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Stochastic Analysis of Active Hydrodynamics
Yixuan Wang, PhD

University of Pittsburgh, 2022

We study the hydrodynamics of nematic liquid crystal flow perturbed by a multiplicative
noise under the Beris-Edwards framework. For the stochastic active liquid crystal system,
we built the existence of the weak global martingale solution in a 3-D smooth bounded do-
main through a four-level approximation scheme. The existence of the limit of approximate
solutions in the presence of random variables is guaranteed by the classical Skorokhod repre-
sentation theorem. For the three-dimensional compressible Navier-Stokes equations coupled
with the Q-tensor equation, we first constructed the local existence and uniqueness of strong
pathwise solution up to a positive stopping time to the system, then we proved that the local
stopping time could be extended to maximal. Note that the construction of the local solution
is built upon a cutting-off argument. We also studied the connection between the compress-
ible Navier-Stokes equations coupled by the Q-tensor equation for liquid crystals with the
incompressible system in the periodic case. As the Mach number approaches zero, we proved
that, both in the deterministic and stochastic case, that the weak solutions of the compress-

ible nematic liquid crystal model would converge to the solution of the incompressible one.

Keywords: Navier-Stokes equations, stochastic active liquid crystal system, stochastic
compressible liquid crystal system, weak solution, global martingale solution, local strong
pathwise solution, uniqueness, stochastic compactness, Mach number, incompressible

limit.
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1.0 Introduction

Starting from the 1880’s, a new material that shares both the property of conventional
liquids and those of solid crystals was found and named as liquid crystals [37]. Instead of
showing a single transition of solid to liquid, liquid crystals are more similar to a cascade of
transitions involving new phases. The forms of liquid crystals can be divided into nematics,
smectics, and columnar phases, and these forms can be observed by the structure of the
constituent molecules or groups of molecules. Among all the types of liquid crystals, nematic
liquid crystals are one of the most common liquid crystalline phases. In fact, the word
"nematic” was invented by G. Friedel to refer to certain thread-like defects that are commonly
observed in certain materials. Nematics are often made of elongated or rod-like objects, these
elongated molecules flow about freely as in a conventional liquid, but tend to align along
certain distinguished directions.

Due to the great importance of liquid crystals, a large amount of research concerning this
has appeared starting from the early 1950’s concerning its mathematical model. The liquid
crystal model is considered as a vector model in the beginning, including the Oseen-Frank
theory proposed in 1933 [72], the Ericksen-Leslie theory proposed in 1961 [29]. In these
models, the alignment of liquid crystal molecules at a certain point were described by a
direction field n. The setting is widely applicable due to its simplicity, but they can not reflect
the symmetry of these rod-like molecules. As a result, Doi [27] in 1986 and Onsager [71] in
1949 proposed the Doi-Onsager theory, which describes a molecular model. In this model, the
alignment of liquid crystal molecules is described by an orientational distribution function,
which contains more information than a direction vector. Later, Gennes [37] proposed the
Landau-de Gennes theory in 1995. A traceless symmetric 3 x 3 matrix () was used to describe
the alignment of liquid crystal molecules. In the viewpoint of physics, the order-parameter
() can be considered as a special form of orientational distribution function. The vector
theory and )-tensor theory are also called as macroscopic theories, the construction of the
corresponding models are based on continuum mechanics. The molecular theory, however,

is called the microscopic theory, and the molecular model is built by statistical mechanics.



There are also some studies that can show these theories, under certain assumptions, are
related to each other. See [34, 61, 89, 92, 94] as examples.

Active hydrodynamics describes the collective motion of active constituent particles,
each particle is driven by internal energy source that drives the system out of equilibrium.
Typical example including swarms of bacteria, vibrated granular rods, bird flocks and more
[23, 83]. If the particles have elongated shapes, the collective motion would make them
undergo orientational ordering at high concentration. Therefore, the active system can be
referred to as liquid crystals, forming liquid crystalline phases. Active hydrodynamics are
widely applicable in many fields. For examples, see [52, 78, 90] and the references within.

The PDEs perturbed randomly are considered as a primary tool in the modeling of
uncertainty, they are especially useful while describing fundamental phenomenon in physics,
climate dynamics, communication systems as well as gene regulation systems. In recent years,
the study of the well-posedness and dynamical behaviour of PDEs perturbed by the noise,
which is largely applied to the theoretical and practical areas, has drawn a lot of attention.
Among all the results, the studies concerning the Navier-Stokes equations, or the dynamical
system of fluid mechanics, has seen a drastic rise during all these years. For example, there
are abundant results about the weak solution of compressible Navier-Stokes equations. At
the beginning, [67, 68, 69] established the global existence of weak solution to compressible
viscous and heat-conductive fluids with restriction on the initial data. Next, when adiabatic
exponent vy > g, [59] gave the global existence of weak solution with large initial data and the
appearance of vacuum by introducing the re-normalized solution to surmount the difficulty of
large oscillations. Then, [32] extended the result to the case that adiabatic exponent v > %,
which by now is the result that allows the maximum range of . The existence results of the
deterministic case had been extended to the stochastic case. In [30], authors obtained the
existence of global weak pathwise solution to the equation forced by additive noise, where the
special form of noise allows us to transform the stochastic system into the random equation,
enabling the deterministic result to be exploited. As for the existence result of the equation
driven by multiplicative noise, there are also some pioneering works, check [84] for global
weak martingale solution with finite-dimensional Brownian motion, check [43, 81] for global

weak martingale solution with cylindrical Wiener process, check [13] for stationary solution,



check [11] for local strong pathwise solution, check [82] for weak martingale solution to non-
isentropic, compressible Navier-Stokes equation, check [9] for weak martingale solution to
non-isentropic, compressible Navier-Stokes-Fourier equation where energy balance equation
is also forced by a random heat source.

There are also a lot of results for the Q-tensor framework. Regarding the incompressible
Q-tensor liquid crystal model, Paicu-Zarnescu [74] have proved the existence of a global weak
solution to a system describing the evolution of a nematic liquid crystal flow in both 2D and
3D, they also proved higher global regularity as well as the weak-strong uniqueness in two
dimensions. Then, Paicu-Zarnescu continued his study and got the same results in [73] for
the full system, in which the presence of a certain item would allow quadruply exponential
increase of the high norms. De Anna in [2] propagated the result of [74] to the low regularity
space W? for 0 < s < 1 and proved the uniqueness of weak solutions in 2D, which filled
the gap in [74]. Wilkinson [91] obtained the existence and the regularity property for weak
solution in the general d-dimensional case in the presence of a singular potential. The
existence of a global in time weak solution for system with thermal effects is proved in [33],
where the natural physical constraints are enforced by a singular free energy bulk potential.
The existence and uniqueness of global strong solution for the density-dependent system is
established by Li-Wang in [56]. When it comes to the compressible model, there are fewer
results due to its complexity. In [85], Wang-Xu-Yu established the existence as well as long
time dynamics of global weak solutions. In fact, there are more results on the hydrodynamic
system for the three-dimensional flow of nematic liquid crystals. For example, Jiang-Jiang-
Wang [47] has proved the existence of a global weak solution to a two-dimensional simplified
Ericksen-Leslie system of compressible flow of nematic liquid crystals, and the existence of
a weak solution in a bounded domain for both 2D and 3D can be seen in [46] and [87].
For more studies related to the topic, check [22, 21| and the references within. For the
stochastic liquid crystal hydrodynamics system, we refer the readers to [17, 16, 18, 88] for
the well-posedness result of incompressible case,

The connection between the compressible flow and the incompressible flow has also been
well studied. Lions-Masmoudi had justified the limit of the global weak solutions in [60], the

convergence are proven to be global in time, and the result had no restrictions to the size



of the initial conditions. Next, in [25], Desjardins-Grenier worked on the same problem, but
they used a different approach. They had taken into account the presence of acoustic waves,
and used Strichartz’s estimates for the linear wave equation, the convergence result were
thus improved. Later, Desjardins-Grenier-Lions studied the case of a viscous flow with the
Dirichlet boundary in [24], showed that the acoustic waves can be damped due to the thin
boundary layer, thus the strong convergence were obtained. The results were extended by
others, see [1, 14, 15, 66, 79] for example. In particular, for the compressible magnetohydro-
dynamic equations, Hu-Wang studied the convergence of the weak solutions. In [44], they
considered all the cases, including the periodic domain, the whole space and the bounded
domain. Jiang-Ju-Li [48] also studied the convergence of the weak solutions to the com-
pressible magnetohydrodynamic equations in the periodic case, they proved that the weak
solutions would converge to the strong solution of the viscous incompressible magnetohy-
drodynamic equations or the inviscid one, given that the strong solution exists. Later, the
incompressible limit of the nematic liquid crystal model was studied in Wang-Yu [87] where
the authors justified the weak convergence in a bounded domain. For more related results,
see [49, 42, 57, 31, b4, 65, 28, 26, 93].

In Chapter 2, we are devoted to establishing the existence of global weak martingale so-
lution to the active hydradynamics system, that is system (2.0.1)-(2.0.3). It’s worth noting
that in the stochastic case, unlike the deterministic case, there is no compactness in random
element w since sample space has no topology structure. As a result, the usual compactness
criteria, such as the Aubin or Arzela-Ascoli type theorems, can not be applied directly. A
common method to overcome this difficulty is to invoke the Skorokhod theorem. Using the
Skorokhod argument, we can obtain that there exists a sequence of new random variables
on a new probability space that converges almost surely to a certain random variable, and
its distribution is same as the original one, consequently, the new random variables also
satisfy the system on the new probability space. Our proof mainly relies on the four level
approximation developed by [32] and [43] which also consists of the Galerkin approxima-
tion, the artificial viscosity and the artificial pressure. Each level approximation contains
the argument of compactness and identify the limit. Here, we point out that the bounded-

ness of concentration ¢ acquired via the maximum principle and the special construction of



Q-tensor(symmetric and traceless) play a key role in obtaining the a priori estimates (can-
cel certain high-order nonlinear term) and establishing the weak continuity of the effective
viscous flow. Without this remarkable property of ()-tensor, we are not able to handle the
higher order nonlinear term V- (QAQ — AQQ). In addition, the coupled constitution of four
equations makes the analysis much more complicated and more delicate arguments including
identifying the stochastic integral and showing the tightness of probability measures set are
necessary. The results in this chapter has been published in [77].

In Chapter 3, we are going to prove the existence and uniqueness of strong pathwise
solution to the stochastic system (3.0.2), where the “strong” means the strong existence in
both PDE and probability sense. That is, the solution has sufficient space regularity and
satisfies the system in the pointwise sense when the probability space is given. It’s worth
noting that even if in the deterministic case, there is no related result for the existence and
uniqueness result of strong solution for which the state space lies in (H*)? x H*™! for integer
5 > %. We would introduce the symmetric system considering the energy estimate of the
strong solution to compressible fluid. Therefore, for the convenience of the symmetrization,
we require the density p > 0, which means the vacuum state shall not appear. The main
difficulty in obtaining the strong solution is the high-order energy estimate of the approximate
solution. Therefore, when we apply Moser-type estimate, we could get the form (]|u|2,00 +

1Qlls.00) - (lullf, + [|QlI341,2) and ([[ul

the estimate. Inspired by [53], we could deal with the nonlinear terms by adding a cut-

200 T Pll100) - ||p,u||§727 making it difficult to get

off function. We could get that ||p||1..c would be bounded if ||pgl|1,00, ||1]|1,00 are bounded,
then the cut-off function only depends on |lull2 and ||Q|s. under the assumption that
| poll1.00 s bounded. The benefit is, while building Galerkin approximation system, for every
fixed u we could first solve the mass equation directly which actually is a linear transport
equation and solve the “parabolic-type” @Q)-tensor equation. In turn, we obtain the existence
of approximate solution u in a finite dimensional space. Different from the deterministic
case, we will develop a new extra layer approximation to deal with the difficulty arising
from the stochastic integral, constructing the Galerkin approximate solution with the spirit
of [43]. Also, the cut-off function brings downside in proving the uniqueness. We have to

restrict our regularity index to integer s > % comparing with the martingale solution result



which only requires s > % The results in this chapter has been published in [76].

In Chapter 4, we just consider the convergence in periodic case, and establish the incom-
pressible limit of (4.0.2). The main difficulty lies in the possible oscillation of the density,
the coupling effect between the Q)-tensor and the motion, and the Q)-tensor should be con-
sidered with new estimates. We overcome all the difficulties by using the weak convergence
method, then establish the new compactness criteria using the estimates. More precisely,
when the density goes to a constant, also when ¢ goes to zero, we will apply the Helmholtz
decomposition and prove that the divergence-free part of the velocity converges strongly to
a divergence-free vector, the curl-free part will converge weakly to zero at the same time.
Next, we consider the case when the equation is driven by a stochastic force. Our approach
in this part mainly relies on the method of finite energy weak martingale solution, and it is
motivated by [10]. Note that the existence of the weak martingale solution was obtained in
[77]. To get the uniform estimate, we follow the basic properties of 1t6’s formula. Compared
with the deterministic case, the classical compactness criteria is not applicable when we
bring in the stochastic argument, since we do not have any compactness property posed on
the sample space ). As a result, we are motivated by the Yamada-Watanabe argument and
apply the Jakubowski-Skorokhod representation theorem, a modification of the Skorokhod
representation theorem to pass to a weakly convergent subsequence. By using this theorem,
we can get the existence of a new probability space, together with a sequence of random
variables that has the same law as the original variable.

In summary, the rest of the dissertation is organized as follows. In Chapter 2, we es-
tablished the existence of global weak martingale solution to the compressible active lig-
uid crystal system. The proof is mainly relied on four level approximations, including the
Galerkin approximation, the artificial viscosity and the artificial pressure. In Chapter 3,
we first established the existence of global strong martingale solution and strong pathwise
solution to the truncated symmetric system, then we built a series of local strong pathwise
solution. After generalizing the initial data, we proved that the solutions has a maximal
stopping time. In Chapter 4, we prove the convergence of the incompressible limit and verify
the limit in the deterministic case, then we present and prove similar results in the stochastic

case, where we note that the proof of compactness and the verification of the limit is more



complex than the deterministic case.



2.0 Weak Martingale Solution to Active Liquid Crystals

In this chapter, we consider the following hydrodynamic partial differential equations

that model compressible active nematic systems:

Oc+ (u-V)e = Ac,

Oyp + div(pu) = 0,

By (pu) + div(pu @ u) + Vp = pyAu+ (1 + p)V(divu) + 0*V - (2Q) (2.0.1)
+V - (F(QL — VQ O VQ) + V- (QAQ — AQQ) + pf(p. pu, ¢, Q)G

0Q+ (u-V)Q+ QU —¥Q =TH(Q, ¢),

(
where ¢, p, u denote the concentration of active particles, the density, and the flow velocity,
p(p) = p? stands for the pressure with the adiabatic exponent vy > %, the nematic tensor order
parameter () is a traceless and 3 x 3 symmetric matrix, I3 is the 3 x 3 identity matrix, 1, o
are the viscosity coefficients satisfying the physical assumptions p; > 0 and 2y + 3us > 0,
I'~! > 0 is the rotational viscosity, o* € R is the stress generated by the active particles

along the director field. ¥ = 1(Vu — Vut) is the skew-symmetric part of the rate of strain

tensor. W is a cylindrical Wiener process which will be introduced later. Furthermore,
1 2 1 2y G 2042
F(Q) = 5IVQI" + Str(Q7) + (@),

and

C— Cy

2

tr(Q?)

H(Qa C) = AQ - 3

Q+b (@2 - 13) —Qu(QY),

where the constant c, is the critical concentration for the isotropic-nematic transition and
b is material-dependent constant. And the term V@ ® V(@ stands for a 3 x 3 matrix, its

(i, 7)-th entry is defined (VQ © VQ);; = 2271:1 0;Qr10; Q-
The system is supplied with the following initial data,

p(0,2) = po(x), pu(0,x) =mo(x), c(0,2) = co(x), Q(0,x) = Qo(x), (2.0.2)



and the boundary conditions,

Oc

— =0 =0 2.0.3
871 ; u|8D ) ( )

op O

here we omit the random element w.

2.1 Preliminaries and Main Result

In this section, we begin by reviewing some deterministic and stochastic preliminaries
associated with system (2.0.1)-(2.0.3), followed by main result.

Define the inner product between two 3 x 3 matrices A and B

(A, B) = /D A: Bdz — /D tr(AB)dz,

and S5 C M3*3 the space of Q-tensor

St ={QeM™®: Qi =Qy, t(Q) =0, i,j =1,2,3},
and the norm of a matrix using the Frobenius norm
|Q|2 = tr(QQ) = QijQij-
The Sobolev space of ()-tensor is defined by
HY(D: §3) = {Q D 5P, and/D VO + |Q2dz < oo} |

Set [VQ|* = 0kQi;OkQij and |AQI* = AQi; AQy;.

The space C,([0,T]; X) consists of all weakly continuous functions u : [0,7] — X and
u, — w in Cy([0,T]; X) if and only if (u,(t), ) — (u(t),$) uniformly in ¢, ¢ € X*, where
X* is the dual space of X.

Let (2, F,{F:}i>0,P, W) be a fixed stochastic basis and (2, F,P) be a complete prob-
ability space. W is a cylindrical Wiener process defined on the Hilbert space H, which is
adapted to the complete, right continuous filtration {F;};>9. Namely, W = >_, ., exf with



{ex}x>1 being the complete orthonormal basis of H and {fx}r>1 being a sequence of inde-
pendent standard one-dimensional Brownian motions. In addition, Lo(H, X) denotes the
collection of Hilbert-Schmidt operators, the set of all linear operators G from H to X, with
the norm ||G||%2(H,X) =D k1 |Gerl%-

Consider an auxiliary space Ho O H, define by

Ho = {h:Zakek : Zaik‘_Q < oo},

k>1 k>1

with the norm [|h]|, = 7,5, agk™>. Observe that the mapping ® : H — H, is Hilbert-
Schmidt. We also have that W € C([0, 00), Ho) almost surely, see [75].

For an X-valued predictable process f € L*(Q; L2 ([0,00), Ly(H, X))) by taking f; =

fex, the Burkholder-Davis-Gundy inequality holds

¢ T g
[ raw ScpE( / HfH%Q(H,X)dt)
"
— E (/ leka?xdt) |

k>1

p

E | sup

t€[0,T]

X

for any 1 < p < o0.

Next, we define the global weak martingale solution of system (2.0.1)-(2.0.3).

Definition 2.1.1. Let P be a Borel probability measure on L?(D) x L%(D) x (HY(D))?
with v > 2. {(Q, F, {F: }:>0,P), p, u, ¢, @, W} is a global weak martingale solution to system
(2.0.1)-(2.0.3) if the following conditions hold:

(i) (92, F,{Fi}t>0,P) is a stochastic basis and W is an F; cylindrical Wiener process,

(ii) the processes p € C ([0, T]; L7(D)), pu € Cy(]0,T]; L%(D)),

c € Cy([0,T]; L*(D)),Q € C([0,T); H'(D)) are F; progressively measurable, satisfying

p € LP(Q; L>(0,T; L"(D))),

pu € LP(Q; L=(0,T; L31(D))), v/pu € LP (% L*(0,T; L(D))),
c € LP(Q; L>(0,T; L*(D)) N L*(0, T; H'(D))),

Q € LP(Q; L>(0,T; H'(D)) N L*(0, T; H*(D))),

10



forany 1 <p<o00,0<T < o0,
(iii) the velocity u is a random distribution adapted to JF;, for the definition see [12, Definition
2.2.13], satisfying

we LP(Q; L*(0,T; HY(D))),

forany 1 <p<o00,0<T < o0,
(iv) P =P o (po, m0, o, Qo) ™",
(v) for £ € C*(D),p € C*(D),p € C*(D),yp € C*(D) and t € [0,T], P as.

/D o(#)0dx = / ¢(0)0dz — / t / (u-V)e - tdads — /0 t /D Ve Vidzds,

/ p(t)pdr = / 0)epda + / / pu - Vipdads,

/ gbdm—/m ¢dx+/ /pu®u wdms—m/ /Vu Vodrds
— (1 + o) /0 /D divy - divgdeds + /0 /D P - divededs

- [ [(F@1-vQo Ve +(QaQ - 2QQ) +0°Q) - Vodads
t
, pu, ¢, Q)pdxdW,
+/O/Dpf(ppuc62)¢x
/D Qt)pda = /D Q(0)pda — / /D o1 V)Q + $QU — pUQdads
TeH(Q, ¢)dxd
+/O/D pH(Q, c)dxds,
(vi) for all ¢ € C*°(D) and t € [0, T}, p satisfies the following re-normalized equation
/D b(p)bd /D b(p(0) )z + /O /D b(p)u - Vibdads
W (p)p — blp))divu - Pdad
+ [ [ @0 —bio)aive - vasds,

where the function b € C'(R) satisfies &/(z) = 0 for all z € R large enough.

11



Throughout the paper, we assume that the operator f satisfies the following conditions:

there exists a constant C' such that

2 -1 2y=1) 2
> 1F (oo Qenl? < C (1™ +1e,VQITT + [uf?) (2.11)
k>1
and
Z [(p1f(prs prun, 1, Q1) — paf(pa, prua, 2, Q2))ex|”
k>1
1L
< Clp1 = p2s prus — pauz, 1 — €2, Q1 — Q2|7ZV ] (2.1.2)
where |u,v| ;= |u| + |v| and | - | stands for the absolute value. Condition (2.1.1) will be used

for obtaining the a priori estimate, while Condition (2.1.2) will be applied to identify the
limit.

In addition, we assume that initial data satisfy the following conditions for all 1 < p < oo

po € LP(Q; L7(D)), po > 0 and my = 0 if py =0, (2.1.3)
|”;—°|2 € LP(Q; L1(D)), (2.1.4)
Co 2 LP(Q; HY (D)) and 0 < ¢ < ¢y < € < 00, (2.1.5)
Qo € LP(Q; HY(D; S3)), (2.1.6)

where the lower and upper bounds ¢, ¢ are two fixed constants.

Now, we state the main result.

Theorem 2.1.2. Let v > % Suppose that the initial data (po, Mo, co, Qo) satisfy the assump-
tions (2.1.3)-(2.1.6), and the operator f satisfies the conditions (2.1.1), (2.1.2). Then, there
exists a global martingale weak solution to system (2.0.1)-(2.0.3) in the sense of Definition
2.1.1.

12



The proof of Theorem 2.1.2 mainly relies on the four-level approximation. The first
level approximation actually contains two-step approximation. Because of the difficulty
technically, we need to cut-off the approximate solution such that in a sense the bound is
uniform in random element corresponding to the truncated parameter K inspired by [43].
Then, for any fixed n, K, the existence and uniqueness of the Galerkin approximate solution
in small time is established using the Banach fixed point argument. The uniform bound of
¢ obtained via maximum principle and the property of symmetric and traceless of Q-tensor
can be used for cancelling the high order nonlinear term, allowing us to get the uniform a
priori estimates, see Lemma 2.2.3. With the a priori estimates established, we can extend the
existence time to global. Next, we let K — oo to establish the Galerkin approximate solution
for fixed n. Define a stopping time 7y, on interval [0, 7x), we can define the approximate
solution using the uniqueness of solution and the monotonicity of the sequence of stopping
time 7x. Using the a priori estimates, it holds limy_,,, 7 = T, P a.s. This means no blow-up
arises in finite time. Except for this level approximation, all other three level approximations
contain the compactness argument. Owing to the complex structure of the system, we have to
work with weak compactness, the classical Skorokhod theorem is replaced by the Skorokhod-
Jakubowski theorem applying to quasi-Polish space. To employ the theorem, it is necessary
to show the tightness of the set of probability measures generated by the distribution of
approximate solution, which can be achieved using the Aubin-Lions Lemma, the a priori
estimates and the delicate analysis. After obtaining the compactness of the new processes
on the new probability space, we identify all the nonlinear term by passing limit as n — co.

In the second level approximation, the solution obtained in first level approximation will
be used as approximate solution. Here the boundedness of v/ep. s € LF(Q; L?(0,T; HY(D)))
is not helpful in getting the strong convergence of density, which makes it difficult to identify
the nonlinear term with respect to p (the pressure term and stochastic term). Following
the ideas from [32, 59], we shall show the strong convergence of density by improving the
integrability of density, establishing the weak continuity of the effective viscous flow (here
the symmetric of )-tensor plays a crucial role, see Step 1 in Section 4) and using the Minty
trick.

Following the same line as the second level approximation, improving the integrability

13



of density, establishing the weak continuity of the effective viscous flow, introducing the re-
normalized solution to control the large oscillations and the truncated technique are required
to get the strong convergence of density. Here, the proof is standard, we only give the
necessary tightness argument and improve the integrability of density, for further details, we

refer the reader to [43, 81, 84].

2.2 The Existence of Martingale Solution When n Tends to Infinity

In this section, we are devoted to building the existence of global weak martingale solution

to the following modified viscous system

(

Oc+ (u-V)e = Ac,
Op + div(pu) = eAp,

Or(pu) + div(pu @ u) + V(p7 +6p°) + eVp - Vu = i Au + (pg + p2) V(divu)

(2.2.1)
+0*V - (Q) + V- (F(Q)3 — VQ O VQ) + V- (QAQ — AQQ)
+pf(p, pu, ¢, Q)5
where €,5 > 0 and 8 > {6,~}, with the boundary conditions
Op| _0el 991 ) om0, (2.2.2)
Inlyp  Inlyp 0N |yp
and the modified initial data
p(0) = pos € LP(9;C*H(D)), (2.2.3)
pu(0) = mos € LP(Q; C*(D)), (2.2.4)
Q(0) = Qo € LP(S; H'(D; 52)), (2.2.5)
c(0) =cp € LP(; H(D)) and 0 < ¢ < ¢y < € < 0. (2.2.6)
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Moreover, assume that the initial data pg s satisfies the following conditions
0<6<pys< 575 < 00, (pos)m <M, pos— poin L7(D) as § — 0, (2.2.7)

where the (pgs)m denotes the mean value of pg s in domain D, and

mo,s = hs/Pos,
hs 1s defined as follows. Let
- mO\/M7 if p0>07
Mos = PO
0, if po=0.

According to the assumption (2.1.4), we have lmpz—’i‘? € LP(Q; LY(D)) uniformly in ¢ for

1 < p < co. Therefore, we can find C?(D)-valued random variables h; such that

mo,s

\/ P08

<.
L2(D)

— 1Y

Then, we have

2
m € LP(Q); L*(D)) uniformly in 6,
Po.s
mo,s Mo

— —— in LP(Q; L*(D)) for 1 < p < oo.

v/ P0,5 VPo

Let Ps = P o (pos, mos, o, Qo) . According to the construction, we have Ps is Borel

probability measure on C?t%(D) x C%(D) x (H'(D))?, satisfying
Ps{(p. pu,c Q) € C***(D) x C*(D) x (H'(D))*;

and0<5§p§5_%<oo, (p)mSM,0<Q§00§E<OO,Q€SS’}:1,

and
2 1 p
/ il + ——p" +|Ve, VQP? dPs
crramyxc2(yx(E (D)2 || 20 7 —1 L(D)
2 1 p
S by Lo piwever|  ar. 29
i@yxL x|l 20 v =1 L1(D)

where P is a Borel probability measure on L7(D) x L%(D) x (HY(D)).

The proof will be divided into three subsections. For the first subsection, we establish
the Galerkin approximate solution and the a priori estimates. Then, the compactness result
is obtained in second subsection. In the third subsection, we get the existence of global weak

martingale solution by taking the limit as n — oo.
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2.2.1 The approximate solution and a priori estimates

First of all, we build the approximate solution to system (2.2.1)-(2.2.6) for fixed ¢ > 0
and 0 > 0, we would need an extra approximation layer compared to the deterministic case
following the ideas of [43]. At the beginning, we introduce the following well-posedness
results taken from [22, 62].

Lemma 2.2.1. Suppose that the initial data py satisfies (2.2.3). If u € C([0,T]; C*(D)) with
ulgp = 0, then there exists a mapping S = S(u)

S : C([0,T];C*(D)) — C([0,T]; C***(D)),

with the following properties:

(1) p = S(u) is a unique classical solution of system (2.2.1),(2.2.3),(2.2.7) with the
mapping S continuous on bounded subset of C([0,T]; C*(D)).

(2) It holds

5exp< /HdlquLood'r>§ < Pex </ HdlquLoodr)

for all t € [0,T].

Lemma 2.2.2. For each u € C([0,T];C*(D)) with ulsp = 0, then there erists a unique
strong solution (c, Q) € [L=(0,T; H(D)) N L*(0,T; H*(D))]? to the system

( Oc+ (u-V)e = Ac,
0Q + (u-V)Q+ Q¥ — ¥Q =TH(Q, o),

Q(0) =Qo € H'(D; S§) a.e. and g—g (2.2.9)

=0,
oD

c(0)=co€ HY(D) and 0 < ¢ < ¢y < € < 00, %

= 0.
D

\

Moreover, we have 0 < ¢ < ¢ < ¢ < 0co. Furthermore, the mapping

S: C([0,T);C3(D)) — [L>(0,T; H'(D)) N L*(0, T; H*(D))]?,

is continuous on set B := {u € C([0,T]; C*(D)); |ullcqom.c2y < R} and Q € S§ a.e.
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Remark. The proof of Q € S; a.e. depends on the uniqueness of solution to system
(2.2.9), therefore, we have to lift the regularity of initial data ¢ to H'(D) rather than L*(D)
in establishing the existence of strong solutions, making further effort to achieve the unique-
ness. It will also be used for defining the Galerkin approximate solution for fixed truncation
parameter K introduced later.

With these results in hand, we now find the approximate velocity field u,, satisfying the

integral equation

/D pundds — /D modda
= _ /t / (div(pu, ® u,) — p1Auy,

1 + 1)V (diva,) + Voo + 6V pP)pdrds

/ / o*V - (*Q)pdxds — / / €dVp - Vu,drds

n / / V. (FQ)s — VQ © VQ)6 + V - (QAQ — AQQ)ddads
0 D

+/ / VoP.(pf(p, pun, ¢, Q))pdxdW, (2.2.10)
0 D

for t € [0,T], and ¢ belongs to the finite dimensional space X,, which is defined by
span{h;}" ;. The family of smooth functions {h;}"_, is an orthonormal basis of H'(D),
and P, be the orthogonal projection from L?*(D) into X,,.

Define by the operator M|p] : X,, — X}

(M|plu,v) = / pu - vdx for u,v € X,,.
D

From the definition, we know M|pju = P,(pu). Moreover, M|p] is a positive symmetric

operator with following properties,
||M[P]_1Hc(x;;,xn) < HP_IHC(D)y (2.2.11)

and

[Mp] ™" = Mpa] Ml oixs x < ot ey llez e ller = p2llimo)- (2.2.12)
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Introduce the functional Np, u,c, Q](¢) by
Nlp,u,c,Q)(¥)
= [ (divipu @) = Vi + 60°) it s+ ) V(diva) — V-V
D

+ V- (F(QI3—VQ O VQ)+ V- (QAQ — AQQ) + o™V - (*Q)) - pdx,

for all ¢ € X,,. Due to the technical difficulty, we need further truncation to u,. Following
the idea of [43], define the C'*°-smooth cut-off function

1, |z2| <K,
0, |z| >2K.

{x(z) =

Let u® =37 | &k (y)aghy, then we have [[u”||o(o1.02(p)) < 2/ and the truncation operator

Tr: u — u® satisfies
Tr: X, —» X, and ||Tr(u) —Tr(v)|x, < Cn)|u—|x,. (2.2.13)

Then, we rewrite (2.2.10) as

n

Un(t) = M7 [S(uf)] (m;;+ [S(u), u, S(u))ds

+Tr( i /\/lé(S(unK))Pn(\/S(uf)f(S(uf),S(uf)uf,g(uff)))d)/\/) ) (2.2.14)

Here, the stochastic integral should be understood evolving on space X.

The mapping Y from L?(Q; C([0, T]; C*(D))) into itself is defined by the right hand side
of (2.2.14). For fixed n, K, we can show the mapping ) is the contraction for 7% small
enough, for further details see [85, 21] for the deterministic part. Next, we give the estimate

of stochastic term. Using (2.2.13) and the triangle inequality, we have

E sup M (S(u)))
x Tr </0 Mz (S(uf)) P, (v S(UnK)f(S(Uff%S(Uf)uf,g(uff)))dw>
— M(S(v)))
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<E sup H./\/l S(ul)) — MY (SWE))

n ”z:(x;;,xn)

» T(/ ME (S ()P (ST 10, S St ) X
+C@E sup HM‘l(S(vf))Hg(x;,xm
(S (), S (Y §(u))) W
-/ tM%(S(vf))Pn(\/Wf(S(vf)’S(Uf Jonts SNV X
o n (2.2.15)

For Li, using (2.2.12), Lemma 2.2.1(2) and the property of operator Tr, we have

Li <T*C(n, K,T"E sup |ulf —vX|%.. (2.2.16)

0<t<T*

For Ly, using (2.2.11), the boundedness of S(uX), we have from the Burkholder-Davis-Gundy

inequality
L2 S C(K,(S 7’L
<E sup. / M(S () P/ ST £(S ), Sl St )i

19



= L21 4+ L22.

For Ly, using the continuity of S(uf), the equivalence of norms on finite dimensional space,

condition (2.1.1), the boundedness of v/, S(uX) and Lemma 2.2.2, we have

2

Ly < C(K,6,n) / H./\/l ul)) _M%<S(Uf))Hc(Xn,X;)

VST (S k), St Sl e | ds)

k>1

ST*cm,K,T*,am( I —

0<t<T*

[ IR, st St )

k>1

0<t<T*

T*
/ / o "+ pi ek,

<7°C(n,K,T" 5)E< sup Huff —vffH?Xn

gT*C(n,K,T*,m( T

4 P \uK|2d:vds)

0<t<
T*
[ L1011 QU + s
< (T*)’C(n,K,T*,6)E sup |luf —vr|%. - (2.2.17)
0<t<T*

For Loy, using the continuity of S(uX), g(uff)(see Lemma 2.2.2), the boundedness of S(ufS),
condition (2.1.2) and the equivalence of norms on finite dimensional space, we also have
Ly <T*C(n,K,T*)E sup |luf —vF|%. - (2.2.18)
0<t<T™
Then, taking into account of (2.2.15)-(2.2.18), we infer that there exists a sequence of ap-
proximate solutions u® € L*(Q; C([0,T.]; X,,)) to equation (2.2.14) for small time T* by the
Banach fixed point theorem. Here we first assume that the a priori estimates (2.2.20) hold
uniformly in n, K which allows us to extend the existence time T to T for any T" > 0.
Namely, we proved the existence and uniqueness of solution uX € L?(Q; C([0,T]; C*(D))) to
equation (2.2.14) for fixed n, K.
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Next, we build the global existence of Galerkin approximate solution to system (2.2.1)

for any fixed n by letting K — oo. Define the stopping time,

Tx = inf {t > 0; sup ||uX(s)||z2
s€0,t]

+ sup / Mz (S(u)) Py (v/SWE) (S WNE SWE AW > K}.
sefo,]l1Jo L2
Observe that the sequence of the stopping time 7y is increasing. Define p&X = S(uX),

(X, QF) = S(uX), then (p&, uX, X QK) is the unique solution to system (2.2.1). Using
the monotonicity of the stopping time and the uniqueness of solution, for K; < K, we have
(pEr ulr oK QFY) = (pi2 w2 B2 QE2) on [0, 7, ). Therefore, we could define the solution
(Prs Uns Cny Q) = (P ul K QF) on interval [0, 7). In order to extend the existence time

to [0, 7], we show that

IP’{ sup TK:T} =1
KeN+

Since the stopping time 7 is increasing, we have

P{sup TK<T} <P{rx < T}

KeN+

K
<P< sup ||unK||L2 > —
t€[0,T] 2

{é‘%‘%} / M (S(E)) Py (/ST F(S (), S(uf Y, S(u)

=. J1 + Jg.

>K
2

Using the Burkholder-Davis-Gundy inequality, the Chebyshev inequality and the equivalence
of norms on finite-dimensional space, and the embedding H~/(D) < L*(D) for [ > 2, and

the condition (2.1.1), the bound (2.2.20), we have
L2>

Jo S > sup
t€[0,1]
H—l>

S% (taé]g; /M N Pur/S(uE) f(S ul )l S(uk))dw

/M KV) Py /Sl ) £(S uFVu S(uf))aw
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2

<k [ M) PSS, S St e
C

1dt

T ~ 2
< 7B [ [ S|VSumss . st Sula dr [ Sz
E>1
C K g 2 2 C
< 7 (o (O))mE/ / 1o + pulunl® + |cn, VQu| dzdt < e (2.2.19)
0 D

where C' is independent of K, leading to J, — 0 as K — oo. Corollary 3.2 in [43] given
J1 — 0 as K — oo. Therefore, passing K — oo, we have
IP’{ sup Tk <T} =0.
KeN+t
This means that no blow up appears in a finite time, we could extend the existence time to
[0, 7] for any T > 0.
We next establish the necessary a priori estimates of approximate solution. To simplify

the notation, we replace (p, pEuf & Q) by (p, pu,c, Q).

Lemma 2.2.3. Suppose that (p, pu,c,Q) is the Galerkin approzimate solution to system
(2.2.1)-(2.2.6), and f satisfies the condition (2.1.1). Then, there exists a constant C' which
is independent of n, K but depends on (1, p2, 0%, cx, b, T, p, ') and initial data such that for

all1 <p< oo

E

5 p
sup (Hc vQ. vl + QUL+ —— ol ﬁ_lnpniﬂ)]

t€[0,T]

T
+E </ Ve, Vu, AQ, divul|7. + ||Q\|%Gdt)
0

p

T P
+E (/ / e(yp" 2+ 5Bpﬁ_2)|Vp|2dxdt) <C. (2.2.20)
0o Jp

Moreover, we have

Vep € LF(Q; L*(0, T; H (D)), (2.2.21)

pu € LP(Q; L®(0,T; L7 (D))). (2.2.22)
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Proof. Denote ®(p, m) = (m, M~ (p)m), we obtain

Vi ®@(p,m) = 2M_1(p>mv ancb(p, m) = QM_l(p)a
V,8(p,m) = —(m, M~ (p) M~ (p)m).

Applying the It6 formula to function ®(p, pu), integrating with respect to time, taking the

supremum on interval [0, ¢ A 7], then

sup / p]u\de
sE[tATK] J D
tIATK AT
S/ po|u0|2d:v —/ / V|u|2 - pudxds +6/ / V|u|2 - Vpdxds

D 0 D 0 D

t/\TK
— 2/ / V(p" +dp7) - udxds

0 D

tATK
+ 2/ /(ulAu + (1 + po)Vdivu) - udzds
D

AT tATK
+ 2/ / pu @ u : Vudrds — 26/ / VuVp - udxds
0

D

/ATK (VQ & VQ — F(Q)I3) : Vudzds

[\

S

+

2/0MTK / (QAQ — AQQ) : Vudxds + Q/OtATK /DU*(CQQ) : Vudxds

D

+/’W (M (0) M (0) Palo/5F (0, pu, . Q)ex),

k>1

=)
Y

Mz ()P, (/o f (p, pu, ¢, Q)ex))ds
|E [ Mo (3t . Quen) o

k>1

sup
€[0,tATK]

(2.2.23)

By equation (2.2.1),, we have

0f
-2 [ V(p" + ) ~udx:—2/ (—v7 ly v f“) udz
/D (p” +6p”) i GV )r

v -1 op 5—1) .
=2 —_— T — div(pu)dz
/1)(7—1p 71’ (pu)

_ Vo1 OB s
—2/D(7_1p +ﬁ—1p (—0p + eAp)da

5
o gy + 5 —d Pdx
D’Y—lp B— P
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— 2e / (v 7% + 680" )|V p|*dad.
D

Multiplying equation (2.2.1); with c, integrating over D, then

1
d(—/ chx) +/ |VC|2dxdt:—/ cu - Vedxdt. (2.2.24)
2Jp D D

Also, multiplying equation (2.2.1), with —(AQ — Q — ¢.Qtr(Q?)), taking the trace and
integrating over D, adding (2.2.23) and (2.2.24), then we get

20 2 "
o [ (p|u12+c2+ P2 |@,vc912+c—|@\4) dn
s€ltrrk] JD g—1 v—1 2
tATK
Lo / / 11 [Vl + (o + o) divaf? + [Vef?
0 D
+D(IVQP + |AQP) + T(e,]Q|* + &2]Q|°)dwds
tATK
+26/ /(7p7‘2+5ﬁp5‘2)lvf)l2d$d8
0 D

20 2 Cs
= /D <Po|UO\2 +cg+ 5 1P§ + — 1pg +1Qo, VQo|* + §|Q0|4> dx

t/\TK t/\TK
— / / Vl|ul? - pudzds + 6/ / Vl|ul* - Vodzds
0 0

tATK tATK
+2/ /pu@u Vud:cds—2e/ /Vqu udxds
0

D

+2 /MTK (VQ & VQ — F(Q)l3) : Vudzds
/ (QAQ — AQQ) : Vudxds — 2 /MTK/ o*(c*Q) : Vudxds
0 D
/ ) / cu - Vedrds + 2/ ) / u-VQ : (AQ — Q — ¢, Qtr(Q?))dxds
0 D

2/ / Q) — QU) : (AQ — Q — c.Qtr(Q?))dxds

/ 3 / c—c)Q: (AQ — Q — c,Qtr(Q*))dxds
B tATK 5 B B )

2/0 /DbFQ (AQ — Q — ¢.Qtr(Q7))dxds

+/0tATK/DQC*FQ|Q|2 : AQdxds
= [ M MRS (s Q)

k>1

o
@

t/\TK

—2

S~
S

[\D
o
V)

S
@
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Mz ()P (/5] (p, pu, ¢, Q)ex))ds
/0 / M3 (p)uPu(V5S (0, pus ¢, Q)er)dd By

sup
SE[Ot/\TK E>1
t/\TK

/ ZstJrQ Sup / ZJ15d5k . (2.2.25)

Next, we control all the right hand side terms of (2.2.25). Note that J;+J3 = 0, Jo+Jy = 0

and

J@ + Jlo = —2/ (QAQ - AQQ) : Vudx
D
+2 [ (10 -Q¥): (50 - @ - c.Qu(@)is
= —2/ tr(QAQVu — AQQVu)dzr + 2/ tr(VQAQ — QUYAQ)dx
D D
+2 [ 6((9Q - QU)(-Q - .Qu@dr = Jo + o+ T
D

Due to the fact that @) is symmetric and traceless and W is skew-symmetric we have J3 =
0,71 +Jo =0, also J5 + Jo = 0, see [21].

Applying Young’s inequality and the boundedness of ¢, we have

|J7| = 2/ o*c*Q : Vudx
D

< Cllell oo IVl 2@l 22 < IVullz2 + ClQIIZ,

|Js| = Q/CU-Vcdx
D

< Cllell e (omxoy Vel rzllull 2 < ([Vell72 + Cllull7-

In addition

ul = | [ Tle=c)Q: (8Q - Q = c.Qu(@))da

r
< 5128QI%: + Cll: + Clels,

el = | [ 27@*: (5Q - @ - e.Qu(Q)s
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< [ AQ L 1Q7]

—HAQHQJFCHQHUHF HQHL6+0HQH2
Jig = /DZC*FQ|Q|2 : AQdr = —ZC*F/1)|VQ| Q| dx—c*F/D|Vtr(Q)|2dx

<0.
Using the condition (2.1.1), Jy4 can be treated as

Ju < ||V/pf(p, pu,c, Q)HL2 ML D))
/;Z ‘\/ﬁf(pa pU, C, Q)ek\zdx

k>1

—1)
<C [ gl +old T 4

< c/ 7 + oul + o + |[VQPda.
D

Define the stopping time 75

s€[0,t]

Tr = inf {t > 0; sup ||/pull7e > R} A Tk, (2.2.26)
if the set is empty, taking 7g = T. Note that, 75 is an increasing sequence with

lim TR = T.
RAK—00

Regarding the stochastic term, by the Burkholder-Davis-Gundy inequality and condition
(2.1.1) forall 1 <p < 0

E| sup

s€[0tATR]

< CE / > ( /D M3 (p)uPa(/51 (s pus . Q)ek)dfv)z ds>

tATR
<o ( [T M [ erf2<p,pu,c,c2>ei|dxds)

0 D p>1

[N4S]

[NiS)

<CE| sup H\/ﬁuHiQ] X

s€[0,tATR]
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M|

([ [t e + o™

sup H\/EUIlipz]

SE[O,t/\TR}
tATR p
+CE (/ / p7 + [Voul? + |’ + |VQ|2dxds) :
0 D

Considering all these estimates, taking the integral with respect to time, taking the supre-

<E

mum on interval [0, ¢ A 7g], then power p and taking expectation on both sides, the Gronwall

lemma yields

E

(5 p
sup (1.0, 9Q. vl + Q1L + =~ 1ol ﬁ_lw%Q]

SE[0,tATR]
tATR

+E(/ sVl + (ar 4+ ) [dival B + T AQI:
0

P
+I9el + Qs
tATR p
+E (/ / e(yp" % + 5ﬁpﬁ2)]Vp\2d:cds) < C,
0 D

where C'is constant independent of n. Finally, we get the bound (2.2.20) by the monotone
convergence theorem.

Using the bound (2.2.20), we have

/]p]Qda:+26]E//\Vp|2dacd5— /|,00| de — E //dlvu|p| dxds
<E/ | ol d:l:+IE(/ / |dlvu|2+|p|4dxds) < C,

consequently, (2.2.21) holds. We can obtain the bound (2.2.22) using the fact that \/pu €
LP(Q; L*°(0,T; L*(D))) and p € LP(Q; L>°(0,T; L°(D))). This completes the proof. O

Remark. By taking inner product with —(AQ — Q — ¢.Qtr(Q?)) in equation (2.2.1); in
place of H(Q, ¢), we can prevent the interaction term of ¢ and Q-tensor arising, making the

estimates concise.
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2.2.2 The compactness of approximate solution

Unlike the deterministic case, it may not be the case that the embedding L*(€2; X)
into L?(Q;Y) is compact, even if X — Y is compact. Therefore, in order to obtain the
compactness of approximate solution, the key point is to obtain the compactness of the set
of probability measures generated by the approximate solution sequences. Define the path

space
X=X, xX, xX,, x X, x Xy x Xy,
where
Xu = lev(O’T’ Hl(D))7 XPU = C<[07T]a H_1<D>>7
X, .= L=(0, Ty H"%(D)) N L*(0,T; L*(D)) N L(0,T; H'(D)),
X, = L3(0,T; H(D)) N L*(0,T; L*(D)),
Xg = L2(0,T; H*(D)) N L*(0,T; H' (D)), Xy = C([0,T); Ho).
Define the probability measures
V=1 @y @y, QU Qvg @ v, (2.2.27)

where u(’?)(B) =P{- € B} for any B € B(X(,)), &, is the path space defined above, respec-
tively.

Next, we establish the following compactness result.

Proposition 2.2.4. There ezists a subsequence of probability measures {v"},>1 still denoted

by {v"}n>1, a probability space (Q, F,P) with X -valued measurable random variables

(an; ﬁ’l’ln P’I’l(ﬁn,&"N,)? 67’1/7 éna Wn) a‘nd (,&” ﬁ? ﬁﬂ, 67 Q? W)?

such that

(i P> Po(Buin)s Eny Qs Wh) = (i, p, pit, & Q, W), P a.s. (2.2.28)
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in the topology of X and

P{(itns s Pa(Bulin), éns Qs Wa) € -} = 0" (:), (2.2.29)
P{(ii, p, pii, &, Q, W) € -} = v("), (2.2.30)
where v 1s a Radon measure and Wn 1s cylindrical Wiener process, relative to the filtration
.7?[‘ generated by the completion of o (U (s), pn($), n(s), @n(s),Wn(s); s < t). Moreover, the
process (ﬂn,ﬁn,ﬁnﬂn,én,@n,ﬁn) also satisfies the system (2.2.1) and shares the following

uniform a priori estimates

pn € LP(Q; L®(0,T; L°(D)) N L2(0,T; H'(D))), (2.2.31)
@, € LP(Q; L*(0, T; H'(D))), (2.2.32)

pniin € LP(Q; L®(0,T; L*(D))), (2.2.33)
priiy € LP(Q; L®(0,T; L541 (D)), (2.2.34)
Gn € LP(Q; L®(0,T; L*(D)) N L*(0, T; H'(D))), (2.2.35)
Qn € LP(Q; L®(0,T; H(D)) N L*(0,T; H*(D))). (2.2.36)

Combining the bound (2.2.31) and strong convergence p, in L?(0,T; L*(D)), the Vitali

convergence theorem A.0.3 implies that P a.s.
pn — pin L*(0,T; L*(D)).

In order to employ the Skorokhod-Jakubowski theorem, we next show the tightness of

set {I/n}nzl.

Lemma 2.2.5. The set of probability measures {v"},>1 is tight on path space X.
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Proof. 1t is enough to show that each set of probability measures {l/z?)}nzl is tight on the
corresponding path space X(,).
Claim 1. The set {v}; (,, }n>1 is tight on path spaces X,
Decompose P,(pyu,) = X, + Y, where
t
X, =mo, + Pn/ —div(pptin @ un) — V(p) + 095 + 1 Au,,
0
T Vi) V(@ = V@ V)
V- (QnAQn - AQnQn) +0"V - (CiQn)dS
t
1
+/ M2 (pn)Pn V pnf(pna pnun> Cnv Qn)dW7
0

and
t
Y, = e/ P,(Vpy, - Vuy,)ds.
0
The main goal is to get
El| P (pnun) oo qo,r;m-+ )y < C, (2.2.37)

where C'is independent of n for o € [0,1) and k > 2.
Regarding the stochastic term, similar to (2.2.19), using the Burkholder-Davis-Gundy
inequality and condition (2.1.1), we get for all « € [0, %)

t
E ‘ / M5(pn)Pn\/P_nf(Pm PnUn; Cn, Qn)dw
0

C([0,T;H-*(D))

(pu) Pa/B (s putns e, Q)W

<E/| sup
£,4/€[0,T] |t — ]
2(pn) Pur/Puf (Prs Prtins €y Q) dWH
S
¢
) 1
E ( 1M 0) S Pa/ud (s pts o, Queelfodr )
+

= ]

<Clt—t|2°E

ts[%%](llpnllm +lvPaallzz + llenllze + IIVQnIIiz)]
€|0,

+d < C.
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Using (2.2.20) and the Hoélder inequality, we have

EV - (@nAQn — AQuQu)172 (0 1+ 1)

T L
0

T z
<E ( / H@nuizumnuim)

T p
<E| swp 11| E ([ 1801 )
te0,T 0
<,
and
Eljo"V - (CiQn)Hpoo(oj;H < CHCnHLoo( oT]XD)]EHQanoo(o,T;LZ(D)) <C,
moreover

E[V - (F(Qn)lz - VQ, ® VQn)HLoo(OTH k(D)) <E| sup ||in||Z£2 <C,

te[0,7]

where the constant C' is independent of n.

Furthermore, the bound (2.2.20) together with the Holder inequality yields,
div(putin ® up) € LP(Q; L2(0, T; H V%5 (D)),
then the Sobolev embedding Hil"lg%(i)) — H~*(D) for k > 5 implies that
div(ppu, @ u,) € LP(Q; L*(0,T; H *(D))).

Also, the bound (2.2.20) implies V(p] +dp2) € LP($; L% (0 T; H=*(D))) using the Sobolev
embedding H "% (D) < H*(D).
To find the boundedness of Y,,, we need to improve the time integrability of p,, following

Lemma 2.4 in [30]. By (2.2.20) and the Hélder inequality, we have

puttn € LP(Q; L2(0,T; L¥75 (D))) N LP(Q; L°(0, T; L7+ (D))).
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The interpolation lemma A.0.2 implies that there exists ¢ > 2 such that
putty, € LP(2; L0, T L*(D))),

this estimate together with the bound p, € LP(Q; L>°(0,T; L?(D))) and equation (2.2.1),
yields

pn € LP(Q; L9(0, T; H' (D))), for q > 2. (2.2.38)

Using (2.2.38) and (2.2.20), we have

t
Elle | P.(Vp,-Vu,)ds
0 co([0,T];H—*(D))
n n d t
< Vp +Vu ) 5 H—k + 5 < Eeft/ ||Vpn : VUnHleS n 5
|t — ] it — /]
t
< |t t/|a ||vu||L2d3E/ €||V,0||L2d8+5/
< Ot — |7 ek (/ Vol ds) +0' <C, (2.2.39)

-2
for any o € [0, 47] and k > 3.
Combining all estimates, we get the desired bound (2.2.37). For any R > 0, define the

set
Bip— {Pn<pnun> e L0, 7; L5 (D)) n 0o (0, T): HH(D)) -

||pnun” OTLBfl (D)) ||Pnun||ca([o,T];H—k(p)) < R}.

By the Aubin-Lions lemma A.0.1, we know
10, T, L#5(D)) 1 C*((0, T); H-H(D)) — L=(0,T; H\(D)), (2.2.40)

is compact, therefore, the set By g is relatively compact in L>(0,7; H~*(D)). Considering
(2.2.37), (2.2.22) and the Chebyshev inequality, to conclude

R
n ¢ < 5
Vou(Big) <P (||annH (OTLFHT (D)) g 2)

R
+P ||pnun“C°‘([0,T];H*k(D)) > 5
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< ZELI | + || pntin]| < C
nun n n «@ . —k ,
’ L°°(07T;L3ﬁﬁl(73)) p Co([0,T};H=*(D)) =

3| v

leading to the tightness of set {1}, }n>1.
Claim 2. The set {v},>1 is tight on path space X..
Note that, for any R > 0, by the Banach-Alaoglu theorem, the set

By = {c, € L*(0,T; H'(D)) : ||l r20mmm 0y < R}
is relatively compact on path space L2 (0,7; H'(D)). On the other hand, we have
Oic, € LP(Q; L*(0,T; H1(D))). (2.2.41)
Define the set

By g ={c, € L*(0,T; H (D)) nW"*(0,T; H (D)) :

llenll 200 () + enllwrzomn-1m)) < R},

which is compact on L*(0,T; L*(D)). The bounds (2.2.20), (2.2.41) and the Chebyshev
inequality imply

=10

ve ((Be.r N B3g)*) < v!(Bj g) + v (By ) <

Claim 3. The set {vg)},>1 is tight on path space Xj.
The proof follows the same line as above, here we only give the necessary estimates.

Using (2.2.20) and the Holder inequality again, we have

L2(0,T;L% (D))

[

t
<CE U lunl 261V QallZz + 1QnlZel Vttnl|Z2 + [AQuIIZ: + llen |22 1QullZsds
0

t t
< CE | sup [Quls | E / |Vt [2ads + E / | AQu|22ds
te[0,7 0 0
FE | sup (leallZ + 101200 | < €
te[0,7]
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leading to

E”Q"”caao,ﬂw%(@))

el = (0 9)Qu — QW — 0.Qu) + TH(@n )3
. i

S |t - t/|%_a . EH - (un . V)Qn - (Qn\lln - anQn) + PH(QW Cn)”

+d <C,

+ 0

£2(0,13L3 (D))

where C' is independent of n.
Claim 4. The sets {v; },>1 and {v}},>; are tight on path spaces &, &),.

Here, we only focus on the tightness of {v7},>1 on space L*([0,T] x D). Since p, €
L*(0,T; HY(D)) and 0;p, € L*(0,T; H'(D)), then we can show the tightness using the
same argument as Claim 2.

Finally, Lemma 2.2.5 follows the result of Claims 1-4. O

Proof of Proposition 2.2.4. With the tightness established, the Skorokhod-Jakubowski the-
orem is invoked to get that there exists a probability space (@, F , ]ﬁ’) with X-valued measur-

able random variables

“gl
=
2
™
O

(ﬂm ﬁn’ @u 6717 @77,7 Wn) and (

such that

(Gt P s G Qs W) = (8,5,3,6,Q, W), B aus.
in the topology of X. Moreover, the joint distribution of (ﬂn,ﬁn,qn,én,@n,wn) is the
same as the law of (un, pn, Pr(pntin), oy Qn, Wh), consequently, we have ¢, = P,(pnty),
Q. € S3, as. and the energy estimates (2.2.31)-(2.2.36) hold. Moreover, the process
(s Po(pniin), én, Qn, Wn) also satisfies the system (2.2.1) using the same argument as [84].

It remains to identify ¢ = pti. On the one hand, we have

P,(pnity) = G in C(0,T; H (D)), P as.
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On the other hand, from
pn— p in L®(0,T;H *(D)).

and

i, =4 in L*(0,T; HY(D)).
it follows that P,(jii,) — pi in L*(0,T;: H™Y(D)), P a.s. Then, we infer § = ji. O
2.2.3 Taking the limit for n tends to infinity

Based on the Proposition 2.2.4, we identify the limit of the nonlinear term.

Lemma 2.2.6. For any ¢ € L>*(0,T; H"%(D)) and t € [0,T], the following convergence
holds P a.s.

0
t
= [F@L - VG0 VG+GAG - 200+ 0'#Q.Vo)ds,
0
as n — oQ.

Proof. Decompose
:/0 (Qn — @)A@n,w>ds+/o (Q(AD, — AQ), V)ds

0 0
=S+ o+ J3+ Js

For Ji, Js, by Proposition 2.2.4(2.2.28) and (2.2.36), we have P a.s.
t ~ ~ ~
it 32 [ 1960051Gn = Qs 15Ga 12ds
0

¢t 3ot 3
< Vel e oriison ( / u@n—@uzlds) ( / \|A@nu%2ds) 0.
0 0

Also, we have J,, J3 — 0 as n — oo using the fact A@n — A@ in L?([0,T] x D).
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On the other hand, by Proposition 2.2.4(2.2.28), (2.2.35) and (2.2.36), the following

convergences hold P a.s.
t ~ ~ ~ ~
/ <in O] in - VQ © VQ, V¢>d$
0

t o~ o~ o~ o~
< / VG — VO 21V, VO 16|V 6 s s
0

t _ 3 t _ 3
< [Vl ozsz50y ( / ||Qn—c2||%pds) ( / ||vc2n,vc2||zlds) o,
0 0

and

/ (20, — &0, V)ds — / (& — &)Dn + E(Dr — O), Voyds
0 0
t o~ ~ o~
< /O 16 — &Lz lm, 2o 1On oIV ollzs + el oliéll 1 Gn — Ollo Vo zods

< <||Qn||Loo(o,T;L6(D)) + ||5HL°°(O,T;L2(D))) |V &|| Lo (0,75 (D))

t - - 3 t 2
x ( [ 1=l + 13- @u%pds) ( [a= Hén,é!\m)zds) o,
0 0
Similarly, we have P a.s.
t
/ (F(Qu)ls — F(Q)Ls, Ve)ds — 0.
0

This completes the proof. n

Lemma 2.2.7. For any ¢ € L*°(0,T; L3(D)) and t € [0,T), the following convergence holds

P a.s.
/0 (@ - V)Qn + Qn¥, — 0,Q, — TH(Q,, &), )ds
— /0 (i~ V)Q+ Q¥ — ¥Q — TH(Q, &), p)ds,

as n — Q.
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Proof. Decompose

For J;, using the Proposition 2.2.4(2.2.28), (2.2.32) and the Hélder inequality, to get P a.s.

t
/1] S/O | 2o |V (Qn — @)l 22|l 12ds

t _ _ 3 t 3
< llollooziz50y ( / ||v<@n—@>uizds) ( / ||an||%pds) o,
0

Also, we have J, — 0 as n — oo which is the result of the convergence of 4, in A, P as.
By the similar argument as the first term, using the strong convergences of @n in Xp and ¢,

in X,, P as. and (2.2.32), (2.2.35), (2.2.36), we have P a.s.
¢t _ ¢ ~
/ (QnY, —V,,Q, —TH(Qy, ¢,), p)ds — / (QUV — V(@ —TH(Q, ¢), p)ds.
0 0
as nm — 0o. []

For the sake of elaborating the convergence of term €V p,, - Vi, in [32], Feireisl-Novotny-

Petzeltova showed 5, — f in L2(0,T; HY(D)), P a.s. Then, we have
Vpn - Vi, — Vj- Vi in L2(0,T] x D), P as. (2.2.42)
Moreover, [43, 81, 84| give
Pl @ G, — pu @@ in L2([0,T] x DY, P as. (2.2.43)
and for ¢ € [1, ;—fl)
puiin — pi in LY([0,T] x D), P as. (2.2.44)

Furthermore, using the Proposition 2.2.4(2.2.28), (2.2.32), (2.2.35), we have

iy - V&, — - Ve in L2([0,T] x D), P as. (2.2.45)
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Define the functional for any ¢ € UX,

N(p,u,c,Q) = / pupdr — / m(0)pdx
/ / pu @ u) — pVu)Vo — (g + po)divu + p? + 6p°)divedads
+ o*(2Q)Vodrds — t epVp - Vudzds
[ reasa[ |
+ /0 /D(F(Q)I3 —VQoVQ+QAQ — AQQ)Vedxds.

Following ideas of [43, 20], we are able to obtain the limit (¢, p, @, Q, W) satisfies the momen-
tum equation once we show that the process N (¢, p, , @)t is a square integral martingale

and its quadratic and cross variations satisfy

< NG pi, )y = Z/ (B F (5, 5 & O) By, B)ds, (2.2.46)
k>1
< N(@, p,t,Q)y, Br >:/O<ﬁf(ﬁ,ﬁﬂ,é,@)6k,¢>ds. (2.2.47)

Here, we only focus on the noise term. It is enough to show that P® L ae.
(M () Pa (/B f (P P, G0 Q). @) = {pf (5. 1.2, Q). 8) in Lo(H:R).  (2.2.48)
Toward proving the convergence, we estimate by the Minkowski inequality
| M ) PaV i (s s s @)+ 6) = (3 (55,7, Q)1 0)
< C | M2 30) Pa (V5 (P s, @) = 1 (5 1,2, Q)

< C (Z Hpnf pn7pnun7 Cm Qn)ek - pf(ﬁ é)ek”%1>

k>1

[ ME G Pa VB f (P s s @) = i f (s s s @)

Lo(H;H—Fk)

<C/ (Z!pnf P i, s Qn)ex — P (P ﬁﬁ,é,@)eﬁ) da

k>1

[ ME ) Pa (3 B s s s ) = P (s i s @)
=N+

La(H;H—F)
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Next, we show that J;, 7o — 0, as n — oo, P® L ae. Indeed, by condition (2.1.2) as well

as Proposition 2.2.4, we have
(Tl < Cllpn = ps pufin = it & = & Qn = Q|| 22, — 0
LA

Also, using the Holder inequality, condition (2.1.1), the bound (2.2.20) and Proposition 2.2.4,
we have J, — 0, as n — 00, see also [43, Proposition 4.11]. Then, (2.2.48) follows. We could
obtain equalities (2.2.46), (2.2.47) by combining (2.2.42)-(2.2.44), (2.2.48), Proposition 2.2.4
and the Vitali convergence theorem A.0.3.

Using the same argument as above, we infer that it holds P a.s.

/~( )éda;_/ edx—/ / - V)é- MJCdS—/ /Vc Vidxds,
/Q sodrc—/Q sodx—// V)Q 4 QU — UQ)pdxds
/ / LOH(Q, &)dads,

for £ € C>(D),p € C*(D), t € [0,T]. We summarize the result for this section,

Proposition 2.2.8. For > max{6,~}, fized 6 > 0. If conditions (2.1.1), (2.1.2) hold.
There exists a global weak martingale solution to modified system (2.2.1)-(2.2.6).

2.3 The Existence of Martingale Solution for Vanishing Artificial Viscosity

In this section, we let € — 0 to build the existence of global weak martingale solution to
the following system

.

Oic+ (u-V)e = Ac,

Bip + div(pu) = 0,

Oi(pu) + div(pu @ u) + V(p + 6p°) = i Au + (1 + p2)V(divu)
+0*V - (PQ) + V- (F(Q); — VQ O VQ) + V- (QAQ — AQQ)
+of(p, pu, ¢, Q)G

0Q+ (u-V)Q+ QU —¥vQ =TH(Q, ¢).

(2.3.1)
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The solutions (pegs, tes, Ce s, Qc,s) Obtained in the first level approximation will be used
for the approximate solution in this section, which shares the same energy bounds with

(2.2.31)-(2.2.36). Namely,

pestics € LP(Q; L®(0, T; LF41(D))), (2.3.2)
pes € LP(Q; L°(0,T; LP(D))), (2.3.3)
u.s € LP(Q; L*(0,T; HY(D))), (2.3.4)
VPestes € LP(Q; L=(0,T; L*(D))), (2.3.5)
Ces € LP(; L°°(0,T; L*(D)) N L*(0,T; H'(D))), (2.3.6)
Qs € LP(Q; L°(0,T; HY(D)) N L*(0, T; H*(D))). (2.3.7)

The proof also consists of the argument of tightness and identifying the limit. Note that,
here we are not allowed to make use of the a priori bound /ep.s € LP(Q; L2(0,T; H'(D)))
to gain the tightness of the distribution of density on path space L?*(0,T; L*(D)). Therefore,
we are not able to identify the pressure and stochastic term. To overcome this difficulty, we
first improve the integrability of density.

We replace (pes, Ue s, Ces, Qes) DY (pes Ue, e, Qe) to simplify the notation.

Recall the operator T constructed by Bogovskii [7] related to the problem

divo = f, wv|ogp =0,

with the following properties:
L T:{felr:[,fde=0} — H,"?(D) is a bounded linear operator such that for all
p>1

||T(f)||H01’p(D) < O\ fllze(m).- (2.3.8)

2. v ="T(f) is a solution to above equation.

3. For any function g € L"(D) with g - 7i|sgp = 0, it holds
1T (divg)ll vy < Cllgller o). (2.3.9)

The proof of above properties, we refer the readers to [8, 36] and the references therein for

details.
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Lemma 2.3.1. The approximate sequence p. satisfies the following estimate

T
E / / pI 4 6p dxdt < O,
0 D

where the constant C' is independent of €.

Proof. The proof is similar to that of [32]. Applying the It6 formula to the function
B, Tlpe = (pnl) = [ posc- Tlp. = (oo}l
D
Then
/ petie - T [pe — (po)m)dx
D
t
= / / Pl 5P dads +/ mo - T po — (Po)m)|dx
o Jo D

t
- ,ul/ / Vue : VT pe — (po)mldzds
0o Jp
t
— (1 + pi2) / / divue - [pe = (po)m]dxds
o Jp
t t
+/ /p6u€®u€ : VT[pE—(po)m]dxds—/ (po)m/ p? 4 6plduds
0o Jp 0 D
t t
—e / / VeV pe - Tlpe — (po)mldads — / / pet. - Tldiv(peu,)]deds
+€/ /peu6 T[Ap] dxds—// Q¢ VTpe — (po)m]drds

_/0 /D(VQEQVQe — F(Qo)I3) : VT [pe — (po)m]|dxds
- [ [(@20. - 200 VTlp. ~ ()aldods
0
€ ey Pelley, Cey \e) * e — mddW
+/0/Dpf(p Pelle, Ces Qc) - Tpe — (po)m]da
:/ /pz+1+6pﬁ+1dxds+Jo+/ J1+---+J10ds+/ JidW. (2.3.10)
0 D

0 0

Taking expectation on both sides of (2.3.10), rearranging and to obtain

t
]E/ /pz“—i—épﬁ“dxds
o Jp

10 t
=-E <J0 + Z/ Jids) + E/ petie - T [pe — (po)mldz, (2.3.11)
i=1 70 D
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in fact E fot J11dWW = 0, since the process f(f J11dWV is a square integrable martingale. Indeed,
using condition (2.1.1)

/0 </ peapeue, Ce, Qe) . T[pE — (po)m]ekdx> ds

k>1

< CE(IT[pe = (p0)m)l| Fos (j0.17x0) X

//Zpe|f Pey Pelle, Ce, e)€k|2dx/ped$d5>
D D

k>1

< CE|Tpe — (po)m ]H%OO(OT}XD)

+CE(/D ) (//DZppre,pEue,ce, ekl da:ds)

k>1

< CE||T[pe = (po)m]l 1o (0.11xD)
¢ 4
+Co PR </ / Pl + |/ peue* + 2 + \Qfdxds) < C(0).
0 Jp

The desired result follows once each term on the right hand side of (2.3.11) can be controlled.

By the Holder inequality, (2.3.2) and (2.3.9), we obtain

t
‘—]E/ Jg + Jﬁds
0

T
< CE [ ol g5, Nl asllo = (ol

Hllpell o luell o TTdiv(peue)]ll 2s dt

T
< CE [ ol g, 19wl = (o)l

te[0,T LA+l

T
SCE(sup lpetcll 28 [lpe = (po)mHm/ HVueHmdt) <C.
0

Again, using the Holder inequality, the Sobolev embedding H'*(D) < L>(D) for p > 3 and

(2.3.8)
t T
‘E/ —Jsds| < eCE/ Vel 2|V pel| L2 T Toe = (po)m]ll oot
0 0

T
< «CE / 190l 2 [V 2T (o) st
0

< eCE | sup |lpe|lrs

te[0,7)

T T
E/ ||w€||izth/ |V pel|72dt < C.
0 0
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Moreover, by the bounds (2.3.3), (2.3.4), (2.3.6), (2.3.7), we have
t
‘E/ —J7d8
0
t
‘E/ —Jgds
0

T
< cCE / IVudlzz lodle IV pdlede < €.
0

T
< CE [ edolQuls 9T loc = (ool
T 2
sup (1l + = (ool [ B ([ et ) < c.
t€[0,7] 0

T
<CE [ IVQIE I Tl = (ol 5 + (11

<CE

t
‘E/ —JgdS
0

+1Qellz6)lloe = (po)umll 2dt

T
< CE/O 1QcllZr2 1o = (po)mllzs + (1 + 1Qellzo)Ioe — (po)ml Lsdt

2
< CE | sup [|pe — (po)ml|7s
te[0,7

T
E ( [ 8@+ o+ ||@e||i6>dt)
0

<C,

T
< (JE/O |Qell L | AQel| 22| VT [pe — (po)mlll Lodt

t
']E/ —Jl()dS
0

< CE

sup ||pe - (pO)m”iB] X

te(0,7
T
E ( / ||AQE||%2dt)
0

2

E sup, 1Qcll

te[0,T

<C,

where C' is independent of €. The proof is complete. n

2.3.1 Compactness argument

In order to acquire the compactness of the approximate sequence, we implement the

same procedures as the first level approximation. Define the path space
X=X, x&X, xX,, x X, x Xy x Xy,
where
X, = L>(0,T; H*(D)) N L (0, T; L**1(D)),
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and X, X,,, X;, Xg, Xy are the same as the definition in subsection 2.2.2. Let X =X x

B+1

L.” ((0,T)xD). The set of probability measures {v} . is constructed similarly to (2.2.27).

We also have the following result.

Proposition 2.3.2. There exists new probability space (Q, F, ]TD), subsequence {v* }r>1 (still

denote by €) and X -valued measurable random variables

(les pes Pelies Y+ 0p2, 6, Qe W) and. (i, p, pit, 7 + 077, 6,Q, W),

such that

(ae,pg,ﬁeae,ée,@,m) — (@, p, pu,¢,Q, W), P a.s. (2.3.12)

in the topology of X, moreover, we have P a.s.

B+1

P+ 68 — 57 +6p% in L, ((0,T) x D), (2.3.13)

and

ED {<a67 ﬁe? ﬁﬁa(f?ﬁz _'_ 5ﬁ§7 667 @67 Wjﬁ) 6 .} = Ve(’)?

B{(@p.pa 77 +077,6,Q W) € -} = v(),

where v is a Radon measure and W€ s cylindrical Wiener process, relative to the filtration

Fe generated by the completion of o(iic(s), pe(s), &(s), Qe(s), We(s); s <t). In addition,
pediviie — pedivai, weakly in LP(CQ; L2(0, T; L5%2)), (2.3.14)
pelnp. — poin p. weakly star in LP(C; L2(0,T; L#2)). (2.3.15)

Furthermore, the process (e, Pe, Pelic, Ce, Q., VA\EG) also satisfies the system (2.3.1) and shares

the uniform bounds with (2.5.2)-(2.3.7).

Lemma 2.3.3. The sequence of probability measures {v}e~o is tight on path space X.
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Proof. In order not to repeat the trivial procedures, we mainly show limited parts that are

different from the Lemma 2.2.5. Decompose p.u. = X+ Y, where

t
Xe=mo+ / —div(peue @ ue) = V(pl +0p7) + pnAuc + (11 + po) V(divuy)
0
+V ' (F(QE)IB - er ®© VQE) + \E (QeAQe - AQer)
t
LotV - (2Qu)ds + / Dol (pes pettes ¢ Q)AW,
0

and

t
= e/ Vpe - Vuds.
0

For the process X,, one can treat it by the same argument as Lemma 2.2.5 Claim 1,
obtaining E|| X ()| caom.m-+m)) < C for any a € [0,1),k > 2.

For process Y., Using the bound (2.3.4), we have P a.s.

t t 3 t 3
/ / €V pe - Vu|drds < /e (/ HVUJ!%zdS) (/ ||\/EVpeHizds)
0 JD 0 0

<Cye—=0, ase— 0,

which leads to Y, — 0 in C([0,T]; L'(D)), P a.s. Note that, the convergence a.s. implies the

convergence in distribution, therefore, we have
Yo =0, in O([0,T]; L'(D)),

in the sense of distribution. The Sobolev compactness embedding L*(D) — H*(D) for k >
3, implies that there exists a compact set X C C([0,T]; H*(D)) such that P(Y, C K°) < ¢
We obtain the law of set {I?o (Y,)~!} is tight on space C([0,T]; H=*(D)).

Define the set K = Ky N (K3 4 K), where

28
K= {oe IO ol s }

Ko = {p € C*([0,T]; H*(D)) : ||90||Ca([0T] m-rp) < R}
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Then, by the Aubin-Lions lemma A.0.1, we can get that the set I is relatively compact in
C([0,T); HY(D)). Using the bound (2.3.2) and the Chebyshev inequality, to conclude

) < Pl > R + P (1Xlsgoyn 4oy > )

28
T;LA+1(D))

C
‘I‘P(YC’C) E'FE.

Thus, we obtain the tightness of {1, }c~0 on path space X,,,.

The tightness of {v¢}eso on path space LI(0,T; LO+1(D)) and Po (57 +6p2)~" on path
B11
E

space Ly ([0,T]x D) is a result of the bound (2.3.3) and the Banach-Alagolu theorem using

the same argument as Lemma 2.2.5 Claim 2. O

Proof of Proposition 2.3.2. The proofs follow the same manner as Proposition 2.2.4. The
convergence results (2.3.14), (2.3.15) follows from the bounds (2.3.2)-(2.3.5) after using the
Banach-Alagolu theorem, see also [81, Proposition 6.3].

2.3.2 Taking the limit for the artificial viscosity coefficient goes to zero

Now, we can pass to the limit ¢ — 0 for fixed §, to obtain:

Proposition 2.3.4. For all ¢ € C>(D),¢ € C*(D),p € C*(D),yp € C*(D), t € [0,T],
there exist pressure p7 + 5? and an Ly(H; H=Y)-valued martingale W such that the process
(p,a, ¢, Q. W) satisfies equations, P

/D &(t)tdz = / 0)lda — / / i V)é - ldrds — / / Ve - Vidzds,

/ A(typdz = / 0)pdz + / / pii - Vipdads,

/ pit) pdz = / i (0)pda + / / pii ® 1) - Vodads — / / 1 ViV pdads
- / / (1 + pio)divaidivedzds + / /D ﬁ+5ﬁ_ﬁ) divédzds

/ / ( Q)ls — VO © VG) + QA0 — AG))
+a*(E2Q))V¢dxds+ / oW dz,
D

[ @tz = | Goypas— | t [ (@93 + G~ 5G)pdads
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+/0t/1)F¢H(@,é)dxds.

Proof. The argument is similar to that one in subsection 3.3. Note that due to the lack of
strong convergence of density, we can not identify the specific form of stochastic term, but

we could verify that W is still a martingale process, see [43]. O

In order to identify the nonlinear term of p (the pressure term and the stochastic term),
the strong convergence of density is necessary, which can be acquired by two steps following
the idea of [32, 59].

Step 1. Weak convergence of the effective viscous flux.
The quantity p7 + 6p°® — (po + 2u1)divu usually called the effective viscous flux which

enjoys many remarkable properties, see [41, 59]. Introduce the operator A
Alfl =VAT, Alfl =007,

with the following properties:

divA[f] = f, AA[f] = VT, (2.3.16)
LALf oy < CIlf | ooy, for all p > 1, (2.3.17)
[A[flll 2Dy < Clf||lLe(p), for all p > 3. (2.3.18)

Note that p., . could be extended to zero outside D satisfying
Oipe + div(petie) = ediv(1pVpe),

in the weak sense, where 1p stands for the indicator function. We could also do the zero
extension to limit function p, @ to R?* which satisfies the equation (2.3.1), in the weak sense,
for further detail see [32, 22, 84].

Using the Ito formula to functions
f1(Pe, petic) = / Pele - ,J}qu[ﬁﬁ]dx
D
and

F2(p, i) = /D b - PHAl]dx.

47



where the functions 1) € C°(0,T), ¢ € C(D)., taking expectation, to obtain

and

/ / O(PIT 4+ 657 — (g + 2u1)divi,) - pedads
= —E/ / O(p7 + 677)0:0 As[peldwds
+(u1+u2)E/0 1;(5)/Ddivﬁ€8¢¢¢4i[ﬁe]dxds
t

. / 006) [ 0,6 ApJdads
~iE [ 0s) [ @0,60Alpldads + i [ 3(s) [ aiodndads
—cE / D(s) / dpeit Ai[div(1pVp. ) dads

_n o
+E [ 00s) [ 900 pit) - pinios Al dads
—E/O ¢s(s)/73¢ﬁeﬂéAi[ﬁe}da:ds—E/o 1/1(3)/D uujajgzﬁA [pe]dzds
+eE / U(s) / G, 0; peAs|pe)dads

N i
+E/0 @D(s)/pa*(éf@e) : (oVA[p] + Vo ® A[p.])dxds
+E /0 U(s) /D (F(QI)I; — VQ. ® VQ.) : (6VA[p] + Vo ® A[p])dzds

E / 0(s) / (G.AD. — £G.0.) - (GV AR + V6 @ Alp])dads
0 D
= T TS,

/ / (7 + 67)5 — B(un + 2u1)div - pdds
[ ”7 =B\A.h A5
i / 5 /D O(F + 67P)0ub Adlpldads
E [ o divad;d.A;| pldxd
o+ ) / d(s) /D iv0,3A f]drds
0 D

i [ i0s) [ @060 Aldeds + wE [ 0Gs) [ aodpdads
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VE [0 [ 00 0.A ) - 50, s

-E /0 t Uy(s) /D opt' A;[pldzds — E /0 t U(s) /D P 9;0.A; pldxds
VE [ 06) [ (@) GV A+ V9 Alfdds

+E [ 06) [P - V30 V@) (GVADI+ V90 Alfdads

B / d(s) /D QLD — AQD) - (FVAR) + Vo © Al))dads
= Jl + e 4 J11, (2320)

here the stochastic integral is also cancelled resulting from the property of martingale.

Our main goal is to get for all ¢t € [0, T]

hmE/ / G 4 0P+ — (g + 2u)divii, - pe)dzds
= IE/ / O(77 4 67°)p — d(pg + 2pu1)divii - pdzxds, (2.3.21)

it suffices to show that all right hand side terms of (2.3.19) converges to the right hand side
terms of (2.3.20). Denote Ji; = Ji; , + Ji; 4, Jo = Jou + Jop, decompose

Ji1a— Joa=E /0 t (s) /D 0" (E2Qc — &Q) : oV Alp]dwds
+E /0 tiz(s) /D o*(3Q) : ¢V A[pe — pldeds = Jrq + Toa,
Jery— Jop = E /0 "d(s) /D (20, — 20) : Vo © Alj.]dds
+E /0 t U(s) /D o*(3Q) : Vo @ Alp. — pldrds = Ty + Top
By Proposition 2.3.2(2.3.13) and the bounds (2.3.6), (2.3.7), we have

Joa — 0, as e — 0. (2.3.22)

J1.. can be handled as follows, by Proposition 2.3.2(2.3.12), the bounds (2.3.3), (2.3.6),
(2.3.7) and the assumption 5 > 6

Tl < 'fﬁ*: [ i) [ 0@~ v Aplasas
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n ‘IE / ) [0 @@ - @) b9 Aplaras

t
< o*CE / 16 — ell 1, &l o1 Oell s 1l ods
0
t
+o"CE / 1ol el 10 — Ollgo |l odls
0

ot . - ~
< o*CE / 1é. — &2 + 0. — Q|%dsE
0

sup ([|5cl[7s + 118 Qe, VQ|[72)
t€[0,T]
. t
X IE/ |Cc, El|76ds — 0, as e — 0. (2.3.23)
0

In addition, we could get lim¢ . Jf, , = Jop, then it follows lim. o Jf; = Jo using (2.3.22)

and (2.3.23). Similarly, decompose

=E /0 i (s) /D (F(Q)L; — F(Q)L; — (VO. © VO, — VQ & VQ)) : $V.A[p]dxds
+E / ) (s) / (F(Q)ls — VQ ® VQ) : 9VA[pc — pldxds = Ty o + Ts.q.
0 D
Due to the same arguments as (2.3.22) and (2.3.23), as € — 0
Tro — 0, (2.3.24)
mal < [E [0 (9@~ @) 0 ¥a. - ¥G0 V(G- Q) v A
0 D

o~ t ~ o~ o~ ~
< CE / IVGe, VO 0ol Ge = Gl VA o ds
0

< CE | sup ||l | E / 10, — OIPdsE / IV0. VQ|Zuds 0, (2.3.25)
te[0,7) 0 0
& / a(s) / (F(O.) — F(O))s : 3V Alpldwds — 0. (2.3.26)
0 D

Combining the convergence (2.3.24)-(2.3.26), we get lim. 0 Ji;, = Jioe. Using similar
estimate, we could get lime o Jiy, = Ji0p, it follows lim o Ji, = Jio.

Denote Ji = Ji3 , + Ji34, J11 = Ji1,a + J11, decompose

Jizp — Jiip = E/o W (s) /D(QGAQE ~AQQ.) : Vo (Alp] — Alp))deds
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I E / 3(s) /D (G~ O)AD. — MDD~ Q) : Vo ® Aljlduds
I E / B(s) /D (G.00. - Q) — MG, - 0)0.) : Vo © Ajpldeds. (2.3.27)

Using Proposition 2.3.2(2.3.12), the bound (2.3.7), the estimate (2.3.18) and the Holder
inequality, we deduce that the right hand terms of (2.3.27) go to 0, (similar to (2.3.25)).

Since the matrices @6, @ are symmetric, hence @EA@E — A@eée, @A@ — A@@ are skew-
symmetric, and note that VA[p], VA[p] are symmetric, to conclude that Ji;,, Ji1a = 0.
(The special structure of ()-tensor makes the weak convergence possible, otherwise we are
not able to handle the high-order nonlinear term).

We also have Jj; — 0 as e = 0. For J§, as e — 0
- t
|51 < \/ECE/ VeV pell 2l el o | el o s
0

< VeCE

sup || pcl| s
te[0,T)

< Cye—0.

B [ VeV dsE [ Viiads

The proofs of convergence of rest terms are standard, we refer the readers to [43, 84, 81].
Finally, we obtain the convergence result (2.3.21).
Step 2. Strong convergence of density.

In this step, we could show the strong convergence of density using the re-normalized
mass equation and the Minty idea, for further details see [32].

Now we can pass the limit to identify the stochastic term and nonlinear pressure term

using the same argument as (2.2.48), obtaining the following result,

Proposition 2.3.5. For f > max{6,~v}, 0 > 0 and if conditions (2.1.1), (2.1.2) hold. There
exists a global weak martingale solution to the modified system (2.5.1).
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2.4 Vanishing Artificial Pressure

In this section, we shall pass the artificial pressure coefficient 6 — 0 to establish the

Theorem 2.1.2. Also, the following uniform bounds hold for process (ps, us, cs, Qs)

ps € LP(Q; L=(0,T; L"(D))), (2.4.1)
Vops € LP(Q; L®(0,T; L°(D))), (2.4.2)
us € LP(Q; L*(0, T; H'(D))), (2.4.3)
Vpsus € LP(Q; L™=(0,T; L*(D))), (2.4.4)
cs € LP(; L=(0,T; L*(D)) N L*(0,T; H'(D))), (2.4.5)
Qs € LP(Q; L>(0,T; H' (D)) N L*(0, T; H*(D))). (2.4.6)

Lemma 2.4.1. The approximate sequence ps satisfies the following estimate

T
E / / oyt 4 0p dadt < C,
0 D

where the constant C' is independent of 6 and the constant 6 € (O, min {@,% )

Proof. The proof follows the same line as Lemma 2.3.1. By the Di Perna-Lions commutator

lemmas, we infer that the following equation holds in the weak sense
d [p) — (pD)m] + div(pjus)dt + [(0 — 1)pidivus — (pjdivus),] dt =0, Pas.  (2.4.7)
Then, applying the operator 7 on both sides of (2.4.7), to obtain
AT 108 — (pD)m] + TIdiv(pdus)]dt + (0 — V)T [pldivus — (pidivus),,)dt = 0. (2.4.8)

Applying the Ité product formula to function ®(psus, p§) = [, psus - T1p§ — (03)mldx, and

taking expectation, we have
B [ psus I — (¢)nlds
D
t t
=E / pit 4 6py P dads — / (05)m / ol + oplduds
0o Jp 0 D

t
+E / mos - Tlpos — (00,5)mldz — (1 + o) E / / divus - pydads
D 0 D
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—HE/ / pstis @ us : VT[p% — (08)m]dzds
—ulE/ /VU5 VTIPS — (p%)m]dxds
—i—E/ /pauﬂ'dlv psus)|drds — E //0*0(2;@5 VTIp) — (p2)m]dxds
+(1 — 9)E/0 /D,ogu(;T[,ogdivu(; — (pidivug) ] drds
B [ [ (Vs © Vs~ F(Qu)la) s VTIA ~ (48 ldods
0o Jp
-E / / (Qs AQs — ANQsQs) - VT 0l — (p})m]dxds.
0o Jp

Our goal is to get the bound of E fo I oyt + 607 dads, which can be achieved after all
other terms get controlled. Here we just give a limit amount of details.

For § < 2222 the bounds (2.4.1), (2.4.3), the Hélder inequality and the Sobolev embed-
ding H' S (D) — LW(D) imply

¢
’E/ /pgu(;T[pgdivu(;]dxds
0 Jp

t
< CE [ sl uslloo | Tlives] e, s
0

[ t
< CE | sup lpsler [ usellofelivus| 4d]
| t€[0,7] 0 L™

t
< CE | sup ||ps / ws| o ||divus|| 2 || o2 s+ ds
tE[O’T]H 72 i [[us | o] lzzllpsll | o,

t
< CE | sup Hpal!mllpﬂliw/ HuéHdeivwllmclS] <C,
| t€(0,7] 0

where C' is independent of 6. For § < I, using the Holder inequality and the bounds (2.4.1),
(2.4.6), to get

t
‘E/ /U*C§Q5 : VT p8]dxds
o Jo

t
< CE / sl Qs 5|51 Laods
0

t 2
<CE (/ Hm@m) E
0

sup ([[Qsllze + llesli) | < C.

t€[0,T]
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‘E/O /D(VQa © VQs — F(Qo)ls) : VT [p§]dxds

t
< CE / (19 Qsll 2 IV Qsle + 1 Qsllzo )l ods
0

< CE | sup (|QslI3n + llpsl|S)

te[0,7]

‘]E/O /D(Q(;AQ(; — AQ(;Q(g) : VT[pg]dxds

t
E [ IVQlids < C.
0

t
< CE / 1Qs 2511 AQll 12l ods
0

t
< CE | sup (1Qsllte +lIosl2) | E [ 16@ulRads < .
t€[0,T] 0
where C' is independent of §. This completes the proof. n

2.4.1 Compactness argument
Define the cut off functions
z
Ti(z) = kT(E)’ k=1,2,3---

where T'(z) is a smooth concave function on R such that T'(z) = z if z < 1 and T'(2) = 2 if

z > 3. The definition of Tj(z) implies that

z, 2 <k,
Te(2) = (2.4.9)
2k, z > 3k.

Here, we define the path space X; = X, x X, x X, x X, x Xy x &y, where
X, = L*(0,T: H *(D)) N L*(0,T: L"**(D)),

and X, X,,, X, Xo, Xy are same as the definition in subsection 3.2. Let X = &} x
M

Cw([0,T]; LP(D)) x L2(0,T; L*(D)) x Ly" ((0,T) x D) for all 1 < p < oo. Similarly, we

can define the set of probability measures {°}s-o as before. Following the same line as

previous section to build the compactness result,
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Proposition 2.4.2. There exists a new probability space ((NZ, ]?, IAPS), a subsequence of {1°}s=o

(still denoted by 1°) and X -valued measurable random variables
(5, Ps. Pstis, 73 0, Qs TulPs), - (PsTi(ps) — Telpa) diviig, W),
and (ﬂa ﬁa ﬁav 67 @7 fl,ka TZ,k? W) such that

P {(ﬂ(s,ﬁ&ﬁ&fba,ﬁg,éa,@s,ﬂ(ﬁg% (55T (Bs) — Tu(ps))divais, Ws) € } =°(),

P {(ﬂa ﬁa ﬁav P*> 67 @a Tl,ka TQ,k? W) S } = V(')a

where v is a Radon measure and VNV5 1s cylindrical Wiener process, relative to the filtration
FJ generated by the completion of o(is(s), ps(s), E(s), Qs(s), Ws(s); s < t), and the following
convergence results hold, P a.s.

(iis, ps, Pstis, s, Qs, Ws) — (@i, p, pli, & Q, W), (2.4.10)

in the topology of X1, in addition

y+6
v

gy — p*in Ly, ((0,T) x D), (2.4.11)
Ti(ps) = Tip in Cy([0,T]; LP(D)), for all 1 < p < oo, (2.4.12)
(75T} (ps) — Tio(ps))diviig — Ty, in L2(0,T; L*(D)). (2.4.13)

Moreover, the bounds (2.4.1)-(2.4.6) still hold for (iis, ps, psiis, s, Qs) uniformly in 6.

Lemma 2.4.3. The set of induced laws {v°}5-¢ is tight on path space X .
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Proof. Observe that the argument used in Lemma 2.3.3 can be adopted. Decompose psus =

X5+ Ys, where

t
Xs=mos + / —div(psus ®@ us) — Vpi + pAus + (p1 + po) V(divus)
0
+V - (F(Qs)Is = VQ5 ©VQs) + V- (Qs AQs — AQ5Qs)
t
+0*V - (¢5Qs)ds +/ psf(ps, psis, cs, Qs)dWV,
0

and

t
Y = 5/ Vpsds.
0

Also, the process X has the bound

1 )

E|| Xs()l|ceo,r);1-1(py) < C for any a € [0, 5), [ > 5
For the process Y, using the bound (2.4.2), we have as § — 0
5p = 0in L5 ((0,T) x D), P as.

which implies

t
/ 0V psds
0

T
< / 10V ps|| _, sredt — 0, as 6 — 0, P a.s.
0 H P

Y, = su
Il g2, = S

-1, 846
0,T);H te[0,7) H VB

this convergence gives Y5 — 0 in C([0,7], H _1’%(23)) in the sense of distribution.

On the other hand, using the boundness of T} and (5T} (p5) — Tr(fs))diviis on spaces
C([0,T); LP(D)) and L*(0,T; L*(D)) respectively, we can show the sequence of probabil-
ity measures P o (Ty(ps))™! and P o ((psT}(ps) — Th(ps))diviis)~! are tight on path spaces
Cy([0,T]; LP(D)) and L2(0,T;L*(D)), see Claim 2, Lemma 2.2.5. This completes the

proof. O

Proof of Proposition 2.4.2. The proof follows the same line of the Proposition 2.3.2.
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2.4.2 Passing limit for the artificial pressure coefficient goes to zero

Note that,
ot . ot 5
B [ (670, Vo)ds <575 |VollnE [ [ 5755 gduds
0 0 D

. t
< C575 | Vo o / / 5P duds
0 D

< 575 || V|| — 0, as d — 0,

this convergence result together with Proposition 2.4.2, using the same argument as sub-
—~ 0
section 3.3, to conclude that there exists an Ly(H, H!)-valued process W and L5 -valued

pressure p* such that (a, pu, ¢, CNQ, W) satisfies the momentum equation P as.

O(pu) + div(pu ® u) + Vp*
— Al + (p1 + ) V(diva) + V - (F(Q)Is — VQ ® VQ)
. o ai
£ (@AQ - £0Q) +0°V - Q) + (2.4.14)
in the weak sense.

The proof of Theorem 2.1.2 will be completed once we build the strong convergence of
density, to identify the pressure term and the stochastic term in equation (2.4.14). Following
the idea of [32, 59|, the proof of strong convergence of density shall be obtained by three
steps.

Step 1. Weak continuity of the effective viscous flow.

Choosing b = Ty(ps) in the re-normalized continuity equation, it holds P a.s. in the weak

sense
dT3u(ps) + div(Ti(ps)iis)dt + (TL(ps)ps — Th(s))divisgdt = 0. (2.4.15)
In addition, (2.4.12) implies

Ti(ps) — T in C([0,T); HH(D)). (2.4.16)
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Then, combining (2.4.10), (2.4.16) and (2.4.13), letting § — 0 in (2.4.15), to obtain that
AT}y, + div(Typi)dt + Ty dt = 0, (2.4.17)
holds P a.s. in the weak sense. We aim to get

%m(l)E/ / (b (po + 2p1)divag) Ty (ps ) dxdt
_>
= E/ / d(p* — (pp + 2,u1)dlvu)T1 rdxdt, (2.4.18)

where the functions 1, ¢ are the same as in (2.3.21). The proof of (2.4.18) is very similar to
that of the argument (2.3.21). Here, we skip it.
Step 2. Re-normalized solution.

Define the oscillations defect measure related to the family {gs} by

T
O411]ps — p|(D) = sup (lim supE/ / Ty (ps) — Tk(ﬁ)\wldxdt) .
o Jp

k>1 6—0+

Lemma 2.4.4.[84, Lemma 5.3] There exists a constant C' independent of k such that
O 1lfs = A(D) < C.

With the help of the Lemma 2.4.4, we may show that the limit (5, @) satisfies the renor-

malized continuity equation using the same argument as Lemma 5.4 in [84]
0:b(p) + div(b(p)a) + (V' (p)p — b(p))diva = 0, (2.4.19)

P a.s. in the weak sense.
Step 3. The strong convergence of density.
The proof is also standard, we refer the reader to [32, 84, 81, 43| for the deterministic

and stochastic case. The proof of Theorem 2.1.2 is completed.
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3.0 Local Strong Pathwise Solution to Liquid Crystals

Liquid crystal is a kind of material whose mechanical properties and symmetry properties
are intermediate between those of a liquid and those of a crystal. The complex structure
of liquid crystals made it the ideal material for the study of topological defects. As a
result, several mathematical models have been brought out to describe the dynamics of a
liquid crystal. For example, in [37], the Ericksen-Leslie-Parodi system has been used to
model the flow of liquid crystals, based on the fact that a nematic flow is very similar to a
conventional liquid with molecules of similar size. The challenge is, the flow would disturb
the alignment, thus a new flow in the nematic is induced. In order to analyze the coupling
between orientation and flow, a macroscopic approach has been used, and a direction field
d with unit length is adopted to describe the local state of alignment. However, the model
is restricted to an uniaxial order parameter field of constant magnitude.

In an effort to describe the motion of biaxial liquid crystals, a tensor order parameter ()
replacing the unit vector d was brought up in [6, 37] to describe the primary and secondary
directions of nematic alignments along with variations in the degree of nematic order, which
reflects better the properties of nematic liquid crystals and can be modeled by the Navier-
Stokes equations governing the fluid velocity coupled with a parabolic equation of @Q)-tensor;

see [3, 4, 64] for further background discussions. The compressible case we focus on reads as

dp + div,(pu)dt = 0,

d(pu) + div,(pu ® u)dt + V,pdt
{ (3.0.1)

= Ludt — div,(LV,.Q ® V.Q — F(Q)Iz)dt + div,(QH(Q) — H(Q)Q)dt,

| dQ +u- V,Qdt — (0Q — QO)dt = TH(Q)dt,

where p, u denote the density, and the flow velocity, respectively; p(p) = Ap? stands for the

pressure with the adiabatic exponent v > 1, A > 0 is the squared reciprocal of the Mach

29



number. The nematic tensor order parameter () is a traceless and 3 x 3 symmetric matrix.

Furthermore, £ stands for the Lamé operator
Lu =vAu+ (v+ \)Vdiv,u,

where v > 0, A > 0 are shear viscosity and bulk viscosity coefficient of the fluid, respectively.

The term V,Q ©® V,Q stands for the 3 x 3 matrix with its (i, j)-th entry defined by

3
(V.Q O V,Q)i = Z 0;Q110;Qut,

k=1
and I3 stands for the 3 x 3 identity matrix. Define the free energy density of the director
field F(Q)

F(Q) = SIV.QF + 51(@) — 2(Q¥) + (@),

and denote

I'H(Q) =TLAQ+T (—aQ +b {QQ — %”tr(cf)] — cQtr(QQ)) = TLAQ + K(Q).

The coefficients in the formula are elastic constants: L >0, >0, a € R, b > 0 and ¢ > 0,

Vyu—Vgeul
2

which are dependent on the material. Finally © = is the skew-symmetric part of

the rate of strain tensor. From the specific form K(Q), we remark that

QH(Q) - H(Q)Q = L(QAQ — AQQ).

The PDEs perturbed randomly are considered as a primary tool in the modeling of un-
certainty, especially while describing fundamental phenomenon in physics, climate dynamics,
communication systems, nanocomposites and gene regulation systems. Hence, the study of

the well-posedness and dynamical behaviour of PDEs subject to the noise which is largely
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applied to the theoretical and practical areas has drawn a lot of attention. Here, we consider

the system (3.0.1) driven by a multiplicative noise:

(

dp + div,(pu)dt = 0,
d(pu) + div,(pu @ u)dt + AV, pdt
= Ludt — div,(LV,Q © V,Q — F(Q)I3)dt + Ldiv,(QAQ — AQQ)dt (3.0.2)
+G(p, pu)dW,

dQ +u- V,Qdt — (0Q — QO)dt = TH(Q)dt,

where W is a cylindrical Wiener process which will be introduced later. The system is

equipped with the initial data

p(0,2) = po(x), u(0,z)=up(z), Q0,z)=Qo(x), (3.0.3)
and the periodic boundary, where each period is a cube T C R? defined as follows

T = (—7T,7T)|{,ﬂ.’ﬂ.}3. (304)

3.1 Preliminary and Main Result

First, we present some deterministic as well as stochastic preliminaries associated with
system (3.0.2). For each integer s € N, denote W*?(T) as the Sobolev space containing
all the functions having distributional derivatives up to order s, and the derivatives are

integrable in L*(T), endowed with the norm

lulfyae = Y (14 k2)

keZ3

where 1y, is the Fourier coefficients of u. W#?2(T) is an Hilbert space, and for any u, v € W2,

the inner product can be denoted as

(u,v)52 = Z /@?u - Oyvdzx.
T

|| <s

61



For simplicity, we denote the notations || - || as the L?-norm, || ||s as the L>-norm, and||

as the W*P-norm for all 1 < s < 00,1 < p < o0.

Define the inner product between two 3 x 3 matrices M; and M,
(M, My) = / M, : Myda = / (M, M )da,
T T
and S5 C M?3*3 the space of Q-tensor
Se={Q eM™®: Qi =Qy, tr(Q) =0, i,j=1,2,3},

and the norm of a matrix using the Frobenius norm

3
QI = tx(Q%) = ) Qi;Qij-

ij=1

3
Set |02Q* = Y. 0°Q:;0%Qij. The Sobolev space of Q-tensor is defined by

i,j=1
WH(T;55) = Q: T — S, and Y [09Q|* < o0,
la|<s

endowed with the norm

QI 2rs) = 1QI2 = Y 197Q11*.

laf<s

'||s,p

To deal with the estimate of the nonlinear terms in the equations, we present the following

lemmas that involves commutator and Moser estimates. The proof of these lemmas can be

found in [51, 63].

Lemma 3.1.1. For u,v € W**(T), s > %l + 1, d = 2,3 is the dimension of space, it holds

Y 15w Voo —u- V.0500] < CUIVaullol[vllsz + Vet ]loollulls2),

0<||<s
and

[uvlls2 < Cllullool[vlls.2 + [[0]lool[eels.2),

for some positive constant C' = C(s,T) independent of u and v.
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Lemma 3.1.2. Let f be a s-order continuously differentiable function on the neighborhood

of compact set G = range[u] and u € W**(T) N C(T), it holds

105 f ()]l < CllO.f]

o1 llulls = 185 ull,

foralla e NV 1 < |a] < s.

The following result is crucial to handle the highest-order derivative terms in the mo-

mentum and ()-tensor equations.

Lemma 3.1.3. Assume that Q and Q' are two 3 x 3 symmetric matrices, and © = %(Vzu—

V.ul), as Vyu is also a 3 x 3 matriz, and (Vu);; = duj, f(r) is a scalar function. Then

(f(M(OQ —Q'O),AQ) + (f(NQAQ — AQQR'), V,uT) = 0.

Proof. In a similar way to [21, Lemma A.1], using the fact that tr(M;Ms;) = tr(M;M,) and

Q',Q,0 + V, ul are symmetric, f(r) is scalar function, we get

(f(r)(O0Q = Q'©),AQ) + (f(N(Q'AQ - AQQ'), V,u')
= (f(N(Q'AQ - AQQ), 0) + (f(N(Q'AQ — AQQ), V,u')
= (f(N(Q'AQ - AQQY),0 +V,u') =0,

we finish the proof. O

Next, we introduce the following fractional-order Sobolev space with respect to time ¢,

since noise term is only Hoélder’s continuous of order strictly less than % in time.

For any fixed p > 1 and a € (0,1) we define

T —
Wor(0,T; X) = {v e 7(0,T; X) / / lot) — v tz)”thldtg < oo},

|t1 _ t2|1+0‘

endowed with the norm

T o) = v(t) %
oltvenarg = [ Ioigars [ [ IO g g,

for any separable Hilbert space X. If we take a = 1, then

d
Whe(0,T; X) i= {v e LP(0,T; X) : d—: € LP(O,T;X)} ,
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we could see that the space returns to the classical Sobolev space endowed with the usual

norm
p

T
dv
olorn = [ o+ | 50|
0 X

Note that for v € (0,1), WP(0,T; X) is a subspace of W*?(0,T; X).
For any a < 3 — %, it holds

WP2(0,T; L*(T)) — C*([0,T]; L*(T)). (3.1.3)

Let § := (2, F,{Fi}i>0,P,W) be a fixed stochastic basis and (€2, F,P) be a complete
probability space. Let W be a Wiener process defined on an Hilbert space 4, which is adapted
to the complete, right continuous filtration {F;}i>0. If {ex}r>1 is a complete orthonormal
basis of 4, then W can be written formally as the expansion W(t,w) = >, erfi(t,w)
where {0 }r>1 is a sequence of independent standard one-dimensional Brownian motions.

Define an auxiliary space $y D U by

o
ﬂoz{v:Zakek: k—]2“<oo},

k>1 k>1

with the norm [[v[|g, = 37,5, 2—% Note that the embedding of ${ — {, is Hilbert-Schmidt.
We also have that W € C([0,00), ) almost surely, see [75].

Now considering another separable Hilbert space X and let Lo(il, X') be the set of all
Hilbert-Schmidt operators S : 4 — X with the norm |||,y x) = djs1 [Sexll%- For a
predictable process G € L*(Q; L2 ([0,00), Lo(4, X))) by taking Gy = Gey, one can define

the stochastic integral

t t t
M, ::/ GdW:Z/ Gekdﬁk:Z/ Grdpy,
0 L 0 k 0

which is an X-valued square integrable martingale, and the Burkholder-Davis-Gundy in-

t p T 2
E(Sup /de )gcpE </ HGH%z(ﬂ’X)dt) , (3.1.4)
o<t<7 ||./o X 0

for any 1 < p < oo, for more details see [75]. The notation E represents the expectation.

equality holds
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We shall present the main result of this paper. First, we define local strong pathwise
solution. For this type of solution, "strong” means in PDE and probability sense, ”local”

means existence in finite time.

Definition 3.1.4. (Local strong pathwise solution). Let (Q, F, {F; }i>0, P) be a fixed prob-
ability space, W be an F;-cylindrical Wiener process. Then (p,u,@,t) is a local strong
pathwise solution to system (3.0.2) if the following conditions hold

1. tis a strictly positive a.s. F;-stopping time;

2. p, u, Q) are F;-progressively measurable processes, satisfying P a.s.

p(- At) >0, p(- At) € C([0, T]; W**(T)),
u(- At) € L0, T; W*(T,R*)) N L*(0, T; W*H2(T,R?)) n C([0, T]; W 12(T, R?)),
Q- At) € L¥(0,T; WHA(T, Sg)) N L2(0, T; W*2(T, Sg)) N C([0, T; W**(T, S5));
3. foranyt e [0,T], P as.
p(tAt) = po — / div, (pu)dg,
0
_ — [ div, )d (Ap")d Lud
(A D) = pona = [ div & wyde - / o) 5+/ udg
- / diva(LV,Q © V,Q — F(Q)3)de
0
+ / Ldiv,(QAQ — AQQ)dE + / G(p, pu)dW,
0 0
AL tAL tAL
= Qo — - V,Qd 0Q — QO)d TH(Q)dE.
Qe =an- [ wev.aict [ ©@-qej+ [ THQu

We say that the pathwise uniqueness holds: if (p1,u;, @1, 4) and (pg, ug, @2, t2) are two

local strong pathwise solutions of system (3.0.2) with

P{(p1(0), 11(0), Q1(0)) = (p2(0), u2(0), Q2(0))} =

then

P{(pl(tvx)’u1<t7x)vQl(t7x)) = (pg(t,:L‘),u2(t,x),Q2(t,fL‘));Vt € [Oatl At?]} =L
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Definition 3.1.5. (Maximal strong pathwise solution) A maximal pathwise solution is a
quintuple (p,u, @, {7, }n>1,t) such that each (p,u, @, 7,) is a local pathwise solution in the

sense of Definition 3.1.4 and {7, } is an increasing sequence with lim,,_,,, 7, = t and

sup |[u(t)|2.c0 > 1, sup ||Q(t)]|s00 > n, on theset {t<oo}.
t€[0,7n] te[0,75)

From the Definition 3.1.5, we can see that

sup |[u(t)]|2.00 = 00, sup [|Q(t)]|3.00 = 00, on the set {t < co}.
tel0,t) te(0,t)

This means the existence time for the solution is determined by the explosion time of the
W?2>-norm of the velocity and W3*-norm of the Q-tensor.
Throughout the paper, we impose the following assumptions on the noise intensity G:

there exists a constant C' such that for any s > 0,p > 0,
107G, )2 ey < CUloIE oo + [l 0) 10, w2 (3.1.5)
and

107 G (p1, prar) — p3 ' G(pa, p2u2) |17, s my)

< Clllp1, P2l oo + l1ar, wall3 o) llor = p2, w1 — a2, (3.1.6)

where the norm ||u, v||2, = [Ju|2, + [|v]|, for u,v € W2, A typical example for G is

With Ag(z): T — R3*3 a smooth matrix function, and Gy, = Gey. Assumption (3.1.5) will
be used for constructing the a priori estimate, while assumption (3.1.6) will be applied to

identify the limit and establish the uniqueness.

Remark 3.1.6. Set r = %p%. If the initial data ry satisfies some certain assumption,

see Theorem 3.3.2; then the assumptions (3.1.5),(3.1.6) still hold if we replace p by r and
§71G(p,u) by F(r,u) = - G(p(r), plr)u).

Our main result of this paper is below.
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Theorem 3.1.7. Assume s € N satisfies s > %, and the coefficient G satisfies the assump-
tions (3.1.5),(3.1.6), and the initial data (po, vy, Qo) is Fo-measurable random variable, with
values in W2(T) x W2(T;R3) x W*TL2(T; S3), also pg > 0, P a.s.. Then there erists a

unique mazimal strong pathwise solution (p,u,@,t) to system (3.0.2)-(3.0.4) in the sense of

Definition 3.1.5.

3.2 Construction of Truncated Symmetric System

Before the construction of the strong solution, we need to assume first that the vacuum
state does not appear. By doing so, we are able to rewrite the system (3.0.2) into the sym-
metric system following the operation in [11]. To begin with, applying equation (3.0.2)(1),
then equation (3.0.2)(2) can be written into the following form

patu + pu - Vmu + Avxp’y

=Lu — div,(LV,Q ® V,Q — F(Q)I) + Ldiv,(QAQ — AQQ) + G(p, pu)d—W,

dt
as p > 0, divide the above equation by p on both sides, we could have
gu-+u-V,u-+ %Vm/ﬂ
:%Eu — %divx(LVxQ O V.Q —F(Q);) + L%divx(QAQ — AQQ)
+ %G(p, pu)il—vz/. (3.2.1)

The pressure term can be written into a symmetric form:

évxpv — ivxpv—l - Mip%lvxp”;l_
p 71 -1

Considering this, define
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and

D) == (3) T Bl = G0, plr )

Then, the system (3.0.2) can be transformed into

;

dr + (u -Ver + 7Tflrdivxu) dt =0,
du+ (u-Vyu+rV,r)dt
= D(r)(Lu — div,(LV,Q ® V,Q — F(Q)I;) + Ldiv,(QAQ — AQQ))dt  (3.2.2)

+F(r, u)dW,

\dQ + (u-V,Q — 0Q + QO)dt = I'H(Q)dt.

As mentioned in the introduction, we add a cut-off function to render the nonlinear
terms, where the cut-off function depends only on ||ul|2,c0, ||@|l3,00-

Let @ : [0,00) — [0,1] be a C*°-smooth function defined as follows

1, f0<x <R,

0, if x> 2R.

q)R(l') =

Then, define @59 = &% - 0% where % = ®p(||[u|z.00), D% = Pr([|Q|l5.00) and add the cut-off

function in front of nonlinear terms of system (3.2.2), we have

dr + @E’Q (u -V,r + “’Tflrdivxu) dt =0,
du + ®%%(u- Vou + rV,r)dt
= XY D(r)(Lu — div,(LV,Q ® V.Q — F(Q)Is) + Ldiv,(QAQ — AQQ))dt

+OWCR (r, u)dW,

dQ + (- V,Q — 0Q + QO)dt = TLAQdL + PLUK(Q)dt.
(3.2.3)

Remark 3.2.1. In system (3.2.3), we use the same cut-off function ®% in front of the all
nonlinear terms to simplify the notation. Actually, we can replace @;’Q by ®% on the left
hand side of equations (3.2.3)(1)(2) and in front of the stochastic term, replace ®%% by ®%
on the right hand side of equation (3.2.3)(3).

In the following, we mainly discuss the truncated system (3.2.3).

68



3.3 Existence of Strong Martingale Solution

In this section, the main aim is that, proving the existence of a strong martingale solution

to system (3.2.3) which is strong in PDE sense and weak in probability sense if the initial

condition is good enough. To start, we bring in the concept of strong martingale solution.

Definition 3.3.1. (Strong martingale solution) Assume that A is a Borel probability mea-

sure on the space W*2(T) x W*2(T, R?) x W*T12(T, S3) for integer s > I, then the quintuple

((Q, F A Fi}i20,P), 1m0, Q, W)

is a strong martingale solution to the truncated system (3.2.3) equipped with the initial law

A if the following conditions hold

1.

(Q, F,{Fi}+>0,P) is a stochastic basis with a complete right-continuous filtration, W is
a Wiener process relative to the filtration F;;
r, u,Q are F;-progressively measurable processes with values in W#%2(T), W*2(T, R?),

Weth2(T, S3), satisfying
r € L*(Q;C([0,T]; W**(T))), r(t) >0, P as., for all t € [0,T],
u e LA(Q; L0, T; W**(T; R?)) n C([0, T); W*=1(T, RY))),
Q € L(€; L(0, T; WHHH2(T; §3)) N L(0, T; W2(T; S3)) N C([0, T); W2(T; S3)));

the initial law A = P o (19, ug, Qo) *;
for all t € [0,T], P as.

r(t) =r(0) — /t e (u -Vur + 1 rdivxu) dg,
0
() = u0) [ @59 Vot Vo
0
+ / SE9D(r)(Lu — div,(LV,Q © V,Q — F(Q)Is)
0

+ L, (QAQ - 5QQ)E + | BEOB( waw.
0

Q(t) = Q(0) — /0 @‘,‘%’Q(u -V,Q — 0Q + QO)dE + /0 FLAQ + CD;’QIC(Q)dﬁ.
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We state our main result for this section.

Theorem 3.3.2. Assume the initial data (ro,ug, Qo) satisfies
(0. w0, Qo) € LP( W**(T) x W**(T,R?) x W**M*(T, 57)),
forany 1l <p<oo, s> % be the integer, and in addition
1
[Qollrz < B llrollace < B, 70> 50 P oas

for constant R > 0, the coefficient G satisfies assumptions (3.1.5),(3.1.6), then there exists
a strong martingale solution to the system (3.2.3) with the initial law A =P o (ry, ug, Qo) ™"

in the sense of Definition 3.3.1 and we also have
r(t,-) > C(R) >0, P a.s., for all t € [0,T],

where C(R) is a constant depending on R, and

p

T
E | sup (||T(t),u(t)||§72 + ||Q(t>‘|§+12) +/0 q);lz’QHuH?H,z + ||Q||§+2,2dt <C,

te€[0,7
for any T > 0, where C = C(p,s,R,T,T,L,T") is a constant.
Remark 3.3.3. Here, we assume that ||Qo|l12 < R, P a.s. for establishing the Galerkin

approximate solution, which could also be relaxed to general case, see Section 6.

The following part is devoted to proving Theorem 3.3.2 which is divided into three steps.
First, we construct the approximate solution in the finite-dimensional space. Then we get
the uniform estimate of the approximate solution, and show the stochastic compactness.
Next, the existence of the strong martingale solution can be derived from taking the limit of

the approximate system.
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3.3.1 Galerkin approximate system

In this subsection, we construct the Galerkin approximate solution of system (3.2.3).
First, for any smooth functions u, @), the transport equation (3.2.3)(1) would admit a classical
solution r = r[u], and the solution is unique if the initial data rq is given. The solution r[u]
shares the same regularity with the initial data ry. In addition, for certain constant c, we
have, see also [11, Section 3.1]

1 exp(—cRt) < exp(—cRt) inf ro < r(t,-) < exp(cRt)supry < Rexp(cRt),
R vel reT (3.3.1)
|V.r(t, )| < exp(cRt)|V,ro| < Rexp(cRt), for any t € [0,T].

Using the bound (3.3.1), after a simple calculation, yields
ID(r) " 100 + [ D(1)[l1,00 < C(R) exp(cRE). (3.3.2)

In addition, by the mean value theorem, the bound (3.3.1) and Lemmas 3.1.1, 3.1.2, we have

for any s > %l
[1D(r)|ls.2 < C(R, T)||r|s.2; (3.3.3)
and
I1D(r1) = D(ra)|ls2 < C(R, T)lry, rolls2llre — r2fls2- (3.3.4)
Indeed, due to the mean value theorem, there exists some 6 € (0,1) such that

|D(r1) = D(r2)lls,2

H— 07”1+ 1-0)7’2) (7"1—’]“2)

s,2

< C H%(@rl + (1 — 6)7“2)

dD
|71 = 72lls2 + Cllr1 — ralloo HW(GH + (1 —0)ra)

00 s,2

< C(R,T)|r1,72lls2llr1 — 72||s,2-
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Lemma 3.3.4. For any smooth function u € C([0,T]; Xy(T)) and integer s > %, there

exists a unique solution
Q € C([0, T|; W(T, S5)) N L*(0, T; W2(T, S5))
to the initial value problem

Qi+ %% - V,Q — 0Q + QO) = TLAQ + ®%°K(Q),in T x (0,T) 335

Q|t:0 = QQ(.CE) € Ws+1’2(T, Sg’)

Moreover, the mapping
u— Qu] : C([0,T); Xn(T)) — C([0, T); W**H2(T, S5)) N L*(0, T; W***(T, S5)) (3.3.6)

is continuous on a bounded set B € C([0,T]; Xny(T)), where Xy is a finite dimensional space

spanned by {, }N_,, see (3.5.17).

m=1>

Proof. Existence: Step 1. Since the system (3.3.5) is a type of parabolic evolution system,
we are able to establish the existence and uniqueness of finite-dimensional local approximate
solutions (),, using the Galerkin method and the fixed point theorem, for further details,
see [22, 86]. Then, we could extend the local solution to global in time using the following
uniform a priori estimate.

Step 2. Let a be a multi index such that |a| < s. Taking a-order derivative on both
sides of the m-th order finite-dimensional approximate system of (3.3.5), multiplying by
—A0%Qm, then the trace and integrating over T, we get

Ld

2dt
= &Y (0 (- VoQu — OQu + Qu©), 951 Q1)

+ R (0T (Qm), 05 Q). (3.3.7)

107 Qul|* + TL|| AOF Qua1®

For the first term on the right hand side of (3.3.7), using the Hélder inequality and Lemma
3.1.1, we obtain

|(I)E7Qm (@i‘“(u . Vsz - @Qm + Qm@)a a;H_lQm”
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< Cq)lIiZ,QmHa:?JrlQm” Ha?Jrl(u ' Vsz - @Qm + Qm@)H
< CPRA 05 Qull (0l oo 105 V@l + C | V@m0 |05 |
+ [ Vaulloo|02 T Quall + [ Q|05 O

L
< OO Qmll® + 105 Q. (3.3.8)

We only deal with the high-order term @,,tr(Q?) in K(Q,,), the rest of terms are trivial,

using the Holder inequality and Lemma 3.1.1, to get

D% (05 (Qutr(@2)), 05 Qu )|

T Qu| 1057 (Qutr(Q))

< OR00 T Quull (105 Qo || QunllZ + [1tr(@2) ool 05 Qull)

< C)0e Q. (3.3.9)

u7Q77L
< oY

Taking into account of (3.3.7)-(3.3.9), taking sum of |a| < s and using the Gronwall lemma,
we have
T
sup @l [ TLIQu|Eott < C. (3:3.10)
t€(0,T] 0

Then, using the estimate (3.3.10), it is also easy to show that

|@mllwr207:L2(r,53)) < C, (3.3.11)

where the constant C' is independent of m.

Step 3. Using the a priori estimates (3.3.10), (3.3.11) and the Aubin-Lions lemma A.0.5,
we could show the compactness of the sequence of approximate solutions @),,, actually the
proof is easier than the argument of Lemma 3.3.7. Then, we could pass m — oo to identify
the limit, the proof is also easier than the argument in Subsection 4.4, here we omit it. This
completes the proof of existence.

Uniqueness: The proof of uniqueness is similar to the following continuity argument.

Next, we focus on showing the continuity of the mapping u — Q[u]. Taking {u,},>1 is

a bounded sequence in C([0,T]; Xn(T)) with

lim [ju, — ul|ego,r);xy(T) = 0. (3.3.12)

n—oo
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Denote @, = Q[u,], Q@ = Q[u], and Q,, = Q,, — Q, then the continuity result (3.3.6) would

follow if we could prove

||Q"”%([U,T];WSH»?(’JI‘,SS)) + ||Q”||%2(O,T;WS+272(11‘7SS)) < Ctg[lél;] ||11n - 11H§(N. (3313)

From (3.3.5), we can get that Q,, satisfies the following system

(

GQn = TLAQ, = 237 [(u—w,) - VoQ — 1, - V.Q,
+60,Qn — @0, + (0, —0)Q — Q(6,, — O)]
+ (@59 = 9E9) (W, VoQn — 04Qn + Qu0,)
+OF(K(Qn) — K(Q)
+ (@@ — 03°) K(Qu), in T x (0,7),

(3.3.14)

an(O) = 0.

Taking a-order derivative on both sides of (3.3.14) for || < s, multiplying by —Ad%Q,,,

then the trace and integrating over T, we arrive at

1d
2dt

— / @E’Qag([(u —u,) - V.Q —u, - V,Q,
T
+ <CI);WQH - CI);’Q> (un : van - G)nQn + Qn@n)
+ 039 (K(Qn) — K(Q))

+ (e 9 — a30) ’C(Qn)> (~A02Q,)d

102 Qul* + DL AT Qn*

=L +L+13+ 1, (3.3.15)
As {Qn}n>1 and @ are uniform bounded in
C([0,T); WH(T, S3)) N L*(0, T; W*2(T, Sp)).
We can estimate I; by Lemma 3.1.1 and the Holder inequality
L] < |02 [(u =) - VaQ — u, - V@ + 0,Q, — @16, + (0, — ©)Q — Q(6,, — 0)] ||
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x [| 207 Qul
< Cllu = walls2l| QN1 + l[nlls1 20108 Qull + 10 — w1 21Qs.2) | AT Q|

'L - -
< N0 QuIP + ClOQulP + Cllu = w2
For I, by Lemma 3.1.1 and the Holder inequality again, we have

[Io] < C(lu — unH2,oo + ”QnHi’),OO)Hag(un VoQn — 0,Qn + Qn@n)HHA@?Qn”

< LN + IO Qull> + Clhu — w21
Similarly, for terms I3, I4
I+ 1 < TN A0 Q1 + CEN QulP + Cla— w2
Summing all the estimates up and taking sum for |a| < s, we get
Q12+ o 1QulZns < CIQuZ 12+l —

Applying the Gronwall lemma, then

_ 'L [t _
1Qu(OlE s+ 5 [ 1@ < CT sup [, — ulfy,.
0 t€[0,T]

for any ¢ € [0,T]. So let n — oo, since sup;co 7y [[un — ufl%, — 0, then (3.3.13) follows.
Finally, we prove Q € S5, namely tr(Q) = 0 and Q = QT a.e in T x [0,T]. If we apply
the transpose to the equation (3.3.5)(1), using the fact that |Q|3.00 = [|Q" 3,00, We have

QD) + 0% (u- V,QT — 0Q" + QTO) = TLAQT + %9 K(QT).

So QT also satisfies the equation. The uniqueness result leads to @ = QT. The proof of

tr(Q) = 0, we refer the reader to [22]. O
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For ry = T’[Vl], Tro = T[Vg], r1 — 7o satisfies

d(ry —ro) + vy - Va(ry — re)dt — 7

divyvy - (1 — ro)dt

= _V:ETQ . (Vl — Vg)dt — T

o - diVx<V1 — Vg)dt,

®;1’Q[uﬂ

where v; = u, vy = @;2’Q[u2]u2. Using the same argument as Breit-Feireisl-

Hofmanova [11, Section 3.1] and the continuity of Q[u], see (3.3.6), we are able to obtain

the continuity of r[u] with respect to u € C([0,T]; Xn(T)), that is,

sup [|r[ui] — r{w]||* < TC(N,R,T) sup [u; —us%, - (3.3.16)
0<t<T 0<t<T

We proceed to construct the approximate solution to the momentum equation. Let

{¢, }°_; be an orthonormal basis of the space H'(T,R?). Set the space

X, = span{t)q, ..., U, }. (3.3.17)

Let P, be an orthogonal projection from H'(T,R?) into X,,.
We now find the approximate velocity field u,, € L*(Q2,C([0,T]; X,,)) to the following

momentum equation

(

d{u,, ;) + OH O (u, Vo, + 7, | Vor[u,], ¢;)dt
= OW (D (r[w,])(Lu, — dive (LV.Qu,] © VaQu,] — F(Q[un])ls)
+Ldiv, (Qun] AQu,] — AQ[,]Q[uy])), vi)dt
+ WO (R (r[u,], w,), i) dW, i =1,....n

\
To handle the nonlinear Q-tensor terms and the noise term above, with the spirit of [43], we

define another C'°°-smooth cut-off function

1, |z2| <K,

Vg (z) =
0, |z] >2K.

For any v =", vit); € X,,, define v¥ = >"" | Uk (v;)v;1;, then we have |[v¥||cqo.r1.x,) <
2K.
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Define the mapping
VA ‘SR U QuE] K K K K1. ),
(TTul; ) = (ug ;¢3) Dp (* Vou® +r[u” [Vor[u®]; o) dt
0
+ / % D (r[u"]) (LuX — div,(LV,Q[u"] © V,Q[u"] — F(Q[u¥])I,)
0
+ Ldiv, (Qu]AQ[u"] — AQu¥]Q[u"])); vy)dt
- / o M E (], 0 ) ) d Wi = 1, n.
0
(3.3.18)
Next, we show that the mapping 7T is a contraction on B = L?(Q; C([0,T*]; X,,)) with fixed
K,n for T* small enough. Denote the right side of (3.3.18) T4 as the deterministic part,
and Ty, as the component [, CI)%’QGF(?"[U], u); 1;)dW respectively.

Combining the assumption on initial data @, and the definition of u’, we have after a

easily calculation
Q] lcqorwie < C(K,R), P as. (3.3.19)

Together estimates (3.3.1), (3.3.4), (3.3.19), the continuity results (3.3.16), (3.3.6) with the
equivalence of norms on finite dimensional space X,,, we can show that the mapping 7

satisfies the estimate
||7?16t(u1) - 7:1@75(112>||§3 S T*C(n7 R7 T’ K)Hul - 112”%, (3320)

see also [22, 86] and using the Burkholder-Davis-Gundy inequality (3.1.5), the mapping Ty,

satisfies the estimate

1 Tsto (1) = Tito(2) I35
2

=E sup

t
[ @ IRt ul) - o3 SRl uf
te[0,77]

0

Xn
2

dt

& uff Quk) K K uf,Quf] K K
<CE [ |l @O ul) - o LG ug], uf)|
0 Lo (86:X7)

T*
< CE / g Q] _ gt Qluf)
0

dt

[F k], u

2
) ||L2(H;Xn)

*

T K
ull QuX 2
+ CE / (@3 D2 (|F(ruf], ul) — Fruf ] uf)|[} ., dt
0
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Using the equivalence of norms on finite-dimensional space, assumption (3.1.6) and the

continuity result (3.3.16), the bound (3.3.1), we have

E uK uK
J, < CE / (@5 0?2 [F(rul), uf) — F(ruf ], uf)|, e dt
0
™ K K
uy ,Q[u;
< C]E/O (@ D2 (e faf r[uf 2 o+ fuf uf 3 ) rfuf] = rluf], uf — uf |2
<T*C(n, R, K,T)||u; — uy|3. (3.3.22)

By the mean value theorem, the equivalence of norms on finite-dimensional space, assumption

(3.1.5) and continuity result (3.3.6), we also have
Jy <T*C(n, K,T)|ju; — uyl|3. (3.3.23)

Combining (3.3.19)-(3.3.23), we infer that there exists approximate solution sequence
belonging to L*(Q; C([0,T.]; X,,)) to momentum equation for small time T* by the Banach
fixed point theorem. Here we first assume that the estimates (3.3.51),(3.3.52) hold. Then,
we could extend the existence time 7™ to any T > 0 for any fixed n, K.

Next, we pass K — oo to construct the approximate solution (7,,u,,@,) for any fixed

n. Define the stopping time 7

TK—lnf{tG [0, T7; sup [[ur (O] ZK}’
el "

with the convention inf () = T. Note that 7%, > 7, if K1 > K5, due to the uniqueness,

we have (rft uft QEv) = (rf2 w2 QE2) on the interval [0, 7g,). Therefore, we can define

n 7

]P’{sup TK:T}zl—P{(sup TKIT) }zl—P{sup TK<T}
KeNt KeN+ KeN+

>1-P{rg <T}=1-P< sup [[ul¥||x, > K ;.
te[0,7]

(T, Uy Q) = (75w QK) on interval [0, 7x). Note that
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From the Chebyshev inequality, estimate (3.3.51) and the equivalence of norms on finite

dimensional space, we know

lim P{ sup ||uf||x, > K} =0,
K—o0

t€[0,T

which leads to

P{sup TK:T}:L

KeN+t
As a result, we could extend the existence time interval [0,7x) to [0,7] for any 7" > 0,

obtaining the global existence of approximate solution sequence (7, u,, Q,).

3.3.2 Uniform estimates

In this subsection, we derive the a priori estimates that hold uniformly for n > 1, which
allow us to extend the existence interval to any 7' > 0 and provide a preliminary for our
stochastic compactness argument.

Taking a-order derivative on both sides of system (3.2.3) in the x-variable for |a| < s,
then taking inner product with 997, on both sides of equation (3.2.3)(1) and applying the

It6 formula to function ||0%u,||?, we obtain
1 2 un,Q Y= 1 .
EdH@grnH + Q" (- V05, + Trndlvxag‘un, Oory, | dt
=W (u,, - 9OV 1, — 0% (W, - Vory), 00T, dt
—1
+ %@;m@n (10 divaty, — 8% (radivaun,), 997,) dt
= . (T7dt + Tydt, 0%r,,) (3.3.24)
and
1
5dua;gfunH? + W9 (w, V0%, + 1, V0%, 0%, )dt
— O% (D (r,) L(0%,,), 0%, )dt

L
+ (I)lll%n’Q" <D(7’n)dwx3§ (vaQn O] van - §|V$Qn‘213) 789?11”) dt
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2 3 4
— B9 (D(ry)divy (L0 (QuAQn — AQWQn)) , 05w, )dt

:CI)‘I‘%mQ" (0, 00V 1, — 05 (0, V,u,), 05u,) dt

- 0% (Dlriv,2 (1@ - glate(@8) + (@) ) 2k, )

+ W (1, 09V 1y — 0% (1, Vo), 000y, ) dt
— Q% (D(r,)0% L, — % (D(ry) L0y,), 0%, )dt
+ U@ (D(rn)aﬁdivw (Lvm@n O VeQp — gyvanlzlg)
—0° (D(rn)divz (vaQn O ViQn — §|van|213)) ,8§‘un> dt
- o Doz, (Flan(@2) - Jlatr(@) + 1’ (@))
=0z (Draiv, (§1atr(@2) - J1an(@) + L@ ) ) oz, )t
- a3 @ (D)0, @500 ~ £Q,20
0D Q00 — 5O,

O (DR (), O ) (@92 Y / 05 F (1, )er Pt

k>1

8
=1y (T, 00u,)dt + @ (95F (r, u,), 05, ) AW

=3

1
~ (DY y? Z/W”‘F Ty Wy )eg 2 dadt. (3.3.25)

2
k>1

To handle the highest order term div,(Q,AQ, — AQ,Q,), we multiply —D(r,)AIIQ, in
equation 3.2.3(3) instead of —AJ¥Q,,, then take the trace and integrate over T, to get

1 1
SAIVDEDV.OQU = 5 [ Dl .02Qu Pt
T
= [ VD) @G+ V.05 Qudndt + LIV Dr) A5, i
T
— Py / D(r) (U, - V200Q) : AO°Q,dxdt
T

— U On /T D(r,)((090,)Qn — Qn(996,)) : AICQ, dxdt

_ F@;”Qn /TD(rn)af; (aQn —b (Qi — Iggtr(Qi) + chtr(Qi))) : NOSQdxdt
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__ / D)@ 9" (u, - 00V, Qn — 0% (w, - V,Q,)) : AIQudadt
T
— / D (1) %9 ((090,)Qp — Qn(096,,) — 02(0nQn — @n©,)) : AI*Q,dxdt
T
= /(Tg + Tho) = AOYQrdxdt. (3.3.26)
T

We next estimate all the right hand side terms. Using Lemma 3.1.1 and the Holder

inequality,

|<TTL a()é,rn>| S C@lénan(

1Yz

Vol [|oc |07 || + [ Varallool| 07 wn )] 07 7]
< C(R)([197 7l + 05 wal®),
(3.3.27)
(T3, 05ra)| < COF P (I Varallooll 05 uall + [[divattnlloc |05 )05 7
< CR)(|07un]* + 1057a])-
Also using Lemma 3.1.1, estimates (3.3.2), (3.3.3) and the Hélder inequality, we have the

following estimates for 73" to 17,

(T3, 020,)| < COE 2| Vo, || |05, < C(R) 020, 1%, (3.3.28)
(T3, 00w,)] < COY [Tl |00 0] < CRY(OErP + [0ual?), (33.20)
(T2, 00,)] < COB (17, D)ol 02 Lt + [1Etall ol D) )00,

< CRYBY @ (02 ] + 0r )05,

< Lo | D )02 | 4+ COR) (o2 + 50,17, (33.30)
(17020, < Co (19,00,

L
o (Lvan ® V@, — §!V2Qn|213) H) 107 uy |

. \ 107 |

L

.

< OO " (IVaD (1) lloo Vo Qulloo 105+ Qul
Ve Qullooll Qnll 200107 7 1) 1|07 0|
< C(R)(1927'Qull* + 107 l1* + 107 unl®), (3.3.31)

02 div, (913tr(Qi) @) + ElgtrQ(Qi)) H

L (A ‘ ' ‘

i

b
div, (G1atr(@2) - §1atr@) + $10(@))| ozl )lozu]
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< COF (| Qull3, + 1Qnll100) (105 Qull” + 10570 1 + (105w 1*)
C(R)([02Qnl1* + 10571 + 105w, ]*), (3.3.32)
(T3, 05u,)| < CRY O (IVaD(rn) oo 105 (@nAQn — AQQw) |
+ [|diva(@nAQn — AQuQn)[lso 10 D(ra) ) [[05 W |
< CPY (|| Qnll ool AL Qull + |Qn 2,00 105 Q) |05 1, |
+ COE (|| V2 Qnlloo|@nll2.00 + 1@nlloo|Qnll3.00) 1057 1105w |

< C(R)(192Qnll* + 1027all® + 107 wal®) + —H\/ (ra) AZQn]?, (3.3.33)

and

/(Tg + TlO) : A@andx
T

<o)

9 (w, - 0V, Qn = 02 (0~ V,Qu) | IV D) A2 Qul
P (976,)Qn = Qu(056,) = 92(0,Qn = Qu0)|| IV D(r) A Q|
< ORI (Vs lo 192 Qull + 11V Qullcl| 50 )| VD) 59 Qul
+ CRPE (19, Qullo 0]l + Vot [92Qul) I/ D) 292 Qul
< ORI QI + 105, ) + L IV DT AR QI (3:3.34)

+ C(R)

According to the assumption (3.1.5) on G and the Remark 3.1.6, we could have the estimate

Z/ (D Q" /|8°‘IF Tny Wy e |*dadE

k>1

<c / (@2 / s Vot o (108 2 + 102w, [2)dde
t

< C(R) / / (02 ral? + 02w, 2)dad. (3.3.35)
0 T

Next, we proceed to estimate the terms on the left hand side of (3.3.24)-(3.3.26). Inte-

gration by parts, we get

o / u,, - V00,08 rnda
T

1
= ‘—CI)E”’Q” / u, - V.(9%r,)*dx
2 T

1
‘5@;"@" / div,u, |09, [2dz| < C(R)||0%r,|%, (3.3.36)
T
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and

P / (W - Va0, + 1 - V,007,) - 00U, de
T

1
= 5(1)2"’62" / |02, |2 div,u,dr — @;”’Q"/rndivxagunﬁg‘rndx
T T
— YO / Vol - 000,007, dx
T
< C(R) (|20, ||* + (|09, ||?) — DmCn /Trndivxﬁg‘unﬁgrnd:v, (3.3.37)

as well as we have by estimate (3.3.2)
Pl Qn /T D(r,)L(8%,,) - 9%u,dz
= PO /11' D(rp)(vAda, + (v + \)V.div,05u,) - 05w, de
_ g /T D(r) (0] V2082 + (v + A)|divedun|?)da
_ @ /T VoD () (0V a0, + (v + A)divad®u, )00, dz
< —guan /T D(r) (0] V0Pt ]? + (0 + )| divedun?)da
+ [V D(rn) oo (0] Va0 || + (0 + A) [ div, 5wy )| 05w,
<— o /TD(rn)(vlvxafé‘unl2 + (v + N)|div, 05w, [*)dz + C(R)|| 05w, ||

1
+ O @IVDI) Vel + (0 4+ V) Dlr)diva w2, (3.3.38)

Also integration by parts, estimate (3.3.2), Lemmas 3.1.1,3.1.3 and the Hélder inequality

give
Pl @n /T D(r,)div, (LO%(QnAQ, — AQLQy)) - 0un,da
—— 1839 [ Dr)3R(QuAQ - £0,Q,) : 92V ulds
— LpWOn /T VoD ()0 QnAQ, — AQLQ,) - 0%u,da
—— 107 [ D)(@uAYQ, — £QUQ) : 92V ulda

— L / Vo D(rn) 03 (QnAQn — AQRQy) - Oy uyd
T
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- L(I);an / D(rn)(a(;(QNAQn - AQnQn) - (QnAa(z)ZQn - AasQnQn)) : agvxugdx
< — LOW@n / D(r,)((020,)Qn — Qn(0%6,)) : AICQ,dx:
+ (R ([03(QnAQn — AQuQ)||[[ 05w
+ ||aa(QnAQn - AQnQn) - (QnAaan - Aa?@n@n)” ||a§+111n|’)
< — LOW@n / D(r,)((020,)Qn — Qn(0%6,)) : AICQ,dx:
+ C(R)PE (| Qnlloo | A0S Q| + | Qull2.00 105 Q) 105 0 |
+ C(R)PF (I VaQulloo 1057 Qull + 1Qn 2,001 05 Q) [105F wn|
< — LOW@n / D(r,)((020,)Qn — Qn(096,)) : AICQ,dx:
C(R)(| 205 Qnll + 105 QuIN 105wl + C(R) (1057 Qull + 05 QulN |05 s (3.3.39)
Remark 3.3.5. Actually, Lemma 3.1.3 requires that the symmetric matrices are 3 x 3, here,
the A9YQ, 92VuT can be seen as the vector with each component is a 3 x 3 matrix, therefore,

we could apply Lemma 3.1.3 to each component in above argument, adding them together

then get the result.

Also, using the estimate (3.3.2), we have

L
P / D(r,)div, 02 (vaQn © Vi@ — §|Vx62n|213) - Oyuyd
T

L
= |pun@n / Vo D(r,)0" (vaQn O VoQn — §|vgcc2n|213>  Oupde
T

L
+ (bléan / D(Tn)a? <vaQn @ VxQn - E‘van’213> : Qﬁ‘vxu};dx
T

< C(R)®R 05 Qull (105 ua | + 1105+ ua)

< C(R)(105 Qull* + (|05 s ]*) <I>“"Q"||\/ (rn) 05y, )%, (3.3.40)

as well as

b
o / D(ry)div, 05 (glstr(Qi) - 513'51"(622) + EIStYQ(QiO - Oy uyde

= |DF" Q"/V D(r,)0 (213tr(Q ) — glgtr(Q )+ 41 str?(Q2 )) - Ogu,dx
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+ PR Q”/D T0)0 (213tr(Q ) — éI?,tr(cf’) + STt (Q? )) 0oV ut dx

3 4
< COF (1D (ra)ll1.o0 + [1D(ra)lloe) (1 + Q2 105 Qull (105 wall + 1105 wa]])
< C(R)(107Qull* + |05 s ]*) <I>“" |V D(ra) 0y | (3.3.41)

According to equation (3.2.3)(1), we have the estimate of D(r,);

1D (rn)illoo = < C(R)®R " || dive(plraun) o

o0

< C(R)ER V" ([rulloc|divattaloo + [IVarallsoluallsc) < C(R). (3.3.42)
Considering equation (3.3.5), by Lemma 3.1.1, we can get the estimate of (09Q),,): as follows

||(8:?Qn)t|| = HFLAaan + q);lzan |: - a?(lln : szn) + @g<®nQn - Qn@n)

—To2 (aQn —b (QfI — Ig‘gtr(Q )) + cQntr(Q ) } H
< C(R)([|05Qn|l + 1027 Qull + 105w, | 4 | AO2 Qul)).- (3.3.43)

The above two estimates combine with (3.3.2), yielding

1
’5 / D(r )i V.0 0 Pdz + / VD) (0°00): : Voo Quda
T T

< ClD(rn)ellocll0F T Qull* + ClIVaD (rn) oo (02 Q) 1057 @l
C(R05Qull* + CR)(107 7 Qull + 107 unll + [ A0F Qul)) |05 Qull

< CR)(1057 1 Qull” + 05w ?) + —H\/ (1) DOZ Qul|”. (3.3.44)
In addition, we also have

un,Qn
q)R

/D(Tn)(un -V,000Q,) : NIYQ,dx
T
< BE L D(r) oo 1 [l oc 02 Qul[[| AOZ Qs |
'L
C(R)[|05HQull” + gllvD(rn)MﬁQnH?, (3.3.45)
and

u’ﬂ7Qn
(I)R

[ ez (au - (@2 - (@) +cuen@) ) s 200
T
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< DR D(ra)lloo | AT Q|

I
oz (ou -1 (@ - Fu@) ) + c@un(@) )|
< C(R)DF (| Qullos + 1QulZ) 107 Qull 205 Qul
'L
< C(R)OFQull® + IV D(ra) A2 Q. (3.3.46)
in the last step, we also use the estimate (3.3.2). Summing all the estimates (3.3.27)-(3.3.46),
note that the first term in (3.3.39) was cancelled with the forth integral on the left hand side

of (3.3.26), also the second term in (3.3.37) was cancelled with the second term on the left

hand side of (3.3.24) after matching the constant, we conclude

d([|057, (0)]1> + 10%ua(B)))* + ||V D(r) V05 Qn(1)]1?)
L / D) (0] Va 0, 2 + (0 + A)|divad®u,[2)dwdt
T
§ T/ D) A Q,
< C(R)(10%ra” + [|05wn® + [|[V/D(rn) 05 Qu || dt
U Cn / OSF (1, 0y, - 03w, dadW. (3.3.47)
T

Define the stopping time 7,

TV = inf {t > O; sup Hrn<€>7un(€)Hz,Q = M} )

£€(0,t]

if the set is empty, choosing 7y = T. Then, taking sum for |a| < s, taking integral with
respect to time and sumpremum on interval [0, A 73], power p, finally expectation on both

sides of (3.3.47), we arrive at

E

p
sup  ([|05ra* + (|0 | + H\/D(Tn)Vx@’iQnHz)]

56 [O’t/\TJW}

tATM p
+E (/ Pl / D(r,)(v|V,0:u, > + (v + )\)\divxaiunIQ)dxdf)
0 T

tATM p
+E ( / rL\wa;)Aa;@nH?dg)
0
< CE(ro, w2 + Qo211 )"

tATM p
+CB ([ 1oz + ozl + VDT @,
0
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+CE | sup

fE[U,t/\TM]

3
/ CID;"’Q"/QiIF(rn,un)-a;undxdW
0 T

] . (3.3.48)

Regarding the stochastic integral term, we could apply the Burkholder-Davis-Gundy inequal-
ity (3.1.4) and assumption (3.1.5)(Remark 3.1.6), for any 1 < p < oo

¢ P
/ Pl @n / EF(rp,u,) - Ohu,dedW ]
0 T

EATN )
< C(p)E [/ (®;H7Qn)2"F(Tnvun)||%2(11;W572(T))||un‘|z,2d4
0

tATM g
< C()E [ [ @i, Vun|r%murmun||;{2dé}
0

E sup

E€[0,tNATAL]

I3

tATM %
<CORE| swp [ro w2 / s a2
E€[0tAT] 0
1 tATM p
Sl A A R ] AT (3.3.49)
2 £€[0,tATAr] 0

Combining (3.3.48)-(3.3.49), the Gronwall lemma gives

E

p
sup  ([|057ll* + (03w + [ v D(Tn)VmaiQn!|2)]
56[0,15/\7‘]\/[]

tATM p
+E ( / P @ / D(r) (0] Vadiwn + (v + /\)|divr(‘3;un|2)dxd§)
0 T

tATM p
{E ( / rL|r\/D<mAa;@n||2ds) <c
0

(3.3.50)

where the constant C'is independent of n, but depends on (s, p, R, T,T) and the initial data.

Taking M — oo in (3.3.50), using the fact that ﬁ < D(r,) < C(R) and the monotone
convergence theorem, we establish the a priori estimates

. € LP(Q; L®(0, T; W(T))), w, € LP(Q; L>=(0,T; W5*(T,R?))),

(3.3.51)
Qn € LP(; L>(0, T; WHH2(T, S3)) N L*(0, T; W*H2(T, 53))),

(3.3.52)
for all 1 < p < oo, integer s > %
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3.3.3 Compactness argument

Let {rp,u,, Qn}tn>1 be the sequence of approximate solution to system (3.2.3) rela-
tive to the fixed stochastic basis (2, F, {F; >0, P, W) and Fy-measurable random variable
(ro, ug, Qo). We define the path space

X =&, x Xy x g x Xw,
where

X, = C([0,T; WS_LQ(T))v Xy = L>(0,T; WS_E’Z(TaR?’))a
Xg = C((0, T); W**(T, 5)) N L*(0, T; W*H2(T, S5)),  Xw = C((0, T £ho),

where ¢ is small enough such that integer s — ¢ > % + 2.

Define the sequence of probability measures
W= @ 0 ® iy © (3.3.59)

where () = P{ry € -}, () = Pluy € -}, pp() = P{Qn € -}, pw () =P{W € ;. We
show that the set {u"},>1 is in fact weakly compact. According to the Prokhorov theorem,

it suffices to show that each set {#?)}nzl is tight on the corresponding path space A(.).

Lemma 3.3.6. The set of the sequence of measures {ul}n>1 is tight on path space X,.

Proof. First, we show that for any o € [0, 3)
E||uy,||ceo,r;22(T,R3)) < C, (3.3.54)

where C' is independent of n.

Decompose u,, = X,, +Y,,, where

t
X, = X, (0) + / — 09 Py (W, Vot + 7, Varn) + @9 Py(D(ry) (L,
0

Y, = / e P (7, w, ) AWV
0
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Using the a priori estimates (3.3.51), (3.3.52) and the Hélder inequality, we have
E|| Xn|lwr20rr2mrs) < C,
where C' is independent of n. By the embedding (3.1.3), we obtain the estimate
Ell Xnllce(oryLa(rrsy < C.

Note that, for a.s. w, and for any ¢’ > 0, there exists t1,t2 € [0, 7] such that

‘LQ

[" faw jj fdw
sup

L2 /
< +4.
el |1 —1° Ity — t1]°

Regarding the stochastic term Y,,, using the Burkholder-Davis-Gundy inequality (3.1.4) and

assumption (3.1.5), we get

t
E ‘ / U@ P (7, 0y, ) AW
0

C([0,T);L2(T))

[ @9 PR (r,, un)dW(

<E sup ’

L2
o t.t/€[0,T),t£t [t — 1|
t Un,n
) oy PnIF(rn,un)dWHLz »
- |ty — t1]®
1
£ n,Q 2 2
CE ( [ | 0% F(r,, u,) de
< 1 LQ(LULQ(T)) + 5/

- |ta — ta|*
<Oty —t|7 "+ 6 < C.

Thus, we get the estimate (3.3.54). Fix any o € (0, 1), by the Aubin-Lions lemma A.0.5, we

have
C([0,T]; L*(T,R*)) N L>=(0, T; W**(T, R?)) < L>*(0,T; W* =*(T,R?)).
Therefore, for any fixed K > 0, the set
By = {u € C*([0,T); L*(T,R*)) N L*>=(0, T; W**(T,R?)) :

allceqo,ry;z2crr2)) + [0l oo (0, mws2(r r3)) < K}
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is compact in L>°(0, T; W*==%(T,R?)). Applying the Chebyshev inequality and the estimates
(3.3.51)2, (3.3.54), we have

tia(Bi) =P ([unll oo 0,rw2(1,85)) + [nllce o2 mrsy > K)

K K
<P ||11nHLoo(o,T;Ws»2(T,R3)) >—|+P HunHca([o,T};L2(1r,R3)) > B

2
2 C
<% (Ellunllzoeorsw2(rrs)) + Ellunllceqory2mrs))) < 173

where the constant C'is independent of n, K. Thus, we obtain the tightness of the sequence

of measures {ul},>1. O
Lemma 3.3.7. The set of the sequence of measures {Mg}nzl is tight on path space Xg.

Proof. We only need to show that the set {)}n>1 is tight on space L*(0, T; W*+2(T, S3)),
the proof of tightness on space C([0,T]; W**(T,S3)) is the same as the proof of the set

{ntn>1-
From the equation (3.2.3)(3), we can easily show that

El|Qullwroor:c2(r,s3)) < C, (3.3.55)
where C' is a constant independence of n. For any fixed K > 0, define the set
By = {Q € L*(0,T; Wt33(T, S3)) n Wh2(0, T; L*(T, S3)) :
I@llorave-sacsiy + I Qlhwreiorssmsyy < K
which is thus compact in L?(0, T; W*t12(T, S3)) as a result of the compactness embedding
L*(0,T; W*H2(T, S3)) N Wh(0,T; L*(T, S)) < L*(0,T; W*H2(T, S3)).

Applying the Chebyshev inequality and the estimates (3.3.52), (3.3.55), we get

where the constant C' is independent of n, K. m
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Using the same argument as above, we can show the tightness of the sequences of set
{p}n>1. Since the sequence W is only one element and thus, the set {ufy }n>1 is weakly
compact. Then, the tightness of measure set {§"},,>1 follows.

With the weakly compact of set {u™},>1 in hand, using the Skorokhod representation

theorem A.0.7, we have:

Proposition 3.3.8. There exists a subsequence of {u"},>1, also denoted as {u"}n>1, and
a probability space (9, F, ]f”) as well as a sequence of random wvariables (fn,ﬁn,Qn,Wn),
(7,0,Q, W) such that

(a) the joint law of (Fp, Un, Qn, Wy) is i, and the joint law of (7,0, Q, W) is ju, where ji is
the weak limit of the sequence {p" }n>1;

(b) (7, 0, Qn, W) converges to (7,1, Q, W), P a.s. in the topology of X ;

(c) the sequence of Qn and Q belong to S5, almost everywhere.

d) W, is a cylindrical Wiener process, relative to the filtration F" given below.
Y p t g

Proof. The results (a), (b), (d) are a direct consequence of the Skorokhod representation

theorem. The result (c) is a consequence of result (a). O

Proposition 3.3.9. The sequence (7,0, Qn, W, still satisfies the n-th order Galerkin
approximate system relative to the stochastic basis S = (Q,]}, P, {ff}tZO,Wn), where .73[‘

1s a canonical filtration defined by
o <O’ (fn(s)aﬁn<3)>én($)7wn(3) s < t) U {Z & f",]f”(E) — 0}) )

Proof. The proof is similar to the one in [39, 84|, here we omit the details. ]

3.3.4 Identification of limit

We verify that (g ,7,1,Q, W) is a strong martingale solution to system (3.2.3), where
S := (Q, F, P, {F,}+=0) and the canonical filtration F; was given by

Fi=o (U (f(s),ﬁ(s),Q(s),W(s) is < t) U {E € ]-1;@’(2) = 0}) )
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Define the following functionals

P(r,a); =r(t) —r(0) + /t e (u V4L

0

Tdivmu) d,
N@Quw: = Q) - Q0) - [ TLAGdE + [ 83 V.0 - 00+ Q6 — K@),
M(r,u, Q) = u(t) — u(0) + /0 t PR (0 - Vou 4 rV,r)dé

- [ D0 L (19,06 V.0 - Q) + L (@5 - 5QQ)E
First, we show that for any function h € L?(T), almost every (w,t) € Q x (0, 7]

(P @), ) = (P(F, @), h), (N (Qn, )i h) = (V(Q, @), h),

as n — oo. We only give the argument of high-order term Qtr(Q?) in K(Q). Note that

/0 (@590, 1x(02) — 3520t (0?). h>d5\

<

/0 (B2 — 5390, 1r(G2), h)dé‘ ;

/0 t 0%9(0,t1(Q2) — Qtr((Q?), h) dg'

<

/0 (@22 — 9390, 1r(G2), h)dé‘ ;

[ w8~ @@ me

+

/ BROQ(@2) - (@) h>d5\
= J1 + Jy + Js.
Using the mean value theorem, the Holder inequality and Proposition 3.3.8(b), we get
J1 < Clh]] /Ot(llﬁn — |20 + 1Qn — Qlls.00)|Qutr (@) llcdé
< P = e+ 100 = @l |0t
<l s Q@) [ (i~ 8l e+ 10 ~ Qllr o
t€[0,T] 0

— 0, asn — oo, P a.s.

We could use the same argument to get Jo, J3 — 0, n — o0, P a.s.. Furthermore, by the

Vitali convergence theorem A.0.6, we infer that (7, i, Q) solves equations (3.2.3)(1)(3).
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It remains to verify that (7, @, Q, W) solves equation (3.2.3)(2) by passing n — oo. With
the spirit of [20], we are able to obtain the limit (7, @, Q, W) satisfies the equation (3.2.3)(2)
once we show that the process M (7, Q, Q)t is a square integral martingale and its quadratic

and cross variations satisfy,
t ~
(M(7,1,Q)q)) :/0 @%’Q)Q”F(ﬁ ﬁ)H%Q(u;L?(T,R?»))dfa (3.3.56)
t
((M(F, 8, Q) Br)) z/ ORC|F(7, )ey | dE. (3.3.57)
0

We clarify that the .7:}—Wiener process W can be written in the form of W = Zkz1 Bkek.
Since VNVn has the same distribution as W,,, then clearly its distribution is the same to W.
That is, for any n € N, there exists a collection of mutually independent real-valued ]:"t"—
Wiener processes {B,’;}kzl, such that W, = > k1 3,:}ek. Due to the convergence property of
W,,, therefore the same thing holds for W.

For any function h € L*(T,R?), by Proposition 3.3.9, we have

E [h(rsfn, vyt £sOny T Wi (M (7, T, On)e — M, i, Q) h) | = 0,
E [h(rsfn, 1y, r,Qy, v, W,) ((M(fn, U, Qn)e, h)2 — (M(7n, 01, Qn)s, h)?
- [ @G b ) <o
B0 Qo 1 0) (MG, Qe ) = () MG, Q)
- / t QU@ (P (7, T)en, h>d5)} =0,
where h is a continuous function defined by

h: X5 X Xaljo,s) X Xgljo,5 X Xwlpo,s) — [0,1]

and r; is an operator as the restriction of the path spaces X, &y, Xo and Xy to the interval
0, ¢] for any t € [0,T].
In order to pass the limit in above equality, we show that for almost every (w,t) €

Q x (0,7

(M, T, Q)i, 1) = (M(F, @, Q). h). (3.3.58)
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We only consider the nontrivial term div,(QAQ — AQQ). Note that
t o~ 5 N o o~ ~ ~ o
/ (@;"’Q”D(fn)Ldivm(QnAQn — AQnQy) — OXCD(7) Ldiv, (QAQ — AQQ), h) d¢
0 t B B o N
< / (@f 9" = @) D(7) Ldiv(QnAQy — £GaQu),h) d
0
t ~ A ~ ~ ~ ~
+ / (252D () — D)) LAV (QuAQn — AG1Qn),b) d
0
t ~ A ~ ~ ~ ~ ~ o~ ~ ~
+ [ (250D L, (QuQn — 5w — £GQ+QAQ) )
0
= Kl + KQ + Kg.
Using the mean value theorem, the Holder inequality, (3.3.2) and Proposition 3.3.8(b), we

get
t ~ ~ ~ ~
Ky < O] /0 ([0 = 0l2.00 + 1@Qn = Qll3.00) [1D(7) loo || 1.00 ]| @ [|3.004€

t
< C/h]| sup !IQnII§+1,2/ (Ilan = afl2,00 + 1@ — Qll3,00)d€
te[0,T 0

— 0, asn — oo, P a.s.

Similarly, using (3.3.4), the Hélder inequality and Proposition 3.3.8(b), we get Ky — 0, P
a.s.. Using the Holder inequality, (3.3.2) and Proposition 3.3.8(b), we also get K3 — 0, P

a.s..
Last, let n — oo, by (3.3.58) and the Vitali convergence theorem A.0.6, we could find

B [h<rsf7 r u, I‘SQ, I‘SW) <M(f7 u, Q)t - M(ﬂ u, Q)Sv h> =0,

E [h(rsf, r,i,r,Q, r, W) ((M(f, @, Q) h)? — (M(7, 1, Q
- [ @Ry hia ) ~o
B[ n. 0.0, 0,7 (Al M 5, Q) -

_/: PR (7, ﬁ)ek,h)df)] — 0.

Thus, we obtain the desired equalities (3.3.56) and (3.3.57), the Definition 3.3.1(4) follows.
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From the estimate (3.3.51), and the mass equation itself, we are able to deduce that the
process 7 is continuous with respect to time ¢ in W*?(T) using the [55, Theorem 3.1], see also
[11] for the compressible Navier-Stokes equations. Moreover, by the initial data condition
and estimate (3.3.1), we infer the process r has the uniform lower bound which depends on
R, P a.s.. Since the high-order terms div,(QAQ — AQQ) and OQ — QO arise in momentum
and @Q-tensor equations, again by [55, Theorem 3.1] and the estimates (3.3.51), (3.3.52) and
the equations itself, we could only infer that (u, @) is continuous with respect to time ¢ in

Wes=L2(T R3) x W*2(T, S5). This completes the proof of Theorem 3.3.2.

3.4 Existence and Uniqueness of Strong Pathwise Solution to Truncated

System

In this section, we establish the existence and uniqueness of strong pathwise solution to

system (3.2.3) and start with the definition and result.

Definition 3.4.1. (Strong pathwise solution) Let (2, F, {F; }+>0, P) be a fixed stochastic ba-
sis and W be a given cylindrical Wiener process. The triple (7, u, Q) is called a global strong

pathwise solution to system (3.2.3) with initial data (g, ug, Q) if the following conditions

hold
1. 7, u are Fi-progressively measurable processes with values in W*2(T), W*%(T,R3), Q is
Fi-progressively measurable process with value in W*T12(T, S3), satisfying
r € L*(;C([0,T]; W**(T))), r >0, P as.
u € L2(Q; L%(0, T W**(T; R%)) N O([0, T); W*=(T; R?))),

Q € L*(Q; L0, T; WHTH2(T; S3)) N L*(0, T; WH2(T; S5)) N C([0, T); W**(T; S5)));

2. foralltel0,T],Pas.

t
r(t) =19 — / @E’Q (u - Var + 1 rdivxu> dg,
0

t
u(t) =up — / %9 (u - Vu + rV,r)de
0
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N /0 B D(r)(Lu — diva (LV,Q © Vo Q — F(Q)Ts)

+ Ldiv,(QAQ — AQQ))dE + / OECR (r, ) dW,
0
Qt) = Qo — /O %9 (u - V,Q — 0Q + QO)de + /0 TLAQ + E°K(Q)de.

In this section, we shall obtain the following result.

Theorem 3.4.2. Assume the initial data (ro, ug, Qo) satisfies the same conditions with The-
orem 3.5.2 and the coefficient G satisfies the assumptions (3.1.5),(3.1.6). For any integer
s > %, the system (3.2.3) has a unique global strong pathwise solution in the sense of Defi-
nition 3.4.1.

Following the Yamada-Watanabe argument, the pathwise uniqueness in probability ”1”
in turn reveals that the solution is also strong in probability sense, this means the solution
is constructed with respect to the fixed probability space in advance. Therefore, we next
establish the pathwise uniqueness.

Proposition 3.4.3. (Uniqueness) Fiz any integer s > %. Suppose that G satisfies as-
sumption (3.1.6), and ((S,r1,ur, @Q1), (S,re,uz, Q2)) are two martingale solutions of system

(3.2.83) with the same stochastic basis S := (0, F,{Fi}t>0, P, W). Then if

P{(r1(0),u1(0), @1(0)) = (r2(0),u2(0), @2(0))} = 1,
then pathwise uniqueness holds in the sense of Definition 3.1.4.

Proof. Owing to the complexity of constitution and the similarity of argument with the a
priori estimate, here we only focus on the estimate of high-order nonlinearity term. Let a be
any vector such that |a| < s — 1, taking the difference of r; and 79, then a-order derivative,

we have

daﬁ(rl — 7"2)

= — (1)111%1,@?16? (ul . erl + 7 Tldiqul) dt

+ @;?’Cbag (UQ . vz'l"z -+ 7 ’I“QdiVxUQ> dt
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-1
E—— ((I)%l’Ql — CIDEQ’QQ) 0y <u1 -Vr1 + I rldivxul) dt

e <u2 Yl — 1) + (0 - w) - Vo

—1 -1
+ 7 9 (7”1 — TQ)diVmul + 7 5 ngiVm(ul — UQ)>dt (341)

Multiplying (3.4.1) by 0%(r; — r2) and integrating over T, then the highest order term can

be treated as follows

- @‘;7@2 / (112 V.07 (ry —r2) + i
T

1 -1
— P / div,us|0%(ry — ro)|*dx — yr=—- 5 CD%Q’Q? / rodiv, 0% (uy — uy) - 95 (ry — 1o)d.
T T

1
ngian(;(ul — 112)) : 8?("“1 - Tg)dl’

9 R
From the smoothness of ®, the mean value theorem and the Sobolev embedding, we have

fors>%+3

QE-CL — W) < C(|Jug — sl + |Q1 — Q2]l3,00)

< O(fluy = ugfls—12 + [|Q1 — Q2ls2)- (3.4.2)
Thus we get from above estimates
1 « 2
AR
2
R) <1 +> s, ujlli,z) (I = 72w — w315 + |Q1 — Qa3,)dt
j=1
v—1 u2,Q2 : o o
— TCDR rodiv, 05 (uy — ug) - 05 (ry — ro)dadt. (3.4.3)
T
Similarly, for u; and u,, we have the equation

d@g‘(ul — UQ)

= — WY (uy - Vouy + 1 Vary — D) Luy) dt

— @02 (D(r1)div, (LV,Q1 @ V@1 — F(Q1)Is — LIQ1AQ: — AQ1Qy))) dt
(ro)div,(LV,Q2 ® V.Q2 — F(Q2)I3 — L(Q2AQ9 — AQ2Q-))) di
+ QULTHOR (ry, uy ) AW — B2 OOF (1, uy)dW

( )

+ QW29 (uy - Vouy 4 19V, — D(ry)Luy) dt
(
(D

+ 200
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= — (CI);I’QI — @%27@2) 3;“ (111 : qul + Tlvgﬂ"l — D(rl)ﬁul)dt
— (I);Q’QZGC?((LH — 112) : Vmul +u; - Vx(ul — 112) + (7”1 — Tg)vxrl + Tgvx<’l”1 — 7’2)

—(D(r1) — D(r))Cuy — D(rs)L(u; — uy))dt
- (@‘;@1 - cpg%%) a° (D(rl)divx(LVIQl O V.Q1 — F(Q))I;
- L@ - 50.Qu) Jat
- 0302 (D) = D{r) A LV.01 © V.01 — FIQu)y
- @A - 5001 )
— P2 (D(m)dwx(wm(@l —Q2) ©V,Q1 4+ LV,Q2 © V. (Q1 — Q2)
- (@) - FIQu)) )t
03707 Dradiv, LIQUA(Q1 — 0s) — B(Qs — Q)1 + (s — Q)AQ:
+8Qu(Q1 - Qa) Jat
+ (@;hc?lagw(m, wy) — PU IR (1, uz)) dw. (3.4.4)

Applying the It6 formula to function (|82 (u; — up)||?, then the high-order term in the

formula reads
— U2 /Trgvxﬁj(rl —1ry) - 0F(u; — ug)dx
= @%2’622 /Trgdivxaff(ul —up) - 0% (ry — ro)dx + (I);Q’QQ Avxrga;;(ul — )09 (ry — ro)dx
< C(R)|r1 — rosuy — w2y, + P Argdivxajf(ul —up) - 09(ry — ro)dx.

The last integral in above could be cancelled with the last term in (3.4.3) after matching the

constant. Furthermore, integration by parts and the Holder inequality give

@‘éz’Qz / D(ry)L(0(uy — ug)) - 05 (u; — ug)dx
T

= 0% / D(r2) (] V407 (w1 — w2)[* + (v + N)|dive 07 (w1 — ) *)dz
T
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— U /T V.D(r5) V0% (u; — uy) - 0%(1; — uy)dx

— (U + NP /T VD (ry)div,d% (uy — uy) - 9% (uy — uy)dz
<C(R)|lw — u2||§—1,2

_ pueQ /T D(r) (0] V20 (1 — wo) + (v + A)|dived®(uy — up)[?)de

+ i@?’% /TD(TQ)(U|VJ;8(;(111 —w)|? + (v + \)|div, 0% (u; — uy)|*)dw,

as well as using Lemma 3.1.3

g2 / D(ry) Ldiva (QuA02(Q1 — Q3) — DI Q1 — Q)01
+(Q1 — Q2) A0, Q2 — AT Q2(Q1 — Q2)) - 07 (uy — ug)dx

_ _gu@ /T D(rs) LQUAGX Q1 — Q) — AIH(Q1 — Q2)Q1) : 92V (wy — o) da
g / V. D(ra) L(QrA0%(Q1 — Qa) — AO*Q1 — Q2)Q1) - 07 (wy — wy)de
T
+ q)lz?% /TD(Tz)LdiVx((Ql - Q2)A33Q2 - Aaﬁ@z(Ql - Q2)) ) 8?(111 - 112)d$

< - 0 [ Dr)L3(61 - )01 - QuOE(81 ~ ©)) : £ ~ Qa)da
+C(R) (Z ||Qj||§+2,2> (I = w2y + Qs — Qal2)
5 [ Dol @ - Q).
By Lemma 3.1.1, estimate (3.3.4), we have

/(I);?’QQ(’??( (D(r1) — D(r2)) Ldiv,(Q1AQ1 — AQ1Q1)) - 05 (uy — ug)da
T

< W |02((D(r1) — D(ra)) Ldiva (@1 AQ1 — AQ1Q)) || 102 (wuy — us)
< OO (|, rollsll Qull22lrt — ralls—r2 + | Qulls 2l @i lls+22llm1, 2 llsallry = Talls—12)
X |05 (w1 — uy) ||

< C(|lr1,r2lls2ll @il o + 1Q1 2l @l s+22llr1s rolls2)r1 — rouy — wa|24 5.
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Finally, by Lemma 3.1.1 and the Holder inequality

/T‘I)?’ng(D(TQ)diVx(tf2(Q%)I3 — tr*(Q3)13)) - 5 (w1 — wz)dz
< O P08 (wy — )| [|05 (D (r2)diva (tr*(QD)T5 — tr*(Q3)1s)) |
< DR uy — w512

X ([ID(ra) [loo[[tr*(QF) — t12(Q3) 5.2 + [[D(ra) |5 2[ltr*(QF) — tr*(Q3)[]1,00)
< CR)A+ Qi o) lI72lls2lur = walls—12]|Q1 — Qalls2

+ C(R)(1+ [|Q1, Qa3 2) It — walls—12[| Q1 — Q252

Since the order of the rest of nonlinearity terms is lower than above, these terms can be

handled using the same way, so we skip the details. In summary, we could get

1
§d\|5§(‘11 —w)|?

+ U2 / D(r9)(v|V,02 (w1 — w2) > + (v + A)|div, 0% (uy — ug)|?)dzdt
T

2
< O(R) Y (L4 Ny uslZe + Q5124 2) (1 + wslZen s + 1Qs11242)

j=1
X (|lry = ro,up — a2y 5 + [|Q1 — Qa|2,)dt

+ @;2’622 /rgdivxc’?fj(m _ u2) . 8;‘(7“1 — Tz)dl‘dt + % / D(TQ)‘A@?(Ql - Q2)|2d:cdt
T T

— @Y [ D(r2)L(7(O1 — 02)Q1 — Q107(01 — ©2)) : A (Q1 — Qs)dxdt
T

(O SO (1, ) — B PO (12, u5), 07 () — W) ) AW

2

dt. (3.4.5)

1
~ || R oeF — PR P0°F
+ 2 H R v (7’1,111) R ac (7'2,112) Lo (4;L2(T,R3))

The second and forth terms on the right side of (3.4.5) could be cancelled later. By
assumptions (3.1.5),(3.1.6), we could handle

2
@ o, ) — @ 20T (2, )

Lo (L2(T,R3))
2
< (o — o) opmi,w)

La(46L2(T,R3))

2
+ || @s a0 @, w) — F(ra, w)

Lo (&L2(T,R3))
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2
(R)Y (@ [l wil2) (I = 72w — waf[2 45 + [|@1 — Qal2,).
=1
For the Q)-tensor equation, we also get

do7(Q1 — Q2) = TLAGZ (Q1 — Q2)dt
= — PRI (uy - VoQ1 — ©1Q1 + Q101 — K(Qu))dt
+ QY08 (U2 - VaQs — 020z + Q20 — K(Q2))dt
_ (@?Ql - @‘;’QQ) Iy (a1 - Vo@Q1 — ©1Q1 + Q101 — K(Q1))dt
— QU200 (1) — uy) - VoQ1 4 s - Vo (Q1 — Qa))dt
— O 02((01 = ©2)Q1 — Q1(O1 — ©) + O(Q1 — Q) — (Q1 — Q2)O
+ (@) — K(Qu)d (3.46)

Multiplying (3.4.6) by —D(r2)0SA(Q1 — @Q2) on both sides, taking the trace and integrating

over T, as the a priori estimates, we consider the first term

- /Ea?<Ql - Qz)t : D(TQ)a:?A(Ql — QQ)dl’
1 1

=50 [ DEIEVL(Qu = QuPds = 5 [ Dlrad0E 9@ - Qu)fde
+ / Vo D(ra)00Vo(Q1 — Qo) : 02(Q1 — Qu)uda

Using (3.3.42) once more, similar estimate as (3.3.43) , estimate (3.3.1) and Lemma 3.1.1,
the Holder inequality

] / D) |V A (Q1 — Qo) Pde

< C(R)[Q1 — QI3

/ VoD () 00V, (Q1 — Q) : (Qr — Qu)edar
T

C(R)||Q1 — Q252 <||Q1 — Qallss12 + P Qulls2llur — uzls2
2
) (gl + 1Qslerz2) (luy = wafls—12 + Q1 — Q2H5,2)>
=1

J
I'L
< 5 / D(r2)| A0 (Q1 — Qo) |?dx + %@%2@2 / D(r2)|05(uy — up) Pdz
T T
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2
+COR) Y U+ Q32 + Il + Qs 1200) (I = wa 312 + |Q1 = Qa]32)-

J=1

We rewrite the highest-order term in (3.4.6) as

- /T‘I)?’QQ(@?(@l —02)Q1 — Q107(01 — ©2)) : (=D(r2)9; A(Q1 — Q2))dx
= Py /TD(W)(@?(@l — 02)Q1 — 107(01 — ©3)) : AT (Q1 — Qa)du,

which can be cancelled with the forth term on the right hand side of (3.4.5). Again, by
Lemma 3.1.1, (3.4.2) and the Holder inequality

(q)‘él,@ _ @‘é&@z) /5?(111 VaQ1 — 01Q1 + @10, — K(Q1)) : D(r2)d° A(Qy — Q2)da
T
I'L
< ?/TD(W)‘A@?(Ql — Q)PPdx + Cllw |2, 1Q1 12 (lwy — w22y 5 + Q1 — Qal12,)-

After all the estimates we could have

1
§d|lv D(ry)d ™ (Q1 — Q2)|I> + PL/ D(ry)| MO (Qr — Q2)[Pddt
T
2
< CZ(l + ||ujH§,2 + ||Qj||§+1,2)(1 + ||uj||§+1,2 + ||Qj||§+2,2)
j=1

X ([lay — a2y 5 + [|Q1 — Qa12,)dt

— @;27622 /H:D(T’Q)(ag(@l — @2)Q1 — Qlaﬁ(@l — @2)) : A@?(Ql — Qg)dl'dt
LIk / D(r)|AG(Qy — Q) Pdadt + L / D(r)|0 (w1 — wy)Pdzdt.  (3.4.7)
4 Jr v 4 T z

Adding (3.4.3), (3.4.5) and (3.4.7), taking sum for |a| < s — 1, also using the fact that

ﬁ < D(ry) < C(R), then the following holds

d(llre =72, — w5 + Q1 — Qaf[22)

2
< C(R) Y (L4 Iy will s + 191241 2) (1 + [lwsl21 2 + Q512 12.2)
j=1

X ([|ry —ro,up — a2y 5 + [|Q1 — Qa|2,)dt

e Z (q)111%1,Q10;1F(T1’ ul) _ @‘};2@28;’“19‘(7"2’ u2), ag(ul - 112)) dw.

Ja|<s—1
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Denote
2
R) Z(l + ||7"j>uj|| + ||Q]||s+1 2)(1+ ||u]|| +12 T ”QJHs—l-Q 2)-
j=1

Then we could apply the Ito product formula to function

t
exp (—/ G(T)dT) (Jlr1 = reyuy — u2H§71,2 +1Q1 — Q2H§,2)7
0

obtaining
t
doxw (= [ Gytr) (Ira = racur = wl 1o + 101 - Qi)
0
t
= |-crew (= [ 6@ ) Q= racw — w1+ 101 - Gally)| o
0

t
+exp (—/ G(T)dT) d(llry =72, — w5 + Q1 — Q2[5 )
0

<cm® Y (@;1@1(931@(701, W) — 2T (ry, up), 0% (uy — u2)> AW

jaf<s—1

X exp (— /OtG(T)dT) .

Integrating on [0,¢] and then expectation, we have by the Gronwall lemma

E [exp (— / Gmch) (I = oy s — w25 + Q1 — @2||§,2>] 0
0

Here, we use the fact that the stochastic integral term is a square integral martingale which

its expectation vanishes. As

t
exp (—/ G(T)dT) >0, Pas.
0

since

/O " Glrydr

T
< Z sup (1 + ||, w2 +||Qg||s+12)/0 Lot w34 2 + 19511512 20t

j=1 te[0,7

<y

< oo, Pas.

2
sup (14 s w25 + Q5100 + (/ L 20+ 1051200 )]
0

t€[0,T)]
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We conclude that for any ¢t € [0, 7]

E (HTl — T2, Uy — u2||§—1,2 +|Q1 — QQH?Q) =0,
then the pathwise uniqueness holds. O]

From the uniqueness, we shall use the following Gyongy-Krylov characterization which
can be found in [40] to recover the convergence a.s. of the approximate solution on the

original probability space (2, F,P).

Lemma 3.4.4. Let X be a complete separable metric space and suppose that {Yy}n>o0 is a
sequence of X -valued random variables on a probability space (2, F,P). Let {ttmn}tmn>1 be
the set of joint laws of {Y,}n>1, that is

fimn(E) :=P{(Y,,Y,,) € B}, E € B(X x X).

Then {Y,}n>1 converges in probability if and only if for every subsequence of the joint prob-
ability laws {fm, n, }e>1, there exists a further subsequence that converges weakly to a prob-

ability measure p such that
pf{(u,v) € X x X :u=v}=1.

Next, we verify the condition for the above lemma is valid. Denote by p,, », the joint law

of
(T, Wy Qi Ty Wi, Qi) OM the path space X = &, x Ay X Xg X X, x Xy x Xy,

where {r,, W, Qn; Tm, W, Qm nm>1 are two sequences of approximate solutions to system
(3.2.3) relative to the given stochastic basis S, and denote by uy the law of W on Xxy,. We

introduce the extended phase space
X=X x Xy,

and denote by vy, the joint law of (7, Wn, Qn; Ty Wiy Qs W) on X7, Using a similar

argument as the proof of the tightness in subsection 4.3, we obtain the following result.

Proposition 3.4.5. The collection of joint laws {Vm n}nm>1 is tight on X7,
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For any subsequence {v, m, }x>1, there exists a measure v such that {vy, m, tk>1 con-
verges to v. Applying the Skorokhod representation theorem A.0.7, we have a new probability

space (Q, F, ]f") and X7-valued random variables
(P Tnger Qg P Wy Qs W) and (7, 0y, Q1 7, s, Qo3 W)
such that

Ip{<fnkuﬁnk7énk7fmkaﬁmku ka7 Wk) e } - Vnk,mk(')a

P{(fhﬁl;Ql;fQ’ﬁ%QQ;W) € } = V()

and

(7:77,]{;7ﬁTLk?QTLk7fmk7ﬁmk7ka) Wk) — (f17ﬁ17Q1;f27ﬁ27Q2;W)7 ]P) a.s.

in the topology of X7. Analogously, this argument can be applied to both

(fnkaﬁnkvénk7v~[/k)> (flaﬁlthW) and (fmkaﬁmkaémkawk)a (anﬁ%QQaW)

to show that (7, uy, Q1. W) and (7, U, Q. W) are two martingale solutions relative to the
same stochastic basis S := (Q, F, B, {F, }z0, W).
In addition, we have p, ,, — p where p is defined by

p() = P{(F1, T, Q3 7o, Tz, Q) € -
Proposition 3.4.3 implies that pu{(ry, uy, Q1;72, 42, Q2) € X : (11,11, Q1) = (r2,u2,Q2)} = 1.
Also since W52 C W12 uniqueness in W5 5?2 implies uniqueness in W2, Therefore,
Lemma 3.4.4 can be used to deduce that the sequence (r,,u,,@,) defined on the original
probability space (2, F,P) converges a.s. in the topology of &, x &, x Xy to random variable
(r,u, Q).
Again by the same argument as in subsection 4.4, we get the Theorem 3.4.2 in the sense

of Definition 3.4.1.

105



3.5 Proof of Theorem 3.1.7.

In the process of proving the Theorem 3.4.2, it is worth noting that due to technical
reason, we assume that the initial data is integrable with respect to the random element w,
and that the density is uniformly bounded from below. Next, based on the Theorem 3.4.2,
we are able to remove these restrictions on the initial data and discuss the general case, thus
the proof of the main Theorem 3.1.7 will be completed.

We start with the proof of the existence of the strong pathwise solution, which is divided
into three steps. For the first step, we show the existence of the strong pathwise solution

under the assumption that the initial data satisfies

po>p >0, |lpollse < M, [[uglls2 <M, [[Qollst12 <M, Qo € So, (3.5.1)

for a fixed constant M > 0 such that R > CM, where C is a constant satisfying

[ull2.00 < Cllulls-12, [ Qls.00 < CllQ]s.2-

Introduce a stopping time 7 = 74 A T4, where

7 = inf {t € [0,T]; sup ||ugl2,00 > R} , Th = inf {t € [0,T]; sup ||Qrll3.00 > R} :

vel0,] v€[0,t]

If two sets are empty, choosing 74 = T,i = 1,2. The fact that u, @ having continuous
trajectories in W*~12(T,R?) and in W**(T, S3) for integer s > 2 respectively and the Sobolev
embedding W$?2 «— W™ for s > % + a, P a.s. guarantee the well-defined of 7z and strictly
positive P a.s..

Since rg(t,+) > C(R) > 0, P a.s. for all t € [0, T], we could construct a local strong path-
wise solution (pg, ug, Qr,Tr) of system (3.0.2), based on the existence of unique pathwise

solution (rg,ug,@Qr) of the truncated system (3.2.3) with initial data conditions (3.5.1),

1 2
— y—=1 =7
where pr = (%) rp
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For the second step, we drop the auxiliary boundedness assumption of the initial data
following the ideas of [39]. For the solution (rg,ug,@r) of the system (3.2.3), define the

following stopping time

7y, = inf {t € [0,T); sup ||ugls2 > M} )

~v€[0,t]

T3 = inf {t € [0,T); sup ||Qrlls+1.2 > M} ;

~v€[0,¢]

Ty, = inf {t € [0,T]; sup ||rglls2 > M} ;

~v€[0,¢]
1
4 —infltel0,T];inf rp(t) < —
Ty = in € [0, ]7910161’H‘TR()_M ,

where M relies on R such that M — oo as R — oo and M < min (%, R). Then we could
define 7y = 73, A T3 A T3, A Tip, such that in [0, 7], again using the Sobolev embedding

We2 — W= for s > 2 + a, P a.s., we have

sup [|7a(t)|lLee < R, sup [Jug(t)[200 < R,

t€[0,7a] t€[0,7]
1
su sz < R, inf infrg(t) > —.
te[O,PM]HQR( s, ot in r(t) > 5

According to the Theorem 3.4.2, we could construct the solution with respect to the stopping

time 7, for the general data. Indeed, define

Yy = {(r, u, Q) € W*(T) x W (T, R?) x WtH(T, S3) :

1
lr(@®)llse < M, lu@)]ls2 < M, Q) |[s41,2 < M,r(t) > M}’

then, we have there exists a unique solution (rys, upr, Qar) to system (3.2.2) with the initial
data (7o, up, QO)1(ro,u0,Q0)ezM\u§Vi;12jv which is also a solution to the original system (3.0.2)
with the stopping time 7.

Define

o0
T= Z L (1 w0, Qo)ema\ UM,

M
o0
(r,u,Q) = Z (rar, upr, QM)1(TO,UO,QO)EEM\UJA.1;12]--
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Using the same argument as [38, Proposition 4.2], we infer that the (r,u, @, 7) is a solution
to system (3.2.2) with the initial condition (r¢, ug, Qo) being Fy-measurable random variable,
with values in W*2(T) x W#2(T,R3) x WsTLX(T, S3) and ry > 0, P a.s..

Next, we show (7, u, Q) has continuous trajectory in the space W*?(T) x W5~ 12(T, R3) x
W(T, S3), P a.s.. Define

1
Q= {w € 0 ro@)lloe < M. [06(@) o2 < M, 1Qo(w) o112 < M,ro(w) > M} .

Observe that (J3,_, Qum = Q. Therefore, for any w € €, there exists a set 2y such
that w € Qy, and by the construction, we have (r,u,Q)(w) = (ry,un, Qp)(w). Since
(rar, uar, Qpr) has continuous trajectories in W2(T) x W 12(T,R?) x W**(T,S;) and
rv(t A Ta,-) > C(M), P as. for all t € [0,7], then we deduce that (r,u,Q) has con-
tinuous trajectories in W*2(T) x W L2(T,R3) x W*(T,S3), P a.s. and r(t AT,) > 0,
P as. for all t € [0,7]. In addition, for the fixed w, we have ®%%¢ = 1 on [0, ) (w)],
thus uy 1<, € L*(0,T; W5TH2(T, R?)), then by the construction, we deduce that ul,c, €
L0, T; W*t12(T R3)), P a.s..

Finally, since r(tAT,:) > 0, P a.s. for all t € [0, T, after a transformation, we summarize
that if (po, ug, Qo) just lies in W*2(T) x W2(T,R?) x W*+12(T, S3) and py > 0, P a.s. this
means dropping the integrability with respect to w and the positive lower bound of py, we
establish the existence of a local strong pathwise solution (p,u, @) to system (3.0.2) in the
sense of Definition 3.1.4, up to a stopping time 7 which is strictly positive, P a.s..

The final step would be constructing the maximal strong solutions. That is, extending
the strong solution (p,u, Q) to a maximal existence time t. The proof is standard, so we
refer the reader to [19, 39, 70] for details.

Regarding the proof of uniqueness to Theorem 3.1.7, first, under the assumption (3.5.1),
we could prove the uniqueness result by introducing a stopping time and applying the path-
wise uniqueness result derived before. Then, we can remove the extra assumption on the
initial data by a same cutting argument as above. This completes the proof of Theorem

3.1.7.
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4.0 Incompressible Limit of the Compressible Q-tensor System of Liquid
Crystals

In this paper, we are focused on the incompressible limit of the three-dimensional Navier-
Stokes equations coupled with the Q-tensor equation in this paper. By [37, 27|, the equations
of the compressible nematic liquid crystal model have the following form:

(

pr + div,(pa) = 0,

(p); + div,(pi ® @) + VA5 = vAl — div, (LV,Q © V,Q — F(Q)Is)
+Ldiv, (QH(Q) — H(Q)Q),

Qi+ 13- V.Q - 6Q +Q6 =TH(Q),

(4.0.1)

where p > 0 denotes the density, u denotes the velocity, and Q is a symmetric traceless 3x3
matrix denoting the nematic tensor order. For the pressure Ap”, we require that A > 0 and
v > 1. The constant 7 > 0 denotes the viscosity. We remark that the term Vdiv,u in the
Lamé operator is dropped in the momentum equation for the simplicity of presentation since
it can be treated easily. The term V,Q ® V,Q is a 3x3 matrix, and its value on the (,7)-th
entry is
~ ~ 3 ~ ~
V.Q © V,Qli; = Z 0;Q110; Q.
k=1

The term I3 stands for the 3 x 3 identity matrix. In (4.0.1), the free energy density of the

director field F(Q) is

F(Q) = IV.QP + 5@ — 2w(Q¥) + (@),

and we denote
- - - N | - S
H(Q) = LAQ —aQ +0 |G~ 2u(Q?)] - oQu(@?)
The numbers L, T, a, b and ¢ are often called as elastic constants with: L > 0, I' > 0,

a € R, b >0 and ¢ > 0, and these coefficients are dependent on the material. The term
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Q — Ye0-Via

is the skew-symmetric part of the rate of strain tensor, note that the notation

[{3)]

T” represents the transpose. From the structure of H(Q), we remark that
QH(Q) — H(Q)Q = QAQ — AQQ.
From the pointview of physics, when the density approaches a constant, the compressible

flow behaves asymptotically like the incompressible flow. We can describe this phenomenon

in the following way. For the compressible flow, we can define the Mach number as:
a|
Vayp !

In the case when the Mach number approaches zero, we expect that p keeps the scale, without

M =

loss of generality we can assume the scale to be 1. So u and Q are of the order ¢, with & > 0

and ¢ could be infinitely small. The scaling of p, & and Q is described as follows:
pt,x) = plet,x), u(t,z) =euclet,z), Qt,z) = eQ.(ct, ).
The viscosity coefficient and the elastic coefficient are scaled as
v=cv, I'=cl., v.ovase—0", I.>Tase— 0%

Then the corresponding free energy is

L a eb ec

F(Q:) = SIVeQ:” + 5tr(Q2) — —tr(Q2) + —t*(Q2).

2 2 3 4

We also have

HoAQ.) = LAQ. — aQ. + b [@z - Iﬁtr(@i)] ~ 2eQ.(QD).

3

After the above scaling, the system (4.0.1) yields

(

(p=): + diva(p-us) = 0,
(peue) + dive(peu. @ ue) + V, Apl = v.Au, — div,(LV,Q. © V,Q. — F.(Q:)I3)
+Ldiv, (Q:AQ. — AQQ.),
|(Qo) + .- V,Q- — 0.Q: +Q.0. = T.H.(Q.),

(4.0.2)
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with ©, = V’““E%W“g. Considering our prior assumption, we assume that p? is of the order
14+ O(e), and when € — 0, we can expect that p. — 1. Furthermore, from (4.0.2),, it follows
that div,u. — 0 in distribution, which implies the fact that the fluid is incompressible. Then

the corresponding incompressible system reads

(

w, +divy(u®u) + Vo = vAu — div, (LV,.Q © V,Q) + Ldiv,(QAQ — AQQ),
Qi +u-V.Q —00Q+ Q0 =TH(Q),

div,u = 0.

(4.0.3)
The term V,m is the limit of V%%Apg when ¢ — 0. In this paper, we are devoted to the
convergence of the above incompressible limit for the global weak solutions to the compress-
ible equations of nematic liquid crystals in the periodic case. Note that the existence of the

global weak solutions to the compressible model was established in [85].

4.1 The Deterministic Case

First, we consider the problem in the deterministic setting. To avoid the boundary layer,
we only discuss the case of the periodic domain, that is, the case of the equations in the
flat torus T = (—m, 7). Recall the “div-curl” decomposition, define the two projectors P
and Q, such that for any u € WHP(T), with 1 < p < oo and k > 0, u = Pu + Qu,
div,Pu = curlQu = 0. Note that P and Q are both bounded linear operators in W"?(T).

Now consider a sequence of weak solutions {p., u., Q:}eso to the system (4.0.2) in the

periodic case, equipped with the following initial condition:

p5|t:0 = ,02> paua|t:O - mgy Q£|t:0 = Qg (411)
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They satisfy the following conditions:
) 1
00T, ()7 € (T,

m! € L%(T), m? =0 a.e in {p?},

m2* me? .
e € L(T), and p =0aein {p.},
Q% € HY(T).

Letting ¢ — 07, we can assume that

me]
Ve

QY converges weakly to some Qg in L*(T) as ¢ — 0.

converges weakly to some ug in L*(T) as ¢ — 07,

Moreover, we assume that the initial values are uniformly bounded:

L[ mep, A
AR=ICESY

2 Jp P2

A«@W—v£+v—1Mx

2

+ [(GIV:Q0 + Gur((@2)7) - Su((@) + T (@ < C.

(4.1.2)

(4.1.3)

(4.1.4)

For some constant C' > 0. Note that from the fact that [[.((p2)” —~p?+~—1)dz < Ce?, and

that the function f(x) = 27 is a convex function when v > 1, then p? is of order 1+ O(e).

According to [85], for any £ > 0, there exists a weak solution (p., u., Q.) to the compressible

flow (4.0.2) satisfying

pe € L=([0,TT; L7(T)),

Vpeue € L2([0,T]; L*(T)),

u. € L*([0,T); HY(T)),

Q- € L>([0,71; H'(T)) N L*([0,T]; H*(T)).

The main result of the deterministic part is presented as the following:
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Theorem 4.1.1. Assume that {(p:,ue, Q:)}os0 s a sequence of weak solutions to the com-
pressible flow of liquid crystals (4.0.2), in the domain T C R with the initial condition
(4.1.2)-(4.14), and v > 3, a > gj Then for any T > 0, as e — 0, {(pe,ue,Q:)} converges
to a weak solution (u, Q) of the incompressible flow of liquid crystals (4.0.3), with the initial

data ul;—g = Puy, Qli=0 = Qo periodic. More precisely, as € — 0
pe = 1 in L=([0,TT; L*(T)),
u. —u weakly in L*([0,T]; H(T)),

Q. — Q strongly in L*([0,T); H(T)) and weakly in L*([0,T); H*(T)).

4.1.1 Proof of theorem 2.1

To prove Theorem 4.1.1, we have taken the idea in [44], [60] and [87]. So we start from

the energy estimate of (4.0.2). First, multiply (4.0.2), with u., integrate over T and apply

(4.0.2),, then it follows that

d
dt

— / div,(LV,Q: © V,.Q. — F.(Q:)I3)u.dx + L/ div, (Q:AQ: — AQ.Q.)u.dz
T T

Next, multiply (4.0.2), with —H. (QE) take the trace then integrate over T, we get

d
dt

B /T(ue : VzQa) : He(Qe)d‘T N /T(GEQE - Qf@g) : Hg(Qg)dl'

Adding (4.1.5) and (4.1.6), we integrate with respect to time, then for any given ¢ € [0, 77,

A
[(Godu + =g de +v. [ (Vs
7 T (4.1.5)

I DIV Sr(@) — Fl@) + @)+ T / tr(H2(Q.))da -
4.1.6

the following holds:
1 9 A .
‘A Me € BCYEEEEEN - € _1
/T(Qp u| +€2(7_1)(/}5 Ype +—1)

19,0+ Gr(@) - (@) + (@)

+y€/ /|v u.|*dedt + T, / /tr (H2(Q:))dadt (4.1.7)

— G S = e+~ D

2 pa € (7_1
+ [ G172 + Gur((@Y%) - Fur(@2)) + (@) < €
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Considering the fact that tr(Q.) = 0, assume that the eigenvalues of Q. are A!, \* and
A3 then tr(Q.) = AL+ A2+ X2 = 0. So we can get

tr(Q2) = (A" + (M) + (A = 2((A)* + (M) + A2,

r(QF) = (M) + (W) + (A)* = =3A N (A + AD),

as |AIAZ| < 5tr(Q2), and [\l + 22| = ¥ < /&r(Q2). So [tr(Q2)| < (tr(Q2))2 = |Q.[?, the

following estimate holds

eb eb e2c b?
=009 < 210.8 < 0.0 + Zio.pe.
- (@) < T10-P < et + e

Thus from the estimate (4.1.7), by the assumption a > g—i,
L , ,a b ) L o A, o &b . g,
S € a4 € S ’S x £ _t - _t _t d S .

So we can get the estimate that Q. € L>([0,T]; H'(T)). From the definition of H.(Q.))dx,

there is a further estimate about ).,

/ |AQ.[*dx gC(/tr(Hg(QE))dx + a2/ |Qc|?dx + b2/ |Qc|*d + 02/ |Q:|°dux)
T T T T T

<C [ 0 O£@)dr + Clab QI + 1Qul)
Combing the above calculation and (4.1.7), the following estimate holds

V/p-u. is bounded in L=([0, T]; L*(T)),
Q. is bounded in L>([0, T]; H(T)), (4.1.8)
1 . .« roo
5—2(p3 —vp. + 7 — 1) is bounded in L**([0, T]; L*(T)),
together with

V.u. is bounded in L*([0, T]; L*(T)),

H.(Q.)) is bounded in L*([0, T]; L*(T)), (4.1.9)
AQ. is bounded in L*([0, T]; L*(T)).
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Note that all the bounds above are uniform with respect to ¢, and hold for any 7" > 0.
Consider the function f(x) = 27, as v > 1, then the following fact stands true to any x > 0,

with some ¢y > 0 and any positive number R,

7 — Ay —1>colz — 17 if vy > 2,
2 —yr+y—1>colz— 1 if y<2 and v < R,

2 —yr+y—1>¢lr—1]" if y<2 and z > R.
Choose R = %, then from the uniform bounds of p. in (4.1.8), it is easy to see that

/(pZ =P +7 = DX yy<rda + /T(pl =P +7 = DXp 1> 1 da
T

(4.1.10)
Z/T(pl—wwr’y—l) < Ce".
If v > 2, then clearly we can get ||p:||zz < Ce. If v < 2, then
[pellzr < ||IO€X|p5—1|§%||L’Y + ||PeX|pE_1|>%||m < Cen.
Denote k = min{2,~}, then
pe — 1in C([0,T]; L*(T)) as e — 0. (4.1.11)

Next we split u. using the bounds of p.

2

_ _ 1
U, = u5X|p571\§ + u5X|p571|>% = U + u,

1
2

from the estimate (4.1.8), it is obvious that
[utpds <2 [ pupas,
T T

/ juZPda < 2/ |pe = Uuel?dz < 2] pe = 1 prfluc|? 2o < COcfluc|? .,
T T Lr—1 [ r—1

and

by embedding, as H'(T) < L5(T), we require that -2 < 6, namely v > 3. Then we have de-
prived that u! is bounded in L*°([0, T]; L2(T)) and that e~ 2u? is bounded in L2([0, T; L*(T)).
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Consider the convergence of p., and from the equation (4.0.2), and the fact that div,u.

is bounded in L*([0, T]; L*(T)), then
divyu. — 0 weakly in L2([0, T]; L*(T)),

by the elliptic equation theory, as V2Q. € L*([0,T]; L*(T)), thus Q. € L*([0,T]; H*(T)). In

summary the following convergence results hold

u. — u weakly in L*([0,7]; H'(T)),

div,u. — 0 weakly in L*([0, T]; L*(T)),

pe = 1 in L=([0, T; L*(T)),

AQ. — AQ weakly in L*([0, T]; L*(T)),

Q- — @ weakly in L>([0,T]; H'(T)) N L*([0, T; H*(T)),
in order to show that the convergence of (). is strong, we can make use of the Aubin-Lions
compactness lemma (see [58]), the lemma reads as follows:

Lemma 4.1.2. For Xy, X and X three Banach spaces, assume that Xy and X, are reflexive,
Xo embeds in X compactly and X embeds in X1 continuously. If for any constants p and q,

with 1 < p,q < oo, we have
du
W=que Lp([OJT]aXOHE < Lq<[07T]7X1> :
Then the embedding from W into the space LP(]0,T]; X) is compact.

From (4.0.2),, we can get the bounds of 9,Q., that is

HatQEHL% < C(Jlu. - VIQEHL% + H@stHL% + ”QEGEHL% + F6HH6<Q6)HL%)
< Clluc|l e [VaQellzz + [ Vaue|[ 2| Qcll e + [[He(Qe) I 12),

(4.1.12)

the estimate (4.1.7) yields that 9;Q. is uniformly bounded in L*([0, T7; L%(T)). Consider the
fact that Q. is uniformly bounded in L?([0, T]; H*(T)), as H*(T) is compactly embedded in
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H2(T) and H'(T) is continuously embedded in L?(T), by lemma 4.1.2, Q. is precompact in
L3([0,T]; H'(T)). Then by taking subsequence we have

Q- — Q weakly in L*([0, T]; H*(T)),
(4.1.13)
Q- — Q strongly in L*([0,T]; H'(T)).

Also by (4.1.13), it is easy to deduce that

diVm(vaQa ®© vaa - JT;&(Q&)L’») - Ldivx(QaAQa - AQ&‘Q&‘)
L dive (LV2Q © V,Q — F(Q)I) + Ldive(QAQ — AQQ)  as & — 0,

in distribution. Denote
A
Te = ;P? — F=(Qe).
So we can rewrite (4.0.2), and apply the divergence-free projector on the equation, that is
O P(p-u.) + P(divy(p-u. @ u.))
=v:APu. — P(divy (LV,Q: © V,Q:)) + P(Ldivy (Q:AQ: — AQ:Q:)),

(4.1.14)

then from (4.1.14),
OP(p-u.) is bounded in L*([0, T]; H*(T)) + L*([0, T]; W~ 1Y(T)) + L*°([0, T); W~ 1(T)),

from above, we know that 9,P(p.u.) is bounded in L'([0, T]; W~1(T)). Furthermore, as

the operator P is bounded, we can get the estimate of P(p.u.) from (4.1.7)
P(peu.) is bounded in L>(]0,T]; L%(T)) N L*([0, T); L%(T))

The convergence of the nonlinear term follows from the following lemma (see Lemma 5.1 in

[59]).
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Lemma 4.1.3. If the sequence g, converges weakly to g in LP*(]0,T]; LP*(T)), and the se-
quence f, converges weakly to f in L ([0,T]; L2(T)), with 1 < py,p2 < oo and

1 1 1 1

I e

y4i q1 D2 q2

Moreover, assume that

% is bounded in L' ([0, T]; W~™(T)) for some m >0 independent of n,

and that
|hn(t, ) = ha(t, - + O)|laro,15:002(y) — 0 as |¢] = 0 wniformly in n.

Then gnh,, would converge to gh in distribution in [0, T] x T.

Apply the Lemma 4.1.3, we get that P(p.u.) - P(u.) converges to |u|?® in distribution.

Since u = P(u) and the convergence of u., we have P(u.) converge to u in distribution from

T
| [P =Pl - Padedt < Clloc = Uim ol

2y .
0,T|;LY=1(T))
The detail for the convergence of Qu,. follows the same steps as in [24], [44] and [87], then

the proof is complete.
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4.2 Stochastic Case

In this section, we will discuss the case of the equations driven by the stochastic force.
The system is written as

,

dp + div,(pu)dt = 0,
d(p1) + [div,(pa @ ) + V,Ap")dt = [pAT — div,(LV,Q ® V,Q — F(Q)I3)|dt
+Ldiv, (QH(Q) — H(Q)Q)dt + C(p, pi)dW,

dQ + [~ V,Q — 0Q + QO]dt = TH(Q)dt,

\

(4.2.1)
where W is a cylindrical Wiener process. We will use the same scaling as the deterministic

case, and in addition the scaling of the stochastic coefficient is as follows
C =eC, with C to be some constant.

Then the system (4.2.1) becomes

(

(pe)e + dive(peue) =0,

(peus)e + divy(peu. @ ue) + 5V, Ap = veAu. — div, (LV,Q: © V,Q. — F.(Q:)13)
+Ldiv,(Q-AQ: — AQ.Q.) + CP(p., p-u.)dW,

Q)+ 1. V.Q. — 0.0. + Q.6. = T.H.(Q.).

(4.2.2)
Also, the corresponding incompressible system reads
(
u; + divy,(u®u) + V,r = vAu — div,(LV.Q ® V,Q)
+Ldiv, (QAQ — AQQ) + Y (u)dW,
(4.2.3)

Qi +u-V,Q —0Q + Q0 =TH(Q),

div,u = 0.
(

The stochastic term ¥(u) = PyP(1,u), where the operator Py is the Helmholtz projector
onto the divergence-free field and will be specified later. We are going to show that, given an

initial law A for (4.2.1), when the density converges to a constant, the velocity as well as the
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Q-tensor will converge in law to a weak martingale solution to the system (4.2.3) equipped

with the same initial law.

4.2.1 Main result in the stochastic case

We first set up the condition for the stochastic perturbation in (4.2.2). For the stochas-
tic basis (€2, F, (§¢)i>0, P),the filtration (§:)i>o is defined to be complete as well as right-
continuous. Also, the process W is defined to be a cylindrical Wiener process with the
form W(t) = > ;5 Br(t)er, where the set (8x(t))r>1 are mutually independent real-valued
standard Wiener processes relative to (§):>0, and (e)g>1 a complete orthonormal basis of
a separable Hilbert space 4. When it comes to the diffusion term ®, given its coefficients
p € L'(T), p > 0; and v € L*(T), combined with /pv € L*(T). Denote q = pv, then
d = ®(p,q), as a mapping from 4 to L'(T) satisfies the following conditions:

D(p, a)er = gr(- (), a(-)) = hi(, p(+)) + arq(’),

the coefficients oy, are real-valued constants, the function hy : T x R — R are C''-functions

Z o |? < o0,

k>1

> Iz p)P < C(° + (), (4.2.4)

k>1

D IVoh(z,p)[F < C(L+ (o).

k>1

and satisfy

Due to the lack of a priori estimates, we can not simply assume that the value of ®(p, q) is
integrable. As a result, we consider the embedding L*(T) < W~4*(T), with [ > 2, then we

can assume that the stochastic integral is a process in W~5%(T). Then, from (4.2.4)

12, o172y = > _ gk (o, oV 312 < C D llg(p, pv)I[30

E>1 E>1
< €32 [ (o p)l + plosvl)da?
k21 (4.2.5)
/ > i, p)P 4+ plaxv]?)d
k>1 k>1

<Co)e [(p+ 97+ plvP)do < 0.
T
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Note that the term (p)r = ﬁ Jp pdz, the mean value of p on T. If we have the additional

assumption that

peL(Qx (0,T),B,dP ® dt; L7(T)),
Vv € L2 x (0,T),B,dP @ dt; L*(T)),

with the symbol 8 denoting the progressively measurable §-algebra associated to (F;), here
the mean value (p)t is essentially bounded. As a result, we know that the stochastic integral
Jo @(p, pv)dW is a well-defined (§;)-martingale, taking values in W~"*(T). At last, we can
define the auxiliary space gy O U by
%:{U:chek; v:Z;—% < 0o},
k>1 k>1

endowed with the norm

2 i
[vllg, = Z 720 V= chek-

k>1 k>1

Note that the embedding 4 — il is Hilbert-Schmidt, with the trajectories of W are P-a.s
in C([0, TT; o).

In this section, our aim is to build the convergence result for the finite energy weak
martingale solution to the stochastic compressible Navier-Stokes system coupled with the

Q-tensor equation. We start from the definition of the solution.

Definition 4.2.1. The quantity {(£2, T, (), P); p,u,Q, W} is a weak martingale solution

to the equations (4.2.2) equipped with the initial law A, given that the following holds:

1. (9,3, (3):,P) is a stochastic basis with a complete right-continuous filtration;
2. W is an (§)-cylindrical Wiener process;
3. The density p > 0, and for any ¢» € C*(T), the mapping t — (p(t,-),v) € C[0,T] P-a.s,

and it is progressively measurable. The following holds:

E <oo foralll<p< oc;

sup_||p(t, ')Hi"/(']l‘)
t€[0,T

4. The velocity field u is adapted, u € L*(Q x (0,T); W3(T)),

T
E [( R

< oo foralll<p<oo;
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5. The momentum pu satisfies, t +— (pu(t,-), ) € C[0,T] P-a.s for any ¢ € C°(T)?, the

mapping is also progressively measurable

E

sup |[|pu(t,)|” <oo foralll<p< oo;
te[0,T) LAFI(T)

6. The Q-tensor Q is adapted, Q@ € L*(Q2 x (0,7); W%2(T)), for any ¢ € C°(T)>*3, the
mapping t +— (Q(t, ), p) € C[0,T] P-a.s, and it is progressively measurable,

E

T
s[up] Q) lwr2m)]” + E[(/ ||u|]12,V2,2(T)dt)p] <oo forall 1 <p< oo
telo,T 0

7. A=Po(p(0), pu(0),Q(0))7
8. For all ¢y € C=(T), ¢ € C°°(T)? and ¢ € C>(T)3*3, it holds P-a.s

(). ) = (90000 + [ (puto) w1
(pa(0).6) = (m(0).6) + [ uuV.ohts v [ (V0 V.00
4 [wavor+ [(19.Q0 9.0 - Q). Vo)
=3 (QAQ — £QQ), Vag)is + / (@, pu)dIY, 6),
(Q0.9) = @0).2) — [ (0 0.0ds + [ (00— Qe).plds +1 [ Q). s

Next, we present the definition of the martingale solution to the incompressible model,

that is, the solution to system (4.2.3).

Definition 4.2.2. If A is a Borel probability measure on L?(T), then the quantity

{(2.8, (&), P); u,Q, W}

is a weak martingale solution to the equations (4.2.3) with the initial law A, provided the

following holds:

1. (2,3, (8):, P) is a stochastic basis with a complete right-continuous filtration;
2. Wis an (§);-cylindrical Wiener process;
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3. The velocity field u is (§);-adapted, u € C,,([0, T]; L3, (T)) N L2([0, T]; W32(T)),
p

E | sup [|[ul|z2(m <oo foralll<p< oo;

T
FE ([ Iulfnamaey
(0,1) 0

4. The Q-tensor @ is adapted, @ € L*(Q2 x (0,T); W22(T)), for any p € C®(T)>*3, the

mapping t +— (Q(t,-),p) € C[0,T] P-a.s, and it is progressively measurable,
p

T
st] 1Q(, )lwrzm | +E {(/ Hu|\124/2,2(1r)dt)p <oo foralll<p<oo;
tel0,T 0

5. For all ¢ € C32 (T)? and ¢ € C(T)3*3, it holds P-a.s

(u(t), ¢) = (u(0), @) —i—/o (u®u,V,p)ds — u/o (V,u,V,0)ds
+ [109.00 7.0~ FQR). V.ijds
/ (QAQ ~ AQQ)., V.d)ds + c/ WV ).

@) = Q0. - | (0 V.0, p)ds + / (©Q- o). pis +T | Q). ¢)ds.

The main result in the stochastic case is presented as the following:

Theorem 4.2.3. Assume that A is a given Borel probability measure on L*(T), A, is a Borel
probability measure on L7(T) x L%(T) x LO(T), for certain constant M > 0, M independent
of €, it holds that

A{(pra,Q) € I7(T) x LI (T) x LTy p > o (p)r < M, 1222 < by =1,

1
M
and for all 1 < p < oo,

2
q
[ s 350+ Q1A 6.a.0) < Clo)

If the martingale law of A, corresponding to the second and the third component converges to
A weakly in the sense of measure on L%(T) x LS(T), and ((Q°,3°, (3°):, P9), pe, ue, Qc, We)
is a finite energy weak martingale solution to (4.2.2) with the initial law A., € € (0,1), then

pe = 1 in law on L>(0,T; L7(T)),

u. — u in law on (L*(0, T; WH(T)), w),

Q- — Q in law on (L*(0,T; W?>*(T)),w),

where (u, Q) is a weak martingale solution to (4.2.3) with the initial law A.
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To prove Theorem 4.2.3, we will follow the similar arguments to [10]: first, we will get
the estimates of the solutions that are uniform in e; next, by the compactness criteria, we
can prove that the limit of (p., u., Q) exists; last, we will verify that the limit of (p, u., Q.)
is the solution to (4.2.3).

4.2.2 Uniform estimate

In this subsection, we will focus on the study of the limit ¢ — 0 for the system (4.2.2).

For every € € (0, 1), there exists at least one quantity

{(Qav 387 (Sa)tv Pa); U, Qaa WE};

which is, by the means of Definition 4.2.1, a weak martingale solution. Without loss of

generality, it suffices to consider in just one probability space, that is
(€5, 8%, (§), P°) = (0,1, B([0,1]), £) Ve € (0,1),

with £ denotes the Lebesgue measure on [0, 1]. Moreover, we can assume that there exists
one common Wiener process W for all ¢.
In the beginning, we get the energy estimate of (4.2.2). From Itd’s formula, the following

estimate holds.

Proposition 4.2.4. For any p € [1,00), the following estimate holds uniformly in e

1 A
E “pur+ —————(p) —yp.+y—1
[SUP(/T(ZPIU\ +€2(7_1)(p5 Vpe +v—1)

0<t<T
e2c

+ £|VmQE|2 + 2tr(Q?) — E—btr(Qf”) + —trZ(Qg))dx)]”

+E {V/ /|v w.|2dadt + T, / /tr dxdtr (4.2.6)

<c| [ Ay —wﬁv—l))dx]p

+GE [/(—IV:cQO\2 + 20((Q)) - (@) + (@) ))} < Cp.

Similar to the calculations in the previous section, the following estimates also hold.
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Proposition 4.2.5. For all p € [1,00), we have the following uniform bounds,
Vpeu. is bounded in LP(Q; L=([0,T]; L*(T))),
Q- is bounded in LP(Q; L>([0,T]; W (T))), (4.2.7)
1 : . 0
;(p;’ —yp. + v — 1) is bounded in LP(Q; L°°([0, T]; LY(T))),
together with the following uniform bounds
V.. is bounded in LP(Q; L*([0,T]; L*(T))),
H.(Q.)) is bounded in LP(S; L*([0,T); L*(T))), (4.2.8)
AQ. is bounded in LP(2; L*([0, T); L*(T))).
Note that all the bounds above are uniform with respect to €, and hold for any T > 0.

To deal with the estimate for the pressure term, for any function h, we can define the

essential and residual component for this function:

h = hess + hres;
hess = X(pe)h, x € C2°(0,00), 0<x <1, x=1insome open interval containing 1,

hres = (1 - X(ps))h

Consider the function f(z) = z7, as v > 1, we have the following lemma.

Lemma 4.2.6. Let P(p) = p” —1—~(p—1), with p € [0,00), then there exist some constants
Ch, Oy, C5, Cy positive such that

Cilp— 1P < P(p) < Colp— 11 if p € supp ¥,
P(p) > Csp” if p& supp X,

P(p) > Cy ifp ¢ supp x.

Proof. The first conclusion is a natural result of Taylor’s theorem. We observe that the

function Pp(f ) is increasing for p € [1,00), and achieves minimum at p = 1. Moreover, the
function P is strictly convex, so the second and third conclusions hold true. O
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Therefore, from Lemma 4.2.6, and the uniform bounds (4.2.8), we can get that for all

p € [1,00), the following bounds are uniform:
(%o € L2(0 ([0, 71 LA(T))),
[ € L7 ([0, 71 L7(1))).

That is, if we define . := %(pg — 1), then uniformly in €, we have

e € LP(; L>([0, TT; L™"2(T))). (4.2.9)
In the following, we want to show that
pe — 1 in LP(Q; L°([0,T7; L7(T))), (4.2.10)

and that leads to
pe € LP(Q; L>([0,TT; L7(T))).
Combined with the estimates (4.2.7) and (4.2.8), we have the following uniform estimate for
all p € [0, 00)
pen: € L2(: L((0. T): L7 (T))).
pou. @ u. € LM(Q; L*(0, T); L™ (T))).

To verify (4.2.10), we need to use the fact that for all § > 0, there exists a constant Cs > 0,
such that

Pt —=1=7(p—1)>Cslp—1|"

if [p — 1] > ¢ and p > 0, thus we obtain

P
E [ sup / pe — 1‘76133}
o<t<T JT

p
=K [ sup / |ps - 1‘7X|pe—1§6dx] +E [ sup / |p6 - 1’7X|p5—1|25d1’
T T

0<t<T 0<t<T

p

(4.2.11)
p
<CsE [/(pz —Ype + v — 1)dx} + CHP
T

<Cse® + CH™.

Let € — 0, then 6 — 0 and the claim is proven.
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Next, we can apply the Helmholtz projection Pg, which projects L?(T) onto divergence

free vector fields

=00 Il Hz
LilV(T> = de(T)

Furthermore, the operator @ = Id — Py is the projection onto the curl free vector fields.
It has been proven that both Py and Q are bounded in W%4(T), with any real number [
and p € [1,00). Project (4.2.2), onto the divergence-free field, then we get the following
equation:
dPy(peus) + Py (divy(p.ue @ u.))dt
=V, APru.dt — Py(div,(LV,Q. ® V,.Q.))dt + Py (Ldiv,(Q.AQ. — AQ.Q.))dt (4.2.12)
+ CPO(p., p-u.)dW.

After we have got all the uniform bounds, we will get the weak convergence using the
following compactness criteria.
4.2.3 Compactness

First, we define the path space

X =&, x Xy x Xy x Xp x Ay,

with
X, = Cu([0,T]; L7(T)),
Xy = (L2([0, T); WH(T)), w),
Xpu5 ([ ] Lﬁ T))v

(
o = Cu([0, T]; WH(T)) N LE([0, T]; W *(T)),

Xy = C([0, T); Uo).

We denote the corresponding law of p., u., Pu(p-u.) and Q. by p,., fhu. Py (pou.) and
tq.- Denote by pyy the law of W on Ay, and their joint law on X is denoted by p°. After
that, we establish the tightness of {u%; € € (0,1)}.
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Proposition 4.2.7. The set {py,; € € (0,1)} is tight on X,,.

Proof. The tightness is a consequence of the estimate (4.2.8). Moreover, for any fixed R > 0,
the set
Br = {u e L*([0, T); W"(T)); llull 2o 1w 2(ry) < R},

is relatively compact in X, and

o Q

. 1
f. (BR) = P(l[uc|| 2o rpwrzry) > R) < }—%EHHEHLQ([O,T};WL?(T)) <
Then the claim holds true. O
Proposition 4.2.8. The set {p,.; € € (0,1)} is tight on X,,.

Proof. From (4.2.7), it’s easy for us to get that, the set {div,(p-u.)}oc(0,1) is bounded in
LP(€; L*([0,TY; W_l’%(T))). Then from the continuity equation, the following bound is

uniform, for all p € [1, 00):
pe € LM(Q; C™N([0,T); W75 (T))).
Then the desired tightness follows from the embedding

L([0, T}; L(T)) N COY([0, T]; W31 (T)) ¢ C,([0, T); L7(T)).

Proposition 4.2.9. The set {ip,(p.u); € € (0,1)} is tight on X,,.
Proof. First, we decompose Py (p-u.) into three parts. That is
Pulp-u.) = Pylpu.(0)) - /0 Puldiv,(pu. ® w.) — vAu)ds
— [ Puldina(10. © Q. ~ FAQIs + [ LPu(vi(Q.50.  AQQ)ds
t

_|_/O PH(q)(psapaua))dW(S)

= Y7 (1) + Y5 (1) + Z°(1).
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We will prove the Holder continuity of all the above terms, starting from {Y(¢)}. It suffices
for us to show that there exists [ € N, such that for any x € (0, 3), it holds true that

E(YF |l qo,rpw—12(my) < C. (4.2.13)

Choose | > 2, such that L*(T) < W' "(T), then from the a priori estimate (4.2.6) and

(4.2.7), combined with the boundedness of Py, it yields that
E[Yy(t) - Yf(S)H(év—mmr)
t
:EH / PH<diVac<:0€uE & uz—:) - VAuE)dSHIO/V—Z’Q(T)
’ t t
<CE| [ po @ wdsllyr-iar + CEI [ Vondslfnoiags
t t
4
SCE” /; Pele @ u8d8||0L1(T) + OEH /S V$u5d8||0L1(T) < O|t — S|2.

Then (4.2.13) follows from the Kolmogorov continuity criterion.

Now we prove the Holder continuity of {Y;(¢)}. Follow the same way as above, we can

have the following estimate from (4.2.8),
E(Ys (t) = Ys ()% v2m
= Paldiva(LQ. © Q. — Fu(Q)L))ds
b [ IPu( Q5. - 5QQ Ny s
<ce| [ (00 © Q. — Fo(QT) [ 1aqe) + CE / (Q-00- — £Q.Q)ds|ly1 e
<CE) [ (10.0 Q.= FQUWc + B [ (@0~ 2QQ sl < Clt —si

Therefore, we can get
EH)/QE||C"([0,T};W*l’2(’]1‘)) <C. (4.2.14)

Finally, we prove the Hélder continuity of {Z°(t)}. We also need to show that

]E“Za||Cn([07T];W—l,2(T)) S C (4215)
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Following the similar way to the above two proofs, we have
BN Z(t) — 25(5) [0y o
t
5] [ Pu(@(pe pa AWy
t
<CE| [ @(pespeu )W [y

t
0
SC’E(/ Z ||g1~:(pgypaua)||W—l*2(71‘)al7a)2

S k>1

t
0
gOE(/ > llgk(pe, peue) |l o mydr)

k>1
t
6
SCIE(/ /('05 + peluc|? + pl)dadr)?
s T
0 Lt 0
<Ot — |2 (1 +E(sup [|v/p-uc||72) + E(sup [lp]| 2)) < Ot — s]=.
[0,7] [0,T]
Then the proof is complete. n

Proposition 4.2.10. The set {Q.}; € € (0,1)} is tight on Xy.

Proof. From the uniform bounds in (4.2.7) and (4.2.8), the tightness is a natural conse-

quence. That is, from the equation (4.2.2),, we have

(Qs)t = —U- vx@e + @st - Qs@s + FsHa?(Qe)-

Then, we have that, for any p € [1, 00)

3
2

(): is uniformly bounded in LP(§2; C*([0,T]; L2(T))).

Therefore, by embedding,
Qe is compact in LP(Q; L*([0,T]; W**(T))) N LP(Q; Cy ([0, T]; WH(T))).
O

By all the compactness results, since we also have that the law uy is tight on the Polish

space Ay, the tightness of the joint law follows.

Proposition 4.2.11. The set {u}; € € (0,1)} is tight on X.
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As the path space X is not a Polish space, we use the Jakubowski-Skorokhod represen-

tation theorem, a refinement of the Skorokhod representation theorem, see [45] for details.

Proposition 4.2.12. One can find a subsequence u®, a probability space (Q,%, I@’), and X -
valued Borel measurable random variables (p., 0z, qe, Qz, W2), for any €in(0,1), also there

exists the set(p, i, q, Q, W), such that the following holds

1. the law of (pe, 0e, qe, Q-, We) is the same as (p., 0., q., Qz, We), that is, given by pi;
2. similarly, the law of (p,1,q, Q, W) is the same as (p,u,q,Q, W), can be denoted by p;
3. (Pes e, e, Qe, W) converges to (p,0,q,Q, W) P-a.s, in the topology of X.

Next we fix some notations that will be used later. For any ¢ € [0,T], denote r; as the
restriction operator onto the interval [0, ¢], which restrict the various path spaces. That is,

if X is one of the path spaces mentioned above, and t € [0, T], we define
I X = X‘[()’T], f — f‘[o;p], (4216)

and r; is a continuous mapping. Denote by {§§}5>0 and §, the P-augmented canonical

filtration of the process (p., G, Q-, Wa) and (p, u, Q, W) That is

3 = o(0(rpe, vt 1Qe, 1, W) U{N € §; P(N) = 0}), for t € [0,T],
§ = o(o(ri, 1,Q, ;W)U {N € § P(N)=0}), fortel0,T].

4.2.4 Justification of the limit

In this section, we aim at verifying the limit process we got in Proposition 4.2.11 is a

weak martingale solution to (4.2.3). Namely, we prove Theorem 4.2.3 by proving this result.

Theorem 4.2.13. The quadruplet (Q,§,P), 0, Q, W) is a weak martingale solution to equa-
tion (4.2.3) equipped with the initial law A, and the process W is a (@t)-cylmdm'cal Wiener

Process.

The proof can be divided into several steps. At first, we show that the approximate

system p., 0., Q. solves the system (4.2.2) in the new probability space (2, §, P).
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Proposition 4.2.14. For any ¢ € (0,1), the quadruplet

(2,55, P), po 0., Qe W)
is a finite energy weak martingale solution to (4.2.3) with the initial law A, and the process
W. is a (@t)—cylindm'cal Wiener process.

Proof. As Wa has the same law as W, it follows that WE is a (%t)-cylindrical Wiener process.

Therefore, there exists a collection of mutually independent real-valued (@t)—Wiener processes

(B5)k>1, such that W, = D ks Biey.
We show that the continuity equation (4.2.2), is satisfied. For all ¢t € [0,7], and ¢ €
C*°(T), define the functional

L(p @) = (p(t), ) — (p(0), 1) — / (. 0)ds.

The mapping (p,q) — L(p, q); is continuous on the path space X, x X,,. In the Proposition
4.2.12, we know that the law of L(p., p-u.); coincide with the law of L(p., p-u.);. Note that

pe, PU. solves (4.2.2),
I~E|£(ﬁaaﬁaﬁa)t|2 = E|£(Pa>paua)t|2 = 0.

This also means that (p., p.0.) solves (4.2.2),.
The next step is to verify that the momentum equation (4.2.2), holds true. Similarly,

for any t € [0,T], p € C(T)?, define the functional
t t
M(p.v,a.Q), = {a(t).¢) — (a(0).0) + / (A® v, Vaip)ds — v / (Vv Vool
A t ) t
+ 5_2/0 <p77 d1V90>ds - /0 <vaQ @ V:BQ - f(Q)Ig, vaO)dS
L [1080 - £QQ.V.0)s
0

Ny =Y / (g(p. ). 9)%ds,

k>1

Ni(p, @) = / (&x(, ), 9)ds.
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For any s, t € [0,T], we can define the M(p,v,q,Q)s. as the increment of the functional

from s to t, that is,

M(ﬁava q, Q)s,t = M(%V» q, Q)t - M(pa v,q, Q)s

The same definition holds for M (p, q)s: and Ni(p,q)s:. From the uniform estimates (4.2.7)
and (4.2.8), we can infer that the following mappings

(P7Vaq7 Q) = M(pav7q7Q)t7
(p7V7q7 Q) HN(/L q)t7

(p7 Vv,q, Q) — Nk(ﬂ, q)t

are well defined and measurable on the path space X, x &, x X, X X, and all the estimates
hold true.
To be specific, for N(p, v, q, Q):

Z/O (gr(p, @)p)ds < CZ/O gk (p, q)|2.ds < C.

E>1 k>1

The estimates of M(p,v,q,Q); and Ny(p,v); follow the same way. As stated before, the

following variables have the same laws

M(pa7 Ug, PeUg, Qa) e M(ﬁm ﬁea ﬁaﬁaa Qa)7
N(ﬂmﬂs“a) e N(ﬁm ﬁ€ﬁ6)7

Nk(p57 peus) e Nk(ﬁsy ﬁsﬁs)-
Now fix time s, t € [0,T] with s < ¢, and define
h: Xp|[075] X Xu|[075] X XQ|[O,5] X XW|[O,5] — [0, 1]

as a continuous function. It is easy to infer that from the equality (4.2.2),

M(pe; uz, peue, Q:)e :/0 (®(p2, peuc), p)ds = Z/O (& (pe; pouc), ) dBy,

k>1
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is a square integrable (§;)-martingale, as a result

[M (pea Ue, Pelg, Qa)]z - N(pg, peug)

and
M(psa Ue, PeUg, Qs)ﬁk - Nk (ﬂs, psus)

are (§;)-martingales as well. By the equality of laws

Eh<rsﬁ57 rsﬁsa rs@aa rSWE) [M (ﬁe; l~15, ﬁaﬁea Qe)s,t]

(4.2.17)
:Eh(rspa7 rsu., rsQaa rsWa) [M(Pa, Ug, PeUg, Qa)s,t] - Oa
Eh(rsﬁsa rsﬁsa rs@sa rsWs) [[M (/557 ﬁs> ﬁsﬁa Qs)Q]s,t - N(ﬁsa ﬁsﬁs)s,t]
(4.2.18)
:Eh(rspsu rsu€7 I‘ng, rSWE> [[M(p€7 u€7 p€u€7 QE)Z]S,L‘ - N(,Os; p5u5>s,ti| = 07
Bh(rpe, vty Qe 1 W) | M, 8y ity Q) il — N (5 etic) o
(4.2.19)

:Eh(rspea I'sUe, rsQa> rswa) HM (paa Ug, PeUg, Qa)ﬂk]s,t - N(PE, paua)s,t] = O

The last step is to verify that the Q-tensor equation, (4.2.2), is true. Then for any
€ [0,T], ¢ € C=(T)**3, define the functional

P, Q) = (Q(1). &)~ (Q(0), &) + /0 (v-V.,0. 6)ds /0 (0Q - QO, )ds—T /0 (H(Q), §)ds.

We know that the mapping (v, Q) — P(v, Q); is also continuous on the path space X, x Xgp.
Furthermore, we know that the law of P(u., Q.); coincide with the law of P(u.,Q.),. As
u., Q. is the solution to (4.2.2),

I~E|’P(ﬁ€7 Q6)t|2 = E|73(u5, Qa)t|2 =0.

That is, (@, Q.) also solves (4.2.2),, so the proof is complete. O
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By proving that (je, U, Q.) solve the equation (4.2.2) as well, all the estimates of
(pe, ue, Q) also apply. In particular, we have from (4.2.10)

p- — 1 in LP(Q; L>([0,T); L7(T))) P — a.s, (4.2.20)

and the following bounds hold.

Proposition 4.2.15. For all p € [1,00), we have the following uniform bounds if | > g,

pu. is bounded in LP(2; L>([0,T]; L*(T))),
Q. is bounded in LP(S%; L>([0, T); WH*(T))),

| (4.2.21)
@ is bounded in LP(S; L=([0, T); L™ (T))),

F. is bounded in LP(Q; L=([0, T]; W~43(T))).

with . = ﬁfa_l and

- 1
F. =v.AQu. — Qdiv,(p.u. ® u.) — ;VIA(ﬁg —1—7(p:-—1))

= Q(div,(LV,Q: © Vo Q. — Fu(Q:) ) + LQ(div,(Q-AQ. — AQ.Q.)),

Note that all these bounds are uniform with respect to €, and hold for any T > 0.

After we have got all the uniform bounds, we can easily get that
Py, — ain L2(0,T; LY(T)), P — a.s, for any ¢ < 6, (4.2.22)

we denote its dual space by

*

War(T) = Wi ()]

Note that two elements of W3"*(T) are identical if their difference is a gradient. With the

definition, we can prove that
div,(pet. ® 1) — divy(u, @ u.) in L0, T; Wi 5(T)). (4.2.23)

The proof of (4.2.22) and (4.2.23) follows from [10].
Then we proceed to the proof of Theorem 4.2.13. From Proposition 4.2.14, it’s easy for

us to get that for any € € (0, 1), all W, are cylindrical Wiener processes. As a result, there
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exists a collection of mutually independent real-valued (§;)-Wiener processes (3:)r>1, such
that 1V = > k1 Bep.

It remains to show that the equation (4.2.3) is satisfied. Take any divergence free test
function ¢ € CF% (T), use all the notations in Proposition 4.2.14, when ¢ — 0, then we need

to show that

Eh(r.,r,Q, r,W)[M(1,1,1a,Q),] =0, (4.2.24)
Eh(r,i, 1,0, r,W.) [[M(l,ﬁ,ﬁ, Q)2 —J\/'(l,ﬁ)&t} —0, (4.2.25)
Eh(r,a, rs0, r,W.) [[M(l, 0,1, 0)Bilss — Na(l, ﬁ)s,t] —0. (4.2.26)

By proving these, the proof is complete. Note that from the equation, we can get that the

process M(1,q,u, Q) is a §-martingale, and its quadratic and cross variations satisfy

<<M(17 ~>ﬁ> Q)» :N(lvﬁ)v <<M(1vﬁvﬁv Q)?Bk» :Nk(lvﬁ)v

<<M(1,ﬁ,ﬁ,@) —/O.<<I)(1,ﬁ)d[/f/’go>>> _

Then the equation (4.2.3), is satisfied in the sense of definition 4.2.2.

also, we have

Now we verify (4.2.24)-(4.2.26). By Proposition 4.2.12 and (4.2.23), we know that
M(pe, 0, p-1e, Qa)t — M(1,u,q, Q)t a.s.

Considering all the uniform estimates (4.2.6)-(4.2.8), the passage to the limit is thus justified.

Last, we work on the limit of the stochastic integral. We can start by showing that
(D (5, peiic) 0)) — (B(1, ), ) in LU R) P& L—ae. (4.2.27)
We can write that

[{P(pe, peic)-, ) — ((L, 1), )| 2@im)
<O Hh(pe) — (1), @))% + O awl(petie — i, 0)2)2 = I + L.

k>1 k>1
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By (4.2.4) and (4.2.22), I, — 0 for a.e (w,t)U x R. We then use the Minkowski integral
inequality to deal with [, that is

k>1

L <O Ihw(pe) — (Wu2<Q/ZNM& P(D)170)2de

SC’/(1+p5 )|pa—1|dx<0[/(1+p5; )Pdx]v /|p5—1|qu]t11

k>1

T

where the constants p, ¢ € (1, 00) are conjugate and satisfy

-1
pﬁyT<7+1 and ¢ < 7.

From the estimate of p. and (4.2.20)

T
]E/ Lidt — 0.
0

So I — 0 for a.e (w,t) € U x R, up to a subsequence. Therefore, (4.2.27) follows, and we
can get

Z<gk(p€ypeus 2 Z gk 1 u 2

k>1

, PR L—ae.
k>1
Moreover, for all p > 2,

t
B [ 1@ e o) gt
t » ,
<CE / 1 a1+ 7207 + [/Boticle) b

CO+E§w|m\ +E$mHV&mhz

From the boundedness, the weak convergence yields, then the limit (11, Q) solves (4.2.3). Tt
follows that for all p € [1, c0)

@€ LP(Q; L*(0, T; Wyl (T))).

As from Proposition 4.2.12 and (4.2.20), we have

V. — 1 in LY(Q; LY(0, T; LY(T)))
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By the semi-continuity of the functional

ya

~ 2

w— E [ sup /|w|2dx} :
0<t<T JT

one has that & € LP(€; L®(0,T; L*(T))) by (4.2.21). Finally, the convergence in distribution
implies that
€ LP(€; Cu(0, T L, (T)))-

Then the proof is complete.
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Appendix Some Basic Theories and Lemmas

In the appendix, we present some theorems and lemmas that will be used frequently in

this paper.

Lemma A.0.1. [35, Theorem 2.1] Suppose that X; C Xo C X5 are Banach spaces, X; and
Xy are reflexive, and the embedding of X1 into Xq is compact. Then for any1 < p < oo, 0 <

a < 1, the embedding
LP(O, T7 Xl) N Wa,p(o’ T7 X2) — Lp(()? T, XO)

18 compact.

Lemma A.0.2. [5, Theorem 1.1.1] Let £ : L**(0,T) — L*2(D) and L™(0,T) — L%2(D)
be a linear operator with ¢ > p1 and qu < py. Then, for any s € (0,1), the operator

L:L™(0,T)— L™(D), where r; = —S/p1+(i—s)/q1’ Ty = —S/pﬁ&_s)/@.

Theorem A.0.3. [50, Chapter 3] Let p > 1, {X,,}n>1 € LP and X,, — X in probability.
Then, the following are equivalent

(1). X,, = X in LP;

(2). the sequence | X,|P is uniformly integrable;

(3). E|X,|P — E|X|?.

Theorem A.0.4. [45, Theorem 1] Let X be a quasi-Polish space. If the set of probability
measures {Vytn>1 on B(X) is tight, then there exists a probability space (2, F,P) and a
sequence of random variables u,,u such that theirs laws are v,, v and u, — u, P a.s. as

n — 0Q.

Lemma A.0.5. (The Aubin-Lions Lemma, [58, Chapter 1]) Suppose that X1 C Xo C X, are
Banach spaces, X1 and X5 are reflexive, and the embedding of X1 into Xy is compact. Then

forany 1 <p<oo, 0 <a<1, the embedding

LP(0, T Xq) nWP(0, T Xa) < LP(0, T Xo),

L>=(0,T; X1) NnC*([0,T); Xo) — L*=(0,T; Xp)
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18 compact.

Theorem A.0.6. (The Vitali convergence theorem, [50, Chapter 3]) Let p > 1, {up}n>1 € LP
and u, — u in probability. Then, the following are equivalent

(1). up — u in LP;

(2). the sequence |u,|P is uniformly integrable;

(3). Elu, P — E|ul?.

Theorem A.0.7. (The Skorokhod representation theorem, [80, Theorem 1]) Let X be a
Polish space. If the set of probability measures {v,}n>1 on B(X) is tight, then there exists
a probability space (0, F,P) and a sequence of random variables u,,u such that theirs laws

are v,, v and u, — u, P a.s. as n — oo.
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