
Title Page  

CRISPRa screening identifies lncRNAs regulating tumor response to CD8+ T cell 

cytotoxicity 

by 

Yueshan Zhao 

BS, Sun Yat-sen University, 2020 

Submitted to the Graduate Faculty of the 

School of Pharmacy in partial fulfillment 

of the requirements for the degree of 

Master of Science 

University of Pittsburgh 

2022 



 ii 

Committee Membership Page  

UNIVERSITY OF PITTSBURGH 

 

SCHOOL OF PHARMACY 

 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Yueshan Zhao 

 

 

It was defended on 

 

March 31, 2022 

 

and approved by 

 

Da Yang, Associate Professor, Department of Pharmaceutical Sciences 

 

Robert Gibbs, Professor, Department of Pharmaceutical Sciences 

 

Min Zhang, Research Assistant Professor, Department of Pharmaceutical Sciences 

 

Thesis Advisor/Dissertation Director: Da Yang, Associate Professor, Department of 

Pharmaceutical Sciences 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Yueshan Zhao 

 

2022 

 

  



 iv 

Abstract 

CRISPRa screening identifies lncRNAs regulating tumor response to CD8+ T cell 

cytotoxicity 

 

 

Yueshan Zhao, BS 

 

University of Pittsburgh, 2022 

 

 

 

Human genomes contain abundant non-coding RNAs which may play critical roles in all 

aspects of functions through diverse mechanisms in cancer cells, among which long non-coding 

RNAs (lncRNAs) have been reported to regulate cell proliferation, metastasis, and drug resistance. 

Recent studies have shown lncRNAs can act as biomarkers for immunotherapy efficacy in patients. 

However, the relationship between lncRNAs and immune response in cancer treatment is not well 

explored currently. In this thesis, we performed genome-wide CRISPR activation screening in 

melanoma cells with human CD8+ T cells co-culture treatment. The screening identified top ranked 

genes including IL10RB-DT and LINC01198 that can result in resistance/sensitivity to T cells 

cytotoxicity respectively. IL10RB-DT/LINC01198 expression demonstrated significantly 

negative/positive correlation with immune cell infiltration and overall survival of patients with 

melanoma and breast cancer. Additionally, we performed RNA-seq in activated or inhibited 

IL10RB-DT and LINC01198 melanoma and breast cancer cell lines by single sgRNA transfection 

or siRNA treatment. Pathway analysis revealed that these two lncRNAs were associated with the 

regulation of Type I and Type II interferon related pathways in both activation and knockdown 

models. These results demonstrated the feasibility of in vitro high-throughput screening of 

potential lncRNAs associated with immune response and suggested novel targets for cancer 

immunotherapy. 
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 1 

 Introduction 

Clustered regularly interspaced palindromic repeats (CRISPR) loci with endonuclease (Cas) 

proteins is an immune defense system that protect bacteria from virus invasion, among which 

CRISPR-Cas9 is the most common one [1]. The CRISPR-Cas9 system consists of two major 

components: sgRNA and Cas9 nuclease. The sgRNA is made up of two parts: crRNA that is 

complementary to the target DNA sequences and tracrRNA serving as a binding scaffold for the 

Cas9 protein and guide it to the DNA region that requires editing. After directed to the target DNA 

locus by sgRNA, Cas9 protein will cleave the DNA and introduce a double-strand break within 

the sequence [2].  

Winning the Nobel Prize in 2020, CRISPR technology has become an effective tool for 

biological research, but its application is more than gene editing. Numerous studies have used 

CRISPR technology to perform high throughput genome-scale screening and identified essential 

genes or therapeutic targets.  

1.1 CRISPR technology and different types of screening 

The aim of genome-scale screens is to generate a population of cells with different 

perturbations to identify genes or regulatory regions that will play a role in specific phenotypes. 

Because of the wide range of potential target sequences, CRISPR system has enabled powerful 

pooled screens. Based on different mechanisms, CRISPR screens can be categorized into three 

types: CRISPR/Cas9 knockout (CRISPRko) screens, CRISPR/dCas9 activation (CRISPRa) 
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screens and CRISPR/dCas9 interference (CRISPRi) screens (Figure 1). In CRISPR knockout 

screens, Cas9-guided DNA double strand breaks lead to insertions or deletions when cells try to 

repair DNA with the non-homologous end-joining (NHEJ) pathway [3]. These mutations will 

result in a coding frameshift or stop codon, which ultimately silence gene expression. On the other 

hand, the deactivated Cas9 (dCas9) is a mutant protein which is not able to cleave DNA. Fused 

with transcription activators or repressors, CRISPR-dCas9 system allows regulation at gene 

transcription level or epigenetic level for either gene activation (CRISPRa) or interference 

(CRISPRi) [4]. Inhibition of gene expression can be accomplished by fusing transcription 

repressor such as KRAB (Kruppel-associated box) to dCas9 protein in CRISPRi screens [5]. 

Similarly, CRISPRa screens take advantage of transcription activator such as Synergistic 

Activation Mediator (SAM) system [6], which consists of four copies of VP16 from herpes 

simplex virus and sgRNA containing MS2-p65-HSF1 (Heat Shock Transcription Factor 1) 

domains. Besides protein coding genes screening, CRISPRi and CRISPRa screens can be used for 

functional characterization of regulatory elements [7] and long noncoding RNAs (lncRNAs) [8]. 

In mechanism, CRISPRko and CRISPRi facilitate loss of function while CRISPRa allows gain of 

function. For example, Julia Joung and her colleagues developed a genome-scale CRISPRa 

screening and successfully characterized that EMICERI’s activation led to the activation of 

neighboring protein-coding genes resulting in the resistance to BRAF inhibitors in melanoma cells 

[8]. In our case, because of the relatively low abundance of lncRNAs [9], we also decided to use 

CRISPRa system to achieve the activation of lncRNAs in a more ‘physiological’ way by designing 

sgRNAs targeting the promoter region of target genes to study their functions.  
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Figure 1 General process for pooled CRISPR screens 

Library preparation: Multiple sgRNAs are designed for one target, which can be cloned into plasmids. The lentiviral 

library is then packaged and used to infect desired cells for CRISPR screens 

Screening: After pooled library preparation, targets are edited by either CRISPR knockout or CRISPR 

interference/activation. Next-Generation sequencing is performed to collect sgRNA abundance in cell population. 

Computational analysis: Following deep sequencing, reads are mapped to the original sgRNA library, and fold 

changes of sgRNA read counts are then calculated. Based on various algorithms, hit genes can be identified.  

 

As for the phenotype, the pooled CRISPR screens were initially used to identify essential 

genes for cell viability [10]. Multiple researches using CRISPR screening to identify genes that 

will contribute to treatment sensitivity/resistance in the context of both immunotherapy [11] and 
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chemotherapy [12, 13]. Combining with fluorescence-activated cell sorting (FACS), the 

phenotype was extended to cell surface markers [14], intracellular reporters [15] or specific cell 

types [16]. Further utilization of single-cell RNA-seq (scRNA-seq) of the CRISPR screened 

samples dramatically expand the dimensions of phenotypes to the expression levels of hundreds 

of genes simultaneously. CRISPR screens at single cell level facilitate insights into the effect of 

gene perturbations on the whole transcriptome, and different methodologies such as Perturb-seq 

[17, 18], CRISP-seq [19] and CROP-seq [20] have been developed. 

 

1.2 CRISPR screening data analysis 

As a genome wide high-throughput screening technology, whether CRISPR screens can 

effectively provide insights for us largely depends on the accuracy of data analysis. There have 

been quite some challenges for the development of CRISPR screen analysis methods. Due to the 

fact that multiple sgRNAs are designed for one target, we are also faced with variable sgRNA 

efficiency and off-target effects. The method is also expected to deal with different phenotype 

effects from simple cell viability to complicated transcriptome profiles. Despite the difficulty, 

various methods with different focus have been developed for CRISPR screen analysis. The 

overall workflow of those methods usually includes sequence quality assessment, read alignment, 

read count normalization, estimate changes of sgRNA abundance and aggregating sgRNA effects 

for the overall effects of targeted genes. In addition to the methods that are newly designed to 

analyze the CRISPR screening data. Some methods, which were previously designed to analyze 

the RNA interference (RNAi) screening data, can be repurposed for CRISPR screens analysis. In 
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order to guarantee the accuracy of our screening result, two methodologies with different 

mechanisms were utilized and overlapped genes from two analysis were selected as our hits.   

1.2.1 RNAi Gene Enrichment Ranking (RIGER) 

RIGER was first developed in 2008 and used to identify essential genes in RNAi screens 

[21]. The core of RIGER analysis was based on Gene Set Enrichment Analysis (GSEA) which 

utilized a weighted Kolmogorov-Smirnov statistics to test whether a predefined set of genes 

skewed to the top or bottom of the whole gene list [22]. RIGER considered the entire list of 

sgRNAs targeting the same gene due to various efficiencies of designed sgRNAs. For CRISPR 

screen data, RIGER first scored sgRNAs in terms of their differential effects, such as signal-to-

noise ratio, between the treatment group and control group. Raw enrichment scores were then 

calculated in a similar manner as for GSEA analysis. Normalization was further performed to 

account for different numbers of sgRNAs targeting different genes by dividing the enrichment 

score by the mean of a null distribution generated from random permutations. RIGER offered gene 

rankings computed for positive scores and negative scores separately.  

1.2.2 Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK) 

MAGeCK [23] was the first workflow designed for CRISPR/Cas9 screen analysis and 

has been widely used ever since. The assumption was that if a gene is essential, then sgRNAs 

targeting this gene will be enriched at one side (either top or bottom) instead of being randomly 

distributed in the whole list of sgRNA ranking based on its effect. Read counts in different groups 

were first normalized for the adjustment of library sizes and count distributions. The sgRNA 
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abundance was over-dispersed like other high-throughput sequencing experiments [24], which 

means that the variance of reads is larger than the mean, thus a mean-variance model was utilized 

to estimate the variance. A negative binomial distribution similar to edgeR [25] package was then 

used to test whether there is significant difference between treatment and control groups because 

it works better in dealing with the over-dispersion of sequencing results. They further used p-

values calculated from the negative binomial distributions to rank sgRNAs, and a robust ranking 

aggregation (RRA) [26] method to identify positively and negatively enriched genes 

simultaneously. Finally, the false discovery rate (FDR) can be calculated from permutation tests 

to correct for multiple comparisons. MAGeCK was also able to identify essential pathways based 

on the same principle.  

Recently, MAGeCK have been further developed into integrated workflows, MAGeCK-

VISPR [27] (Visualization for CRISPR) and MAGeCKFlute [28], which were able to provide 

extensive quality control at the sequence level, read count level and sample level. VISPR also 

provided multiple ways to explore screen results in depth including Gene Ontology (GO) 

enrichment analysis from Gorilla [29], gene-gene interaction network from GeneMANIA[30] and 

so on.  The MAGeCK series is also constantly updated, and it has become the standard solution 

for CRISPR screen analysis.  

1.3 Long non-coding RNA  

Long non-coding RNAs (lncRNA) is one representative group of non-coding RNAs, 

which are defined as transcripts longer than 200 nucleotides and not translated into functional 

proteins. LncRNAs can be further divided into different groups based on their biogenesis loci 
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including intergenic, intronic, antisense, bidirectional and enhancer lncRNAs [31]. They also are 

involved in numerous cellular functions such as cell differentiation, cell proliferation and 

activation of several types of immune cells [32, 33].The expression level of lncRNAs is lower 

compared with protein-coding genes and their regulation of gene expression is often cell-type 

specific [9]. For example, in the context of T cell transcriptomes, 1524 intergenic lncRNAs are 

expressed in a lineage-specific manner at different stages for T cell maturation and differentiation 

[34]. Within the cell, lncRNAs can be found in multiple areas including the nucleus, cytoplasm 

and the mitochondria [35], and its localization will provide some hints to their functions. 

Functionally speaking, lncRNAs can be associated with the change of chromosome structure [36], 

interaction with transcription machinery [37], alternative splicing [38] and mRNA stability [39].   

1.4 The function of lncRNA in cancer immune response 

Tumor immune surveillance has been identified as a critical process in inhibiting 

tumorigenesis whereby the immune system identifies potentially cancerous cells and destroys them 

[40, 41], in which effector T cells play a vital role [42]. CD8+ T cells are activated after T cell 

receptors (TCR) recognize tumor neoantigens presented on major histocompatibility complex 

class I (MHC-I) molecule, resulting in the killing of cancer cells [43-45]. By stimulating patients’ 

own immune system to selectively kill cancer cells instead of attacking normal cells 

indiscriminately, immunotherapy has revolutionized the treatment of malignant tumors [46]. 

Multiple immune checkpoint inhibitors have been approved for the enhancement of CD8+ T cell 

anti-tumor response in multiple cancer types [47-49], either as monotherapy or combination 

therapy [50-52]. Nevertheless, the low response rate [53] and undesired side effects [54] for some 
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patients called for more in-depth study of underlying mechanisms. The genomic changes in tumor 

tissues have been shown to be involved in tumor immune response [55, 56]. Identification of 

immune response biomarkers will not only expand the beneficial patients’ quantity from the 

immunotherapy but also quality of patient treatment. 

Previous studies on mechanisms leading to enhanced immune response mainly focused on 

protein-coding genes, yet the cause of cancer progression cannot be completely explained by the 

regulation of protein-coding genes [57]. It has been revealed that some non-coding RNAs may 

play vital roles in the development of various diseases such as cancer [58]. Recently, lncRNAs 

have been demonstrated to regulate the immune system in multiple ways. For instance, lncRNA 

ITPRIP-1 and lnc-Lsm3b are shown to be relevant to innate immune response to viral infection 

[59, 60]. Lnc-DC is critical to dendritic cells differentiation by interacting with transcription factor 

STAT3 [61]. LncRNA NKILA regulates T cell sensitivity to immunological elimination by 

interacting with NF-κB [62]. Our previous analysis characterized an onco-lncRNA, EPIC1, which 

interacts with protein EZH2 and directly suppresses tumor cell antigen presentation and leads to 

anti-PD-1 treatment resistance [63]. Although these findings demonstrate the possibility of 

identifying novel lncRNA genes that regulate human immune response, the majority of lncRNA 

genes’ functions and their roles in tumor immunity remain unknown. 

In this study, we performed genome-scale CRISPR activation screening in the context of 

ex vivo CD8+ T cell and tumor cell coculture with a library containing 96,458 sgRNAs. Our screen 

discovered novel lncRNAs which contribute to resistance or sensitivity to T cell cytotoxicity. 

Specifically, RNA-seq data in LINC01198 activation demonstrated up-regulation in type I 

interferon signaling pathway. Additional validation demonstrated that LINC01198 upregulated 

immune-related genes at both RNA and protein level after being activated. Another potential 
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suppressor, IL10RB-DT, downregulated immune-related pathways such as TNFA signaling and 

inflammatory response after being activated in melanoma cells. By further integrating predicted 

infiltrating lymphocytes, immune signatures and survival data from TCGA samples, we aim to 

identify lncRNAs that may act as biomarkers for tumor immune response in several cancer types, 

hoping to provide more possibilities for the development of immunotherapy. 
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 Genome-wide CRISPRa Screening Identifies Genes that Regulate the Response of CD8+ 

T Cells to Tumor Cells 

2.1 Methods and Materials 

2.1.1 Cell lines and reagents 

HEK293FT cells were purchased from Invitrogen. PBMCs transduced with GP100 TCR, 

and Mel-526 cells are kindly provided by Dr. Kammula’s lab. PBMCs were cultured in complete 

medium (RPMi-1640, 10% heat-inactivated human AB serum (Gemini Bio-Products, Woodland, 

CA), 2 mM L-glutamine (Invitrogen, Carlsbad, CA), 100 units/penicillin (Lonza), 100 μg/ml 

streptomycin (Lonza), 50 μg/ml gentamicin (Gibco), 10 mM HEPES (Lonza), and 250 ng/ml 

Amphotericin B (Invitrogen)). MEL-526 cells were cultured in RPMi-1640 (Hyclone) 

supplemented with 10% FBS (Gibco) and 1% penicillin-streptomycin (Corning). HEK293FT cell 

was cultured in D10 medium supplemented with GlutaMax (Gibco), 10% FBS (Gibco) and 1% 

penicillin-streptomycin (Corning).  

2.1.2 CRISPR library preparation, lentivirus production and transfection 

Human CRISPR lncRNA Activation Pooled Library (SAM - 3 plasmid system) was 

purchased from Addgene (#1000000106). The library contained 96,458 sgRNAs targeting 10,504 

transcription start sites (TSS); also contained 500 control sgRNAs. All steps of CRISPR screening 

were performed according to Genome-scale CRISPR-dCas9 transcriptional activation screening 
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protocol [64]. Pooled sgRNA library was first amplified by transformation. Antibiotic killing curve 

was performed before lentivirus production for all three plasmids with three different antibiotics. 

The concentration for selection was indicated below: 400 μg/ml Zeocin (Invivogen, #ant-zn-05), 

10 μg/ml Blasticidin (Sigma, #15205) and 250 μg/ml Hygromycin (RPI, #31282-04-9). 

HEK293FT cells were cultured in T225 flask and maintained at 70% confluency. Cells for 

transfection were seeded at 80-90% confluency; transfection used Lipofectmaine 2000 (Invitrogen, 

#11668-019) and Plus reagent (Invitrogen, #11514-015). For each T225 flask, 2250 μl of Opti-

MEM (Gibco) was mixed with 15.3 μg pMD2.G (Addgene), 23.4 μg psPAX2 (Addgene) and 30.6 

μg target plasmid. After 8 hr of transfection, the medium was changed to complete DMEM 

medium. Lentivirus was harvested after 48 hr of transfection and filtered with 0.45 μm filter. The 

MOI value was determined and calculated for library lentivirus. MEL-526 parental cells were first 

transduced with dCas9-VP64 and MS2-P65-HSF1 lentivirus individually and selected with 

antibiotics for 5 days until no viable cells in the no-virus treatment control cells. Then MEL-526 

cells transduced with SAM CRISPR system were infected with lncRNA sgRNA library lentivirus 

at an MOI of 0.3, maintained a coverage of >500 cells expressing each sgRNA. Cells were selected 

with zeocin for 6 days.  

2.1.3 Screening and sgRNA sequence 

The screening of candidate lncRNAs was performed by co-culture of human melanoma MEL-

526 library cells and human CD8+ T cells. The ratio of effective T cell and tumor cell (E:T) and 

time point was first determined by pre-experiment; the final ratio of E:T used for CRISPR 

screening was 0.5 and co-culture time point was 4 hr. Two biological replicates were performed 

(S1 and S2) and each batch used a total of 5 x 107 MEL-526 library cells in round bottom 96-well 
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plate. For each well, 105 tumor cells and 5 x 104 CD8+ T cells were seeded and maintained for 4 

hr. The control group was the MEL-526 library cells cultured under the same condition without 

co-culture the T cells. After co-culture, T cells were removed, and the surviving tumor cells were 

transferred to a new culture dish. The surviving tumor cells were cultured for another 7 days until 

the cells reached >5 x 107 cells for each screened batch. The sgRNA sequence for activate target 

lncRNAs and control sgRNAs are listed below: sgDT-1: 5’-AGCCTTGGGAGCTGGCTGGG-3’; 

sgDT-2: 5’-CCCAGCGTCCGTCCATGGCG-3’; sg198-1: 5’-ATGAAAGACTTGCTGTTCTT-

3’; sg198-2: 5’-TCTCTCTCTAACGCATACAA-3’; sgNT-1: 5’-

CTGAAAAAGGAAGGAGTTGA-3’; sgNT-2: 5’-AAGATGAAAGGAAAGGCGTT-3’. 

2.1.4 Genomic DNA extraction and sample preparation for NGS 

Genomic DNA extraction and PCR steps were performed according to the protocol described 

above [64]. Genomic DNA was harvested from the surviving cells after the screen maintained a 

coverage of >500 cells expressing each sgRNA using the Zymo Research Quick-DNA Midiprep 

plus kit (Zymo Research, #FD4075) according to the manufacture’s protocol. Then the extracted 

genomic DNA was used for PCR used NEBNext High Fidelity 2 X PCR Master Mix (NEB, 

#M0541S). The NGS primers that amplify the sgRNA library were listed in the protocol [64]. All 

five samples used 10 different forward primers and each sample used 1 reverse primer with specific 

barcode. CRISPR library plasmid used 20 ng as template, control and screened samples used 1 μg 

genomic DNA as template. The PCR reaction was performed using following condition: 98 °C for 

3 min, 23 cycles of (98 °C for 10s, 63 °C for 10s, 72 °C for 25s), and 72 °C for 2 min. PCR products 

were pooled and then purified by QIAquick PCR purification kit (Qiagen, #28106). Concentration 

of the resulting cDNA was measured by Nanodrop. 2 μg of PCR purification pooled product was 
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loaded onto a 2% agarose gel. The target size was around 280 bp. We then performed gel extraction 

by QIAquick Gel extraction kit (Qiagen, #28706) according to the manufacturer’s directions. 

2.1.5 Re-annotation of Human CRISPR lncRNA Activation Pooled Library 

The sgRNAs from Human CRISPR lncRNA Activation Pooled Library [8] targeting the 

lncRNAs were annotated by RefSeq [65]. To take the advantage of other sequencing data including 

TCGA database, we re-annotated these sgRNAs based on the GENCODE v19 annotation 

(GRCh37, https://www.gencodegenes.org/human/release_19.html). First, we obtained the loci of 

original lncRNAs based on the hg19.refGene.gtf annotation from UCSC Genome Browser 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/genes/hg19.refGene.gtf.gz) and 

CabiliSuppDataSet1_lincRNAs_transcripts.gtf [65]. Second, we considered each sgRNA 

sequence as a DNA motif and used HOMER ‘find’ function [66] to identify the loci of the sgRNAs. 

For each original target lncRNA, we identified the relative loci (shift from sgRNA center to 

transcription start site (TSS)) of the corresponding sgRNAs in its promoter region (-2 kb to +2 kb 

of TSS). For each sgRNA, we first considered the possible loci in the upstream of target gene. If 

there are multiple possible loci in the upstream of TSS, we kept the one closest to the TSS. Then, 

if there are no possible loci in the upstream of TSS, we kept the one closest to the TSS in the 

downstream of TSS. Then, we calculated the exact loci for most sgRNAs in the genome. With the 

coordinates of the sgRNAs, we annotated these sgRNAs using GENCODE v19 annotation. The 

transcripts with at least 2 sgRNAs mapped to the promoters (-1000 b to + 100 b of TSS) were 

considered as targets of the sgRNAs in the library. Besides, some original RefSeq lncRNAs were 

not found in the annotation file, we directly kept these lncRNAs and corresponding sgRNAs in the 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/genes/hg19.refGene.gtf.gz
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new sgRNA library annotation. Nontargeting sgRNAs were also kept as control for the following 

analysis.  

2.1.6 Quantitation of sgRNAs and CRISPR screening analysis 

The read counts of sgRNAs were first quantified by count_spacers.py [64]. Then a 

pseudocount of 1 was added to each sgRNA’s read count and a normalization was done using the 

total read counts in the sample. The fold change for each sgRNA was obtained by dividing the 

normalized read count in the CD8+ T-cell co-cultured sample by the control followed by the base 

2 logarithm transformation, for the purpose of normalization and making our data more normally 

distributed. To test the consistency of sgRNA read counts and log2-fold change in our screening, 

Spearman’s correlation was performed in two control samples and two replicate samples. 

Spearman’s correlation was performed between lncRNA expression and immune-related protein-

coding genes. 

RNAi Gene Enrichment Ranking (RIGER) [21] was used to select candidate genes with 

enriched or depleted sgRNAs in the CD8+ T-cell co-cultured sample comparing to control 

sample. Kolmogorov-Smirnov method was selected, and the parameters were set to the 

recommended values as described in the protocol [64]. A weighted average of p value was 

calculated in order to select top candidate genes with p<0.05 in both CD8+ T cell co-cultured 

replicates.  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝 = α ×  
−𝑙𝑜𝑔10(𝑝1) − 𝑙𝑜𝑔10(𝑝2)

2
 

α: consistency weight, {
𝑝1 < 0.05 𝑎𝑛𝑑 𝑝2 < 0.05, α = 2 

  𝑝1 ≥ 0.05 𝑎𝑛𝑑 𝑝2 ≥ 0.05, α = 0.5  
𝑒𝑙𝑠𝑒 α = 1

 



 15 

Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK v0.5.9.4) [23] 

was also used for sgRNA quantification and MAGeCK RRA algorithm was then utilized for the 

candidate gene selection with 500 non-targeting control sgRNAs for normalization and generation 

of the null distribution. Parameters were set as defaulted. 

Candidate genes with P<0.05 in both CD8+ T-cell co-cultured replicates by RIGER and 

MAGeCK were selected as significantly depleted/enriched hits from our CRISPR screening. In 

our CRISPR screening data, 1259 protein coding genes were ranked by the beta score from the 

MAGeCK result [27]. GSEA analysis was then done with the pre-ranked gene lists using C2 

Curated gene set from MsigDB [67].  

2.2 Results 

2.2.1 Genome-wide screening for immune regulating lncRNA using an established CD8+ T-

tumor cells co-culture system  

Previous publications have used CRISPR synergic activation mediator (SAM) system to 

identify crucial non-coding genes contributing drug resistance [12]. Here in this study, we aimed 

to perform genome-wide lncRNA activation screening using our established primary human CD8+ 

T cell and melanoma cell co-culture system [63]. The primary human CD8+ T cells were 

transduced with a specific T cell receptor (TCR) recognizing human gp100 peptide antigen. To 

adaptively utilizing this co-culture system for later CRISPR screening, we first generated human 

melanoma MEL-526 cells containing the CRISPR sgRNA library. We used three vector SAM 

systems which contained dCas9-VP64, MS2-P65-HSF1 and sgRNA library individually (Figure 
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2). We transduced MEL-526-dCas9-VP64-MPH cells with lncRNA SAM sgRNA library at a 

multiplicity of infection (MOI) <0.3. 

 

Figure 2 Three vectors system used in CRISPRa screening 

The three-vector system containing dCas9-VP64, MS2-P65-HSF1 and sgRNA library was transduced into MEL526 

cells to obtain genome scale activation. 

 

Transduced MEL-526 sgRNA library cells were co-cultured with human gp100 TCR 

transduced CD8+ T cells at E (effector): T (tumor) ratios of 0.5 for 4 hr for 2 biological replicates 

in independent screens (Figure 3). After that, T cells were removed and cancer cells were cultured 

for another 7 days. Then, genome DNA was isolated from MEL-526 cells and specific adaptors 

were added to amplify sgRNAs for deep sequencing. Through the comparison of sgRNA read 

counts in control and treatment group, significant depleted/enriched targets were identified. 
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Figure 3 Overview of CRISPRa screening with a co-culture system 

Design of the genome-wide coculture assay to identify genes regulating tumor response to CD8+ T cells. 

2.2.2 The development of a combined analysis pipeline to analyze CRISPR screening data 

Initially, the read count distribution of our plasmid and control sample was checked to 

make sure library cells have no sgRNA distribution loss compared with original plasmid (Figure 

4A). We then compared the sequenced distribution of sgRNAs in five samples which included the 

original library, two different cultured time point controls, and two biological replicates. The 

sgRNA distributions were of similar level, suggesting no technical issues when constructing the 

screening (Figure 4B). Next, we quantified the consistency of these two replicates through the 

comparison of sgRNA counts and log2 fold change after T cell treatment. All of them demonstrated 

high correlation between replicates (Figure 4C, D and E). 
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Figure 4 Quality control for CRISPR screening analysis 

A. Read count distributions for sgRNAs from plasmid and control group. B. Box plots showing distribution of sgRNA 

frequencies after control or T cell coculture from n=2 infection replicates. C and D. Scatter plot for sgRNA read 

counts in two replicates showing good correlation. (C1 vs C2, rho=0.5, p<0.001; S1 vs S2, rho=0.42, p<0.001) E. 

sgRNA read count changes after treatment (rho=0.28, p<0.05). P: plasmid C1: control 1, cultured for 2 weeks, C2: 

control 2, cultured for 4 weeks, S1 and S2 are two treatment replicates from C2 coculture with T cells (The marked 

sgRNAs are targeting the lncRNA hits we do further validation) 

 

In this study, we used a previously established lncRNA sgRNA library [8]. Since the 

sgRNA library was designed to target lncRNAs Transcription Start Sites (TSS), there could be 

protein coding genes that share TSSs with targeted lncRNAs that can be activated by the systems. 

To keep the rigor of our analysis, we reannotated the sgRNAs to identify all their possible targets 
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(see Methods). Generally speaking, the sgRNAs in our library can target 2236 intergenic lncRNAs, 

659 antisense lncRNAs, 1259 protein-coding genes and 982 other types of transcripts (Table 1, 

Figure 5A).  

Table 1 Transcripts included in the sgRNA library after reannotation 

  Sub-library Genes Transcripts sgRNAs 

Intergenic lncRNA 2236 4160 46141 

Antisense 659 1441 14514 

Protein-coding gene 1259 5160 44252 

Other 982 2290 22702 

Non-targeting control   500 

 

 

Figure 5 Relationships between lncRNAs and protein-coding genes 

A. Relationships between lncRNAs and protein-coding genes in the genome. B. GSEA analysis of MsigDB C2 gene 

signatures for protein-coding genes in library. 

As shown above, the CRISPRa library will inevitably activate some protein-coding genes, 

although it has been designed to target the lncRNA TSS. The 1259 protein-coding genes which 
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may be activated by the library left us a chance to identify some protein-coding genes regulating 

cancer cell response to CD8+ T cell cytotoxicity. In this regard, we performed a GSEA analysis on 

the genes based on their MAGeCK beta value. Overall, this analysis revealed that the negatively 

selected protein-coding genes were highly enriched in cytokine signaling (Figure 5B, NES=-1.16, 

p<0.05), suggesting our screening captured genes involved in the regulation of immune response. 

For example, the protein-coding gene ULK1 is among the significantly positive selected genes. In 

10 sgRNAs targeting the promoter region of ULK1, 6 showed significant enrichment in both 

replicates (Figure 6A), which indicated that ULK1 may lead to the suppression of immune 

response in tumorigenesis. To further investigate ULK1’s regulation of immune reaction in the 

tumor microenvironment, we found a negative association between ULK1’s expression and 68 

immune signatures [68] in 25 types of cancer in TCGA patient data (Figure 6B). Particularly, we 

discovered ULK1’s expression was highly negatively correlated with MHCI immune signature in 

cancer patients (metastasis SKCM: rho=-0.11, p<0.05, LUAD: rho=-0.25, p<0.0001) (Figure 6C). 

Moreover, ULK1’s expression level was negatively associated with CD8+ T cell tumor infiltration 

ratio in LUAD and SKCM (Figure 6D). Consistent with its function, we identified ULK1 as an 

immune inhibition oncogene, higher ULK1 expression demonstrated poor survival rate in 

metastatic SKCM patients (Figure 6E). Indeed, ULK1 was recently identified as an oncogene that 

inhibits antigen presentation and shows anti-immunity function in lung cancer [69]. 

Mechanistically, ULK1 suppressed immunoproteasome activity by inducing autophagic flux, and 

further repression of ULK1 showed synergized effect with anti PD-1 therapy. In summary, these 

results suggest that our CRISPR screening utilizing the CD8+ T/tumor cell co-culture assay can 

successfully recapitulate the established immune regulator. 
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Figure 6 ULK1’s repression of anti-tumor immunity 

A. The location and log2 fold change for 10 sgRNAs targeting ULK1 TSS. B. ULK1’s correlation with 68 immune 

signatures in multiple TCGA cancer types. C. ULK1’s correlation with MHCI signature in LUAD and metastatic 

SKCM patients. D. ULK1’s correlation with CD8+ T cell infiltration (estimated from TIMER) in LUAD and metastatic 

SKCM patients. E. K-M survival curve representing the proportional survival of metastatic SKCM patients with 

different ULK1 expression level. 

 

The top hits for both positive (resistance of T cell function) and negative (induce T cell 

function) selections were characterized by RNAi Gene Enrichment Ranking (RIGER) (Figure 7A) 

in individual biological replicates. Together, the screening identified 62 candidate gene transcripts, 
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including 42 negatively selected transcripts (423 sgRNAs) and 20 positively selected transcripts 

(166 sgRNAs). MAGeCK analysis was then used to confirm the robustness of our screening result 

against different statistical models for both positive and negative selections (Figure 7B). The p-

values of high-ranking genes from RIGER result remain robust across the replicates and both 

algorithms used for analysis. 

 

Figure 7 Top hits identified from both negative and positive selection 

A. RIGER analysis for both negative selection and positive selection. B. MAGeCK analysis result showing overlap 

with RIGER.  
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 Novel hits were identified from both negative and positive selection 

3.1 Methods and Materials 

3.1.1 Public databases 

3.1.1.1 Genotype-Tissue Expression (GTEx) database 

The GTEx project is a public resource providing researchers insights of gene expression and 

cellular regulation in a tissue-specific way [70]. In the latest version (v8), a total number of 17382 

samples of 54 tissues obtained from 948 healthy donors is included, where molecular assays 

including Whole Genome Sequencing (WGS), Whole Exome Sequencing (WES) and RNA-seq 

are available. The RNA-seq datasets of normal 407 whole blood samples, 290 breast samples, 

1203 skin samples and 162 spleen tissue samples were obtained from GTEx [71]. Data for 

following analysis were downloaded from GTEx Portal (https://www.gtexportal.org/). 

3.1.1.2 TCGA database 

The TCGA project focused on cancer genomics which revealed the molecular characteristic 

over 20,000 primary cancer and matched normal samples across 33 cancer types [72]. Clinical 

information and transcriptome data from TCGA of 1217 Breast cancer (BRCA) patients, 472 Skin 

Cutaneous Melanoma (SKCM) patients, 145 Acute Myeloid Leukemia (LAML) patients, 585 

Lung Adenocarcinoma (LUAD) patients, 529 Lower Grade Glioma (LGG) patients, 563 Thyroid 

Cancer (THCA) patients and 173 Esophageal cancer (ESCA) patients were obtained from 

Genomic Data Commons (GDC) portal (https://portal.gdc.cancer.gov/) [73]. The annotation for 

https://www.gtexportal.org/
https://portal.gdc.cancer.gov/
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the transcriptome data was performed on human reference genome GRCh38 and gene expression 

level was then quantified by FPKM upper quartile.  

3.1.1.3 GEO datasets 

RNAseq data for metastatic melanoma patients after treated with anti-PD-1 therapy was 

obtained from Gene Expression Omnibus (GEO): accession GSE78220 [74]. Transcriptomic data 

obtained from microarrays for breast cancer patients were obtained from GSE42568 [75] (ER 

positive survival), GSE16391 [76] (DT), GSE20685 [77], GSE20711 [78]. 

3.1.2 Cell line expression data 

3.1.2.1 RNA-seq analysis 

MEL-526, MCF-7 stable cells transduced with individual sgRNAs targeting the selected 

lncRNA loci or with non-targeting control sgRNAs (sgRNA sequence) were used for the activation 

group. MEL-526 cells treated with siRNA targeting selected lncRNAs (DT and 198), were 

transiently transfected by RNAi MAX reagent (Invitrogen, #13778-150) for 48 hr. Total RNA was 

extracted from activated and knockdown cells by Trizol. Purification of RNA used RNA clean & 

concentrator kit (Zymo Research, #11514-015). Purified RNAs were sent to UPMC Children’s 

Hospital for quality control, RNA-seq library construction and sequencing. STAR (Spliced 

Transcript Alignment to a Reference) and RSEM (RNA-Seq by Expectation Maximization) were 

used to profile RNA-seq data of MEL526, MCF7 cell lines after IL10RB-DT, LINC01198 siRNA 

knockdown and IL10RB-DT, LINC01198 activation. The quantification of gene expression was 

log2-transformed FPKM and annotation was based on human reference genome GRCh38.  
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3.1.2.2 Gene Set Enrichment Analysis (GSEA) 

In the TCGA data, 19,668 protein coding genes were ranked by their expression Spearman 

correlation coefficients with a lncRNA in the cancer samples. In the RNA-seq data with lncRNA 

activation and knock-down in the MEL526 and MCF-7 cell line, 20,442 protein coding genes were 

ranked by their log2-fold change of the expression in the treated sample compared to the control 

sample. Gene Set Enrichment Analysis [22] was then done with the pre-ranked gene lists using 

cancer hallmark gene set or C2 Curated gene set from MsigDB [67]. 

3.1.3 Statistical analysis 

We also obtained the 68 immune signatures in 18 different groups from previously reported 

studies [68]. To explore the function of lncRNA hits in immune response, Spearman’s correlation 

coefficient was calculated between lncRNA expression and immune signature enrichment scores 

in TCGA samples. The relative immune infiltration of CD8+ T cells, CD4+ T cells, DC, neutrophils, 

macrophages and B cells was estimated by Tumor Immune Estimation Resource (TIMER) [79] 

for TCGA-BRCA patients. Then Spearman’s correlation was performed between immune 

infiltration level and lncRNA expression.  

Data between the two groups were compared using a two-tailed unpaired Student’s t-test or 

the Mann-Whitney test in different types of data (depending on normality of the distribution). 

Survival analysis was performed through log-rank test and Kaplan-Meier estimate analyses. 

Analysis was performed with Python 3.8.0 and GraphPad Prism. Significance threshold was 

defined as p < 0.05. The Benjamini-Hochberg adjustment was used to the false discovery rates 

(FDR). 
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3.2 Results 

In total, we identified 6 transcripts of protein-coding genes, 9 intergenic lncRNAs, 3 

antisense lncRNAs and 2 pseudogenes among positive selection; 6 protein-coding genes, 23 

intergenic lncRNAs, 9 antisense lncRNAs, 4 other types of transcripts in negative selection. The 

identification of ULK1’s previously reported role in immune modulation motivated us to look into 

the top ranked lncRNAs characterized by the CRISPR screening.  

3.2.1 CRISPR screening identified lncRNA IL10RB-DT as a suppressor of tumor immune 

response 

Among the lncRNAs that are identified in the T cell-cancer cell co-culture assay from 

positive selection, a barely studied lncRNA, IL10RB-DT brought us attention. In 10 sgRNAs 

targeting the promoter region of IL10RB-DT, 5 showed significant enrichment (Figure 8A). 

IL10RB-DT showed significantly higher expression levels in tumor tissue especially in 

melanoma compared with normal tissue from GTEx database (Figure 8B). We found IL10RB-

DT’s expression also was significantly negatively associated with CD8/CD68 signature in 563 

THCA patients (rho=-0.53, p<0.05), 145 LAML patients (rho=-0.28, p<0.05), 529 LGG patients 

(rho=-0.29, p<0.05) and tumor associated macrophage (TAM) signature in 472 melanoma 

patients (rho=-0.3, p<0.05) (Figure 8C). Additionally, a pre- and post- PD-1 treatment patient 

cohort [74] study revealed that IL10RB-DT expression is significantly lower in PD-1 treatment 

responded melanoma patients (p<0.05, Figure 8D). These results suggest IL10RBDT as a 

repressor for tumor immune response and could be a potential biomarker for immunotherapy 

treatment. 
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Figure 8 IL10RB-DT as a tumor immune suppressor from integrated clinical data 

A. The location and log2 fold change for 10 sgRNAs targeting IL10RB-DT TSS. B. The expression level of IL10RB-

DT in several types of tumor compared with matched normal tissues. C. IL10RB-DT correlation with immune 

signature in SKCM, THCA, LGG and LAML patients. D. The pre-treatment expression level of IL10RB-DT for 

patients with different response to anti-PD1 treatment.  

To further understand how IL10RB-DT leads to immune response suppression, we 

performed RNA-seq of IL10RB-DT activated and siRNA knockdown MEL-526 cells. The RNA-

seq analysis identified 137 and 302 genes significantly upregulated; 178 and 250 genes 
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downregulated in MEL-526 IL10RB-DT activation and KD samples respectively with immune 

related genes indicated on the volcano plots (Figure 9A and B). Further cancer hallmark analysis 

demonstrated genes downregulated in IL10RB-DT activated cells were enriched in several 

immune related signaling pathways including both type II and type I interferon pathways such as 

TNF- via NF-B, IFN- response, IFN- response (Figure 9C and D). Immune-related genes 

with significant changes in DT activated and KD cells also were indicated in the heatmap (Figure 

9A and B). To conclude, IL10RB-DT inhibited tumor response to CD8+ T cell cytotoxicity 

through type I or type II interferon pathways in MEL-526 cells. 

 

 

 

Figure 9 IL10RB-DT inhibits the killing effect of CD8+ T cells through immunogenic pathways 



 29 

A and B. The volcano plot showing differential expression of siIL10RB-DT and IL10RB-DT activation in MEL526 

cells. C. IL10RB-DT’s regulation on immune-related pathways. D. Significant downregulation pathways after 

IL10RB-DT activation in MEL526 cells. 

 

3.2.2 LncRNA LINC01198 is identified as an activator of tumor immune response 

Our study identified both immune resistance and immune stimulation lncRNAs, and 

LINC01198 is among one of the top hits from negative selection. In 10 sgRNAs targeting the 

promoter region of LINC01198, 6 showed significant depletion (Figure 10A). LINC01198 was 

also positively correlated with cytotoxic T cell activity and antigen presentation gene expression 

in multiple cancer types included breast cancer (Figure 10B). Specifically, LINC01198 showed a 

positive correlation with CD8 (rho=0.23, p<0.05) and IL8 immune signatures (rho=0.55, p<0.05) 

in 759 BRCA patients (Figure 10C and D). In addition, LINC01198 also is expressed at a higher 

level in normal tissues compared with primary tumors, and positively correlated with CD8+ T cell 

infiltration in breast cancer (Figure 10E and F). From the transcription profile in 426 breast cancer 

patients, higher LINC01198 also lead to higher survival in this cohort (Figure 10G). In this regard, 

we stably expressed sgRNA targeting LINC01198 TSS in MEL-526 and also breast cancer cell 

line MCF-7 because a more significant immune-stimulating phenotype was discovered from breast 

cancer patients. 
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Figure 10 LINC01198 as a positive regulator for immune response in breast cancer 

A. The location and log2 fold change for 9 sgRNAs targeting LINC01198 TSS. B. LINC01198 correlation with 

immune signature in multiple cancer types. C and D. The correlation between LINC01198 expression and CD8 and 

IL8 signature in breast cancer patients. E. The correlation between LINC01198 expression and CD8+ T cell infiltration 

in ER+ breast cancer patients. F. LINC01198 expression from primary tumor and normal tissue in breast cancer. G. 

K-M survival curve representing the proportional survival of breast cancer patients with different LINC01198 

expression level. LINC01198’s expression is measured by Affymetrix 1553614_a_at (HG-U133_Plus_2). 

 

To further investigate the function and mechanism of LINC01198, we also generated 

LINC01198 KD cells by siRNA; then performed RNA-sequencing of LINC01198 activation and 
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knockdown MCF-7 and MEL-526 cells. The RNA-seq analyzed volcano plot indicated 219 

induced and 400 depleted genes’ expression in MEL-526 cells. Meanwhile, we also identified 93 

upregulated and 63 downregulated targets in MCF-7 sample; genes in Type I signaling pathway 

were specifically marked (Figure 11A and B) on the volcano plot. From the RNA-seq result, 

LINC01198 was one of the most significantly upregulated genes, suggesting that our sgRNA 

activation system can successfully activate this lncRNA in two different cell lines. Additionally, 

we extracted the expression of top ranked genes upregulated in LINC01198 activated cells from 

RNA-seq and illustrated that these genes showed high positive correlations with LINC01198 

expression in ER+ breast cancer patients, showing that LINC01198 can potentially promote tumor 

immune response. (Figure 11C). Moreover, the cancer hallmark analysis (Figure 11 D and E) 

indicated the upregulated genes in 198 activated MEL-526 and MCF-7 cells were enriched in 

several immune response related to signaling pathways especially in type I interferon pathways 

(TNF- signaling via NFKB and IFN- response) and IFN- response; knockdown LINC01198 

showed an inhibitory effect. To conclude, LINC01198 enhanced CD8+ T cell’s function and 

induced immune response in both melanoma and breast cancer cell lines.  
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Figure 11 LINC01198 positively regulate tumor immune reponse through type I and type II interferon 

signaling pathways 

A and B. The volcano plot showing differential expression of LINC01198 activation in MEL526 and MCF7 cells. C. 

The positive correlation between LINC01198 and immune-related genes in ER+ breast cancer patients. D. 

LINC01198’s regulation on immune-related pathways. E. Significant upregulation pathways after LINC01198 

activation in MCF7 cells. 
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 Discussion 

The biological functions for the majority of long non-coding RNAs are still unknown now. 

To identify functional lncRNAs that may regulate tumor response to CD8+ T cell cytotoxicity, we 

performed high-throughput CRISPRa screening with a co-culture system of melanoma cells and 

CD8+ T cells. Given the association of these hits with antigen presentation signatures and cytotoxic 

T cell infiltration, this screening provides a list of novel lncRNAs that may act as targets or 

biomarkers to overcome the resistance and improve the outcome of immunotherapy. Since the 

expression level of lncRNAs is relatively low in cells and tissues compared with protein-coding 

genes [80], the activation system offers the advantage of overexpressing lncRNAs from the 

endogenous locus by designing sgRNAs targeting the promoter region of target genes. The 

activation system and RNA interference system we used in this project demonstrated both gain 

and loss of function studies related to immune response for candidate lncRNAs.  

Although the candidate genes identified from our screening are in the context of melanoma 

cell line, we also discovered these lncRNAs showed significant correlation with immune 

signatures in other types of cancer patients. In particular, LINC01198 demonstrated positive 

association with immune signatures in breast cancer patients. In this regard, it would be better if 

CRISPR screenings are performed in multiple types of cell models to comprehensively understand 

the function of lncRNAs. Another intrinsic problem in the study of non-coding genes is the non-

conservation of target genes between human and mice [81], which increases the difficulty of 

exploring lncRNA’s function in vivo. It is well acknowledged that the cancer microenvironment is 

a complicated system, thus, to better understand the role of non-coding genes in cancer 

immunology, in vivo screening can be considered. In addition, due to the rapidly updated non-
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coding RNA libraries and the restriction of the model for studying non-coding RNAs, a customized 

library with conserved non-coding RNAs and proper controls can be developed.  

From the CRISPR screening, we have successfully identified and validated that the 

lncRNA IL10RB-DT is an immune response resistance gene. Future studies are necessary to show 

what is the relationship between IL10RB-DT and immune signature in cancer patients. Moreover, 

IL10RB-DT is the antisense strand of IL10RB (Interleukin 10 Receptor Subunit Beta); IL10RB-

DT could potentially cis-regulate the transcription of a neighboring protein-coding gene. More 

experiments need to be done to prove the hypothesis of cis-regulation which may contribute to 

IL10RB-DT’s function in immune response. 

We also showed that the lncRNA LINC01198 is an immune response stimulator gene 

through integrated analysis. However, future studies are still needed to uncover the mechanism of 

its regulation for immune response. We are also interested to see if LINC01198 exerts its function 

through interaction with protein-coding genes such as transcription factor so that it can regulate a 

group of immune-related genes with a relatively low expression level in the cell.  
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Appendix A Transcripts identified from negative selection 

Id S1vsC2_

Score 

S1vsC2_

p.value 

S2vsC2_

Score 

S2vsC2_

p.value 

Transcript_type MAGe

CK 

hit? 

ENST0000

0268070 

1.573  0.032  1.883  0.003  protein_coding Y 

ENST0000

0341141 

1.591  0.028  1.487  0.046  transcribed_unprocess

ed_pseudogene 

N 

ENST0000

0395863 

1.597  0.024  1.708  0.010  protein_coding Y 

ENST0000

0395864 

1.538  0.038  1.640  0.018  protein_coding N 

ENST0000

0400596 

1.636  0.020  1.726  0.010  processed_pseudogene N 

ENST0000

0412321 

1.547  0.038  1.694  0.014  lincRNA N 

ENST0000

0414795 

1.919  0.001  1.818  0.005  antisense Y 

ENST0000

0416521 

1.547  0.038  1.606  0.024  lincRNA N 

ENST0000

0419883 

1.568  0.033  1.494  0.045  lincRNA N 

ENST0000

0426580 

1.547  0.038  1.694  0.014  lincRNA N 

ENST0000

0426725 

1.920  0.002  1.623  0.023  antisense N 

ENST0000

0428036 

1.673  0.016  1.493  0.046  antisense N 

ENST0000

0433911 

1.547  0.038  1.694  0.014  protein_coding N 

ENST0000

0438436 

1.919  0.002  1.623  0.023  antisense N 

ENST0000

0440887 

1.805  0.005  1.512  0.041  antisense N 

ENST0000

0442182 

1.527  0.044  1.487  0.047  lincRNA N 

ENST0000

0443303 

1.712  0.013  1.818  0.006  lincRNA Y 

ENST0000

0444501 

1.673  0.016  1.493  0.046  antisense N 
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ENST0000

0450594 

1.597  0.024  1.708  0.010  protein_coding Y 

ENST0000

0452212 

1.673  0.016  1.493  0.046  antisense N 

ENST0000

0458028 

1.712  0.012  1.501  0.044  lincRNA N 

ENST0000

0458489 

1.512  0.047  1.532  0.037  lincRNA Y 

ENST0000

0469268 

1.532  0.038  1.536  0.033  antisense N 

ENST0000

0506250 

1.569  0.033  1.515  0.040  lincRNA N 

ENST0000

0521663 

1.512  0.047  1.493  0.045  lincRNA Y 

ENST0000

0538693 

1.498  0.039  1.465  0.042  lincRNA Y 

ENST0000

0548210 

1.632  0.022  1.626  0.021  lincRNA N 

ENST0000

0552712 

1.632  0.022  1.625  0.021  lincRNA N 

ENST0000

0553485 

1.702  0.013  1.558  0.033  lincRNA N 

ENST0000

0553682 

1.801  0.005  1.651  0.018  lincRNA N 

ENST0000

0556466 

1.702  0.013  1.558  0.033  lincRNA N 

ENST0000

0557689 

1.702  0.013  1.558  0.032  lincRNA N 

ENST0000

0557899 

1.945  0.001  1.948  0.001  lincRNA Y 

ENST0000

0558960 

1.573  0.032  1.883  0.003  nonsense_mediated_d

ecay 

Y 

ENST0000

0568030 

1.585  0.030  1.527  0.038  lincRNA N 

ENST0000

0574072 

1.538  0.041  1.574  0.030  retained_intron Y 

ENST0000

0576494 

1.557  0.036  1.590  0.027  retained_intron Y 

ENST0000

0594153 

1.547  0.038  1.606  0.024  lincRNA N 

ENST0000

0599175 

1.547  0.038  1.606  0.024  lincRNA Y 

ENST0000

0601250 

1.535  0.043  1.657  0.018  lincRNA N 

ENST0000

0602324 

1.557  0.036  1.590  0.027  lincRNA Y 
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ENST0000

0607993 

1.391  0.031  1.368  0.039  antisense N 
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Appendix B Transcripts identified from positive selection 

Id S1C2_Sc

ore 

S1C2_p.v

alue 

S2C2_Sc

ore 

S2C2_p.v

alue 

Transcript_typ

e 

MAGe

CK 

hit? 

ENST000003

59562 

1.638  0.015  1.836  0.002  protein_coding Y 

ENST000003

80333 

1.522  0.033  1.498  0.034  processed_transc

ript 

Y 

ENST000003

99035 

1.564  0.034  1.713  0.012  protein_coding Y 

ENST000004

11998 

1.557  0.036  2.072  0.000  antisense Y 

ENST000004

12084 

1.666  0.017  1.762  0.008  lincRNA N 

ENST000004

12856 

1.564  0.034  1.713  0.012  lincRNA Y 

ENST000004

24194 

1.564  0.034  1.713  0.012  lincRNA Y 

ENST000004

32530 

1.607  0.026  1.722  0.011  lincRNA Y 

ENST000004

37235 

1.564  0.034  1.713  0.012  lincRNA Y 

ENST000004

52749 

1.554  0.030  1.641  0.015  protein_coding Y 

ENST000004

54508 

1.759  0.006  1.732  0.009  lincRNA Y 

ENST000004

75109 

1.564  0.034  1.713  0.012  processed_transc

ript 

Y 

ENST000004

93626 

1.564  0.034  1.713  0.012  processed_transc

ript 

Y 

ENST000005

02700 

1.516  0.034  1.692  0.008  lincRNA Y 

ENST000005

05300 

1.607  0.022  1.805  0.004  processed_transc

ript 

Y 

ENST000005

10268 

1.638  0.015  1.837  0.002  antisense Y 

ENST000005

22767 

1.682  0.015  1.509  0.042  lincRNA Y 

ENST000005

66260 

1.395  0.048  1.398  0.046  lincRNA N 
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ENST000005

68280 

1.717  0.011  1.585  0.028  antisense Y 

ENST000005

89904 

1.509  0.048  1.525  0.038  processed_pseud

ogene 

Y 
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