s rule of five[30, 31] further strengthen the idea that simple molecule descriptors like 

logP can be critical in predicting the druggability.  
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1.4 logP Prediction Methods 

1.4.1 Experimental Methods 

Several methods for experiment measurement of drug logP have been developed[28, 32, 33]. 

The shake flask method and reversed phase high performance liquid chromatography are 

commonly used methods[34, 35], but the experiment determination of logP has limitation when it 

comes to the logP prediction of molecules which are unstable in solvent. While at the same time, 

the difficulty to synthesis or get the compound to determine its logP remains a problem, especially 

in the initial stage of drug discovery, when large number of potential structures need to be screened 

and their physical chemical properties need to be determined[36].  

1.4.2 Computational Methods 

The prediction of logP using computational methods is very important alternative to the 

existing experimental method. With decades of development, there are a number of computational 

methods which adopted different underlying theoretical principles to assist researcher in prediction 

of compound logP. Popular commercial software like Discovery Studio, MOE, Maestro also 

support the logP calculation, with either open-source models (Discovery Studio supports 

AlogP[37]) or their own unpublished models (MOE uses both unpublished model “Labute”[38] 

and hybrid SlogP[39]).  

The calculation methods for logP can be classified into the following three major groups: 1. 

Atomic based methods 2. Fragment/Compound based methods 3. Property based methods. The 

atomic logP is simply calculate the additive contribution of each atom of molecule in logP, an 
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example of such method is AlogP[37]. To get reasonable results, this method takes atom type into 

consideration, for example the same atom in different functional groups has different contributions. 

Atomic logP is not suitable for molecules with very complex structures or electronic systems 

which will greatly affect logP. To overcome these short comings, enhanced atomic or hybrid logP 

method was proposed. This method applies corrections and considers the contributions of atoms 

with neighbor atoms for better prediction of large systems, XlogP[40] and SlogP[39] as examples. 

Fragment/Compound logP (Clogp[41], KlogP[42], etc.) requires an experiment determined logP 

dataset which contains lots of molecules and fragments. The prediction model is then built using 

QSAR or other regression methods. This method tends to have better performance for large 

molecules which is similar to the training set. The last method is property-based method, which 

including the logP prediction using 3D structure representation and topological descriptors[43]. 

The former one can be further divided into empirical approaches, quantum chemical semiempirical 

method and continuum solvation model based method, molecular dynamic (MD) simulation based 

method, lattice energy based method and MLP methods. Procacci et.al conducted logP estimation 

using a non-equilibrium alchemical technique called non equilibrium switching (NES) for the drug 

like molecules in the SAMPL6 challenge and was able to achieve MUE of 1.06 and R of 0.79 for 

training set molecules which is among the top ranked submissions[44]. 

Generally speaking, the complexity of calculation increases from atomic based method to 

property-based method, while theoretically, the accuracy also increases. Although simple methods 

like AlogP[37] and ClogP[41] are popular and widely used, these methods are not very accurate 

especially for large and flexible molecules. The past decades have seen a trend of increase in 

molecular weight of approved drug molecules[45]. According to the review by Shultz[46], in 

general, ClogP will overestimate logP for molecules which were approved by FDA after the 
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publication of the famous “Lipinski rule of five”. A hypothesis to this phenomena is that the logP 

calculation error is due to the high flexibility of such molecules which will bury polar atoms and 

result in collapse of hydrophobic groups that fragment methods will not address[47]. For logP 

prediction using properties based “physical” methods, the accurate prediction is generally based 

on theoretically rigorous interpretation of solvation process. For example, high level quantum 

chemical (QM) calculations with implicit solvent parameterization can achieve relatively good 

accuracy and those methods are the best ranking physical methods in the SAMPL6 challenge[48]. 

Nevertheless, such methods require a descent amount of computational time, making the it less 

attractive.  

1.5 Aim 

1.5.1 Test the ABCG2 Charge Model with MM-PB/GBSA Methods 

As aforementioned, different calculation methods for polar part of SFE, various nonpolar 

SFE models as well as different charge models applied will pose significant influence to the SFE 

prediction results. The first aim is to evaluate the newly proposed ABCG2 charge model and 

explore the relationship between charge model, calculation method and prediction accuracy. In 

this work we compare the application of the new ABCG2 charge as well as other widely used 

charge models (AM1-BCC, RESP) combined with GAFF2 on the prediction of the SFE of the 

small molecules by MM-PB/GBSA. The prediction accuracy using different polar SFE calculation 

methods was also explored simultaneously. For each charge model, three different 
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implementations of GB method and two implementations of PB method were adopted when 

conducting the SFE prediction.  

1.5.2 Improve the Binding Free Energy Prediction using ABCG2 Charge Model Combined 

with MM-PBSA 

Binding of ligand and receptor is the key reason for most drug to have their effect. The protein 

ligand binding free energy is important for the affinity ranking of the compounds for a given target, 

which can guide drug discovery. Thus, the accuracy prediction of binding free energy is the central 

topic for computer aided drug design.  

SFE is essentially related to binding free energy. Consequently, we hope to improve the 

overall performance of binding free energy prediction by minimizing the errors introduced in SFE 

calculation. As ABCG2’s parameters were specially optimized based on TI calculation of small 

molecule SFE[22], in this work, we conducted optimization for PB atom radii to achieve better 

results of SFE calculation using MM-PBSA and the ABCG2 charge model. Moreover, the new PB 

atom radii were also evaluated against the AM1-BCC and RESP charge methods. We hope the 

new PB atom radii can universally improve the performance of SFE prediction using the PBSA 

methods regardless of charge method being used.  

There are eight drug targets that have been extensively used as a golden standard to test the 

performance of new free energy calculation methods[49-51]. According to the study by Hao et 

al[51] which evaluated the accuracy of MM-PBSA calculation in predicting the protein ligand 

binding free energy of the eight drug targets, there are four systems, namely, β-Secretase 

1(BACE1)[52], C-Jun N-terminal kinase 1 (JNK1)[53], P38[54], protein tyrosine phosphatase 1B 

(PTP1B)[55] have relatively large deviation and poor correlation between experiment results and 
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calculation results. Consequently, we wanted to test our new radii parameters and nonpolar SFE 

models on these four difficult systems to see if the protein ligand binding free energy calculation 

will be improved.  

1.5.3 Build a Mixed logP Prediction Model 

In this study, we proposed a mixed logP prediction method which established by physical 

modeling supported with empirical correction. From thermodynamic point of view, logP is 

proportional to the Gibbs free energy of transfer a molecule from water to octanol as the Equation 

4 shows: 

−𝑅𝑇𝑙𝑛10 ∗ 𝑙𝑜𝑔𝑃 =  𝛥𝐺𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟[56] 

Equation 4 Relationship between logP and Gibbs free energy of transfer 

The R in the equation represent the gas constant (8.314J·mol-1·K-1), while T is the 

thermodynamic temperature (K). Consequently, logP can be calculated by the solvation free 

energy (SFE) of molecule in water and octanol: 

𝑙𝑜𝑔𝑃 =  
𝛥𝐺𝑤𝑎𝑡𝑒𝑟 𝑆𝐹𝐸 − 𝛥𝐺𝑜𝑐𝑡𝑎𝑛𝑜𝑙 𝑆𝐹𝐸

𝑅𝑇𝑙𝑛10
 

Equation 5 logP calculation using solvation free energy 

Our method first used PB solver DelPhi[57, 58] to calculate the polar part of SFE. The 

nonpolar SFE model was then generated by fitting the difference of experimental SFE and polar 

part of SFE with solvent accessible surface area (SASA). Because our newly introduced logP 

calculation method is from a physical point of view, we hope our method is superior to QSPR 

methods in logP prediction and less computational demanding than rigorous alchemical methods 

the same time. 
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2.0 METHODS 

2.1 Data Preparation 

The experimental data of the SFE of molecules in water and 1-octanol were obtained from the 

FreeSolv v0.52 database[59] and Minnesota Solvation Database version 2012[60]. The structures 

of solute molecules were taken from the database in mol2 format and imported to Schrodinger 

Maestro to check the structures manually. In total, 633 small molecules with their structures and 

experimental SFE in water were compiled, while 247 molecules’ structures and experimental SFE 

in 1-octanol were obtained.  

After obtaining all the data, the geometry optimization for all the small molecules was 

conducted using Gaussian 16[61] with Hartree-Fock method and 6-31G* basis set. The Gaussian 

output files were used to generate residue topology and additional force field parameter files by 

Antechamber[53] using the GAFF2 force field. For RESP charge model, the RESP program in 

Amber Tools was applied to derive charges by fitting electrostatic potential generated at the HF/6-

31G* level. For AM1-BCC and ABCG2 charge models, the SQM (semiempirical quantum 

mechanics) module in Amber Tools was performed to generate AM1 Mulliken charge, and then 

bond charge correction was applied using the corresponding BCC terms, respectively.  

For each small molecule, a cubic box with a single solute molecule solvated in explicit TIP3P 

water[62] was created using the TLEAP module in Amber Tools. The minimum distance between 

any part of the solute and the edge of the box was set to 12 Å to avoid image violations. The 

parameters and coordinates were saved for the next step simulation.  
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2.2 Minimization and Molecular Dynamics Simulation. 

The minimization and molecular dynamics (MD) simulation were conducted using the 

Pmemd.mpi module in AMBER18[14]. Both the steepest descent and conjugate gradient methods 

were used to perform the minimization. The number of cycles of steepest descent was set to 1000, 

and then switched to conjugate gradient method and ran another 1000 cycles.  

The MD simulation was separated into heating, equilibration and production phases. First, 

the system was heated from 0 K to 298.15 K within 100,000 steps with a time step of 0.001 ps. 

Then 0.1 ns equilibration and 5.0 ns production phases of MD were carried out with the 

temperature kept at 298.15 K using Langevin dynamics[63] with collision frequency equaled to 

2.0 ps-1. For the whole MD simulation, periodic boundary condition was applied, the pressure was 

set to 1.0 bar with 1.0 ps pressure relaxation time. The SHAKE constraints for bonds involving 

hydrogen were applied to the system. The trajectories were saved every 10 ps for later MM-

PB/GBSA calculations. 

2.3 MM-PBSA and MM-GBSA Calculation for HFE 

The trajectory files of MD simulation in the production period were used to generate 

snapshots of each solute (with water stripped) using the Cpptraj module in Amber Tools[64]. All 

MM-PB/GBSA calculations were performed using an internal program, mmpbsa, which calls 

Sander and Pmemd programs in the AMBER package as well as Delpha 95 software[57, 58] to 

calculate different energy terms (𝛥𝐸𝑀𝑀 and 𝛥𝐺𝑃𝐵/𝐺𝐵). The HFE (hydration free energy) of the 633 

molecules was calculated using the topology and coordinate files generated from GAFF2 force 
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field parameters and three different charge methods namely RESP charge, AM1-BCC charge and 

ABCG2 charge. And for each of the three charge methods, different ways to calculate polar 

contribution terms were applied: GB1, GB2, GB5, PB_DELPHI[57, 58] (PB calculation using 

DelPhi). The nonpolar contribution was estimated using SASA calculated by an internal program, 

the probe radius adopted here is the typical value 1.4Å. The accuracy of the final HFE prediction 

was demonstrated using a set of statistical metrics: root-mean-square-error (RMSE), mean 

unsigned error (MUE), mean signed error (MSE), prediction index (PI) and Pearson’s correlation 

coefficient R. 

2.4 Thermodynamic Integration Calculation 

Thermodynamic integration (TI) is a widely used path-based approach for alchemical free 

energy calculations[23, 50, 65-68]. The principle of TI method has been well described in many 

references[69-71]. We calculated the absolute hydration free energy using TI methods for 642 

compounds that have measured values. Those molecules were described by GAFF2 force field 

with ABCG2 charge model. 

TI simulations in both the aqueous solution and gas phase environments were conducted for 

each compound using 9 -windows which mixed the potentials of the two states (labeled as “1” 

and “0”) with the following coefficients: 0.01592, 0.08198, 0.19331, 0.33787, 0.5, 0.66213, 

0.80669, 0.91802, 0.98408, mimicking a Gaussian quadrature. The weights of the contribution to 

G are 0.04046, 0.09032, 0.13031, 0.15617, 0.16512, 0.15617, 0.13031, 0.0932, and 0.04046, for 

the 9 -windows, respectively. The hydration free energy of a compound, Ghyd was computed in 
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two TI processes, the de-charging (∆𝐺ℎ𝑦𝑑
𝑑𝑒𝑐ℎ𝑎𝑟𝑔𝑒

) and atom disappearing ∆𝐺ℎ𝑦𝑑
𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟

, and ∆𝐺ℎ𝑦𝑑 =

∆𝐺ℎ𝑦𝑑
𝑑𝑒𝑐ℎ𝑎𝑟𝑔𝑒

+ ∆𝐺ℎ𝑦𝑑
𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟

. For the de-charging procedure, “1” state is the molecule described 

with full set of force field parameters, and “0” state is the “1” with all charges being set to 0. For 

the subsequent disappearing TI step, “1” is the same as “0” in the de-charging step, while “0” is 

the same as “1” of this TI step but with the potential well depths of all solute atoms being set to 0.   

∆𝐺ℎ𝑦𝑑
𝑑𝑒𝑐ℎ𝑎𝑟𝑔𝑒

and ∆𝐺ℎ𝑦𝑑
𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟

 represent the polar and nonpolar contributions of the solvation 

process.  

The MD simulation system consists of 1 copy of solute which is described by GAFF2[19], 

and a certain number of TIP3P water molecules in a rectangle box with any atom of the solute 

being apart from the edges of the box at least 12 Å. Prior to the TI processes, the system was 

equilibrated with a 600-picosecond NTP (constant particle, temperature and pressure) simulation 

with periodic boundary condition being applied. For each MD simulation in TI calculations, the 

temperature was kept at 298 K using Langevin dynamics with the collision frequency gamma_ln 

being set to 2.0. The time step of 1femptosecond was applied to integrate the equation of motion.  

For each -window, 1250-picosecond NTP simulation was performed and 250 snapshots were 

collected. G (DV/DL) was calculated by averaging the DV/DL values of the last 150 snapshots. 

For post-MD analysis, we applied an internal program to conduct statistical analysis of DV/DL 

and calculate ∆𝐺ℎ𝑦𝑑
𝑑𝑒𝑐ℎ𝑎𝑟𝑔𝑒

, ∆𝐺ℎ𝑦𝑑
𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟

, and ∆𝐺ℎ𝑦𝑑. 
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2.5 The Procedure of ABCG2 Evaluation and PB Radii Optimization 

After the charge method and calculation method evaluation and the TI calculation, the PB 

radii parameters were tuned for better performance of HFE prediction using MM-PBSA method 

with ABCG2 charge. The PB radii parameters are used in PB calculations using DelPhi[57, 58], 

and the result of the calculation is used to estimate the polar part of the SFE. Because TI calculation 

with ABCG2 charge model already demonstrated good accuracy in the prediction of SFE of small 

molecules in various solvents[22], while there are few experiment data for polar part of SFE 

available, and TI calculation can separate the SFE into polar part and nonpolar part. So, the 

optimization of PB radii parameters is to reproduce the TI HFE calculation results. Based on the 

HFE calculation using TI, all the molecules with difference between calculation results and 

experiment results larger than 1.5 kcal/mol were excluded from the training dataset. In total 89 

molecules were excluded and 544 molecules retained. After that, the molecules were divided into 

different classes based on their primary function groups, and MSE, MUE, RMSE of experiment 

value versus calculation value were obtained for each function group individually. The molecules 

with multiple functional groups were excluded. The groups with large systematic error (MSE, 

MUE or RMSE larger than 1.40 kcal/mol) were adjusted and new reasonable PB radii parameters 

which yield smaller error of polar HFE prediction were adopted. A new atom type for the oxygen 

in nitro functional groups was also defined in the procedure as we found that if it shares the same 

radius with other carbonyl oxygens, the error of HFE is very large. Meanwhile, for molecules that 

bear charge, the new atom type oi, hn1, hn2, hn3 were also defined. The general procedure for 

PB radii optimization is described as follows. First, we found out the principal atom type behind 

each functional group; we then conducted systematic search to optimize the PB radii for the 

selected atom type. Next, we calculated the new PB_DELPHI of the series of molecules with the 
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selected atom type and got the MSE, MUE and RMSE between PB_DELPHI and TI_polar. We 

conducted PB radii optimization and PB calculation iteratively until the MSE, MUE and RMSE 

fall below the acceptable standard (approximately 1.40 kcal/mol). We followed the order of atom 

types o, on, oh, os, cl, ss/sh,c1, f, p5, s6 to adjust the parameters step by step and the optimized 

parameters would be applied in the subsequential optimizations (Figure S1 and Table S1). The 

atom types for different functional groups are listed in Table S1. The general consideration for 

parameter adjustment is that we first try to adjust the functional groups which occur in multiple 

functional groups (i.e., carbonyl group not only occur in ketones but also occur in aldehydes, esters, 

amides), then those functional groups with multiple atom types were tuned (Figure S1).  

In order to make our new set of PB radii parameters more unified and concise, those atom 

types with similar environment and can reach reasonable results were assigned the same radii 

values when possible. For example, thiols and thiol ethers have different atom types (ss and sh 

respectively), but their radii parameters were tuned simultaneously and kept the same. For nitro 

functional group, two kinds of atom types were involved, namely on (newly defined for oxygen) 

and no (for nitrogen). Oxygen radii plays critical role in the calculation because compared to 

nitrogen, oxygen atoms are more exposed to solvent. Thus, its radius has bigger impact on SFE 

calculation results. As a result, the change in on (an oxygen atom type) lead to a more dramatic 

change in the calculation. So, the no (the nitrogen atom type in nitro) parameter remained 

unchanged to keep our parameter set unified. Although further optimization can be done for no 

atom type and better results can be achieved, this was not done because achieving both accurate 

and concise is our priority.  

After the optimization for PB radii was finished, PB_DELPHI was calculated for all the 544 

molecules. The nonpolar part of HFE for the molecules was calculated by experimental HFE 



 17 

subtract calculated PB_DELPHI. As mentioned above, the nonpolar part of SFE is related to cavity, 

dispersion and solvent structure free energies[7]. Traditionally the sum of the three terms is usually 

estimated by solvent accessible surface area (SASA). The new nonpolar HFE model was generated 

by fitting the nonpolar HFE with WSAS (weighted solvent accessible surface area) which 

correspond to the cavity formation of the solvation process and the Van der Walls interaction 

(dispersion term) in the solvation process.  

Finally, after all the parameter optimization is done and the new nonpolar model was 

established, the HFE of both the training set molecules (394 molecules, excluding the molecules 

with multiple functional groups) and all the 544 molecules were calculated again.  

2.6 Validation of New Radii Parameters on the Binding Free Energy Prediction 

Wang et al. applied Schrodinger’s FEP+ program to calculate relative binding free energies 

for a set of 8 protein systems[49]. Recently, we evaluated the “Gold Standard” benchmark set 

using both GPU-TI implemented in AMBER18 and MM-PBSA-WSAS methods[50, 51]. 

Although the MM-PBSA-WSAS method outperformed the Glide docking approach, for some 

systems including BACE1, JNK1, P38 and PTP1B, the performance measured by correlation 

coefficient R and RMSE of absolute binding free energies is not satisfactory. As we have 

significantly improved the accuracy of solvation free energy calculations, it is expected that the 

new PBSA model can also boost the performance of protein-ligand binding free energy 

calculations.  We evaluated the new PBSA model for the four aforementioned protein systems.  

The MD protocol of sampling protein-ligand conformations for MM-PBSA-WSAS free 

energy calculations was detailed in our previous publication[51]. In this work, for each system we 
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evenly selected 100 snapshots from the sampling phase to the perform MM-PBSA-WSAS analysis 

using both the old and new PBSA models. Specifically, an internal program was applied to 

calculate the MM-PBSA-WSAS free energies of the complex and the binding free energy between 

a ligand and its receptor. The polar part of the solvation free energy was calculated using Delphi 

95 software[57, 58], and the nonpolar part was estimated by scaling the solvent accessible surface 

area as described elsewhere[4, 72]. The conformational entropy term was predicted using WSAS, 

a weighted solvent-accessible surface area method[73]. The exterior dielectric constant of PBSA 

calculations was set to 80.0, the dielectric constant of water, while the interior constant was set to 

1 for all systems except for PTP1B for which a dielectric constant of 4 was used, which can better 

describe the dielectric constant of the charged ligands.   

2.7 Nonpolar Model for Octanol SFE and logP Calculation 

The previous steps revealed the importance of PB radii parameters in the free energy 

calculation and yielded a set of radii parameters compatible with the newly developed ABCG2 

charge model[22]. In logP calculation, the radii parameters as well as the nonpolar model for the 

SFE calculation in water were adopted from the previous results. In the calculation of SFE in 

octanol, I continue to use the aforementioned set of radii parameters optimized using water SFE 

and by changing the nonpolar SFE model, we got good consistency between experiment 

determined SFE and calculated SFE in octanol. The nonpolar model was generated by conducting 

the regression between experiment minus polar SFE (PB) and the surface area (MSSAS).  

Finally, the nonpolar model of water and octanol SFE and the PB radii parameters were tested 

on the prediction of logP of 156 molecules which present in both water and octanol SFE dataset. 
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Apart from that, our logP calculation method was further validated through the logP prediction of 

drug like molecules from ZINC dataset.  
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3.0 RESULTS 

3.1 The Performance of Three Charge Models on SFE Calculation with the Default Radius 

Parameters 

The results of SFE calculation using different combinations of charge models and calculation 

methods were explored. There are three charge models applied and four different PB/GB 

calculation methods, so in total 12 combinations were utilized. For each combination, a set of 

statistical metrics (including MSE, MUE and RMSE) used to evaluate the accuracy were obtained. 

As Table 1 shows, the ABCG2 charge model outperformed its counterparts RESP and AM1-BCC 

charge model in SFE calculation using GB2 and GB5 model with RMSE of 2.06 kcal/mol and 

2.17 kcal/mol, respectively. ABCG2 charge also yielded best predictive index (PI) and Pearson’s 

correlation coefficient (R) in calculation using PB_DELPHI[57, 58] (PI = 0.91, R = 0.90). The 

AM1-BCC charge model achieved better results in GB1 and PB_DELPHI calculation with RMSE 

of 1.88 kcal/mol and 2.70 kcal/mol, respectively.  

Table 1. The comparison of three charge models on SFE prediction 

The performance of RESP, AM1-BCC and ABCG2 charge model with different polar SFE calculation methods 

on SFE prediction. The unit of MSE, MUE and RMSE is kcal/mol. 

 

RESP charge AM1-BCC charge ABCG2 charge 

Calculation 

method MSE  MUE  RMSE PI R MSE MUE RMSE PI R MSE MUE RMSE PI R 

GB1 -0.21 1.58 2.15 0.84 0.84 0.20 1.32 1.88 0.88 0.88 -0.78 1.54 2.10 0.87 0.88 

GB2 0.42 1.66 2.28 0.83 0.82 0.98 1.68 2.28 0.85 0.85 -0.02 1.49 2.06 0.84 0.86 

GB5 0.59 1.77 2.39 0.80 0.80 1.14 1.77 2.44 0.82 0.83 0.21 1.60 2.17 0.81 0.83 
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PBDELPHI -1.35 1.97 2.80 0.88 0.87 -1.00 1.76 2.70 0.90 0.88 -2.13 2.30 3.39 0.91 0.90 

 

3.2 The Result of Polar Part of SFE after Adopting the New PB Radii Parameters 

In order to quickly improve the overall performance of the MMPBSA calculation using 

GAFF2 force field and ABCG2 charge model, only the functional groups with large systemic error 

(approximately larger than 1.40 kcal/mol) between TI_polar and PBDELPHI were adjusted in this 

study. There are 27 functional groups adjusted, alkynes, nitriles, aliphatic ring + chloride, aromatic 

ring + chloride, aliphatic ring + bromide, aromatic ring + bromide, hydrocarbon + iodide, ethers, 

alcohols, alkene + alcohols, phenols, ketones, aldehydes, esters, nitro compounds, nitrooxy 

compounds, amides, thioethers, thiols, aliphatic chain + fluorine, aromatic ring + fluorine, 

phosphoryl, sulfone, primary, secondary and tertiary ammoniums and carboxylates were adjusted 

in this study. Due to the fact that some functional groups share the same atom type, in total 12 

atom types (c1, o, oh, os, f, cl, br, i, ss, sh, p5, s6) were adjusted and 5 new atom type (on, hn1, 

hn2, hn3, oi) was defined. As Table 2, Table 3, Figure 1, and Figure 2 shows, the mean MSE, 

MUE and RMSE of the functional groups improved significantly after adopting the new PB radii 

parameters (Table S6). The MSE, MUE, RMSE of total 394 training set (excluding molecules 

with multiple functional groups) molecules are -0.67 kcal/mol, 0.83 kcal/mol, 1.02 kcal/mol 

respectively. While the previous MSE, MUE, RMSE are -1.72 kcal/mol, 1.77 kcal/mol, 2.23 

kcal/mol respectively. The PI and R almost kept the same with the previous results with some 

minor improvement. 
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Table 2 Comparison of TI polar and PB_DELPHI using ABCG2 and old radii 

The comparison between polar part of TI calculation of HFE and PB_DELPHI using ABCG2 charge model 

and old atom radii. The unit of MSE, MUE and RMSE is kcal/mol. 

Subclass Number MSE MUE RMSE PI R 

Non-cyclic alkanes 25 -0.15 0.15 0.16 -0.43 -0.54 

Cycloalkanes 9 -0.22 0.22 0.23 0.18 0.47 

Alkenes 22 -1.04 1.04 1.09 0.94 0.97 

Alkynes 6 -1.68 1.68 1.68 0.71 0.46 

Aromatic hydrocarbons 36 -1.12 1.12 1.24 0.97 0.98 

Aliphatic chain + chloride 22 -2.6 2.6 2.78 0.97 0.96 

Aromatic ring + chloride 24 -2.94 2.94 3.02 0.97 0.97 

Aliphatic chain + bromide 14 -1.09 1.09 1.25 0.67 0.86 

Aromatic ring + bromide 4 -1.28 1.28 1.33 0.91 0.99 

Hydrocarbon + iodide 10 -1.22 1.22 1.26 0.94 0.98 

Ethers 14 -1.92 1.92 2.32 0.94 0.98 

Alkyl alcohols 25 -1.89 1.89 2.38 0.96 1 

Alkene + alcohols 3 -3.04 3.04 3.04 0.81 0.81 

Phenols 17 -2.01 2.01 2.03 0.93 0.9 

Ketones 19 -1.91 1.91 1.99 0.98 0.97 

Aldehydes 10 -2.43 2.43 2.44 0.1 0.06 

Esters 34 -3.23 3.23 3.5 0.86 0.99 

Amines 25 0.31 0.53 0.76 0.97 0.96 

Anilines 8 -1.23 1.23 1.27 0.98 0.98 

Pyrazines and pyridines 22 -1.02 1.02 1.15 0.92 0.94 

Nitriles 5 -1.23 1.23 1.28 0.07 0.12 

Nitro compounds 6 -3.12 3.12 3.13 0.99 0.91 

Nitrooxy compounds 8 -4.84 4.84 5.26 0.96 0.99 

Amides 5 -2.23 2.23 2.24 0.91 0.99 

Thioethers 8 -1.54 1.54 1.58 0.75 0.63 

Thiols 4 -1.38 1.38 1.38 0.96 0.76 

Aliphatic chain + fluorine 3 -1.48 1.48 1.51 1 0.97 

Aromatic chain + fluorine 2 -2.22 2.22 2.23 1 1 

Phosphoryl 2 -5.04 5.04 5.16 -1 -1 

Sulfone 2 -6.7 6.7 6.88 -1 -1 

Sum 394 -1.72 1.77 2.23 0.93 0.93 

 

Table 3 Comparison of TI polar and PB_DELPHI using ABCG2 and new radii 

The comparison between polar part of TI calculation of HFE and PB_DELPHI using ABCG2 charge model 

and new atom radii. The unit of MSE, MUE and RMSE is kcal/mol. 

Subclass Number MSE MUE RMSE PI R 

Non-cyclic alkanes 25 -0.15 0.15 0.16 -0.42 -0.53 
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Cycloalkanes 9 -0.22 0.22 0.23 0.18 0.47 

Alkenes 22 -1.04 1.04 1.09 0.94 0.97 

Alkynes 6 -1.29 1.29 1.29 0.58 0.31 

Aromatic hydrocarbons 36 -1.12 1.12 1.23 0.97 0.98 

Aliphatic chain + chloride 22 -0.94 0.94 1.1 0.95 0.97 

Aromatic ring + chloride 24 -1.53 1.53 1.56 1 0.99 

Aliphatic chain + bromide 14 -0.8 0.8 0.98 0.62 0.86 

Aromatic ring + bromide 4 -1.17 1.17 1.19 0.91 0.99 

Hydrocarbon + iodide 10 -0.88 0.88 0.94 0.85 0.97 

Ethers 14 -0.6 0.77 1.08 0.95 0.98 

Alkyl alcohols 25 0.35 0.6 0.75 0.96 0.99 

Alkene + alcohols 3 -0.95 0.95 0.97 0.81 0.4 

Phenols 17 -0.75 0.75 0.81 0.91 0.86 

Ketones 19 -0.09 0.34 0.53 0.98 0.97 

Aldehydes 10 -0.56 0.56 0.58 0.35 0.43 

Esters 34 -0.89 0.89 1.08 0.86 0.98 

Amines 25 0.3 0.53 0.74 0.95 0.96 

Anilines 8 -1.26 1.26 1.3 0.98 0.97 

Pyrazines and pyridines 22 -1.01 1.01 1.13 0.92 0.95 

Nitriles 5 -1.15 1.15 1.22 0.07 0.04 

Nitro compounds 6 -0.16 0.22 0.3 0.8 0.85 

Nitrooxy compounds 8 -1.52 1.52 1.86 0.98 0.99 

Amides 5 0.65 0.65 0.75 0.9 0.98 

Thioethers 8 -0.66 0.7 0.81 0.8 0.66 

Thiols 4 -0.51 0.51 0.52 0.47 0.67 

Aliphatic chain + fluorine 3 -0.28 0.28 0.33 1 1 

Aromatic chain + fluorine 2 -1.21 1.21 1.22 1 1 

Phosphoryl 2 -0.67 0.9 1.13 -1 -1 

Sulfone 2 -0.65 1.05 1.23 -1 -1 

Sum 394 -0.67 0.83 1.02 0.96 0.96 
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Figure 1 Comparisong of TI polar and PB_DELPHI using ABCG2 charge before and after radii optimization 

The comparison of MSE, MUE and RMSE between TI polar and PB_DELPHI calculation using ABCG2 

charge model before and after adjustment of atom radii.  The results from original PB atom radii are in red 

color, and the results from updated PB atom radii are in blue color. 

 

Figure 2 Comparison between TI polar and PB_DELPHI using ABCG2 with original and new radii 

A, The polar part of TI calculation of HFE of small molecule vs the PBDELPHI calculation results with ABCG2 

and original radii (red circles). B, The polar part of TI calculation of HFE of small molecule vs the PBDELPHI 

calculation results with ABCG2 and updated radii (blue squares). The lines are eye-guided lines for ideal 
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matching of calculation vs. experiment (solid line), with error of ±1 kcal/mol (dashed line), and with error of 

±2 kcal/mol (dotted line), respectively. 

3.3 New Nonpolar SFE Model 

As aforementioned, the new nonpolar SFE model was generated by fitting the nonpolar 

HFE with MSSAS. Least square fitting and regression was conducted between nonpolar HFE 

(experimental HFE minus TI_polar) and MSSAS and two nonpolar models were generated 

accordingly. In the model validation process using the four protein ligand systems (BACE1, JNK1, 

P38, PTP1B), we found that both models have their advantages and disadvantages in predicting 

the binding free energy of protein and ligands. So, apart from the aforementioned two models, a 

series of models which has intermediate coefficient and constant were generated. In total nine 

models were tested on the prediction of protein ligand binding free energy and the model which 

has balanced performance were selected. The final model for nonpolar SFE we got was as 

Equation 6 shows: 

𝑆𝐹𝐸𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 = 0.0055 × 𝑀𝑆𝑆𝐴𝑆 + 1.12 

Equation 6 Nonpolar model for SFE calculation in water 

3.4 The Performance of MM-PBSA Calculation Using New Radii Parameters & Nonpolar 

SFE Model and ABCG2 charge  

The performance of MM-PBSA calculation using new PB radii and nonpolar SFE model 

with ABCG2 charge model for training set molecules and all the 544 molecules were evaluated 
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respectively. As Figure 3 and Figure 4 demonstrated, for the training set (excluding molecules 

with multiple functional groups) which contains 394 molecules, the MSE improved from -1.19 

kcal/mol to 0.07 kcal/mol, MUE improved from 1.43 kcal/mol to 0.60 kcal/mol, while RMSE 

decreased from 1.98 kcal/mol to 0.85 kcal/mol. The MSE, MUE, RMSE for all the 544 molecules 

decreased from -1.59 kcal/mol to 0 kcal/mol, 1.77 kcal/mol to 0.75 kcal/mol, 2.38 kcal/mol to 1.05 

kcal/mol as Figure 5 demonstrated. 
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Figure 3 Comparisong of SFE calculation using ABCG2 charge before and after radii optimization 

The comparison of MSE, MUE and RMSE of SFE calculation for training set molecules (excluding molecules 

with multiple functional groups) using ABCG2 before and after adjustment of atom radii. The results from 

original PB atom radii are in red color, and the results from updated PB atom radii are in blue color. 
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Figure 4 Comparison between experimental SFE and calculated SFE using ABCG2 with original and new 

radii 

A, The experiment SFE of training set molecules (excluding molecules with multiple functional groups) vs the 

calculated SFE with ABCG2 and original radii (red circles). B, The experiment SFE of training set molecules 

(excluding molecules with multiple functional groups) vs the calculated SFE with ABCG2 and updated radii 

(blue squares). The lines are eye-guided lines for ideal matching of calculation vs. experiment (solid line), with 

error of ±1 kcal/mol (dashed line), and with error of ±2 kcal/mol (dotted line), respectively. 

 

Figure 5 Comparison between experimental SFE and calculated SFE using ABCG2 with original and new 

radii for all molecules 

A, The experiment SFE of all molecules vs the calculated SFE with ABCG2 and original radii (red circles). B, 

The experiment SFE of all molecules vs the calculated SFE with ABCG2 and updated radii (blue squares). The 
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lines are eye-guided lines for ideal matching of calculation vs. experiment (solid line), with error of ±1 kcal/mol 

(dashed line), and with error of ±2 kcal/mol (dotted line), respectively. 

3.5 The Performance of MMPBSA Calculation Using New Radii Parameters & Nonpolar 

SFE model and RESP & AM1-BCC charge 

The updated PB radii parameters and new nonpolar SFE model were applied in the 

calculation of SFE using MM-PBSA and RESP or AM1-BCC charge model. It was exciting that 

the performance of MM-PBSA calculation using other charge model also improved as Figure 6 

and Figure 7 demonstrated. The detailed results of MM-PBSA for training set molecules 

(excluding molecules with multiple functional groups) with AM1-BCC and RESP charge model 

before radii optimization is shown in Table S2, S4, respectively. After the radii optimization, the 

detailed results of MM-PBSA for training set molecules (excluding molecules with multiple 

functional groups) with AM1-BCC and RESP charge model is shown in Table S3, S5, respectively. 

The comparison is shown in Figure S2, S3, S4, S5. We can observe that the magnitudes of MSE, 

MUE, and RMSE of different functional group molecules usually decrease from the results of 

original atom radii (in red color) to those of updated atom radii (in blue color) and the overall 

performance became more balanced for different functional groups. Although for some functional 

groups, minor increase in error were observed.  
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Figure 6 Comparison between experimental SFE and calculated SFE using AM1-BCC with original and new 

radii 

A, The experiment SFE of small molecule vs the calculated SFE with AM1-BCC and original radii. B, The 

experiment SFE of small molecule vs the calculated SFE with AM1-BCC and updated radii. The color 

scheme is the same as Figure 2. 

 

Figure 7 Comparison between experimental SFE and calculated SFE using RESP with original and new radii 

A, The experiment SFE of small molecule vs the calculated SFE with RESP and original radii. B, The 

experiment SFE of small molecule vs the calculated SFE with RESP and updated radii. The color scheme is 

the same as Figure 2. 

As Figure S2 indicates, for MM-PBSA calculation using AM1-BCC charge, the 

performance of sulfone, phosphoryl and esters improved greatly, while for amides, hydrocarbon + 
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iodide and aromatic hydrocarbon molecules, the prediction errors increased slightly. The overall 

performance for 544 molecules was improved, the MSE increased a little bit from -0.57 kcal/mol 

to 0.73 kcal/mol, the MUE decreased to 1.22 kcal/mol from 1.37 kcal/mol, the RMSE decreased 

to 1.62 kcal/mol from 2.00 kcal/mol. 

The improvement was even greater for MM-PBSA calculation using RESP charge. The 

systematic error for calculation of amides, nitrile, hydrocarbon + iodide functional group series 

increased a little bit. While dramatic improvement was observed for sulfone, phosphoryl, nitro and 

nitro-oxy functional groups. The RMSE of sulfone functional group decreased from 5.84 kcal/mol 

to 2.19 kcal/mol. The RMSE of phosphoryl functional group decreased from 3.68 kcal/mol to 0.43 

kcal/mol. For nitro and nitrooxy functional groups, the RMSE changed from 4.10 kcal/mol and 

5.27 kcal/mol to 1.28 kcal/mol and 2.03 kcal/mol, respectively. The overall MSE decreased from 

the previous -1.05 kcal/mol to 0.43 kcal/mol, the MUE decreased from 1.70 kcal/mol to 1.09 

kcal/mol, the RMSE decreased to 1.53 kcal/mol from the previous 2.34 kcal/mol. 

3.6 The Performance of Adopting New PB Radii Parameters and Nonpolar SFE Model for 

MMPBSA Calculation to Predict the Binding Free Energy  

As mentioned before, the four drug targets used in this study is the most difficult ones 

among the eight extensively studied drug targets to evaluate the performance of new free energy 

calculation methods[49-51]. According to a paper published by our lab[51], the Pearson’s 

correlation of absolute binding free energy between MM-PBSA-WSAS calculation results and 

experiment values for BACE1, JNK1, P38, PTP1B are 0.29, 0.04, 0.22, -0.25, respectively. 
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After the new charge model and nonpolar SFE model adopted, the new calculation result 

is shown in Table 4 and Figure 8. Except for JNK1, which the RMSE for direct calculation 

increased, all the other systems have improved performance for correlation and absolute binding 

free energy. 

Table 4 Binding free energy prediciton for 4 systems 

The correlation and RMSE between experiment binding free energy and MM-PBSA calculated binding free 

energy for 4 protein ligand systems. 

 Old Parameters New Parameters 

System Number of 

Ligands 

Inner 

Dielectric 

R RMSE (after 

regression) 

RMSE (direct 

calculation) 

R RMSE (after 

regression) 

RMSE (direct 

calculation) 

BACE1 41 1 0.28 1.05 4.53 0.49 1.44 2.30 

JNK1 21 1 0 1.88 2.04 0.28 1.15 6.46 

P38 35 1 0.08 3.65 4.28 0.19 2.61 2.71 

PTP1B 27 4 0.52 1.12 24.78 0.55 1.19 17.92 
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Figure 8 Absoulte binding free energy prediction for 4 systems before and after radii optimization 

Absolute binding free energy prediction by MM-PBSA method versus experiment binding free energy for four 

protein ligand systems. The calculation using new parameters are on the top and the calculation using old 

parameters are on the bottom. 

3.7 The Performance of New PB Radii Combined with New Nonpolar Model on Octanol 

SFE Prediction 

After conducting PB calculation with the octanol dielectric constant and the optimized PB 

radii from the previous steps, the deviation between experiment and PB results (represent the 

nonpolar part of solvation free energy) was obtained. Then the new nonpolar model for octanol 

SFE calculation was established based on the surface area of the solute molecule. This was done 

by fitting the MSSAS against experiment SFE minus PB results. We only got 238 molecules (9 

out of 247 has error when calculation MM-PBSA) in our training set molecules. To get a better 

model, we build the model based on all the data we have. Before doing that, a 10-fold cross 

validation was conducted for 1000 rounds to minimize the bias of the model. The data was 
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randomly divided into 10 groups and each time 9 out of 10 groups of data were used as training 

set and the 1 group of data left was used as test set. The mean MSE was 1.76 for the total 1000 

rounds. The nonpolar model was then built by the regression between experiment SFE minus PB, 

and MSSAS. After the model was established, we calculated the SFE based on the model and 

compared it with experimental SFE. Five molecules stood out as they had relatively large (cutoff 

value = 5 kcal/mol) deviation between experiment and calculated SFE. So, we eliminated those 

outliers and redo the regression. The final model we got for octanol SFE estimation was as 

Equation 7 shows: 

𝑆𝐹𝐸𝑜𝑐𝑡𝑎𝑛𝑜𝑙 = 𝑃𝐵 − 0.012 ∗ 𝑀𝑆𝑆𝐴𝑆 + 2.82 

Equation 7 Nonpolar model for SFE calculation in octanol 

3.8 The Performance logP Prediction for Training Set 

As aforementioned, in the thermodynamic point of view, the logarithm of partition 

coefficient (logP) can be estimated by the SFE in octanol and water. Since our SFE calculation 

model was trained based on the SFE of training set molecules, it is not surprising that our model 

performs quite well for the training set molecules. There are in total 633 water SFE data and 238 

octanol SFE data, and we got 171 experimental logP data. Together, there are 156 common 

molecules which has both water and octanol SFE and experimental logP, and for these molecules 

our logP prediction can reach a RMSE of 0.92. 
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3.9 The Performance of logP Prediction for ZINC Dataset 

To validate our newly proposed logP model, the logP prediction accuracy was tested on 

470 molecules form ZINC database [74]. ZINC database is a drug like database which comprise 

of tens of millions of purchasable compounds. In our validation set, the molecules from ZINC 

database are distributed between molecule weight from 160 to 600 Da. For the molecules in ZINC 

database, the RMSE of our prediction compared to the experimental value is 0.91, which is better 

than the commonly used program Open Babel [75], and also outperform the commercial software 

like Maestro and Sybyl. The detailed comparison for the logP prediction accuracy for the 

molecules in ZINC dataset are listed in Table 5. The prediction results are in Figure 9. 

Table 5 logP prediction for ZINC molecules using our method and three commonly used programs 

The comparison of logP prediction accuracy for ZINC molecules using our mixed model and three 

commonly used programs (Open Babel, Maestro, Sybyl). Note: For QikProp in Maestro, 3 out of 

503 molecules did not yielded results. 

 Our method Open Babel Maestro Sybyl 

RMSE 0.91 1.13 1.25 1.68 
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Figure 9 Calculated logP vs. experimental logP for ZINC molecules 
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4.0 DISCUSSION 

As aforementioned, various methods ranging from simple empirical statistical methods like 

QSPR to complex alchemical perturbation methods like FEP/TI are used to estimate the solvation 

free energy. Some QSPR model can achieve relatively good accuracy, for example, the hybrid 

QSPR model proposed by Borhani et al.[76]. In total 1777 experimental SFE data of 295 solutes 

in 210 solvents were obtained. The model was built based on the 1421 training SFE data and 

yielded a RMSE of 0.52 kcal/mol for 356 test set SFE data. But it is hard to interpret the model 

physically and the good performance tends to be limited in the molecules which are similar to the 

training set. Alchemical methods are computational demanding but usually yield better results. 

Nevertheless, most of the earlier SFE prediction efforts using alchemical calculation still got 

relatively large systematic error. The model using OPLS_2005[77] force field had a RMSE of 1.33 

kcal/mol in HFE prediction of 239 solutes.  

Mobley et al. tested the performance of SFE prediction of 17 compounds using MM-PBSA 

with AM1-BCC charge and their ZAP-9 radii set[78]. The solvent structures were optimized by 

Gaussian 03[79] at the B3LYP/6-31G** level of theory. Then charge was obtained using OpenEye 

implementation of AM1-BCC v1[20, 21]. The MM-PBSA was calculated using OpenEye’s PB 

solver ZAP v2.0[80]. The RMSE for PB compared to the test set was 1.87 ± 0.03 kcal/mol[78], 

which agrees with our MM-PBSA calculation before parameter adjustment.  

Based on our observations, when it comes to the HFE calculation, ABCG2 and AM1-BCC 

outperform RESP charge in many aspects. The GAFF2 force field was developed using RESP 

charge model and TIP3P water model[22]. The original aim of AM1-BCC charge was to produce 

atomic charges that emulate the HF/6-31G* electrostatic potential (ESP) quickly and efficiently to 
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serve as a robust alternative to RESP charge. The parameterization of BCCs was performed by 

fitting to the HF/6-31G* ESP of a training set with more than 2700 molecules. However, some 

atom types with large errors of relative SFE calculations (nitrogen in amine and nitro function 

groups) were tuned to make the calculation results accord with the experiment value[20]. The 

validation of the AM1-BCC charge compared the experimental SFE of diverse set of 40 molecules 

with calculated SFE using alchemical method with AM1-BCC charge model, the MUE was within 

0.69 kcal/mol[20]. Meanwhile, the MUE of calculated SFE with RESP charge model on the same 

set is 1.36 kcal/mol[20]. Since AM1-BCC perform better than RESP on SFE calculation by 

alchemical methods, it is reasonable that AM1-BCC charge and AM1-BCC based ABCG2 charge 

show better performance on small molecule HFE prediction by MM-PB/GBSA than RESP as 

demonstrated in our validation.  

ABCG2 charge are newly developed charge model based on AM1-BCC scheme which is 

compatible with GAFF2 force field. It was specially optimized using the thermodynamic 

integration (TI) calculation of a smaller set of 441 HFE data. We found that when calculating the 

HFE using MM-PBSA method, the systemic error increased compared to TI calculation. The 

reported MSE and MUE using TI calculation are 0.65 kcal/mol and 1.03 kcal/mol respectively[22]. 

While the MSE and MUE using PBSA are generally larger. Although ABCG2 charge are 

optimized using partial of the HFE data used in this study, its performance of HFE prediction using 

PB method are not the best among the three charge models. This is due to the fact that the radii 

parameters used for PB calculation are Parse radii[81] which not compatible with the new ABCG2 

charge. With our newly derived atom radii parameters, users can expect better results when 

conducting PB calculation with ABCG2 charge. 
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From theoretical perspective, MM-PBSA should have better accuracy and MM-GBSA 

should be less computational demanding. But as a matter of fact, the accuracy of the method 

depends on the system being studied. For the estimation of HFE, PB calculation yielded worse 

results with RESP and ABCG2 charge models, while PB and GB are comparable when using 

AM1-BCC charge to do the HFE prediction (Table 1). The detailed results of HFE prediction after 

the adjustment of atom radii is listed in Table 6.  

Table 6 The SFE prediction using three charge models after radii optimization 

After the radii optimization, the performance of RESP, AM1-BCC and ABCG2 charge model with 

PBDELPHI and new nonpolar model on SFE prediction for 544 molecules. The unit of MSE, MUE and 

RMSE is kcal/mol. 

 RESP charge AM1-BCC charge ABCG2 charge 

Calculation 

method MSE MUE RMSE PI R MSE MUE RMSE PI R MSE MUE RMSE PI R 

PBDELPHI 0.43 1.09 1.53 0.90 0.90 0.73 1.22 1.62 0.91 0.91 0.00 0.75 1.05 0.95 0.95 

In order to make our radii parameter set useful for free energy calculation involving protein 

systems, we incorporated 18 charged molecules which serve as model molecules for amino acids. 

The charged molecules can be divided into three groups: ammonium, carboxylate and arginine 

which represent the commonly encountered charged functional groups in protein. The experiment 

HFE data of these molecules are from the MNsolv database[82]. As Table 7 shows, before the 

radii optimization, the performance of MM-PBSA using ABCG2 charge is good for arginine, but 

the error is large for other charge molecules. So, we kept the radii for arginine the same and tuned 

the oxygen for carboxylates and hydrogen atoms in ammonium. The atom type of oxygen for 

carboxylates and hydrogens for primary, secondary and tertiary amine are all newly defined. Here 

we did not tune the nitrogen radii to improve ammonium performance because that the nitrogen is 

in the inner layer of the functional group, so when its radii changed, the calculation results almost 
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remained the same. The results after radii optimization are listed as Table 8. We can see that after 

adopting the updated radii. The MSE, MUE and RMSE improved significantly. 

Table 7 SFE calculation for charged molecules before radii optimization 

The performance of MM-PBSA (PB_DELPHI) using ABCG2 charge model for charge molecules before atom 

radii optimization. The unit of MSE, MUE and RMSE is kcal/mol. 

Subclass Number MSE MUE RMSE PI R k b 

Tertiary- 

ammoniums 

3 4.61 4.61 4.75 1 1 1.27 20.2 

Secondary- 

ammoniums 

6 5.55 5.55 5.68 0.97 0.97 1.33 27.22 

Primary- 

ammoniums 

5 3.57 3.57 3.86 0.93 0.96 1.26 22.55 

Carboxylates 3 -2.76 2.76 2.8 1 1 1.41 29.07 

Arginine 1 -0.11 0.11 0.11 NA NA NA NA 

 

Table 8 SFE calculation for charged molecules after radii optimization 

The performance of MM-PBSA (PB_DELPHI) using ABCG2 charge model for charged molecules after atom 

radii optimization. The unit of MSE, MUE and RMSE is kcal/mol. 

Subclass Number MSE MUE RMSE PI R k b 

Tertiary- 

ammoniums 

3 1.6 1.9 2.25 1 1 1.38 23.14 

Secondary- 

ammoniums 

6 1.54 2.03 2.09 0.97 0.97 1.42 29.11 

Primary- 

ammoniums 

5 0.9 1.25 1.81 0.93 0.96 1.31 23.34 

Carboxylates 3 0.32 0.46 0.57 1 1 1.38 29.91 

Arginine 1 -0.11 0.11 0.11 NA NA NA NA 

The accurate prediction of logP is an important topic in molecular modeling and computer 

aided drug design. A full spectrum of calculation methods has been adopted in logP prediction, 

ranging from the fast QSPR method to time consuming high level alchemical methods.  

Our logP prediction is a mixed model which is physical based and adopted empirical 

corrections, thus theoretically more rigorous than QSPR method and faster than alchemical method.  

In theory, the nonpolar part of SFE is related to cavity, dispersion and solvent structure free 

energy in the process of solvation, while most methods estimation nonpolar part using solvent 
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accessible surface area (SASA). In order to improve the accuracy of SFE prediction, we took both 

cavity formation and Van der Walls interaction into account when calculating the nonpolar SFE 

term. The new nonpolar HFE model was generated by fitting the nonpolar HFE with WSAS 

(weighted solvent accessible surface area) which correspond to the cavity formation of the 

solvation process and MSSAS which correspond to the Van der Walls interaction (dispersion term) 

in the solvation process. When calculating MSSAS, the weight applied to each atom type was 

calculated by Lennard Jones potential[83-85]. We compare the performance when calculating the 

nonpolar SFE with both MSSAS, WSAS and MSSAS alone, the result shows that the prediction 

accuracy is quite similar. Finally, we decide to only keep MSSAS when calculate nonpolar SFE 

as it demonstrates comparable accuracy to taking both MSSAS and WSAS into account, and it is 

similar to previous nonpolar model. 
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5.0 CONCLUSION 

In this study, the influence of applying the newly developed ABCG2 charge model on the 

calculation by MM-PB/GBSA was explored and compared to AM1-BCC and RESP charge models. 

We found that both ABCG2 and AM1-BCC charge has its own advantage towards SFE prediction. 

For MM-PBSA calculation using ABCG2 charge model, new PB radii parameter set was also 

obtained by iterative calculation and adjustment. And a new nonpolar SFE model was generated 

accordingly. The new PB radii combined with the nonpolar SFE model dramatically improved the 

HFE calculation performance. The RMSE of 544 molecules decreased from 3.39 kcal/mol to 2.09 

kcal/mol. The versatility of the new parameter set was further validated by applying to the 

calculation of HFE using RESP and AM1-BCC charge. Finally, the charge model and the new 

nonpolar SFE model were tested on BACE1, JNK1, P38, PTP1B and improved the prediction 

accuracy for protein ligand binding free energy using MM-PBSA method. Our results indicated 

that this newly derived PB radii parameter has the potential to improve the HFE calculation and 

protein ligand binding free energy prediction using MM-PBSA method universally. 

The past decades have witnessed the dramatic improvement of the computer hardware and 

accelerated computational speed. Consequently, accurate but not very computational demanding 

methods might gain more popularity as computational resources becoming more approachable. 

We proposed a new approach to calculate logP of drug like molecules in an accurate and 

computationally feasible way. The logP calculation is based on physical point of view which takes 

the SFE of molecule in water and octanol as input and further modified by empirical corrections. 

With that, we were able to achieve high accuracy (RMSE = 0.92) for drug molecules in ZINC 

database which outperform other commonly used logP prediction methods. 
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Appendix A Supplementary Figures 

Appendices contain supplementary or illustrative material or explanatory data too lengthy 

to be included in the text or not immediately essential to the reader’s understanding of the text. 

When using the Appendix Style, type the title of the Appendix section after the inserted 

heading. 

 

Figure S1 The scheme for PB radii parameter adjustment of different functional groups 
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Figure S2 Comparisong of SFE calculation using AM1-BCC charge before and after radii optimization 

The comparison of MSE, MUE and RMSE of SFE calculation for training set molecules (excluding molecules 

with multiple functional groups) using AM1-BCC charge before and after adjustment of atom radii. The 

results from original PB atom radii are in red color, and the results from updated PB atom radii are in blue 

color. 

 

 

Figure S3 Comparison between experimental SFE and calculated SFE using AM1-BCC with original and 

new radii 
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A, The experiment SFE of training set molecules (excluding molecules with multiple functional groups) vs the 

calculated SFE with AM1-BCC charge and original radii (red circles). B, The experiment SFE of training set 

molecules (excluding molecules with multiple functional groups) vs the calculated SFE with AM1-BCC and 

updated radii (blue squares). The lines are eye-guided lines for ideal matching of calculation vs. experiment 

(solid line), with error of ±1 kcal/mol (dashed line), and with error of ±2 kcal/mol (dotted line), respectively. 
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Figure S4 Comparisong of SFE calculation using RESP charge before and after radii optimization 

The comparison of MSE, MUE and RMSE of SFE calculation for training set molecules (excluding molecules 

with multiple functional groups) using RESP charge before and after adjustment of atom radii. The results 

from original PB atom radii are in red color, and the results from updated PB atom radii are in blue color. 

 

 

Figure S5 Comparison between experimental SFE and calculated SFE using RESP with original and new 

radii 

A, The experiment SFE of training set molecules (excluding molecules with multiple functional groups) vs the 

calculated SFE with RESP charge and original radii (red circles). B, The experiment SFE of training set 
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molecules (excluding molecules with multiple functional groups) vs the calculated SFE with RESP and 

updated radii (blue squares). The lines are eye-guided lines for ideal matching of calculation vs. experiment 

(solid line), with error of ±1 kcal/mol (dashed line), and with error of ±2 kcal/mol (dotted line), respectively. 
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Appendix B Tables 

Table S1 The atom type for different functional groups. 

Functional Group Atom Type 1 Atom Type 2 

Alkynes c1  

Aliphatic chain + chloride cl  

Aromatic ring + chloride cl  

Aliphatic chain + bromide br  

Aromatic ring + bromide br  

Hydrocarbon + iodide i  

Ethers os  

Alkyl alcohols oh  

Alkene + alcohols oh  

Phenols oh  

Ketones o  

Aldehydes o  

Esters o os 

Nitriles c1  

Nitro compounds o (newly defined as on)  

Nitrooxy compounds o (newly defined as on) os 

Amides o  

Thioethers ss  

Thiols sh  

Aliphatic chain + fluorine f  

Aromatic ring + fluorine f  

Phosphoryl p5 os 

Sulfone s6 o 

Primary-ammoniums hn (newly defined as hn1)  

Secondary-ammoniums hn (newly defined as hn2)  

Tertiary-ammoniums hn (newly defined as hn3)  

Carboxylates o (newly defined as oi)  

 

 

Table S2 The performance of MM-PBSA (PB_DELPHI) using AM1-BCC charge model before atom radii 

optimization for training set molecules  

Training set molecules excludes molecules with multiple functional groups. The unit of MSE, MUE and 

RMSE is kcal/mol. 

Subclass Number MSE MUE RMSE PI R k b 

Non-cyclic 

alkanes 

25 -0.17 0.17 0.21 0.96 0.94 0.76 0.46 

Cycloalkanes 9 0.66 0.66 0.71 0.96 0.93 0.56 1.38 

Alkenes 22 -0.01 0.25 0.34 0.81 0.76 0.68 0.37 

Alkynes 6 0.42 0.42 0.44 1 0.99 0.74 0.47 
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Aromatic 

hydrocarbons 

36 -0.81 0.81 0.95 0.96 0.97 1.25 -0.42 

Aliphatic 

chain + 

chloride 

22 0.24 0.45 0.68 0.9 0.86 1.25 0.43 

Aromatic 

ring + 

chloride 

24 1.25 1.63 2.3 0.01 -0.03 -0.05 -0.91 

Aliphatic 

chain + 

bromide 

14 1.22 1.26 1.42 0.62 0.67 0.36 0.87 

Aromatic 

ring + 

bromide 

4 0.37 0.46 0.74 0.08 0.33 0.45 -0.68 

Hydrocarbon 

+ iodide 

10 -0.29 0.39 0.4 1 0.98 0.7 -0.5 

Ethers 14 -0.78 1.01 1.59 0.93 0.91 1.81 1.11 

Alkyl 

alcohols 

25 0.01 0.39 0.67 0.99 1 1.31 1.51 

Alkene + 

alcohols 

3 -0.47 0.47 0.5 0.43 0.74 0.71 -1.84 

Phenols 17 -0.55 0.55 0.64 0.81 0.9 0.9 -1.18 

Ketones 19 -1.38 1.38 1.5 0.87 0.88 1.38 -0.15 

Aldehydes 10 -2.16 2.16 2.21 0.77 0.64 0.84 -2.62 

Esters 34 -3.75 3.75 4.13 0.9 0.97 2.03 -0.61 

Amines 25 1.65 1.67 1.86 0.85 0.87 0.97 1.53 

Anilines 8 -0.86 0.86 0.92 0.99 0.97 1 -0.87 

Pyrazines 

and pyridines 

22 0.75 1.11 1.23 0.91 0.8 1.04 0.95 

Nitriles 5 0.81 0.81 0.92 1 0.96 2.98 8.31 

Nitro 

compounds 

6 1.71 1.71 1.72 0.95 0.92 0.73 0.81 

Nitrooxy 

compounds 

8 -0.26 0.58 0.71 0.98 0.99 1.38 1.03 

Amides 5 -0.55 0.55 0.62 0.81 0.92 0.79 -2.48 

Thioethers 8 0.52 0.52 0.56 0.95 0.95 1.29 0.99 

Thiols 4 -0.35 0.35 0.37 0.82 0.92 2.13 0.9 

Aliphatic 

chain + 

fluorine 

3 -1.98 1.98 2.19 0.97 0.82 0.51 -1.52 

Aromatic 

ring + 

fluorine 

2 -1.94 1.94 2.17 -1 -1 -2.55 -3.8 

Phosphoryl 2 -5.82 5.82 5.89 1 1 2.51 6.45 

Sulfone 2 -7.05 7.05 7.22 1 1 0.09 -13.28 

Sum 394 -0.36 1.18 1.81 0.88 0.86 1.09 -0.14 
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Table S3 The performance of MM-PBSA (PB_DELPHI) using AM1-BCC charge model after atom radii 

optimization  

Training set molecules excludes molecules with multiple functional groups. The unit of MSE, MUE and RMSE 

is kcal/mol 

Subclass Number MSE MUE RMSE PI R k b 

Non-cyclic 

alkanes 

25 -0.67 0.67 0.69 0.96 0.93 1 -0.68 

Cycloalkanes 9 0.16 0.21 0.26 0.96 0.93 0.73 0.61 

Alkenes 22 -0.6 0.65 0.71 0.76 0.73 0.76 -0.31 

Alkynes 6 -0.06 0.07 0.08 1 0.99 0.94 -0.05 

Aromatic 

hydrocarbons 

36 -1.38 1.38 1.48 0.96 0.97 1.27 -0.95 

Aliphatic 

chain + 

chloride 

22 -0.06 0.32 0.37 0.93 0.92 1.09 0.01 

Aromatic 

ring + 

chloride 

24 0.21 1.2 1.49 0.16 0.09 0.12 -1.61 

Aliphatic 

chain + 

bromide 

14 0.2 0.35 0.48 0.9 0.9 0.69 0.03 

Aromatic 

ring + 

bromide 

4 -0.76 0.76 0.87 0.56 0.59 0.62 -1.46 

Hydrocarbon 

+ iodide 

10 -1.38 1.38 1.39 1 0.98 1.07 -1.33 

Ethers 14 -0.16 0.68 1 0.93 0.91 1.49 0.97 

Alkyl 

alcohols 

25 1.25 1.25 1.27 0.99 0.99 1.03 1.38 

Alkene + 

alcohols 

3 0.65 0.65 0.68 0.43 0.8 1.13 1.25 

Phenols 17 -0.14 0.29 0.36 0.77 0.9 0.96 -0.37 

Ketones 19 -0.17 0.37 0.62 0.91 0.9 1.45 1.3 

Aldehydes 10 -1.03 1.03 1.12 0.77 0.71 1.02 -0.98 

Esters 34 -1.8 1.8 2.06 0.9 0.95 1.48 -0.34 

Amines 25 1.14 1.21 1.44 0.85 0.87 0.98 1.05 

Anilines 8 -1.48 1.48 1.51 0.99 0.97 1.01 -1.4 

Pyrazines 

and pyridines 

22 0.09 0.89 0.98 0.91 0.81 1.05 0.35 

Nitriles 5 0.06 0.47 0.5 1 0.96 3.3 8.78 

Nitro 

compounds 

6 2.18 2.18 2.18 0.95 0.96 0.97 2.08 

Nitrooxy 

compounds 

8 0.42 0.54 0.59 0.98 0.99 1.19 1.07 

Amides 5 1.38 1.38 1.43 0.81 0.88 0.72 -1.23 

Thioethers 8 0.35 0.43 0.51 0.99 0.97 1.73 1.56 

Thiols 4 -0.5 0.5 0.53 1 0.97 3.2 1.93 
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Aliphatic 

chain + 

fluorine 

3 -1.58 1.58 1.77 0.97 0.91 0.56 -1.17 

Aromatic 

ring + 

fluorine 

2 -1.93 1.93 2.05 -1 -1 -1.47 -3.23 

Phosphoryl 2 -1.27 1.27 1.36 1 1 1.81 5.26 

Sulfone 2 -1.23 1.23 1.74 1 1 0.3 -6 

Sum 394 -0.27 0.95 1.2 0.91 0.91 0.91 -0.48 

 

Table S4 The performance of MM-PBSA (PB_DELPHI) using RESP charge model before atom radii 

optimization. 

Training set molecules excludes molecules with multiple functional groups. The unit of MSE, MUE and RMSE 

is kcal/mol. 

Subclass Number MSE MUE RMSE PI R k b 

Non-cyclic 

alkanes 

25 -0.43 0.44 0.53 0.62 0.65 0.72 0.28 

Cycloalkanes 9 0.45 0.5 0.61 0.55 0.72 0.82 0.75 

Alkenes 22 -0.9 1.12 1.24 0.15 0.26 0.41 -0.19 

Alkynes 6 -1.95 1.95 1.96 0.96 0.94 0.64 -1.89 

Aromatic 

hydrocarbons 

36 -0.41 0.57 0.68 0.85 0.89 0.87 -0.62 

Aliphatic 

chain + 

chloride 

22 -0.79 1.2 1.38 0.75 0.71 1.36 -0.53 

Aromatic 

ring + 

chloride 

24 0.91 1.65 2.15 0.03 0.01 0.01 -1.13 

Aliphatic 

chain + 

bromide 

14 -0.1 0.38 0.49 0.86 0.87 0.66 -0.28 

Aromatic 

ring + 

bromide 

4 0.09 0.79 1.07 0.08 0.44 1.13 0.34 

Hydrocarbon 

+ iodide 

10 -0.14 0.48 0.57 0.83 0.8 0.38 -0.57 

Ethers 14 -0.4 0.9 1.31 0.71 0.72 1.08 -0.21 

Alkyl 

alcohols 

25 -1.62 1.62 1.96 0.89 0.98 1.48 0.74 

Alkene + 

alcohols 

3 -1.48 1.48 1.51 1 0.99 2.22 4.33 

Phenols 17 -0.64 0.75 0.91 0.59 0.71 0.91 -1.22 

Ketones 19 -1.79 1.79 1.86 0.71 0.81 1.01 -1.75 

Aldehydes 10 -2.08 2.08 2.09 0.83 0.84 0.79 -2.69 

Esters 34 -4.4 4.4 4.71 0.86 0.97 2.01 -1.35 

Amines 25 2.06 2.15 2.83 0.4 0.49 0.67 0.49 

Anilines 8 0.48 0.5 0.53 0.99 0.98 1.02 0.56 
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Pyrazines 

and pyridines 

22 0.88 1.24 1.33 0.64 0.81 1.08 1.31 

Nitriles 5 -0.92 0.92 1.01 1 0.94 2.82 6 

Nitro 

compounds 

6 -4.09 4.09 4.1 1 0.99 1.67 -1.83 

Nitrooxy 

compounds 

8 -4.9 4.9 5.27 0.95 0.97 2.13 -1.07 

Amides 5 -0.4 0.61 0.79 0.67 0.72 0.94 -0.92 

Thioethers 8 0.13 0.74 0.83 0.48 0.33 0.64 -0.47 

Thiols 4 -0.75 0.75 0.85 0.13 -0.05 -0.24 -2.12 

Aliphatic 

chain + 

fluorine 

3 -2.15 2.15 2.2 0.97 0.96 0.83 -2 

Aromatic 

ring + 

fluorine 

2 -1.93 1.93 1.96 -1 -1 -0.28 -2.6 

Phosphoryl 2 -3.64 3.64 3.68 1 1 1.89 3.6 

Sulfone 2 -5.83 5.83 5.84 1 1 1.19 -4.55 

Sum 394 -0.87 1.58 2.23 0.83 0.82 1.05 -0.74 

 

 

Table S5 The performance of MM-PBSA (PB_DELPHI) using RESP charge model after atom radii 

optimization. 

Training set molecules excludes molecules with multiple functional groups. The unit of MSE, MUE and RMSE 

is kcal/mol. 

Subclass Number MSE MUE RMSE PI R k b 

Non-cyclic 

alkanes 

25 -0.94 0.94 0.99 0.7 0.72 0.97 -0.86 

Cycloalkanes 9 -0.05 0.33 0.44 0.58 0.76 0.98 -0.02 

Alkenes 22 -1.49 1.56 1.73 0.2 0.29 0.49 -0.87 

Alkynes 6 -2.09 2.09 2.1 0.96 0.98 0.86 -2.07 

Aromatic 

hydrocarbons 

36 -0.98 0.98 1.13 0.87 0.89 0.89 -1.15 

Aliphatic 

chain + 

chloride 

22 -0.81 0.89 1.04 0.86 0.83 1.19 -0.67 

Aromatic 

ring + 

chloride 

24 0.07 1.24 1.47 0.22 0.13 0.17 -1.65 

Aliphatic 

chain + 

bromide 

14 -0.99 0.99 1.06 0.9 0.92 0.92 -1.03 

Aromatic 

ring + 

bromide 

4 -0.99 1.05 1.3 0.08 0.57 1.26 -0.5 

Hydrocarbon 

+ iodide 

10 -1.25 1.25 1.28 0.98 0.96 0.76 -1.42 
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Ethers 14 0.11 0.9 1.04 0.73 0.72 0.9 -0.12 

Alkyl 

alcohols 

25 0.01 0.33 0.49 0.94 0.99 1.17 0.85 

Alkene + 

alcohols 

3 -0.13 0.35 0.45 1 0.96 2.61 7.53 

Phenols 17 -0.06 0.45 0.56 0.65 0.77 0.93 -0.52 

Ketones 19 -0.51 0.64 0.73 0.77 0.85 1.18 0.07 

Aldehydes 10 -0.97 0.97 1.01 0.76 0.84 1 -0.96 

Esters 34 -2.2 2.2 2.38 0.88 0.96 1.43 -0.89 

Amines 25 1.54 1.87 2.5 0.39 0.49 0.68 0.01 

Anilines 8 -0.14 0.18 0.29 0.99 0.98 1.03 0.03 

Pyrazines 

and pyridines 

22 0.21 0.86 1.04 0.66 0.81 1.1 0.71 

Nitriles 5 -1.63 1.63 1.71 1 0.94 3.18 6.64 

Nitro 

compounds 

6 -1.24 1.24 1.28 1 0.99 1.73 1.21 

Nitrooxy 

compounds 

8 -1.81 1.81 2.03 0.95 0.98 1.52 -0.05 

Amides 5 1.33 1.33 1.48 0.81 0.74 0.95 0.86 

Thioethers 8 0.03 0.53 0.61 0.48 0.6 1.02 0.07 

Thiols 4 -0.86 0.86 0.92 0.58 0.27 1.12 -0.73 

Aliphatic 

chain + 

fluorine 

3 -1.76 1.76 1.84 0.97 0.97 0.71 -1.49 

Aromatic 

ring + 

fluorine 

2 -1.88 1.88 1.89 1 1 0.16 -2.32 

Phosphoryl 2 -0.23 0.36 0.43 1 1 1.6 4.64 

Sulfone 2 -2.02 2.02 2.19 1 1 0.52 -5.3 

Sum 394 -0.62 1.12 1.43 0.88 0.89 0.86 -0.95 

 

Table S6 The old and updated PB radii parameters for different atom types and the parameters for WSAS 

calculation. 

Atom type Radii before 

optimization 

Radii after 

optimization 

Parameters 

for WSAS 

Weight 

applied to 

WSAS 

Hydrogen 

h1 1.19  1.19  1.20 0.105257 

h2 1.19  1.19  1.20 0.0866113 

h3 1.19  1.19  1.20 0.0708034 

h4 1.19  1.19  1.20 0.104611 

h5 1.19  1.19  1.20 0.0951559 

ha 1.19  1.19  1.20 0.114837 

hc 1.19  1.19  1.20 0.127134 

hn 1.19  1.19  1.20 0.0145069 

hn1  1.50  1.20 0.0145069 

hn2  1.60  1.20 0.0145069 
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hn3  1.70 1.20 0.0145069 

ho 1.19  1.19  1.20 0.004208 

hp 1.19  1.19  1.20 0.0166403 

hs 1.19  1.19  1.20 0.0157608 

hw 1.19  1.19  1.20 0.0106 

hx 1.19  1.19  1.20 0.0574766 

HC 1.19  1.19  1.20 0.127134 

HA 1.19  1.19  1.20 0.114837 

HO 1.19  1.19  1.20 0.004208 

HS 1.19  1.19  1.20 0.0157608 

HW 1.19  1.19  1.20 0.004208 

HP 1.19  1.19  1.20 0.0166403 

HZ 1.19  1.19    

H1 1.19  1.19  1.20 0.105257 

H2 1.19  1.19  1.20 0.0866113 

H3 1.19  1.19  1.20 0.0708034 

H4 1.19  1.19  1.20 0.104611 

H5 1.19  1.19  1.20 0.0951559 

H 1.19  1.19  1.20 0.0145069 

Carbon  

c 1.76  1.76  1.70 0.559732 

c1 1.76  1.90  1.70 0.826582 

c2 1.76  1.76  1.70 0.559732 

c3 1.76  1.76  1.70 0.63088 

ca 1.76  1.76  1.70 0.559732 

cp 1.76  1.76  1.70 0.559732 

cq 1.76  1.76  1.70 0.559732 

cc 1.76  1.76  1.70 0.559732 

cd 1.76  1.76  1.70 0.559732 

ce 1.76  1.76  1.70 0.559732 

cf 1.76  1.76  1.70 0.559732 

cg 1.76  1.76  1.70 0.826582 

ch 1.76  1.76  1.70 0.826582 

cx 1.76  1.76  1.70 0.63088 

cy 1.76  1.76  1.70 0.63088 

cz 1.76  1.76  1.70 0.559732 

c5 1.76  1.76  1.70 0.63088 

c6 1.76  1.76  1.70 0.63088 

cu 1.76  1.76  1.70 0.559732 

cv 1.76  1.76  1.70 0.559732 

CA 1.76  1.76  1.70 0.559732 

CB 1.76  1.76  1.70 0.559732 

CC 1.76  1.76  1.70 0.559732 

CD 1.76  1.76  1.70 0.559732 

CK 1.76  1.76  1.70 0.559732 
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CM 1.76  1.76  1.70 0.559732 

CN 1.76  1.76  1.70 0.559732 

CQ 1.76  1.76  1.70 0.559732 

CR 1.76  1.76  1.70 0.559732 

CT 1.76  1.76  1.70 0.63088 

CV 1.76  1.76  1.70 0.559732 

CW 1.76  1.76  1.70 0.559732 

C* 1.76  1.76  1.70 0.559732 

CY 1.76  1.76  1.70 0.826582 

CZ 1.76  1.76  1.70 0.826582 

C 1.76  1.76  1.70 0.826582 

C3 1.76  1.76  1.70 0.63088 

C4 1.76  1.76  1.70 0.63088 

C5 1.76  1.76  1.70 0.559732 

C6 1.76  1.76  1.70 0.559732 

C8 1.76  1.76  1.70 0.63088 

CX 1.76  1.76  1.70 0.63088 

2C 1.76  1.76  1.70 0.63088 

3C 1.76  1.76  1.70 0.63088 

CO 1.76  1.76  1.70 0.559732 

CI 1.76  1.76  1.70 0.63088 

CP 1.76  1.76  1.70 0.559732 

CS 1.76  1.76  1.70 0.559732 

Nitrogen  

n 1.73  1.73  1.55 0.635011 

n1 1.73  1.73  1.55 0.567605 

n2 1.73  1.73  1.55 0.582155 

n3 1.73  1.73  1.55 0.546228 

n4 1.73  1.73  1.55 1.56076 

n5 1.73  1.73  1.55 0.485127 

n6 1.73  1.73  1.55 0.485127 

n7 1.73  1.73  1.55 0.485127 

n8 1.73  1.73  1.55 0.433329 

n9 1.73  1.73  1.55 0.329614 

na 1.73  1.73  1.55 0.72638 

nb 1.73  1.73  1.55 0.582155 

nc 1.73  1.73  1.55 0.582155 

nd 1.73  1.73  1.55 0.582155 

ne 1.73  1.73  1.55 0.582155 

nf 1.73  1.73  1.55 0.582155 

nh 1.73  1.73  1.55 0.734254 

no 1.73  1.73  1.55 0.546228 

ni 1.73  1.73  1.55 0.635011 

nj 1.73  1.73  1.55 0.635011 

nk 1.73  1.73  1.55 1.38946 
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nl 1.73  1.73  1.55 1.38946 

nm 1.73  1.73  1.55 0.734254 

nn 1.73  1.73  1.55 0.734254 

np 1.73  1.73  1.55 0.546228 

nq 1.73  1.73  1.55 0.546228 

ns 1.73  1.73  1.55 0.584969 

nt 1.73  1.73  1.55 0.540968 

nu 1.73  1.73  1.55 0.676782 

nv 1.73  1.73  1.55 0.625821 

nx 1.73  1.73  1.55 1.38946 

ny 1.73  1.73  1.55 1.24398 

nz 1.73  1.73  1.55 1.11956 

n+ 1.73  1.73  1.55 1.01253 

NA 1.73  1.73  1.55 0.72638 

NB 1.73  1.73  1.55 0.582155 

NC 1.73  1.73  1.55 0.582155 

N2 1.73  1.73  1.55 0.72638 

N3 1.73  1.73  1.55 0.546228 

NT 1.73  1.73  1.55 0.546228 

N* 1.73  1.73  1.55 0.72638 

NY 1.73  1.73  1.55 0.567605 

N 1.73  1.73  1.55 0.635011 

Oxygen  

o 1.43  1.70  1.52 0.528811 

on  2.00 1.52 0.528811 

oi  1.28  1.52 0.528811 

oh 1.43  1.70 1.52 0.507605 

os 1.43  1.64  1.52 0.413186 

ow 1.43  1.64  1.52 0.594825 

op 1.43  1.64  1.52 0.413186 

oq 1.43  1.64  1.52 0.413186 

O2 1.43  1.64  1.52 0.528811 

OH 1.43  1.64  1.52 0.507605 

OS 1.43  1.64  1.52 0.413186 

OW 1.43  1.64  1.52 0.507605 

O 1.43  1.64  1.52 0.528811 

Sulfur 

s 1.75  2.00  1.80 1.15379 

s2 1.75  2.00  1.80 1.15379 

s4 1.75  2.00  1.80 1.15379 

s6 1.75  2.80  1.80 0.847601 

sh 1.75  2.00  1.80 1.15379 

ss 1.75  2.00  1.80 1.15379 

sx 1.75  2.00  1.80 1.15379 

sy 1.75  2.00  1.80 0.847601 
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sp 1.75  2.00  1.80 1.15379 

sq 1.75  2.00  1.80 1.15379 

SH 1.75  2.00  1.80 1.15379 

S 1.75  2.00  1.80 1.15379 

Phosphate 

p2 1.75  2.00  1.80 1.20046 

p3 1.75  2.00  1.80 1.20046 

p4 1.75  2.00  1.80 1.20046 

p5 1.75  2.60  1.80 1.20046 

pb 1.75  2.00  1.80 1.20046 

pc 1.75  2.00  1.80 1.20046 

pd 1.75  2.00  1.80 1.20046 

pe 1.75  2.00  1.80 1.20046 

pf 1.75  2.00  1.80 1.20046 

px 1.75  2.00  1.80 1.20046 

py 1.75  2.00  1.80 1.20046 

p 1.75  2.00    

P 1.75  2.00  1.80 1.20046 

Halid  

f 1.40  1.90  1.47 0.393452 

F 1.40  1.90  1.47 0.393452 

cl 1.54  2.10  1.75 1.05024 

Cl 1.54  2.10  1.75 1.05024 

CL 1.54  2.10    

br 1.99  2.15  1.85 1.46244 

Br 1.99  2.15  1.85 1.46244 

BR 1.99  2.15    

i 2.00  2.20  1.90 2.00408 

I 2.00  2.20  1.90 2.00408 

Boron  

B 1.50  1.50   

Metal  

Mn 2.00  2.00    

Mg 2.00  2.00    

Fe 2.00  2.00    

Lone pair  

lp 0.00  0.00    

LP 0.00  0.00    

Z5 1.76  1.76  1.70  
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