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Rethinking Computational Catalyst Searches with Alchemical Perturbation

Density Functional Theory

Charles D. Griego, PhD

University of Pittsburgh, 2022

The expense of quantum chemistry calculations significantly hinders endeavors to search

through diverse materials space for catalysts that promote sustainable production of energy

and chemicals. Motivated by this challenge, we report our study on alchemical perturbation

density functional theory (APDFT), an easy and highly cost-efficient calculation scheme

that enables high-throughput computational screening of hypothetical catalysts. APDFT

requires just a small number of reference DFT calculations to approximate quantities such

as adsorbate binding energies (BE) and reaction barriers on a large numbers of hypothetical

catalyst surfaces by employing simple arithmetic manipulations to electrostatic potentials. In

this dissertation, we discuss how APDFT can be used to rapidly predict catalyst descriptors

from numerous atomic transmutations done to a single reference catalyst, and we address

multiple factors that influence the accuracy of these predictions. We first demonstrate that

first order APDFT predicts adsorbate BE on many variations of carbide, nitride, and oxide

catalysts in close agreement with DFT results, and we determined that predictions based

in metallic systems are most accurate. Additionally, first order APDFT reliably predicts

many energy profiles and barrier heights using a single nudged elastic band calculation for

CH4 dehydrogenation on Pt(111). Machine learning models trained on correlations between

APDFT errors and reference system properties produced BE prediction corrections over

multiple classes of adsorbates at multiple coverages on hypothetical Pt alloys. We further

uncover these correlations by revisiting multiple catalyst systems with second order APDFT

approximations from VASP and CP2K data. Finally, we introduce ways to produce al-

chemical energy functions that help illustrate the agreement between reference system with

differing characteristics and increasing orders of APDFT. We find that there are greater

limitations with VASP for second order APDFT, but results from CP2K show promising

advances with APDFT for widespread applications in computational materials science.
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1.0 Introduction

Computational catalysis plays a growingly important role in guiding the design of new

and improved materials for sustainable catalysis.[1, 2, 3, 4] Many efforts in this field involve

screening materials with high level quantum chemistry calculation schemes to find innovative

catalysts that promote high chemical activity.[5, 6, 4, 7] Descriptors of catalyst activity, such

as an adsorbate binding energy (BE) on a catalyst surface, are obtained using Kohn-Sham

density functional theory (DFT) calculations because they are both reasonably accurate and

computationally feasible for studying systems that might contain up to about 200 atoms.

However, even relatively efficient methods such as DFT are too computationally costly to

systematically model many different adsorbates at different coverages on different facets and

compositions of hypothetical catalysts.

To obtain useful and insightful predictions, computational screening studies must be

reproducible while also i) determining important active sites that are stable under speci-

fied environmental conditions on large numbers of material compositions and ii) elucidating

important elementary reaction steps with barrier heights that are needed for kinetic mod-

eling. To date, most computational catalysis studies can address one of these points at a

time,[5, 4, 6] but new advances are needed to make it possible to address both points at

the same time. Even though the computational cost of DFT calculations continues to de-

crease to allow even more calculations possible in the future, one should not expect that

the two points above can be addressed at the same time using DFT without invoking severe

approximations.

There have been efforts to address such points by developing approximate models such

as cluster expansions,[8, 9, 10] coordination number models,[11, 12, 13] as well as an as-

sortment of machine learning models[14, 15, 16, 17, 18, 6, 19] that all can be trained from

quantum mechanics calculations but leveraged to make predictions on systems outside of the

training set. An alternative approach that technically requires no a priori model training is

alchemical perturbation density functional theory (APDFT).[20, 21, 22, 23, 24] The method

has previously been called “computational alchemy”, but more recently termed APDFT to
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better distinguish it to other forms of “computational alchemy”.[25] APDFT is a means to

predict a hypothetical energy contribution based on a perturbation on a reference system. In

our APDFT scheme, the hypothetical energy contribution is based on an approximate Taylor

series expansion truncated to a number of terms that contain alchemical derivatives, which

are differences in atomic electrostatic potentials. When given a known adsorbate BE as well

as the alchemical derivatives that reflect how electrostatic potentials of the system change

upon adsorption, one can intuit a BE by approximating the alchemical energy changes for

a hypothetical material.[26, 27] A key advantage of APDFT is that no additional informa-

tion is needed besides a fixed number of DFT computations, and once these are obtained,

large numbers of adsorbate BEs for hypothetical surface structures can be obtained with

effectively no computational cost.

In this dissertation, we report our findings on applications of APDFT in heterogeneous

catalysis, predicting descriptors like adsorbate BE and reaction barrier heights on diverse

classes of materials, and we assess how effective and reliable it will be for computational

chemists and materials scientists to use APDFT coupled with other research methodologies.

We first provide a brief background on conventional computational catalysis, and how cur-

rent challenges call for robust methods that allow rapid property predictions using physical

descriptors of materials without a prerequisite to obtain large numbers of DFT-calculated

results. Then we provide a detailed introduction on APDFT that includes an outline on the-

oretical foundations, a summary of various formulations of quantum alchemy that aling with

APDFT, and a practial tutorial that the average computational scientist of heterogeneous

catalysis can follow to produce APDFT predictions from the results of common periodic

DFT software packages.

In the following chapters, we begin to summarize our work on APDFT applications.

First, by employing our APDFT schemes on BEs of oxygen reduction reaction intermediates

on catalysts beyond transition metal alloys, we report BE predictions that are in close agree-

ment with DFT results on many variations of rocksalt TiC(111), TiN(100), and TiO(100)

materials, and we identify that APDFT performs less reliably for band-gap materials like

semiconductors. The next chapter covers our work benchmarking applications in kinetic

modelling, where we predicted barrier heights for methane dehydrogenation on 32 alloy vari-

2



ations of Pt(111) with APDFT, relying on a single nudged elastic band (NEB) calculation as

a reference case. Shifting focus on methods to improve APDFT and better understand why

accuracy drops for certain systems, we discuss machine learning (ML) coupled APDFT in

the following chapter. We trained support vector regression machine learning (ML) models

on data sets of APDFT predicted BEs of carbon, nitrogen, and oxygen based adsorbates at

different coverages on hypothetical alloys based on a Pt(111). These models capably pre-

dicted APDFT errors, which were observed to follow very systematic trends. The ML model

predictions were then applied as corrections to the APDFT BE predictions on hypothetical

alloys, decreasing the mean absolute error within our test sets by as much as an order of

magnitude. We then identified variables about our target alloys and how they related to the

large APDFT errors of BE on these alloys.

While machine learning was an insightful approach to find the correlations between

prediction accuracy and reference and target materials, we cover second order APDFT ap-

proximations and alchemical energy pathways in the final chapter to highlight reasons why

APDFT errors are correlated to types of applied systems. We re-evaluated select metallic and

semiconducting systems using both first (APDFT-1) and second-order APDFT (APDFT-2),

calculating values of the energy function at many points along the alchemical pathways, and

comparing with DFT data at every point. Done with both VASP and CP2K data, we iden-

tified that systems that aren’t well-described with APDFT-1 manifest alchemical functions

that are high-order polynomials. APDFT-2 approximations become more accurate for some

systems when done with CP2K, but VASP-based APDFT-2 predictions further decrease in

accuracy. From these results, we discuss the advantages and disadvantages of using either

code and how the computational catalysis community may continue to utilize APDFT to

expedite their studies.

3



1.1 Conventional Computational Catalysis

Catalytic reaction mechanisms depend on the interplay of reaction thermodynamics and

kinetics. These can often be modeled quite well with standard DFT calculations, but bringing

this level of accuracy already brings substantial computational cost. Systems that are more

complicated will be expected to require higher level quantum chemistry (QC) calculations

that bring even greater costs.

The thermodynamics of elementary reaction steps can be assessed by computing reaction

intermediate BE. Each BE determination normally requires three separate QC electronic

energy calculations, each preferably modeled using geometrically relaxed structures, and

suitably accurate levels of theory. Appropriate zero-point energy, thermal, and entropy

corrections can be included as well, but these are sometimes neglected for simplicity when

analyzing trends of thermodynamic descriptors. The required calculations include the model

of the catalyst surface without the adsorbate (site), a model of the adsorbate not interacting

with the catalyst (ads), and a model for the catalyst surface with the adsorbate bound

(ads-site). The BE is then calculated with the following equation:

BE = Esite + Eads − Eads-site (1.1)

In this convention, positive binding energies indicate thermodynamically favorable adsorp-

tions. This equation clearly highlights a problem with high throughput screening studies

that rely on QC calculations. Any BE calculation for a single adsorbate on any hypothet-

ical surface site usually requires two separate QC calculations (for Eads-site and Esite), and

those might take anywhere from minutes to weeks to complete on modern super computers.

Predictive BEs also may require more considerations of multiple adsorbate configurations as

well as adsorbate-induced surface reconstruction and segregation.

In a collaboration with Joshua Snyder’s group at Drexel University, we showed that it

is usually necessary to investigate multiple thermodynamically accessible states to better

interpret experimental observations.[28] In this work, nanoporous PdX skin alloys (X =

Co, Ni, Cu, and Ag) were presented as electrocatalysts that produced formate from CO2

with high selectivity and avoided deactivation from CO poisoning. Among these alloys,
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Pd-skin/Pd3Co was found to be most promising, which our group confirmed by evaluating

stable configurations of CO and H binding on the surface with DFT. To assess the impact

of alloying and hydrogenation on CO binding, we determined the low energy adsorption

configurations for CO* and H* on Pd and the Pd-skinned alloys.

Reliably quantifying BEs for these systems under realistic electrochemical conditions can

be very challenging, but qualitative trends in relative BEs for CO* and H* on a variety of

hydrogenated configurations were able to provide physical insights into the experimental

observations. We hypothesized that the most active electrocatalysts would exhibit weaker H

binding to better facilitate hydrogenations of CO2 into formate as well as weaker CO binding

that would result in less CO poisoning. Results in Figure 1 show that adsorbed CO and

H were both the most destabilized on Pd-skin/Pd3Co, regardless of the co-adsorbed species

and helped explain the exceptional operational stability of nanoporous Pd-skin/Pd3Co. This

served as an interesting example of the fact that untangling catalyst descriptors can be

complex and may require numerous DFT computations.

Furthermore, relatively efficient DFT calculations for N electron systems typically scale

as N3 or greater, making these calculations quite expensive. This unfavorable scaling is espe-

cially significant when calculating Ea. The Nudged Elastic Band (NEB) algorithm,[29] which

is now a standard approach for predicting Ea, works by computing a series of constrained

geometric ‘images’ that are eventually optimized to a minimum energy pathway along a po-

tential energy surface. Since standard NEB calculations generally require the optimization

of 10−20 images per pathway, they bring significant computational cost that limits applica-

tions in high-throughput screening. A conventional approach to address this is with linear

scaling relations,[30, 31, 32] but an open question is whether alternative approaches might

be more accurate and useful.
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Figure 1: Tabulated above are binding energies (in eV) on Pd-skinned Pd3X alloys (X =

Co, Ni, Cu, Ag) for CO binding to a clean surface (CO*-1), CO binding to a surface with

H* (CO*-2), CO binding to a surface with 2 H* (CO*-3), H binding to a clean surface

(H*-1), H binding to a surface with H* (H*-2), and H binding to a surface with CO* (H*-3).

Some approaches that have been developed include approximate models such as clus-

ter expansions that model adsorbate interactions using an expanded series of polynomials

that describe the energy of Ising-type interactions,[8, 9, 10] models that describe adsorptive

scalability based on the coordination number of the active site,[11, 12, 13] and applications

of machine learning models to catalyst data sets, learning statistical trends based on vari-

ous features/fingerprints of catalyst models.[14, 15, 16, 17, 18, 6, 19] However, a downside

of most of these machine learning approaches is that they need a lot of data for training,

they can unreliably extrapolate to new systems, and they are often harder to intuitively or

physically interpret.

One could also expedite catalyst screening using a more physically grounded approach

like the d-band model,[33] which relates an adsorbate’s binding energy (BE) with the position

of the catalyst surface’s d-band center. If a shift in the d-band center from a reference state
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to a hypothetical one is known, that shift would correlate with the difference between an

adsorbate’s BE in the two cases. While elegant and useful, the d-band model does not

satisfactorily predict trends in calculated BEs for electronegative adsorbates such as OH, F,

and Cl on materials having mostly filled d-states.[34] Furthermore, the d-band model can

only be used on systems that have significant adsorption energy contributions that arise from

d-orbitals, e.g. transition metal systems. For other classes of materials, extensions to the

d-band model have been developed.[35, 36, 37]

Compared to these methods listed above, APDFT has a promising advantage to ac-

celerate computational catalysis screening studies because there is technically no need for

model training and, analogous to the d-band model, APDFT correlates an adsorbate’s BE

to the material’s electrostatic potentials,[20, 21, 22] which in effect reflects an amalgam

of the material’s full band structure. When given a known adsorbate BE as well as the

alchemical derivative that reflects how electrostatic potentials of the system change upon

adsorption, one can work out a BE by approximating the alchemical derivatives for a hy-

pothetical material.[26, 27] The key advantage to APDFT is that no additional information

is needed besides a single DFT-quality adsorbate BE, and once this is obtained, large num-

bers of adsorbate BEs for hypothetical surface structures can be obtained with effectively

no computational cost.
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1.2 Alchemical Perturbation Density Functional Theory

In this section, we present background, derivations, and a simple example of APDFT.

Advocated by von Lilienfeld and co-workers,[20, 21, 38, 23] APDFT uses gradient-supported

methods based on perturbation theory to measure a change in a specific materials property

in response to a change in the material’s composition without the explicit QC calculation of

the property itself. When referring to a change in a material’s composition, we technically

mean an alchemical perturbation or alchemical transmutation, which translates to a change

in nuclear charge of an atom in a reference material (R) that results in a new target material

(T). In APDFT, the Hamiltionians (Ĥ) of the reference and target material are linearly

coupled through a mixing parameter, λ, as the following:

Ĥ(λ) = λĤT + (1− λ)ĤR (1.2)

where 0 ≤ λ ≤ 1, describing the size of the perturbation. von Lilienfeld also showed that

these Hamiltonians may be coupled with a quadratic interpolation function, yielding superior

results for some applications.[39] Next, the desired quantity resulting from this coupled

Hamiltonian is the energy of the target system at λ = 1 (ET ), which can be expanded in a

Taylor series around the reference material at λ = 0:

ET =
∞∑
n=0

1

n!

∂nE(λ)

∂λn

∣∣∣∣
λ=0

= ER +
∞∑
n=1

1

n!

∂nE(λ)

∂λn

∣∣∣∣
λ=0

(1.3)

The first derivative from above can be evaluated via the Hellmann-Feynman theorem:[40]

∂E

∂λ

∣∣∣∣
λ=0

= ⟨ψR|ĤT − ĤR|ψR⟩ =
∫
Ω

dr(νT(r)− νR(r))ρ(r, λ) (1.4)

which include the external coulomb potentials νR and νT corresponding to reference and

target systems, respectively. We can then write Eqn. 1.4 in terms of higher order derivatives

of the electron density with respect to the perturbations:[23]

∂n+1E

∂λn+1
=

∫
Ω

dr(νT(r)− νR(r))
∂nρ(r, λ)

∂λn
(1.5)
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Finally, by combining Eqns. 1.3 and 1.5, we obtain:

ET = ER +

∫
Ω

dr(νT(r)− νR(r))ρ̃(r) (1.6)

where the averaged density is given by:

ρ̃(r) =
∞∑
n=1

1

n!

∂n−1ρ(r, λ)

∂λn−1

∣∣∣∣
λ=0

(1.7)

In the work we report here, we follow this form of APDFT truncated up to the second order

terms (Eqns. 1.6 and 1.7). The integral of the electron density is evauluated in VASP,[41]

when we calculate ER, which is equivalent to the average electrostatic potential centered

around the nuclei.

While the derivation above is the most current and rigorous form of this perturbational

approach, there have been several other diverse applications of alchemical perturbations for

gradient-supported property calculations. In an early study on screening the stability of het-

eroatomic clusters with first order perturbation, Weigend and coworkers considered integer

perturbations to the nuclear charge of atoms in homoatomic clusters of Pt or Ir using electro-

static potentials arising from the total electron density surrounding the perturbed atom.[42]

Energy derivatives were applied to ionization potentials, excitation energies, and bond poten-

tials by integrating the derivative over a path defined by λ, which in this case represented a

parameter that provided a smooth transition between the initial and final energy states.[43]

For instance, the occupation numbers of orbitals were used as λ to approximate HOMO

ionization potentials and excitation energies. Sheppard and coworkers provided a detailed

description of the Taylor expansion in chemical compound space centered around a refer-

ence compound at λ = 0, expression the potential energy of a target compound at λ = 1.[27]

They demonstrated how the first energy derivative could be composed of contributions (writ-

ten later in this section) that depend on changes in nuclear charge, atomic positions, and

number of electrons that may occur in the transition between the reference and target com-

pounds. Restricting themselves to isoelectronic alchemical transmutations with fixed atomic

coordinates, they successfully approximated protonation reaction enthalpies, reaction barri-

ers based on the umbrella flipping of ammonia, and oxygen binding to nanoparticles using

electrostatic potential differences.
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First order APDFT approximations have been used in many other notable applica-

tions including estimating the chemical potential of binary mixtures;[44] permitting broader

screening through chemical space;[45] studies of mixed-metallic clusters;[46] calculating bond

potentials;[47] screening of alkali halide crystals;[48] predicting material properties of bulk

transition metals;[38] predicting molecular adsorption energies on metal surfaces;[26] probing

non-locality of electron density;[49] predicting band structures in III-V semiconductors;[50]

properties of BN-doped variants of benzene, coronene, fullerene, and graphene;[51, 52, 53][51,

52, 53] and deprotonation energies.[24]

We now provide a tutorial on how a simple form of APDFT can be employed for com-

putational catalysis applications [51, 27, 26, 54]. To begin, we consider the BE calculation

for an OH molecule on Pt(111). This system will be referred as our reference state and

subsequently labeled with λ = 0. Since zero-point, thermal, and entropy corrections will be

neglected out of simplicity, its BE will be labeled as ∆E0|λ=0. We now will consider a new

system where the Pt(111) surface has been doped with a new element that results in a new

binding site. This new state will be labeled as λ = 1, and its BE will be labeled as ∆E0|λ=1.

APDFT can be used to predict ∆E0|λ=1 by relating it to ∆E0|λ=0 using a thermodynamic

cycle shown in Figure 2.

According to the cycle, we have 1.8:

∆E0|λ=0 +∆Ea
λ→1 = ∆E0|λ=1 +∆Es

λ→1 (1.8)

Where ∆E0|λ=0 will be obtained using Eqn. 1.1, ∆Es
λ→1 is the energy change of the bare

catalyst surface (s = site) when doped with a new element, and ∆Ea
λ→1 is the same type

of change for the system of the catalyst site with a bound adsorbate (a = ads-site). Upon

rearrangement of Eqn. 1.8, the change in BE due to the transition from the λ = 0 to the

λ = 1 states is the difference of these two unknown terms:

∆BE = ∆E0|λ=1 −∆E0|λ=0 = ∆Ea
λ→1 −∆Es

λ→1 (1.9)

We now will demonstrate how to calculate the right side of Eqn. 1.9 using APDFT to

obtain ∆BE. APDFT relates ∆E0|λ=1 to ∆E0|λ=0 with perturbation theory, specifically by
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Figure 2: Thermodynamic cycle depicting the binding energies (BEs) of an adsorbate on a

surface (horizontal legs) and atomic transmutations (vertical legs).. ∆E0|λ=0 and ∆E0|λ=1

denote the BEs for the top and bottom horizontal legs, respectively. ∆Es
λ→1 and ∆Ea

λ→1

denote the energy change associated with the atomic transmutation for the left (s = surface)

and right (a = ads-site) vertical legs, respectively.

approximating the exact result as a Taylor series expansion with the thermodynamic state

function (∆E0).[27] We have the following expression:

∆E0|λ=1 = ∆E0|λ=0 + ∂λ∆E
0∆λ+

1

2
∂2λ∆E

0∆λ2 + ... (1.10)

Here, the predicted BE (∆E0|λ=1) is approximated as the reference BE (∆E0|λ=0) plus

additional corrections from the Taylor series based on so-called “alchemical derivatives”,

which are other terms resulting from the transformation from the λ = 0 state to the λ = 1

state. The nth alchemical derivative with respect to λ is denoted by ∂nλ∆E
0. For the easiest

applications of APDFT, one can simply truncate the expansion in Eqn. 1.10 to first order

and assign ∆λ = 1, but higher order corrections for non-periodic computational schemes

have been developed by von Lilienfeld and co-workers.[55] The first-order approximation for

APDFT is shown with the following:

∂λ∆E
0 =

∑
I

∆µnI∂λNI −
∑
I

∆FI∂λRI +∆µe∂λNe (1.11)
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Here, the first term accounts for the nuclear chemical potential gradient (∆µnI) due to

variation in nuclear charge (NI) from the λ = 0 to the λ = 1 state. The second term

accounts for energy gradients due to the forces on atoms (∆FI) resulting from changes in

atomic positions (RI) from the λ = 0 to the λ = 1 state. The third term accounts for the

electronic chemical potential gradient (∆µe) due to variation in total number of electrons

(Ne) from the λ = 0 to the λ = 1 state.

Two additional approximations are typically employed with simple applications of first

order APDFT used for computational catalysis studies of extended surfaces. The first ap-

proximation is to assume that nuclear positions for the λ = 0 state and the λ = 1 state

are the same. While changing a material’s composition will certainly impact interatomic

forces and result in relaxations to achieve a minimum energy state, it will be assumed for

simplicity that the relaxation energy contributions due to the doping atom in the λ = 1

states for the “ads-site” and “site” calculations are similar and thus largely cancel in the

thermodynamic cycle represented in Figure 2. Mathematically, the result is that δλRI in

the second term of Eqn. 1.11 becomes zero, and thus the second term can be neglected.

The second approximation is to ensure that the λ = 0 state and the λ = 1 state have the

same number of electrons so that δλNe becomes zero so that the third term becomes zero.

(Note that this is not a general requirement for APDFT, but it is a practical way to ensure

that a total surface change density under periodic boundary conditions remains reasonably

physical in these specific applications.) To apply this constraint, one must use “isoelectronic

transmutations” so that the λ = 1 system has the same number of electrons as the λ = 0

system. For example, in a Pt(111) slab, if one Pt atom is transmuted into an Au atom

(∆Z = +1), a second Pt atom must be transmuted into an Ir atom (∆Z = −1). This results

in a zero net change in atomic number for the new slab (
∑no. of atoms

n=1 ∆Z = 0). While the

second transmutation is a departure from the system of interest, it can be made to occur far

from the site of interest so that it has no significant effect on the BE of that site.
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To summarize, the simplest application of first order APDFT for predicting a BE for

a hypothetical catalyst surface will consider only fixed atomic coordinates and only net

isoelectronic transmutations, and this simplifies Eqn. 1.11 into the following:

∂λ∆E
0 =

∑
I

∆µnI∂λNI (1.12)

The nuclear chemical potential, ∆µnI (also called the alchemical potential), is defined as

the change in atomic electrostatic potential between the “site” and the “ads-site” reference

states. This is represented as an array of differences in electrostatic potentials, and so the

elements of this array have units of energy/charge. Note that this procedure accounts for

changes in electrostatic potentials of atoms on the catalyst surface after relaxations due to

molecular adsorption have taken place. This term mathematically refers to the difference

shown by the following expression:

∆µnI = µads-site
n (Rads-site

I )− µsite
n (Rsite

I ) (1.13)

These atom-centered electrostatic potentials for the “ads-site” and “site” reference states

can be obtained with VASP,[41] a widely-used DFT code. Figure 3a depicts how alchemical

potentials are constructed as an array of differences in electrostatic potentials for atoms from

both the “site” and “ads-site” states. The nuclear charge variation quantity, ∂λNI , in Eqn.

1.12 now should be accounted for. When one transmutes atoms from a λ = 0 state to form

a hypothetical λ = 1 state, one notes changes in nuclear charges. Specifically, one uses an

array of differences in nuclear charges due to the formation of the λ = 1 state, and so the

elements in this array have units of charge. Figure 3b depicts how nuclear charge variations

are constructed as an array of differences in atomic numbers of the atoms in the λ = 0 state

and the λ = 1 state. Note that this array will be the same whether it is constructed for

a “site” or “ads-site” state since they both will correspond to the same λ = 1 state. The

overall calculation of the alchemical derivative used to obtain ∆BE between the λ = 0 state

and the λ = 1 state is simply a dot product of the two arrays given above, and this gives a

scalar that has units of energy (Figure 3c).
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Figure 3: Illustrations of steps to compute corrections to binding energies (BEs) based on

APDFT. a) Constructing the alchemical potential array with differences between µa
i and

µs
i , the electrostatic potentials for the ith atom in the ads-site (a) and site (s) systems,

respectively. The adsorbate atoms in the ads-site state are conventionally not included in

the array because they are not subject to transmutations. b) Constructing the nuclear

charge variation array with differences in atomic number for each atom in the system before

and after the transmutation. c) Illustrations of Eqs 1.12 and 1.17 as a dot product of the

two arrays constructed in a) and b) (Note that the illustrations in a) and b) do not show

an isoelectronic change and the result of the equality shown in c) is provided to show a

simple visual representation.)
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For additional clarity, we can return to the two unknown terms (∆Ea
λ→1 and ∆Es

λ→1) in

Eqn. 1.9 that compute ∆BE according to the cycle in Figure 2. We now show the direct

relation to the results of Eqns. 1.12 and 1.13 and the steps in Figure 3. The left leg of

Figure 2 and the expression in Figure 3b both illustrate a reference Pt(111) surface “site”

undergoing an alchemical transmutation of one Pt atom into an Au atom. Using Eqn. 1.12,

a first-order approximation of the energy change is:

∆Es
λ→1 =

∑
I

µsite
nI (R

site
I )∂λN

site
I (1.14)

Note that the illustrations in Figure 2 and Figure 3b do not show an isoelectronic change

to provide a simple visual representation, but the arrays used in Eqn. 1.14 should account

for them. The energy change for the same alchemical transmutation done to the “ads-site”

species is:

∆Ea
λ→1 =

∑
I

µads-site
nI (Rads-site

I )∂λN
ads-site
I (1.15)

For the cycle in Figure 2 to be true, the transmutations done to the “slab” and “ads-site”

states must be exact, and this results in ∂λN
site
I = ∂λN

ads-site
I = ∂λNI . Returning to Eqn.

1.9, and using Eqns. 1.12 through 1.15:

∆Ea
λ→1 −∆Es

λ→1 =
∑
I

[µads-site
nI (Rads-site

I )− µsite
nI (R

site
I )]∂λNI =

∑
I

∆µnI∂λNI (1.16)

Finally, we combine Eqns. 1.9 and 1.16 to rewrite our simple approximation, illustrated in

Figure 3c, for the predicted BE change using APDFT:

∆BEalc =
∑
I

∆µnI∂λNI (1.17)
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Next, we present a benchmark case of APDFT predicted BE for OH adsorption on a

four-layer, 2 × 2 Pt(111) surface model that contains four Pt atoms in each layer. For the

binding configuration of OH on the surface, the fourth layer has two unique atoms that

are transmutable. Thus, we created hypothetical materials by transmuting one of the eight

atoms in the top two layers by ∆Z = ±1 to convert a Pt near a binding site into Au or Ir and

one of the two atoms in the fourth layer by ∆Z = ∓1. This generated 32 unique cases that

computational alchemy can be used for predictions based on a single DFT binding energy

calculation.

Figure 4: ∆BE predictions for OH adsorption on 32 hypothetical alloys of Pt made by

∆Z = ±1 transmutations to the reference slab. Energy differences are relative to the

reference calculation and reported in eV. The size of the data points corresponds to the

distance of the transmutation site from the adsorbate (large points are transmutations far

from the adsorption site).

Figure 4 shows a benchmarking comparison of first order APDFT calculations compared

to corresponding single point DFT energy calculations. Note that these data were previously

reported elsewhere,[26] but the data shown now depict the relative location of transmuted
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atoms in the slab model to the OH adsorbate. Larger data points depict cases where trans-

muted atoms are further from the adsorbate while smaller data points depict cases where

they are closer. These predictions have a mean absolute error of 0.045 eV. The first order

APDFT is notably less accurate for transmutations made directly at the binding site, where

the alchemical derivatives are the greatest.[26]

In summary, Figure 4 reiterates that first order APDFT can quite accurately predict how

BEs changes on hypothetical alloys with simple algebraic computations based on a single set

of QC calculations and corresponding electrostatic potentials. This provides a computational

lever to increase the utility of a single BE calculation by enabling the estimation of (in

this case) about 30 additional BEs. Even more BEs can be predicted by employing more

and/or larger (e.g. ∆Z = ±2) transmutations, but we have found these will result in larger

errors that would need to be remedied for accuracy. Not only does this tool give users BE

predictions, it also gives users physical insight into which nearby sites are the most important

for adsorbate binding. In principle, this screening allows us to eliminate cases that result in

an insignificant change in ∆BE, and thus allow more careful attention to cases that result

in more significant changes in BEs using more refined QC methods and/or experimental

studies.
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2.0 Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide

Catalysts

The content of this section is taken from Charles Griego, Karthikeyan Saravanan, and

John A. Keith, “Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide

Catalysts.” Adv. Theory Simul., 2019, 2: 1800142.

Kohn-Sham density functional theory (DFT)-based searches for hypothetical catalysts

are too computationally demanding for wide searches through diverse materials space. Here,

we assess the accuracy of computational alchemy schemes on carbides, nitrides, and oxides.

With a single set of reference DFT calculations, computational alchemy approximates ad-

sorbate binding energies (BEs) on a large numbers of hypothetical catalysts surfaces with

negligible computational cost. Analogous to previous studies on metal alloys, computational

alchemy predicts adsorbate BEs on rocksalt TiC(111), TiN(100), and TiO(100) materials,

which have no bandgap, in close agreement with DFT results (with mean unsigned errors

up to 0.33 eV). In contrast, we find that semiconducting systems such as rutile TiO2(110),

rutile SnO2(110), and rocksalt ZnO(100) can present more significant challenges. This work

identifies these challenges being linked to the density of states at the Fermi level and by

adding Pt dopants in the surface layer of TiO2, we demonstrate that computational alchemy

can become more reliable with semiconductor-based systems. This remedy provides insight

that promotes computational alchemy for broad searches for catalyst active sites through

materials space beyond transition metal alloys.

2.1 Introduction

We previously showed that computational alchemy schemes can predict BEs of oxygen

reduction reaction intermediates on alloys of Pt, Pd, and Ni within 0.1 eV of DFT results.[26]

Computational alchemy performed reasonably well for OH intermediates as well as for skin
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alloys that are known to be problematic for the d-band model.[34] Alchemy errors are highest

when alchemical derivatives are high. These are highest when transmutations occur nearest

to the adsorption site, or when net isoelectronic transmutations span multiple groups of the

periodic table, or when more and more atoms are transmuted.

It remains unclear if computational alchemy can be trusted for predicting binding energies

on other material surface besides transition metals. Rocksalt TiC (111), TiN (100), TiO

(100), as well as rutile TiO2 (110) were considered due to these surfaces being of interest as

catalysts and/or supports.[56, 57, 58, 59, 60, 61, 62, 63, 64] We considered pristine surfaces

as well as those containing a main group element vacancy. The carbon vacancy was at the

three-fold site in TiC, nitrogen and oxygen vacancies were under the four-fold site in TiN

and TiO, respectively, and the oxygen vacancy in TiO2 was a bridging oxygen. Following

our previous work, we chose to model charge-neutral H atoms and OH molecules as adsorbed

species (H* and OH*) since they are relevant oxygen reduction reaction intermediates. Both

intermediates are bound on the three-fold site with a metal atom directly underneath in TiC

and the four-fold site of TiN. For TiO, H* is also bound to the four-fold site, but OH* binds

on top of a metal atom. For TiO2, H* binds on top of a bridging oxygen atom, and OH*

binds on top of a metal surface atom. These binding sites are favorable for both the pristine

slabs and the slabs with a vacancy.

2.2 Computational Methodology

Kohn-Sham density functional theory (DFT) calculations were conducted using PBE[65]

exchange correlation functional with projector augmented wave pseudopotential representa-

tions of core electrons as implemented in VASP[66, 41]. A plane wave basis set was used

to represent valence electrons where 350 eV energy cutoff was chosen for rocksalt TiC, TiN,

and TiO, 400 eV for rutile SnO2, and 450 eV for rocksalt ZnO and rutile TiO2. A 4 × 4 ×

1 Monkhorst-Pack sampling of the k-point grid was employed for all materials except SnO2,

which used 5 × 5 × 1 . The minimum energy configuration of each reference surface was

determined iteratively with conjugate gradient algorithm until the difference in steps was
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less than 0.1 meV. Each surface is modelled as a 2 × 2 slab extended to 4 layers, and bottom

two layers are fixed, while the top layers and adsorbates are relaxed. We note that TiC,

TiN, TiO, and ZnO unit cells contain four Ti atoms in each layer whereas TiO2 and SnO2

contain eight.

2.3 Results and Discussion

Figure 5 shows the performance of alchemy with low-energy facets of three different

rock salt materials: TiC(111), TiN(100), and TiO(100) without and with a main group

element vacancies. Consistent with our previous study on transition metal alloys, alchemy

can reasonably calculate adsorbate BEs for H* and OH* intermediates when two, four, and

six atoms have been transmuted. The reference binding energies from DFT in Figure 5 range

from -1.18 eV to +6.11 eV for all systems. Calculated ∆BE values range from -0.53 eV to

+0.75 eV for all systems. Deviations from the parity line correlate with systems having

higher alchemical derivatives and/or systems where adsorption results in more significant

polarization near the site where transmutations occur. In some cases, including when H*

is found near a vacancy, the presence of a vacancy results in smaller alchemical derivatives

and thus lower errors. Overall, alchemy can capably model H* and OH* binding energies on

these three materials with errors within a range of 0.01-0.33 eV depending on the material,

even when a vacancy is present. In all of these cases, there is a significant density of states

at the Fermi level of all of these systems as would be expected for any transition metal alloy

system.
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Figure 5: Parity plots comparing the accuracy of alchemy for predicting binding energy

(BE) against DFT (in eV) for H* and OH* on pristine slabs (a-c) and slabs with the

presence of a vacancy defect (“def”) (d-f): TiC, TiN, and TiO. ∆BEalc is the alchemical

derivative of BE between the hypothetical and reference slab. ∆BEDFT is equal to BEalloy

– BEref calculated from DFT. The hypothetical materials were obtained by alchemical

transmutations to one (red), two (blue), and three (green) pair(s) of Ti atoms. Mean

absolute errors (MAEs) are listed in each figure and given in eV.

We then evaluated computational alchemy when used on non-conducting materials (Fig-

ure 6). Interestingly, the performance of alchemy for approximating adsorbate BEs was

rather poor even for just H*, and so other calculations involving OH* and vacancies were

not pursued. For ZnO(100), there is a linear trend between alchemy and DFT, but the slope

does not show parity. For SnO2(110), there correlation is parallel to the parity line but

consistently offset. The MAE for ZnO(100) is as high as the upper limit of errors seen in

Figure 5, and MAEs were even greater for SnO2 and TiO2. As expected, the density of states

21



for these materials all show a bandgap. Alchemy exhibits very poor agreement with DFT in

TiO2, but there is somewhat better agreement with DFT in SnO2 and ZnO. We presently

attribute this issue to the bandgaps in the materials. A significant density of states crossing

the Fermi level signifies a conductive material that would also have a relatively high degree of

shielding. High shielding makes atom-centered electrostatic potentials less sensitive to other

nearby atoms, and this corresponds to the situations where first order approximations with

alchemy would be most valid. This hypothesis will be validated in future work by testing

second order alchemy approximations.

Figure 6: (a) Parity plots comparing the accuracy of alchemy for predicting binding

energy (BE) against DFT (in eV) for H* on pristine slabs of semiconducting materials:

(a-c) ZnO, SnO2, and TiO2. ∆BEalc is the alchemical derivative of BE between the

hypothetical and reference slab. ∆BEDFT is equal to BEalloy – BEref calculated from DFT.

The hypothetical materials were obtained by alchemical transmutations to one pair of Zn,

Sn, or Ti atoms. Mean absolute errors (MAEs) in each plot above are given in eV. (b)

Density of states (DOS) for (d-f) ZnO, SnO2, and TiO2. The Fermi level is zero for each plot.
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To further test that problems with alchemy approximations relate to bandgaps, we con-

sidered modified systems where 50% of the Ti atoms in the top layer or the second layer

were replaced with Pt atoms. Placing Pt atoms in the TiC(111), TiN(100), or TiO(100)

structures was expected not to significantly impact these systems since each was already

electronically conducting. Indeed, alchemy in these systems with Pt atoms included led to

similar errors as cases shown in Figure 5.

However, by placing Pt atoms in the second layer (Pt@2L) or top layer (Pt@1L) of

TiO2(110), we expected to tune the density of states near the Fermi level. We hypothesized

that Pt atoms in the second layer do not directly interact with the vacuum layer, and so fewer

states were expected to arise at the Fermi level, while Pt atoms in the first layer interact

directly with vacuum, and so more states were expected to be found at the Fermi level.

Figure 7 confirms this hypothesis and shows a dramatic improvement in alchemy predictions

when there is a greater density of states at the Fermi level. Alchemy becomes significantly

more reliable when Pt is in the first layer and predicts H* and OH* binding energies within

the range of 0.16-0.29 eV.
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Figure 7: Parity plots comparing the accuracy of alchemy for predicting binding energy

(BE) against DFT (in eV) for H* and OH* on (a-c) TiO2 pristine and with 50% Pt-

substituted in the second layer (Pt@2L) and first layer (Pt@1L). ∆BEalc is the alchemical

derivative of BE between the hypothetical and reference slab. ∆BEDFT is equal to BEalloy

– BEref as calculated from DFT. The hypothetical materials were obtained by alchemical

transmutations of one (red), two (blue), and three (green) pair(s) of Ti atoms (pristine) or

Pt and Ti atoms (Pt-substituted). Mean absolute errors (MAEs) in each plot above are

given in eV. Density of states (DOS) for (d-f) TiO2 pristine, Pt@2L, and Pt@1L. The Fermi

level is zero for each plot.

2.4 Conclusion

In conclusion, we have demonstrated the utility of computational alchemy for approxi-

mating thermodynamic descriptors for catalysis for non-transition metal alloy systems. Com-

putational alchemy performs reasonably well when predicting binding energies for H* and

OH* on carbide, nitride, and oxide systems that have no band gap. Significant errors in this
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computational scheme arise when used on systems that have a band gap. The present expla-

nation for this is that first order approximations using alchemy are most valid for systems

having high electronic shielding, which have been used to test alchemy in cases of transition

metal alloys[26] and BN-doped graphene[51]. Results from alchemy can become more reliable

by ensuring that the materials of interest have a substantial density of states at the Fermi

level (which we did via in silico alloying with Pt in the top layer of the system). This shows

a practical path forward to leverage computational alchemy for high-throughput searches of

catalyst sites though broad regions of materials space.
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3.0 Assessing APDFT Predicted Reaction Pathways and Barriers

The content of this section is taken from Charles Griego, John R. Kitchin, and John A.

Keith, “Acceleration of catalyst discovery with easy, fast, and reproducible computational

alchemy.” International Journal of Quantum Chemistry., 2020, 121:e26380.

The expense of quantum chemistry calculations significantly hinders the search for novel

catalysts. Here, we provide a tutorial for using an easy and highly cost-efficient calculation

scheme called alchemical perturbation density functional theory (APDFT) for rapid pre-

dictions of binding energies of reaction intermediates and reaction barrier heights based on

Kohn-Sham density functional theory reference data. Using a single nudged elastic band

calculation for CH4 dehydrogenation on Pt(111) as a reference case, we generate 32 new

pathways with barrier heights having mean unsigned errors of less than 0.3 eV relative to

single-point DFT calculations. Notably, this easy APDFT scheme brings no appreciable

computational cost once reference calculations are done, and this shows that simple ap-

plications of computational alchemy can significantly impact DFT-driven explorations for

catalysts.

3.1 Introduction

Limitations from costly QC methods become vastly present in computational studies of

the kinetics of reactions on surfaces. The energy barrier (Ea) between two reaction steps,

which largely dictates reaction kinetics, is a challenging quantity to measure with QC cal-

culations since the transition state exists on a peak of the potential energy surface. Only

the most relevant barriers ideally would be studied with costly QC methods, but determin-

ing whether a barrier is relevant requires iterative kinetic analyses that themselves require

numerous barrier height predictions to be useful. A common approach for predicting Ea

is to employ the nudged elastic band (NEB) algorithm[29] to a collection of interpolated
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images between the initial and final states of a reaction step. Simultaneously, these images

are optimized towards a minimum pathway on the potential energy surface, allowing one to

identify the transition state. However, optimizing 10-20 images at once is a computationally

expensive approach that hinders attempts to calculate Ea for all steps in a reaction network

on multiple catalysts. In this study, we address this issue by uncovering many hypothetical

reaction pathways and barrier heights from a single NEB with APDFT.

3.2 Results and Discussion

To benchmark first order APDFT predictions of reaction barriers, we use CH4* dehy-

drogenation on Pt(111) as a reference system, where each species bound to a surface site is

denoted by *:

CH4
∗+∗ → CH3

∗ +H∗ (3.1)

Figure 8 shows snapshots of the NEB reaction pathway for this process. The reactant

state and first image in the NEB (a) contains CH4* geometrically relaxed to a distance of

3.7 Å from an ontop site. The reaction proceeds as one C-H bond breaks and a hydrogen is

adsorbed to an adjacent ontop site. In the transition state, the detaching hydrogen is drawn

toward a bridge site. The product state contains both a CH3* and an H* bound at 2.1 and

1.5 Å at ontop sites, respectively. Other work reports that H* also binds favorably to an

fcc site in the product state.[67] However, our system is among many reasonable choices of

reference points to predict changing trends of various possible reaction pathways on many

hypothetical catalysts.

To compute barrier heights using first order APDFT, we apply the BE procedure from

above on each of the images from the NEB calculation. From this, we can generate a variety

of different pathways for up to 32 different hypothetical alloy configurations as shown in

Figure 9. Figure 9a shows predicted reaction energy profiles following Eqn. 3.1. The

reference energy profile calculated using DFT is denoted by red asterisks, while the solid

blue line denotes the most affected Au alloys and the solid green line denotes the most
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Figure 8: Snapshots of the (a) reactant, (b) transition, and (c) product states of the

dehydrogenation of CH4 adsorbed at 1/4 coverage of ontop sites on Pt.

affected Ir alloys. The other lines pertain to all other cases where the alloy systems result in

a negligible change relative to the reference system (due to very small alchemical derivatives

present in these cases). Note that energy profiles for similar systems overlap and may not

be distinguishable. Figure 9b shows a parity plot for ∆Ea values relative to the reference

calculation. There is generally an increase in barrier when the transmuted site becomes Au

and a decrease when the site becomes Ir. Notably, the largest errors in barrier heights are 0.3

eV relative to DFT benchmarks (for alloys that exhibited the highest alchemical derivatives),

but the vast majority of other data are more accurate.
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Figure 9: a) Energy profiles for the CH4 dehydrogenation mechanism on hypothetical alloys

of Pt. The reference pathway occurs on pure Pt and is denoted with red asterisks. The most

significant effect from a transmutation with ∆Z = +1 is shown in blue, the most significant

effect from a transmutation with ∆Z = −1 is shown in green, and other reaction pathways

computed with alchemy are shown in light blue/green. b) First order APDFT benchmarking

of the change in ∆Ea for CH4 dehydrogenation on 32 hypothetical alloys of Pt made by

∆Z = ±1 relative to the reference barrier (energies in eV). The size of the data points

correspond to the distance of the transmutation site from the adsorbate in the reactant state.
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3.3 Conclusion

APDFT is a promising gradient-supported method for leveraging QC calculations in large

scale screening. This method relies on alchemical derivatives which are straight-forward to

compute and which can be used for accurate predictions of binding energies and activation

energies on electronically conductive systems relevant for computational catalysis. Using a

single nudged elastic band calculation for CH4 dehydrogenation on Pt(111) as a reference

case, we generate 32 new pathways with barrier heights having mean unsigned errors of

less than 0.3 eV relative to single-point DFT calculations. Even though first order APDFT

can exhibit errors as large as 0.3 eV in barrier heights for reference system doped with just

a single atom, it is promising that such simple approximations can be useful to calculate

a computationally expensive descriptor that guides screening studies. Furthermore, as the

source for errors in different APDFT approximations become better understood, it becomes

reasonable to imagine that more accurate approaches might be developed based on APDFT

that would have a predictive power comparable (or even indistinguishable) to standard DFT.
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4.0 Machine Learning Corrected Alchemical Perturbation Density Functional

Theory for Catalysis Applications

The content of this section is taken from Charles Griego, Lingyan Zhao, Karthikeyan

Saravanan, and John A. Keith, “Machine learning corrected alchemical perturbation density

functional theory for catalysis applications.” AIChE J. 2020; 66:e17041.

Alchemical perturbation density functional theory (APDFT) has promise for enabling

computational screening of hypothetical catalyst sites. Here, we analyze errors in first order

APDFT calculation schemes for binding energies of CHx, NHx, OHx, and OOH adsorbates

over a range of different coverages on hypothetical alloys based on a Pt(111) reference system.

We then train three different support vector regression machine learning models that correct

systematic APDFT prediction errors for each of the three classes of carbon, nitrogen, and

oxygen based adsorbates. While uncorrected first order APDFT alone approximates accurate

adsorbate binding energies on up to 36 hypothetical alloys based on a single Kohn-Sham

DFT calculation on a 3 × 3 unit cell for Pt(111), the machine learning-corrected APDFT

extends this number to more than 20,000 and provides a recipe for developing other machine

learning-based APDFT models.

4.1 Introduction

Here, we investigated the feasibility of correcting errors in first order APDFT using ma-

chine learning (ML) approaches. We hypothesized that errors in adsorbate binding energies

in these systems reflect a change from a linear energy relationship with alchemical deriva-

tives to an unknown non-linear relationship. Thus, ML models that effectively use statistical

techniques to learn non-linear relationships from training sets of data should be a productive

way to correct these errors.
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Indeed, ML has wide applications in biology, chemistry and materials science.[68, 69,

70, 71, 72] Notable examples range from small molecule chemistry to protein interactions to

materials screening.[73, 74, 75, 76, 12, 77, 78, 79] ML models have also been applied to cat-

alyst screening studies.[80] Combined ML and descriptor-based kinetic analysis framework

was found to rapidly screen bimetallic catalysts for CO2 reduction.[16, 15] Fully automated

screening methods that combined ML and optimization techniques facilitated screening

through a massive chemical space of inter-metallic catalysts.[6] Catalyst activity predictions

were also accelerated coupling ML with active site configurations,[81] scaling relations,[14]

and volcano plots.[82] We assessed the relationship between accuracy (relative to DFT) and

the properties of systems evaluated with first order APDFT, we chose features that most

correlate to APDFT’s accuracy, and we trained and tested a machine learning model on a

large data set of adsorbate BEs on hypothetical alloys.

4.2 Computational Methodology

In this work, we benchmark BEs for different systems on a four-layer Pt(111) surface

with the lower two layers fixed and the upper two layers relaxed. The adsorbates we chose

are CHx and NHx where x = 0 − 3, as well as OHx where x = 0 − 2 and OOH. Surface

coverage (θ) is calculated as the number of adsorbates per atom in a surface layer. Here we

model θ = 1, 1/4, 1/9 by placing one adsorbate molecule on 1 × 1, 2 × 2 and 3 × 3 slab

models. We transmute atoms in the top two layers by ±∆Z and maintain isoelectronicity

by transmuting an atom in the bottom layer by ∓∆Z.
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All DFT calculations in this work were carried out using PBE[65] as the exchange-

correlation functional and projector augmented wave pseudopotentials as implemented in

VASP.[41] An energy cutoff of 350 eV and an 8 × 8 × 1 Monkhorst-Pack grid sampling of

k-point were used for all models. Structures were relaxed using conjugate gradient iterative

minimization until the difference in energies between consecutive geometry steps was less

than 1 meV. Adsorbate binding energies were calculated using the equation BE = Esite +

Eads−Eads−site. Where Esite is the energy of the bare catalyst surface, Eads the energy of the

catalyst with an adsorbate bound to the surface site, and Eads−site is the energy of the lone

molecular adsorbate.

Once a reference BE was obtained from DFT calculations, we constructed a list of atom-

centered electrostatic potential differences. Then, we constructed a second list that describes

the ∆Z change to each atom in the slab model after we made transmutations. We ap-

proximated ∆BEAPDFT by taking the dot product of the two lists and benchmarking it to

∆BEDFT values obtained from single point DFT calculations (again, relaxed with respect

to adsorption of the reference system but not with respect to alchemical transmutations).

Detailed descriptions of this method are described in our previous work.[83] For each ref-

erence system, we evaluated alloys made from NT = 1 − 4 and with ∆Z = ±1, 2, 3.

All possible NT changes were made among all sites in the first layer and the second layer

for the 1 × 1 and 2 × 2 surface models. For the 3 × 3 model, we chose a random

subset of about 150 configurations to reduce the number of DFT calculations needed to

benchmark since 24,282 configurations are combinatorially possible. The data production

was facilitated using Phystone, an APDFT Python library developed by our team found at

https://github.com/KeithLabPitt/comp_alchemy.

We first assessed the errors with APDFT predicted BE with respect to different charac-

teristics of the alloys and the adsorbate binding. To analyze these variables individually, we

have bucketed the APDFT BE errors from our entire dataset into categories. In Figure 10,

we show bar graphs separated by coverage. Individual bars show the mean absolute error

(MAE) with respect to both ∆Z and NT. For θ = 1/9, the MAE for all cases is roughly

below 0.6 eV and generally increases when ∆Z or NT increase. For θ = 1/4, the MAE for

each case is below 1.6 eV and systematically increases with ∆Z and NT. For θ = 1, NT = 1
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or 2 because there are only two sites available in the first and second layers. We found that

the MAE is below 2 eV and increases with both variables. Overall, MAE increased when

the coverage increased. This is because with higher coverage, the concentration of sites with

large alchemical derivatives, that overestimate BE, were greater.

Figure 10: Mean absolute error (MAE) with respect to change in nuclear charge at each

transmuted site (∆Z) and the number of transmuted atoms (NT) for binding energy

calculations of all adsorbates at coverages (θ = 1/9, 1/4, 1).

In Figure 11, we compare the MAE with respect to the type of adsorbate in the reference

system. Here, the adsorbate type is described by the amount of central atom hydrogenation

(ie. the value of x in CHx, NHx, or OHx (or OOH)). There are two notable observations

from this analysis. The APDFT predicted MAE decreases with the degree of increasing

hydrogenation and when the central atom in the adsorbate is farther to the right of the
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periodic table. In Figures 10 and 11, we see strong dependence of MAE with ∆Z, NT, θ,

and the type of adsorbate, suggesting that these variables are viable features for making

predictions.

Figure 11: MAE with respect to hydrogenation of the central atom for CHx, NHx, and OHx

adsorbate BE.

4.3 ML Model

Here we developed ML models that can predict the magnitude of errors of APDFT

relative to DFT accuracy. Figure 12 shows the workflow we followed to obtain ML corrected

APDFT BE predictions. With a hypothetical alloy surface as the input, we fingerprinted the

hypothetical dopant configuration that resulted from transmutations, and we constructed a

feature vector from these fingerprints and other descriptors unique to the adsorbate-alloy

system. The feature vector was fed to the model and outputted a predicted value of the

APDFT’s deviation from DFT. The error was then added to the original APDFT predictions

as a correction.

In order for a machine learning model to correctly learn the underlying patterns in the

training data, the most relevant features must be identified and processed. These features are

variables that describe particular properties among all groups in a large dataset. We included

in our model the variables that strongly correlate with BE predictions errors as identified
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Figure 12: Machine learning workflow for obtaining corrected alchemy BE predictions.

in Figures 10 and 11: ∆Z, NT, θ, and the degree of hydrogenation of the central atom in

the adsorbate. While these variables give a simple description of the kind of adsorption and

the type of changes made in the reference system, a feature representation of the dopant

location in the alloys would provide a much more unique description of the alloy to link

to APDFT prediction accuracy. This was done by considering a feature vector with length

equal to the number of atoms in the top two layers of our slab models. Each element of

the vector represents one of the sites in the top two layers where a binary indication is

used to describe the site being transmuted or not. For more details, our feature vector

construction is explained in the Appendix. Once we construct the feature vector for the

dopant configuration, we add additional elements with binary descriptions of the selected

features.

36



The dataset we use to train our model includes all surface alloys outlined in the error

analysis above. For each of these alloys, a feature vector was constructed as outlined above,

and the error in BE between APDFT and DFT was calculated. To most accurately assess

ML models, we partition the data into a training set and a test set and make validations

using k-fold cross validation (CV) (more information in the Appendix).

We considered several machine learning algorithms to predict APDFT error corrections.

We evaluated support vector regression (SVR) models with radial basis function (RBF) and

polynomial kernels, random forest, linear regression, ridge regression, and elastic net re-

gression by measuring the performance with a 10-fold CV. The CV MAE for each model

trained using the CHx, NHx, and OHx subsets is listed in Table 1. The SVR model with the

RBF kernel gave the best prediction accuracy, and the hyperparameters were optimized also

with a 10-fold CV. We found that the default parameters provided through the scikit-learn

library[84] gave the best performing version of this model. With the optimized hyperpa-

rameters, the model is retrained for each subset. When building the final models, we split

the data of each subset into 80% training and 20% testing partitions. The assessment of

this split, the learning performance, and how well the model is generalized is show in Figure

13. We have plotted the MAE of model predictions of the error between APDFT and DFT

calculated BEs (∆BEAPDFT −∆BEDFT) using both the training (red circles, solid line) and

test (black circle, solid line) set against the training sample size. With increasing training

samples (BEs), the training score curve converges and becomes stable at a minimum MAE.

The test score curve also exhibits this behavior and quickly approaches the training score

curve with increasing training samples.
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Table 1: Summary of machine learning model evaluation and selection based on the CV

MAEs for each dataset.

Model Type MAE CHx (eV) MAE NHx (eV) MAE OHx (eV)

SVR (RBF) 0.07±0.006 0.08±0.006 0.07±0.004

SVR (Polynomial) 0.14±0.008 0.21±0.006 0.21±0.01

Random Forest 0.11±0.008 0.13±0.01 0.10±0.006

Linear 0.31±0.01 0.37±0.02 0.35±0.01

Ridge 0.31±0.01 0.37±0.02 0.35±0.01

Elastic Net 0.43±0.02 0.44±0.02 0.36±0.01

Figure 13 also shows learning curves of ML model predictions of DFT BEs (∆BEDFT)

using only DFT training data, where MAE of predictions on both the training (red stars,

dashed line) and test (black stars, dashed line) set are plotted against the training sample

size. For the OHx and CHx datasets, the test score curves for the ML model trained to

APDFT data are consistently lower than those for the ML model using strictly DFT data

and show that more accurate ML models can be trained with APDFT data. For the NHx

dataset, the test score curves are more similar, and with some training set sizes there is not

an apparent benefit to using APDFT data. Developing a physically grounded explanation

for this as well as how learning curves change when using higher order corrections of APDFT

will be addressed in future work.

4.4 Results and Discussion

As shown in the final steps of Figure 12, our models output predicted errors that are

added to the APDFT calculated BE as a correction. Three separate SVR models were trained

using datasets containing CHx, NHx, OHx and OOH species. Figure 14 shows pure APDFT
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Figure 13: Comparison of learning curves for ML models that predict DFT BEs using a

training set of DFT calculated BEs (labelled ∆BEDFT in the legends) or a training set that

learns deviations between APDFT and DFT (labelled ∆BEAPDFT−∆BEDFT in the legends).

(a) and ML-corrected APDFT (b) predictions for alloys in the CHx test set against respective

DFT predictions of . Similar plots for NHx and OHx adsorbate test sets are included in the

Appendix. Upon ML corrections, the prediction accuracy notably increases for each case,
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and with many improved cases where APDFT systematically under and over-predicted the

BE. For CHx, MAE decreased by more than an order of magnitude from 0.78 to 0.07 eV.

MAE decreases from 0.65 to 0.07 eV for NHx, and for OHx and OOH, the MAE decreased

from 0.39 to 0.06 eV.

Figure 14: Parity plot of the BE change (∆BE) of CHx adsorbates on alloys of trans-

muted Pt predicted with APDFT (a) and ML-corrected APDFT (b) compared to DFT.

∆BE are in units of eV. The MAE decreases from 0.78 (a) to 0.07 eV (b) upon ML-correction.

We then investigated which features were most important in the model training. Each

feature was scored with a normalized negative log of the p-value. These values are recorded

in the bar chart in Figure 15. A feature is most important if the value is close to 1 and least

important when it is close to 0. We initially found it curious that the transmutation site is the

least important feature because our previous work reports that APDFT’s largest prediction

errors belong to systems where the transmutation is at the binding location. However, this

result is sensible because there are up to 18 possible transmutations sites in our models, and
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only a relatively small number of these sites are close to the adsorbate. This means that it

is less common to see in the dataset cases where large errors come from changing sites near

the adsorbate. Conversely, this argument explains why ∆Z is the most important feature.

It was also reported in our previous work[26, 54] (and shown in Figure 10) that for a larger

nuclear charge perturbation, the errors are larger, regardless of the location of the change.

Thus, for the part of the dataset where the change is large (ie. ∆Z = 3), almost all cases

have large errors, and this feature plays a greater role in the model training.

Figure 15: Feature importance plot showing the significance of different parameters for the

machine learning model. Features are scored based on a normalized negative log of the

p-value, where the most important feature (∆Z) ranks at a score of 1.0.

Since ∆Z and NT were the top two most important features, we outlined how our models

were especially effective in improving predictions for alloys made from large ∆Z and NT

transmutations, where first order APDFT fails. Figure 16 illustrates the distribution and

level of improvement of predictions with alloys in the test data set relative to ∆Z and NT.

The radius of each circle corresponds to the percentage of alloys present in the test data set

made from that particular pair of ∆Z and NT. Each circle is colored based on the difference

in MAEs for the uncorrected APDFT and ML-corrected APDFT in that set of alloys. For

example, dark blue represents that ML-corrections effectively resulted in zero improvement

while dark red represents substantial improvement by more than 1 eV. Note that alloys

with larger NT had more possible combinations than smaller NT and thus comprised greater
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percentages of the data set. With increasing ∆Z, the relative percentages of different alloys

that were tested does not change, but the magnitude of the corrected MAE significantly

increases. This shows where ML corrections are most impactful while also showing which

subsets of alloys that were tested are most at risk for being underfit. For advanced ML

models that interface with APDFT, it is recommended to use of datasets that account for

intrinsic symmetries of each adsorbate configuration as well as to focus on allocating even

more training data on hypothetical alloys using the larger |∆Z| and NT values.

Figure 16: Visualization of the distribution of hypothetical alloy types in the test data set

and how well ML improves APDFT predictions for those alloy types. NT is the quantity

of transmutations used to generate a hypothetical alloy and is dimensionless. ∆Z is the

size of the transmutation step in generating an alloy and has units of charge. Circle radii

reflect the percentage of alloys from the test data set that are made up of that particular

combination of NT and |∆Z|. The filled color represents the change in MAE (in units of

eV) to that subset of data after ML correction have been applied.

4.5 Conclusion

We have demonstrated how an ML-based treatment can significantly improve the accu-

racy of first order APDFT BE predictions of a range of adsorbates on hypothetical alloys of

Pt(111). First, we identify the source of errors related to the system variables. Generally, the
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MAE among systems in our dataset increases with increasing ∆Z, NT, and coverage. There

is also a correlation to the type of adsorbate in the reference system as the MAE is found to

decrease with increasing levels of hydrogenation at the central atom. We used this insight to

fingerprint our alloy systems and construct feature vectors that include these variables. We

found through a k-fold CV analysis that an SVR model with a radial basis function kernel

gave the most accurate prediction of the APDFT errors. Training separate SVR models

on CHx, NHx, and OHx datasets, BE predictions for systems in our test set had accuracy

improved by 0.71, 0.58, and 0.33 eV, respectively. Each model used at least 3,600 BE data

points for training and were validated using at least 900 data points. While an appreciable

amount of DFT calculations were needed to develop the machine learning models, their ne-

cessity extends beyond the numbers of BE predictions in our test sets. Our models could

provide reliable BE predictions on alloy configurations that weren’t included in this study.

For instance, in the section of our dataset where θ = 1/9 (using a 3 × 3 surface model) we

included a rather small subset of all possible combinations involving NT = 1, 2, 3, 4 and

∆Z = ±1, ±2, ±3 transmutations among the 18 atoms in the top two layers. In this case,

there are 2 ·
(
3 ·

(
18
1

)
+ 3 ·

(
18
2

)
+ 3 ·

(
18
3

)
+ 3 ·

(
18
4

))
= 24, 282 hypothetical alloy configurations

that could be modeled reasonably accurately given a single reference BE calculation and a

trained ML model. However, only about 1,600 systems with θ = 1/9 were used for training

all models, and about 400 were included in validating all models. Upon investigating the

feature importance, we found that the ∆Z and NT variables were most important, while the

choice in the transmutation site was least important in the model training. This is apparent

because choices in ∆Z and NT that are higher in magnitude lead to more systems in the

dataset with low prediction accuracy. These findings suggest that ML models provide a

straightforward and practical remedy for first order APDFT predictions of BEs, and that

ML models can in principle achieve the same accuracy as DFT calculations. Future work will

still focus on developing schemes to more correct these errors more physically with higher

order terms as well as ensure that ML training sets are not underfit. This is expected to

allow more accurate predictions of catalysis through materials space.
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5.0 Second Order APDFT: Methods and Applications for Heterogeneous

Catalysis

Expansive searches of hypothetical catalysts based in Kohn-Sham density functional

theory (DFT) can become more feasible by extrapolating properties from existing data. Al-

chemical perturbation density functional theory (APDFT) is a physically-grounded approach

towards extrapolating catalyst properties via a Taylor expansion of alchemical energy deriva-

tives. Truncating the Taylor series to first derivatives (APDFT-1) has provided adequate

adsorbate binding energy predictions, but several shortcomings have been identified that

are correlated to characteristics of the catalyst system under scrutiny. Here, we assess sec-

ond derivatives in APDFT (APDFT-2) to make improved binding energy predictions using

a collection of reference DFT data obtained from VASP and CP2K. Hydrogen adsorption

was evaluated with APDFT-2 on hypothetical variations of Pt and TiO2 surfaces that are

formed by alchemical transmutations. Results are compared to DFT data by illustrating the

alchemical energy function over theoretical transmutation pathways that consist of states

with non-integer nuclear charges. We find that with CP2K, APDFT-2 is more feasible, and

more accurate than APDFT-1, by conducting finite differences of derivatives evaluated at

states with effective, non-integer nuclear charge perturbations.
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5.1 Introduction

The field of computational catalysis has made great efforts to produce efficient and

accurate screening methodologies that help identify stable and abundant materials that

exhibit promising activity. Quantum mechanics calculations (QM) typically provide the

foundation for these methods, with Kohn-Sham Density Functional Theory (DFT) schemes

that allow an adequate balance of accuracy and computational expense. A straight-forward

approach to screen materials is to use brute force, and evaluate the properties for all species

in a defined search space. However, while the expense of DFT is reliable for many systems

individually, this cost will certainly add up for large search spaces, and it simply would not

be feasible, or desirable, to search all of materials space in this way.[1]

Binding energy linear scaling relations[85] and Bronsted-Evans-Polanyi[86] relations were

a very useful discovery for catalyst design, where one could use linear relations between bind-

ing energies of similar adsorbates or the activation energy of a surface reaction versus its

reaction energy. Additionally, the d -band model that has become widely accepted to approx-

imate changes in adsorbate binding energy between shifts in catalyst d -band centers.[33] All

these methods have helped alleviate the conceptual effort to measure how an entire reaction

series may change with catalyst species. As this became an advantage, it also revealed yet

another challenge in catalyst design.
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Scaling relations create a limit to the catalyst activity, because this phenomenon causes

binding energies of all intermediates in a reaction to shift equally for different species of active

sites, and the activation energy barriers remain unchanged. This requires ways to circumvent

scaling relations, by tuning binding energies of intermediates independently of one another.

This can be done by alloying a surface with multiple species to create an environment where

intermediates favorably bind at respective sites, but the search space opens immensely with

countless combinations of atom species one could investigate given a single template of a

surface facet. Many alternative approaches have been developed to expedite the process of

evaluating reaction energies on alloy materials such as coordination number models,[11, 12,

13] cluster expansions,[87, 88, 89, 90, 91] and machine learning models.[92, 93, 94] However,

some of these approaches require a large number of initial DFT calculations to train and

validate models, and while there are strengths predicting properties interpolated within the

training space, extrapolating quantities is still an issue.

Gradient-supported approaches may have more potential to extrapolate properties along

farther lengths of materials space. Such approaches rely on derivatives of properties, such

as energy, respective to changes in an independent variable. Nuclear charge is a practical

variable in chemical/material search spaces, as a change in nuclear charge directly relates to

a compositional change in a compound. Quantum alchemy methods employ this relationship

between properties and nuclear change with perturbation theory, where a transmutation of

an atom is considered as a perturbation to the nuclear charge.

There are a handful of quantum alchemy methods that consider energy or electron density

derivatives with respect to varying nuclear charge. These include using a Taylor series

expansion of the energy,[39] where derivatives can be determined with finite differences of QM

energies,[95] derivatives being computed from conceptual density functional theory,[96, 97,

98, 99] density derivatives based in Alchemical Perturbation Density Functional Theory,[23]

and more recently, derivatives obtained via automatic differentiation.[100, 101] Quantum

alchemy methods should be considered separate from classical alchemy approaches, which are

thermodynamic integration schemes in molecular dynamics, where free energy differences are

obtained by smoothly varying force field parameters between two potential energy surfaces

which may result by removing/placing nuclear charge gradually at fractional increments.[25]
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von Lilienfeld, von Rudorff, and coworkers have disseminated a thorough understand-

ing of quantum alchemy methods for atoms and molecules.Recent work form this group

has covered atomic contributions in molecules,[55] deprotonation energies in small organic

molecules,[24] effects from basis set sizes on alchemical predictions,[102] alchemical chiral-

ity in chemical compound space,[103] and convergence of Taylor series expansions.[104] Our

group has adopted these techniques of using a Taylor series expansion of the energy into the

realm of materials screening with applications in catalysis,[26, 54, 83, 105] where we use the

APDFT formulation with density derivatives, as well as energy derivatives obtained from

finite differences of QM energies.[95]

In catalysis studies we identified that first-order APDFT extrapolations from VASP data

were quite promising on properties evaluated in thermodynamic cycles. In the thermody-

namic cycle scheme, the change in energy of a process, such as an adsorbate binding to a

surface, is evaluated by calculating the energy change from an alchemical transmutation in

both the reactant and product states. The resulting quantity is an energy difference between

two states, which induces error cancellations and allows accurate APDFT predictions.[83, 95]

Although the thermodynamic cycle scheme proved reliable in predicting catalyst properties,

there are still several notable shortcomings for certain systems. First, we observed that accu-

racy decreases when a site is transmuted near an adsorbate, which is especially problematic

in catalyst design, as we are usually more interested in the influence the species of the ac-

tive site has on adsorption. And although we found that APDFT was reliable for metallic

systems such as Pt, Pd, Ni, Pt/Pd-Ni skin alloys,[26] accuracy significantly decreases for

semiconductors like ZnO, SnO2, and TiO2.[54]

Before now, we had only identified that these correlations between APDFT accuracy

and the choices in reference/target systems existed, and we had demonstrated that these

correlations were strong enough to reliably train machine learning models.[105] However, we

have yet to identify the underlying reasons behind these correlations nor have we explored

applications of higher ordered APDFT approximations, which require accurate evaluations

of non-integer nuclear charge states with DFT. The aim of this work was to gain a deeper

understanding of first and second order APDFT applications in catalysis by investigating

alchemical potential energy functions for systems previously studied. By doing so, we could

47



accomplish two things: (1) assess ways to evaluate non-integer nuclear charge states, that

allow higher ordered APDFT predictions, with common DFT software packages, and (2)

visualize the alchemical energy functions that APDFT approximates. We hypothesized that

the alchemical potential energy surfaces for cases that exhibited reliable first-order APDFT

predictions would be linear functions, and for cases with low accuracy first-order APDFT

predictions, the alchemical curves would resemble parabolic or higher ordered polynomials

that second order APDFT may effectively treat. This work also serves as a guide for com-

putational materials scientists that wish to pursue APDFT screening studies with data from

popular planewave DFT codes.

5.2 Taylor Series Approximation with Alchemical Derivatives

In APDFT, the Hamiltionians (Ĥ) of the reference and target material are linearly

coupled through a mixing parameter, λ, as the following:

Ĥ(λ) = λĤT + (1− λ)ĤR (5.1)

where 0 ≤ λ ≤ 1 and describes the size of the perturbation. The desired quantity resulting

from this coupled Hamiltonian is the energy of the target system at λ = 1 (ET ), which can

be expanded in a Taylor series around the energy of the reference system at λ = 0:

ET =
∞∑
n=0

1

n!

∂nE(λ)

∂λn

∣∣∣∣
λ=0

= ER +
∞∑
n=1

1

n!

∂nE(λ)

∂λn

∣∣∣∣
λ=0

(5.2)

Here, the Taylor series approximates the curvature of the alchemical potential energy function

using local derivatives around a reference point on the curve. For a linear alchemical function,

a first-order Taylor series approximation that only includes one term in the sum in Equation

5.2 (APDFT-1) may sufficiently replicate the curve. However, the alchemical function may

likely be parabolic or a higher-ordered polynomial, and more terms will need to be included

in the sum to approximate the curvature of this function (APDFT-N).
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Assuming that the Taylor series converges, there will eventually be a limit to the number

of terms that achieve maximum accuracy of the approximation, as the magnitudes of higher-

ordered derivatives will become insignificant. von Rudorff identified the convergence radius

of the Taylor series expansion for dimers, recovering self-consistent energies of Hartree Fock

calculations.[104] Achieving accurate derivatives at higher orders has presented challenges

due to quantities in QM codes being evaluated at double precision (15 significant digits). The

Taylor series requires larger precision for higher orders due to the errors of the derivatives

becoming amplified as they are divided by the n! factor that grows quickly with subsequent

inclusion of terms. Due to this issue, we experienced gross over-estimates of quantities

when including third and fourth order terms, and thus this body of work only includes

approximations up to second order.

Next we will elaborate on how to calculate first and second derivatives for the Taylor’s

series from both VASP and CP2K calculations. The first derivative from Eqn. 5.2 above

can be evaluated via the Hellmann-Feynman theorem:[40]

∂E

∂λ

∣∣∣∣
λ=0

= ⟨ψR|ĤT − ĤR|ψR⟩ =
∫
Ω

dr(νT(r)− νR(r))ρ(r, λ) (5.3)

which include the external coulomb potentials νR and νT corresponding to reference and

target systems, respectively. This term is calculated differently between VASP and CP2K,

but the same general assumptions apply for evaluating systems with APDFT: (1) the atomic

coordinates remain fixed after all transmutations and (2) the transmutations are done in pairs

isoelectronically, where one atom experiences a +∆Z nuclear charge change, and the other

experiences a −∆Z change.

In other papers,[26, 83] we have covered extensively first alchemical derivatives from

VASP calculations and presented the formula:

∂E

∂λ

∣∣∣∣
λ=0

=
∑
I

µnI
∂NI

∂λ

∣∣∣∣
λ=0

=
∑
I

µnI∆ZI (5.4)

which results in a dot product between atom-centered electrostatic potentials (µnI) and the

integer nuclear charge difference over λ (∆ZI) at atom I.
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Unfortunately, there is currently not a straight-forward method to obtain atom-centered

electrostatic potentials in CP2K. However, we can conduct a procedure that follows the

Hellmann-Feynman Theorem, which states that the first derivative of energy with respect

to the parameter λ is equal to the difference between energies obtained by evaluating both

ĤT and ĤR with the reference wavefunction, ψR. ψR is easily obtainable by collecting

the restart files from a converged calculation that optimized the electronic structure of the

reference system. With this file, we can evaluate the energies from ĤT and ĤR by “restarting”

calculations for both systems, where each have the tag SCF GUESS set to RESTART and

the restart file is copied to the respective directories. Since we are only interested in the

energies that result from evaluating each Hamiltonian with ψR and aren’t intending to re-

optimize the electronic structure, the maximum number of self-consistent field iterations

(MAX SCF ) should be set to 1. Finally, the difference between both resulting energy values

equals the first derivative needed for APDFT-1.

To conduct second order APDFT approximations (APDFT-2), we evaluate second order

alchemical energy derivatives with central finite differences. By evaluating first order (N or-

der) derivatives along small displacements from a reference point on the alchemical potential

energy curve, we can use finite differences to compute second order (N +1 order) derivatives

with an approximation of the formal definition of a derivative:

∂f

∂λ
= lim

λ→0

f(λ+ h)− f(λ− h)

2h
≈ f(λ+ h)− f(λ− h)

2h
(5.5)

where h represents the width of the finite displacements from the reference point (λ = 0).

In order to obtain most accurate results, we used h = 0.01 for this work.

5.3 Modelling Non-integer Nuclear Charges

In order to perform APDFT-N predictions for periodic systems in VASP and CP2K,

energy values and first derivatives need to be evaluated at fictitious states that result from

fractional perturbations to the nuclear charge of atoms in a reference system. This section

serves as a tutorial on how to evaluate such types of systems in VASP and CP2K.
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5.3.1 VASP

For calculations in VASP, ficitious states are modelled using the virtual crystal approx-

imation method (VCA tag in INCAR file), where weights are assigned to two overlapping

atoms. The two overlapping atoms include an atom that already exists in the reference

calculation and a desired target atom that results from the transmutation. The sum of the

weights must equal 1, and the weight assigned to the target atom equals λ, the mixing pa-

rameter in the perturbation. For example, for λ = 0.1, 0.9 must be assigned to the reference

atom (90%) and 0.1 to the target atom (10%). These weights are used to scale values in

the POTCAR (pseudopotential) files supplied for each atom, which is an adaption of the

scheme from Bellaiche and Vanderbilt.[106] We must note that the VASP manual recom-

mends to use this method cautiously, as the radial cutoffs in the PAW potentials need to

be adjusted to accurately model the psuedo-plane waves of the virtual species. This issue

is further discussed later in this writing, regarding the influence of this method on APDFT

predictions.

5.3.2 CP2K

For CP2K calculations, we can model fictitious states by assigning a non-integer effective

nuclear charge using the CORE CORRECTION tag in the KIND section of the input file,

where the details on each atom are supplied. This approach isn’t straightforward, however,

because this tag will apply the core correction to every atom of the same kind in the structure.

An easy work around is to supply separate, distinct KIND sections for each transmuted atom.

This can be done by giving the atom a new symbol in the list of XYZ coordinates supplied

in the xyz file or COORD input section, with the requirement that the new symbol must

match the label for the new KIND section. For an example, if a reference system is a

surface model of fcc Pt (111) with one surface atom being transmuted, there should be a

regular KIND section for Pt and an additional KIND section for the transmuted Pt atom.

This section could be labelled, for example, “PtXX,” where XX represents the index of the

atom, and for the corresponding atom in the list of XYZ coordinates, the Pt label should

be replaced with PtXX. The core correction is equal to the size of the perturbation, or the
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mixing parameter λ, so for a perturbation of λ = 0.1, the core correction is set to 0.1, and

the resulting nuclear charge of the atom is Z +0.1, where Z is the original nuclear charge of

the atom. Finally, the main caveat of this method is that the basis set of the reference atom

must be supplied for the transmuted atom. We observed that the errors from doing this can

become increasingly apparent for larger core corrections and rely on the reference system

where the core correction is applied, however, these errors do also cancel in thermodynamic

cycles.[95]

5.4 Modelled Materials

In previous work, we studied APDFT applications predicting binding energies for carbide,

nitride, and oxide catalysts and identified shortcomings for predictions on semiconductors.[54]

We assessed APDFT BE predictions of hydrogen on surfaces of ZnO(100), SnO2(110), and

TiO2(110), where we considered unique combinations of sites that experienced isoelectronic

transmutations of |∆Z| = 1 nuclear charge differences. Among all predictions, the mean

absolute errors (MAE) for ZnO(100), SnO2(110), and TiO2(110) were 0.33, 0.82, and 0.96

eV, respectively, and we identified a qualitative trend where MAE is largest when the ref-

erence material has the most distinct band gap (TiO2). We then observed that by doping

Ti sites in TiO2 with Pt, the band gap decreased, and we obtained more accurate APDFT

BE predictions of H on surfaces where |∆Z| = 1 transmutations were made to the Pt sites.

For transmutations to Pt dopants in the second layer of TiO2 (Pt@2L), the MAE for H BE

predictions decreased to 0.45 eV, and for Pt dopants in the first layer (Pt@1L), the MAE

decreased further to 0.16 eV.In this report, we revisit APDFT predictions on these systems

to address multiple points: the functional forms of the alchemical potential energy curves

of adsorbate binding on semiconducting surfaces compared to metal surfaces, the changes

in accuracy for higher ordered APDFT predictions in VASP, and the overall prediction of

APDFT predictions on all these systems based on CP2K data.
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We modelled hydrogen adsorption on multiple slabs with DFT, using each as a refer-

ence system to create hypothetical materials via individual transmutations to surface and

subsurface sites. First, we modelled fcc Pt (111) with H adsorbed directly on top of a site,

which serves as a baseline for a metallic system that APDFT accurately treats.[83] Next we

modelled slabs of rutile TiO2 (110) in pristine form, and with 50% of Ti atoms in the unit

cell (three sites) replaced with Pt in the first layer (Pt@1L), and second layer (Pt@2L). H

adsorption on a bridging oxygen site was modelled for all three slabs. We created hypo-

thetical systems by making isoelectronic pairs of transmutations, where one transmutation

of ∆Z = ±1 occurs at one of several unique sites in the first or second layer of the surface,

and the other transmutation of ∆Z = ∓1 occurs at one site chosen arbitrarily in the bottom

layer. In the Pt slab, we chose five unique sites to transmute, with three in the first layer,

and two in the second layer In the pristine TiO2 slab, six unique sites were transmuted,

with three in the first layer (same chosen for Pt@1L), and three in the second layer (same for

Pt@2L). One of the three Pt dopants in the Pt@1L and Pt@2L TiO2 slabs was transmuted in

the respective layer. Alchemical potential energy curves were then evaluated with DFT to il-

lustrate energy pathways for the formation of each hypothetical system. Non-integer nuclear

charge states were evaluated at 0.1 spaced increments along the λ = 0 → λ = ±1 pathway

for each transmutation. Points at λ = ±0.01 were also evaluated to compute higher-ordered

derivatives with finite differences.

5.5 Computational Details

All calculations in VASP employed the PBE[65] exchange-correlation functional and

projector augmented wave (PAW) pseudopotentials.[41] A planewave kinetic energy cutoff

of 350 eV was used for the Pt slab models and 450 eV was used for TiO2 slab models

(including those with Pt dopants). For k-point sampling, Monkhorst-Pack grids of 8 ×8 ×1

and 4 × 4 × 1 were used for Pt and TiO2 slab models, respectively. Structural geometries

for all models were relaxed using iterative conjugate gradient minimization of forces between

atoms until the difference in energies between consecutive iterations was less than 1 meV.
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CP2K calculations [107] used a combined Gaussian and plane wave (GPW) formalism to

optimize electronic structure,[108] where we chose double-ζ plus polarization (DZVP) basis

sets optimized according to the Mol-Opt method.[109] We employed the pseudopotentials

by Goedecker-Teter-Hutter to describe the interactions between valence electrons and the

frozen atomic cores,[110] and the PBE[65] exchange-correlation functional was used again. A

plane wave expansion cutoff energy of 400 Ry for Pt slab models and 800 Ry for TiO2 slabs

were used, and a k-point sampling of 4 × 4 × 1 on Monkhorst-Pack grids was employed for

all systems. Geometries were relaxed using the iterative minimization algorithm of Broyden-

Fletcher-Goldfarb-Shanno (BFGS) until the forces converged to 4.5 ×10−4 Eh per bohr. All

energy cutoffs and k-point grid densities were determined through SCF energy convergence

tests.

In this work, the target property approximated with APDFT is the binding energy (BE)

of H on the hypothetical surfaces resulting from transmutations. The BE is evaluated with

BE = Esite + Eads − Eads-site, which requires the energy of the catalyst surface without the

adsorbate (Esite), the energy of the adsorbate not interacting with the catalyst (Eads), and

energy of the catalyst surface with the adsorbate bound (Eads-site). BE predictions with

APDFT rely on a thermodynamic cycle, which involves the energy of transmuting the same

site(s) in both the slab model with (ads-site) and without (site) the adsorbate. For more

details of APDFT employed in thermodynamic cycles, we refer the reader to our previous

work.[83]. Here, alchemical potential energy curves depict BE as a function of alchemical

changes, and will be referred as alchemical binding energy curves in the remainder of the

report.

54



5.6 Results and Discussion

5.6.1 Overall Performance of APDFT

First, we will address the overall performance of BE predictions with APDFT-1 and

APDFT-2 by analyzing the mean absolute error (MAE) among predictions on all hypotheti-

cal materials created by a reference system. Figure 17 shows the MAE for both APDFT-1 and

APDFT-2 predictions on all reference systems using VASP (top row) and CP2K data (bottom

row). MAE was evaluated separately for hypothetical systems resulting from ∆Z = −1 (left

column) and ∆Z = 1 (right column) transmutations, and data were partitioned by groups

of reference systems: TiO2-1L, Pt-TiO2-1L, TiO2-2L, Pt-TiO2-2L, and Pt-Slab. TiO2-1L

contains APDFT BE predictions on hypothetical materials formed from transmuting one of

the three Ti sites selected in the first layer of TiO2, and Pt-TiO2-1L contains predictions

on materials formed from transmuting Pt sites that replaced the original three Ti sites in

the same layer. For TiO2-2L and Pt-TiO2-2L, these sets contained data for the hypothet-

ical materials from transmutations of the three Ti sites and Pt sites in the second layer,

respectively.

First we discuss the results from VASP (Figure 17 a-b). For ∆Z = −1 (a), the MAE

(eV) for APDFT-1 (dark blue) predictions on each data set compare following: TiO2-2L

(1.34) > TiO2-1L (1.10) > Pt-TiO2-2L (0.41) > Pt-TiO2-1L (0.20) > Pt-Slab (0.08), and

APDFT-2 (orange) predictions follow: TiO2-2L (1.38) > TiO2-1L (1.16) > Pt-TiO2-2L (1.0)

> Pt-Slab (0.29) > Pt-TiO2-1L (0.18). For ∆Z = 1 (b), the MAE (eV) compare following:

TiO2-1L (1.09) > TiO2-2L (0.89) > Pt-TiO2-2L (0.58) > Pt-TiO2-1L (0.09) > Pt-Slab (0.07)

APDFT-2 predictions follow: TiO2-2L (1.82) > TiO2-1L (1.32) > Pt-TiO2-2L (0.83) > Pt-

Slab (0.30) > Pt-TiO2-1L (0.29). The first points to discuss is that though these data sets

are smaller, we do see similar trends to previous work,[54] where the largest MAE values

belong to pure TiO2 systems (TiO2-1L and TiO2-2L), then MAE decreases first for Pt-doped

TiO2 in the second layer (Pt-TiO2-2L) followed by further decreases for Pt-doped TiO2 in

the first layer (Pt-TiO2-1L). Furthermore, the Pt slab system, exhibits the most accurate

predictions.
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Figure 17: Plots showing mean absolute error (MAE) among APDFT-1 (dark blue) and

APDFT-2 (orange) predictions on all reference systems using VASP (top row) and CP2K

data (bottom row). MAE was evaluated separately for hypothetical systems resulting from

∆Z = −1 (left column) and ∆Z = 1 (right column) transmutations. Data was partitioned

by groups of reference systems that include transmutations of three Ti sites in the first layer

of TiO2 (TiO2-1L), three Pt sites in the same locations (Pt-TiO2-1L), three Ti sites in the

second layer (TiO2-2L), Pt sites in the same locations (Pt-TiO2-2L), and five sites Pt (Pt-

Slab).

Moving to APDFT-2 results on VASP data, we would normally expect a decrease in

MAE, as an additional term is included in the Taylor series to further approximate the

alchemical binding energy curve. However, we observe an increase in MAE in Figure 17 (a-
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b) for all data sets excluding Pt-TiO2-1L in (a). The largest MAE increase among ∆Z = −1

systems was +0.59 eV for Pt-TiO2-2L references and +0.93 eV for TiO2-2L references among

the ∆Z = 1 systems. The MAE decrease for transmutations of Pt-TiO2-1L in (a) was only

-0.02 eV.

We see a different patterns for APDFT predictions with CP2K data (Figure 17 c-d). For

∆Z = −1 (c), the MAE (eV) for APDFT-1 (dark blue) predictions on each data set compare

following: TiO2-2L (1.44) > TiO2-1L (1.25) > Pt-TiO2-2L (0.63) > Pt-TiO2-1L (0.19) > Pt-

Slab (0.07), and APDFT-2 (orange) predictions follow: TiO2-1L (0.55) = Pt-TiO2-1L (0.55)

> Pt-TiO2-2L (0.38) > TiO2-2L (0.13) > Pt-Slab (0.06). For ∆Z = 1 (d), the MAE (eV)

compare following: TiO2-1L (1.16) > TiO2-2L (0.79) > Pt-TiO2-2L (0.57) > Pt-TiO2-1L

(0.20) > Pt-Slab (0.09), and APDFT-2 predictions follow: TiO2-2L (0.75) > TiO2-1L (0.65)

> Pt-TiO2-2L (0.45) > Pt-TiO2-1L (0.29) > Pt-Slab (0.07). Again, we see similar trends

to our previous work,[54] but some APDFT-1 errors are higher from CP2K data than the

respective VASP data, such as the cases from pure TiO2 references in (c). Notably, there are

decreases in MAE for APDFT-2 predictions in all cases except Pt-TiO2-1L. The largest MAE

decrease among ∆Z = −1 systems was -1.32 eV for TiO2-2L references and -0.51 eV for TiO2-

1L references among the ∆Z = 1 systems. The MAE increase for ∆Z = ±1 transmutations

of Pt-TiO2-1L was +0.09 and +0.35 eV, respectively. We can further investigate the origin

of these errors by constructing the binding energy curves along the alchemical pathway and

comparing the resulting curve from the Taylor series approximation.
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5.6.2 Alchemical Binding Energy Curves

In this section, we discuss alchemical binding energy curves from VASP and CP2K data

for selected transmutations of each reference system (Figures 18 - 20). Alchemical curves

for every transmutation studied in this work can be found in the Appendix. Overall, we

see that APDFT-1 poorly replicates parabolic alchemical curves, and APDFT-2 remedies

some of these systems, as the second order derivatives help capture the parabolic curvature,

however APDFT-2 with VASP over-estimates the curvature for many cases.

Figure 18: Alchemical binding energy curves of H on selected transmuted variations of Pt

(111). The top row (a-d) depicts DFT data (blue circles) from VASP (a-b) and CP2K (c-d)

with functions resulting from APDFT-1 (orange) and APDFT-2 (green) approximations.

These curves depict BE along the pathway (λ) of ∆Z = ±1 transmutations to the H binding

site in the top layer (a,c) and a site in the second layer under the binding site (b,d). The

bottom row (e-h) depicts absolute errors between the APDFT predicted functions and DFT,

with horizontal lines (blue) drawn at zero to serve as a reference to guide the eye.

We first discuss Figure 18 to highlight the nature of alchemical binding energy curves

for metallic systems that APDFT-1 normally describes accurately. The top row of figure 18

depicts DFT data (blue circles) for H binding on a Pt surface from VASP (a-b) and CP2K (c-

d) with functions resulting from APDFT-1 (orange) and APDFT-2 (green) approximations.

These curves result from ∆Z = ±1 transmutations to the H binding site in the top layer
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(a,c) and a site in the second layer under the binding site (b,d). The horizontal axes label

the size of the perturbation with the mixing parameter (λ), where λ = ±1 marks a complete

perturbation that results in a nuclear charge difference of ∆Z = ±1. The bottom row (e-

h) depicts absolute errors between the APDFT predicted functions and DFT data, with

horizontal lines (blue) drawn at zero to serve as a reference to guide the eye.

For VASP (a-b), we see a distinct difference in the shape of the alchemical curve between

the two transmutation sites. The alchemical curve is a wide parabola with lower curvature

for the transmutation at the binding site, and at the site in the second layer, the alchemical

curve is nearly flat. The shapes of the curves for all other sites in Pt are similar to the latter,

where the curves are linear with a very low slope or flat. This helps explain why APDFT-1

predictions are typically less accurate for a transmutation near the adsorbate. Since it only

utilizes first derivatives, APDFT-1 approximates a sloped line, which will diverge from a

parabolic achemical curve that has increasing derivatives. Second order derivatives in the

Taylor series can accurately replicate the parabola, however, in Figure 18 (a), the resulting

APDFT-2 function is more steep. This means that the second order derivatives evaluated

with VASP data are too large, and we can link this to the MAE increase for APDFT-2

predictions for Pt systems in Figure 17 (a-b).

For the CP2K (c-d), we also see a parabolic function resulting from a transmutation

to the binding site and a flat line for the transmutation in the second layer. APDFT-1 is

also less accurate for the transmutation near the adsorbate as the linear function diverges,

however, the parabolic function from APDFT-2 matches the DFT data more closely. We

can again link these observations to the decreases in MAE for APDFT-2 predictions for Pt

systems in Figure 17 (c-d). Although these predictions are more accurate compared to VASP,

the absolute errors are greater for the λ = +1 target. This may be due to asymmetries of

the second derivatives in the negative and positive directions in λ.

Next we will discuss the alchemical binding energy curves for TiO2-based systems from

VASP data in Figure 19 with plots constructed the same as Figure 18. Figure 19 (a,c) contain

alchemical binding energy curves for transmutations to sites in the pure TiO2 reference

system, and (b,d) show transmutations to Pt sites in Pt-doped TiO2 reference systems.

Figure 19 (a) depicts the alchemical binding energy curve for ∆Z = ±1 transmutations to
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Figure 19: Alchemical binding energy curves of H on selected transmuted variations of TiO2-

based systems from VASP data. The top row (a-d) depicts DFT data (blue circles) with

functions resulting from APDFT-1 (orange) and APDFT-2 (green) approximations. These

curves depict BE along the pathway (λ) of ∆Z = ±1 transmutations to sites in the pure TiO2

reference system (a,c), and transmutations to Pt sites in Pt-doped TiO2 reference systems

(b,d). The bottom row (e-h) depicts absolute errors between the APDFT predicted functions

and DFT, with horizontal lines (blue) drawn at zero to serve as a reference to guide the eye.

a Ti site near the bridging oxygen site where H is bound, and (c) depicts the curve for

transmutations to a Ti site in the second layer. Figure 19 (b) and (d) show transmutations

to the Pt site located in the same position as the Ti site for the system in (a) and (c),

respectively.

We see that for pure TiO2, the alchemical binding curves exhibit the shape of a high

ordered polynomial, and similar to the case with Pt slabs, the linear approximations from

APDFT-1 diverge from the target values at λ = ±1. For parabolic approximations with

APDFT-2, the absolute errors are much lower for values near λ = 0, but near the target

values, the results depend on the site of the transmutation. For the transmutation near
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the adsorbate, the APDFT-2 errors are much lower than APDFT-1 at the target values at

λ = ±1, and for transmutations in the second layer, the APDFT-2 errors are comparable to

APDFT-1. The curves for the remaining sites (Appendix) show similar behavior to (c). This

suggests that for transmutations near the adsorption site, the second derivatives are lower

in magnitude, and APDFT-2 agrees more closely to the DFT. However, if extrapolated, the

function from APDFT-2 would likely diverge from the actual alchemical curve, as it increases

at a greater rate. Overall, these observations explain the increase in MAE for TiO2 systems

in Figure 17 (a-b).

Pt-doped TiO2 systems show different behavior based on the layer. Transmuting the

Pt dopant is in the top layer (b), the alchemical curve is flat and APDFT errors are very

low, comparable to pure Pt systems, and transmuting Pt in the second layer (d), the shape

of the curve and the accuracy of APDFT are more similar to TiO2 systems in (c). These

results highlight again the increases in MAE in Figure 17 (a-b) as well as the trends observed

in previous work,[54] where APDFT-1 errors were significantly more accurate for Pt-doped

TiO2 in the first layer than pure TiO2.

Figure 20 depicts alchemical binding energy curves from CP2K data for the same trans-

mutations sites in reference systems as Figure 19. Again, the alchemical curves for trans-

mutations of pure TiO2 (a,c) exhibit the shape of a high-order polynomial, and the linear

approximations from APDFT-1 diverge from the target values. For APDFT-2, the errors

decrease significantly compared to VASP, and the resulting parabolic functions are similar

between both transmutation locations. However, the errors are asymetric for the transmuta-

tion in the second layer, with the prediction for ∆Z = −1 more accurate than ∆Z = 1, and

extrapolating the resulting APDFT-2 functions in (a) and (c) would again lead to diverging

results from the actual alchemical curve.

We see different shapes of alchemical curves for Pt-doped TiO2 systems (b,d). For

transmutations to Pt dopant in the top layer (b), the curve closely resembles a shallow

cubic function, and the APDFT predictions are thus more accurate for λ > 1. The APDFT-

2 function also appears very linear because the second derivatives, evaluated at the inflection

point of the cubic function, are very low in magnitude. This explains why Pt-TiO2-1L for

∆Z = −1 transmutations is the only subset of data that sees an increase in MAE for
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Figure 20: Alchemical binding energy curves of H on selected transmuted variations of TiO2-

based systems from CP2K data. The top row (a-d) depicts DFT data (blue circles) with

functions resulting from APDFT-1 (orange) and APDFT-2 (green) approximations. These

curves depict BE along the pathway (λ) of ∆Z = ±1 transmutations to sites in the pure TiO2

reference system (a,c), and transmutations to Pt sites in Pt-doped TiO2 reference systems

(b,d). The bottom row (e-h) depicts absolute errors between the APDFT predicted functions

and DFT, with horizontal lines (blue) drawn at zero to serve as a reference to guide the eye.

APDFT-2 predictions in Figure 17 (c). For transmutations to the Pt dopant in the second

layer (d), the resulting functions are similar to the pure TiO2 cases, where APDFT-1 is

inaccurate for λ = ±1, and while APDFT-2 improves the accuracy, the parabolic function

likely diverges from the alchemical curve upon extrapolation.

Overall, we see that the curvature for alchemical binding energy curves varies based on

the system. For transmutations that are far from the adsoprtion site on a metal surface,

the derivatives of the alchemical function are very low, and APDFT-1 reliably treats these

systems. Transmuting the binding site in a metal leads to a more significant binding en-

ergy change, and the function matches a second order polynomial. APDFT-1 is unable to
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approximate this function accurately because the Taylor series relies on the first derivative

of the function near a local minimum, and since the magnitude of this derivative is so low,

the resulting APDFT-1 function has a lower slope and the function diverges from curve that

increases in slope. For the semiconducting system, we observed that most alchemical curves

were high-order polynomials, and by adding metal dopants, the derivatives of these curves

lessen. While APDFT-1 poorly approximates the high-order polynomials, and APDFT-2

provides higher quality treatments, with high accuracy for regions on the alchemical curve

near the reference energy. The performance of APDFT-2 in the regions near the target

energies varies based on the DFT code as the large magnitudes of second derivatives from

VASP over-predict the energies, while the magnitudes of derivatives from CP2K are more

reasonable and the errors are lower.

This shortcoming of VASP is likely due to the virtual crystal approximation approach

to modeling the non-integer nuclear charged states. To be fully compatible with the VCA

implementations the PAW pseudopotentials need to be reconstructed so that they are similar

between interpolating atoms.[106] We found that this method drastically breaks down for

atoms with large cores likes the transition metals (see Appendix). We constructed alchem-

ical curves for ∆Z = ±1, 2 isoelectronic transmutations of simple dimers containing atoms

with small cores (N2) and large cores (Pt2). For N2, the alchemical curves showed smooth

transitions for the two sizes of transmutation, but for Pt2, the curves did not align in the

region where identical non-integer nuclear charge states are being modelled with different

mixtures of psuedopotentials. Similar curves were constructed by applying core corrections

to N2 and Pt2 in CP2k, and both alchemical curves showed smooth transitions from both

transmutations.
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5.7 Conclusion

In summary, we have presented a guide and analysis of catalysis applications with

APDFT approximations up to second order. First we outlined two approaches to conduct

APDFT with quantities evaluated with VASP and CP2K and compared the results directly

for identical systems. VASP produces atom-centered electrostatic potentials (density deriva-

tives), that produce alchemical derivatives via a dot product of said values with nuclear

charge differences from transmutations. with CP2K, alchemical derivatives are evaluated

via Hellmann-Feynman Theorem, which requires a difference of two energy values evaluated

with the same wavefunction parameters from restart files. Second order derivatives were

obtained with central finite differences of first derivatives evaluated at small, non-integer

perturbations the reference state. The functions that result from the first (APDFT-1) and

second (APDFT-2) order Taylor series approximations were compared to alchemical curves

of the binding energy changes constructed with DFT-evaluated energies of non-integer nu-

clear charge states between reference and target values. Energies of non-integer states were

obtained with the virtual crystal approximation in VASP, which superimposes psuedopoten-

tials of atoms in the transmutation based on user-supplied weights, and with core corrections

in CP2K, which defines an effective nuclear point charge for an atom.

Overall, we identified that APDFT-1 poorly approximates alchemical binding energy

curves that exhibit shapes of second order, or higher, polynomials, and APDFT-1 accurately

describes linear alchemical binding energy curves. Transitioning to APDFT-2, approxima-

tions with VASP data saw further decrease in accuracy from APDFT-1, while accuracy

improved for most cases with CP2K data. APDFT-2 approximations with VASP over-

predicted the curvature of the alchemical functions due to large second order derivatives

computed from data at non-integer states that come from implementations of the virtual

crystal approximation that are unreliable for atoms with large cores. For future uses of

APDFT with periodic DFT calculations, we recommend CP2K as a more reliable code to

extrapolate catalyst properties with up to second order APDFT. The procedures outlined

here capably produce second order derivatives that allow reliable screening for a variety of

reference systems. Finally, this work also presents opportunities for further developments
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with periodic DFT software packages, such as developments for PAW potentials to be more

compatible with tools that evaluate small perturbations of systems like the VCA in VASP,

and optimizing codes to evaluate quantities at greater numerical precision, so that higher

orders of APDFT may be feasible.
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6.0 Conclusions

In summary, this dissertation presents promising possibilities for computational screen-

ing studies of heterogeneous catalysts with APDFT. APDFT approximates energy values

through alchemical energy derivatives in a Taylor series truncated up to a number of terms,

and APDFT offers the advantage of producing many hypothetical catalyst descriptors from

a limited number of calculations for one reference catalyst system. In Chapters 2 and 3

we outlined two examples of first order APDFT reliably predicting catalyst descriptors like

adsorbate BE and reaction energy barriers for numerous hypothetical states. For BE pre-

dictions of H and OH on TiC, TiN, and TiO, we observed accuracy within 0.33 eV, which

is comparable to similar predictions for transition metal catalysts. Conversely, first order

APDFT poorly approximated these quantities with semiconducting TiO2, but by replac-

ing sites with Pt dopants, adding states at the Fermi level, the accuracy improves. We then

found that BE predictions along a reaction pathway of CH4 dehydrogenation on Pt, provided

by a set of NEB images, could additionally provide accurate energy barrier measurements,

within 0.3 eV, for 32 variations of the reference images.

Chapter 4 showed that there are even advantages coupling machine learning with APDFT.

By training support vector regression models on a large data set of APDFT-predicted BEs

for different classes of adsorbates, we could correct the original errors, leading to more ac-

curate BE predictions with ML that requires less training data than using pure DFT-based

training sets. This procedure presented a route to obtain thousands of additional BE pre-

dictions on materials formed from multiple and/or larger transmutations, and we learned

how these types of transmutations influence APDFT errors. Finally, we scrutinized second

order APDFT approximations in Chapter 5, and illustrated how both first and second order

APDFT predictions agree with DFT by constructing alchemical curves that depict the en-

ergy as a function of the transmutation pathway. Systems that are typically described well

with first order APDFT reveal linear alchemical energy functions, and systems not accurately

described reveal functions that are high order polynomials. While second order APDFT in-

cludes a higher quality description of the curvature, accurate second derivatives could not be
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obtained with current implementations of VASP. However, DFT results from CP2K, which

allow core corrections to atomic nuclear charges, offered sufficient second derivatives, and

second order APDFT predictions improved in accuracy.

6.1 Future Work

Our findings suggest many routes for future development and applications of APDFT.

First, there are ambitious developments for future versions of DFT software that could elevate

APDFT. In VASP, there are limitations to the kinds of species that can be evaluated reliably

with the virtual crystal approximation. This could potentially be addressed by adjusting

psuedopotentials so that linear combinations of two potentials are more compatible for large

core elements, such as transition metals in later rows of the d-block. Furthermore, it is evident

that alchemical binding energy curves can exist as higher order polynomials. APDFT-2 is

currently not sufficient at replicating the curvature of these functions in regions far from the

reference state (λ = 0), and for further extrapolations, approximations will likely diverge

as parabolic approximations continuously increase. An obvious next step is to incorporate

further approximations with APDFT-3, and APDFT-4, which include third and fourth order

derivatives that are obtainable from finite differences of additional states evaluated at small

values of λ. However, these quantities must be evaluated at higher numerical precision so

that rounding errors aren’t accentuated with the increasing n!−1 term. By implementing

arbitrary precision in future versions of DFT software packages, achieving higher ordered

APDFT approximations becomes more feasible and opens opportunities to better treat more

complicated alchemical pathways.

Another interesting approach to assess would be piece-wise APDFT approximations. It

may be possible to achieve higher quality alchemical functions that reach further points in

materials space by evaluating derivatives at higher λ values. For example, derivatives at

λ = ±0.5 states should provide more accurate descriptions of the curvature in the regions

at λ = ±1 and beyond. This approach could be especially useful for cases like TiO2, where

derivatives quickly deviate from parabolic behavior in regions closer to λ = ±1.
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While many of these approaches call for further DFT calculations, these requirements be-

come less concerning for high-throughput screening applications of APDFT. So far, we have

only applied APDFT-2 to single transmutations to sites in catalyst surfaces that undergo

∆Z = ±1 nuclear charge changes. An open question still exists regarding the limits of target

systems that can be evaluated with second order APDFT, ie. forming hypothetical materials

with multiple and/or larger transmutations. We can simultaneously study the performance

of APDFT-2 on these systems and observe how the alchemical curves vary. Going forward,

with the ability to replicate alchemical curves for systems resulting from multiple transmuta-

tions at variable ∆Z, the cost of additional DFT calculations required for increasing orders

of APDFT quickly becomes insignificant. For one site, five states must be evaluated along λ

to make APDFT-4 approximations with finite differences. Thus, 5N DFT calculations are

required to evaluate any combination of transmutations to N sites in a catalyst slab model.

For a slab with 8 atoms, 40 initial DFT calculations are required, but the number of ways

to combine 1, 2, 3, or 4 simultaneous transmutations results in 162 systems that APDFT-4

can evaluate instantly. This only considers a fixed magnitude of ∆Z for each transmutation,

and thus the number of combinations could continue to increase with this variable.

This offers much promise for ambitions screening studies of hypothetical catalysts across

materials space. With higher orders of APDFT, the search space extends with countless com-

binations of materials configurations, and we can simultaneously measure multiple descrip-

tors that measure catalyst activity and stability. Our work shows that we can use APDFT

to measure energies of reaction intermediates bound to surfaces and subsequently construct

an entire reaction energy profile. This can be extended to multiple pathways, allowing us to

evaluate entire reaction networks for thousands of candidates. Additionally, quantities such

as surface energies and adsorbate-induced segregation energies are currently untouched by

these schemes. These metrics are crucial for knowing stable surface states under operating

conditions, as they are used to construct high-quality phase diagrams. However, a single

phase diagram requires surface energies for numerous configurations. APDFT may leverage

the effort to construct supplemental phase diagrams of thousands of hypothetical surfaces

that stem from a single reference material. Overall, the findings in this dissertation serve

as a collection of approaches with APDFT that give future researchers opportunities to im-

68



prove or develop schemes that enhance the capabilities of APDFT or simultaneously screen

properties listed here using large, existing data sets to explore vast reaches of hypothetical

materials space.
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Appendix A Supporting Information for Machine Learning Corrected APDFT

A.1 Numbers of Systems Evaluated

In this section, we explain how many unique binding energies (BEs) were calculated. We

considered twelve adsorbates in total (CHx, NHx, with x = 0 − 3, OHx, with x = 0 − 2,

and OOH) and modelled multiple adsorbate coverages (θ = 1, 1/4, 1/9) using 1×1, 2×2, and

3×3 surface slab dimensions. Hypothetical alloys were formed from each slab by making

1-4 numbers of transmutations (NT) with nuclear charge change of ∆Z = −3,−2,−1, 1, 2, 3

(six possibilities). For the 1×1 and 2×2 slabs, the total number of hypothetical alloys

we made was equal to the number of ways you can choose NT changes of ∆Z from all

sites in the top two layers (two and eight, for 1×1 and 2×2 respectively). For 1×1, we

could only do NT = 1 or 2 transmutations, with six possible choices in ∆Z, and twelve

adsorbates. The total number of systems evaluated was 6 · 12 · (
(
2
1

)
+
(
2
2

)
) = 216, where the

binomial notation is used for showing the resulting combinations of NT transmuted atom in

the two atomic sites in the top two layers. For the 2×2 slab, the total number of systems

was 6 · 12 · (
(
8
1

)
+

(
8
2

)
+

(
8
3

)
+

(
8
4

)
) = 11, 664. For the 3×3 slab, we could not evaluate

all possible systems because this would require as many as 291,384 DFT calculations for

benchmarking. Instead, we chose approximately 2,000 systems at random. These details are

outlined explicitly in Table 2 below, where we list the number of systems evaluated in each

adsorbate class broken down by the adsorbate coverage and the data set partitions. In the

model construction phase, we split each data set into 80% belonging to the training set and

20% belong to the test set.
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Table 2: Detailed breakdown of the number of systems evaluated for each adsorbate class

with respect to the adsorbate coverage and partition of the data sets (total, train, or test).

We also include the overall sum of the data set partitions per group of adsorbates (ads.) and

per coverage (θ)

Data Set Partition θ = 1 θ = 1/4 θ = 1/9 Overall (ads.)

CHx Total 72 3888 584 4544

Train 55 3109 471 3635

Test 17 779 113 909

NHx Total 72 3888 622 4582

Train 58 3114 493 3665

Test 14 774 129 917

OHx Total 72 3888 797 4757

Train 60 3109 636 3805

Test 12 779 161 952

Overall (cov.) Train 173 9332 1600

Test 43 2332 403

Total 216 11664 2003

A.2 Feature Vector Construction

We represented the dopant location in the alloys by considering a feature vector with

length equal to the number of atoms in each surface layers of our slab models, and each

element of the vector represents an atomic site. This presents a problem where the length

of the vector varies depending on the size of the surface unit cell used to model varying

adsorbate coverage. We remediated this by normalizing the vector, making its length equal

to the number of atoms in a layer of the largest unit cell included in the dataset. This is

illustrated in Figure 21, where we show top views of the first and second layers of three

varying sized unit cells of Pt with Au dopants. Since a 3x3 unit cell of fcc Pt(111) was the
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largest unit cell included, and we considered all atoms in the top two layers, the length of

the feature vector 18 elements. Additionally, the positions of each atom in the vector are set

according to their positions in the 3x3 unit cell. In Figure 21, the atoms in the first layer

are indexed from 0 to 8, following the atom ordering from the unit cell origin at the bottom

left to the top right. Since atoms indexed 0, 4, and 8 are Au dopants, we encode the vector

with 1’s at these positions. If we follow this constraint when encoding changes to the first

layer of a 2x2 unit cell, we would only allow the elements whose positions match those in

the 3x3 unit cell to be changed to 1’s, and the remaining elements would be a 0. According

to Figure 21, we are only able to encode atoms indexed by 0, 1, 3, 4, 9, 10, 12, and 13 in

a 2x2 unit cell. Since atoms 0 and 4 are Au, those two positions are encoded as 1’s. The

padded zeroes, for positions that can’t be encoded for a 2x2 unit cell, are colored in red. For

a 1x1 unit cell, only atoms indexed by 0 and 9 can be encoded, and atom 0 is an Au dopant,

so the zeroth position of the vector is changed to 1. The remaining positions that can’t be

changed are the padded zeroes colored in red. A second group of examples are illustrated in

Figure 22 that include Ir dopants arranged in various configurations in Pt slab models with

adsorbates.

Figure 21: Fingerprinting scheme to construct feature vectors that describe dopant locations.
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Figure 22: Fingerprinting scheme that describes dopant locations in Pt slab models with

adsorbates.

For features like type of adsorbate, coverage, and resulting atom, we add an element to

our vector for each possibility in those groups. For example, we add three elements that

represent possibilities of θ, and the first, second, and third pertain to coverages of 1/9, 1/4,

and 1, respectively. If our input alloy is a 3x3 unit cell, the first element would equal 1 and

the second and third would be zero.

A.3 Model Validation

Our models were validated with a test set partitioned from the entire dataset. A test set

is necessary because if you make predictions on data using a model that was trained with

the same data, the conclusions are trivial. Typically, the data is split at a ratio where a ma-

jority of the data is used to train our model, and with the amount of remaining test data, a
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reasonable number of predictions are made to validate the model’s performance. This tactic

is useful when addressing overfitting, a common problem that is encountered when trying to

make reliable and transferable machine learning models. A model is overfit when the fit is

optimized so close to the training data that the performance is poor when making predic-

tions from new data. Overfitting can be avoided with resampling techniques that employ the

train-test split approach like k -fold cross validation (CV). In k -fold CV, the training set is

split into k numbers of smaller datasets. For k iterations, a model is trained using k−1 folds

of training data from the k -fold split dataset, and the resulting model is validated on the

remaining fold using the mean absolute error (MAE). For our model selection, we performed

10-fold CV on each, and the average MAE of all k iterations measured the performance of

the model.
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A.4 NHx Parity Plots

Figure 23: Parity plot of the BE change (∆BE) of NHx adsorbates on alloys of transmuted

Pt predicted with APDFT (a) and ML-corrected APDFT (b) compared to DFT. ∆BE are

in units of eV. The MAE decreases from 0.65 (a) to 0.07 eV (b) upon ML-correction.
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A.5 OHx and OOH Parity Plots

Figure 24: Parity plot of the BE change (∆BE) of OHx adsorbates on alloys of transmuted

Pt predicted with APDFT (a) and ML-corrected APDFT (b) compared to DFT. ∆BE are

in units of eV. The MAE decreases from 0.39 (a) to 0.06 eV (b) upon ML-correction.
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A.6 Error Analysis by Alloy Type

Figure 7 in the main text provides a breakdown of errors across the full training set,

where we specify the percentage of data and reduction of errors with respect to ∆Z and NT.

The merits represented in that figure are tabulated below:

Table 3: Distribution of the types of hypothetical alloys found in the test data set and how

well ML improves APDFT predictions for those types of alloys.

∆Z NT % of Test Data Set ∆ MAE (eV)

1 1 3.1 0.00

1 2 7.3 0.07

1 3 9.8 0.16

1 4 12.9 0.25

2 1 3.7 0.13

2 2 7.1 0.37

2 3 10.5 0.58

2 4 12.5 0.76

3 1 2.5 0.12

3 2 7.3 0.59

3 3 10.7 0.87

3 4 12.9 1.23
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Appendix B Supporting Information for Second Order APDFT Studies

Figure 25: Alchemical binding energy curves of H on all transmuted variations of Pt (111)

(VASP)
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Figure 26: Alchemical binding energy curves of H on all transmuted variations of TiO2

(VASP)
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Figure 27: Alchemical binding energy curves of H on all transmuted variations of (Pt@1L)-

TiO2 (VASP)
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Figure 28: Alchemical binding energy curves of H on all transmuted variations of (Pt@2L)-

TiO2 (VASP)
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Figure 29: Alchemical binding energy curves of H on all transmuted variations of Pt (111)

(CP2K)
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Figure 30: Alchemical binding energy curves of H on all transmuted variations of TiO2

(CP2K)
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Figure 31: Alchemical binding energy curves of H on all transmuted variations of (Pt@1L)-

TiO2 (CP2K)
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Figure 32: Alchemical binding energy curves of H on all transmuted variations of (Pt@2L)-

TiO2 (CP2K)
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Figure 33: Alchemical energy curves of ∆Z = ±1, 2 transmutations to N2 and Pt2 dimers

with VASP and CP2K data.
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[63] Y. Abghoui and E. Skúlason, “Hydrogen Evolution Reaction Catalyzed by Transition-
Metal Nitrides,” The Journal of Physical Chemistry C, vol. 121, no. 43, pp. 24036–
24045, 2017.

[64] B. M. Pabon, J. I. Beltran, G. Sanchez-Santolino, I. Palacio, J. Lopez-Sanchez,
J. Rubio-Zuazo, J. M. Rojo, P. Ferrer, A. Mascaraque, M. C. Munoz, M. Varela,
G. R. Castro, and O. Rodriguez de la Fuente, “Formation of titanium monoxide (001)
single-crystalline thin film induced by ion bombardment of titanium dioxide (110),”
Nat. Commun., vol. 6, p. 6147, 2015.

[65] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation
Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996.

[66] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, “Real-space grid implementation
of the projector augmented wave method,” Phys. Rev. B, vol. 71, no. 3, p. 35109,
2005.

[67] R. Zhang, L. Song, and Y. Wang, “Insight into the adsorption and dissociation of CH4
on Pt(hkl) surfaces: A theoretical study,” Applied Surface Science, vol. 258, no. 18,
pp. 7154–7160, 2012.

[68] Y. Liu, T. Zhao, W. Ju, and S. Shi, “Materials discovery and design using machine
learning,” J Materiomics, vol. 3, no. 3, pp. 159–177, 2017.

[69] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The rise of deep
learning in drug discovery,” Drug Discov Today, vol. 23, no. 6, pp. 1241–1250, 2018.

[70] O. A. von Lilienfeld, “Quantum Machine Learning in Chemical Compound Space,”
Angew Chem Int Ed, vol. 57, no. 16, pp. 4164–4169, 2018.

[71] J. G. Freeze, H. R. Kelly, and V. S. Batista, “Search for Catalysts by Inverse De-
sign: Artificial Intelligence, Mountain Climbers, and Alchemists,” Chem Rev, vol. 119,
no. 11, pp. 6595–6612, 2019.

[72] J. Schmidt, M. R. G. Marques, S. Botti, and M. A. L. Marques, “Recent advances
and applications of machine learning in solid-state materials science,” Comput Mater,
vol. 5, no. 1, 2019.

93



[73] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko,
K. R. Müller, and O. A. von Lilienfeld, “Machine learning of molecular electronic
properties in chemical compound space,” New J Phys, vol. 15, no. 9, 2013.

[74] M. Rupp, R. Ramakrishnan, and O. A. von Lilienfeld, “Machine Learning for Quan-
tum Mechanical Properties of Atoms in Molecules,” J Phys Chem Lett, vol. 6, no. 16,
pp. 3309–3313, 2015.

[75] F. Brockherde, L. Vogt, L. Li, M. E. Tuckerman, K. Burke, and K. R. Muller, “By-
passing the Kohn-Sham equations with machine learning,” Nat Commun, vol. 8, no. 1,
p. 872, 2017.

[76] F. A. Faber, A. Lindmaa, O. A. von Lilienfeld, and R. Armiento, “Machine Learn-
ing Energies of 2 Million Elpasolite (ABC$ {2}$D$ {6}$) Crystals,” Phys Rev Lett,
vol. 117, no. 13, p. 135502, 2016.

[77] J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: an extensible neural network
potential with DFT accuracy at force field computational cost,” Chem Sci, vol. 8,
no. 4, pp. 3192–3203, 2017.

[78] S. Hashemifar, B. Neyshabur, A. A. Khan, and J. Xu, “Predicting protein-protein
interactions through sequence-based deep learning,” Bioinformatics, vol. 34, no. 17,
pp. i802–i810, 2018.

[79] B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang,
A. Choudhary, and C. Wolverton, “Combinatorial screening for new materials in un-
constrained composition space with machine learning,” Phys Rev B, vol. 89, no. 9,
2014.

[80] J. R. Kitchin, “Machine learning in catalysis,” Nat Catal, vol. 1, no. 4, pp. 230–232,
2018.

[81] R. Jinnouchi and R. Asahi, “Predicting Catalytic Activity of Nanoparticles by a DFT-
Aided Machine-Learning Algorithm,” J Phys Chem Lett, vol. 8, no. 17, pp. 4279–4283,
2017.

[82] B. Meyer, B. Sawatlon, S. Heinen, O. A. von Lilienfeld, and C. Corminboeuf, “Machine
learning meets volcano plots: computational discovery of cross-coupling catalysts,”
Chem Sci, vol. 9, no. 35, pp. 7069–7077, 2018.

94



[83] C. D. Griego, J. R. Kitchin, and J. A. Keith, “Acceleration of catalyst discovery
with easy, fast, and reproducible computational alchemy,” International Journal of
Quantum Chemistry, vol. 121, no. 1, p. e26380, 2021.

[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in
{P}ython,” J Mach Learn Res, vol. 12, pp. 2825–2830, 2011.

[85] F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. R. Munter, P. G. Moses,
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