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Abstract 

Reported Adverse Drug Reactions for SARS Coronavirus 2 Treatments during the 

Pandemic: Evaluating and Comparing Disproportionality Analyses of FAERS Database 

 

Xinyun Chen, BS 

 

University of Pittsburgh, 2022 

 

Abstract 

 

 

The COVID-19 pandemic is one of the most serious health crises throughout the human 

history. With countless efforts of drug development and repurposing by the scientific community 

in a hope of finding safe and efficacious COVID-19 treatment, there is an emerging need for 

pharmacovigilance for these drugs indicated for COVID-19 treatment. For new drugs, clinical 

trials can only give limited knowledge about drug safety profiles which are not enough to guide 

the use of the drugs in large populations. Thus, potential risks of these drugs need to be quickly 

identified from data sources outside clinical trials. For repurposed drugs, change of indication may 

lead to unforeseeable risks even for drugs with well-established safety profiles. Thus, adverse 

events with elevated risks for repurposed drugs also need to be identified. This study set the aim 

of exploring the power of disproportionality analysis in extracting adverse drug reaction 

information from spontaneous reporting data to satisfy the pharmacovigilance need. For new 

drugs, the potential of identifying adverse reactions with limited report data was explored. For 

repurposed drugs, we focused on whether increase in disproportionality scores can be used to 

identify adverse drug events with elevated risks during the pandemic. The FDA Adverse Event 

Reporting System (FAERS) database was utilized, and the performance of two disproportionality 

scores ─ information component (IC) and reporting odds ratio (ROR) in signal detection and 

ranking were evaluated and compared. As a result, we found similar and seemingly plausible signal 

detection by both IC and ROR for a new drug Remdesivir. For repurposed drugs, we found that 
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increase in IC and fold increase in ROR generally give plausible and comparable performance in 

signal detection and rankings especially for drug-adverse event combinations with large number 

of observations. This study explored the potentials of disproportionality analysis on identifying 

potential health risks for both new and repurposed drugs during the COVID-19 pandemic, which 

had lasting significance in case of a future public health crisis. 

Key words: COVID-19, Pharmacovigilance, Adverse Drug Reactions, Disproportionality 

Analysis, Food and Drug Administration Adverse Event Reporting System (FAERS)  
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1.0 Introduction 

1.1 The COVID-19 Pandemic and Pharmacovigilance Need 

The Coronavirus Disease 2019 (COVID-19), caused by the infection of the Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS CoV-2), is one of the most serious health crises 

throughout human history. Ever since the first recorded case of SARS CoV-2 infection in Wuhan, 

China on December 8th, 2019, the virus has shown a high level of transmissibility and severity 

when local medical facilities are overwhelmed[1]. By March 11, 2020, COVID-19 has been 

reported in 113 countries and territories on all six continents with permanent human home[2], and 

COVID-19 was declared by the World Health Organization (WHO) a pandemic[1, 3]. By March 

29th, 2022, over two years after the initiation of the COVID-19 pandemic, this pandemic has 

resulted in over 481 million confirmed cases and over 6 million deaths around the world, with over 

79 million confirmed cases and over 969 thousand deaths in the US[4]. As a result of the disruption 

to the normal pattern of production and life, society has suffered from huge economic and social 

consequences. 

 To protect people from SARS CoV-2 infection, there has been an unprecedented 

commitment of the scientific and medical community to vaccine development and use. As a result, 

a large population has established immunity against SARS CoV-2. However, vaccines are not 

enough for protection against COVID-19. As an RNA virus, SARS CoV-2 has a high mutation 

rate because of its RNA replication process[5]. Since the initial outbreak of the COVID-19 

pandemic, twelve major variants of SARS CoV-2 have emerged in different parts of the world[6]. 

The alteration in the spike proteins enables the variants to evade immunity response, which 
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combined with a high replication rate puts vaccinated people still at the risk of SARS CoV-2 

infection and COVID-19. 

Thus, apart from vaccines, drugs for COVID-19 are also needed for patients with severe 

symptoms after SARS CoV-2 infection. And a major part of the efforts has been focused on drug 

repurposing since the time and monetary cost of developing new drugs is too high[7]. The drug 

repurposing aims at utilizing the properties of certain well studied drugs to either inhibit viral entry 

and replication, or ameliorate the inflammatory response of SARS CoV-2 infection[8, 9]. The 

drugs most studied for repurposing in COVID-19 treatment include antiviral agents such as 

oseltamivir   and lopinavir/ritonavir, antibiotics such as azithromycin, anti-parasitic drugs such as 

hydroxychloroquine and ivermectin, and immunomodulators such as steroidal anti-inflammatory 

drugs and colchicine[8, 10].  

However, the increase in the use of new and repurposed drugs for COVID-19 has raised 

concerns about the safety of these drugs. Drugs approved after the initiation of the COVID-19 

pandemic, such as Remdesivir, have limited safety profiles. The clinical trials for these drugs 

usually do not give enough information on latent and rare adverse drug reactions (ADRs). Also, 

due to the limited population, patient comorbidities and medical conditions in the clinical trials, 

the results may not generalize well into the large population in real-world settings[11, 12].  

For drugs with off-label or repurposed use, although the focus is usually on efficacy as the 

drugs already have well-established safety profiles[13], there are also some safety concerns. To 

treat COVID-19, these drugs may be administered in different doses, dosage forms, and 

administration frequencies compared to the administration method for their previous indications. 

For example, ivermectin, an anti-parasitic drug, is normally administered at the dose of 150 

microgram/ kilogram of body weight orally to treat filarial nematode infections[14], while several 
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clinical trials on this drug intended for COVID-19 treatment administer the drug orally at the dose 

of 400 microgram/ kilogram of body weight[15, 16]. The increased dosage might lead to higher 

risks of some ADRs of the drug. Also, the body conditions of COVID-19 patients may be 

significantly different from patients of the previous indications, which may lead to changes in the 

toxicological and pharmacokinetic profiles of the drugs and an increase in the risk of some ADRs 

in COVID-19 patients. For example, there were cases of COVID-19 patients administered with 

dexamethasone developing secondary fungal infections reported[17]. It is suspected that the lack 

of immunity and the long-term use of ventilators could add up to the immunosuppressive function 

of dexamethasone in critically ill COVID-19 patients and lead to an increase in the risk for 

secondary infections. 

Thus, there is a highlighted need for pharmacovigilance to identify previously unknown 

ADRs for newly approved drugs, and ADRs with elevated risks during the pandemic for 

repurposed drugs. 

1.2 Drug Safety Surveillance and Disproportionality Analysis 

Pharmacovigilance is the scientific and regulatory framework for detecting, assessing, 

understanding, and preventing ADRs[12]. Generally, drug safety data is collected and analyzed. 

Potential drug safety issues are reviewed and validated, and risks are communicated by health 

authorities to healthcare providers[18]. 

The information about ADRs generally comes from either drug safety data mandatorily 

reported during clinical trials or ADRs reported voluntarily by consumers, healthcare providers, 

and drug manufacturers after the marketing of a drug. The data from clinical trials give an 
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estimation of the incidence rates of the observed ADRs. However, as mentioned in section 1.1, 

clinical trials may not identify rare and latent ADRs and lack generalizability. Thus, post-

marketing surveillance using spontaneously reported ADRs plays an important role in 

pharmacovigilance as it provides additional drug safety profiles after drug marketing[19]. 

There are several spontaneous ADR reporting systems run by different public health 

authorities, including the Food and Drug Administration (FDA) Adverse Event Reporting System 

(FAERS) maintained by FDA, VigiBase maintained by the World Health Organization (WHO), 

etc.  

Using the spontaneous reported ADR data, a step called signal detection can detect 

potentially highly associated drug-event combinations (DECs), which is usually implemented 

using the data-driven analysis method called disproportionality analysis[20]. This analysis aims at 

examining the association between the reporting of a drug and the reporting of an event. If the 

observed number of reported DEC is higher than expected under that assumption of independence 

between the reporting of the drug and the event, there would be a positive association. 

Table 1 Layout of a 2x2 Contingency Table for a Drug-Event Combination 

 Event j Not Event j Margin 

Drug i n11 n10 n1. 

Not Drug i n01 n00 n0. 

Margin n.1 n.0 n 

 

There have been various scores[20, 21] representing the disproportionality of reporting 

developed. Some commonly used ones include relative-risk-related proportional reporting ratio 

(PRR), odds-ratio-related reporting odds ratio (ROR), and observed-to-expected ratio type of score 

called relative reporting ratio (RRR). Their definitions are as follows: 
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𝑃𝑅�̂� =
𝑃(𝑒𝑣𝑒𝑛𝑡 𝑗|𝑑𝑟𝑢𝑔 𝑖)

𝑃(𝑒𝑣𝑒𝑛𝑡 𝑗|𝑛𝑜𝑡 𝑑𝑟𝑢𝑔 𝑖)
=

𝑛11𝑛0.

𝑛1.𝑛01
 

𝑅𝑂�̂� =
𝑜𝑑𝑑𝑠 𝑖𝑛 𝑓𝑎𝑣𝑜𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑗 𝑔𝑖𝑣𝑒𝑛 𝑑𝑟𝑢𝑔 𝑖

𝑜𝑑𝑑𝑠 𝑖𝑛 𝑓𝑎𝑣𝑜𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑗 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑟𝑢𝑔 𝑖
=

𝑛11𝑛00

𝑛10𝑛01
 

𝑅𝑅�̂� =
𝑃(𝑒𝑣𝑒𝑛𝑡 𝑗|𝑑𝑟𝑢𝑔 𝑖)

𝑃(𝑒𝑣𝑒𝑛𝑡 𝑗)
=

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐷𝐸𝐶

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐷𝐸𝐶
=

𝑛11𝑛

𝑛1.𝑛.1
 

These frequentist disproportionality scores are extensively used in practice as they are 

easily interpretable and generally give a good performance as long as the reporting frequencies of 

the DECs are not too small. However, for DECs with small frequencies of reporting, the 

estimations of these scores may become unstable, and the highly inflated scores would result in 

may unreliable, false-positive signals[22, 23]. This highlights the importance of developing 

disproportionality scores which become more conservative when reporting frequencies of DECs 

are small. 

 

Figure 1 Schema for Bayes’ Theorem 

                         D: variable for data observation; θ: parameter of interest 

 

The aforementioned problem can be properly resolved under a Bayesian paradigm. As 

shown in Figure 1, the posterior distribution of the parameter of interest θ (a disproportionality 

score in the context of disproportionality analysis) depends on the distribution of variable for data 

observation (multinomial distribution for a 2x2 contingency table) and the prior assumption of θ. 

The evidence P(D) is merely a normalizing constant that ensures the area under the curve of the 

posterior probability density function is one, which is not of particular interest. Our inference is 

based on the posterior distribution P(θ|D). When there is high confidence in the data (sample size 

is large), posterior distribution will be very close to the information given by the likelihood as long 
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as the prior is not too strong. When there is no high confidence in the data (sample size is small), 

prior assumptions will dominate the estimation of the posterior distribution. That explains why, 

given a prior distribution that assumes independence between a drug and an event, the estimated 

disproportionality under a Bayesian paradigm is usually conservative when the sample size is 

small. 

The most commonly used Bayesian models for disproportionality scores are Bayesian 

Confidence Propagation Neural Network (BCPNN)[24] and Gamma-Poisson Shrinker (GPS)[22]. 

The BCPNN gives an estimation for the information component (IC) which is related to 

RRR: 

𝐼𝐶 = 𝑙𝑜𝑔2𝑅𝑅𝑅 = 𝑙𝑜𝑔2

𝑃(𝑒𝑣𝑒𝑛𝑡 𝑗|𝑑𝑟𝑢𝑔 𝑖)

𝑃(𝑒𝑣𝑒𝑛𝑡 𝑗)
= 𝑙𝑜𝑔2

𝑃(𝑒𝑣𝑒𝑛𝑡 𝑗, 𝑑𝑟𝑢𝑔 𝑖)

𝑃(𝑒𝑣𝑒𝑛𝑡 𝑗)𝑃(𝑑𝑟𝑢𝑔 𝑖)
 

The model is based on the multinomial distribution of the report counts n11, n10, n01, and 

n00 in each 2x2 contingency table (Table 1). With the probabilities of a report falling into each of 

the 4 cells in the contingency table being p11, p10, p01, and p00, the report numbers follow the 

following distribution: (n11, n10, n01, n00) ∼ Multinomial(p11, p10, p01, p00, n). Then, a conjugate 

Dirichlet prior Dirichlet(α11, α10, α01, α00) is set for (p11, p10, p01, p00), which gives the following 

posterior distribution for (p11, p10, p01, p00), where γij = αij + nij: 

(𝑝11, 𝑝10, 𝑝01, 𝑝00)~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛾11, 𝛾10, 𝛾01, 𝛾00) 

Norén and his colleagues proposed an empirical way to estimate αij, which means that we 

can directly obtain the posterior distribution of (p11, p10, p01, p00). Thus, Markov Chain Monte 

Carlo (MCMC) draws of (p11, p10, p01, p00) can be made, and obtain the sample posterior 

distribution of 𝑅𝑅𝑅 =
𝑛11𝑛

𝑛1.𝑛.1
=

𝑝11

𝑝1.𝑝.1
, and thus the posterior distribution of IC[25, 26]. There are 

also approximations to give point and interval estimation of IC based on the marginal Beta 

distributions of p11, p1. and p.1[20, 27]. 
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The GPS model estimates another disproportionality score called Empirical Bayesian 

Geometric Mean (EBGM) which is also based on RRR. Although BCPNN and GPS are different 

models, their performance in estimating RRR and signal detection are similar[21, 23-25]. 

1.3 Goal of the Study 

Due to the need of pharmacovigilance for repurposed drugs and new drugs, efforts in 

utilizing disproportionality analysis for signal detection in spontaneously reported ADR data are 

needed. 

For newly approved drugs, continuous monitoring of spontaneous ADR reports can 

provide information on previously unknown ADRs. This can be achieved by the prototypic 

disproportionality analysis. What is more of interest is whether some useful information can truly 

be provided by the spontaneous ADR data as early as possible, and the difference in the 

performance of different disproportionality scores. 

For the repurposed drugs, the need to detect ADRs with elevated risks during the pandemic 

for COVID-19 patients requires the examination of an increase in disproportionality, which is not 

a common practice in disproportionality analysis. Thankfully, Ståhl et al.(2004)[28] proposed 

several algorithms using IC to discover different types of drug safety risks, including an algorithm 

that uses the increase in IC to discover DECs with an increase in reporting. This provides us a 

framework for comparing the disproportionality in reporting by comparing disproportionality 

scores. However, there have not been any studies evaluating the performance of the 

disproportionality analysis using change in disproportionality scores on real or simulated 

spontaneously reported ADR data, and the performance of this method is unclear.  
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Thus, in this study, we will focus on evaluating the performance of disproportionality score 

IC on detecting potential ADRs rising during the ongoing pandemic for both new drugs and 

repurposed drugs. The performance of IC will also be compared with a commonly used frequentist 

disproportionality score ROR. 
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2.0 Methods 

2.1 Data Source 

2.1.1 Food and Drug Administration Adverse Event Reporting System (FAERS) 

This study uses data from the Food and Drug Administration Adverse Event Reporting 

System (FAERS) database for ADR report data. 

FAERS is a spontaneous reporting system aimed at supporting FDA’s post-marketing 

drug safety surveillance program by collecting various events related to drug use including adverse 

events, medication errors, and product quality defects submitted by healthcare professionals, 

consumers, and product manufacturers. It is freely accessible and offers quarterly releases of new 

reports. From 1968 to 2021, this database has seen an exponential increase in the yearly report 

from 107 cases to more than 2.3 million cases a year[29, 30] as shown in Figure 2. With more than 

23 million reports available in total, this database provides extensive adverse event information 

even for some rare events and is thus one of the most commonly used sources of data for drug 

safety surveillance. 

The FAERS database is publicly available and does not require IRB approval. 
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Figure 2 Number of Reports in FAERS Database Each Year 

2.1.1.1 Cleaning and Standardization 

The data in FAERS is entered by individual consumers, healthcare professionals, or 

product manufacturers, and is not verified. As a consequence, non-standard terms are common in 

the raw dataset. For example, drug names may not be correctly entered; events may not be 

described in appropriate preferred terms of the Medical Dictionary for Regulatory Activities 

(MedDRA) as expected. Also, one case may be reported separately by the consumer, his/her 

healthcare provider, and the product manufacturer, which would create duplicate reports.  

Thankfully, much research has been done to establish practices for dealing with the 

aforementioned problems[31-33]. Here in our study, the practice of Banda et al[31]. is adopted 

and is described as follows:  
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First, raw quarterly data are downloaded from the FAERS website, and other ancillary data 

for drug and event mapping are downloaded, which include FDA Orange book with new drug 

application (NDA) number, EU drug name/active ingredient reference table, and Observational 

Health Data Sciences and Informatics (OHDSI) Common Data Model version 5 (CDM v5) 

vocabulary tables that include standard terminologies from MedDRA, Systematized Nomenclature 

of Medicine – Clinical Terms (SNOMED-CT) and RxNorm. 

Second, using PostgreSQL, the FAERS data is loaded for the standardization process. 

During deduplication, the event date and age are updated to the maximum of the same case ID, 

and duplicated cases are identified using an exact match of demographic information including 

age, sexuality, report country, and event date. 

Third, drug names are mapped to terms in RxNorm, a naming system maintained by the 

United States National Library of Medicine. RxNorm contains all drugs available on the US 

market, so it is useful for standardizing drug names under a uniform naming system. This mapping 

includes exact matching of drug names, mapping from active ingredients, and mapping from NDA 

numbers. The drug names that fail to be mapped from the previous automotive steps have to be 

manually mapped using the OHDSI Usagi tool. This tool uses a feature referred to as similarity 

search, which suggests standard terms similar to the drug name entries. This allows medical 

professionals to pick the correct term to map the original drug name into. With drug names all 

standardized, we would be able to work with all the data of the drugs of interest. 

For the reactions in MedDRA preferred term, they are first mapped into MedDRA concept 

IDs and then mapped into concept IDs in SNOMED-CT. This step does not involve manual 

mapping and would leave some inappropriately entered terms as they are. 

https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html
http://ohdsi.github.io/Usagi/
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With the cleaned FAERS data obtained above, we would be able to perform various 

analyses and make inferences about potential adverse events of drugs. 

2.1.1.2 Data Exclusion Criteria 

We used the products’ active ingredients as drug names. In FAERS data, one report could 

contain a primarily suspected drug, a secondarily suspected drug, concomitant drugs, and 

interacting drugs. Here, we only analyzed the primarily suspected drugs. 

We use the MedDRA preferred terms as events in the cleaned FAERS data set for analysis. 

However, events in the FAERS data set are not all appropriate ADRs. Adverse drug reactions are 

defined as undesirable clinical manifestations caused by the administration of certain medicine[11, 

34]. Thus, events such as medical procedures, medical product issues, etc. should be excluded. 

First, we looked at MedDRA system organ class (SOC) terms, a higher level term 

compared to the preferred term. All events falling into the following four SOC terms are excluded: 

"investigations", "product issues", "social circumstances", and "surgical and medical procedures". 

Then, there are still many preferred terms in other SOC groups needed to be excluded to 

focus the analysis on ADRs. By reviewing the remaining preferred terms, we identified the 

following preferred terms to be excluded: "adverse effect absent", "off label uses", "medication 

errors, product use errors and issues NEC", "product storage errors and issues in the product use 

system", "product administration errors and issues", "overdoses NEC", "exposures associated with 

pregnancy, delivery and lactation", "intentional product use issues", "accidental exposures to 

product", "underdoses NEC", "intentional product misuses", "product dispensing errors and 

issues", "exposures to agents or circumstances NEC", "product prescribing errors and issues", 

"product monitoring errors and issues", "non-occupational environmental exposures", "product 
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preparation errors and issues", "occupational exposures", "pathways and sources of exposure", 

"product selection errors and issues", "normal newborn status", "normal newborn status", "product 

transcribing errors and communication issues", and "product confusion errors and issues". 

Also, "coronavirus infections" is excluded since we are focusing on drugs to treat COVID-

19, and coronavirus infections should not be their ADRs but their indications. 

2.1.2 National COVID Cohort Collaborative (N3C) 

Richard Boyce, Ph.D., Matthew Gray, PharmD, and their colleagues identified 20 drugs 

most prescribed for COVID-19 patients as shown in Table 2 using data from the National COVID 

Cohort Collaborative (N3C). 

Table 2 List of 20 Drugs Most Prescribed For COVID-19 Treatment 

Drug Names 

Methotrexate Apixaban Azathioprine Azithromycin 

Clozapine Colchicine Cyclosporine Dexamethasone 

Hydrocortisone Hydroxychloroquine Ivermectin Lopinavir/Ritonavir 

Methylprednisolone Mycophenolic Acid Mycophenolate Mofetil Oseltamivir 

Prednisone Remdesivir Tacrolimus Tocilizumab 

 

N3C is a collaborative project that collects COVID-19 clinical data from over 100 

participating medical institutions to provide large-scale data for COVID-19 studies[35]. 

With N3C, data on prescriptions for COVID-19 patients in the participating institutions 

can be obtained[36, 37]. Among these drugs, those not intended for COVID-19 treatment are 
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excluded and 20 drugs with the highest prescription frequencies are selected. Among these drugs, 

Remdesivir is newly approved after the initial pandemic outbreak, and all the other 19 drugs are 

under repurposed use or off-label use. 

2.1.3 Description of the Data Analyzed 

In the analysis, we take March 11, 2020, as the start of the COVID-19 pandemic, and look 

at cases reported to the FDA 6 months before and 6 months after the initial outbreak of the 

pandemic, which is from September 11, 2019 to September 11, 2020. There are 167707 cases 

reported to FDA during the six months before the pandemic outbreak, and 160018 cases during 

the pandemic. 

The report numbers before and after the pandemic outbreak as well as the number and 

percentage of change in the report numbers for the 20 drugs of interest are shown below in Table 

3. Most drugs of interest in this list have increased report numbers after the outbreak of the 

pandemic, which is expected as it is likely that more attention has been paid to these drugs since 

the start of the pandemic. There are eight drugs with decreased number of reports (apixaban, 

colchicine, hydrocortisone, ivermectin, mycophenolate mofetil, methylprednisolone, 

mycophenolic acid, and oseltamivir). However, a decrease in the report of a drug does not mean a 

decrease in the report of all its ADRs as well as a change in its association with the reporting of its 

ADRs. That means we would still apply disproportionality analysis to the drugs with a decrease in 

report numbers. 

Another thing to notice is that Remdesivir does not have any report before the outbreak of 

the pandemic, which makes sense because this drug got the emergency use authorization (EUA) 

on May 1, 2020 and there might only be very limited use of the drug before this date. 
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Table 3 Change in Report Numbers of Drugs of Interest 

Drug Name 

Report 

Number before 

Pandemic 

Report 

Number after 

Pandemic 

Change 

in Report 

Number 

Percentage 

Change in 

Report Number 

Apixaban 7842 7444 -398 -5.08 

Azathioprine 258 319 61 23.64 

Azithromycin 49 77 28 57.14 

Clozapine 2706 2986 280 10.35 

Colchicine 111 74 -37 -33.33 

Cyclosporine 419 538 119 28.4 

Dexamethasone 1655 1826 171 10.33 

Hydrocortisone 178 175 -3 -1.69 

Hydroxychloroquine 335 913 578 172.54 

Ivermectin 112 42 -70 -62.5 

Lopinavir\Ritonavir 35 375 340 971.43 

Methotrexate 5056 6782 1726 34.14 

Methylprednisolone 763 753 -10 -1.31 

Mycophenolate Mofetil 478 326 -152 -31.8 

Mycophenolic Acid 227 153 -74 -32.6 

Oseltamivir 97 87 -10 -10.31 

Prednisone 1752 2007 255 14.55 

Tacrolimus 1740 2101 361 20.75 

Tocilizumab 2488 3794 1306 52.49 

Remdesivir 0 1546 1546 Inf 

2.2 Disproportionality Analysis 

2.2.1 Signal Detection Algorithms 

In this study, we follow the algorithm suggested by Ståhl et al.[28] to detect drug-event 

combinations with rapid increases in reports. This means that we are focusing on increase or fold 

increase in certain disproportionality scores to detect DECs with potential increase in 

disproportionality in reporting. The disproportionality scores we will consider here are information 

component (IC), and reporting odds ratio (ROR). 
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The estimation of the centers and confidence limits of ICs uses Markov Chain Monte Carlo 

(MCMC) simulation as it gives more accuracy compared to approximations especially when 

observed and expected frequencies are small[25]. Here, we use 10000 runs for each simulation 

and the implementation is fulfilled by the PVM package in R[26]. 

For ROR, the point estimator is given in section 1.2. Its 𝜎 × 100th lower/ upper confidence 

limit is given as 𝑅𝑂�̂� ∙ 𝑒
±𝑧𝜎∙√

1

𝑛11
+

1

𝑛01
+

1

𝑛10
+

1

𝑛00  [20], where 𝑧𝜎  is the 𝜎 × 100 th percentile of the 

standard normal distribution. 

For the 19 repurposed drugs, both ICbefore and ICafter can be estimated for their DECs, and 

their changes in IC values from the two time periods can be calculated to represent changes in the 

strengths of associations of the reporting of the DECs. The same goes for ROR, as RORbefore, 

RORafter and the fold increases in ROR are calculated. An increase of 1 in IC equals a fold increase 

of 1 in shrunk RRR. Thus, we set the fold increase of 1 in ROR as a criterion to be comparable. 

Also, the drug and event should be positively associated at least during the six months after the 

pandemic outbreak since DECs not positively associated would not be of interest.  

The signal detection criteria using IC are summarized as follows: 

1) 𝐼𝐶𝑎𝑓𝑡𝑒𝑟 − 𝐼𝐶𝑏𝑒𝑓𝑜𝑟𝑒 > 1 

2) 𝐼𝐶𝑎𝑓𝑡𝑒𝑟 > 0 

The signal detection criteria using ROR are summarized as follows: 

1) 
𝑅𝑂𝑅𝑎𝑓𝑡𝑒𝑟

𝑅𝑂𝑅𝑏𝑒𝑓𝑜𝑟𝑒
− 1 > 1 

2) 𝑅𝑂𝑅𝑎𝑓𝑡𝑒𝑟 > 1 

https://github.com/bips-hb/pvm
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The signals detected by the two disproportionality scores will be compared. Signals will 

also be ranked by the magnitude of change in IC or ROR to identify DECs with potentially the 

largest increase in disproportionality of reporting. 

For Remdesivir, which does not have any reports before the COVID-19 outbreak, no 

disproportionality scores can be appropriately estimated for this time period. Thus, for this drug, 

we would only examine the values of ICafter and RORafter. Indeed, we will only need to ensure that 

the lower confidence limit IC025 or ROR025 is positive to ensure a positive ICafter or RORafter with 

statistical significance. The criterion is as follows:  𝐼𝐶025,𝑎𝑓𝑡𝑒𝑟 > 0 or 𝑅𝑂𝑅025,𝑎𝑓𝑡𝑒𝑟 > 1 

The signals detected by the two disproportionality scores will be compared and also be 

ranked by the magnitude of IC or ROR to identify DECs with potentially the strongest association 

between the reporting of the drugs and events. 

2.2.2 Sample Size and Statistical Significance 

Disproportionality analyses generally have high sensitivities but low specificities, and 

DECs with small sample sizes (numbers of observed reports) can easily generate a large number 

of false-positive signals[38, 39]. Thus, we would examine whether more restrictions on sample 

size and statistical significance can help to obtain signals with higher confidence. 

First, the signal detecting algorithms will be implemented for DECs with both the sample 

sizes before and during the pandemic larger than one. 

Then, only DECs with both the sample sizes before and during the pandemic larger than 

three will be analyzed as a previous study showed that IC and ROR generally give a comparable 

performance for data with sample size of four or more[38].Statistical significance will also be 
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reached by ensuring the confidence intervals/ credible intervals of a disproportionality score before 

and during the pandemic do not overlap. This is expressed as follows: 

𝐼𝐶95,𝑏𝑒𝑓𝑜𝑟𝑒 < 𝐼𝐶05,𝑎𝑓𝑡𝑒𝑟 or 𝑅𝑂𝑅95,𝑏𝑒𝑓𝑜𝑟𝑒 < 𝑅𝑂𝑅05,𝑎𝑓𝑡𝑒𝑟 

2.2.3 Bias and Causal Relationship 

As spontaneous reporting data, FAERS data contains a high level of bias[40, 41], a large 

part of which may be due to unprofessional reporting of drugs and adverse events that lack a 

causality assessment. Thus, analysis of data only reported by healthcare professionals may help to 

reduce the bias in the data, and obtain signals that are more likely to have a causal relationship. 

Thus, we will compare the signals derived by the main disproportionality analysis using 

the whole data and the results of the analysis using data reported by healthcare professionals as 

part of a sensitivity analysis. The information of reporters is in the column “occp_cod” of the 

FAERS data. We choose data reported by physicians (MD), pharmacists (PH), and other health-

professionals (OT). Data reported by lawyers (LW) and consumers (CN) will be excluded in this 

subsection. 

2.3 Sensitivity Analysis 

Although Ståhl et al.[28] have put forward the logic of taking IC as a representation of the 

strength of association between the reporting of a drug and an event and look at the DECs with the 

highest increase in IC as they are most likely to have a rapid increase in reporting, there is a lack 

of studies on the change of IC values under different parameters such as number of reports, the 
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probability of having an adverse event j when taking drug i P(ADR j|drug i), and the probability 

of having an adverse event j when other drugs but not drug i is taken P(ADR j| not drug i) in the 

two time periods. The same goes for the other disproportionality score ─ ROR. Thus, we carry out 

a sensitivity analysis using some simply simulated data to see how sensitive the change in IC and 

the fold change in ROR are under the change of the parameters of interest. 

Our simulated data is created based on the real data for analysis. In our FAERS data to be 

analyzed, there are 167707 reports during the half-year before the pandemic outbreak and 160018 

reports during the six months after the pandemic outbreak initiation. Before the pandemic 

outbreak, the number of reports for the DECs ranges from 0 to 2273 with a median of 1 and a third 

quartile of 5. The changes in the number of reports for DECs before and after the pandemic 

outbreak range from -236 to 1130, with positive changes ranging from 1 to 1130 with a median of 

2 and third quartile 5. 

Thus, in our simulated data, the total number of reports before and after the pandemic 

outbreak is set to be 167707 and 160018 respectively. For the number of reports of a DEC, five 

levels are considered: 1, 10, 100, 1000, and 2000. The probability P(ADR j|drug i) before the 

pandemic outbreak is set on two levels: 0.01, and 0.1; the probability P(ADR|not drug i) before 

the pandemic outbreak is set on two levels: 0.0001, and 0.001. The above settings make sure that 

we are looking at the DECs of our interest: ADR is positively associated with a certain drug over 

other drugs. 

There are generally three situations to consider: 

(1) A drug gets more reported because of more use and attention, while P(ADR j|drug i) 

does not change. In such a situation, a rarely reported DEC might get enough reporting 
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and be identified as a signal. For simplicity, we assume no change in P(ADR j|not drug 

i). The investigated increase in the number of reports ranges from 1 to 1000. 

(2) For repurposed drugs with a different administration dose, dosage forms, or 

administration intervals, there could be an increase in P(ADR j|drug i). Under such 

circumstances, P(ADR j|not drug i) is assumed to be the same as before the pandemic 

outbreak. Here, we look at five levels of fold increase in P(ADR j|drug i): 0.5, 1, 1.5, 

2, and 3. 

(3) COVID-19 patients might be more likely to report some adverse events due to COVID-

19 and its complications, or the body conditions of these patients, which could lead to 

an increase in both P(ADR j|drug i) and P(ADR j|not drug i). For simplicity, we 

investigate the case where P(ADR j|drug) and P(ADR j|not drug) increase by the same 

folds ( and the number of reports increases by 100). 
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3.0 Results 

3.1 Disproportionality Analysis for Repurposed Drugs 

For the 19 repurposed drugs of interest, there are 3163 DECs with at least 2 reports both 

before and during the COVID-19 pandemic. The algorithm using IC detected 87 DECs as signals, 

and the algorithm using ROR detected 102 DECs as signals. There are 84 signals detected by both 

algorithms. 

Figure 3 shows the rankings of the 84 signals by an increase in IC and a fold increase in 

ROR. For the given FAERS data, IC and ROR give similar rankings for most signals with a 

correlation coefficient of 0.877, which shows a strong positive correlation. The signals with large 

differences in rankings (difference in rankings > 20) are listed in Table 4. Among the 8 signals, 7 

have sample sizes before the pandemic outbreak smaller than 4. 

 

Figure 3 Alignment of Signal Rankings by IC Increase and ROR Fold Increase 
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Table 4 Signals with Varying Ranks by IC Increase and ROR Fold Increase 

Drug Name Adverse Event Nbefore Nduring Ebefore Eduring 

IC 

Increase 

[Rank] 

ROR Fold 

Increase 

[Rank] 

Cyclosporine 

Transplantation 

complications 2 11 0.81 2.00 1.53[26] 1.33[69] 

Cyclosporine 

Epstein-Barr viral 

infections 2 10 1.02 2.17 1.49[30] 1.44[60] 

Cyclosporine 

Nephropathies and tubular 

disorders NEC 2 9 1.22 2.26 1.46[31] 1.50[54] 

Apixaban 

Dementia (excl Alzheimer's 

type) 48 142 26.04 32.35 1.26[52] 2.18[28] 

Methotrexate 

Molluscum contagiosum 

viral infections 2 6 1.70 2.28 1.25[55] 2.79[18] 

Prednisone 

Muscle infections and 

inflammations 3 4 3.15 1.73 1.15[71] 1.58[50] 

Mycophenolate 

Mofetil 

Bile duct infections and 

inflammations 2 3 0.98 0.52 1.11[75] 1.90[35] 

Apixaban Tricuspid valvular disorders 2 4 1.47 1.39 1.08[80] 1.46[57] 
(Nbefore: number of observed reports before pandemic outbreak; Nduring: number of observed reports during pandemic; 

Ebefore: number of expected reports during pandemic outbreak; Eduring: number of expected reports during the 

pandemic.) 
 

The ranking behaviors of IC and ROR are shown in Figure 4. In this figure, the rankings 

of the 84 signals by IC and ROR are overlaid on one figure against the increase in the observed-

to-expected ratio[21], which is calculated as 𝑂/𝐸 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡
=

𝑛11

𝑛1.𝑛.1/𝑛
=

𝑛11𝑛

𝑛1.𝑛.1
 . This figure 

clearly shows a hyperbolic trend between the rank number and the increase in the observed-to-

expected ratio for both IC and ROR (the higher the rank number, the lower the DEC is ranked). 

This means that as the observed-to-expected ratio of a DEC gets larger, the DEC is likely to have 

an increase in both IC and ROR.  

The outliers of the hyperbolic trend are generally DECs with both small observed numbers 

and expected numbers of reports as shown in Figure 4 and Appendix Figure 2, and the outliers 

also generally have relatively small increases in observed-to-expected ratios. 
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Figure 4 Relationship of Signal Ranking and Observed-to-expected Ratio Increase 

Rankings by IC increase, and ROR fold increase are overlaid on one plot. Dot sizes reflect the total numbers  

of observed reports of the signals over one year (from September 11, 2019 to September 11, 2020). 

 

The signals detected by either IC or ROR but not both are shown in Appendix Table 1. 

There are only 3 signals detected by IC but not ROR, while there are 18 signals detected by ROR 

but not IC. We can see that IC is generally more conservative than ROR and detects fewer 

suspicious signals even when comparing the disproportionalities of the two time periods. 

When the candidate DECs are restricted to DECs with numbers of reports larger than 3 

both before and during the pandemic, there are 2131 DECs for the 19 drugs of interest. After 

applying the statistical significance restriction that the 5% upper confidence limit of a 

disproportionality score before the pandemic must be lower than the 5% lower confidence limit of 

that score during the pandemic, IC algorithm detected 17 signals and ROR also detected 17 signals. 

The two algorithms detected 15 signals in common as shown in Appendix Table 3. By setting more 

restrictions on sample size and statistical significance, the signals detected by both algorithms 

generally have higher confidence and show more concordance in ranking by both IC increase and 
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ROR fold increase. As shown in Figure 5, the difference in the rankings of IC and ROR of these 

15 signals is no greater than 4, and the two rankings have a correlation coefficient of 0.886. In 

such a case, inference by IC and ROR would be largely equivalent. 

 

Figure 5 Alignment of Signal Rankings by IC Increase and ROR Fold Increase with High Confidence 

 

When working with FAERS data reported only by healthcare professionals, with a sample 

size restriction of at least 4 both before and during the pandemic and statistical significance 

requirement as mentioned above, the two algorithms have 10 signals in common (Appendix Table 

5). These signals consist of 9 different drugs: clozapine, methylprednisolone, prednisone, 

methotrexate, apixaban, hydroxychloroquine, cyclosporine, tacrolimus, and dexamethasone. 

Among the 10 signals, 5 are overlapping with the 15 signals detected with the whole data set 

(Appendix Table 3). They are “clozapine-substance related and addictive disorders”, 

“methylprednisolone-leukocytoses NEC”, “methotrexate-protein metabolism disorders NEC”, 

“tacrolimus-hepatitis virus infections”, and “dexamethasone- Bone disorders NEC”. 
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These signals are backed by some evidence and shows plausibility to some extent. For 

example, glucocorticoids including methylprednisolone are known to have the side effect of 

leukocytosis through the down regulation of neutrophil L-selectin and macrophage antigen 1 

(Mac-1) and the up regulation of granulocyte-colony stimulating factor[42]. Meanwhile, severe 

COVID-19 infections are reported to trigger strong immune reactions including leukocytosis in 

patients[43], which would put COVID-19 patients on methylprednisolone with elevated risks of 

developing leukocytosis. This is shown in the disproportionality analysis with an over 3-fold 

increase in the reporting odds ratio along with an increase of 1.95 in IC for the DEC 

“methylprednisolone-leukocytoses NEC” during the pandemic for COVID-19 patients. 

3.2 Disproportionality Analysis for Remdesivir 

For Remdesivir, there are 165 DECs with at least 2 reports both before and during the 

COVID-19 pandemic. IC025 detected 23 DECs as signals, while ROR025 detected 35 DECs as 

signals. All the 23 signals detected by IC025 are also detected by ROR025 as signals. The 12 signals 

only detected by ROR025 are listed in Appendix Table 2, among which half have sample sizes 

smaller than 4 before the pandemic outbreak. 

Figure 6 shows how the rankings of IC and ROR for the 23 signals detected by both IC025 

and ROR025 align. Similar to the situation in section 3.1, IC and ROR rank most signals similarly 

with a correlation coefficient of 0.910 between the two rankings, although in this case we are 

looking at one time period rather than two. 
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Figure 6 Alignment of Signal Rankings by IC and ROR 

Three signals have a large difference in rankings by IC and ROR (difference in rankings > 

5) are shown in Table 5. The numbers of observations of the three DECs are small (4, 3, and 3 

respectively), and their expected number of observations are also very small (less than 1). Because 

of the small sample sizes, reports of these 3 DECs do not have much certainty. And it seems that 

IC tends to suppress the estimates of the association, and rank these signals with high uncertainties 

behind DECs with higher certainties (with higher rank numbers). 

Table 5 Signals with Varying Ranks by IC and ROR 

Drug Name Adverse Event N E IC [Rank] ROR [Rank] 

Remdesivir Right ventricular failures 4 0.26 2.42[9] 21.67[3] 

Remdesivir Renal failure complications 3 0.28 1.97[13] 13.30[6] 

Remdesivir 

Phosphorus metabolism 

disorders 3 0.34 1.87[14] 10.45[8] 
       (N: number of observed reports during the pandemic; E: number of expected reports during the pandemic) 

 

As shown in Figure 7, IC and ROR show similar preference in ranking signals. Signals are 

ranked higher when their observed-to-expected ratios are larger, and there seems to be an 

approximately hyperbolic trend between the rank and the observed-to-expected ratio. For the 23 

signals detected, their IC ranks perfectly follow the hyperbolic trend, while the ROR ranks of some 
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signals with small observed and expected number of reports divert from this trend (Figure 7, 

Appendix Figure 3). 

 

Figure 7 Relationship of Signal Ranking and Observed-to-expected Ratio 

Rankings by IC, and ROR are overlaid on one plot. Dot sizes reflect the total numbers of observed reports of  

the signals over one year (from September 11, 2019 to September 11, 2020). 

 

When looking at adverse events of Remdesivir with numbers of reports larger than three 

both before and during the pandemic, the number of candidate DECs is reduced to 106. Among 

the 106 DECs, 22 were detected by IC025 as a signal, and 26 were detected by ROR025 as signals. 

Again, all the 22 signals detected by IC025 are also detected by ROR025 (Appendix Table 4). But 

the number of signals only detected by ROR025 is reduced to 5. 

As shown in Figure 8, the rankings by IC and ROR for the 22 signals perfectly align with 

a correlation coefficient of 0.967. This indicates that, by restricting the sample sizes, we have 

obtained generally satisfactory levels of confidence in estimating the disproportionality either by 

IC or ROR. Since IC and ROR rank the signals in high concordance, we expect the estimation of 

the strength of these signals by IC and ROR to be highly comparable. 
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Figure 8 Alignment of Signal Rankings by IC and ROR with High Confidence 

Using FAERS data reported only by healthcare professionals, with a sample size restriction 

of at least 4 both before and during the pandemic, the IC025 and ROR025 had 17 signals in common 

(Appendix Table 6), all of which are detected using the whole data as shown in Appendix Table 

4. The high alignment of signals detected using the whole data and signals detected using 

healthcare professional-reported data may result from the high proportion of healthcare 

professional reported data among Remdesivir ADR reports. As a new drug to treat COVID-19, the 

patients taking this drug may be closely monitored by healthcare professionals and their ADRs 

may consist of a high proportion of the existing reports of Remdesivir. 

The 17 ADRs of Remdesivir detected by both IC025 and ROR025 using data reported by 

healthcare professionals (Appendix Table 6) mainly focus on cardiovascular system, respiratory 

systems, renal tract, and metabolism disorders. For ADRs related to the respiratory system, 

“conditions associated with abnormal gas exchange”, “respiratory failures”, “Pulmonary 

oedemas”, and “breathing abnormalities”. Since SARS CoV-2 infections mainly target the 

lung[10], these adverse reactions could be a result of COVID-19 rather than Remdesivir, and need 

further judgement by medical professionals. Meanwhile, renal tract related ADRs such as “renal 
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failure and impairment” is also identified as a potential side effect of Remdesivir by other studies 

including studies using analysis of the WHO VigiBase[44], medical reports of COVID-19 patients 

with compassionate use of Remdesivir[45] and medical reports of Remdesivir randomized clinical 

trials[46]. In our analysis, the DEC “remdesivir-renal failure and impairment” has a reporting odds 

ratio as high as 5.79, which means that the odds of developing renal failure and impairment for 

COVID-19 patients taking remdesivir is 5.79 times the odds of developing this adverse event for 

patients not taking remdesivir. Thus, this signal is considered reliable and deserve further studies. 

3.3 Sensitivity Analysis 

3.3.1 Situation 1 

When there is simply an increase in the reporting of a DEC without any change in 

P(ADR|drug i) and P(ADR|not drug i), DECs generally would not have an increase in IC but rather 

a decreasing trend. 

The universal decreasing trend of IC especially when an increase in report numbers are 

large should be partially related to the increase in P(ADR) which decreases the ratio 
𝑃(𝐴𝐷𝑅 𝑗|𝑑𝑟𝑢𝑔 𝑖)

𝑃(𝐴𝐷𝑅 𝑗)
. 

However, there is a special case with DECs with an initial number of reporting as small as 

1, where they would have an increase in IC when the increase in reporting is smaller than 100. 

This might be because small frequencies cause the estimate of IC unstable. This is especially 

obvious when P(ADR j|drug i) is large (0.1 rather than 0.01), where even DECs with 10 reports 

before the pandemic could also have an increase in IC larger than 1. 



 30 

Meanwhile, ROR does not have a fold increase larger than 1 for all cases in the simulated 

data (Appendix Figure 4). 

 

Figure 9 Change in IC with Increase in Report Numbers 

3.3.2 Situation 2 

With a 100-case increase in report number, there is generally an obvious increase in IC. 

The increase in IC gets larger when P(ADR j|drug i) increases by a higher fold. DECs with numbers 

of reports as small as 1 or 10 are more sensitive to the increase in P(ADR j|drug i). For DECs with 

one of report before the pandemic, a fold change in P(ADR j|drug i) as small as 0.5 would be 

enough to generate an increase in IC larger than 1. This is also true for DECs with 10 reports before 

the pandemic when P(ADR j|drug i) is as large as 0.1 before the outbreak of the pandemic. In 

contrast, the pattern of increase in IC for DECs with 100 or more reports before the pandemic is 

rather stable against different levels in P(ADR j|drug i) and P(ADR j|not drug i) and generally need 

a two-fold increase in P(ADR j|drug i) to generate a signal (IC increase > 1). 
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Meanwhile, as shown in Appendix Figure 5, the increasing pattern of ROR is quite stable 

for all cases. There seems to be a more rapid increase in ROR when the starting P(ADR j|drug i) 

is large (0.1 compared to 0.01). When P(ADR j|drug i) is 0.01, there needs to be a one-fold increase 

in P(ADR j|drug i) to have a one-fold increase in ROR. When P(ADR j|drug i) is 0.1, there only 

needs to be less than one-fold increase in P(ADR j|drug i) to have a one-fold increase in ROR. 

 

Figure 10 Change in IC with Increase in P(ADR j|drug i) 

3.3.3 Situation 3 

Similar to situation 2, when there is a same fold increase in both P(ADR j|drug i) and 

P(ADR j|not drug i), DECs could still have an increase in IC, which is especially true for DECs 

with numbers of reports as small as 1. Such an increase in IC may be because P(ADR|not drug i) 

is too small to lead to a fold increase in P(ADR) as large as that in P(ADR|drug i). 
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However, as shown in Appendix Figure 6, the fold increase in ROR would be suppressed 

with an increase in P(ADR j|not drug i) and generally would be difficult to reach one in our settings. 

But still, we have only considered the case of same fold increase in both P(ADR j|drug i) and 

P(ADR j|not drug i) in this situation. Compared with results in situation 2, we would expect higher 

fold increase in ROR (thus more signals detected) when the fold increase in P(ADR j|not drug i) 

is smaller than the fold increase in P(ADR j|drug i). 

 

Figure 11 Change in IC with Increase in P(ADR j|drug i) and P(ADR j|not drug i) 

3.3.4 Summary for Sensitivity Analysis 

From the sensitivity analysis shown above, both IC and ROR would generally have an 

increase when there is an increase in P(ADR j|drug i). The increase in IC is generally higher when 

the starting value of P(ADR j|drug i) is larger compared to P(ADR j|not drug i). For ADRs that are 

not that common, that is when P(ADR j|drug i) is not as high as 0.1, a DEC with a moderate report 
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number such as 10 would need a fold increase in P(ADR j|drug i) higher than the fold increase in 

P(ADR j|drug i) to be detected as a signal (increase in IC > 1). The increase in ROR is generally 

higher when there is small or even no fold increase in P(ADR j|not drug i) compared to P(ADR 

j|drug i). Thus, we would expect the majority of signals detected by both increase in IC and increase 

in ROR to be DECs with relatively high fold increase in P(ADR j|drug i), which is the same as our 

major interest of discovering ADRs with elevated risks during the pandemic for repurposed drugs. 

The aforementioned claim is backed up by the result of main analysis (Appendix Table 3). 

Among the 15 signals detected by both IC and ROR, 7 have fewer than 10 reports before the 

pandemic, while all reports have more than one-fold increase in report number after the pandemic 

outbreak. As shown in Table 6, these signals detected by our algorithms all have more than one-

fold increase in P(ADR j|drug i) and very small or even no increase in P(ADR j|not drug i). 

Table 6 Fold Increase in Marginal Probabilities for the 15 Signals 

Drug Name Adverse Event 

Fold Increase in 

P(ADR j|drug i) 

Fold Increase in 

P(ADR j|not drug i) 

Clozapine 

Substance related and addictive 

disorders 7.84 0.25 

Apixaban Alzheimer's disease (incl subtypes) 5.88 0.01 

Methylprednisolone Leukocytoses NEC 3.28 0.06 

Apixaban Cortical dysfunction NEC 2.27 -0.09 

Azathioprine Hepatic fibrosis and cirrhosis 2.72 0.15 

Apixaban Hearing losses 3.07 0.17 

Tacrolimus 

Acquired immunodeficiency 

syndromes 3.01 -0.25 

Apixaban 

Parkinson's disease and 

parkinsonism 1.95 -0.03 

Methotrexate Protein metabolism disorders NEC 4.30 0.43 

Tacrolimus Hepatitis virus infections 1.16 -0.21 

Methylprednisolone Aspergillus infections 1.57 0.0004 

Apixaban Dementia (excl Alzheimer's type) 2.10 -0.02 

Prednisone Atypical mycobacterial infections 1.24 -0.13 

Dexamethasone Bone disorders NEC 1.43 0.11 

Apixaban 

Retinal structural change, deposit 

and degeneration 1.54 0.13 
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Although it is likely for some DECs with a very small number of reports before the 

pandemic to have an increase in IC even though they do not have an elevated risk for the ADR, 

most of these signals would be excluded when we apply the restrictions on sample size and 

statistical significance. But this still gives us a notice that when looking at signals with small 

sample sizes, we should be aware that this DEC may not have an increase in P(ADR j|drug i). 

Whether these signals are the ones with an elevated risk will need further judgement by medical 

professionals. 
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4.0 Discussion 

4.1 Results and Discussion 

In this study, we explored the practice of disproportionality analyses using IC and ROR on 

the FAERS database in the context of resolving rising pharmacovigilance concerns during the 

COVID-19 pandemic. For Remdesivir, a new drug, we found that IC025 and ROR025 give generally 

comparable performance in signal detection and ranking especially among DECs with more than 

three observations. Most signals detected are also selected by the data reported by healthcare 

professionals, and seem to be reliable based on preliminary research. ROR025 tends to identify 

more signals than IC025 with most discrepancies having small sample sizes. Also, we have 

discovered a hyperbolic trend between the rankings by IC or ROR, and the observed-to-expected 

ratios (O/E ratios). For the 19 repurposed drugs, we found that the algorithms using increase in IC 

larger than one or fold increase in ROR larger than one generally give comparable performance in 

signal detection and rankings especially among DECs with more than three observations both 

before and after the pandemic outbreak. One third of the signals are also detected by the data 

reported by healthcare professionals, and seem to be reliable based on preliminary research. Also, 

a hyperbolic trend between the rankings by increase in IC or fold increase in ROR is observed. 

Finally, the sensitivity analysis showed the change of increase in IC and ROR under different 

parameter settings, and confirmed that both increase in IC and fold increase in ROR favor DECs 

with high fold increase in P(ADR j|drug i). 

Introduced in the early 1990s, the reporting odds ratio (ROR) is the first score used in 

disproportionality analysis[47, 48], and has a relatively long and common use in the 
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pharmacovigilance field compared to other disproportionality scores. It is easy to understand and 

program, but cannot give point and/or interval estimations when there are zeros inside the 

corresponding 2x2 contingency tables. Also, as its frequentist counterparts PRR and RRR, 

previous studies claimed ROR to be unstable when sample sizes are small[38], giving rise to a 

large number of false-positive signals. Meanwhile, under the Bayesian paradigm, the information 

component (IC) and its counterpart, empirical Bayesian geometric mean (EBGM), can give point 

and interval estimations even with the presence of zeros in the 2x2 contingency table[24, 38]. More 

importantly, with the conservative prior assuming the independence between the drug and the 

adverse event, IC and EBGM are claimed to be relatively stable and conservative, which could 

give improved performance in signal detection by reducing false-positive signals for DECs with 

small sample sizes and having enough sensitivity for DECs with large sample sizes[22, 24, 25].  

By comparing the signal detection performance between IC and ROR using FAERS data 

in the context of the COVID-19 pandemic, our study collected evidence of the comparison between 

frequentist and Bayesian disproportionality scores that can be compared to the previous studies. 

First, the claim of conservatism of Bayesian scores for the classical type of disproportionality 

analysis on a single time period agreed with the performance of IC025 and ROR025 for Remdesivir. 

Without strict sample size restrictions, ROR025 detected 12 more signals than IC025, which consists 

of 34% of the signals detected by ROR025. And, most of the 12 signals only detected by ROR025 

had small sample sizes (less than 4). This provided new evidence for the claim of conservatism, 

but with new data ─ Remdesivir ADR data during the pandemic. Then, the analysis was extended 

to comparing the disproportionality scores before and during the pandemic for repurposed drugs, 

and the results showed that the conservatism of Bayesian scores still exist. Without sample size 

restrictions, the algorithm based on increase in IC detected 87 signals, 15% less than the algorithm 
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based on fold increase in ROR. This extends the comparison between IC and ROR into the seldom 

discussed but meaningful type of disproportionality analysis that compares the disproportionalities 

of two time periods. 

Also importantly, we identified a hyperbolic trend between signal rankings and the 

observed-to-expected ratios (O/E ratios) which has not been mentioned by previous studies up to 

out knowledge. In our study, we found that, with a small number of discrepancies on DECs with 

small sample sizes, IC and ROR rankings generally followed the same trend line for Remdesivir. 

When it came to the repurposed drugs, rankings by increase in IC and fold increase in ROR also 

aligned pretty well on a hyperbolic trend line. In fact, this concordance in rankings has its 

mathematical logics. Disproportionality scores for pairwise associations such as IC, RRR where 

IC is based upon, and ROR can all be classified into the broad concept of O/E ratios[21]. In 𝑅𝑅𝑅 =

𝑛11

𝑛1.𝑛.1/𝑛
, the expected count is calculated with the assumption of equality between P(ADR j|drug i) 

and P(ADR j). In 𝑅𝑂𝑅 =
𝑛11

𝑛10𝑛01/𝑛00
, the expected count is calculated assuming the equality 

between the odds of ADR j given drug i and the odds of ADR j without drug i. And 𝐼𝐶 = 𝑙𝑜𝑔2𝑅𝑅𝑅 

is a shrunk version of RRR in a Bayesian paradigm that can be approximated by the equation in 

the form of O/E ratio: 𝐼𝐶 ≈ 𝑙𝑜𝑔2
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑+1/2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑+1/2
 in a frequentist paradigm[21, 24]. Thus, these scores 

are all based on O/E ratio, and this explains their similarity in ranking signals with regard to the 

strength of associations. And as sample size increases, these different O/E ratios would give 

increasing concordance in estimating the strength of association, which explains the observed 

concordance in ranking behavior between IC and ROR in our data. The significance of the finding 

is that if the rankings by two scores are similar, we may have enough confidence that the two 

scores are behaving similarly for the signals we are looking at. Thus, using the alignment of 
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rankings in future studies as a sign of concordance between two disproportionality scores is a 

disproportionality score comparison method worth further exploration.  

Another point deserving a further discussion is the interpretability of the disproportionality 

scores. In contrast to ROR which can be interpreted as odds ratio, the Bayesian score IC has more 

complex mathematical construction and is difficult to interpret. In fact, previous studies using IC 

as a disproportionality measure merely looked at the signals detected without interpreting the 

values of IC[24, 49]. In an effort to better understand this score, we refer to the definition of IC: 

𝐼𝐶 = 𝑙𝑜𝑔2𝑅𝑅𝑅 [20, 24], which is a shrunk version of RRR on the log2 scale based on a prior belief 

of independence between drug i and ADR j. Plus, RRR is actually the classic form of O/E ratio[21]. 

Thus, for a signal with an IC of n, we may interpret it as a DEC with the shrunk O/E ratio of 2𝑛. 

And an increase of n in IC may be viewed as a (2𝑛 − 1)-fold increase in the shrunk O/E ratio RRR. 

Furthermore, since frequentist O/E ratio is better interpretable, and IC converge to log2RRR for 

large sample sizes, we may switch to RRR (or O/E ratio) for interpretation of signals with large 

sample sizes. Or we may even use ROR for interpretation since we have shown that IC and ROR 

have similar performance in signal detection and ranking. 

4.2 Limitations 

There are several limitations for this study. 

First, the time frame of the FAERS data we use is short. Each disproportionality score only 

estimates the disproportionality of a DEC over half a year, while previous studies using 

disproportionality analysis to identify signals from FAERS data could a time frame of several years 

or even more than 10 years[50-52]. Within a short time, there may not be large numbers of reports 
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for many DECs. This could result in lack of reports for rare DECs, and thus some rare and unknown 

signals with particular interest for disproportionality analysis may not be detected. The lack of 

reports is also not ideal for methodological study that compares the performance between IC and 

ROR. Previous study[22] comparing the performance of disproportionality scores EBGM, and 

RRR used FAERS data with a total number 4864480 reports. The large number of reports 

generated thousands of signals. With the large number of signals, the difference in the two 

disproportionality scores were clearly highlighted. For example, a signal ranked 40 by EBGM and 

224 by RRR would surely indicate a striking difference in ranking. However, with a small amount 

of data and signals, it would hard to decide whether the difference in ranking is high or not. Thus, 

further studies would need to include more FAERS data in order to detect more signals and better 

compare the performance of IC and ROR. 

Second, the evaluation and comparison of the signal detection performance of IC and ROR 

needs improvement. An important part for the evaluation of a signal detection procedure is looking 

at whether the procedure can detect enough true signals without generating too much false-positive 

signals. This is usually reflected in indices such as sensitivity, specificity, positive predictive value 

and negative predictive value[38, 49]. However, the estimation of these indices requires the 

knowledge of DECs with true causal relationship. Thus, such methodological studies for 

disproportionality scores usually depend on simulated data where the causal relationship can be 

manually set[26], or real world data where true signals have been identified by medical 

professionals[49]. To better evaluate and compare the performance of IC and ROR, we would need 

to either create a simulated data set or seek help from medical professionals to identify true signals 

for new drug ADRs or ADRs with elevated risks during the pandemic for repurposed drugs before 

using the FAERS data for methodological research. 
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Third, the drawbacks of spontaneous reporting data should be recognized. The bias in 

reporting drugs and adverse events may cause underreporting and overreporting[40]. Also, 

duplicate reports are common because a single case may be reported separately by the consumer, 

a healthcare provider of that person, and the drug manufacturer[41], and it is difficult to remove 

all the duplicate reports simply by an exact match of demographical data as there would be missing 

values. Also, records of drug prescription without adverse events are not included, thus incidence 

rate of ADRs cannot be estimated[20]. All these biases may make the estimated association far 

from the truth. Thus, an effort for removing biases from the spontaneous reporting data is needed. 

In this study, we tried to remove reporting bias by relying on the data reported by healthcare 

professionals. This would help in identifying true associations. However, excluding other reporters 

will reduce approximately 50% of the whole number of reports, which would make it more difficult 

to detect rare DECs. Thus, we do not suggest simply relying on this reduced data especially when 

sample size is small. Also, the highly biased nature of the data implies that we still have to view 

the detected signals critically. These signals have to be further reviewed by medical professionals, 

and verified by more rigorous experiments and testing procedures such as sequential ratio 

tests[20]. 

4.3 Conclusion 

Overall, this study used disproportionality analysis on FAERS data and sensitivity analysis 

to provide evidence for the viability of using disproportionality scores IC and ROR for discovering 

unestablished ADRs of new drugs and discovering ADRs with elevated risks during the pandemic. 

We found that the signal detection and signal ranking performance of IC is generally comparable 
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to ROR for both new drugs and repurposed drugs in the FAERS data in the context of the COVID-

19 pandemic. 

One strength of this study is the focus on pharmacovigilance needs during the COVID-19 

pandemic. Both the need for discovering unknown ADRs for new drugs and the need for 

discovering ADRs with elevated risks during the pandemic for repurposed drugs were considered. 

With FAERS data analysis and sensitivity analysis, we provided evidence for the viability of using 

disproportionality analysis to satisfy the aforementioned pharmacovigilance needs. Based on the 

observation of a similarity in signal detection and signal ranking, the conservatism of IC scores 

compared to ROR, as well as the difference in interpretability, a disproportionality analysis 

framework can be suggested where we use IC for signal detection and refer to ROR for signal 

ranking and interpretation if ROR values are available. This framework has importance and 

practicality for pharmacovigilance during the COVID-19 pandemic as well as future public health 

crisis. 

Also, this study made an effort to extend the application of disproportionality scores to the 

comparison of two disproportionalities. The idea of comparing associations by comparing 

disproportionality scores has been mentioned in previous publications[21, 28, 53], but has not been 

well justified. Based on the concordance of increase in IC and fold increase in ROR in signal 

detection and their ranking preference for high fold increase in O/E ratios as well as the result of 

the sensitivity analysis showing the importance of a high fold increase in P(ADR j|drug i) for an 

increase in IC or ROR, this study provided evidence that the increase in IC and fold increase in 

ROR are generally good representations of change in disproportionality reporting. This evidence 

we provided would benefit future methodological research and practical applications of this type 

of disproportionality analysis. 
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Appendix A Supplementary Figures 

 

Appendix Figure 1 Schema for the Bayesian Hierarchical Model BCPNN 

 

 

Appendix Figure 2 Relationship of Signal Ranking and Observed-to-expected Ratio Increase 

Rankings by IC increase, and ROR fold increase are overlaid on one plot. Dot sizes reflect the total numbers  

of expected reports of the signals over one year (from September 11, 2019 to September 11, 2020). 
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Appendix Figure 3 Relationship of Signal Ranking and Observed-to-expected Ratio 

Rankings by IC, and ROR are overlaid on one plot. Dot sizes reflect the total numbers of expected reports of  

the signals over one year (from September 11, 2019 to September 11, 2020). 

 

 

 

Appendix Figure 4 Fold Change in ROR with Increase in Report Numbers 
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Appendix Figure 5 Fold Change in ROR with Increase in P(ADR j|drug i) 

 

 

Appendix Figure 6 Fold Change in ROR with Increase in P(ADR j|drug i) and P(ADR j|not drug i) 
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Appendix B Supplementary Tables 

Appendix Table 1 Signals Detected Only by One Disproportionality Measure for Repurposed Drugs 

Drug Name Adverse Event Measure Nbefore Nduring Ebefore Eduring 

Azathioprine Stillbirth and foetal death IC 2 5 0.20 0.27 

Colchicine Myopathies IC 2 5 0.15 0.29 

Prednisone Toxoplasma infections IC 2 10 0.77 2.32 

Apixaban Abdominal wall conditions NEC ROR 4 3 1.88 0.74 

Apixaban 

Gastrointestinal neoplasms 

malignancy unspecified NEC ROR 2 3 3.51 2.7 

Apixaban 

Non-site specific embolism and 

thrombosis ROR 208 438 

103.5

7 

126.

3 

Clozapine Hodgkin's disease NEC ROR 3 6 2.3 2.41 

Clozapine 

Schizoaffective and 

schizophreniform disorders ROR 5 11 0.4 0.66 

Dexamethasone Abnormal reflexes ROR 2 3 0.89 0.68 

Methotrexate 

Arterial infections and 

inflammations ROR 5 16 6.39 

10.5

9 

Methotrexate 

Bladder infections and 

inflammations ROR 3 14 6.11 

13.7

1 

Methylpredniso

lone B-cell lymphomas NEC ROR 2 3 1.6 1.22 

Mycophenolate 

Mofetil 

Renal structural abnormalities 

and trauma ROR 2 2 0.3 0.14 

Prednisone Cataract conditions ROR 11 32 32.73 

31.5

6 

Prednisone Connective tissue disorders NEC ROR 6 14 6.41 7.58 

Prednisone Deliria ROR 5 11 5.69 6.36 

Prednisone Hepatitis virus infections ROR 15 25 12.52 10.4 

Prednisone Hypoglycaemic conditions NEC ROR 2 5 5.22 4.83 

Tacrolimus Acnes ROR 11 29 13.83 

18.3

8 

Tacrolimus 

Magnesium metabolism 

disorders ROR 5 12 1.24 1.77 

Tocilizumab 

Gastrointestinal ulcers and 

perforation, site unspecified ROR 7 15 8.44 9.27 
(Measure: the disproportionality measure that detects the DEC as a signal; Nbefore: number of observed reports before 

pandemic outbreak; Nduring: number of observed reports during pandemic; Ebefore: number of expected reports during 

pandemic outbreak; Eduring: number of expected reports during the pandemic.) 
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Appendix Table 2 Signals Detected Only by One Disproportionality Measure for Remdesivir 

Drug 

Name Adverse Event 

 

Measure N E 

Remdesivir Abnormal reflexes ROR 2 0.46 

Remdesivir Angioedemas ROR 5 2.68 

Remdesivir Body temperature altered ROR 12 1.87 

Remdesivir Coagulopathies ROR 2 6.14 

Remdesivir Enterobacter infections ROR 3 0.4 

Remdesivir Hyperlipidaemias NEC ROR 6 0.74 

Remdesivir Klebsiella infections ROR 2 2.31 

Remdesivir Mediastinal disorders ROR 14 0.36 

Remdesivir Mental disorders NEC ROR 14 7.72 

Remdesivir 

Respiratory tract and thoracic cavity 

procedural complications 

ROR 

2 0.3 

Remdesivir Thrombocytoses ROR 3 0.91 

Remdesivir 

Tracheal disorders (excl infections and 

neoplasms) 

ROR 

2 0.2 
(Measure: the disproportionality measure that detects the DEC as a signal; N: number of observed reports during the 

pandemic; E: number of expected reports during the pandemic) 
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Appendix Table 3 Common Signals with High Statistical Significance for the 19 Repurposed Drugs 

Drug Name Adverse Event Nbefore Nduring Ebefore Eduring 

IC 

Increase 

[Rank] 

ROR 

Fold 

Increase 

[Rank] 

 

 

 

Causal 

Clozapine 

Substance related 

and addictive 

disorders 9 83 6.55 11.17 2.48[1] 6.14[1] 

Yes 

Apixaban 

Alzheimer's 

disease (incl 

subtypes) 7 46 6.53 9.48 2.21[2] 5.87[2] 

No 

Methylprednisolone 

Leukocytoses 

NEC 5 20 6.49 6.69 1.95[3] 3.04[4] 

Yes 

Apixaban 

Cortical 

dysfunction NEC 8 25 24.4 22.71 1.75[4] 2.60[6] 

No 

Azathioprine 

Hepatic fibrosis 

and cirrhosis 6 26 1.13 1.61 1.74[5] 2.31[8] 

No 

Apixaban Hearing losses 64 249 88.64 113.31 1.61[6] 2.54[7] No 

Tacrolimus 

Acquired 

immunodeficiency 

syndromes 5 26 0.67 1.56 1.55[7] 4.38[3] 

No 

Apixaban 

Parkinson's 

disease and 

parkinsonism 11 31 23.02 22.96 1.49[8] 2.06[10] 

No 

Methotrexate 

Protein 

metabolism 

disorders NEC 5 37 6.68 18.69 1.47[9] 2.71[5] 

Yes 

Tacrolimus 

Hepatitis virus 

infections 10 28 9.87 10.9 1.36[10] 1.72[11] 

Yes 

Methylprednisolone 

Aspergillus 

infections 10 24 2.77 2.81 1.26[11] 1.58[12] 

No 

Apixaban 

Dementia (excl 

Alzheimer's type) 48 142 26.04 32.35 1.25[12] 2.18[9] 

No 

Prednisone 

Atypical 

mycobacterial 

infections 11 24 4.76 4.63 1.16[13] 1.57[13] 

No 

Dexamethasone 

Bone disorders 

NEC 15 38 26.74 31.38 1.11[14] 1.21[15] 

Yes 

Apixaban 

Retinal structural 

change, deposit 

and degeneration 14 34 27.51 31.21 1.10[15] 1.25[14] 

No 

(Nbefore: number of observed reports before pandemic outbreak; Nduring: number of observed reports during pandemic; 

Ebefore: number of expected reports during pandemic outbreak; Eduring: number of expected reports during the pandemic; 

Causal: whether the DEC is also detected by both IC and ROR as signals with high confidence in FAERS data reported 

by healthcare professionals.) 
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Appendix Table 4 Common Signals with High Statistical Significance for Remdesivir 

Drug Name Adverse Event N E 

IC 

[Rank] 

ROR 

[Rank] 

 

 

 

Causal 

Remdesivir Infusion site reactions 53 2.88 3.97[1] 29.15[2] Yes 

Remdesivir Mixed acid-base disorders 14 0.56 3.73[2] 48.92[1] Yes 

Remdesivir 

Conditions associated with 

abnormal gas exchange 96 8.13 3.48[3] 15.62[4] 

Yes 

Remdesivir 

Ventricular arrhythmias and 

cardiac arrest 189 18.47 3.32[4] 13.35[5] 

Yes 

Remdesivir 

Respiratory failures (excl 

neonatal) 151 17.56 3.06[5] 10.64[6] 

Yes 

Remdesivir 

Renal vascular and ischaemic 

conditions 19 2.29 2.77[6] 9.79[7] 

Yes 

Remdesivir Renal failure and impairment 432 68.58 2.65[7] 8.01[8] Yes 

Remdesivir 

Circulatory collapse and 

shock 43 6.76 2.57[8] 7.23[10] 

Yes 

Remdesivir Right ventricular failures 4 0.26 2.41[9] 21.67[3] Yes 

Remdesivir 

Metabolic acidoses (excl 

diabetic acidoses) 21 3.84 2.28[10] 6.05[11] 

Yes 

Remdesivir 

Rate and rhythm disorders 

NEC 124 25.63 2.25[11] 5.42[12] 

Yes 

Remdesivir Pupil disorders 5 0.74 2.02[12] 7.62[9] Yes 

Remdesivir Pulmonary oedemas 52 17.28 1.55[13] 3.17[13] Yes 

Remdesivir 

Vascular hypotensive 

disorders 105 35.83 1.53[14] 3.12[14] 

Yes 

Remdesivir Pseudomonal infections 8 2.7 1.33[15] 3.10[15] No 

Remdesivir 

Hepatic failure and 

associated disorders 12 5.21 1.07[16] 2.37[16] 

No 

Remdesivir Supraventricular arrhythmias 64 30.11 1.06[17] 2.20[17] Yes 

Remdesivir Coagulopathies 12 6.14 0.86[18] 2.00[18] 

No 

Remdesivir Potassium imbalance 14 7.52 0.80[19] 1.90[19] No 

Remdesivir 

Sepsis, bacteraemia, viraemia 

and fungaemia NEC 60 41.74 0.51[20] 1.46[20] 

No 

Remdesivir Death and sudden death 216 152.97 0.49[21] 1.45[21] Yes 

Remdesivir Breathing abnormalities 119 96.52 0.29[22] 1.25[22] Yes 

(N: number of observed reports during the pandemic; E: number of expected reports during the pandemic; Causal: 

whether the DEC is also detected by both IC and ROR as signals with high confidence in FAERS data reported by 

healthcare professionals.) 
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Appendix Table 5 Common Signals for Repurposed Drugs using FAERS Data Reported by Healthcare 

Professionals 

Drug Name Adverse Event Nbefore Nduring Ebefore Eduring 

IC 

Increase 

[Rank] 

ROR Fold 

Increase 

[Rank] 

Clozapine 

Substance related 

and addictive 

disorders 8 78 6.42 11.54 2.48[1] 7.10[1] 

Methylprednisolone Leukocytoses NEC 5 19 9.18 9.72 1.84[2] 2.74[3] 

Prednisone Cataract conditions 7 23 22.29 22.37 1.71[3] 2.42[5] 

Methotrexate 

Protein metabolism 

disorders NEC 4 36 9.23 26.7 1.67[4] 3.29[2] 

Apixaban 

Site specific 

vascular disorders 

NEC 8 17 6.19 4.36 1.55[5] 2.45[4] 

Hydroxychloroquine 

Hepatocellular 

damage and 

hepatitis NEC 6 60 5.3 20.26 1.48[6] 1.78[6] 

Cyclosporine Febrile disorders 6 26 15.45 24.7 1.47[7] 1.76[7] 

Tacrolimus 

Hepatitis virus 

infections 10 27 10.96 13.07 1.19[8] 1.45[8] 

Dexamethasone Bone disorders NEC 14 36 25.67 29.25 1.17[9] 1.34[9] 

Prednisone 

Hepatitis virus 

infections 13 25 13.85 12.49 1.08[10] 1.29[10] 
(Nbefore: number of observed reports before pandemic outbreak; Nduring: number of observed reports during pandemic; 

Ebefore: number of expected reports during pandemic outbreak; Eduring: number of expected reports during the pandemic) 
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Appendix Table 6 Common Signals for Remdesivir using FAERS Data Reported by Healthcare Professionals 

Drug 

Name Adverse Event N E 

IC 

[Rank] 

ROR 

[Rank] 

Remdesivir Infusion site reactions 50 3.869355 3.52[1] 23.39[2] 

Remdesivir Mixed acid-base disorders 12 0.780971 3.24[2] 32.73[1] 

Remdesivir 

Conditions associated with abnormal gas 

exchange 90 10.6141 3.02[3] 12.03[4] 

Remdesivir Ventricular arrhythmias and cardiac arrest 183 23.8906 2.91[4] 10.73[5] 

Remdesivir Respiratory failures (excl neonatal) 144 25.73653 2.46[5] 7.02[6] 

Remdesivir Renal vascular and ischaemic conditions 19 3.443371 2.28[6] 6.65[7] 

Remdesivir Renal failure and impairment 415 92.65152 2.16[7] 5.79[8] 

Remdesivir Right ventricular failures 4 0.425984 2.15[8] 13.60[3] 

Remdesivir Rate and rhythm disorders NEC 120 28.61192 2.05[9] 4.91[10] 

Remdesivir Circulatory collapse and shock 42 9.904128 2.02[10] 4.87[11] 

Remdesivir Metabolic acidoses (excl diabetic acidoses) 20 5.715285 1.70[11] 3.87[12] 

Remdesivir Pupil disorders 4 0.922965 1.52[12] 4.95[9] 

Remdesivir Pulmonary oedemas 50 18.6723 1.38[13] 2.89[13] 

Remdesivir Vascular hypotensive disorders 99 39.75851 1.30[14] 2.69[14] 

Remdesivir Supraventricular arrhythmias 59 30.31586 0.94[15] 2.04[15] 

Remdesivir Death and sudden death 200 137.4153 0.54[16] 1.51[16] 

Remdesivir Breathing abnormalities 113 91.55106 0.30[17] 1.25[17] 
(N: number of observed reports during the pandemic; E: number of expected reports during the pandemic) 
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