
Structured Strategies for Learning and Exploration in

Sequential Decision Making

by

Yijia Wang

B.S. in Logistics Engineering, Tianjin University, 2013

M.S. in Management Science, Tianjin University, 2016

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Yijia Wang

It was defended on

April 5, 2022

and approved by

Daniel Jiang, Ph.D, Assistant Professor, Department of Industrial Engineering

Lisa Maillart, Ph.D, Professor, Department of Industrial Engineering

Jayant Rajgopal, Ph.D, Professor, Department of Industrial Engineering

Matthias Poloczek, Ph.D, Principal Scientist, Amazon

Jeffrey Kharoufeh, Ph.D, Professor, Department of Industrial Engineering, Clemson

University

Dissertation Director: Daniel Jiang, Ph.D, Assistant Professor, Department of Industrial

Engineering

ii

Copyright © by Yijia Wang

2022

iii

Structured Strategies for Learning and Exploration in Sequential Decision

Making

Yijia Wang, PhD

University of Pittsburgh, 2022

Solving Markov decision processes (MDPs) efficiently is challenging in many cases, for

example, when the state space or action space is large, when the reward function is sparse and

delayed, and when there is a distribution of MDPs. Structures in the policy, value function,

reward function, or the state space can be useful in accelerating the learning process. In this

thesis, we exploit structures in MDPs to solve them effectively and efficiently. First, we study

problems with concave value function and basestock policy, and leverage these two structures

to propose an approximate dynamic programming (ADP) algorithm. Next, we study the

exploration problem in unknown MDPs, introduce structured intrinsic reward to the problem,

and propose a Bayes-optimal algorithm for learning the intrinsic reward. Finally, we move to

problems with structured state space (slow and fast state), build a hierarchical model which

exploits the structure, and propose ADP algorithms for the hierarchical model.

Keywords: Markov decision processes; Approximate dynamic programming; Reinforce-

ment learning.

iv

Table of Contents

1.0 Introduction . 1

1.1 Structured Actor-Critic for Managing Public Health Points-of-Dispensing . 2

1.2 Subgoal-based Exploration via Bayesian Optimization 2

1.3 Frozen-State Approximate Value Iteration for Fast-Slow Markov Decision

Processes . 3

2.0 Structured Actor-Critic for Managing Public Health PODs 5

2.1 Literature Review . 9

2.2 Model Formulation . 11

2.2.1 The Dispensing MDP . 12

2.2.2 The Inventory Control MDP . 14

2.3 Structural Properties . 17

2.4 The Structured Actor-Critic Method . 19

2.4.1 Overview of the Main Idea . 19

2.4.2 Algorithm Description . 20

2.4.3 Convergence Analysis . 25

2.5 Numerical Experiments . 28

2.5.1 Benchmark Instances and Parameters 30

2.5.2 Optimality Gap of Approximate Policies 32

2.5.3 Convergence of Implied Basestock Thresholds 34

2.5.4 Sensitivity Analysis . 35

2.6 Case Study: Naloxone for First Responders in Pennsylvania 36

2.6.1 Description of Naloxone for First Responders in Pennsylvania . . . 37

2.6.2 Performance of the Algorithm . 39

2.6.2.1 Convergence and Comparison with Heuristics 40

2.6.2.2 Utilities of Different First Responders 42

2.6.2.3 Ordering Cost Sensitivity Analysis 44

v

2.6.3 Extensions . 44

2.7 Conclusions . 45

3.0 Subgoal-based Exploration via Bayesian Optimization 46

3.0.1 Our Contributions . 48

3.1 Related Work . 49

3.1.1 Bayesian Optimization . 49

3.1.2 Exploration in Reinforcement Learning 50

3.1.3 Options in Reinforcement Learning 50

3.1.4 Intrinsic Reward and Reward Design 51

3.1.5 Multi-task RL and Transfer Learning 51

3.2 Problem Formulation . 52

3.2.1 Original MDPsMξ with Sparse Rewards 52

3.2.2 Dynamic Subgoal Exploration Strategies 53

3.2.3 Subgoal-Augmented MDPsMξ,θ 55

3.2.4 Optimizing the Exploration Strategy 57

3.2.5 Iterative Training and Additional Cost-Reduction Levers 58

3.3 Bayesian Optimization for Cost-Efficient Exploration 60

3.3.1 Surrogate Model . 60

3.3.2 Acquisition Function . 61

3.3.3 Theoretical Analysis . 63

3.4 Numerical Experiments . 64

3.4.1 Baseline Algorithms . 65

3.4.2 Windy Gridworlds with Walls . 68

3.4.2.1 Recommendation Paths for GW10 69

3.4.3 Larger, Three-Room Windy Gridworlds 69

3.4.3.1 Recommendation Paths for GW20 70

3.4.4 Treasure-in-Room . 70

3.4.4.1 Recommendation Paths for TR 71

3.4.5 The Mountain Car Problem (MC) 72

3.4.5.1 Recommendation Paths for MC 72

vi

3.4.6 Key-Door with Highly Varying Key Locations (KEY2 and KEY3) 72

3.4.6.1 Recommendation Paths for KEY2/KEY3 73

3.4.7 Takeaways from Baseline Comparisons in Figure 18 74

3.4.8 How Much Does a Dynamic Subgoal Exploration Strategy Help RL? 76

3.5 Conclusion and Future Work . 76

4.0 Frozen-State Approximate Value Iteration for Fast-Slow Markov Deci-

sion Processes . 79

4.0.1 Main Contributions . 80

4.1 Related Work . 82

4.2 Fast-Slow MDPs with Exogenous Slow States 84

4.2.1 Base Model . 84

4.2.2 Hierarchical Reformulation using Fixed-Horizon Policies 86

4.3 The Frozen-State Approximation . 88

4.3.1 The Lower-Level MDP (Frozen Slow States) 89

4.3.2 The Upper-Level MDP (True State Dynamics) 90

4.3.3 Frozen-State Value Iteration . 92

4.3.4 Exact and Frozen-State (Lower-Level) Bellman Operators 92

4.3.5 Analyzing the Regret of Frozen-State Policy 94

4.3.6 Discussion of the Choice of T . 97

4.3.7 Nominal-State Approximation . 100

4.4 The Case of Endogenous Slow States . 105

4.5 Approximate Value Iteration for Nominal State Approximation 107

4.5.1 The Algorithm . 108

4.5.2 Convergence of the Lower Level 111

4.5.3 Convergence of the Upper Level 111

4.6 Numerical Experiment . 113

4.6.1 Machine Maintenance . 114

4.6.2 Dynamic Service Allocation for a Multi-class Queuing Model . . . 117

4.6.3 Energy Demand Response . 121

4.6.4 Multi-product Joint Procurement and Pricing 124

vii

4.6.5 Discussion . 127

4.7 Conclusions . 127

5.0 Conclusions and Future Work . 128

Appendix A. 130

A.1 Proofs for Chapter 2 . 130

A.1.1 Proof of Proposition 2.3.1 . 130

A.1.2 Proof of Proposition 2.3.2 . 130

A.1.3 Proof of Lemma 2.4.1 . 131

A.1.4 Proof of Theorem 2.4.1 . 137

A.2 Actor-Critic Method . 138

A.3 A Practical, Aggregation-based Version of S-AC 139

A.3.1 Algorithm for the Aggregate Problem 141

Appendix B. 144

B.1 Proofs for Chapter 3 . 144

B.1.1 Proof of Theorem 3.3.1 . 144

B.1.2 Proof of Theorem 3.3.2 . 149

Appendix C. 150

C.1 Proofs for Chapter 4 . 150

C.1.1 Additional Lemmas . 150

C.1.2 Proof of Proposition 4.2.1 . 150

C.1.3 Proof of Lemma 4.3.1 . 151

C.1.4 Proof of Lemma 4.3.2 . 152

C.1.5 Proof of Proposition 4.3.1 . 153

C.1.5.1 The Case that γLf ≥ 1 155

C.2 Proof of Proposition 4.3.2 . 158

C.2.0.1 Additional Lemmas . 158

C.2.0.2 Proof of Proposition 4.3.2 159

C.2.1 Proof for Section 4.3.6 . 160

C.2.1.1 Additional Lemmas . 160

C.2.1.2 Proof of Propositions 4.3.3 and 4.3.4 163

viii

C.2.1.3 Proof of Corollary 4.3.1 163

C.2.2 Proof of Lemma 4.3.3 . 164

C.2.3 Proof of Proposition 4.3.5 . 165

C.2.4 Proof of Theorem 4.4.1 . 166

C.2.4.1 Additional Lemmas . 167

C.2.4.2 Sketch of the Proof of Theorem 4.4.1 168

C.2.5 Proof for Section 4.5 . 169

C.2.5.1 Proof of Lemma 4.5.1 169

C.2.5.2 Proof of Lemma 4.5.2 169

C.2.5.3 Proof of Lemma 4.5.3 170

C.2.5.4 Proof of Lemma 4.5.4 171

C.2.5.5 Proof of Lemma 4.5.5 171

C.2.5.6 Proof of Lemma 4.5.6 172

Bibliography . 173

ix

List of Tables

1 Performance (% optimality) at iterations 500 and 1000. 30

2 Performance (% optimality) after 5 and 10 seconds of CPU time. 31

3 Impact of parameters on ADP algorithms for the Rmax = 50, |W| = 9 instance. 36

4 Parameters used in the NFRP case study. 37

5 Simulated value of the policies on instances with different ordering costs (value

in 10 million). 44

6 Performance ratios as a function of interactions in the test environment. . . . 77

x

List of Figures

1 Sequence of events. 12

2 An illustration of how value and policy functions interact under the S-AC

algorithm. 19

3 An illustration of the sequence of updates used in the S-AC algorithm. 22

4 Comparison of ADP algorithms with respect to iteration number. 32

5 Comparison of ADP algorithms with respect to CPU time. 33

6 Convergence of replenish-up-to thresholds at t = 0 for the Rmax = 60, |W| = 9

instance. 34

7 Convergence of replenish-up-to thresholds at t = 0 for the Rmax = 60, |W| = 12

instance. 34

8 Convergence of replenish-up-to thresholds at t = 0 for the Rmax = 60, |W| = 15

instance. 35

9 The hierarchical system structure used in the case study. 38

10 Total overdose incidents of the five PODs and k-means visualization. 39

11 Convergence curve of S-AC and AC compared to performance of heuristics. . 40

12 The relationship between total cost and total utility for each method. 40

13 Historical overdose incidents learned by S-AC+DPR. 42

14 Comparison of the cumulative utilities for each method. 43

15 Example of a dynamic subgoal exploration strategy. 47

16 Outline of the BESD algorithm. 48

17 An example that visualizes an environment and a random dynamic subgoal ex-

ploration strategy along with the rewards of the associated subgoal-augmented

MDP. 57

18 Performance as a function of the total training costs. 66

19 Recommendation paths for GW10 and GW20. 68

20 Recommendation paths for TR and MC. 71

xi

21 Recommendation paths for KEY2 and KEY3. 73

22 Illustration of the base model versus the frozen-state approximation 88

23 The choice of T . 98

24 Sensitivity analysis for the choice of T . 99

25 Transition matrices in different system conditions 114

26 Performance of VI for the maintenance problem 114

27 Policy for the maintenance problem: Base VI 115

28 Policy for the maintenance problem: FSVI 115

29 Policy for the maintenance problem: Nominal FSVI 116

30 Policy for the maintenance problem: Slow-agnostic VI 116

31 Policy for the maintenance problem: QL . 116

32 Performance of VI for the queuing problem 118

33 Policy for the queuing problem: Base VI . 118

34 Policy for the queuing problem: FSVI . 118

35 Policy for the queuing problem: Nominal FSVI 119

36 Policy for the queuing problem: Slow-agnostic VI 119

37 Policy for the queuing problem: QL . 119

38 AVI for the demand response problem . 121

39 The bidding amount of the algorithms . 122

40 The proportion of the bidding amount satisfied by each customer 123

41 AVI for the joint procurement and pricing problem 124

42 The procurement quantities of the algorithms 125

xii

1.0 Introduction

In this thesis, we study the problem of leveraging structure in Markov decision processes

(MDPs) to solve them efficiently. Specifically, we focus on structures in the policy space,

value space, reward space, and state space. We examine the benefits of such structures by

studying the following problems:

1. We study the problem of controlling inventory and dispensing the inventory to groups of

people in Chapter 2. In this problem, we consider demand nonstationarity and limited

storage capacity. The optimal policy for this problem is difficult to find exactly when the

state space is large, when the stochastic models are unknown, or when data on demand

is collected slowly over time. We propose a data-driven method that leverages structure

in both the policy and the value function ((state-dependent basestocks and concavity,

respectively), and show that this method can discover near-optimal policies.

2. We then study the problem of exploration in a distribution of unknown MDPs with

sparse and delayed rewards in Chapter 3. Finding the optimal policy is expensive and

time-consuming. We introduce subgoals with an intrinsic shaped reward to the problem.

The structured rewards provided by well-designed subgoals can efficiently guide the ex-

ploration process by stimulating the agent to explore more in the important states. We

propose a one-step Bayes-optimal algorithm that iteratively finds the optimal subgoal

design.

3. In Chapter 4, we consider infinite horizon MDPs with fast-slow structure, meaning that

certain parts of the state space move “fast” (and are more influential) while other parts of

the state space transition more slowly (and are less influential). We propose hierarchical

value iteration algorithms based on the idea of “freezing” the slow states, solving a set of

finite-horizon MDPs, and applying value iteration to an auxiliary MDP that transitions

on a slower timescale.

1

1.1 Structured Actor-Critic for Managing Public Health Points-of-Dispensing

Public health organizations face the problem of dispensing treatments (i.e., vaccines,

antibiotics, and others) to groups of affected populations through “points-of-dispensing”

(PODs) during emergency situations, typically in the presence of complexities like demand

stochasticity, heterogenous utilities (e.g., for vaccine distribution, certain segments of the

population may need to be prioritized), and limited storage. We formulate a hierarchical

MDP model with two levels of decisions (and decision-makers): the upper-level decisions

come from an inventory planner that “controls” a lower-level dynamic problem, which opti-

mizes dispensing decisions that take into consideration the heterogeneous utility functions

of the random set of PODs. We then derive structural properties of the MDP model and

propose an approximate dynamic programming (ADP) algorithm that leverages structure in

both the policy and the value space (state-dependent basestocks and concavity, respectively).

The algorithm can be considered an actor-critic method; to our knowledge, this chapter is

the first to jointly exploit policy and value structure within an actor-critic framework. We

prove that the policy and value function approximations each converge to their optimal

counterparts with probability one and provide a comprehensive numerical analysis showing

improved empirical convergence rates when compared to other ADP techniques. Finally, we

show how an aggregation-based version of our algorithm can be applied in a realistic case

study for the problem of dispensing naloxone (an overdose reversal drug) via first responders

amidst the ongoing opioid crisis.

1.2 Subgoal-based Exploration via Bayesian Optimization

Policy optimization in unknown, sparse-reward environments with expensive and limited

interactions is challenging, and poses a need for effective exploration. Motivated by complex

navigation tasks that require real-world training (when cheap simulators are not available),

we consider an agent that faces an unknown distribution of environments and must decide

on an exploration strategy, through a series of training environments, that can benefit policy

2

learning in a test environment drawn from the environment distribution. Most existing

approaches focus on fixed exploration strategies, while the few that view exploration as

a meta-optimization problem tend to ignore the need for cost-efficient exploration. We

propose a cost-aware Bayesian optimization approach that efficiently searches over a class

of dynamic subgoal-based exploration strategies. The algorithm adjusts a variety of levers

— the locations of the subgoals, the length of each episode, and the number of replications

per trial — in order to overcome the challenges of sparse rewards, expensive interactions,

and noise. Our experimental evaluation demonstrates that, when averaged across problem

domains, the proposed algorithm outperforms the meta-learning algorithm MAML by 19%,

the hyperparameter tuning method Hyperband by 23%, BO techniques EI and LCB by 24%

and 22%, respectively. We also provide a theoretical foundation and prove that the method

asymptotically identifies a near-optimal subgoal design from the search space.

1.3 Frozen-State Approximate Value Iteration for Fast-Slow Markov Decision

Processes

In this chapter, we consider infinite horizon MDPs with fast-slow structure, meaning

that certain parts of the state space move “fast” (and are more influential) while other

parts of the state space transition more “slowly” (and are less influential). Such structure

is common in important real-world problems where sequential decisions need to be made at

high frequencies, yet information that varies at a slower timescale also influences the optimal

policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying)

stochastic costs, (2) energy demand response, where both day-ahead and real-time prices

play a role in the firm’s revenue, and (3) joint multi-product inventory control and pricing,

where the expected demand of some products is low and the expected demand of the other

products are high. Models that fully capture these problems often result in MDPs with

large state spaces and large effective time horizons (due to frequent decisions), rendering

them computationally intractable. We propose an algorithmic framework based on the idea

of “freezing” the slow states, solving a set of simpler finite-horizon MDPs (the lower-level

3

MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower

timescale (the upper-level MDP). We also show how this technique can be applied in an ADP

setting, where a feature-based approximation is used. On the theoretical side, we analyze

the expected regret incurred by the policies obtained via our frozen-state approach, provide

explicit guidance on the number of periods to use in the lower-level MDP, and derive error

bounds for the ADP approach. Finally, we give empirical evidence that the frozen-state

approach generates effective policies using just a fraction of the computational cost.

4

2.0 Structured Actor-Critic for Managing Public Health PODs

Public health organizations manage “points-of-dispensing” (PODs), operated by first re-

sponders or first receivers [1], for distributing critical medical supplies during emergency

situations (e.g., the ongoing opioid crisis, the COVID-19 pandemic, the 2009 H1N1 influenza

pandemic, meningitis outbreaks). In this chapter, we consider the hierarchical and sequen-

tial problem of optimizing inventory control and making dispensing decisions for multiple

PODs. Our problem setting is specifically motivated by the ongoing opioid overdose harm

reduction efforts of public health organizations in cities across the U.S., where the opioid

epidemic was declared a public health emergency in 2017. In particular, our modeling is

motivated by the Naloxone for First Responders Program (NFRP), a statewide naloxone

distribution initiative in Pennsylvania. Unfortunately, despite the efforts of these organiza-

tions, there are often shortages of naloxone [2, 3]. Meanwhile, the severity of the opioid crisis

has worsened during the COVID-19 pandemic [4]. This intersection of naloxone shortages

with the increasing numbers of overdose incidents suggests that the careful management and

dispensing of naloxone inventory is a particularly relevant problem.

Our setup contains hierarchical decisions in order to model the interplay between two

decision-makers: the “upper-level” central inventory manager and a “lower-level” dispensing

coordinator. The NFRP is an example of an organization that operates in this manner

through the use of a centralized coordinating entity (CCE) that manages dispensing. Both

decision-makers make sequential and non-myopic decisions (at different timescales) and are

modeled using Markov decision processes (MDPs). Another novel point of emphasis for our

model is the notion that the effectiveness of the public health intervention can vary across

different groups of the affected population [5] and across different locations. Therefore,

instead of modeling demand in a static and homogeneous manner, we consider the case

where at each period, new demand information is revealed sequentially as a POD attribute

and demand. The dispensing decisions are made according to the arrivals of PODs with

a goal of maximizing total utility. The essential trade-off considered by the dispensing

5

coordinator is: should we satisfy a lower-priority demand now, or save the inventory for a

possible higher-priority demand in the future?

The model we develop, however, is quite general and useful for related problems in pub-

lic health as well where hierarchical decisions and demand heterogeneity may be an issue

(e.g., vaccine distribution, where certain segments of the population are more susceptible

and where higher-level inventory and lower-level dispensing decisions might be made sep-

arately). Other important characteristics of this problem include demand nonstationarity

and the potential for limited storage capacity.

Exact computation of the optimal policy for this model is difficult when the number of

states is large, when the stochastic models are unknown, or when demand data is collected

slowly over time. The main methodological contribution of the chapter addresses these issues

through a structured actor-critic algorithm; our proposed method exploits structure in both

the policy and the value function and can discover near-optimal policies in a fully data-

driven way. Our algorithm uses several gradient updates on each iteration and thus is highly

suitable for the situation where data arrives in an ongoing fashion and online updates are

desired. In other words, a large batch of historical data is not required for our algorithm and

the policy can be learned over time. We now give five examples of public health problems

for which our model and algorithm are applicable.

Example 2.0.1 (Opioid Overdose Epidemic). The rate of opioid overdose deaths tripled be-

tween 2000 and 2014 in the United States [6]. More recently, in July 2017, it was estimated

that there are 142 American deaths each day due to overdose [7]. Naloxone is a drug that has

the ability to reverse overdoses within seconds to minutes. To save lives amidst the current

opioid epidemic, it is critical for naloxone to be widely distributed. Indeed, many harm reduc-

tion programs such as NFRP are undertaking the challenge by distributing naloxone free of

charge to first responders. The NFRP program is run by Pennsylvania Commission on Crime

and Delinquency (PCCD), who dispenses naloxone to eligible first responders through central-

ized, local hubs in each county or region First responders include emergency medical services,

law enforcement, fire fighters, public transit drivers and so on. One challenge facing these

organizations is that the utility of naloxone varies across different types of first responders.

[8, 9] emphasize the importance of law enforcement officers, who are “often a community’s

6

first contact with opioid overdose victims after 9-1-1 services have been summoned.” The

utility of naloxone also varies across regions due to the varying levels of opioid usage in dif-

ferent populations. The West Virginia Department of Health and Human Resources (DHHR)

purchased about 34,000 doses of naloxone; in addition to distributing to the state police, fire

departments, and emergency medical services, DHHR additionally planned to distribute 1,000

doses of naloxone to each of the eight high priority counties, including Berkeley, Cabell, Har-

rison, Kanawha, Mercer, Monongalia, Ohio, and Raleigh [10]. Therefore, the prioritization

of certain “demand classes” is an important consideration when naloxone is expensive or

when quantities are limited; see, e.g., [11] for a report on rationing practices in Baltimore.

Example 2.0.2 (COVID-19). By the end of February 2021, COVID-19 has resulted in

28,409,727 cases and 511,903 deaths in the US [12]. Compared with 5-17 age group, the rate

of death is 1100 times higher in 65-74 age group, 2800 times higher in 75-84 age group, and

7900 times higher in 85 and older age group [13]. According to the COVID-19 vaccination

recommendations by CDC [14], in phase 1a, healthcare personnel and long-term care facility

residents are offered vaccination first. Subsequently, the 75 and older age group and the

65-74 age group are vaccinated in phases 1b and 1c.

Example 2.0.3 (Influenza). The need for distinct demand classes was also observed for the

case of vaccine distribution during the 2009 H1N1 influenza pandemic. The H1N1 influenza

virus first emerged in Mexico and California in April 2009 [15] and the pandemic lasted

until August 2010 [16]. Children and young adults were disproportionately affected when

compared to older adults [17]: during April 15 and May 5, 2009, among the 642 confirmed

infected patients in the U.S. (ranging from 3 months to 81 years old), 60% were 18 years

old or younger [18]. The reported H1N1 cases from April 15 to July 24, 2009, show that the

infected rate (number of cases per 100,000 population) of 0 to 4 age group is 17.6 times of

the infected rate of 65 and older age group, and the rate of 5 to 24 age group is 20.5 times of

the rate of 65 and older age group [19]. The Advisory Committee on Immunization Practice

(ACIP) recommended a priority group (about 159 million Americans), in which there was a

subset with highest priority (about 62 million Americans) [20]. Patients aged 65 and older

were only considered for vaccination once the demand amongst younger groups were met [21].

7

Example 2.0.4 (Hepatitis A). Hepatitis A outbreaks began in 2016 and are currently (as of

August 2021) ongoing in 36 states across the U.S. Recent data from August 26, 2021 shows

5098 cases (77 deaths) in Florida, 5077 cases (64 deaths) in Kentucky, 920 cases (30 deaths)

in Michigan, 3148 cases (28 deaths) in Tennessee, and 3754 cases (16 deaths) in Ohio [22].

This outbreak largely affects the homeless, drug users, and their direct contacts [22]. Center

for Disease Control (CDC) guidelines suggest that vaccine inventory be conducted monthly

to ensure adequate supplies and that the vaccine order decisions take into account projected

demand and storage capacity [23], two important aspects of our model. The CDC also rec-

ommends against overstocking, which presents the risk of wastage and outdated vaccines.

Our Results. The main contributions of this chapter are summarized below.

• In this chapter, we first develop and analyze a hierarchical, finite-horizon Markov decision

process (MDP) model that abstracts the above problems into a single framework. The

upper-level problem (the “upper-level MDP”) is an inventory model that controls a lower-

level dispensing problem (the “lower-level MDP”). Here, we consider the setting where the

utilities of PODs differ across regions due to the varying intervention effects on patients

in different populations. The demand and POD-attribute distributions at each period

depend on an information process, which can represent past demand realizations or other

external information.

• We then analyze the structural properties. The MDP features basestock-like structure in

a discrete state setting and discretely-concave value functions; both of these properties

depend on the discrete-concavity observed in the lower-level problem. The motivation

for a discrete state formulation comes from the naloxone distribution application, where

demand quantities are relatively small; this is not an ideal setting for use of a continuous

state approximation.

• Next, we propose a new actor-critic algorithm that exploits the structural properties of

the MDP. More specifically, the algorithm tracks both policy and value function approx-

imations (an identifying feature of an “actor-critic” method) and utilizes the structure to

improve the empirical convergence rate. Moreover, the algorithm is suited for a setting

8

where data arrive continually and the policy is updated over time. This algorithm (and

its general idea) is potentially of broader interest beyond the public health application.

• Finally, we present a case study for the problem of dispensing naloxone. We show how an

aggregation-based version of the algorithm can be applied in a setting with continuous

information states. In addition to computing approximations to the optimal inventory

management and dispensing strategies, we also conduct a sensitivity analysis to under-

stand the impact of various model parameters.

The chapter is organized as follows. A literature review is provided in Section 2.1. We

introduce the hierarchical MDP model in Section 2.2 and derive its structural properties

in Section 2.3. The proposed stuctured actor-critic algorithm is given and discussed in

Section 2.4. In Section 2.5, we conduct numerical experiments. We propose an aggregation-

based version of the algorithm in Section A.3 and finally present the naloxone case study in

Section 2.6.

2.1 Literature Review

In this section, we provide a brief review of related literature. The upper-level replenish-

ment decisions in this chapter are closely related to both lost-sales and perishable inventory

models. In the lost-sales case, [24] constructs simple myopic approximations for three varia-

tions of the classical model with lead time. [25] studies a single-item, make-to-stock produc-

tion model with several demand classes and lost sales and constructs stock-rationing levels

for the optimal policy. [26] focuses on random supply interruptions in lost-sales inventory

systems with positive lead times. [27] finds that the standard base-stock policy performs

poorly compared to some other heuristic policies. We also refer readers to [28] for a detailed

review. Our public health application is also somewhat related to the problems studied in

perishable inventory models [29], even though our motivating application does not require

us to explicitly model age.

9

Related to our hierarchical model is the case of multi-echelon systems, where, for example,

an upper echelon (e.g. a central warehouse) replenishes the inventory of a lower echelon (e.g.

a retailer) that serves demand [30]. [31] studies the optimal ordering and allocation policies

for the upper echelon and [32] constructs an allocation policy for the multi-echelon system.

In the model of [33], each retailer is allowed to replenish once from the warehouse during

an ordering cycle. [34] shows the optimality of base-stock policies and derives newsvendor-

type equations for the optimal base-stock levels. [35] studies a multi-product multi-echelon

inventory system. [36] aims to optimize the reorder points of both echelons given fixed order

quantities. Our model expands upon this literature in that the optimization problems for

the two echelons are modeled as two nested MDPs (or a “hierarchical” MDP). We show the

concavity of the value function of both the upper-level and lower-level, which is then utilized

to derive the structured actor-critic algorithm.

Our proposed actor-critic method falls under the class of approximate dynamic program-

ming (ADP) or reinforcement learning (RL) algorithms [37, 38, 39]. Possibly the most well-

known RL technique is Q-learning [40], a model-free approach that uses stochastic approxi-

mation (SA) to learn state-action value function (or “Q-function”). In some cases, convexity

of the value function is known a priori and can be exploited; see, e.g., [41, 42, 43, 44, 45, 46].

The updates used in the value function approximation part of our algorithm most closely

resemble [42] and [43].

Related to the policy function approximation part of our algorithm, [47] proposes a

stochastic approximation method to compute basestock levels in continuous state inventory

problems. Our method also utilizes two types of basestock structure, but it does so in a

different way from [47] due to our focus on discrete-valued inventory states. The primary

feature of an actor-critic algorithm is that it approximates both the policy and value function

[48, 49, 50, 51]. The “actor” is the policy function approximation (for selecting actions) and

the “critic” represents the value function approximation used to “criticize” the actions selected

by the actor. The novelty of our method is due to its use of the structure in both the value

function and the policy. Our experimental results show significant advantages of exploiting

this policy-value structure. Further, differing from most actor-critic methods, we do not use

stochastic policy, reducing the number of policy parameters to be learned.

10

In addition, state aggregation is a commonly used method to deal with large dynamic

problems [52, 53, 54], including inventory management [55, 56, 57, 58, 59]. Error bounds for

these types of approximations can be found in [60], [61], and [62]. Our results in Section 2.6

make use of partial aggregation of the state space.

Due to the discrete inventory states used in our model, we make use of the concept

of L♮-convexity (concavity) as a tool in the analysis. This theory was first developed in

[63] for discrete convex analysis and then extended to continuous variables by [64]. Closely

related concepts are l-convexity and submodularity. It turns out that these ideas are useful

in understanding the structures of optimal policies in the field of inventory management, as

introduced by [65] in an assemble-to-order multi-item system. [66] uses L♮-convexity in some

variations of the basic multiperiod lost-sales model with lead time and [67] extend the results

to lost-sales serial inventory systems. [68] use similar ideas to analyze inventory-pricing

systems with lead time, and [69] study finite capacity systems with both manufacturing and

remanufacturing. See [70] for a survey of applications utilizing the theory of L♮-convexity.

As for the utility in our model, the quality-adjusted life-year (QALY) is widely used

to in healthcare to measure the value of medical interventions. The QALY was origi-

nally developed for cost-effectiveness analysis to decide scarce resource allocation across

competing healthcare programs [71, 72, 73], and has been endorsed by the US Panel on

Cost-Effectiveness in Health and Medicine as a standardized methodological approach in

cost-effectiveness analyses [74]. The QALY has been used in naloxone distribution research

to evaluate the cost-effectiveness of distributing naloxone to heroin users [75], distribut-

ing naloxone to adults at risk of heroin overdose in UK [76], and one-time versus biannual

distribution [77].

2.2 Model Formulation

As discussed above, our MDP model is motivated by the hierarchical structure of public

health organizations, such as Pennsylvania’s NFRP, which distributes naloxone to a CCE

that, in turn, coordinates the dispensing of naloxone to first responders in various counties.

11

We assume that the central inventory manager makes replenish-up-to and dispense-down-to

decisions to the central storage periodically. Then, naloxone is distributed to the dispensing

coordinator, who makes dispensing decisions to sequentially and randomly arriving PODs.

Given an initial allotment of inventory, the dispensing decisions to PODs are made with the

goal of maximizing cumulative utility of the satisfied naloxone demand within the dispensing

period. (The trade-off here considers, for example, the number of naloxone kits that should be

provided to first responders in a neighborhood with high drug overdose death rate versus the

first responders in a neighborhood with low drug overdose death rates.) The timing of events

during each period is as follows: (1) the central inventory manager decides the replenish-

up-to and dispense-down-to levels, (2) the dispensing coordinator receives naloxone, and (3)

based on POD demands, POD attributes, and the level of available inventory, the dispensing

coordinator dispenses naloxone in order to maximize utility. Figure 1 gives an illustration of

the timing of these events. In this section, we first discuss the lower-level dispensing problem

and then illustrate the upper-level inventory control model.

Figure 1: Sequence of events.

2.2.1 The Dispensing MDP

We first discuss the lower-level MDP for making dispensing decisions within each period

t. After the central inventory manager makes the replenish-up-to and dispense-down-to de-

cisions, the dispensing coordinator receives a sequence of POD demands to satisfy, starting

with an initial inventory allotment based on the dispense-down-to decision. The dispensing

model contains n sub-periods. In sub-period i, the arriving POD is represented by an at-

12

tribute Ξt,i which is interpreted as the arriving POD’s attributes. When there is no arriving

POD in sub-period i, Ξt,i = 0. The distribution of Ξt,i depends on an exogenous information

process {Wt} that transitions according to the upper-level timescale (and thus stays fixed

at a particular realization w for all sub-periods in the dispensing problem; a full description

of this process will be given in Section 2.2.2). Given realizations wt and ξt,i of the exoge-

nous information Wt and attribute Ξt,i, we consider an increasing expected utility function

uwt(·, ξt,i), whose argument is the number of inventory units yi dispensed to the arriving POD

in sub-period i. For the remainder of this section, we omit the subscript t in for convenience.

These utility functions should be interpreted as parameters specified by the public health

organization. The motivation for modeling heterogeneous utilties for the case of naloxone

dispensing is primarily due to varying severity of the epidemic across different regions and

populations (first responders in regions with more opioid users should have higher prior-

ity). To model this heterogeneity in demand, our model allows region and other related

information to be encoded within the attribute ξi, which then determines the utility.

The dispensing coordinator aims to maximize the total utility subject to the initial

inventory allotment x0. In sub-period i, given exogenous information w, available inventory

level xi and attribute state ξi about the arriving POD, a dispensing decision yi is made.

Let {µw,0, µw,1, . . . , µw,n−1} be lower-level dispensing policy for exogenous information w and

suppose Mw is the set of all feasible policies that satisfy µw,i(xi, ξi) ≤ xi. The objective on

the lower-level is given by

Uw,0(x0, ξ0) = max
µw∈Mw

E
[n−1∑
i=0

uw

(
µw,i(Xi,Ξi),Ξi

) ∣∣∣X0 = x0,Ξ0 = ξ0,W = w
]
,

where the transition follows Xi+1 = xi−µw,i(xi, ξi). The optimum is attained by an optimal

policy µ∗
w. We now write the Bellman optimality equation for the objective:

Uw,i(xi, ξi) = maxyi≤xi
uw

(
yi, ξi

)
+ Ew

[
Uw,i+1(Xi+1,Ξi+1)

]
(2.1)

for i = 0, 1, . . . , n − 1, and Uw,n(xn, ξn) = 0, where Ew is being used as shorthand for the

expected value conditioned on {Wt = w}.

13

2.2.2 The Inventory Control MDP

The sequential inventory control aspect of the model contains T planning periods. In

each period, there are two decisions to be made: the replenish-up-to level and the dispense-

down-to level. In the first period t = 0, the initial resource level R0 = 0. In the last period

t = T , no decision is made and the remaining inventory RT is either worthless or charged a

disposal cost (controlled by a parameter b ≥ 0). Let {Wt} be the aforementioned exogenous

information process, which may contain information regarding past POD demands, current

disease trends, or other dynamic information related to the public health situation. As

discussed above, the information state Wt influences the distribution of the attributes Ξt,i of

the arriving PODs for sub-periods i = 1, 2, . . . , n of the lower-level problem in period t. We

assume that Wt takes values in a finite set W and that it is a Markov process.

Let Rmax be the capacity of the central storage facility. At the end of each period t,

the central inventory manager makes a replenish-up-to decision zrep
t based on the available

resource level Rt ∈ {0, 1, . . . , Rmax} and the exogenous information Wt ∈ W . After this, the

central inventory manager makes a dispense-down-to decision zdis
t based on the replenish-

up-to decision zrep
t and Wt.

We will often refer to particular values of the resource level Rt and exogenous information

Wt using the notations r and w, respectively. Let Z̄(r) = {r, r + 1, . . . , Rmax} be the set of

feasible replenish-up-to decisions if the current inventory level is r, so that zrep
t ∈ Z̄(Rt) in

period t. This means the central inventory manager orders zrep
t −Rt units of inventory with

a per-unit ordering cost cw ≥ cmin (note that we allow this ordering cost to depend on the

exogenous information w), where cmin is a positive scalar.

Let Z(zrep) = {0, 1, . . . , zrep} be the set of feasible dispense-down-to decisions if the

current resource level is zrep, so that zdis
t ∈ Z(zrep

t) in period t. This means the central

inventory manager delivers zrep
t − zdis

t units of inventory to the dispensing coordinator, and

zrep
t −zdis

t serves as the initial inventory allotment in the lower-level dispensing MDP problem.

The transition to the next inventory state Rt+1 is given by:

Rt+1 = zdis
t . (2.2)

14

Each unit of leftover inventory after applying the transition (2.2) is charged a holding cost

h < cmin.

A policy {π0, π1, . . . , πT−1} is a sequence of mappings πt = (πrep
t , πdis

t) from states (Rt,Wt)

to replenish-up-to levels and dispense-down-to levels. Let Π be the set of all feasible policies

that satisfy πrep
t (Rt,Wt) ≥ Rt and πdis

t (Rt,Wt) ≤ πrep
t (Rt,Wt). Our objective is given by:

max
π∈Π

E
[T−1∑
t=0

(
−hRt−cWt

(
πrep
t (Rt,Wt)−Rt

)
+UWt,0

(
πrep
t (Rt,Wt)−πdis

t (Rt,Wt), Ξt,0

)]
−bRT ,

where Rt transitions according to (2.2) for (zrep
t , zdis

t) = πt(Rt,Wt), and the gap between

the two decisions of the upper-level problem, πrep
t (Rt,Wt)−πdis

t (Rt,Wt), serves as the initial

resource level of the lower-level problem. We now write a preliminary set of Bellman opti-

mality equations for the objective above. Let VT (r, w) = −b r be the terminal value (note: b

is zero if there is no disposal cost). For t < T , we have

Vt(r, w) = max
zrep∈Z̄(r),zdis∈Z(zrep)

(cw − h) r − cwz
rep

+ Ew

[
Uw,0

(
zrep − zdis,Ξt,0

)
+ Vt+1

(
zdis,Wt+1

)]
.

(2.3)

So far, we have considered zrep and zdis as being made simultaneously in each period, but

we can equivalently view the dispense-down-to decision zdis to be taken after the replenish-

up-to decision zrep (this reflects the reality and also is useful for our analysis and algorithm).

The set Z(zrep) of feasible dispense-down-to decisions is dependent on the replenish-up-to

decision zrep. Therefore, the value function in each period can be broken into two steps:

V rep
t (r, w) = (cw − h) r + max

zrep∈Z̄(r)

{
−cwzrep + V dis

t (zrep, w)
}
, (2.4)

V dis
t (zrep, w) = max

zdis∈Z(zrep)
Ew

[
Uw,0

(
zrep − zdis,Ξt,0

)
+ V rep

t+1

(
zdis,Wt+1

)]
, (2.5)

with V rep
T (r, w) = −b r. Similarly, there are two postdecision value functions in each period

corresponding to the replenish-up-to decision and the dispense-down-to decision respectively:

Ṽ rep
t (zrep, w) = −cwzrep + V dis

t (zrep, w), (2.6)

15

Ṽ dis
t (zdis, w) = Ew

[
V rep
t+1

(
zdis,Wt+1

)]
. (2.7)

The optimal policy can be written as follows

πrep,∗
t (r, w) ∈ argmax

zrep∈Z̄(r)

Ṽ rep
t (zrep, w). (2.8)

πdis,∗
t (zrep, w) ∈ argmax

zdis∈Z(zrep)

Ew

[
Uw,0

(
zrep − zdis,Ξt,0

)]
+ Ṽ dis

t (zdis, w), (2.9)

where, with a slight abuse/reuse of notation, πdis,∗
t (zrep, w) is the optimal dispense-down-to

policy when the replenish-up-to level is zrep. Combining (2.4)-(2.9), we obtain equivalent

formulations of the optimality equation written using Ṽ rep
t (zrep, w), Ṽ dis

t (zdis, w), πrep,∗
t (r, w),

and πdis,∗
t (zrep, w):

Ṽ rep
t (zrep, w) = −cwzrep + Ew

[
Uw,0

(
zrep − πdis,∗

t (zrep, w), Ξt,0

)]
+ Ṽ dis

t

(
πdis,∗
t (zrep, w), w

)
,

(2.10)

Ṽ dis
t (zdis, w) = Ew

[
(cWt+1 − h) zdis + Ṽ rep

t+1

(
πrep,∗
t+1 (zdis,Wt+1),Wt+1

)]
, (2.11)

with Ṽ dis
T−1(z

dis, w) = −b zdis.

Our proposed algorithm will make use of the convenient formulations of Ṽ rep
t (zrep, w) and

Ṽ dis
t (zdis, w) as expectations in (2.10) and (2.11). These formulations are useful for ADP for

two reasons: (1) the maximization is within the expectation, so a data- or sample-driven

method is easier to incorporate and (2) knowledge about the policies πrep,∗
t and πdis,∗

t can be

used within a value function approximation procedure. Indeed, our actor-critic algorithm

will make use of the interplay between the greedy policy functions (2.8) and (2.9) and the

optimal value functions (2.6) and (2.7).

16

2.3 Structural Properties

In this section, we analyze the structure properties of the postdecision value functions

Ṽ rep
t and Ṽ dis

t and the optimal policies πrep,∗
t and πdis,∗

t . We remind the reader that our

model uses discrete inventory states. As opposed to the standard continuous inventory

state approximation, this modeling decision was made in order to accomodate the public

health setting, where resources are potentially scarce. Our structural analysis makes use the

properties of L♮-concave functions, an approach used often in inventory models [70].

Definition 2.3.1 (L♮-concave function). A function g : Zd → R ∪ {+∞} with dom g ̸= ∅ is

L♮-concave if and only if it satisfies discrete midpoint concavity:

g(p) + g(q) ≤ g
(⌈p+ q

2

⌉)
+ g

(⌊p+ q

2

⌋)
(2.12)

for all p, q ∈ Zd, where ⌈·⌉ and ⌊·⌋ are the ceiling and floor functions, respectively.

For the one-dimensional case, g : Z → R, the condition (2.12) can be reduced to the

simpler statement: g(p) − g(p − 1) ≥ g(p + 1) − g(p) for all p ∈ Z, and L♮-concavity

is equivalent to discrete concavity [78]. Throughout the rest of the chapter, we will use

discretely concave to refer to one-dimensional functions that satisfy this condition.

Assumption 2.3.1. For any w and ξ, the expected utility function uw(x, ξ) is discretely

concave in x.

Proposition 2.3.1. Suppose Assumption 2.3.1 is satisfied. Then, for each information state

w, POD attribute ξ, and sub-period i, the lower-level value function Uw,i(x, ξ) is discretely

concave in the inventory state x.

Proposition 2.3.2. Suppose Assumption 2.3.1 is satisfied. Then, the following properties

hold:

1. For each t and information state w, the postdecision value function Ṽ rep
t (zrep, w) is dis-

cretely concave in zrep and Ṽ dis
t (zdis, w) is discretely concave in zdis.

17

2. For each t and state (r, w), the optimal policy πrep,∗
t (r, w) can be written as a series of

state-dependent, discrete basestock policies, with thresholds lrept (w) ∈ {0, 1, . . . , Rmax}:

πrep,∗
t (r, w) = max{r, lrept (w)}.

It is optimal to replenish the inventory level as close as possible to lrept (w).

3. For each t and state (zrep, w), the optimal policy πdis,∗
t (zrep, w) can be written as a series of

state-dependent, discrete basestock policies, with thresholds ldis
t (zrep, w) ∈ {0, 1, . . . , Rmax}

that

πdis,∗
t (zrep, w) = min{zrep, ldis

t (zrep, w)}.

Proof. See Appendix A.1.2 for the proof of Part 1. Parts 2 and 3 then follow directly from

(2.8) and (2.9) respectively.

We remark that the state-dependency of the replenish-up-to thresholds lrept (w) in Propo-

sition 2.3.2 refers only to the exogenous information state Wt, while the dispense-down-to

thresholds ldis
t (zrep, w) are dependent on both the inventory and information states (zrep, w).

In the former case, if r < lrept (w), it is optimal to replenish up to lrept (w), while if rt ≥ lrept (w),

it is optimal not to replenish. The quantity ordered is given by π∗,rep
t (r, w) − r. In the

latter case, if zrep > ldis
t (zrep, w), it is optimal to dispense down to ldis

t (zrep, w), while if

zrep ≤ ldis
t (zrep, w), it is optimal to dispense down to zrep.

For algorithmic reasons, we define vrep
t (zrep, w) = ∆Ṽ rep

t (zrep, w) and vdis
t (zdis, w) =

∆Ṽ dis
t (zdis, w) to be the “slopes” of postdecision state values Ṽ rep

t (zrep, w) and Ṽ dis
t (zdis, w)

respectively, where

∆Ṽ rep
t (zrep, w) = Ṽ rep

t (zrep, w)− Ṽ rep
t (zrep − 1, w),

∆Ṽ dis
t (zdis, w) = Ṽ dis

t (zdis, w)− Ṽ dis
t (zdis − 1, w),

and Ṽ rep
t (−1, w) = Ṽ dis

t (−1, w) ≡ 0. It holds that Ṽ rep
t (zrep, w) =

∑zrep

z′=0 v
rep
t (z′, w), where

vrep
t (0, w) ≡ Ṽ rep

t (0, w). Proposition 2.3.2 implies that vrep
t (z, w) ≥ vrep

t (z′, w) for all 0 < z ≤
z′. The same is true for Ṽ dis

t (zdis, w) and vdis
t (zdis, w).

18

2.4 The Structured Actor-Critic Method

In this section, we focus on the upper-level inventory control and dispensing problem

and introduce the structured actor-critic (S-AC) algorithm. The goal of the algorithm is

to approximate the postdecision value functions Ṽ rep and Ṽ dis and the optimal (basestock)

policies πrep,∗ and πdis,∗ by exploiting structure for both. For the lower-level dispensing

problem, we use backward induction to solve the dynamic programming exactly, and apply

the optimal lower-level dispensing policy µ∗
w to each of the arrived PODs.

2.4.1 Overview of the Main Idea

Our algorithm is based on the recursive relationship of (2.6) and (2.7) and the properties

of the problem as described in Proposition 2.3.2. The basic structure is a time-dependent

version of the actor-critic method, which makes use of the interaction between the value

approximations and the policy approximations in each iteration. The “actor” refers to the

policy approxmations {π̄rep,k} and {π̄dis,k}, and the “critic” refers to the value approximations

{V̄ rep,k} and {V̄ dis,k}. If the optimal policy is known, then the postdecision values can be

calculated by (2.10) and (2.11); similarly, if the value function is known, the optimal policies

can be calculated by (2.8) and (2.9). The proposed algorithm applies these two relationships

in an alternating fashion.
t

<latexit sha1_base64="4M45x4zYP+oHqQXX3s0VO2Y316o=">AAACAXicbVC7TgJBFL2LL1xfqKXNRDSxIrs22kliYwmJPBIgZHaYhQmzj8zcNSEbKktbLehs6YytX+I3+BPOAoWAJ5nk5Jz7muPFUmh0nG8rt7G5tb2T37X39g8OjwrHJ3UdJYrxGotkpJoe1VyKkNdQoOTNWHEaeJI3vOF95jeeuNIiCh9xFPNOQPuh8AWjaKQqdgtFp+TMQNaJuyDFu+lk8g4AlW7hp92LWBLwEJmkWrdcJ8ZOShUKJvnYbieax5QNaZ+3DA1pwHUnnR06JpdG6RE/UuaFSGbq346UBlqPAs9UBhQHetXLxP+8VoL+bScVYZwgD9l8kZ9IghHJfk16QnGGcmQIZUqYWwkbUEUZmmyWtmSzlfb1mBDbNum4q1msk/p1yXVKbtUpli9gjjycwTlcgQs3UIYHqEANGHB4gVd4s56tqfVhfc5Lc9ai5xSWYH39Ah39mU8=</latexit><latexit sha1_base64="NU8MD/TJh4ymRffcvNFpJqR07+E=">AAACAXicbVC7TgJBFL3rE9cXamkzEU2syK6NdpLYWEIijwQ2ZHa4CxNmH5mZNSEbKktbLfQP6IytX+I3+BPOAoWAJ5nk5Jz7muMngivtON/W2vrG5tZ2Ycfe3ds/OCweHTdUnEqGdRaLWLZ8qlDwCOuaa4GtRCINfYFNf3iX+81HlIrH0YMeJeiFtB/xgDOqjVTT3WLJKTtTkFXizknpdvKW473aLf50ejFLQ4w0E1Sptusk2suo1JwJHNudVGFC2ZD2sW1oRENUXjY9dEwujNIjQSzNizSZqn87MhoqNQp9UxlSPVDLXi7+57VTHdx4GY+SVGPEZouCVBAdk/zXpMclMi1GhlAmubmVsAGVlGmTzcKWfLZUgRoTYtsmHXc5i1XSuCq7TtmtOaXKOcxQgFM4g0tw4RoqcA9VqAMDhGd4gVfryZpYH9bnrHTNmvecwAKsr1+nd5sU</latexit><latexit sha1_base64="NU8MD/TJh4ymRffcvNFpJqR07+E=">AAACAXicbVC7TgJBFL3rE9cXamkzEU2syK6NdpLYWEIijwQ2ZHa4CxNmH5mZNSEbKktbLfQP6IytX+I3+BPOAoWAJ5nk5Jz7muMngivtON/W2vrG5tZ2Ycfe3ds/OCweHTdUnEqGdRaLWLZ8qlDwCOuaa4GtRCINfYFNf3iX+81HlIrH0YMeJeiFtB/xgDOqjVTT3WLJKTtTkFXizknpdvKW473aLf50ejFLQ4w0E1Sptusk2suo1JwJHNudVGFC2ZD2sW1oRENUXjY9dEwujNIjQSzNizSZqn87MhoqNQp9UxlSPVDLXi7+57VTHdx4GY+SVGPEZouCVBAdk/zXpMclMi1GhlAmubmVsAGVlGmTzcKWfLZUgRoTYtsmHXc5i1XSuCq7TtmtOaXKOcxQgFM4g0tw4RoqcA9VqAMDhGd4gVfryZpYH9bnrHTNmvecwAKsr1+nd5sU</latexit><latexit sha1_base64="wHSwmf7+wygkEYVQGe04NUf3AwU=">AAACAXicbVC7TgJBFJ3FF+ILtbSZiCZWZNdGSxIbS0gETGBDZoe7MGF2djNz14RsqCxt9SPsjK1f4jf4E87CFgKeZJKTc+5rTpBIYdB1v53SxubW9k55t7K3f3B4VD0+6Zg41RzaPJaxfgyYASkUtFGghMdEA4sCCd1gcpf73SfQRsTqAacJ+BEbKREKztBKLRxUa27dnYOuE68gNVKgOaj+9IcxTyNQyCUzpue5CfoZ0yi4hFmlnxpIGJ+wEfQsVSwC42fzQ2f00ipDGsbaPoV0rv7tyFhkzDQKbGXEcGxWvVz8z+ulGN76mVBJiqD4YlGYSooxzX9Nh0IDRzm1hHEt7K2Uj5lmHG02S1vy2dqEZkZppWLT8VazWCed67rn1r2WW2tcFDmVyRk5J1fEIzekQe5Jk7QJJ0BeyCt5c56dd+fD+VyUlpyi55Qswfn6BSrllpU=</latexit>

t + 1
<latexit sha1_base64="k+3QjJTB4eleNHceOiVsQCo/6tU=">AAACA3icbVC7SgNBFL0bX3F9RS1tBqMgCGHXRhsxoIVlRPOAZAmzk9lkyOyDmbtCCCktbfUj7MTWD/Eb9COcTVKYxAMDh3Pua46fSKHRcb6s3NLyyupaft3e2Nza3ins7tV0nCrGqyyWsWr4VHMpIl5FgZI3EsVp6Ete9/vXmV9/5EqLOHrAQcK9kHYjEQhG0Uj3eOq2C0Wn5IxBFok7JcWrn5vLMgBU2oXvVidmacgjZJJq3XSdBL0hVSiY5CO7lWqeUNanXd40NKIh195wfOqIHBulQ4JYmRchGat/O4Y01HoQ+qYypNjT814m/uc1UwwuvKGIkhR5xCaLglQSjEn2b9IRijOUA0MoU8LcSliPKsrQpDOzJZutdKBHhNi2Scedz2KR1M5KrlNy75xi+QgmyMMBHMIJuHAOZbiFClSBQRee4QVerSfrzXq3PialOWvasw8zsD5/AdQ+mPE=</latexit><latexit sha1_base64="a3mrw9BCmbQocGs7T+oQMaGDQS0=">AAACA3icbVDLSgMxFL3js46vqks3wSoIQplxoxuxoIjLivYB7VAyaaYNzWSGJCOUoUuXbvUj3BW3fojfoB/g0kzbhW09EDicc185fsyZ0o7zaS0sLi2vrObW7PWNza3t/M5uVUWJJLRCIh7Juo8V5UzQimaa03osKQ59Tmt+7yrza49UKhaJB92PqRfijmABI1gb6V6fuK18wSk6I6B54k5I4fL7+uJm2Pspt/JfzXZEkpAKTThWquE6sfZSLDUjnA7sZqJojEkPd2jDUIFDqrx0dOoAHRmljYJImic0Gql/O1IcKtUPfVMZYt1Vs14m/uc1Eh2ceykTcaKpIONFQcKRjlD2b9RmkhLN+4ZgIpm5FZEulphok87Ulmy2VIEaIGTbJh13Not5Uj0tuk7RvXMKpUMYIwf7cADH4MIZlOAWylABAh14hhd4tZ6sN2tovY9LF6xJzx5Mwfr4Bdjmmww=</latexit><latexit sha1_base64="a3mrw9BCmbQocGs7T+oQMaGDQS0=">AAACA3icbVDLSgMxFL3js46vqks3wSoIQplxoxuxoIjLivYB7VAyaaYNzWSGJCOUoUuXbvUj3BW3fojfoB/g0kzbhW09EDicc185fsyZ0o7zaS0sLi2vrObW7PWNza3t/M5uVUWJJLRCIh7Juo8V5UzQimaa03osKQ59Tmt+7yrza49UKhaJB92PqRfijmABI1gb6V6fuK18wSk6I6B54k5I4fL7+uJm2Pspt/JfzXZEkpAKTThWquE6sfZSLDUjnA7sZqJojEkPd2jDUIFDqrx0dOoAHRmljYJImic0Gql/O1IcKtUPfVMZYt1Vs14m/uc1Eh2ceykTcaKpIONFQcKRjlD2b9RmkhLN+4ZgIpm5FZEulphok87Ulmy2VIEaIGTbJh13Not5Uj0tuk7RvXMKpUMYIwf7cADH4MIZlOAWylABAh14hhd4tZ6sN2tovY9LF6xJzx5Mwfr4Bdjmmww=</latexit><latexit sha1_base64="nDze7jtBEj/2d/XMpY4FXOQBFPc=">AAACA3icbVC7SgNBFL0bX3F9RS1tBqMgCGHXRsuAjWVE84BkCbOT2WTI7IOZu0JYUlra6kfYia0f4jf4E84mW5jEAwOHc+5rjp9IodFxvq3S2vrG5lZ5297Z3ds/qBwetXScKsabLJax6vhUcyki3kSBkncSxWnoS972x7e5337iSos4esRJwr2QDiMRCEbRSA946fYrVafmzEBWiVuQKhRo9Cs/vUHM0pBHyCTVuus6CXoZVSiY5FO7l2qeUDamQ941NKIh1142O3VKzo0yIEGszIuQzNS/HRkNtZ6EvqkMKY70speL/3ndFIMbLxNRkiKP2HxRkEqCMcn/TQZCcYZyYghlSphbCRtRRRmadBa25LOVDvSUENs26bjLWayS1lXNdWruvVOtnxU5leEETuECXLiGOtxBA5rAYAgv8Apv1rP1bn1Yn/PSklX0HMMCrK9fCm+XBQ==</latexit>

t + 2
<latexit sha1_base64="+YSE69VQzfCjM7T9YW67wTjuF8Y=">AAACA3icbVC7SgNBFL3rM66vqKXNYBQEIeym0UYMaGEZ0TwgWcLsZDYZMvtg5q4QQkpLW/0IO7H1Q/wG/QhnkxQm8cDA4Zz7muMnUmh0nC9raXlldW09t2Fvbm3v7Ob39ms6ThXjVRbLWDV8qrkUEa+iQMkbieI09CWv+/3rzK8/cqVFHD3gIOFeSLuRCASjaKR7PCu18wWn6IxBFok7JYWrn5vLMgBU2vnvVidmacgjZJJq3XSdBL0hVSiY5CO7lWqeUNanXd40NKIh195wfOqInBilQ4JYmRchGat/O4Y01HoQ+qYypNjT814m/uc1UwwuvKGIkhR5xCaLglQSjEn2b9IRijOUA0MoU8LcSliPKsrQpDOzJZutdKBHhNi2Scedz2KR1EpF1ym6d06hfAwT5OAQjuAUXDiHMtxCBarAoAvP8AKv1pP1Zr1bH5PSJWvacwAzsD5/AdXbmPI=</latexit><latexit sha1_base64="guzdQW3k5ZU5A7wclzmuNDsOWy4=">AAACA3icbVDLSgMxFM3UV62vqks3wSoIQpnpRjdiQRGXFe0D2qFk0kwbmskMyR2hDF26dKsf4a649UP8Bv0Al2baLmzrgcDhnPvK8SLBNdj2p5VZWl5ZXcuu5zY2t7Z38rt7NR3GirIqDUWoGh7RTHDJqsBBsEakGAk8wepe/yr1649MaR7KBxhEzA1IV3KfUwJGuofTUjtfsIv2GHiROFNSuPy+vrgZ9X8q7fxXqxPSOGASqCBaNx07AjchCjgVbJhrxZpFhPZJlzUNlSRg2k3Gpw7xsVE62A+VeRLwWP3bkZBA60HgmcqAQE/Pe6n4n9eMwT93Ey6jGJikk0V+LDCEOP037nDFKIiBIYQqbm7FtEcUoWDSmdmSzlba10OMczmTjjOfxSKplYqOXXTu7EL5CE2QRQfoEJ0gB52hMrpFFVRFFHXRM3pBr9aT9WaNrPdJacaa9uyjGVgfv9qDmw0=</latexit><latexit sha1_base64="guzdQW3k5ZU5A7wclzmuNDsOWy4=">AAACA3icbVDLSgMxFM3UV62vqks3wSoIQpnpRjdiQRGXFe0D2qFk0kwbmskMyR2hDF26dKsf4a649UP8Bv0Al2baLmzrgcDhnPvK8SLBNdj2p5VZWl5ZXcuu5zY2t7Z38rt7NR3GirIqDUWoGh7RTHDJqsBBsEakGAk8wepe/yr1649MaR7KBxhEzA1IV3KfUwJGuofTUjtfsIv2GHiROFNSuPy+vrgZ9X8q7fxXqxPSOGASqCBaNx07AjchCjgVbJhrxZpFhPZJlzUNlSRg2k3Gpw7xsVE62A+VeRLwWP3bkZBA60HgmcqAQE/Pe6n4n9eMwT93Ey6jGJikk0V+LDCEOP037nDFKIiBIYQqbm7FtEcUoWDSmdmSzlba10OMczmTjjOfxSKplYqOXXTu7EL5CE2QRQfoEJ0gB52hMrpFFVRFFHXRM3pBr9aT9WaNrPdJacaa9uyjGVgfv9qDmw0=</latexit><latexit sha1_base64="N2PFz4bOW9HWxtv2PPDfmWWw840=">AAACA3icbVC7SgNBFL3rM66vqKXNYBQEIeym0TJgYxnRPCBZwuxkNhky+2DmrhCWlJa2+hF2YuuH+A3+hLPJFibxwMDhnPua4ydSaHScb2ttfWNza7u0Y+/u7R8clo+OWzpOFeNNFstYdXyquRQRb6JAyTuJ4jT0JW/749vcbz9xpUUcPeIk4V5Ih5EIBKNopAe8qvXLFafqzEBWiVuQChRo9Ms/vUHM0pBHyCTVuus6CXoZVSiY5FO7l2qeUDamQ941NKIh1142O3VKLowyIEGszIuQzNS/HRkNtZ6EvqkMKY70speL/3ndFIMbLxNRkiKP2HxRkEqCMcn/TQZCcYZyYghlSphbCRtRRRmadBa25LOVDvSUENs26bjLWaySVq3qOlX33qnUz4ucSnAKZ3AJLlxDHe6gAU1gMIQXeIU369l6tz6sz3npmlX0nMACrK9fDAyXBg==</latexit>

· · ·<latexit sha1_base64="C+s4dqrPsXGQPUSLP4wE1VB4x+8=">AAACCHicbVC7TsMwFHXKq4RXgZHFokViqpIuMFZiYSwSfUhtVDmO01p17Mi+Qaqi/gAjK3wEG2LlL/gGfgK3zUBbjmTp6Jz78glTwQ143rdT2tre2d0r77sHh0fHJ5XTs45RmaasTZVQuhcSwwSXrA0cBOulmpEkFKwbTu7mfveJacOVfIRpyoKEjCSPOSVgpV5tQCMFpjasVL26twDeJH5BqqhAa1j5GUSKZgmTQAUxpu97KQQ50cCpYDN3kBmWEjohI9a3VJKEmSBf3DvDV1aJcKy0fRLwQv3bkZPEmGkS2sqEwNise3PxP6+fQXwb5FymGTBJl4viTGBQeP55HHHNKIipJYRqbm/FdEw0oWAjWtkyn61NbGYYu65Nx1/PYpN0GnXfq/sPjWqzVuRURhfoEl0jH92gJrpHLdRGFAn0gl7Rm/PsvDsfzueytOQUPedoBc7XL+5amSo=</latexit><latexit sha1_base64="C+s4dqrPsXGQPUSLP4wE1VB4x+8=">AAACCHicbVC7TsMwFHXKq4RXgZHFokViqpIuMFZiYSwSfUhtVDmO01p17Mi+Qaqi/gAjK3wEG2LlL/gGfgK3zUBbjmTp6Jz78glTwQ143rdT2tre2d0r77sHh0fHJ5XTs45RmaasTZVQuhcSwwSXrA0cBOulmpEkFKwbTu7mfveJacOVfIRpyoKEjCSPOSVgpV5tQCMFpjasVL26twDeJH5BqqhAa1j5GUSKZgmTQAUxpu97KQQ50cCpYDN3kBmWEjohI9a3VJKEmSBf3DvDV1aJcKy0fRLwQv3bkZPEmGkS2sqEwNise3PxP6+fQXwb5FymGTBJl4viTGBQeP55HHHNKIipJYRqbm/FdEw0oWAjWtkyn61NbGYYu65Nx1/PYpN0GnXfq/sPjWqzVuRURhfoEl0jH92gJrpHLdRGFAn0gl7Rm/PsvDsfzueytOQUPedoBc7XL+5amSo=</latexit><latexit sha1_base64="C+s4dqrPsXGQPUSLP4wE1VB4x+8=">AAACCHicbVC7TsMwFHXKq4RXgZHFokViqpIuMFZiYSwSfUhtVDmO01p17Mi+Qaqi/gAjK3wEG2LlL/gGfgK3zUBbjmTp6Jz78glTwQ143rdT2tre2d0r77sHh0fHJ5XTs45RmaasTZVQuhcSwwSXrA0cBOulmpEkFKwbTu7mfveJacOVfIRpyoKEjCSPOSVgpV5tQCMFpjasVL26twDeJH5BqqhAa1j5GUSKZgmTQAUxpu97KQQ50cCpYDN3kBmWEjohI9a3VJKEmSBf3DvDV1aJcKy0fRLwQv3bkZPEmGkS2sqEwNise3PxP6+fQXwb5FymGTBJl4viTGBQeP55HHHNKIipJYRqbm/FdEw0oWAjWtkyn61NbGYYu65Nx1/PYpN0GnXfq/sPjWqzVuRURhfoEl0jH92gJrpHLdRGFAn0gl7Rm/PsvDsfzueytOQUPedoBc7XL+5amSo=</latexit><latexit sha1_base64="C+s4dqrPsXGQPUSLP4wE1VB4x+8=">AAACCHicbVC7TsMwFHXKq4RXgZHFokViqpIuMFZiYSwSfUhtVDmO01p17Mi+Qaqi/gAjK3wEG2LlL/gGfgK3zUBbjmTp6Jz78glTwQ143rdT2tre2d0r77sHh0fHJ5XTs45RmaasTZVQuhcSwwSXrA0cBOulmpEkFKwbTu7mfveJacOVfIRpyoKEjCSPOSVgpV5tQCMFpjasVL26twDeJH5BqqhAa1j5GUSKZgmTQAUxpu97KQQ50cCpYDN3kBmWEjohI9a3VJKEmSBf3DvDV1aJcKy0fRLwQv3bkZPEmGkS2sqEwNise3PxP6+fQXwb5FymGTBJl4viTGBQeP55HHHNKIipJYRqbm/FdEw0oWAjWtkyn61NbGYYu65Nx1/PYpN0GnXfq/sPjWqzVuRURhfoEl0jH92gJrpHLdRGFAn0gl7Rm/PsvDsfzueytOQUPedoBc7XL+5amSo=</latexit> T
<latexit sha1_base64="9BPnxuHOulRy5Nsnxw7hrB55RU8=">AAACAXicbVC7TgJBFL3rE9cXamkzEU2syK6NdpLYWELCKwFCZoe7MGH2kZlZE7KhsrTVgs6Wztj6JX6DP+EsUAh4kklOzrmvOV4suNKO821tbG5t7+zm9uz9g8Oj4/zJaV1FiWRYY5GIZNOjCgUPsaa5FtiMJdLAE9jwhg+Z33hCqXgUVvUoxk5A+yH3OaPaSJVqN19wis4MZJ24C1K4n04m7wBQ7uZ/2r2IJQGGmgmqVMt1Yt1JqdScCRzb7URhTNmQ9rFlaEgDVJ10duiYXBmlR/xImhdqMlP/dqQ0UGoUeKYyoHqgVr1M/M9rJdq/66Q8jBONIZsv8hNBdESyX5Mel8i0GBlCmeTmVsIGVFKmTTZLW7LZUvlqTIhtm3Tc1SzWSf2m6DpFt+IUSpcwRw7O4QKuwYVbKMEjlKEGDBBe4BXerGdran1Yn/PSDWvRcwZLsL5+AepOmS8=</latexit><latexit sha1_base64="wvDnxPhzhTRmSVr5gileuM3aDCw=">AAACAXicbVC7TgJBFL2LL1xfqKXNRDSxIrs22kliYwkJrwQImR3uwoTZR2ZmTciGytJWC/0DOmPrl/gN/oSzQCHgSSY5Oee+5nix4Eo7zreV29jc2t7J79p7+weHR4Xjk4aKEsmwziIRyZZHFQoeYl1zLbAVS6SBJ7Dpje4zv/mIUvEorOlxjN2ADkLuc0a1kaq1XqHolJwZyDpxF6R4N33L8F7pFX46/YglAYaaCapU23Vi3U2p1JwJnNidRGFM2YgOsG1oSANU3XR26IRcGqVP/EiaF2oyU/92pDRQahx4pjKgeqhWvUz8z2sn2r/tpjyME40hmy/yE0F0RLJfkz6XyLQYG0KZ5OZWwoZUUqZNNktbstlS+WpCiG2bdNzVLNZJ47rkOiW36hTLFzBHHs7gHK7AhRsowwNUoA4MEJ7hBV6tJ2tqfVif89Kcteg5hSVYX79z15r0</latexit><latexit sha1_base64="wvDnxPhzhTRmSVr5gileuM3aDCw=">AAACAXicbVC7TgJBFL2LL1xfqKXNRDSxIrs22kliYwkJrwQImR3uwoTZR2ZmTciGytJWC/0DOmPrl/gN/oSzQCHgSSY5Oee+5nix4Eo7zreV29jc2t7J79p7+weHR4Xjk4aKEsmwziIRyZZHFQoeYl1zLbAVS6SBJ7Dpje4zv/mIUvEorOlxjN2ADkLuc0a1kaq1XqHolJwZyDpxF6R4N33L8F7pFX46/YglAYaaCapU23Vi3U2p1JwJnNidRGFM2YgOsG1oSANU3XR26IRcGqVP/EiaF2oyU/92pDRQahx4pjKgeqhWvUz8z2sn2r/tpjyME40hmy/yE0F0RLJfkz6XyLQYG0KZ5OZWwoZUUqZNNktbstlS+WpCiG2bdNzVLNZJ47rkOiW36hTLFzBHHs7gHK7AhRsowwNUoA4MEJ7hBV6tJ2tqfVif89Kcteg5hSVYX79z15r0</latexit><latexit sha1_base64="L5pIwM0Zc5UqMXLuYi8GGzCpqJo=">AAACAXicbVC7SgNBFL0bX3F9RS1tBqNgFXZttAzYWCaQFyRLmJ3cTYbMPpiZFcKSytJWP8JObP0Sv8GfcDbZwiQeGDicc19z/ERwpR3n2yptbe/s7pX37YPDo+OTyulZR8WpZNhmsYhlz6cKBY+wrbkW2Esk0tAX2PWnD7nffUKpeBy19CxBL6TjiAecUW2kZmtYqTo1ZwGySdyCVKFAY1j5GYxiloYYaSaoUn3XSbSXUak5Ezi3B6nChLIpHWPf0IiGqLxsceicXBtlRIJYmhdpslD/dmQ0VGoW+qYypHqi1r1c/M/rpzq49zIeJanGiC0XBakgOib5r8mIS2RazAyhTHJzK2ETKinTJpuVLflsqQI1J8S2TTruehabpHNbc52a23Sq9asipzJcwCXcgAt3UIdHaEAbGCC8wCu8Wc/Wu/VhfS5LS1bRcw4rsL5+Afc2lnU=</latexit>

t + 3
<latexit sha1_base64="0Byuz7FAtQE4+4ijZ1u8gjjuwAQ=">AAACA3icbVC7SgNBFL3rM66vqKXNYBQEIexqoY0Y0MIyonlAsoTZyWwyZPbBzF0hhJSWtvoRdmLrh/gN+hHOJilM4oGBwzn3NcdPpNDoOF/WwuLS8spqbs1e39jc2s7v7FZ1nCrGKyyWsar7VHMpIl5BgZLXE8Vp6Ete83vXmV975EqLOHrAfsK9kHYiEQhG0Uj3eHLWyhecojMCmSfuhBSufm4uSwBQbuW/m+2YpSGPkEmqdcN1EvQGVKFgkg/tZqp5QlmPdnjD0IiGXHuD0alDcmSUNgliZV6EZKT+7RjQUOt+6JvKkGJXz3qZ+J/XSDG48AYiSlLkERsvClJJMCbZv0lbKM5Q9g2hTAlzK2FdqihDk87Ulmy20oEeEmLbJh13Not5Uj0tuk7RvXMKpUMYIwf7cADH4MI5lOAWylABBh14hhd4tZ6sN+vd+hiXLliTnj2YgvX5C9d4mPM=</latexit><latexit sha1_base64="VJyKAx2ldpWqJLaERjy5g19tKEs=">AAACA3icbVDLSgMxFM3UVx1fVZduglUQhDKjC92IBUVcVrQPaIeSSTNtaCYzJHeEUrp06VY/wl1x64f4DfoBLs20XdjWA4HDOfeV48eCa3CcTyuzsLi0vJJdtdfWNza3cts7FR0lirIyjUSkaj7RTHDJysBBsFqsGAl9wap+9yr1q49MaR7JB+jFzAtJW/KAUwJGuofj02Yu7xScEfA8cSckf/l9fXEz7P6UmrmvRiuiScgkUEG0rrtODF6fKOBUsIHdSDSLCe2SNqsbKknItNcfnTrAh0Zp4SBS5knAI/VvR5+EWvdC31SGBDp61kvF/7x6AsG51+cyToBJOl4UJAJDhNN/4xZXjILoGUKo4uZWTDtEEQomnakt6WylAz3A2LZNOu5sFvOkclJwnYJ75+SLB2iMLNpD++gIuegMFdEtKqEyoqiNntELerWerDdraL2PSzPWpGcXTcH6+AXcIJsO</latexit><latexit sha1_base64="VJyKAx2ldpWqJLaERjy5g19tKEs=">AAACA3icbVDLSgMxFM3UVx1fVZduglUQhDKjC92IBUVcVrQPaIeSSTNtaCYzJHeEUrp06VY/wl1x64f4DfoBLs20XdjWA4HDOfeV48eCa3CcTyuzsLi0vJJdtdfWNza3cts7FR0lirIyjUSkaj7RTHDJysBBsFqsGAl9wap+9yr1q49MaR7JB+jFzAtJW/KAUwJGuofj02Yu7xScEfA8cSckf/l9fXEz7P6UmrmvRiuiScgkUEG0rrtODF6fKOBUsIHdSDSLCe2SNqsbKknItNcfnTrAh0Zp4SBS5knAI/VvR5+EWvdC31SGBDp61kvF/7x6AsG51+cyToBJOl4UJAJDhNN/4xZXjILoGUKo4uZWTDtEEQomnakt6WylAz3A2LZNOu5sFvOkclJwnYJ75+SLB2iMLNpD++gIuegMFdEtKqEyoqiNntELerWerDdraL2PSzPWpGcXTcH6+AXcIJsO</latexit><latexit sha1_base64="rjEMf0xCfXcBSiXOido+kfc+n3g=">AAACA3icbVDLSsNAFL2prxpfVZduBqsgCCXRhS4LblxWtLXQhjKZTtqhkwczN0IJXbp0qx/hTtz6IX6DP+GkzcK2Hhg4nHNfc/xECo2O822VVlbX1jfKm/bW9s7uXmX/oKXjVDHeZLGMVdunmksR8SYKlLydKE5DX/JHf3ST+49PXGkRRw84TrgX0kEkAsEoGukezy97lapTc6Ygy8QtSBUKNHqVn24/ZmnII2SSat1xnQS9jCoUTPKJ3U01Tygb0QHvGBrRkGsvm546IadG6ZMgVuZFSKbq346MhlqPQ99UhhSHetHLxf+8TorBtZeJKEmRR2y2KEglwZjk/yZ9oThDOTaEMiXMrYQNqaIMTTpzW/LZSgd6Qohtm3TcxSyWSeui5jo1986p1k+KnMpwBMdwBi5cQR1uoQFNYDCAF3iFN+vZerc+rM9Zackqeg5hDtbXLw2plwc=</latexit>

· · ·<latexit sha1_base64="C+s4dqrPsXGQPUSLP4wE1VB4x+8=">AAACCHicbVC7TsMwFHXKq4RXgZHFokViqpIuMFZiYSwSfUhtVDmO01p17Mi+Qaqi/gAjK3wEG2LlL/gGfgK3zUBbjmTp6Jz78glTwQ143rdT2tre2d0r77sHh0fHJ5XTs45RmaasTZVQuhcSwwSXrA0cBOulmpEkFKwbTu7mfveJacOVfIRpyoKEjCSPOSVgpV5tQCMFpjasVL26twDeJH5BqqhAa1j5GUSKZgmTQAUxpu97KQQ50cCpYDN3kBmWEjohI9a3VJKEmSBf3DvDV1aJcKy0fRLwQv3bkZPEmGkS2sqEwNise3PxP6+fQXwb5FymGTBJl4viTGBQeP55HHHNKIipJYRqbm/FdEw0oWAjWtkyn61NbGYYu65Nx1/PYpN0GnXfq/sPjWqzVuRURhfoEl0jH92gJrpHLdRGFAn0gl7Rm/PsvDsfzueytOQUPedoBc7XL+5amSo=</latexit><latexit sha1_base64="C+s4dqrPsXGQPUSLP4wE1VB4x+8=">AAACCHicbVC7TsMwFHXKq4RXgZHFokViqpIuMFZiYSwSfUhtVDmO01p17Mi+Qaqi/gAjK3wEG2LlL/gGfgK3zUBbjmTp6Jz78glTwQ143rdT2tre2d0r77sHh0fHJ5XTs45RmaasTZVQuhcSwwSXrA0cBOulmpEkFKwbTu7mfveJacOVfIRpyoKEjCSPOSVgpV5tQCMFpjasVL26twDeJH5BqqhAa1j5GUSKZgmTQAUxpu97KQQ50cCpYDN3kBmWEjohI9a3VJKEmSBf3DvDV1aJcKy0fRLwQv3bkZPEmGkS2sqEwNise3PxP6+fQXwb5FymGTBJl4viTGBQeP55HHHNKIipJYRqbm/FdEw0oWAjWtkyn61NbGYYu65Nx1/PYpN0GnXfq/sPjWqzVuRURhfoEl0jH92gJrpHLdRGFAn0gl7Rm/PsvDsfzueytOQUPedoBc7XL+5amSo=</latexit><latexit sha1_base64="C+s4dqrPsXGQPUSLP4wE1VB4x+8=">AAACCHicbVC7TsMwFHXKq4RXgZHFokViqpIuMFZiYSwSfUhtVDmO01p17Mi+Qaqi/gAjK3wEG2LlL/gGfgK3zUBbjmTp6Jz78glTwQ143rdT2tre2d0r77sHh0fHJ5XTs45RmaasTZVQuhcSwwSXrA0cBOulmpEkFKwbTu7mfveJacOVfIRpyoKEjCSPOSVgpV5tQCMFpjasVL26twDeJH5BqqhAa1j5GUSKZgmTQAUxpu97KQQ50cCpYDN3kBmWEjohI9a3VJKEmSBf3DvDV1aJcKy0fRLwQv3bkZPEmGkS2sqEwNise3PxP6+fQXwb5FymGTBJl4viTGBQeP55HHHNKIipJYRqbm/FdEw0oWAjWtkyn61NbGYYu65Nx1/PYpN0GnXfq/sPjWqzVuRURhfoEl0jH92gJrpHLdRGFAn0gl7Rm/PsvDsfzueytOQUPedoBc7XL+5amSo=</latexit><latexit sha1_base64="C+s4dqrPsXGQPUSLP4wE1VB4x+8=">AAACCHicbVC7TsMwFHXKq4RXgZHFokViqpIuMFZiYSwSfUhtVDmO01p17Mi+Qaqi/gAjK3wEG2LlL/gGfgK3zUBbjmTp6Jz78glTwQ143rdT2tre2d0r77sHh0fHJ5XTs45RmaasTZVQuhcSwwSXrA0cBOulmpEkFKwbTu7mfveJacOVfIRpyoKEjCSPOSVgpV5tQCMFpjasVL26twDeJH5BqqhAa1j5GUSKZgmTQAUxpu97KQQ50cCpYDN3kBmWEjohI9a3VJKEmSBf3DvDV1aJcKy0fRLwQv3bkZPEmGkS2sqEwNise3PxP6+fQXwb5FymGTBJl4viTGBQeP55HHHNKIipJYRqbm/FdEw0oWAjWtkyn61NbGYYu65Nx1/PYpN0GnXfq/sPjWqzVuRURhfoEl0jH92gJrpHLdRGFAn0gl7Rm/PsvDsfzueytOQUPedoBc7XL+5amSo=</latexit>

{V̄ rep,k}, {V̄ dis,k}

{⇡̄rep,k}, {⇡̄dis,k}

Figure 2: An illustration of how value and policy functions interact under the S-AC algorithm.

We represent the replenish-up-to policy by approximate basestock thresholds {lrep,k},
where lrep,kt (w) is the approximation to lrept (w) at iteration k. Note that compared to a stan-

dard actor-critic implementation which tracks a stochastic policy for each state [38], this is

a significant reduction in the number of parameters needed to be learned. We represent the

19

dispense-down-to policy as approximations {π̄dis,k
t (zrep, w)}. As for the values, we represent

them as approximations {v̄rep,k} and {v̄dis,k}, where v̄rep,k
t (zrep, w) and v̄dis,k

t (zdis, w) approx-

imate the discrete slopes vrep
t (zrep, w) = ∆Ṽ rep

t (zrep, w) and vdis
t (zdis, w) = ∆Ṽ dis

t (zdis, w),

respectively. According to Proposition 2.3.2, if the approximations of the slopes are non-

increasing in zrep and zdis, respectively, then the approximate value function is discretely

concave in each of the decisions.

These approximations are iteratively updated via a stochastic approximation method

[79, 80]. At each iteration, the algorithm has three steps. In the first step, we observe an

exogenous information sequence and the attribute-request vectors for the whole planning

horizon. In the second step, we observe the value of the current state under the current

policy approximations, subject to the observed attribute-demand vectors. This value is used

to update the value approximations. Finally, in the third step, we use the implied basestock

threshold from the latest value function to update our approximate policy. The interactions

between the policy and value approximations are shown in Figure 2.

Throughout the rest of the chapter, we use bar notation (e.g., v̄rep,k or lrep,k) to denote

approximations tracked by the algorithm at iteration k. On the other hand, we use hat

notation (e.g., V̂ rep,k
t or v̂rep,k

t) to denote observed values at iteration k (these are one-time

observations used to update the tracked approximations).

2.4.2 Algorithm Description

First, let us give some notation. The observed trajectory of the exogenous information

process {Wt} at iteration k is denoted {wk
0 , w

k
1 , . . . , w

k
T−1} and the initial postdecision re-

plenished resource level at period 0 is zrep,k
0 . The corresponding attribute {ξkt,1} observed at

iteration k is assumed to follow the conditional distributions given wk
t . Similarly, let Zk

t (w)

be an independent realization of the process (Wτ , ξτ,1)
T−1
τ=t conditioned on Wt = w. This

sequence of realizations is used to obtain an observation of the value of policy approximation

starting at t and Wt = w and we denote its elements by

Zk
t (w) =

{
(w̌k

τ , ξ̌
k
τ,1) : τ = t, . . . , T − 1

}
,

20

where w̌k
t = w. Define π̃rep,k and π̃dis,k as the rounded policies, i.e.

π̃rep,k(r, w) = round[π̄rep,k(r, w)]

for all (r, w), π̃dis,k(zrep, w) = round[π̄dis,k(zrep, w)] for all (zrep, w), where round[x] returns the

nearest integer to x ∈ R. This is necessary because our approximate thresholds will not be

integers. Let f rep
t (π̃rep,k−1, π̃dis,k−1;Zk

t (wt), rt) be the Monte Carlo estimates of the replenish-

up-to postdecision value starting in period t under the current policy approximations and

an initial state (rt, wt):

f rep
t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (wt), rt
)

=
T−2∑
τ=t

[
−cw̌k

τ
z̃rep
τ + Uµ∗

w̌k
τ ,0

(
z̃rep
τ − z̃dis

τ , ξ̌kτ,0
)
+ (cw̌k

τ+1
− h)z̃dis

τ

]
− cw̌k

T−1
z̃rep
T−1 + Uµ∗

w̌k
T−1

(
z̃rep
T−1 − z̃dis

T−1, ξ̌
k
T−1,0

)
− b z̃dis

T−1,

(2.13)

where for all τ ≥ t, µ∗ = µ∗
w̌k

τ
, z̃rep

τ = π̃rep,k−1
τ (rτ , w̌

k
τ), z̃dis

τ = π̃dis,k−1
τ (z̃rep

τ , w̌k
τ). Let

fdis
t (π̃rep,k−1, π̃dis,k−1;Zk

t (wt), z
rep
t) be the Monte Carlo estimates of the dispense-down-to post-

decision value starting in period t under the current policy approximations and an initial

state (zrep
t , wt):

fdis
t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (wt), z
rep
t

)
=

T−2∑
τ=t

[
(cw̌k

τ+1
− h)z̃dis

τ − cw̌k
τ+1

z̃rep
τ+1 + Uµ∗

w̌k
τ+1,0

(
z̃rep
τ+1 − z̃dis

τ+1, ξ̌
k
τ+1,0

)]
− b z̃dis

T−1,
(2.14)

where z̃dis
t = π̃dis,k−1

t (zrep
t , w̌k

t), and for all τ ≥ t + 1, µ∗ = µ∗
w̌k

τ
, z̃rep

τ = π̃rep,k−1
τ (rτ , w̌

k
τ),

z̃dis
τ = π̃dis,k−1

τ (z̃rep
τ , w̌k

τ). The replenish-up-to policy is

π̄rep,k
τ (rτ , w̌

k
τ) = max{rτ , l̄rep,kτ (w̌k

τ)}.

Although there is substantial notation used in defining f rep
t and fdis

t , we remark that they

are simply Monte Carlo observations of the policy’s postdecision values respectively corre-

sponding to the replenish-up-to and dispense-down-to decisions.

At each period t, to compute the approximate slopes, we use fdis
t to observe values

V̂ rep,k
t (zrep,k

t , wk
t) and V̂ rep,k

t (zrep,k
t − 1, wk

t), and f rep
t+1 to observe values V̂ dis,k

t (zdis,k
t , wk

t) and

21

V̂ dis,k
t (zdis,k

t − 1, wk
t), where fdis

t and f rep
t+1 are implied by the current policies π̄rep,k−1 and

π̄dis,k−1; specifically, for zrep, zdis ≥ 0, the observations V̂ rep,k
t (zrep, wk

t) and V̂ dis,k
t (zdis, wk

t) are

V̂ rep,k
t (zrep, wk

t) =− cwk
t
zrep + Uµ∗

w̌k
t ,0

(
zrep − π̃dis,k−1

t (zrep, wk
t), ξ̌

k
t,0

)
+ fdis

t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (wt), z
rep), (2.15)

and

V̂ dis,k
t (zdis, wk

t) =(cwt+1 − h)zdis + f rep
t+1

(
π̃rep,k−1, π̃dis,k−1;Zk

t+1(wt+1), z
dis), (2.16)

where wt+1 is sampled from the distribution Wt+1 |Wt = wk
t . The approximate slopes v̂rep,k

t

and v̂dis,k
t are given by:

v̂rep,k
t = V̂ rep,k

t (zrep,k
t , wk

t)− V̂ rep,k
t (zrep,k

t − 1, wk
t), (2.17)

v̂dis,k
t = V̂ dis,k

t (zdis,k
t , wk

t)− V̂ dis,k
t (zdis,k

t − 1, wk
t), (2.18)

where we define V̂ rep,k
t (−1, wk

t) = V̂ dis,k
t (−1, wk

t) ≡ 0. By doing so, the value assigned to

v̂rep,k
t when zrep,k

t = 0 is actually V̂ rep,k
t (0, wk

t). This also applies to v̂dis,k
t . We now summarize

the structured actor-critic method; the full details of the approach are given in Algorithm 1.

z
<latexit sha1_base64="PLqzVNpWYSva7xRr66qzJ/vz2Ls=">AAACAHicbVC7TsMwFL3hWcKrwMhiUZCYqoQFmKjEwthKhFZqo8pxndaq40S2g1SiToysMHRj7YRY+RO+gZ/AaTvQliNZOjrnvnyChDOlHefbWlldW9/YLGzZ2zu7e/vFg8MHFaeSUI/EPJaNACvKmaCeZprTRiIpjgJO60H/Nvfrj1QqFot7PUioH+GuYCEjWBup9tQulpyyMwFaJu6MlG7Go9E7AFTbxZ9WJyZpRIUmHCvVdJ1E+xmWmhFOh3YrVTTBpI+7tGmowBFVfjY5dIjOjNJBYSzNExpN1L8dGY6UGkSBqYyw7qlFLxf/85qpDq/8jIkk1VSQ6aIw5UjHKP816jBJieYDQzCRzNyKSA9LTLTJZm5LPluqUA0Rsm2TjruYxTLxLsrXZafmliqnMEUBjuEEzsGFS6jAHVTBAwIUXuAV3qxna2x9WJ/T0hVr1nMEc7C+fgGKApkp</latexit><latexit sha1_base64="8+/yO7cqS+BlhnN1Pw0Olxush/0=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHaQSdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/Ecaa7g==</latexit><latexit sha1_base64="8+/yO7cqS+BlhnN1Pw0Olxush/0=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHaQSdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/Ecaa7g==</latexit>

r
<latexit sha1_base64="BDViASWcJgF40BHS7YVfNzbyp7w=">AAACAHicbVA9T8JAGH6LX1i/UEeXi2jiRFoXdZLExRESKyTQkOtxhQvXa3N3NSENk6OrDmyuTMbVf+Jv8E94BQYBn+SSJ8/zft0TJJwp7TjfVmFtfWNzq7ht7+zu7R+UDo8eVZxKQj0S81g2A6woZ4J6mmlOm4mkOAo4bQSDu9xvPFGpWCwe9DChfoR7goWMYG2kuuyUyk7FmQKtEndOyreT8fgdAGqd0k+7G5M0okITjpVquU6i/QxLzQinI7udKppgMsA92jJU4IgqP5seOkLnRumiMJbmCY2m6t+ODEdKDaPAVEZY99Wyl4v/ea1Uh9d+xkSSairIbFGYcqRjlP8adZmkRPOhIZhIZm5FpI8lJtpks7Alny1VqEYI2bZJx13OYpV4l5WbilN3y9UzmKEIJ3AKF+DCFVThHmrgAQEKL/AKb9azNbE+rM9ZacGa9xzDAqyvX30imSE=</latexit><latexit sha1_base64="qaliTgUZqKmFCcFHgG1GIjh6Qu4=">AAACAHicbVC7TgJBFL3rE/GFWtpMRBMrsmujVpLYWELiCglsyOxwFybMPjIza0I2VJa2WugfUBlb/8Rv8CecBQoBTzLJyTn3NcdPBFfatr+tldW19Y3NwlZxe2d3b790cPig4lQydFksYtn0qULBI3Q11wKbiUQa+gIb/uA29xuPKBWPo3s9TNALaS/iAWdUG6kuO6WyXbEnIMvEmZHyzfgtx3utU/ppd2OWhhhpJqhSLcdOtJdRqTkTOCq2U4UJZQPaw5ahEQ1Rednk0BE5M0qXBLE0L9Jkov7tyGio1DD0TWVIdV8tern4n9dKdXDlZTxKUo0Rmy4KUkF0TPJfky6XyLQYGkKZ5OZWwvpUUqZNNnNb8tlSBWpESLFo0nEWs1gm7kXlumLXnXL1FKYowDGcwDk4cAlVuIMauMAA4Rle4NV6ssbWh/U5LV2xZj1HMAfr6xcE5prm</latexit><latexit sha1_base64="qaliTgUZqKmFCcFHgG1GIjh6Qu4=">AAACAHicbVC7TgJBFL3rE/GFWtpMRBMrsmujVpLYWELiCglsyOxwFybMPjIza0I2VJa2WugfUBlb/8Rv8CecBQoBTzLJyTn3NcdPBFfatr+tldW19Y3NwlZxe2d3b790cPig4lQydFksYtn0qULBI3Q11wKbiUQa+gIb/uA29xuPKBWPo3s9TNALaS/iAWdUG6kuO6WyXbEnIMvEmZHyzfgtx3utU/ppd2OWhhhpJqhSLcdOtJdRqTkTOCq2U4UJZQPaw5ahEQ1Rednk0BE5M0qXBLE0L9Jkov7tyGio1DD0TWVIdV8tern4n9dKdXDlZTxKUo0Rmy4KUkF0TPJfky6XyLQYGkKZ5OZWwvpUUqZNNnNb8tlSBWpESLFo0nEWs1gm7kXlumLXnXL1FKYowDGcwDk4cAlVuIMauMAA4Rle4NV6ssbWh/U5LV2xZj1HMAfr6xcE5prm</latexit>

w
<latexit sha1_base64="q/Ck8HMkgAkUqMJhyavP8nKwVMw=">AAACAHicbVC7TsMwFL3hWcKrwMhiUZCYqoQFmKjEwthKhFZqo8pxndaq40S2A6qiToysMHRj7YRY+RO+gZ/AaTvQliNZOjrnvnyChDOlHefbWlldW9/YLGzZ2zu7e/vFg8MHFaeSUI/EPJaNACvKmaCeZprTRiIpjgJO60H/Nvfrj1QqFot7PUioH+GuYCEjWBup9tQulpyyMwFaJu6MlG7Go9E7AFTbxZ9WJyZpRIUmHCvVdJ1E+xmWmhFOh3YrVTTBpI+7tGmowBFVfjY5dIjOjNJBYSzNExpN1L8dGY6UGkSBqYyw7qlFLxf/85qpDq/8jIkk1VSQ6aIw5UjHKP816jBJieYDQzCRzNyKSA9LTLTJZm5LPluqUA0Rsm2TjruYxTLxLsrXZafmliqnMEUBjuEEzsGFS6jAHVTBAwIUXuAV3qxna2x9WJ/T0hVr1nMEc7C+fgGFLpkm</latexit><latexit sha1_base64="bTmPq8nbBzR7ncOt4zhjRqDM9CE=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHVAVdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/DPKa6w==</latexit><latexit sha1_base64="bTmPq8nbBzR7ncOt4zhjRqDM9CE=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHVAVdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/DPKa6w==</latexit>w

<latexit sha1_base64="q/Ck8HMkgAkUqMJhyavP8nKwVMw=">AAACAHicbVC7TsMwFL3hWcKrwMhiUZCYqoQFmKjEwthKhFZqo8pxndaq40S2A6qiToysMHRj7YRY+RO+gZ/AaTvQliNZOjrnvnyChDOlHefbWlldW9/YLGzZ2zu7e/vFg8MHFaeSUI/EPJaNACvKmaCeZprTRiIpjgJO60H/Nvfrj1QqFot7PUioH+GuYCEjWBup9tQulpyyMwFaJu6MlG7Go9E7AFTbxZ9WJyZpRIUmHCvVdJ1E+xmWmhFOh3YrVTTBpI+7tGmowBFVfjY5dIjOjNJBYSzNExpN1L8dGY6UGkSBqYyw7qlFLxf/85qpDq/8jIkk1VSQ6aIw5UjHKP816jBJieYDQzCRzNyKSA9LTLTJZm5LPluqUA0Rsm2TjruYxTLxLsrXZafmliqnMEUBjuEEzsGFS6jAHVTBAwIUXuAV3qxna2x9WJ/T0hVr1nMEc7C+fgGFLpkm</latexit><latexit sha1_base64="bTmPq8nbBzR7ncOt4zhjRqDM9CE=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHVAVdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/DPKa6w==</latexit><latexit sha1_base64="bTmPq8nbBzR7ncOt4zhjRqDM9CE=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHVAVdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/DPKa6w==</latexit>

z
<latexit sha1_base64="PLqzVNpWYSva7xRr66qzJ/vz2Ls=">AAACAHicbVC7TsMwFL3hWcKrwMhiUZCYqoQFmKjEwthKhFZqo8pxndaq40S2g1SiToysMHRj7YRY+RO+gZ/AaTvQliNZOjrnvnyChDOlHefbWlldW9/YLGzZ2zu7e/vFg8MHFaeSUI/EPJaNACvKmaCeZprTRiIpjgJO60H/Nvfrj1QqFot7PUioH+GuYCEjWBup9tQulpyyMwFaJu6MlG7Go9E7AFTbxZ9WJyZpRIUmHCvVdJ1E+xmWmhFOh3YrVTTBpI+7tGmowBFVfjY5dIjOjNJBYSzNExpN1L8dGY6UGkSBqYyw7qlFLxf/85qpDq/8jIkk1VSQ6aIw5UjHKP816jBJieYDQzCRzNyKSA9LTLTJZm5LPluqUA0Rsm2TjruYxTLxLsrXZafmliqnMEUBjuEEzsGFS6jAHVTBAwIUXuAV3qxna2x9WJ/T0hVr1nMEc7C+fgGKApkp</latexit><latexit sha1_base64="8+/yO7cqS+BlhnN1Pw0Olxush/0=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHaQSdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/Ecaa7g==</latexit><latexit sha1_base64="8+/yO7cqS+BlhnN1Pw0Olxush/0=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHaQSdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/Ecaa7g==</latexit>

w
<latexit sha1_base64="q/Ck8HMkgAkUqMJhyavP8nKwVMw=">AAACAHicbVC7TsMwFL3hWcKrwMhiUZCYqoQFmKjEwthKhFZqo8pxndaq40S2A6qiToysMHRj7YRY+RO+gZ/AaTvQliNZOjrnvnyChDOlHefbWlldW9/YLGzZ2zu7e/vFg8MHFaeSUI/EPJaNACvKmaCeZprTRiIpjgJO60H/Nvfrj1QqFot7PUioH+GuYCEjWBup9tQulpyyMwFaJu6MlG7Go9E7AFTbxZ9WJyZpRIUmHCvVdJ1E+xmWmhFOh3YrVTTBpI+7tGmowBFVfjY5dIjOjNJBYSzNExpN1L8dGY6UGkSBqYyw7qlFLxf/85qpDq/8jIkk1VSQ6aIw5UjHKP816jBJieYDQzCRzNyKSA9LTLTJZm5LPluqUA0Rsm2TjruYxTLxLsrXZafmliqnMEUBjuEEzsGFS6jAHVTBAwIUXuAV3qxna2x9WJ/T0hVr1nMEc7C+fgGFLpkm</latexit><latexit sha1_base64="bTmPq8nbBzR7ncOt4zhjRqDM9CE=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHVAVdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/DPKa6w==</latexit><latexit sha1_base64="bTmPq8nbBzR7ncOt4zhjRqDM9CE=">AAACAHicbVC7TsMwFL0prxJeBUYWi4LEVCUswEQlFsZWIrRSG1WO67RWHSeyHVAVdWJkhQH+oBNi5U/4Bn4Cp+1AW45k6eic+/IJEs6Udpxvq7Cyura+Udy0t7Z3dvdK+wf3Kk4loR6JeSybAVaUM0E9zTSnzURSHAWcNoLBTe43HqhULBZ3ephQP8I9wUJGsDZS/bFTKjsVZwK0TNwZKV+P33K81zqln3Y3JmlEhSYcK9VynUT7GZaaEU5HdjtVNMFkgHu0ZajAEVV+Njl0hE6N0kVhLM0TGk3Uvx0ZjpQaRoGpjLDuq0UvF//zWqkOL/2MiSTVVJDpojDlSMco/zXqMkmJ5kNDMJHM3IpIH0tMtMlmbks+W6pQjRCybZOOu5jFMvHOK1cVp+6WqycwRRGO4BjOwIULqMIt1MADAhSe4QVerSdrbH1Yn9PSgjXrOYQ5WF+/DPKa6w==</latexit>

optimize value function
<latexit sha1_base64="+pcO64YtCI67YHk9Q+vq6FNLOGI=">AAACGHicbVC7TsMwFHV4lvAqMDCwWFRITFXSBdgqsTAWidBKbVQ57k1r1XEi26lUonwJIyt8BBNiZeMb+AmcNgNtOdKVjs6519f3BAlnSjvOt7W2vrG5tV3ZsXf39g8Oq0fHjypOJQWPxjyWnYAo4EyAp5nm0EkkkCjg0A7Gt4XfnoBULBYPepqAH5GhYCGjRBupXz2NE80i9gR4QngKOEwFnTs1p+7MgFeJW5IaKtHqV396g5imEQhNOVGq6zqJ9jMiNaMccruXKkgIHZMhdA0VJALlZ7MDcnxhlAEOY2lKaDxT/05kJFJqGgWmMyJ6pJa9QvzP66Y6vPYzJpJUg6DzRWHKsY5xkQYeMAlU86khhEpm/orpiEhCtclsYUvxtlShyjG2bZOOu5zFKvEa9Zu6c9+oNXEZUwWdoXN0iVx0hZroDrWQhyjK0Qt6RW/Ws/VufVif89Y1q5w5QQuwvn4BtdigMw==</latexit><latexit sha1_base64="+pcO64YtCI67YHk9Q+vq6FNLOGI=">AAACGHicbVC7TsMwFHV4lvAqMDCwWFRITFXSBdgqsTAWidBKbVQ57k1r1XEi26lUonwJIyt8BBNiZeMb+AmcNgNtOdKVjs6519f3BAlnSjvOt7W2vrG5tV3ZsXf39g8Oq0fHjypOJQWPxjyWnYAo4EyAp5nm0EkkkCjg0A7Gt4XfnoBULBYPepqAH5GhYCGjRBupXz2NE80i9gR4QngKOEwFnTs1p+7MgFeJW5IaKtHqV396g5imEQhNOVGq6zqJ9jMiNaMccruXKkgIHZMhdA0VJALlZ7MDcnxhlAEOY2lKaDxT/05kJFJqGgWmMyJ6pJa9QvzP66Y6vPYzJpJUg6DzRWHKsY5xkQYeMAlU86khhEpm/orpiEhCtclsYUvxtlShyjG2bZOOu5zFKvEa9Zu6c9+oNXEZUwWdoXN0iVx0hZroDrWQhyjK0Qt6RW/Ws/VufVif89Y1q5w5QQuwvn4BtdigMw==</latexit><latexit sha1_base64="+pcO64YtCI67YHk9Q+vq6FNLOGI=">AAACGHicbVC7TsMwFHV4lvAqMDCwWFRITFXSBdgqsTAWidBKbVQ57k1r1XEi26lUonwJIyt8BBNiZeMb+AmcNgNtOdKVjs6519f3BAlnSjvOt7W2vrG5tV3ZsXf39g8Oq0fHjypOJQWPxjyWnYAo4EyAp5nm0EkkkCjg0A7Gt4XfnoBULBYPepqAH5GhYCGjRBupXz2NE80i9gR4QngKOEwFnTs1p+7MgFeJW5IaKtHqV396g5imEQhNOVGq6zqJ9jMiNaMccruXKkgIHZMhdA0VJALlZ7MDcnxhlAEOY2lKaDxT/05kJFJqGgWmMyJ6pJa9QvzP66Y6vPYzJpJUg6DzRWHKsY5xkQYeMAlU86khhEpm/orpiEhCtclsYUvxtlShyjG2bZOOu5zFKvEa9Zu6c9+oNXEZUwWdoXN0iVx0hZroDrWQhyjK0Qt6RW/Ws/VufVif89Y1q5w5QQuwvn4BtdigMw==</latexit>

run policy and observe new value
<latexit sha1_base64="nkKjppXGn1YL9q3qf7Y7kSGAZxA=">AAACIXicbVC7TgJBFJ31ifhCLW1uJCZWZKFROxIbS0xESGBDZoe7MGF2ZjMzi9kQWr/E0lY/wsrYGT/Bn3B4FAKe5CYn59w7d+4JE8GN9f0vb219Y3NrO7eT393bPzgsHB0/GJVqhnWmhNLNkBoUXGLdciuwmWikcSiwEQ5uJn5jiNpwJe9tlmAQ057kEWfUOqlTAJ1KSJTgLAMqu6BCg3qIIPERhlSk2CkU/ZI/BayS8pwUyRy1TuGn3VUsjVFaJqgxrbKf2GBEteVM4DjfTg0mlA1oD1uOShqjCUbTS8Zw7pQuREq7kham6t+JEY2NyeLQdcbU9s2yNxH/81qpja6CEZdJalGy2aIoFWAVTGKBLtfIrMgcoUxz91dgfaopsy68hS2Tt7WJzBggn3fplJezWCX1Sum65N9VilWYx5Qjp+SMXJAyuSRVcktqpE4YeSIv5JW8ec/eu/fhfc5a17z5zAlZgPf9C/2to24=</latexit><latexit sha1_base64="nkKjppXGn1YL9q3qf7Y7kSGAZxA=">AAACIXicbVC7TgJBFJ31ifhCLW1uJCZWZKFROxIbS0xESGBDZoe7MGF2ZjMzi9kQWr/E0lY/wsrYGT/Bn3B4FAKe5CYn59w7d+4JE8GN9f0vb219Y3NrO7eT393bPzgsHB0/GJVqhnWmhNLNkBoUXGLdciuwmWikcSiwEQ5uJn5jiNpwJe9tlmAQ057kEWfUOqlTAJ1KSJTgLAMqu6BCg3qIIPERhlSk2CkU/ZI/BayS8pwUyRy1TuGn3VUsjVFaJqgxrbKf2GBEteVM4DjfTg0mlA1oD1uOShqjCUbTS8Zw7pQuREq7kham6t+JEY2NyeLQdcbU9s2yNxH/81qpja6CEZdJalGy2aIoFWAVTGKBLtfIrMgcoUxz91dgfaopsy68hS2Tt7WJzBggn3fplJezWCX1Sum65N9VilWYx5Qjp+SMXJAyuSRVcktqpE4YeSIv5JW8ec/eu/fhfc5a17z5zAlZgPf9C/2to24=</latexit><latexit sha1_base64="nkKjppXGn1YL9q3qf7Y7kSGAZxA=">AAACIXicbVC7TgJBFJ31ifhCLW1uJCZWZKFROxIbS0xESGBDZoe7MGF2ZjMzi9kQWr/E0lY/wsrYGT/Bn3B4FAKe5CYn59w7d+4JE8GN9f0vb219Y3NrO7eT393bPzgsHB0/GJVqhnWmhNLNkBoUXGLdciuwmWikcSiwEQ5uJn5jiNpwJe9tlmAQ057kEWfUOqlTAJ1KSJTgLAMqu6BCg3qIIPERhlSk2CkU/ZI/BayS8pwUyRy1TuGn3VUsjVFaJqgxrbKf2GBEteVM4DjfTg0mlA1oD1uOShqjCUbTS8Zw7pQuREq7kham6t+JEY2NyeLQdcbU9s2yNxH/81qpja6CEZdJalGy2aIoFWAVTGKBLtfIrMgcoUxz91dgfaopsy68hS2Tt7WJzBggn3fplJezWCX1Sum65N9VilWYx5Qjp+SMXJAyuSRVcktqpE4YeSIv5JW8ec/eu/fhfc5a17z5zAlZgPf9C/2to24=</latexit>

update value function,

enforce structure
<latexit sha1_base64="dp1KTrHkgmP1VPQEuX5godpSisY=">AAACEnicbVC7TgJBFJ3FF+ILtLSZSEysyC6N2pHYWGLiCglsyOxwFybMzm5m7moI4TMsbfUjrIytP+A3+BMOsIWAJ7nJybmvkxOmUhh03W+nsLG5tb1T3C3t7R8cHpUrxw8myTQHnycy0e2QGZBCgY8CJbRTDSwOJbTC0c2s33oEbUSi7nGcQhCzgRKR4Ayt1CtXQEWJPUUN6oxjpqFXrro1dw66TrycVEmOZq/80+0nPItBIZfMmI7nphhMmEbBJUxL3cxAyviIDaBjqWIxmGAytz6l51bpU2vBlkI6V/9uTFhszDgO7WTMcGhWezPxv14nw+gqmAiVZgiKLx5FmaSY0FkOtC80cJRjSxjXwnqlfMg042jTWvoyu61NZKaUlko2HW81i3Xi12vXNfeuXm3QPKYiOSVn5IJ45JI0yC1pEp9w8kReyCt5c56dd+fD+VyMFpx854Qswfn6BQZ6nbY=</latexit><latexit sha1_base64="dp1KTrHkgmP1VPQEuX5godpSisY=">AAACEnicbVC7TgJBFJ3FF+ILtLSZSEysyC6N2pHYWGLiCglsyOxwFybMzm5m7moI4TMsbfUjrIytP+A3+BMOsIWAJ7nJybmvkxOmUhh03W+nsLG5tb1T3C3t7R8cHpUrxw8myTQHnycy0e2QGZBCgY8CJbRTDSwOJbTC0c2s33oEbUSi7nGcQhCzgRKR4Ayt1CtXQEWJPUUN6oxjpqFXrro1dw66TrycVEmOZq/80+0nPItBIZfMmI7nphhMmEbBJUxL3cxAyviIDaBjqWIxmGAytz6l51bpU2vBlkI6V/9uTFhszDgO7WTMcGhWezPxv14nw+gqmAiVZgiKLx5FmaSY0FkOtC80cJRjSxjXwnqlfMg042jTWvoyu61NZKaUlko2HW81i3Xi12vXNfeuXm3QPKYiOSVn5IJ45JI0yC1pEp9w8kReyCt5c56dd+fD+VyMFpx854Qswfn6BQZ6nbY=</latexit><latexit sha1_base64="dp1KTrHkgmP1VPQEuX5godpSisY=">AAACEnicbVC7TgJBFJ3FF+ILtLSZSEysyC6N2pHYWGLiCglsyOxwFybMzm5m7moI4TMsbfUjrIytP+A3+BMOsIWAJ7nJybmvkxOmUhh03W+nsLG5tb1T3C3t7R8cHpUrxw8myTQHnycy0e2QGZBCgY8CJbRTDSwOJbTC0c2s33oEbUSi7nGcQhCzgRKR4Ayt1CtXQEWJPUUN6oxjpqFXrro1dw66TrycVEmOZq/80+0nPItBIZfMmI7nphhMmEbBJUxL3cxAyviIDaBjqWIxmGAytz6l51bpU2vBlkI6V/9uTFhszDgO7WTMcGhWezPxv14nw+gqmAiVZgiKLx5FmaSY0FkOtC80cJRjSxjXwnqlfMg042jTWvoyu61NZKaUlko2HW81i3Xi12vXNfeuXm3QPKYiOSVn5IJ45JI0yC1pEp9w8kReyCt5c56dd+fD+VyMFpx854Qswfn6BQZ6nbY=</latexit>

update structured policy,l̄rep,k
t (w)

V̄ rep,k
t (z, w) V̄ rep,k+1

t (z, w)⇡̄rep,k
t (r, w)

Figure 3: An illustration of the sequence of updates used in the S-AC algorithm.

• The inputs of Algorithm 1 are a random initial basestock policy lrep,0, and concave,

piecewise linear value function approximations v̄rep,0 and v̄dis,0.

22

Algorithm 1: Structured Actor-Critic Method

Input: Lower-level optimal policy µ∗ (learned from backward dynamic

programming). Initial policy estimates lrep,0 and π̄dis,0, and value

estimates v̄rep,0 and v̄dis,0 (nonincreasing in zrep and zdis respectively).

Stepsize rules α̃k
t and β̃k

t for all t, k.

Output: Approximations lrep,k, π̄dis,k, v̄rep,k, and v̄dis,k.

1 for k = 1, 2, . . . do

2 Sample initial states zrep,k
0 and zdis,k

0 .

3 for t = 0, 1, . . . , T − 1 do

4 Observe wk
t and ξkt,1, then v̂rep,k

t and v̂dis,k
t according to (2.17) and (2.18).

5 Perform SA step:

6 ṽrep,k
t (zrep, w) =

(
1− αk

t (z
rep, w)

)
v̄rep,k−1
t (zrep, w) + αk

t (z
rep, w) v̂rep,k

t ,

7 ṽdis,k
t (zdis, w) =

(
1− αk

t (z
dis, w)

)
v̄dis,k−1
t (zdis, w) + αk

t (z
dis, w) v̂dis,k

t .

8 Perform the concavity projection operation: v̄rep,k
t = Πzrep,k

t ,wk
t
(ṽrep,k

t),

v̄dis,k
t = Πzdis,k

t ,wk
t
(ṽdis,k

t).

9 Observe l̂rep,kt according to (2.8) and update the replenish-up-to threshold:

lrep,kt (w) =
(
1− βk

t (w)
)
lrep,k−1
t (w) + βk

t (w) l̂
rep,k
t .

10 Observe π̂dis
t according to (2.9) and update the dispense-down-to policy:

11 for zrep
t = 0, 1, . . . , Rmax do

12 π̄dis,k
t (zrep, w) =

(
1− αk(zrep, w)

)
π̄dis,k−1
t (zrep, w) + αk(zrep, w) π̂dis

t .

13 end

14 If t < T − 1, take zrep,k
t+1 and zdis,k

t+1 according to the ϵ-greedy exploration

policy.
15 end

16 end

23

• Each iteration k consists of a loop through the time periods t.

• At period t, the approximate slopes are updated in Lines 4–8. Based on zrep,k
t , zdis,k

t and

Zk
t (w

k
t), we first observe the sequences of the predecision resource {rt+1, rt+2, . . . , rT}

and the postdecision resources {zrep,k
t , zrep

t+1, . . . , z
rep
T−1} and {zdis,k

t , zdis
t+1, . . . , z

dis
T−1}. These

are computed according to (2.2), and the equations zrep
τ = π̃rep,k−1

τ (rτ , w
k
τ), and zdis

τ =

argmaxzdis∈Z(z̃rep
τ) U

µ∗

w̌k
τ ,0

(
z̃rep
τ −zdis, ξ̌kτ,0

)
+V̄ dis,k−1

τ

(
zdis, w̌k

τ

)
for all τ ≥ t+1. In the following

illustration, let us take the value slope and policy corresponding to the replenish-up-to

decision as an example, those corresponding to the dispense-down-to decision are similar.

• The observation of the slope v̂rep,k
t implied by the policies π̃rep,k−1 and π̃dis,k−1 is computed

using (2.15) and (2.17) and used to calculate the smoothed slopes ṽrep,k
t (zrep, w) in Line 5,

where αk
t (z

rep, w) = α̃k
t 1{zrep = zrep,k

t }1{w = wk
t }. Thus, only the state (zrep,k

t , wk
t) is

updated.

• A concavity projection operation in Line 8 is performed on the slopes ṽrep,k
t , resulting

in a new set of slopes Πzrep,k
t ,wk

t
(ṽrep,k

t), in order to avoid violation of concavity. The

component of Πzrep,k
t ,wk

t
(ṽrep,k

t) at state (zrep, w) is

Πzrep,k
t ,wk

t
(ṽrep,k

t)[zrep, w]

=


ṽrep,k
t (zrep,k

t , wk
t) if w = wk

t , z
rep < zrep,k

t , ṽrep,k
t (zrep, w) < ṽrep,k

t (zrep,k
t , wk

t)

or w = wk
t , z

rep > zrep,k
t , ṽrep,k

t (zrep, w) > ṽrep,k
t (zrep,k

t , wk
t),

ṽrep,k
t (zrep, w) otherwise.

• The approximate replenish-up-to policy is updated in Lines 9. The observation l̂rep,kt is

the maximum point of V̄ rep,k
t (·, wk

t) inside the set Z(0), which is the implied replenish-up-

to basestock threshold from the value function approximation. Given the observation,

the policy is updated with stepsize βk
t (w) = β̃k

t 1{w = wk
t }.

• The approximate dispense-down-to policy is updated in Lines 11–13. For each zrep, we

can observe π̂dis
t according to (2.9). The policy is updated with the observation and

stepsize αk
t (z

rep, w) = α̃k
t 1{zrep = zrep

t }1{w = wk
t }.

24

• Finally, the next replenish-up-to decision follows an ϵ-greedy policy, which is to select

zrep,k
t+1 = π̃rep,k−1

τ (rτ , w
k
τ) with probability 1− ϵ, or take zrep,k

t+1 randomly from Z(rkt+1) with

probability ϵ. In our numerical experiments, ϵ is chosen to be 0.1.

Figure 3 illustrates how the replenish-up-to value function and policy approximations

interact with each other. The first two panels together show that given a structured value

function, its maximizer (red square) is used to update the structured policy. Panels two

and three together show that an observation of the current policy’s value (blue circle) is in

turn used to update the structured value function (where a projection step occurs to enforce

structure). The process then repeats with the new maximizer (blue square).

2.4.3 Convergence Analysis

In this section, we give some theoretical assumptions and then state the convergence

of Algorithm 1; in particular, the convergence of both the value function approximations

v̄rep,k and v̄dis,k and the basestock policies lrep,k and π̄dis,k. Let {v̄rep,k
t }k≥0 and {v̄dis,k

t }k≥0 be

the sequences of slopes, let {lrep,kt }k≥0 and {π̄dis,k
t }k≥0, be the sequences of policies gen-

erated by the algorithm. For period T , we assume vrep
T (zrep, w) = 0 for all iterations

k ≥ 0 and all possible postdecision states (zrep, w), as we only need to learn the pol-

icy and slopes up to period T − 1. We work on a probability space (Ω,F ,P), where

F = σ{(rkt , zrep,k
t , zdis,k

t , wk
t , ξ

k
t ,D

k
t , v̂

k
t), t ≤ T, k ≥ 0}, where ξkt = (ξkt,1, ξ

k
t,2, . . . , ξ

k
t,nk

),

Dk
t = (Dk

t,1, D
k
t,2, . . . , D

k
t,nk

). Moreover, we define

Fk
t = σ

{
{(rk′τ , zrep,k′

τ , zdis,k′
τ , wk′

τ , ξ
k′

τ ,D
k′

τ , v̂
k′

τ), k
′ < k, τ ≤ T}

∪ {(rkτ , zrep,k
τ , zdis,k

τ , wk
τ , ξ

k
τ ,D

k
τ , v̂

k
t), τ ≤ t}

}
,

for t ≤ T − 1 and k ≥ 1, with F0
t = {∅,Ω} for all t ≤ T . Their relationships are Fk

t ⊆ Fk
t+1

for t ≤ T − 1 and Fk
T ⊆ Fk+1

0 .

Assumption 2.4.1. For any z and w, suppose the stepsizes
{
αk
t (z

rep, w)
}
,
{
αk
t (z

dis, w)
}
,

and {βk
t (w)} satisfy the following conditions:

(i) For x ∈ {rep, dis}, αk
t (z

x, w) = α̃k
t 1{zx = zx,k

t }1{w = wk
t } for some α̃k

t ∈ R that is

Fk
t -measurable,

25

(ii) βk
t (w) = β̃k

t 1{w = wk
t } for some β̃k

t ∈ R that is Fk
t -measurable,

(iii) For x ∈ {rep, dis}, ∑∞
k=0 α

k
t (z

x, w) =∞,
∑∞

k=0

(
αk
t (z

x, w)
)2

<∞ almost surely,

(iv)
∑∞

k=0 β
k
t (w) =∞,

∑∞
k=0

(
βk
t (w)

)2
<∞ almost surely.

Assumption 2.4.1(i) and (ii) ensures that only the slope and threshold for the observed

state is updated in Line 5 of Algorithm 1; the ones corresponding to unobserved states are

kept the same until the projection step. Parts (iii) and (iv) are standard conditions on

the stepsize. To keep the convergence results clean, we also assume the state-dependent

basestock thresholds are unique (this assumption can be easily relaxed).

Assumption 2.4.2. There is a unique optimal solution to maxz∈Z(0) Ṽ rep
t (z, w), which

implies that there is a single optimal replenishment basestock threshold for each w. The

unique optimal solution assumption also applies to Ṽ dis
t .

Assumptions (2.3.1)-(2.4.2) are used for the next two results. The primary novel aspect

of our analysis is to connect the approximate policies with the approximate value functions

through the structural properties of the problem. Before stating the main convergence result,

Theorem 2.4.1, we introduce a lemma that illustrates the crucial mechanism for convergence.

Lemma 2.4.1. The following hold:

1. For any fixed period t, suppose that the policies π̄rep,k
τ → πrep

τ almost surely for τ ≥ t+1,

and π̄dis,k
τ → πdis

τ almost surely for τ ≥ t. Then it holds that v̄rep,k
t (zrep, w)→ vrep

t (zrep, w)

almost surely.

2. For any fixed period t, suppose that the policies π̄rep,k
τ → πrep

τ and π̄dis,k
τ → πdis

τ almost

surely for τ ≥ t+ 1. Then it holds that v̄dis,k
t (zdis, w)→ vdis

t (zdis, w) almost surely.

Sketch of Proof. Let us show part (1) of the lemma. The proof for part (2) is similar. We

first construct two deterministic sequences {Gm} and {Im} such that G0 = vrep + vrep
max and

I0 = vrep − vrep
max with

Gm+1 =
Gm + vrep

2
and Im+1 =

Im + vrep

2
,

where |vrep
t (zrep, w)| ≤ vrep

max for all t, zrep, and w. These sequences have been previously used

in [37]. Lemma 2.4.1 is proved if we have

Imt (zrep, w) ≤ v̄rep,k−1
t (zrep, w) ≤ Gm

t (z
rep, w), (2.19)

26

for any m and sufficiently large k. The proof proceeds by showing the following.

1. Define noise terms ϵkt (z
rep,k
t , wk

t) = E
[
v̂rep,k
t

]
− vrep

t (zrep,k
t , wk

t) and εkt (z
rep,k
t , wk

t) = v̂rep,k
t −

E
[
v̂rep,k
t

]
. Recall that v̂rep,k

t = V̂ rep,k
t (zrep,k

t , wk
t)− V̂ rep,k

t (zrep,k
t − 1, wk

t), where

V̂ rep,k
t (zrep, wk

t) =− cwk
t
zrep + Uµ∗

w̌k
t ,0

(
zrep − π̃dis,k−1

t (zrep, wk
t), ξ̌

k
t,0

)
+ fdis

t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (wt), z
rep).

From the assumption that π̄rep,k
τ → πrep

τ and π̄dis,k
τ → πdis

τ almost surely for all τ ≥
t+1, and the fact that fdis

t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (w), z
rep

)
depends on the replenish-up-to

policies for periods t+1 onward and the dispense-down-to policies for periods t onward,

we conclude that

Ew

[
fdis
t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (w), z
rep)]→ Ṽ dis

t

(
πdis,∗
t (zrep, w), w

)

almost surely. Therefore, ϵkt (z
rep,k
t , wk

t) converges to zero almost surely and εkt (z
rep,k
t , wk

t)

is unbiased.

2. We partition the state space S into two parts: (1) states (zrep, w) ∈ S−
t and (2) states

(zrep, w) ∈ S\S−
t , where S−

t is a random set of states that are increased by the projection

operator on finitely many iterations k. The proof considers each partition separately to

show (2.19). For states (zrep, w) ∈ S−
t , we show by forward induction on m the existence

of a finite index K̃m
t such that (2.19) holds for all iterations k ≥ K̃m

t . The proof utilizes

stochastic sequences related to the noise terms and stochastic “bounding” sequences.

For any state (zrep, w) ∈ S \ S−
t and a fixed m, by Lemma 6.4 of [43], we show the

existence of a state-dependent random index K̂m
t (zrep, w) such that (2.19) holds for all

k ≥ K̂m
t (zrep, w).

See Appendix A.1.3 for the full details of the proof.

Lemma 2.4.1 implies the convergence of the approximate slopes v̄k to the true slopes v

as long as the policy approximation converges correctly.

27

Theorem 2.4.1. For x ∈ {rep, dis}, the slope approximation v̄x,k
t (zx, w) converges to the

slope of the postdecision value function vx
t (z

x, w) almost surely for all (zx, w) and t; the policy

approximations π̄rep,k
t (r, w) and π̄dis,k

t (zrep, w) respectively converge to the optimal policies

πrep
t (r, w) and πdis

t (zrep, w) almost surely for all r, zrep, w and t.

Sketch of Proof. The proof depends inductively on Lemma 2.4.1. Given its result for period

t, we can then argue the convergence of policy approximations π̄rep,k
t (r, w) and π̄dis,k

t (zrep, w).

This allows us to re-apply Lemma 2.4.1 on period t− 1. The details are given in Appendix

A.1.4.

2.5 Numerical Experiments

In this section, we test the performance of our algorithm empirically and compare its

convergence rate with other ADP algorithms on a common set of several benchmark problems

with different state space sizes. Specifically, we compare with SPAR, a standard actor-critic

method with a linear architecture, a policy gradient method with a linear architecture, and

tabular Q-learning. We begin by giving a brief description of these algorithms.

• The multi-stage version of SPAR, introduced in [43], takes advantage of the concavity

of the value function and uses the temporal difference to update slopes without a policy

approximation. More specifically, in order to generate observations V̂ rep,k
t and V̂ dis,k

t ,

instead of using (2.15) and (2.16), SPAR uses

V̂ rep,k
t (zrep, wk

t) = −cwk
t
zrep + max

zdis≤zrep

{
Uµ∗

wk
t ,0

(
zrep − zdis, ξkt,0

)
+ V̄ dis,k−1

t

(
zdis, wk

t

)}
,

and

V̂ dis,k
t (zdis, wk

t) = (cwt+1 − h)zdis + max
zrep≥zdis

V̄ rep,k−1
t+1

(
zrep, wt+1

)
respectively. Although the original specification of SPAR does not use an exploration

policy, we implemented ϵ-greedy with exploration rate 0.1 for improved performance.

28

• We implement an actor-critic (AC) method [38] based on a linear approximation archi-

tecture for both the policy and value approximations. In both cases, the basis functions

are chosen to be Gaussian radial basis functions (RBFs). The “critic” approximates the

value function using a weighted sum of RBF basis functions. The “actor” is a stochastic

policy with a parameter ht(r, w; z
rep, zdis) for each state-action pair (r, w; zrep, zdis), and is

also approximated using a weighted sum of RBFs, which indicate the tendency of select-

ing action (zrep, zdis) in state (r, w). The associated stochastic policy is obtained through

a softmax function, so that the probability of taking action (zrep, zdis) in state (r, w) is

πt(z
rep, zdis | r, w) = eh(r,w;zrep,zdis)/

∑
(z1,z2)

eh(r,w;z1,z2). Detailed steps of the method are

shown in Appendix A.2.

• Our policy gradient (PG) method [81, 82] updates the stochastic policy in each iteration.

We adopt the Monte-Carlo policy gradient method where the policy approximation fol-

lows the same softmax policy as in the AC algorithm above. There is no value function

and the policy parameters are updated using a sampled cumulative reward from t to T .

• The previous two algorithms use linear architectures for generalization. We also com-

pare to the widely-used Q-learning (QL) algorithm [40], which is called tabular because

each state-action pair is updated independently (structured actor-critic and SPAR lie

in-between these two extremes as they generalize by enforcing structure). Q-learning

aims to learn the state-action value function:

Qt(r, w; z
rep, zdis) = (cw − h)r − cwz

rep + Ew

[
Uµ∗

wt,0(z
rep − zdis,Ξt,0) + Vt+1(z

dis,Wt+1)
]
.

Our implementation is a standard finite-horizon version of the algorithm that uses an

ϵ-greedy exploration policy at a rate of 0.1.

Optimal benchmarks used to determine the effectiveness of the five algorithms were computed

using standard backward dynamic programming (BDP). All computations in this chapter

were performed using Python 3.5.

29

Table 1: Performance (% optimality) at iterations 500 and 1000.

At iteration 500 At iteration 1000
Rmax |W| 3 6 9 12 15 3 6 9 12 15

20

AC 97.20 97.68 98.01 97.41 96.88 98.86 99.03 98.50 98.38 97.60
PG 73.04 76.02 72.35 76.64 74.29 77.94 79.12 73.35 79.16 75.38
QL 30.02 33.86 28.36 27.85 35.53 32.60 35.91 31.75 31.20 37.63

S-AC (ours) 99.76 99.26 98.33 97.68 97.45 99.83 99.57 99.00 98.48 98.50
SPAR 97.82 95.11 95.10 94.69 92.36 96.95 97.55 93.80 94.33 95.87

30

AC 97.21 96.40 95.75 95.17 94.91 97.65 97.13 96.40 96.31 95.27
PG 69.97 72.24 76.48 73.36 78.19 76.07 74.15 76.91 81.04 78.30
QL 38.26 34.09 28.84 27.47 34.21 40.35 37.14 35.43 33.99 37.78

S-AC (ours) 99.58 99.36 98.53 97.70 97.61 99.83 99.67 99.18 98.67 98.60
SPAR 97.85 97.94 92.57 95.11 92.58 98.62 97.88 95.24 95.12 94.46

40

AC 96.30 95.16 91.63 93.24 92.15 96.70 96.05 92.56 93.94 92.54
PG 72.95 77.04 75.57 73.92 78.39 76.51 77.78 75.90 75.39 79.15
QL 39.65 35.40 26.71 24.70 32.36 42.20 40.57 35.20 33.44 37.63

S-AC (ours) 99.45 99.35 97.95 97.86 97.50 99.65 99.61 98.90 98.53 98.43
SPAR 97.46 96.08 93.50 93.79 93.74 96.79 96.62 95.33 93.81 92.07

50

AC 90.96 90.56 86.47 88.00 88.02 91.65 91.76 87.18 89.03 89.73
PG 72.06 70.67 66.57 69.34 76.81 73.95 74.75 67.71 71.71 78.05
QL 41.63 36.35 26.26 22.00 29.87 47.68 42.72 35.22 31.90 35.60

S-AC (ours) 99.42 99.15 97.49 97.47 97.09 99.52 99.46 98.18 98.25 98.01
SPAR 95.54 96.65 90.91 91.27 94.02 97.39 96.30 92.21 94.35 90.38

60

AC 91.30 91.16 86.67 87.21 88.23 92.27 92.32 88.32 87.85 90.17
PG 74.15 71.73 61.39 63.98 68.90 76.80 71.55 65.77 66.25 70.86
QL 42.03 33.88 22.51 19.95 27.38 47.13 41.37 33.10 31.44 33.40

S-AC (ours) 99.16 99.00 96.50 97.08 96.70 99.25 99.20 96.81 97.52 97.00
SPAR 96.40 95.55 91.52 93.63 90.73 95.89 95.51 94.18 92.64 91.51

2.5.1 Benchmark Instances and Parameters

We consider 10 PODs in these synthetic benchmark instances. Each POD has a randomly

generated attribute ranging between 0 and 1 representing its priority, which is reflected in the

utility function u. Let the stochastic utility function be ũ
(
min(yi, Di), ξi

)
, with expectation

uw(xi, ξi) = Ew

[
ũ
(
min(µi(xi, ξi), Di), ξi

)]
, where µi and Di are respectively the policy and

the amount of demand in sub-period i. (In reality, the utility and demand might be revealed

several periods later. For modeling purposes, we assume that they are revealed by the end of

the current period in this section.) Let ũ
(
z, ξi

)
be nondecreasing and discretely concave in z,

then ũ
(
min(yi, Di), ξi

)
is L♮-concave in yi based on Lemma 2 in [83], the structural properties

are kept for this stochastic utility function. Specifically, we generate the stochastic utility

function ũ(z, ξ) by generating its unit utility function ∆ũ(z, ξ) = ũ(z, ξ) − ũ(z − 1, ξ) as

30

Table 2: Performance (% optimality) after 5 and 10 seconds of CPU time.

CPU time = 5s CPU time = 10s
Rmax |W| 3 6 9 12 15 3 6 9 12 15

20

AC 91.97 93.91 92.29 93.21 89.98 94.80 95.93 94.87 95.32 94.32
PG 65.49 68.53 66.84 68.06 71.71 67.85 72.33 71.14 71.83 73.27
QL 32.60 35.91 31.75 31.20 37.63 32.60 35.91 31.75 31.20 37.63

S-AC (ours) 99.79 99.52 98.71 98.20 98.03 99.83 99.57 99.00 98.48 98.50
SPAR 97.84 96.93 94.19 92.20 92.83 96.95 97.55 93.80 94.33 95.87

30

AC 89.78 89.61 88.64 88.31 88.74 93.20 91.90 92.62 91.26 91.77
PG 68.84 64.37 71.91 67.15 74.40 67.55 68.01 73.35 65.14 74.44
QL 40.35 37.14 35.43 33.99 37.78 40.35 37.14 35.43 33.99 37.78

S-AC (ours) 99.62 99.39 98.00 97.37 97.40 99.80 99.67 99.01 98.35 98.35
SPAR 95.97 97.42 94.97 94.85 94.96 97.53 97.88 92.86 94.90 95.37

40

AC 86.28 89.01 83.92 86.91 85.08 92.58 92.27 89.01 89.08 88.65
PG 68.08 63.96 72.25 61.87 73.68 69.73 68.89 71.53 67.61 73.01
QL 42.20 40.57 35.20 33.44 37.63 42.20 40.57 35.20 33.44 37.63

S-AC (ours) 99.43 98.94 96.85 96.58 95.63 99.58 99.41 98.32 97.94 97.57
SPAR 97.73 96.98 92.88 92.47 92.49 96.60 96.28 95.10 92.54 92.97

50

AC 86.79 81.48 79.76 81.90 80.34 88.10 88.05 82.45 84.92 83.29
PG 67.47 68.04 63.74 60.86 69.41 66.57 65.26 65.34 65.01 71.29
QL 47.60 42.72 35.22 31.34 35.60 47.68 42.72 35.22 31.90 35.60

S-AC (ours) 98.92 98.51 95.10 94.60 93.92 99.36 99.06 97.01 96.83 96.33
SPAR 96.85 96.62 93.17 88.63 91.35 95.02 96.27 94.17 92.61 92.27

60

AC 77.05 76.73 73.10 74.15 76.31 78.78 80.14 76.33 76.38 78.48
PG 66.10 58.84 56.40 59.41 64.81 69.42 59.67 57.36 60.11 65.73
QL 44.75 38.60 26.78 26.41 31.62 47.13 41.37 33.10 31.44 33.40

S-AC (ours) 98.65 98.02 93.17 93.20 92.31 99.05 98.75 95.41 96.16 95.11
SPAR 95.45 95.26 90.50 92.43 92.41 95.90 96.15 93.45 93.11 93.02

follows: ∆ũ(1, ξ) = 100 (5 ξ3 + 1), ∆ũ(z, ξ) = ∆ũ(z − 1, ξ) − 10 (5 ξ4). For each exogenous

information realization w, we randomly generated 10 different patterns of the arriving POD

sequences. A pattern of the arriving POD sequences was generated from randomly sampling

ten elements from a pool which contains all the PODs and some empty elements. The

number of the empty elements is dependent on w. For example, in the case of |W| = 3, the

numbers of the empty elements are 5, 10, and 15 for w = 1, 2, and 3 respectively. The utility

of an empty element is 0.

Our interpretation of the stochastic process {Wt} is a signal of the total demand for period

t. An example for {Wt} is the national trends of the particular public health situation, which

may suggest higher demands in the region-of-interest. For benchmarking purposes, we use

the model Wt+1 = φtWt + Ŵt+1, where φt is deterministic and Ŵt+1 is an independent noise

31

term that follows a mean zero discretized normal distribution with standard deviation σt+1.

In this chapter, a continuously distributed random variable X is discretized to Xdisc with

P(Xdisc = x) = P(X ≤ x) − P(X ≤ x − 1). Given a demand signal Wt = wt, the realized

demand Dt,i is a discretized normal distribution with mean di(wt) and standard deviation

σ̃t = 3 for i = 1, 2, . . . , n. All of the means above were generated randomly.

We created 25 benchmark problem instances by varying the sizes of the state, action, and

outcome spaces (i.e., number of possible values of the exogenous information). Specifically,

we consider problem instances with 21, 31, 41, 51, and 61 inventory levels and 3, 6, 9, 12,

and 15 information states; these are the columns and rows shown in Tables 1 and 2. The

sizes of the action spaces corresponding to inventory level sizes 21, 31, 41, 51, and 61 are

respectively 231, 496, 861, 1326, and 1891. The time horizon for each instance is T = 10

and the cost parameters are b = 0, h = 5, cw ∈ [10, 50], E[cw] = 30.

2.5.2 Optimality Gap of Approximate Policies

101 102 103

Number of iterations, log scale

6

4

2

0

Lo
g

re
gr

et

(a) Rmax = 20, |W| = 3

101 102 103

Number of iterations, log scale

4

2

0

Lo
g

re
gr

et

(b) Rmax = 40, |W| = 9

101 102 103

Number of iterations, log scale

3

2

1

0

Lo
g

re
gr

et

AC
PG
QL
S-AC
SPAR

(c) Rmax = 60, |W| = 15

Figure 4: Comparison of ADP algorithms with respect to iteration number.

To estimate the value V π̃k

0 of an approximate policy π̃k, we averaged the value of initial

states (r, w) drawn from a uniform distribution, where the value V π̃k

0 (r, w) is obtained from

100 Monte Carlo simulations following policy π̃k. To evaluate the approximate policy learned

from an ADP algorithm, we run 10 independent replications of the algorithm and average the

performance of the learned approximate policy in each replication. Denote V̄ π̃k

0 the evaluation

of the approximate policy learned from an algorithm. The percentage of optimality is the

ratio of V̄ π̃k

0 to V0, where the optimal value function V0 is computed using BDP.

32

10 1 100

CPU time (seconds), log scale

6

4

2

0
Lo

g
re

gr
et

(a) Rmax = 20, |W| = 3

10 1 100

CPU time (seconds), log scale

4

2

0

Lo
g

re
gr

et

(b) Rmax = 40, |W| = 9

10 1 100

CPU time (seconds), log scale

3

2

1

0

Lo
g

re
gr

et

AC
PG
QL
S-AC
SPAR

(c) Rmax = 60, |W| = 15

Figure 5: Comparison of ADP algorithms with respect to CPU time.

Tables 1 and 2 show the percentage of optimality of each algorithm at specific iterations

and CPU times, across all problem instances. In almost all instances and comparison points,

S-AC outperforms the baseline algorithms. AC is the most competitive baseline with respect

to the number of iterations and SPAR is the most competitive when CPU time is of primary

interest. Within the same number of iterations and CPU times, the performance of all

the ADP algorithms becomes worse as the size of the problem increases; however, S-AC

seems to be less sensitive than the others to problem size. Let us compare the percentage

of optimality of the instance with Rmax = 20 and |W| = 3 and the instance with Rmax = 60

and |W| = 15 at iteration 1,000. The performance of AC, S-AC, and SPAR on the latter

large instance is respectively 7.2, 2.8, and 6.5 percentage worse than the performance on the

smaller instance. For the same instance at CPU time 10 seconds, the performance of the

three algorithms on the larger instance is respectively 14.7, 4.7, and 4.9 percentage points

worse than the performance on the smaller instance.

To further illustrate the performance of each ADP algorithm, we show the convergence

curves of three instances with different sizes. Let us consider three problem instances: (1)

Rmax = 20, |W| = 3, (2) Rmax = 40, |W| = 9, and (3) Rmax = 60, |W| = 15. Figure 4 shows

the rate of convergence of the ADP algorithms considered in this chapter as a function of

the number of iterations, while Figure 5 shows the rate of convergence as a function of the

computation time. We plot “log regret” (log of the suboptimality from 100%) to help improve

the visualization.

33

The policy approximations used in AC and PG are parameterized as stochastic policies

initialized to take uniformly random actions in each state. This exploration helps to generate

relatively high value in early iterations. AC and PG are very competitive with our S-AC

algorithm when comparing performance with respect to the iteration count. However, this

comes at a computational cost: although stochasticity encourages exploration, Figure 5

shows that each iteration is particularly time-consuming when compared to deterministic

policies.

2.5.3 Convergence of Implied Basestock Thresholds

101 102 103

Number of iterations, log scale

0

20

40

60

Th
re

sh
ol

d

(a) w0 = 1

101 102 103

Number of iterations, log scale

0

20

40

60

Th
re

sh
ol

d

(b) w0 = 4

101 102 103

Number of iterations, log scale

0

20

40

Th
re

sh
ol

d AC
PG
QL
S-AC
SPAR
Exact

(c) w0 = 8

Figure 6: Convergence of replenish-up-to thresholds at t = 0 for the Rmax = 60, |W| = 9 instance.

101 102 103

Number of iterations, log scale

0

20

40

60

Th
re

sh
ol

d

(a) w0 = 2

101 102 103

Number of iterations, log scale

0

20

40

60

Th
re

sh
ol

d

(b) w0 = 6

101 102 103

Number of iterations, log scale

0

20

40

Th
re

sh
ol

d AC
PG
QL
S-AC
SPAR
Exact

(c) w0 = 10

Figure 7: Convergence of replenish-up-to thresholds at t = 0 for the Rmax = 60, |W| = 12 instance.

Next, we are interested in examining how the implied replenish-up-to thresholds evolve

as each algorithm progresses. The thresholds of AC and PG are selected as the actions with

highest probabilities for state r = 0 and the thresholds of SPAR and QL correspond to the

34

101 102 103

Number of iterations, log scale

0

20

40
Th

re
sh

ol
d

(a) w0 = 2

101 102 103

Number of iterations, log scale

0

20

40

Th
re

sh
ol

d

(b) w0 = 7

101 102 103

Number of iterations, log scale

0

20

40

Th
re

sh
ol

d AC
PG
QL
S-AC
SPAR
Exact

(c) w0 = 12

Figure 8: Convergence of replenish-up-to thresholds at t = 0 for the Rmax = 60, |W| = 15 instance.

greedy policy with respect to the value function and state-action value function approxima-

tions. In this part, we take three problem instances as examples, whose storage capacities

are all Rmax = 60, and exogenous information spaces are |W| = 9, |W| = 12 and |W| = 15

respectively. Figures 6 to 8 show the convergence of approximate replenish-up-to threshold

levels l̄rep,k as well as the optimal levels lrep (denoted “Exact” in the plots) for three different

exogenous information states w0 at period t = 0 for the selected problem instances.

We see that the thresholds generated by S-AC quickly converge to the optimal ones in

all instances. Due to the smoothing step of S-AC, the convergence is also observed to be

relatively stable. On the other hand, the thresholds of AC, PG, QL, and SPAR tend to

either have large gaps to the optimal thresholds or converge in a noisy manner. Stability of

the basestock thresholds is particularly useful if S-AC is to be used in an online manner in

practice, where drastic changes in the policy from one time period to the next (as observed

in the competing algorithms) would be impractical. These results attest to the value of

utilizing the structural properties of the policy and value function.

2.5.4 Sensitivity Analysis

In this section, we study the impact of model parameters. We take the instance with

Rmax = 50 and |W| = 9 in Section 2.5.1 as the base instance, and vary parameters in the

model to evaluate the impact of each parameter. The results are summarized in Table 3. Each

value in the table is an average of ten replications. For each replication, we take the policy

35

Table 3: Impact of parameters on ADP algorithms for the Rmax = 50, |W| = 9 instance.

Parameter Value AC PG QL S-AC SPAR Exact

Mean total demand
30, Normal 19,037 16,009 7,287 20,313 19,077 21,332
30, Uniform 18,113 15,142 8,476 20,865 20,098 21,332
50, Normal 28,422 23,237 10,318 29,080 28,278 29,387
50, Uniform 28,023 23,112 10,286 29,077 28,150 29,387

Mean ordering cost
30 30,914 25,488 15,125 33,532 32,671 34,647
50 18,037 14,009 7,287 20,313 19,077 20,689
70 11,257 8,660 6,032 11,866 11,553 11,984

Holding cost

5 18,037 14,009 7,287 20,313 19,077 20,689
20 18,402 15,064 7,189 19,839 19,285 20,131
35 17,807 14,498 5,855 19,381 18,784 19,592
50 17,150 15,011 4,582 18,988 18,418 19,203
65 16,575 13,708 2,954 18,597 17,931 18,835

learned by the algorithm at iteration 1,000 and evaluate it by averaging 100 simulations.

The first parameter we are interested in is the demand distribution. We consider two types

of distribution, normal and uniform distributions. For each type of distribution, we consider

two values of the average demand of all PODs in a period, 30 and 50. The table shows that

the value is highly influenced by the expected demand, and that with the same expected

demand, the type of distribution has relatively little impact on the performance. We are also

interested in the impact of the costs in the model. The ordering cost has a much larger impact

than the holding cost, and any increase in the ordering cost can significantly reduce the value

of the policy. We also note that S-AC finds near-optimal policies in each of these cases.

2.6 Case Study: Naloxone for First Responders in Pennsylvania

Our case study is motivated by the need to distribute naloxone (a drug that can reverse

overdoses within seconds to minutes) amidst the ongoing opioid overdose crisis, which is

affecting communities across the state of Pennsylvania. Our case study makes use a time-

series demand model for naloxone, fit using publicly available data from [84]. Our model

36

in this section contains a five-dimensional information state Wt, which makes the standard

version of S-AC intractable. Instead, we leverage an aggregation-based version of S-AC,

whose details are introduced in Appendix A.3. In essence, the method uses clusters of

the exogenous information state (via k-means clustering) and learns a cluster-dependent

policy. When implementing the policy, we use regression to interpolate between clusters.

Our experimental results show that this simple extension of S-AC for the case of a continuous

and multi-dimensional information state is surprisingly effective.

2.6.1 Description of Naloxone for First Responders in Pennsylvania

The rate of opioid overdose deaths has quadrupled since 1999 [85], with heroin deaths

alone outpacing gun homicides in 2015 [86]. Moreover, in 2015, drug overdose deaths in U.S.

exceeded the combined mortalities from car accidents and firearms [87, 88]. By August 2020,

the number of deaths from synthetic opioids was 52% more than the previous year [89]. There

is significant benefit for drug users, family members, community members, law enforcement

officers, and medical professionals alike to have training and access to the overdose reversal

drug naloxone for use in risky situations (see Pennsylvania’s Act 139).

Table 4: Parameters used in the NFRP case study.

Parameter Value Meaning/Explanation

WTP/unit $31,000 Willingness to pay (WTP) for a unit of naloxone. Product of the next 2
entries.

WTP/QALY $50,000 WTP per quality-adjusted life-year (QALY) [90, 75].

QALY/unit 0.62 QALY adjustment factor for lives saved by naloxone. The average of util-
ities of “High-risk/low-risk prescription opioid use” and “Illicit opioid use”
in [77].

Ordering cost $185.30 Approximate retail price of an auto-injector form of naloxone [91].

Treatment
cost

$2,976 The cost for EMS visit, EMS transport to hospital, and emergency depart-
ment care [75].

Rmax 700 Capacity of the central storage.

h $10 Holding cost.

b 0 Disposal cost.

37

In this case study, we consider a somewhat simplified setting of a public health orga-

nization modeled after Naloxone for First Responders Program (NFRP), which distributes

naloxone through a Centralized Coordination Entity (CCE). We use the top five counties in

terms of overdose incidents responded to by emergency medical services (EMS) from publicly

available data [84], Allegheny County, York County, Bucks County, Dauphin County, and

Luzerne County (all of which have incident numbers over 1,000), as the five PODs (first

responders) in our case study.

The parameters of our utility function are based on values found in [90], [75], [77], and

[84]. Since the naloxone dispensed to first responders is used to reverse overdoses, we use

willingness to pay (WTP) per unit of naloxone to measure the utility per demand satisfied.

Specifically, let the WTP per unit of naloxone minus the treatment cost (EMS visit and

related costs) be the unit utility ∆u, similar to the approach taken by [75]. To reflect the

different expected demand among counties, we adopt the following expected utility function

in the case study: uw(yi, ξi) = ∆uEw

[
min(yi, Di)

]
, where Di is the demand of POD i.

The demand is computed as follows: based on data from [84], 1-9 doses of naloxone are

administrated to reverse an overdose. The demand of POD i at period t equals to a sample

of the doses of naloxone needed to reverse wi incidents, where wi is the i-th element of w.

Further details (ordering cost, capacity of storage, and holding cost) are available in Table 4.

Inventory Control Center

Centralized Coordinating Entity (CCE)

· · ·Luzerne CountyDauphine CountyBucks CountyYork CountyAllegheny County

Figure 9: The hierarchical system structure used in the case study.

The system consists of an inventory control center, a dispensing coordinator, and multiple

first responders as shown in Figure 9. Let the time horizon for the case study be T = 12

months. At each period t, the inventory control center replenishes the inventory of naloxone

after observing the recent incident history, modeled as the county-level incident count of the

last period (thus, Wt ∈ R5). The control center then decides the total amount of naloxone to

38

20
18

-0
5

20
18

-1
1

20
19

-0
5

20
19

-1
1

20
20

-0
5

20
20

-1
1

20
21

-0
5

20
21

-1
1

20
22

-0
5

Time

100

200

300

400

500

To
ta

l i
nc

id
en

ts

Historical data
VAR(1) sample paths

(a) Number of incidents and predictions.

Allegheny

0
50

100
150

200
York

60
100

140
180

Bu
ck

s

0

20

40

60

80

100

(b) Three dimensions of k-means clustering.

Figure 10: Total overdose incidents of the five PODs and k-means visualization.

dispense in the current period. This naloxone is delivered to the CCE, who makes lower-level

quantity-of-dispensing decisions based on the attribute of the arriving POD ξi, the current

available naloxone in stock (the inventory level xi), and the upper-level county-level incident

count of the last period Wt. In the case study, the exogenous information is the incident

history, which consists of the number of incidents from the five counties last month. We a

vector autoregression (VAR) time-series model with a lag of 1.

Figure 10a shows the monthly number of overdose incidents in the five counties from

January 1st, 2018 to July 31st, 2020, and 20 sample paths from the VAR(1) model for the

next 24 months. The first planning period of the case study is July 2020. To generate the

state aggregation, we sample 10,000 paths of the exogenous information, and use k-means

clustering to cluster them into 12 clusters. Figure 10b shows the first three dimensions of

the resulting clustering that is then used by S-AC.

2.6.2 Performance of the Algorithm

We denote the aggregate version of our algorithm S-AC+DPR, whose upper-level policies

are learned by aggregate S-AC (see Appendix A.3). The learned cluster-dependent upper-

level policies are then interpolated between clusters using Gaussian process regression. The

lower-level policies are solved using a discretized DP we then interpolate using linear re-

39

gression (DPR). In this section, we first study the performance of S-AC+DPR compared with

AC+DPR and a suite of heuristic strategies. Next, we illustrate the impact of the various ap-

proaches on the lower-level dispensing decisions to each POD, showing some stark differences

between the methods. Finally, we show some sensitivity analysis of the cost parameters on

the value of the learned policies and heuristics.

102 1032 × 102 3 × 1024 × 102 6 × 102

Number of iterations, log scale

3.0

3.5

4.0

4.5

5.0

Va
lu

e
of

 p
ol

icy

1e7

Mean+Even
Mean+DPR
S-AC+FCFS
S-AC+Even
S-AC+DPR
AC+DPR

Figure 11: Convergence curve of S-AC and AC compared to performance of heuristics.

0.2 0.4 0.6 0.8 1.0
Total cost 1e6

2.5

3.0

3.5

4.0

4.5

5.0

5.5

To
ta

l u
til

ity

1e7

Mean+FCFS
Mean+Even
Mean+DPR
S-AC+FCFS
S-AC+Even
S-AC+DPR
AC+DPR

Figure 12: The relationship between total cost and total utility for each method.

2.6.2.1 Convergence and Comparison with Heuristics We first describe the heuris-

tic strategies to which we compare our new policy. We make a distinction between the

upper-level and lower-level policies and consider two approaches for the upper-level and three

40

approaches for the lower-level, resulting in six combined strategies. On the upper-level, we

either take the S-AC policies (S-AC) or always replenish-up-to the expected demand and

dispense-down-to zero (Mean). The expected demand for a given exogenous information w

equals to the sum of the elements of w times the average doses per reverse (1.517), which

is computed by averaging the “dose count” in the dataset [84] (excluding the cases without

applying naloxone). On the lower-level, the three strategies are: (1) take the policy trained

using dynamic programming and interpolated to the continuous state space by linear regres-

sion (DPR), (2) evenly dispense naloxone to the five PODs (Even), and (3) follow the first-

come-first-serve rule (FCFS), in which we dispense the expected demand of each POD upon

its arrival until all the available resources are dispensed. We also apply AC+DPR as an alter-

native ADP method to which we can compare S-AC+DPR. We selected AC because it performs

relatively well in Section 2.5 and is scalable to high-dimensional problems (unlike QL or SPAR).

Figure 11 shows the cumulative performance of the policies over a year, averaged over

100 simulations (the value of policy Mean+FCFS is smaller than 3e7 and is removed from

the plot to better show the results). We see that compared with the upper-level heuristic

Mean, applying S-AC on the upper-level improves the performance (i.e., compare S-AC+DPR

with Mean+DPR and S-AC+Even with Mean+Even). This is due to the ability of the state-

dependent basestocks to adapt to dynamic state information. On the lower-level, we see

that DPR outperforms the heuristics FCFS and Even (i.e., compare S-AC+DPR with S-AC+FCFS

and S-AC+Even, and Mean+DPR with Mean+Even) significantly. The reason is that the heuris-

tics FCFS dispensing policy is unable to take advantage of the large initial gains in dispensing

resources to all of the first responders, and the heuristic Even dispensing policy is unable to

adjust the dispensing decision to a POD based on exogenous information.

Figure 12 shows the total cost vs. total utility for each method that we tested, which

helps to illustrate the trade-offs associated with each. The total cost is mostly determined by

the upper-level policy (i.e., the scatters of Mean+FCFS, Mean+Even and Mean+DPR are close on

the x-axis, and the scatters of S-AC+FCFS, S-AC+Even and S-AC+DPR are close on the x-axis).

The upper-level policy AC tends to always replenish the inventory up to a high level, which

leads to the highest total cost. The heuristics Mean considers the exogenous information by

always replenishing up to the expected demand and dispense all the inventory to the PODs;

41

this approach leads to the lowest total cost. The upper-level policy learned by S-AC is able

to adapt to the exogenous information state and usually replenishes up to a level that is

higher than the expected demand. It also sometimes retains a small portion of the inventory

to the next period. With the same upper-level policy, although the total cost is similar, the

total utility differs when applying different lower-level policy. This observation suggests that

by applying a smarter lower-level policy DPR, it is possible to achieve more utility without

spending much more cost. Overall, we see that our primary approach S-AC+DPR attains the

highest levels of utility while expending relatively moderate cost.

0 500 1000 1500 2000 2500
Total number of incidents

Allegheny
York

Bucks
Dauphin
Luzerne

(a) County-level overdose incidents.

0.50 0.75 1.00 1.25 1.50 1.75
Utility 1e7

0

1

2

3
Fr

eq
ue

nc
y

1e2

Allegheny
York
Bucks
Dauphin
Luzerne

(b) Cumulative utilities achieved by S-AC+DPR.

Figure 13: Historical overdose incidents learned by S-AC+DPR.

2.6.2.2 Utilities of Different First Responders We now investigate the individual

POD (or first responder) utilities achieved under each algorithm. Following the policy ob-

tained after 1, 000 iterations of S-AC+DPR, we get the total utility of each POD during the

entire planning horizon. Under our utility function definition and the parameters given in

Table 4, the PODs with higher levels of overdose incidents are associated with a higher

utilities than PODs fewer incidents. Thus, we expect that a good inventory and dispens-

ing policy will learn to prioritize these high-utility PODs. Figure 13 shows the histograms

of 1,000 simulations for the utilities of the five PODs alongside the historical county-level

overdose incidents.

To investigate how each method prioritizes the different PODs, we show the utilities of

each POD generated by each policy in Figure 14. S-AC+DPR leads to the highest utilities of the

first three counties, while S-AC+Even leads to the highest utility of the last county. These

42

0.5 1.0 1.5
Utility 1e7

0

1

2
Fr

eq
ue

nc
y

1e2

(a) Allegheny

0.6 0.8 1.0 1.2 1.4
Utility 1e7

0

1

2

3

Fr
eq

ue
nc

y

1e2

(b) York

0.4 0.6 0.8 1.0
Utility 1e7

0

1

2

Fr
eq

ue
nc

y

1e2

(c) Bucks

4 5 6 7
Utility 1e6

0

1

2

3

Fr
eq

ue
nc

y

1e2

(d) Dauphin

3 4 5 6
Utility 1e6

0

1

2

Fr
eq

ue
nc

y

1e2

Mean+FCFS
Mean+Even
Mean+DPR
S-AC+FCFS
S-AC+Even
S-AC+DPR
AC+DPR

(e) Luzerne

Figure 14: Comparison of the cumulative utilities for each method.

two policies perform similarly for the fourth county. Moreover, the two ADP algorithms

S-AC+DPR and AC+DPR are in the top three policies for all of the counties’ utilities.

When both levels’ policies are heuristics (i.e., Mean+FCFS and Mean+Even), the utility of

all PODs are low, with Mean+FCFS leading to the lowest utilities in all cases. When only the

upper-level is a heuristic (i.e., Mean+DPR), the utilities are still not particularly high; in fact,

this method ranks in the bottom three policies for all the PODs except for Allegheny. When

the upper-level is S-AC and the lower-level is a heuristic (i.e., S-AC+FCFS and S-AC+Even), the

utilities of the top three counties are higher than the utilities by achieved using Mean. The

policy S-AC+Even never falls in the bottom three policies; S-AC+FCFS performs reasonably but

is part of the bottom three policies for Dauphin and Luzerne. In summary, both the upper-

level and the lower-level policies play an important in this problem: a properly designed

lower-level heuristic can achieve good utility values for some of the PODs; however, intelligent

policies on both the upper and lower-levels is necessary to achieve the overall improvement.

43

Table 5: Simulated value of the policies on instances with different ordering costs (value in 10
million).

Ordering cost Mean+FCFS Mean+Even Mean+DPR S-AC+FCFS S-AC+Even S-AC+DPR AC+DPR
185 2.07 3.10 3.31 3.81 4.30 4.92 4.64
925 1.94 2.96 3.39 3.70 4.10 4.46 4.34

1,850 1.75 2.77 3.04 3.12 3.56 3.92 3.76
3,700 1.39 2.41 2.00 2.06 2.62 2.83 2.56

2.6.2.3 Ordering Cost Sensitivity Analysis Table 5 shows the effect of the ordering

cost on the performance (in terms of value achieved) of the various algorithms. The other

costs (holding cost and disposal cost) exhibited very minor effects on the value and thus

we omitted the results. Each value in the table is an average of twenty replications of

the algorithm, and for each replication of the ADP algorithms, S-AC+DPR and AC+DPR, we

take the policy learned by the algorithm at iteration 1,000 and evaluate it by averaging

100 simulations. The table shows that S-AC+DPR outperforms the other approaches in all

settings. When the ordering cost increases to 5 times (increases from 185 to 925), the value of

S-AC+DPR decreases 9.35%, and when it increases to 20 times (increases from 185 to 3,700),

the value decreases 42.48%. These results indicate that the ordering cost of naloxone has a

significant influence on the operations of a public health department.

2.6.3 Extensions

We showed how an aggregation-based version of S-AC along with k-means clustering can

be used to handle the multi-dimensional continuous features used in the case study. There

are also other possible extensions to S-AC that can make it more scalable to high-dimensional

problems. For example, shape-constrained deep neural networks [92] [93] can handle both

monotonicity and concavity via penalization of derivatives during training. In principle, our

S-AC algorithm could be extended to use techniques like these, but the same core principles

of S-AC would remain intact. We leave these investigations to future work.

44

2.7 Conclusions

In this chapter, we formulate a hierarchical MDP model for the sequential problem of

optimizing inventory control and making dispensing decisions for a public health organiza-

tion. We propose a novel, provably convergent actor-critic algorithm that utilizes problem

structure in both the policy and value approximations (state-dependent basestock structure

for the policy and concavity for the value functions). Although the algorithm was devel-

oped in the setting of our specific MDP, the general paradigm of a structured actor-critic

algorithm is likely to be of broader methodological interest. Numerical experiments show

that high-quality policies can be obtained in a small number of iterations and that the con-

vergence of the policy is significantly less noisy when compared to competing algorithms.

Lastly, we propose an aggregation-based version of our algorithm and provide a case study

for the problem of dispensing naloxone to first responders.

45

3.0 Subgoal-based Exploration via Bayesian Optimization

Reinforcement learning (RL) is becoming the standard for approaching control problems

in environments whose dynamics – usually modeled by a Markov decision process (MDP) –

are unknown and learned from data. In many applications, rewards are sparse and delayed,

and since most RL algorithms rely, at least initially, on random exploration, this can cause

an agent to require a large, often impractical number of interactions with the environment

before obtaining any rewards. Simultaneously, in real-world settings, it is often the case

that fast and cheap interactions with the environment are not available, making it nearly

impossible to apply RL algorithms. To address the two issues of sparse rewards and expensive

interactions, our goal in this chapter is to design methods for learning better exploration

policies in a cost-efficient manner.

An illustrative example comes from the field of robotics: autonomous systems have

long been used to explore unknown or dangerous terrains, including meteorite search in

Antarctica [94], exploration of abandoned mines [95, 96], and navigation of terrains on Mars

[97]. Offline policies are the norm in these situations, but it may be beneficial to introduce

agents that execute an offline-learned exploration policy to guide the learning of an online

policy that can better tailor to the details of the test environment. [97] describe the design

of a rover for the Mars Pathfinder mission, where one of the main tasks is navigating the

rover in a rocky terrain and reaching a goal. To train for the eventual mission, the engineers

utilized an “indoor arena” that mimics the true environment. The need for cost-efficient

training also arises in other settings where real robot interactions are used: automatic gait

optimization [98, 99], safe robot navigation [100], and accurate object modeling using active

touch strategies [101]. Existing approaches to exploration have largely ignored the need to be

cost-efficient during training process and therefore are challenging to apply in the scenarios

described here (see Section 3.1).

In our setup, an agent is given a fixed number of opportunities to train in environments

randomly drawn from a distribution Ξ (henceforth, we refer to these as “training environ-

ments”), with the caveat that each interaction in the training environment incurs a cost.

46

After these opportunities are exhausted, the agent enters a random test environment ξ ∼ Ξ

and executes an underlying RL algorithm to adapt to the particulars of ξ, while aided by

the higher-level exploration strategy learned for Ξ. One can view this formulation as a

meta-optimization problem with two levels: an upper-level problem to select the exploration

strategy θ (for the distribution Ξ) and a lower-level RL problem that explores with the help

of θ on an environment instance ξ ∼ Ξ.

0 2 4 6 8

0

2

4

6

8

(a) Original (b) First subgoal (c) Second subgoal (d) Third subgoal

Figure 15: Example of a dynamic subgoal exploration strategy.

Note: The first, second, and third subgoals are denoted by the circle, triangle, and cross, respectively. The
blue square is the starting location of the agent, the grey region is a wall, the yellow region is the location
of the key, and the red region is the door (goal).

We propose optimizing over a class of dynamic subgoal exploration strategies in the upper-

level optimization problem. To illustrate this concept, consider the sparse-reward environ-

ment shown in Figure 15a, where an agent is tasked with picking up a “key” in the yellow

region, in order to exit the “door” in the red region. The grey region is a wall. An RL

algorithm paired with a naive exploration strategy making use of random actions (such as

ϵ-greedy) requires a prohibitively large number of random actions before finding a suitable

path to the door though the key, while avoiding the wall. A dynamic subgoal strategy is

an ordered set of subgoals (along with associated rewards leading to each subgoal, omitted

here for illustrative clarity) that leads the agent on a trajectory where the underlying RL

algorithm is likely to discover the optimal behavior. Figures 15b-15d together show an ex-

ample of a dynamic subgoal exploration with three subgoals, which first leads the agent to

the vicinity of the key and later towards the door. Note that the situation here in Figure

47

15 is simplified in that we are actually interested in finding dynamic subgoal strategies that

work on average across a distribution of environments, rather than a single environment.

Figure 16: Outline of the BESD algorithm.

Note: During the training phase BESD optimizes an exploration strategy (represented as subgoals) on
sampled training environments. It then utilizes the learned subgoal design as an exploration strategy in the
test environment to train an effective policy within a limited number of interactions.

3.0.1 Our Contributions

Our contributions are as follows. We first propose a framework for cost-efficient learning

of a dynamic subgoal exploration strategy for a distribution of environments; in other words,

interactions with the environment are expensive during training, making most gradient-based

approaches infeasible. We instead leverage the Bayesian optimization (BO) paradigm, a well-

known class of sample-efficient optimization techniques [102, 103, 104, 105], and propose

a new acquisition function as a core ingredient of our approach. The Gaussian process

(GP) surrogate model used by the BO formulation has the ability to reason about the

learning curve of the underlying RL algorithm, enabling us to introduce two additional levers

in the BO learning process to improve cost-efficiency: (1) how long to run each episode

of training, (2) the number of replications to run in each training environment. These

levers allow us to intelligently trade-off running a longer trial versus more replications of

shorter trials; the motivation is that, given τ1 < τ2, an accurate evaluation of a particular

exploration strategy θ after τ1 steps may be more informative than a noisy evaluation of θ

after τ2 steps, even though the same number of environment interactions are used in both

48

cases. The proposed algorithm, Bayesian exploratory subgoal design (BESD), is outlined in

Figure 16. We also prove an asymptotic guarantee on the quality of the solution found by

our approach, compared to the best possible subgoal-based exploration strategy within a

given parameterized class.

3.1 Related Work

Our framework of cost-efficient learning of exploration strategies through BO appears

to be distinct from existing formulations in its strong focus on expensive environmental

interactions during training, made possible through the additional control levers of episode

length and number of replications. Nevertheless, our work is related to a number of distinct

areas of study: Bayesian optimization, exploration for RL, intrinsic reward and reward design

in RL, multi-task RL, and transfer learning. Here, we attempt to give a tour through the

various strands of relevance in each field.

3.1.1 Bayesian Optimization

Our approach follows the BO paradigm, a technique for optimizing black-box func-

tions in a sample-efficient manner, in particular for tuning ML models and design of ex-

periments [103, 102, 105, 104]. Our work also bears resemblance to methods for net-

work architecture search and optimization with multiple information sources or fidelities

[106, 107, 108, 109, 110] and in particular, the ability of our approach to select the length

of an RL training episode builds upon [111] and [112], both of which propose acquisition

functions that consider the ratio of “information gain” to cost of evaluation. Our approach

also reasons about multiple replications in an environment, similar to the problem studied

in [113] in the context of computer experiments. Our work fills a gap in the Bayesian op-

timization literature where the length of training and number of replications are selected

jointly in a cost-aware setting, a natural and powerful idea that has not been considered

in the literature. Our theoretical analysis builds upon techniques developed in [114] and

49

[111] but extend them in new directions, accounting for the ability to select the number of

replications and providing a characterization of the asymptotic suboptimality due to using

a discretized domain. (This is a common computational technique used when optimizing

complex acquisition functions [115, 116, 111], but none of the previous works have addressed

it in theoretical analyses.)

3.1.2 Exploration in Reinforcement Learning

Naive exploration strategies such as ϵ-greedy can lead to unreasonably large data re-

quirements, making exploration a commonly studied topic in RL. Most existing work focus

on proposing a fixed exploration strategy that is executed for a single underlying environ-

ment. For example, some previous related work employ approaches based on optimism

[117, 118, 119, 120], while others use value-related methods [121, 122, 123, 124] to guide

exploration. Our work departs from these existing studies in that we formulate the problem

of exploration as a meta-optimization over a parameterized class of exploration strategies

and aim to find a suitable strategy for a distribution of environments. A more closely re-

lated paper is [125], which extends the model-agnostic meta-learning (MAML) approach of

[126] to the problem of exploration for a set of tasks in a way that is similar in spirit to

our formulation. However, their gradient-based approach is not sample-efficient and costly

environment interactions during training is not considered. In addition, [125] makes use of

task-specific parameters during training, limiting their approach to a small set of environ-

ments. For a more comprehensive list of methods for exploration in RL, we refer the reader

to the excellent survey of [127].

3.1.3 Options in Reinforcement Learning

The concept of options, which are temporally extended actions represented as a policy

and a termination condition, is a way to improve the efficiency of RL through the use

of previously acquired “skills” [128, 129]. These skills might be acquired with the help of

a human, either fully user-specified (e.g., [130]) or obtained from expert demonstrations

(e.g., [131] and [132]). Of particular relevance to our work is when options are automatically

50

discovered, a problem that is well-known to be challenging. One stream of work views option

discovery to be (at least somewhat) detached from the RL reward maximization objective,

using state visitation frequencies [133, 134, 135], clustering [136], novelty [137], local graph

partitioning [138], or diversity objectives [139, 140], to name a few examples. Approaches

that consider an integrated objective for option learning like ours [141, 142, 143, 144, 145]

typically use large, neural network-based representations along with gradient-based (meta-)

optimization and do not focus on cost-aware training. In contrast, our primary concern

is the issue of expensive environment interactions during training and propose a novel BO

algorithm to tackle this problem.

3.1.4 Intrinsic Reward and Reward Design

When a particular subgoal of our proposed dynamic subgoal exploration strategy is

active, we “turn on” a set of artificial rewards that incentivize the agent to move toward

that subgoal (these rewards are then removed after the agent moves on to the next subgoal).

Hence, the literature on intrinsic reward and reward design in RL are also relevant. Intrinsic

reward (also called intrinsic motivation) helps an agent learn increasingly complex behavior

in a self-motivated way [146, 147, 148, 149, 150, 151, 152, 153, 154]. Several works from

the reward design literature are most closely related to this chapter. [155] and [156] directly

optimize the intrinsic reward parameters, via gradient ascent, to maximize the outcome

of the learning process. Similarly, [157] use intrinsic rewards in policy gradient, and treat

the parameters of policy as a function of the parameters of intrinsic rewards. Again, these

methods differ from ours in that they do not consider the costliness of training and focus on

finding intrinsic rewards for a single MDP.

3.1.5 Multi-task RL and Transfer Learning

Also related to our setting are methods that aim to train agents with the capability of

solving (or adapting to) multiple sequential decision making tasks [158, 159, 160, 161, 162,

163, 126, 164, 165, 166, 167, 168]; such methods generally fall under the umbrella of multi-

task RL or transfer learning. As before, many of these methods require the training of large

51

neural networks and are not designed for a cost-aware setting. Despite their stated purpose

of being sample-efficient in adapting to new tasks, most multi-task RL or transfer learning

approaches do not place a strong emphasis on cost-efficiency of training on existing tasks.

This is an important distinction to our work. The two papers that are closest in spirit to

our work are [158], where macro-actions are extracted from previous tasks, and [159], where

shaped rewards are learned for a set of tasks. One drawback of [158] is that it assumes access

to optimal policies for an initial set of MDPs. [159] directly uses previous value functions as

shaped rewards (thereby requiring the agent to solve some tasks from scratch) and does not

provide an avenue for cost-effective exploration.

3.2 Problem Formulation

In this section , we formulate the problem mathematically, by defining the original

(sparse-reward) MDPs and how a dynamic subgoal exploration strategy induces an aux-

iliary, “subgoal-augmented” MDPs. We then describe the iterative training process.

3.2.1 Original MDPs Mξ with Sparse Rewards

Consider a family of MDPs {Mξ = ⟨S,A, Tξ, Rξ, γ⟩} parameterized by a random variable

ξ ∼ Ξ, where S and A are the state and action spaces, Tξ is the transition matrix, Rξ :

S × A × S → R is the extrinsic reward function and γ ∈ [0, 1] is the discount factor.

In Section 3.2.3, we describe how a dynamic subgoal exploration strategy supplements the

extrinsic reward function with additional intrinsic rewards. Ξ is an arbitrary distribution,

so our model handles the case where there is an infinite number of possible environments.

The distribution Ξ is not assumed to be known. (Note that our approach also applies to

the case of a single environment if the distribution contains only one environment.) In the

sparse-reward setting, Rξ is often only non-zero when the agent lands in a small number of

“goal” states. We assume common state and action spaces across the distribution of MDPs

(i.e., they are independent of ξ), while the reward and transition functions vary with ξ.

52

Given S and A, a policy π is a mapping such that π(· | s) is a distribution over A for any

state s ∈ S. For any ξ ∼ Ξ, define the value function of policy π at any state s as

V π
ξ (s) = E

[
∞∑
t=1

γt−1Rξ(st, at, st+1)
∣∣ π, s], (3.1)

where s is the initial state and at ∼ π(· | st). For the MDP Mξ, its optimal value function

and associated optimal policy are

V ∗
ξ (s) = sup

π
V π
ξ (s) and π∗

ξ (s) ∈ argmax
a∈A

E
[
Rξ(s, a, s

′) + γV ∗
ξ (s

′) | s, a
]
.

When the extrinsic reward function Rξ is sparse, it produces little to no learning signal for

the agent. Under most RL algorithms, the agent essentially performs random exploration

and does not start learning until the first time it wanders to the goal. The time it takes to

find the goal under a random exploration strategy, such as ϵ-greedy, is often prohibitively

long. For example, in a 20× 20 gridworld with a sparse reward, the goal is not even reached

for the first time by a standard Q-learning agent (let alone find an optimal policy) after 10

million interactions.

3.2.2 Dynamic Subgoal Exploration Strategies

Now, we formally define a dynamic subgoal exploration strategy, which uses a sequence

of subgoals, along with a reward shaping function for each subgoal, to provide an artificial

and intrinsic reward signal for the agent that, if properly designed, can direct the agent to

explore useful parts of the state space.

Suppose there are K subgoals and let θ ∈ Θ represent a subgoal parameterization. Let

Gθ,j ⊆ S be a set of “target” states associated with the kth subgoal, for k ∈ {1, 2, . . . , K}
(i.e., if the agent lands in some state in Gθ,k, then the kth subgoal is considered “completed”).

In addition, we define an artificial reward function gθ,k(s, s
′) that, when activated, provides

a sequence of rewards that leads the agent toward subgoal k. Concretely, we use potential-

based reward shaping from [147] to achieve this. Let Φθ,k be a potential function over the

full state space S such that target states in Gθ,k have the highest potential. Then, let

gθ,k(s, s
′) = γΦθ,k(s

′)− Φθ,k(s). (3.2)

53

The definition of gθ,k(s, s′) in (3.2) can be interpreted as the difference in potential between

states s′ and s (with discount γ). This potential difference motivates the agent to move

towards the target states (high potential) of kth subgoal. Thus, a parameterization of a set

of K subgoals is fully described by

(
{Gθ,k}Kk=1, {gθ,j}Kk=1

)
,

the locations and associated reward shaping functions.

Example 3.2.1 (Key and Door Environment). Let us consider a distribution of maze MDPs

with states {(i, j)}1≤i,j≤10 and a sparse reward in the upper left corner at (0, n). In addition,

suppose that the agent needs to pick up a key in order to receive the reward at (0, n), but

the location of the key is uncertain but likely to be in the right half of the room. The

environment illustrated in Figure 15 can be considered to be one possible realization from

this distribution of mazes. Now, let us consider a subgoal design with K = 3 subgoals. The

simple parameterization θ = (i1, j1, i2, j2, i3, j3), with

Gθ,k = {(ik, jk)} and Φθ,k(s) = e−∥s−(ik,jk)∥2

specifies that for k ∈ {1, 2, 3}, the kth subgoal is located at a single state (ik, jk) and the

artificial reward potential is a Gaussian centered at (ik, jk). Using Figure 15 as a visual

reference, one can imagine that the subgoal design θ = (1, 2, 8, 4, 2, 8) would be useful in

guiding the agent toward the vicinity of the key on the right side of the room and then toward

the vicinity of the goal. Once the agent is in the correct vicinity, the underlying RL algorithm

can discover the precise locations of the key and goal in the particular environment realization

more quickly.

For the types of navigation tasks that we are concerned with in this chapter, the di-

mension of the subgoal parameterization θ need not scale with the dimension of the state s,

which would pose a potential scalability issue. Instead, one general rule-of-thumb to keep in

mind is that for a dynamic subgoal exploration strategy to be effective in navigation tasks,

the dimension of θ only needs to scale with the number components of s that pertain to the

spatial positioning of the agent. The next example provides an illustration.

54

Example 3.2.2 (Mountain Car Environment, with dim(θ) < dim(s)). Consider the well-

known Mountain Car problem, a continuous control task where an underpowered car, operat-

ing in a one-dimensional space, must make its way up a steep mountain [169, Example 10.1].

The state is two-dimensional, s = (x, ẋ), where x ∈ [−1.2, 0.5] is the position of the agent

while ẋ ∈ [−0.07, 0.07] is its velocity. A possible subgoal design with K = 2 is θ = (i1, i2),

with

Gθ,k = {(ik, ẋ) | ẋ ∈ [−0.07, 0.07]} and Φθ,k(s) = e−(x−ik)
2

for each k. In other words, the agent reaches a subgoal target state if its position is ik, for

any value of its velocity. Also, the artificial reward only depends on the spatial position x

rather than the full state (x, ẋ). In Section 3.4, we give numerical results for exactly this

example.

One could imagine that the concept illustrated in Example 3.2.2 also applies to more

complex robotics environments with a high-dimensional state, but where the components

related to the spatial positioning is relatively small, meaning that the subgoal parameteriza-

tion (and the resulting BO problem) is often of much lower dimension than that of the state

itself.

3.2.3 Subgoal-Augmented MDPs Mξ,θ

Now that we have described how a particular subgoal design is parameterized, the re-

maining question is how these are integrated in a useful way into the original, sparse-reward

MDP described in Section 3.2.1. We propose the notion of a subgoal-augmented, auxiliary

MDP, where the K subgoals are sequentially “activated.” This way, we encode subgoal order-

ing into the exploration strategy, meaning that the agent only moves on to the next subgoal

after finishing the current one. Without ordering, rewards from multiple subgoals can inhibit

the agent’s progress.

LetMξ,θ denote an auxiliary, subgoal-augmented MDP based on an original MDPMξ,

except that it is includes rewards and transitions associated with the dynamic subgoal explo-

ration strategy θ. We introduce an auxiliary state i ∈ I := {0, 1, . . . , K}, where i represents

the number of subgoals reached by the agent so far. Initially, we have i0 = 0. The state of

55

the Mξ,θ is (s, i) ∈ S × I and the transition for the auxiliary state is i′ = i + 1{s′ ∈Gθ,i+1},

where we take Gθ,K+1 = ∅. This means the auxiliary state i is updated to i+ 1 whenever s′

reaches the next subgoal. Let the intrinsic reward of the agent be:

Gθ(st, it, st+1) =
K∑
k=1

1{k=it} · gθ,k+1(st, st+1),

where the indicator function encodes the logic that if it subgoals have been completed so

far, then the current target is subgoal it + 1 and only the rewards leading to subgoal j + 1

should be active. The new reward function consists of both extrinsic and intrinsic rewards:

R̂ξ,θ(s, i, a, s
′) = Rθ(s, a, s

′) +Gθ(s, i, s
′).

The value function for the new MDPMξ,θ is written

V̂ π̂
ξ,θ(s, i) = E

[∞∑
t=1

γt−1R̂ξ,θ(st, it, at, st+1) | π̂, s, i
]
, (3.3)

where π̂(·|s, i) is now a policy defined on the new state space S × I.
Figure 17 gives an example when all the pieces are considered. Figure 17a shows the

original MDP environment Mξ, where the dark gray cells are walls and the light gray rep-

resent uncertainty in the size of the “doors.” Figure 17b shows the possible rewards the

agent can encounter in the augmented MDP Mξ,θ, for a random selection of subgoals θ.

The sparse reward is represented by the red bar in the corner and the first subgoal is the

one that is farther from the goal. Both subgoals are singletons and the potential functions

are radial basis functions centered at the subgoal locations, similar to the parameterization

described in Example 3.2.1. Note that this randomly selected set of subgoals θ is not a good

exploration strategy for the environment in Figure 17a (as it leads the agent toward a wall),

motivating the need for optimizing their locations, as we discuss in the next section.

56

0 5 10 15
0

5

10

15

(a) 20× 20 Gridworld Environment (b) Goal and Subgoal Rewards

Figure 17: An example that visualizes an environment and a random dynamic subgoal exploration
strategy along with the rewards of the associated subgoal-augmented MDP.

3.2.4 Optimizing the Exploration Strategy

Selecting the best subgoal design θ depends on the agent’s underlying learning algorithm,

which could in principle be any RL algorithm that uses intermediate rewards for learning.

However, for the time being, we do not place any restrictions on the RL algorithm and refer

to it as RL-ALGO. In the numerical results of Section 3.4, our agent learns via Q-learning [170].

Let us use the notation RL-ALGO[τ,M] to refer to the policy learned by RL-ALGO on MDP

M after τ training interactions. We remind the reader that the subgoal-based exploration

strategy is fixed before the test environment is revealed, so that the sequence of events in

the test phase is as follows:

1. A subgoal design θ for exploration is selected.

2. The agent is placed in a new environment ξ.

3. The agent uses the subgoal-augmented MDP Mξ,θ and an RL algorithm with a budget

of τmax interactions to learn a policy RL-ALGO
[
τmax,Mξ,θ

]
.

4. The agent’s policy is evaluated in the original MDP with extrinsic reward function Rξ.

57

Our goal is to find an exploration strategy θ ∈ Θ such that a policy trained using θ behaves

well in the original MDP situation in expectation:

max
θ∈Θ

E

[∞∑
t=1

γt−1Rξ(st, at, st+1)
∣∣ π̂τmax

ξ,θ , s0, i0

]
where π̂τmax

ξ,θ = RL-ALGO
[
τmax,Mξ,θ

]
, (3.4)

where (s0, i0) is the initial augmented state. Note that the dependence on the subgoal-

augmented MDPMξ,θ is through the policy learned from it, π̂τmax
ξ,θ . The expectation in (3.4)

is taken over the random choice of a test environment ξ, the stochastic dynamics withinMξ,

and the stochasticity of the learning algorithm itself. Moreover, it is convenient to explicitly

define the following:

u(θ, τ) = E

[∞∑
t=1

γt−1Rξ(st, at, st+1)
∣∣ π̂τ

ξ,θ, s0, i0

]
where π̂τ

ξ,θ = RL-ALGO
[
τ,Mξ,θ

]
.

Note that the objective function in (3.4) is u(θ, τmax), but the notation u(θ, τ) will be useful

in Section 3.3, where we discuss using fewer than τmax interactions to learn about u(θ, τmax)

as a way of reducing cost.

3.2.5 Iterative Training and Additional Cost-Reduction Levers

In our setting, we observe the performance of exploration strategies and the resulting

policies in a sequence of training environment realizations ξ1, ξ2, . . . , ξN drawn from the

MDP distribution Ξ. By default, each complete evaluation of the objective function in (3.4)

u(θ, τmax) for a fixed θ requires running RL-ALGO for τmax interactions. Since each interaction

in the training environments is expensive (e.g., in robotics applications, this could involve

time, labor, and equipment), we want to consider ways to reduce the number of training

interactions. To do so, we propose two additional levers:

1. Maximum episode length. For each training environment ξn, we allow the specifica-

tion of a maximum episode length τn chosen from a finite set T . In the next section, we

describe our probabilistic model of the RL training curve, which allows observations of

short episodes to be informative about the final performance. This also can reduce the

risk of spending too many interactions with an unpromising exploration strategy.

58

2. Multiple replications. We can reduce the variance of performance observations by

averaging over the observed cumulative reward over qn i.i.d. replications, for a total of

τnqn interactions in training environment ξn+1. We suppose that qn is chosen from a

finite set Q. The idea here is that even with the same number of total interactions, a

lower variance observation of a “preliminary” result could be more informative than a

higher variance observation of the “full” result.

To summarize, three decisions are made at the beginning of each training opportunity n:

(1) a choice of subgoal design θn, (2) the maximum episode length τn, and (3) the number

qn of replications of the training episode to use for this particular θn. For each of the qn

replications, we obtain a policy

π̂τn

ξn+1,θn = RL-ALGO
[
τn,Mξn+1,θn

]
,

before observing a estimate of its performance. After the qn training replications are com-

plete, we compute the average performance over the qn replications. Written more succinctly,

our observation in episode n takes the form

yn+1(θn, τn, qn) = u(θn, τn) + εn+1
env + εn+1

rep (qn),

where εn+1
env represents the deviation from the u(θn, τn) due to the random environment ξn+1,

while the observation noise εn+1
rep (qn) represents the noise that can be reduced via multiple

replications, i.e., the noise in π̂τn

ξn+1,θn due to a sample run of RL-ALGO. Thus, εn+1
rep (qn) depends

on the number of replications qn. Naturally, a larger number of replications implies a smaller

observation noise. Note that the observations {yn} are i.i.d., since a new MDP is sampled

in each iteration. The total training cost incurred is cumulative number of interactions:∑N−1
n=0 τnqn.

After training opportunities 0, 1, . . . , N − 1, we reach the test phase and commit to a

final subgoal design θNrec. This design is evaluated on the test MDP ξN+1 ∼ Ξ with an agent

that has a full budget of τmax interactions.

59

3.3 Bayesian Optimization for Cost-Efficient Exploration

The proposed BO approach for learning a dynamic subgoal exploration strategy consists

of two components: a tailored probabilistic model and an acquisition function for selecting

the next subgoal design, the maximum episode length, and the number of replications to

run. Although shorter episodes and smaller number of replications are more cost-efficient,

they also decrease the chance of reaching the goal and produce higher observation noise; the

acquisition function must carefully trade off these downsides with the cost of interactions.

We call this the Bayesian Exploratory Subgoal Design (BESD) acquisition function.

3.3.1 Surrogate Model

In order to enable the ability to dynamically select the maximum episode length of

training, as described in Section 3.2.5, our approach uses a GP surrogate model over u(θ, τ),

rather than u(θ, τmax). In other words, our model is a function of both θ and τ rather than

just θ, enabling it to capture the performance of a policy trained with subgoals θ, for a variety

of episode lengths. Assume that Θ ⊆ Rm. We place a GP prior f on the latent function u

with mean function µ : Θ× T → R and covariance function k : (Θ× T)× (Θ× T) → R+.

More precisely, we set µ to the mean of an initial set of samples and use a multidimensional

product kernel, based on the kernel used in [112], to capture the structure of the RL learning

curve:

k
(
(θ, τ), (θ′, τ ′)

)
= kθ(θ, θ

′) kτ (τ, τ
′), (3.5)

where the first kernel kθ is the (5/2)-Matérn kernel and kτ is a polynomial kernel kτ (τ, τ ′) =

ϕ(τ)⊺ Σϕ ϕ(τ
′) with ϕ(τ) = (1, τ)⊺ and hyperparameters Σϕ. Note that the covariance un-

der k is large only if the covariance is large under both kθ and kτ . We make the modeling

assumption that εn+1
env and εn+1

rep (qn) are independent, zero mean, and normally distributed

with variances σ2
env and σ2

rep/q
n, respectively. Although the assumption of normality is com-

monplace in BO for tractability of the posterior [105], other noise distributions can be used

through an appropriate likelihood function (but this is often difficult to know a priori). This

allows us to take advantage of standard GP machinery to analytically compute the posterior

60

on f conditioned on the history after n steps. This posterior is another GP, whose mean

and kernel functions are denoted µn(θ, τ) and kn((θ, τ), (θ′, τ ′)); the exact expressions can

be found in, e.g., [171].

We remind the reader that the dimensionality of the GP surrogate model is dim(Θ)+ 1,

i.e., the dimension of the subgoal parameterization, along with an additional dimension for

τ . As illustrated in Example 3.2.2, it will often be the case for navigation domains that

the dimension of the subgoal parameterization is smaller than that of the state space of

the underlying RL problem (due to the relatively small number of spatial components of

the state). Therefore, dynamic subgoal exploration strategies can be tractably modeled and

optimized for broad classes of navigation problems, even with vanilla GPs. Of course, when

the need arises to optimize for high dimensional subgoal parameterizations, one may opt

for scalable extensions of the model and optimization formulation (e.g., [172, 173, 174, 175]

along with many more recent papers). We leave extensions in this direction to future work

and focus on a more standard setting.

3.3.2 Acquisition Function

As described above, our framework proceeds in iterations, selecting one set of subgoals θn

along with τn and qn, to be evaluated in each training environment. We now propose the

acquisition function for making these evaluation decisions. An overview of the BO setup is

given in Algorithm 2.

Suppose the training budget is used up after training iterations 0, 1, . . . , N−1. Then, the

optimal risk-neutral decision is to use subgoals on the test MDP ξN+1 that have maximum

expected performance under the posterior. The expected score of this choice is µn
∗ where

µn
∗ := maxθ µ

n(θ, τmax), (3.6)

where µn(θ, τmax) = En[f(θ, τmax)]. Here En is the conditional expectation with respect to

the history after the first n observations: (θ0, τ 0, q0, y1, . . . , θn−1, τn−1, qn−1, yn). Note that

although we are allowed to use fewer than τmax interactions in training environments to

reduce cost, the agent uses its full budget for the test MDP ξN+1.

61

Algorithm 2: Bayesian Exploratory Subgoal Design

Input: Set n = 0. Estimate hyperparameters of the GP prior f using initial

samples.

Output: A subgoal recommendation θNrec that maximizes µN(θ, τmax).

1 for n = 1, 2, . . . , N do

2 Compute next decision (θn, τn, qn) according to the acquisition function (3.7).

3 Train in environment ξn+1 augmented with θn (Mξn+1,θn) using levers (τn, qn).

4 Observe yn+1(θn, τn) and update posterior on f .

5 end

We take the knowledge gradient, one-step lookahead approach [114, 176], i.e., we imagine

for each training MDP that it is the last opportunity before the test MDP and act optimally.

Full lookahead approaches require solving an intractable dynamic programming problem;

however, we show that nonetheless, the one-step approach is asymptotically optimal in The-

orem 3.3.1 and Theorem 3.3.2. If we evaluate (θ, τ, q), i.e., the subgoals θ for τ steps and q

replications, then the expected gain in performance in the test MDP of the recommended

exploration strategy after the evaluation, based on (3.6), with respect to the current best is

νn(θ, τ, q) = En

[
µn+1
∗ | θn = θ, τn = τ, qn = q

]
− µn

∗ .

Therefore, the one-step optimal strategy is to choose the next subgoals θn, maximum episode

length τn, and number of replications qn so that νn is maximized.

However, this strategy would generally allocate a maximum number of steps τmax and

replications qmax for the evaluation of the next subgoal design, as observing τmax during

training is most informative of the test conditions, and repeating for qmax replications reduces

the noise maximally. In other words, this strategy does not consider the cost of training.

Hence, we propose an acquisition function that maximizes the gain in performance per effort,

resulting in a policy that selects

(θn, τn, qn) ∈ argmax
θ,τ,q

νn(θ, τ, q)

qτ
. (3.7)

62

By construction BESD is Bayes optimal (per unit cost) for the last step, in expectation, as

stated formally in the following proposition.

Proposition 3.3.1. The acquisition function of (3.7) achieves an optimal expected infor-

mation gain per unit cost for the case of N = 1.

The optimization problem (3.7) is challenging when the domain Θ is continuous, so we

take the approach of replacing it with a discrete domain Θ̄ ⊆ Θ (for example, this could be

selected by a Latin Hypercube design). This approach has been applied successfully in other

knowledge gradient style acquisition functions [115, 116, 111]. Unlike previous work however,

we provide a novel theoretical guarantee on the asymptotic suboptimality of a discretized

optimization domain; see Theorem 3.3.2 in the next section.

3.3.3 Theoretical Analysis

We now provide our main theoretical results on the asymptotic optimality of BESD.

Detailed proofs can be found in Appendix B.1. For convenience in this section, we suppose

µ(θ, τ) = 0 for all (θ, τ), and that the kernel k(·, ·) has continuous partial derivatives up to

the fourth order. Recall that θNrec ∈ Θ̄ is the final recommendation made in iteration N :

θNrec ∈ argmax
θ∈Θ̄

µN(θ, τmax).

Our first theorem is concerned with the finite, discretized optimization domain Θ̄.

Theorem 3.3.1. The acquisition function described in (3.7) has the property of asymptotic

optimality with respect to Θ̄, i.e.,

lim
N→∞

f(θNrec, τmax) = max
θ∈Θ̄

f(θ, τmax),

almost surely. That is, the recommended design θNrec becomes optimal as N →∞.

63

If the optimization domain Θ̄ = Θ, then Theorem 3.3.1 suffices. Unfortunately, for many

applications, the subgoal parameterizations will naturally be continuous. Next, we provide

an additive bound on the difference between the solution of BESD in Θ̄ and the unknown

optimum in Θ, as the number of iterations N tends to infinity.

We use a probabilistic Lipschitz constant of a GP from [177] to quantify the performance

with respect to the full, continuous subgoal parameter space. We make use of the fact that

the derivative df(θ, τmax)/dθi is another GP with covariance

k∂i(θ, θ′) =
∂2

∂θi∂θ′i
k
(
(θ, τmax), (θ

′, τmax)
)
,

for all i = 1, 2, . . . ,m [178, Section 9.4]. See also [179] and [180] for other uses of this

property. For each i = 1, 2, . . . ,m, define the constant

Li
δ = k∂

max

√
2 log

(2m
δ

)
+ 12
√
6mmax

{
k∂

max,
√
L∂i
k max

θ,θ′∈Θ
dist(θ, θ′)

}
, (3.8)

where L∂i
k be a Lipschitz constant of the kernel k∂i and k∂

max = maxθ∈Θ
√
k∂i(θ, θ).

Theorem 3.3.2. The acquisition function of (3.7) has bounded asymptotic suboptimality

with respect to the original domain Θ in the sense that with probability at least 1− δ, it holds

that

limN→∞ f(θNrec, τmax) ≥ maxθ∈Θ f(θ, τmax)− d · ∥Lδ∥

where d = maxθ∈Θminθ′∈Θ̄ dist(θ, θ′) is a measure on the “coarseness” of the discretization

and Lδ is the vector (L1
δ , L

2
δ , . . . , L

m
δ), with each Li

δ defined as in (3.8).

3.4 Numerical Experiments

We now provide numerical experiments to demonstrate the cost-effectiveness of the BESD

framework. BESD was implemented in Python 2.7 using the MOE package [181] and will be

open-sourced upon acceptance of the manuscript.

In the experiments that follow, we use the proposed BESD approach to optimize dynamic

subgoal exploration strategies consisting of two or three subgoals. BESD is given a few choices

64

for the episode length τ and number of replications q (values reported for each benchmark

below). Each replication of the BESD is given an initial set of 10 observations for each value

of τ (these initial observations incur interaction costs just like future observations). The

potential function at state s with the jth subgoal activated is Φj(s) = w1 exp[−0.5(s −
j)2/w2], where the “height” is w1 = 0.2 and “width” is w2 = 10.

3.4.1 Baseline Algorithms

Given the somewhat unique positioning of the BESD framework, it is important for us

to compare against from several streams of literature. Due to our strong focus on cost-

efficiency, non-gradient-based approaches are from the BO literature are particularly relevant.

Two of the most common approaches are expected improvement [182, 183] and lower/upper

confidence bound, often called “GP-UCB” when used with a Gaussian process model [184,

185]. “Lower” when minimizing the objective and “upper” when maximizing. Expected

improvement (EI) allocates one sample in each round, selecting a point that maximizes the

expected improvement beyond currently sampled points:

EI(θ) = En

[(
min{y1, . . . , yn} − yn+1(θ, τmax)

)+]
.

In each iteration, we evaluate the EI selection using τmax iterations. Lower confidence bound

(LCB) controls the exploration-exploitation trade-off using a “bonus term” proportional to

the standard deviation at each point:

LCB(θ) = µn(θ, τmax)− κ
√

kn((θ, τmax), (θ, τmax)).

The parameter κ is set to 2. Both EI and LCB are implemented in Python 2.7 using the

GPyOpt package [186].

65

0 2 4 6
Total cost ×105

1

2

Lo
g

of
 r

eg
re

t
QL
TQL
HB
EI

LCB
BESD
MAML

(a) GW10 Domain

0 1 2 3 4 5 6 7
Total cost ×106

1.5

2.0

2.5

3.0

Lo
g

of
 r

eg
re

t

QL
TQL
HB
EI

LCB
BESD
MAML

(b) GW20 Domain

0.0 0.5 1.0
Total cost ×106

0

5

10

15

R
ew

ar
d

QL
TQL
HB

EI
LCB

BESD
MAML

(c) TR Domain

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Total cost ×107

1.8

2.0

Lo
g

of
 r

eg
re

t QL
TQL
HB

EI
LCB

BESD
MAML

(d) MC Domain

0 2 4
Total cost ×105

2.2

2.4

2.6

Lo
g

of
 r

eg
re

t

QL
TQL
HB
EI

LCB
BESD
MAML

(e) KEY2 Domain

0 2 4
Total cost ×105

2.2

2.4

2.6

Lo
g

of
 r

eg
re

t

QL
TQL
HB
EI

LCB
BESD
MAML

(f) KEY3 Domain

Figure 18: Performance as a function of the total training costs.

Note: The curves are averaged over 50 replications of the meta-optimization problem and the error bars
indicate ± 2 standard errors of the mean. For each replication, to assess the performance at a particular
point in the process, we take its latest recommendation and test it by averaging its performance on a
random sample of 200 test MDPs (i.e., ξN) The x-axis is the cumulative cost including the initial sampling
cost. The y-axis is typically the log regret, where regret is defined as the number of additional steps needed
to reach the goal when compared to the optimal policy. The exception is in (c), where the y-axis is
discounted reward (since in TR, the performance is measured by both reward and steps). Note that the
curves associated with the BO methods, BESD, LCB, EI, start later due to the use of a set of initial points
for initializing the GP model.

66

We also compare against two “default RL” baselines, that do not incorporate an aspect

of tuning the exploration strategy. The first baseline is the Q-learning algorithm (QL) [40]

with no subgoals or reward shaping: that is, we directly run QL on environment ξN for

τmax interactions. The second one is a heuristic based on the approximate Q-values learned

by QL, which we call “transfer” Q-learning (TQL): for the test instance, we initialize the

Q-values using the previously stored results from a randomly chosen training environment.

This heuristic is inspired by the idea of policy reuse proposed in [161] for transferring learned

strategies to new tasks.

An alternative to applying BO or bandit algorithms to hyperparameter optimization is

the idea of adaptive configuration evaluation, which focuses on improving the throughput of

configuration evaluation by quickly eliminating ones that are not promising. From this line of

thinking, the Hyperband algorithm (HB) of [110] stands out as a popular and representative

approach. It treats hyperparameter optimization as a pure-exploration infinite-armed bandit

problem; it uses sophisticated techniques for adaptive resource allocation and early-stopping

to concentrate its learning efforts on promising designs. Setting η = 3 (the default value)

and R = 81, HB consists of ⌊logη R⌋ rounds. The first round starts with R samples of

subgoal designs θ from a Latin hypercube sample. Following HB’s motivation of early-stopping

unpromising designs, each θ is evaluated for τmin steps. The best 1/η-fraction designs are

kept for the next round. In round i, Hyperband samples R/ηi−1 subgoal designs to evaluate

for τmin η
i−1 steps.

Finally, we chose a representative algorithm from the multi-task RL literature, the well-

known model-agnostic meta-learning algorithm (MAML) proposed by [126]. MAML consists of

two optimization loops. The outer loop provides an initialization to the inner loop, and the

inner loop solves new tasks with a small number of examples. As with QL and TQL, MAML

does not make use of subgoal exploration and uses neural network representations as in the

original paper [126]. It utilizes stochastic gradient descent in both loops to optimize the

parameters. MAML is implemented in Python 3.6 using [187]. To keep consistent with other

baselines, the batch size of the outer loop is 1.

67

3.4.2 Windy Gridworlds with Walls

A A
B

B

Random Wall (1x6)

(a) GW10 Domain

A

A

Random Doors (1x8)

(b) GW20 Domain

Figure 19: Recommendation paths for GW10 and GW20.

Note: The blue and red shaded regions denote the starting points and goals, respectively. Dark and light
gray regions possible locations of walls and doors, respectively. Each plot displays four realizations of the
“recommendation paths” of BESD. Each color corresponds to one sample realization, and the color becomes
darker as n increases, with the lightest points being the initial samples. The circles and triangles represent
the first and second subgoals, respectively, of the exploration strategy. The ‘A’ and ‘B’ labels point out two
example sets of subgoals displaying notable behaviors.

The first set of environments (GW10) is a distribution over 10 × 10 gridworlds, where

the goal is to reach the upper left square that is shaded red in Figure 19a to collect a reward

of one. The agent starts from the lower-left grid square shaded in blue and may in each

step choose an action from the action space consisting of the four compass directions. Each

gridworld is partitioned by a wall into two rooms. The wall, randomly located in one of the

middle five rows in the gridworld, has a door located on four grid squares on its right. The

agent will stay in the current location when it hits the wall.

There is a small amount of “wind” or noise in the transition: the agent moves in a random

direction with a probability that is itself uniformly distributed between 0 and 0.02 (thus, a

68

particular environment instance drawn from the distribution has a random wall location and

wind probability).

We use T = {200, 600, 1000} for the possible values of τ and Q = {5, 20} for the possible

values of q. We parameterize the exploration strategy using two subgoals, whose locations

are optimized. Subgoal locations are limited to the continuous subset of R2 which contains

the grid, i.e., Θ = ([0, 10] × [0, 10])2 for GW10. Figure 18a shows the performance of the

recommendations by BESD as a function of total expended cost compared to the baselines.

We will discuss the baseline comparisons in more detail in Section 3.4.7.

3.4.2.1 Recommendation Paths for GW10 In order to visualize the qualitative be-

havior of BESD, we show in Figure 19a the evolution of the recommended subgoals over time

(iterations), a concept that we refer to as a recommendation path. The plot displays four rec-

ommendation path realizations of BESD using distinct colors. Within each color, the lightest

points are the initial samples while the darker points represent recommendations for larger

n. Also within each color, the circles represent the first subgoal of the exploration strategy,

while the triangles represent the second subgoal. We point out two types of exploration

behaviors discovered by BESD in Figure 19a:

• Behavior ‘A’: The pairs of regions labeled ‘A’ are the final recommendations of the orange,

green, and purple sample paths. The strategy leads the agent toward the upper right

corner, in order to bypass the wall, and then after that, directly towards the goal.

• Behavior ‘B’: The final recommendation of the red sample path is labeled by ‘B.’ Note

that in behavior ‘A’, a direct path to the first subgoal (upper right corner) is blocked

by the random wall for some realizations of the environment. Behavior ‘B’ might be

interpreted as a slight remedy of this situation by targeting a lower region of the right

edge, creating a more direct path around the wall.

3.4.3 Larger, Three-Room Windy Gridworlds

The second domain (GW20) is a distribution of larger 20 × 20 gridworlds with three

rooms separated by two walls. As shown in Figure 19b, the walls are randomly located in

69

the middle rows (dark gray). A door of size 8 is randomly located somewhere within the

wall, shaded in light gray. The starting location is the blue square in the lower left and

the goal is displayed in red in the upper right. As in GW10, we optimize the locations of a

two-subgoal exploration strategy, with Θ = ([0, 20]× [0, 20])2. The noise due to wind is the

same as in GW10. In this experiment, we consider the case of only allowing BESD to select

the maximum episode length from T = {4000, 7000, 10000}, while keeping q = 20 fixed. The

performance comparison with the baseline algorithms is shown in Figure 18b.

3.4.3.1 Recommendation Paths for GW20 Recommendation paths are shown in

Figure 19b. Unlike the case of GW10, all four of the realizations converge to roughly the

same exploration strategy, labeled by ‘A.’ Focusing on the lighter red and orange circles, we

can notice a trend of the first subgoal initially being placed (naively) near the goal, but as

learning progresses, they move downward toward the entrance of the first door. The second

subgoal converges toward the exit of the second door, moving the agent near the goal.

Regarding the placement of the first subgoal near the goal and inducing a direct path,

it is worth pointing out this strategy might work for some environments (i.e., those where

the first door is at its leftmost position and the second door is at its rightmost position).

However, BESD learns that in order to perform well across the distribution of environments,

the strategy of first moving rightward is better.

3.4.4 Treasure-in-Room

The third domain (TR) is a distribution of 10× 10 gridworlds with a “treasure” hidden

in a small room; see Figure 20a. The light green area shows the possible positions of the

treasure. The agent gets a reward of 10 upon entering the square with treasure, and a

reward of 10 upon reaching the goal. The cumulative reward, however, is zero if the agent

does not find the goal within the interaction budget. The discount factor is set to γ = 0.98

to encourage policies that collect the reward earlier. We set T = {400, 1200, 2000} and

Q = {5, 20}. See Figure 18c for the comparison to baselines.

70

A

A

B
B

Random Treasure (1x1)

(a) TR Domain

A A

BB

(b) MC Domain

Figure 20: Recommendation paths for TR and MC.

Note: The first panel, Figure 20a, largely follows the same design as Figures 19a and 19b, except that the
green squares represent possible location of the treasure. In the second panel, Figure 20b, since the
location of the mountain-car is one-dimensional, we visualize the four recommendation paths by spacing
them vertically to avoid crowding. The initial location of the car is colored in blue, while the goal is in red,
corresponding to the overlay of the mountain.

3.4.4.1 Recommendation Paths for TR The recommendation paths for TR are in

Figure 20a. We observe that two strategies were discovered by BESD across these four real-

izations:

• Behavior ‘A’: This appears to be the ideal behavior and was discovered in the orange,

purple, and red sample paths: first lead the agent to the treasure and then toward the

goal through the upper right. It is also notable that the first subgoal is located at the

bottom of the room, meaning that wherever the treasure turns out to be, the agent can

pick it up without backtracking.

• Behavior ‘B’: The green sample path’s final recommendation coincides with the (ap-

parently suboptimal) exploration strategy denoted by ‘B’ simply leads the agent to the

treasure, but does not provide any guidance toward the goal. We highlight that this is an

71

instance where BESD’s learning is not yet complete, evidenced by the fact that behavior

‘B’ is often recommended in earlier iterations of the orange sample path. In that case

however, BESD eventually discovers behavior ‘A’ in later iterations.

3.4.5 The Mountain Car Problem (MC)

The mountain car (MC) domain, as we introduced in Example 3.2.2, is a commonly used

RL benchmark environment that tests an agent’s ability to explore, as it is required to go in

the opposite direction of the goal in order to reach the top of the mountain; see, e.g., [169,

Example 10.1]. For this experiment, we created a distribution of environments Ξ by random-

izing the starting location of the agent, which is chosen uniformly from [−0.6,−0.4]. Here,

we set T = {4000, 7000, 10000} and Q = {10, 50}. Figure 18d compares the performance of

BESD to baseline approaches.

3.4.5.1 Recommendation Paths for MC The subgoal-pairs discovered by BESD are

shown in Figure 20b; they tend to be on opposite sides of the agent’s starting location,

thereby creating back-and-forth movement needed to generate momentum and move up the

mountain. It is worth noting that the symmetric behaviors of going from left to right (Be-

havior ‘B’ in Figure 20b, for the orange sample path) and going from right to left (Behavior

‘A’, exhibited by the green, red, and purple sample paths) can both be found in the results

of BESD.

3.4.6 Key-Door with Highly Varying Key Locations (KEY2 and KEY3)

In our last experiment, we test for the situation where the distribution of environments

Ξ contains environments that might vary dramatically from one another. We also consider

how the exploration behavior changes when we add an additional subgoal to the strategy.

In domains KEY2 (with two subgoals) and KEY3 (with three subgoals), we consider

a 10 × 10 gridworld with one wall, where a “key” needs to be picked up before opening a

closed door at the upper-right corner of the grid. The location of the key, however, is highly

varying and is either near the left wall or the right wall. The environment is visualized in

72

A

A

B

B
Random Keys (2x2)

(a) KEY2 Domain

A

A
B

B
Random Keys (2x2)

B
A

(b) KEY3 Domain

Figure 21: Recommendation paths for KEY2 and KEY3.

Note: The blue and red shaded regions denote the starting points and goals, respectively. Dark and light
gray regions possible locations of walls and doors, respectively. Each plot displays four realizations of the
“recommendation paths” of BESD. Each color corresponds to one sample realization, and the color becomes
darker as n increases, with the lightest points being the initial samples. The circles, triangles, and crosses
represent the first, second, and third subgoals, respectively. The ‘A’ and ‘B’ labels point out two example
sets of subgoals displaying notable behaviors.

Figures 21a and 21b. We set T = {400, 700, 1000} and Q = {5, 20}. Figures 18e and 18f

gives the baseline comparison.

3.4.6.1 Recommendation Paths for KEY2/KEY3 It is important that the agent

moves in the vicinity of both keys in order for it to perform well across the distribution of

environments. We now discuss how this is achieved by the two- and three-subgoal exploration

strategies, using the annotations in Figures 21a and 21b.

• Behavior ‘A’ in KEY2 (Figure 21a): In the first exploration behavior discovered by BESD,

the agent is first directed to the right-most key location and then towards the door. This

is behavior is reasonable in the sense that the agent’s initial location is near the left-

73

most key location; hence, the naive exploration (e.g., ϵ-greedy) “built-in” to RL-ALGO

would likely find the key (if it is there) without additional subgoal rewards.

• Behavior ‘B’ in KEY2 (Figure 21a): The second exploration behavior that we highlight

takes a similar approach. This strategy incentivizes the agent to first check the left-most

key location (going upwards from the initial location). Interestingly, the second subgoal

is neither the other key location nor the goal: instead, the agent is directed toward the

upper edge of the environment, slightly right of center. Upon examination, one might

conclude that this path compromises between the second key location and the goal. On

its way from the first to second subgoal, the agent enters the vicinity of the second key

location and also ends up not far from the goal. In other words, the exploration strategy

puts the agent in a position such that RL-ALGO’s naive exploration is more likely to be

successful.

• Behavior ‘A’ in KEY3 (Figure 21b): With an additional subgoal to work with, BESD is

able to find more flexible exploration strategies. For behavior ‘A’, we see that the first

subgoal is near the left-most key location, the second subgoal indirectly leads the agent

toward the vicinity of the right-most key location, and the third subgoal is at the goal.

The placement of the second subgoal is reminiscent of behavior ‘B’ of KEY2, but this

time, a third subgoal allows BESD to directly lead the agent towards the goal

• Behavior ‘B’ in KEY3 (Figure 21b): This strategy is more intuitive (indeed, more repli-

cations converge to behavior ‘B’ than behavior ‘A’) and leads the agent to check each of

the possible key locations (the closer one first) and then sends the agent directly toward

the goal.

3.4.7 Takeaways from Baseline Comparisons in Figure 18

We now offer some observations and takeaways from the performance plots of Figures 18a-

18f, where BESD is compared to a variety of baseline approaches.

1. Comparison to MAML. BESD significantly outperforms MAML in all domains except

KEY2, where performance is similar. We also see that in some domains (e.g., GW10,

GW20, MC), MAML is unable to make much progress at all within the interaction budgets

74

that we considered. This is not surprising as MAML relies on an abundance of data for

gradient-based updates during training (despite the fact that it is designed for sample-

efficient adaptation in the test environment). In addition, we note that since MAML’s

default hyperparameters worked even more poorly – we tuned the learning rate and

batch sizes to improve performance. Note that BESD’s “hyperparameters” (subgoal pa-

rameterization) are relatively more intuitive, especially given some domain knowledge.

Importantly, there are no learning rates.

2. Comparison to Hyperband. HB is reasonably competitive against BESD on two of

the easier domains, GW10 and TR. In particular, we notice that HB tends to have good

performance early on (as it is able to use early stopping to quickly eliminate inferior

subgoal strategies). However, as the interaction budget grows, we see that in most

domains, BESD is eventually able to make better use of its evaluations, likely explained

by BESD’s use of a tailored surrogate model.

3. Comparison to other BO methods. The popular BO methods EI and LCB tend to

perform similarly to each other in all domains. Compared to BESD, however, they are less

cost-efficient. Since all three approaches make use of underlying GP surrogate models,

but EI and LCB are constrained in always using qmaxτmax interactions, this is evidence

that being able to reduce the episode lengths and the number of replications is valuable.

4. Impact of more subgoals. Lastly, we point out that Figures 18e and 18f show that

although a two-subgoal exploration strategy achieves better results than the baselines, a

three-subgoal strategy performs even better. This demonstrates the benefit of expanding

the dimension of the parameterization in certain environments. Choosing the number of

subgoals to use in a particular set of environments is not an exact science; in general, a

higher dimensional subgoal parameterization makes the BO meta-optimization problem

more challenging and each acquisition function optimization is also more time-consuming.

We recommend the following guidelines: (1) Consider the total interaction budget across

all training iterations. A rule-of-thumb is that a d-dimensional subgoal parameterization

should have 2d − 1 random initial points. The interaction cost of the initial points

should be less than 1/3 of the total budget in order to give BESD adequate time to make

progress (if the cost of initial points is too high, then one might want to reduce d). (2)

75

Optimizing the acquisition function becomes more time consuming as d increases, so d

should be small enough such that (3.7) can be computed in one’s allotted per-iteration

time budget for acquisition function optimization.

3.4.8 How Much Does a Dynamic Subgoal Exploration Strategy Help RL?

In Section 3.4, Figures 19, 20, and 21 gave visual intuition about the types of explo-

ration behaviors that were discovered by BESD. In this section, we show how the final

dynamic subgoal strategy θNrec recommended by BESD helps throughout the course of RL.

Let πτ
ξ = RL-ALGO

[
τ,Mξ

]
be the policy learned using RL-ALGO on the original, sparse-reward

environment (i.e., no subgoal exploration strategy). For a given problem domain, we define

the agent’s performance ratio after τ interactions to be:

performance ratio(τ) = u(θNrec, τ) / E
[
V πτ

ξ (s0)
]
.

In other words, this is the ratio of the performance of the policy learned by RL-ALGO when

using the dynamic subgoal exploration strategy θNrec in the subgoal-augmented MDP to the

performance of the policy learned by RL-ALGO in the original environment. On GW10, GW20,

MC, KEY2, and KEY3, a smaller performance ratio indicates a more effectiveness of the

exploration strategy. Since for TR we measure performance using rewards instead of costs,

a larger performance ratio is desired. Table 6 displays the performance ratios as a function

of the number of interactions used in the test environment. We can see that an optimized

exploration strategy corresponds to dramatic improvements, ranging from roughly 3x in the

worst cases (MC, KEY2, and KEY3) to nearly 20x in the best cases (GW10, GW20, and

TR).

3.5 Conclusion and Future Work

The problem of finding exploration strategies for a distribution of environments with a

strong focus on cost-awareness during training has not been adequately studied in the liter-

ature. This can be a deterrent to applying RL in real-world settings where interactions with

76

Table 6: Performance ratios as a function of interactions in the test environment.

τ GW10 GW20 TR MC KEY2 KEY3
m 0.458 0.779 0.436 0.980 1.456 1.025
2m 0.218 0.492 2.823 1.048 0.736 0.940
3m 0.086 0.234 2.823 0.949 1.277 0.698
4m 0.080 0.224 0.917 0.896 0.704 0.788
5m 0.070 0.108 6.723 0.987 1.355 0.531
6m 0.086 0.088 8.939 0.878 0.856 0.503
7m 0.080 0.068 9.908 1.077 0.920 0.623
8m 0.087 0.075 10.216 0.877 0.883 0.532
9m 0.069 0.059 23.2936 0.512 0.232 0.566
10m 0.069 0.058 18.011 0.354 0.332 0.361

Note: GW10, GW20 TR, MC, KEY2, and KEY3 are evaluated every m = 100, 1000, 200, 1000, 500, 500
steps respectively.

the environment are limited and expensive (and where cheap simulators are not available).

This chapter proposes a solution based on Bayesian optimization; in a cost-aware manner,

our approach finds subgoals with an intrinsic shaped reward that aids the agent in scenar-

ios with sparse and delayed rewards, thereby reducing the number of interactions needed

to obtain a good solution. An experimental evaluation demonstrates that BESD achieves

considerably better solutions than a comprehensive field of baseline methods on a variety of

benchmark problems. Moreover, an examination of its “recommendation paths” shows that

BESD discovers solutions that induce interesting exploration strategies. There are several

exciting avenues for extensions of this chapter:

• Richer BO formulations. Extensions to the BO formulation could be made in var-

ious ways. For example, one interesting direction is to allow the acquisition function

to determine the number of subgoals as an additional lever. Based on a few informal

observations, such a formulation is likely only interesting in settings where more subgoals

incur additional experimentation cost. We ran a small number of informal experiments

where we allowed BO to select the number of subgoals, but found that BESD almost

77

immediately gravitates to the largest number of subgoals (as subgoals come at no cost).

Since in the applications that we have in mind, subgoal cost was not a primary concern,

we did not pursue this direction as it did not bring any particularly strong insights for

the standard case. Alternatively, the acquisition function itself could be extended with

additional features, such as encouraging successive subgoal evaluations to be nearby pre-

vious ones (i.e., to reduce setup cost) or the ability to reason about (known) symmetries

in the domain. Such advanced features might be enabled by dynamic programming for-

mulations of the BO problem itself, which can be tackled using multi-step lookahead BO

[188, 189, 190, 191]. Other possiblities include the ability to handle expensive-to-evaluate

constraints [192, 193, 194] or total cost budgets [195, 196].

• Case study in an application domain. Our experiments gave proof-of-concept re-

sults on benchmarks where the RL training itself did not use prohibitive amounts of

computation, in order for us to stay within a reasonable computational budget. This is

because statistically distinguishable results for baseline algorithms require many repli-

cations of the meta-optimization problem (i.e., the BO routines), each of which require

many iterations of RL training. One immediate area of future work is to “production-

ize” the dynamic subgoal exploration strategies in a real-world application involving a

navigation task.

• The task-aware setting. Finally, our problem formulation does not include “labels”

for environments, as we were motivated by the case where the randomness of the test

environments is due to the decision maker’s uncertainty in its parameters. The situation

often studied in the multi-task RL setting, however, often comes with task identifiers,

where the agent knows that it is operating in particular task. An extension to this

setting might be useful for certain applications, where exploration strategies that are

good for one task (e.g., biking through an environment) are also useful for other tasks

(e.g., walking through the same environment).

78

4.0 Frozen-State Approximate Value Iteration for Fast-Slow Markov Decision

Processes

We consider sequential decision problems, modeled as Markov decision processes (MDPs),

that are endowed with a new type of “fast-slow” structure: a fast-slow MDP has a state that

can be divided into two parts, a slow state and a fast state. At each time step, the transition

of the slow state results in a change that is relatively small compared to that of the fast state.

An alternative view from the perspective of the reward function (rather than the transition

function) is that the reward is less sensitive to changes in the slow state. Our models allow

for the slow state process to be either (1) fully exogenous to the system, where actions taken

do not affect its dynamics, (One interpretation of the exogenous slow state setting is that of

a standard MDP whose the rewards and transitions are modulated by an external process

(the slow state) similar to the formulation given in [197].) or (2) endogenous to the system,

where a separability assumption holds on the action space. The latter will be presented as

an extension to the fully exogenous case, which we focus on initially to build intuition and

theoretical foundations. Fast-slow structure is common in important real-world problems

where sequential decisions need to be made at high frequencies, yet information that varies

at a slower timescale also influences the optimal policy.

1. Service allocation in multi-class queues. The first example is a dynamic service

allocation problem for a multi-class queue [198, 199], with the addition of stochastic

holding costs (i.e., the cost of leaving items in the queue) that vary slowly and can be

viewed as the slow state [200]. One prominent motivation is the case of energy-aware job

scheduling in data centers, where variations of electricity prices over time can influence

the holding cost [201, 202, 203]. Another motivation is the case of content moderation

queues for online platforms, where the costs of delayed review of harmful content can

depend on a variety of factors, including content popularity and the state of current

events [200, 204].

2. Energy demand response. We can also apply the fast-slow framework in sequential

decision problems from the realm of demand response in the electricity market. Specifi-

79

cally, we consider the problem faced an energy aggregator who observes a day-ahead price

and then simultaneously bids a reduction quantity into the demand response market and

sets the compensation for demand reduction from consumers [205, 206, 207, 208, 209].

Essentially, the aggregator hopes to generate profit from the difference between the con-

tracted price for delivery of demand reduction to the market and the price that offers

customers for that reduction. However, the aggregator has to consider the demand elas-

ticity of its customers, along with the stochasticity of day-ahead prices and real-time

prices (which determine the “penalty” for mistmatch between the promised and realized

quantities of demand reduction). Since real-time prices are much more volatile compared

to the day-ahead prices, it is reasonable to view day-ahead prices as the slow state.

3. Multi-product joint procurement and pricing. A third example is the multi-

product joint procurement and pricing problem with price-dependent demand [210, 211,

212]. In some situations, the demand can differ quite dramatically between products (i.e.,

the demand for some of the products is high, and the demand for the other products is

relatively low). For low-demand products, inventory review can occur less frequently to

simplify the decision making process.

Attempts to optimally solve a model that incorporates the full state space along with the

true decision-making frequency often encounter computational issues, due to the challenge

of solving an MDP with a large state space over a large number of periods. Therefore,

both practitioners and academic researchers may elect to design simplified decision models

that ignore the effect of the slow state on components of their problems. In other words,

these states might be “left out” of the state variable by, e.g., fixing them to constant values.

Although such an approach results in policies that can be obtained in a computationally

tractable manner, we see in Section 4.6 that they can incur significant regret compared to

the optimal policy.

4.0.1 Main Contributions

In this paper, we propose somewhat of a compromise between the full MDP and ig-

noring slow states, by designing a framework around periodically “freezing” and “releasing”

80

slow states, and re-using policies that are computed based on a frozen slow-state model.

Specifically, we make the following contributions:

1. We first consider a fast-slow MDP with exogenous slow state and provide an (exact)

reformulation into an MDP with hierarchical structure. The “upper level” is a slow-

timescale infinite horizon MDP and the “lower level” is a fast-timescale finite horizon

MDP with T periods. One period of the upper-level problem is composed of a complete

lower-level problem. We propose a frozen-state approximation to the reformulated MDP,

where the slow state is frozen in the lower-level problem, while each period in the upper-

level problem “releases” the slow state. Computational benefits arise in several ways: (1)

re-use of the lower-level policy (which is computed once) when applying value iteration

in the upper level, (2) frozen states simplify the dynamics of the lower-level MDP (dra-

matically fewer successor states), and (3) the lower-level MDP thus becomes separable

into independent MDPs, opening the door to speedups via parallel computation. Solving

the frozen-state approximation gives a policy that switches between the one action from

upper-level policy and T − 1 actions from the lower-level policy. We give a theoretical

analysis that upper bounds the expected regret from applying this policy compared to

the optimal policy.

2. We then discuss an additional step of approximation that further reduces computational

requirements called the nominal-state approximation, which takes advantage of a factored

reward function assumption and approximates the lower-level MDP using a fixed set of

“nominal” slow states. The consequence is that instead of solving the lower-level MDP

for all slow states, this approximation allows us to solve it only for the set of nominal slow

states, which are then used to approximate the lower-level value for other slow states.

We also provide an upper bound on the expected regret of the policy obtained from the

nominal state approximation.

3. We then extend our model to consider a fast-slow MDP with an endogenous slow state,

under an action space separability assumption, where we suppose that each action can

be broken up into two parts: one part that affects the slow state’s transition dynamics

and another part that affects the fast state’s transition dynamics. In this version of the

model, the action for the slow state is taken in the upper-level policy, while the lower-level

81

policy focuses on the action for the fast state. In the theoretical analysis, we account for

an extra error related to the actions for the slow state.

4. Next, we show how the fast-slow framework can also be exploited in an approximate

dynamic programming (ADP) setting [37, 39]. Specifically, we design an approximate

value iteration (AVI) algorithm that mimics the nominal state approximation, in that

we perform AVI in both the lower and upper levels. However, to allow for generalization

across the state space, we make use of a feature-based linear approximation that combines

estimated values of a set of pre-selected states to form approximations of the value

function at other states, based on the technique introduced in [213]. We provide an

analysis of the expected regret for the policy that is greedy with respect to the fixed

point of the upper-level AVI.

5. Lastly, we perform a systematic empirical study on four problem settings (machine main-

tenance, dynamic service allocation, energy demand response, and multi-product joint

procurement and pricing). We show that with either exogenous or endogenous slow

states, the proposed frozen-state approximation algorithms, especially the nominal state

approximation, converge faster than standard (approximate) value iteration, a baseline

that ignores slow states, Q-learning, and DQN (deep Q-networks). We also give qualita-

tive evidence that policies generated by the frozen-state approach have structural features

resembling those of the optimal policy.

4.1 Related Work

In this section, we provide a brief review of related literature. First, there exists a stream

of literature focused on sequential decision making problems with exact hierarchical, multi-

timescale structure. [214] study multi-timescale MDPs, which are composed of M different

decisions that are made on M different discrete timescales. The authors consider the impact

of upper-level states and actions on the transition of the lower levels, an idea is also present

in our fast-slow framework. Multi-timescale MDPs have often been applied in supply chain

problems, including production planning in semiconductor fabrication [215, 216], hydropower

82

portfolio management [217], and strategic network growth for reverse supply chains [218].

[209] transfer the finite-horizon MMDP into a linear programming problem, exploit the

threshold structure of the optimal solution, and propose a row-generation-based algorithm

to solve the problem. [219] consider “piecewise stationary” MDPs, where the transition and

reward functions are “renewed” every N + 1 periods, motivated by problems where routine

decisions are periodically interrupted by higher-level decisions. For the case of large renewal

periods, they propose a policy called the “initially stationary policy” which uses a fixed

decision rule for some number of initial periods in each renewal cycle. Our fast-slow model

focuses on a novel fast-slow structure present in many MDPs and does not assume any

natural/exact hierarchical structure. Instead, we focus on how a particular type of (frozen-

state) hierarchical structure can be used as an approximation to the true MDP (and derive

error bounds). However, we note that many MDPs with natural two-timescale structure can

also fit into our framework, and in that sense, our model can be roughly viewed as more

general.

Our proposed frozen-state algorithms are also related to literature on hierarchical rein-

forcement learning, which are methods that artificially decompose a complex problem into

smaller sub-problems [220]. Approaches include the options framework [128], the hierarchies

of abstract machines (HAMs) approach [221], and MAXQ value function decomposition

[222].

The options framework is the most closely related to this paper. A Markov option (macro-

action, or temporally extended action) is composed of a policy, a termination condition, and

an initiation set [128, 223]. One of the biggest challenges is to automatically construct options

that can effectively speed up reinforcement learning. A large portion among this research

is based on subgoals, states that might be beneficial to reach [224, 134, 225, 226]. The sub-

goals are identified by utilizing the learned model of the environment [227, 136, 137, 138], or

through trajectories without learning a model [134, 133]. The options (and subgoals) frame-

work is largely motivated by robotics and navigation-related tasks, while we are particularly

interested in solving problems that arise in operations research and operations management

domains. The problems that we study do not decompose naturally into “subgoals” — lead-

ing us to identify and focus on the fast-slow structure, which does indeed arise naturally.

83

In addition, our proposed methods avoid the challenge of constructing the set of options by

using a fixed length T − 1 for the lower-level MDP (and we are able to provide guidance on

selecting the value of T that introduces an acceptable amount of error). The idea of freezing

states to reduce computational cost is also unique to our approach.

4.2 Fast-Slow MDPs with Exogenous Slow States

In this section, we introduce the base model, the original MDP to be solved and formally

introduce the notion of a fast-slow MDP with exogenous slow states. We then provide

a hierarchical reformulation of the base model using fixed-horizon policies, and show the

equivalence (in optimal value) between the two models.

4.2.1 Base Model

Consider a discrete-time MDP ⟨S,A,W , f, r, γ⟩, where S is the finite state space, A is

the finite action space, W is the space of possible realizations of an exogenous, independent

and identically distributed (i.i.d.) noise process {wt}, f : S × A×W → S is the transition

function, r : S × A → R is the reward function with bound rmax, and γ ∈ [0, 1) is the

discount factor for future rewards [228]. The objective is

U∗(s) = max
{νt}

E

[
∞∑
t=0

γt r
(
st, νt(st)

) ∣∣∣ s0 = s

]
, (4.1)

where states transition according to st+1 = f(st, at, wt+1) and we optimize over sequences

of policies νt : S → A, which are deterministic mappings from states to actions. The

expectation is taken over exogenous noise process {wt}∞t=1.

Assumption 4.2.1 (Separability and the Fast-Slow Property). Suppose the following hold:

(i) The state space S is separable and can be written as S = X × Y. We call X the “slow

state space” and Y the “fast state space.”

84

(ii) Let st = (xt, yt) ∈ S, where xt ∈ X is the slow state and yt ∈ Y the fast state, at ∈ A,

and wt+1 ∈ W. The transition dynamics st+1 = f(st, at, wt+1) ∈ S is separable in the

following sense:

xt+1 = fX (xt, wt+1) ∈ X and yt+1 = fY(xt, yt, at, wt+1) ∈ Y ,

for some fX : X ×W → X and fY : S ×A×W → Y.

(iii) For any state (x, y) ∈ S, action a ∈ A, and exogenous noise w ∈ W, suppose the one-step

transitions of x and y satisfy:

∥∥y − fY(x, y, a, w)
∥∥
2
≤ dy and

∥∥x− fX (x,w)
∥∥
2
≤ αdy,

for some dy <∞ and α ∈ [0, 1].

Note that from Assumption 4.2.1(ii), the slow state transition is exogenous in that it

does not depend on the action at, nor does it depend on the fast state yt (the transition of

yt, however, is allowed to depend on all available information, including xt). We relax the

assumption of exogenous slow states in Section 4.4, but it is instructive to begin with this

case.

We assume throughout that S, A, X , Y , S ×A are equipped with the Euclidean metric,

which is naturally the case for many applications. However, as long as the relevant spaces

are metric spaces, the framework continues to hold. We choose Euclidean metrics as they

are natural for our applications. For a given reward function r on S ×A, define

Lr = max
(s,a) ̸=(s′,a′)

|r(s, a)− r(s′, a′)|
∥(s, a)− (s′, a′)∥2

, (4.2)

which is the maximum growth rate of the reward function and serves as a Lipschitz constant

for r. Similarly, we define

Lf = max
(s,a)̸=(s′,a′),w

∥f(s, a, w)− f(s′, a′, w)∥2
∥(s, a)− (s′, a′)∥2

, (4.3)

which serves as a Lipschitz constant for the transition function f .

85

Definition 4.2.1 (Fast-Slow MDP). An MDP ⟨S,A,W , f, r, γ⟩ is called a (α, dy, Lr, Lf)-

fast-slow MDP if Assumption 4.2.1 is satisfied, the reward function r satisfies (4.2), and the

transition function f satisifes (4.3). Throughout the paper, we will often denote a fast-slow

MDP with the expanded notation ⟨X × Y ,A,W , fX , fY , r, γ⟩.

Given any state s = (x, y), noise w, and policy ν, we use the notation f ν(s, w) =

f(s, ν(s), w), f ν
Y(x, y, w) = fY

(
x, y, ν(x, y), w

)
, and r(x, y, ν) = r(x, y, ν(x, y)) throughout

the paper. The value of a stationary policy (It is well-known that there exists an optimal

policy to (4.1) that is both stationary and deterministic. See [228].) ν at state (x, y) is the

expected cumulative reward starting from state (x, y) following policy ν, i.e.,

Uν(x, y) = E

[
∞∑
t=0

γtr
(
xt, yt, ν

) ∣∣∣ (x0, y0) = (x, y)

]
= r

(
x, y, ν

)
+ γE

[
Uν(x′, y′)

]
, (4.4)

where x′ = fX (x,w), xt+1 = fX (xt, wt), y = f ν
Y(x, y, w), yt+1 = f ν

Y(xt, yt, wt) for all t. The

optimal value function at state U∗(x, y), as defined in (4.1), satisfies the Bellman equation,

i.e.,

U∗(x, y) = max
a

r(x, y, a) + γE
[
U∗(x′, y′)

]
. (4.5)

A policy that is greedy with respect to the optimal value function, i.e.,

ν∗(x, y) = argmax
a

r(x, y, a) + γE
[
U∗(x′, y′)

]
.

is an optimal policy, and the optimal value U∗ and the value of the optimal policy Uν∗ are

the same.

4.2.2 Hierarchical Reformulation using Fixed-Horizon Policies

In this section, we derive an exact hierarchical reformulation with the original timescale

broken up into groups of T periods each. The reformulation holds for a general MDP

⟨S,A,W , f, r, γ⟩, but the concepts that we introduce in this section will serve as the basis

for developing our frozen-state computational approach for fast-slow MDPs.

Denote (µ,π) a T -horizon policy, which is a sequence of T policies (µ, π1, . . . , πT−1),

µ : S → A, πt : S → A and π = (π1, . . . , πT−1). Following (µ,π) means that we take the

86

first action according to µ and then next T − 1 actions according to π. Given any state s0,

the T -period reward function (of the base model) associated with (µ,π) is written as:

R(s0, µ(s0),π) = r(s0, µ) +
T−1∑
t=1

γt r(st, πt), (4.6)

where s1 = fµ(s0, w1) and st+1 = fπt(st, wt+1) for t > 0.

A T -periodic policy (µ,π) refers to the infinite sequence that repeatedly applies the T -

horizon policy (µ,π), i.e., (µ,π, µ,π, . . .). Note that the T -periodic policy (µ,π) can be

implemented in the infinite horizon problem defined in (4.1). The value of the T -periodic

policy (µ,π) at state s0 is

Ūµ(s0,π) = E

[
∞∑
k=0

γkTR(sk, µ(sk),π)
∣∣∣ s0 = s

]
= E

[
R(s0, µ(s0),π) + γT Ūµ(sT ,π)

]
, (4.7)

where, again, s1 = fµ(s0, w1) and st+1 = fπt(st, wt+1) for t > 0 within each cycle of T

periods. The optimal value function satisfies the following Bellman equation:

Ū∗(s0) = max
(µ,π)

E
[
R(s0, µ(s0),π) + γT Ū∗(sT)

]
, (4.8)

where the “action” now involves selecting the π as well. Denote (µ∗,π∗) an optimal T -

periodic policy, which solves (4.8). In Proposition 4.2.1, we prove that the base model (4.5)

and the hierarchical reformulation (4.8) are equivalent in a certain sense.

Proposition 4.2.1. Given an MDP ⟨S,A,W , f, r, γ⟩, the following hold:

(i) The optimal value of the base model (4.5) is equal to the optimal value of the hierarchical

reformulation (4.8), i.e., U∗ = Ū∗.

(ii) An optimal stationary policy ν∗ with respect to the base model (4.5) is also an optimal

policy for the hierarchical reformulation (4.8), i.e., Ū∗ = Ūν∗.

The proof is in Appendix C.1.2. Part (i) of Proposition 4.2.1 is most relevant to our

situation in the sense that the optimal T -periodic policy (µ∗,π∗) is no better than the

stationary optimal policy ν∗. Therefore, solving the hierarchical reformulation (4.8) allows

us to achieve the same value as the ν∗, the optimal policy to the original base model (4.5).

87

4.3 The Frozen-State Approximation

We now propose our frozen-state approximation, where slow states are frozen for T peri-

ods at a time. This allows us to construct an auxiliary problem that proceeds at a timescale

that is a factor of T slower than the MDP of the base model (equivalently, the discount

factor becomes γT instead of γ), naturally leading to ADP algorithms (see Sections 4.3.3

and 4.3.7) with computational benefits. The number of periods T to freeze the state is a

parameter to the approach.

Figure 22: Illustration of the base model versus the frozen-state approximation

Consider a fast-slow MDP ⟨X ×Y ,A,W , fX , fY , r, γ⟩. The frozen-state process proceeds

in rounds of length T and within each round, we make decisions on periods 0, 1, . . . T − 1.

The slow state x remains frozen from period 0 to period T − 1, but during the transition

from T − 1 to T , the slow state x is updated. Period T is also labeled period 0 for the next

round. See the illustration of this process in Figure 22.

Remark 4.3.1. It is important to note that the freezing of states only occurs “within the

algorithm” as a step toward more efficient computation of policies. Our resulting policies

are then implemented in the underlying base model MDP, which proceeds naturally according

to its true dynamics. Our theoretical and empirical results always attempt to answer the

question: how well does a policy that is computed by pretending certain states are frozen

perform in the true model?

88

4.3.1 The Lower-Level MDP (Frozen Slow States)

We view the problem from period 1 to period T as the “lower level” of the frozen-state

approximation. This corresponds to the periods relevant to π from (µ,π) in the hierarchical

reformulation (4.8), whose structure the frozen-state approximation mimics. To form the

lower-level problem of the frozen-state approximation, we consider this T −1 period problem

in isolation:

J∗
1 (x, y) = max

π̃
E

[
T−1∑
t=1

γt−1 r(x0, yt, π̃t)
∣∣∣ (x0, y0) = (x, y)

]
, (4.9)

where x remains frozen, yt+1 = fY(x, yt, wt+1), and π̃ = (π̃1, . . . , π̃T−1). The problem (4.9)

can be solved using finite-horizon dynamic programming: accordingly, let the terminal J∗
T ≡

0 and for t = 1, 2, . . . , T − 1, let

J∗
t (x, y) = max

a
r(x, y, a) + γE

[
J∗
t+1(x, y

′)
]
, (4.10)

where y′ = fY(x, y, a, w). Also, let π̃∗ = (π̃∗
1, . . . , π̃

∗
T−1) be the finite-horizon policy that is

greedy with respect to J∗
t :

π̃∗
t (x, y) = argmax

a
r(x, y, a) + γE

[
J∗
t+1(x, y

′)
]
.

It may not immediately be clear why freezing slow states is desired. There are two main

computational benefits to solving (4.10) instead of an analogous version of (4.10) without

freezing x:

• In algorithms like value iteration [228], each update requires computing expectations

over successor states. In most practical implementations of MDP solvers, the transition

probability matrix is stored. In the case where |W| >> |S|,(This is often the case for

tabular settings, because multiple random outcomes of w can lead to the same state s.)

the number of successor states impacts the number of operations for each VI iteration.

When x is frozen, the number of successor states is much smaller since we only have

successor fast states: in other words, we only need to compute E
[
J∗
t+1(x, y

′)
]

instead of

E
[
J∗
t+1(x

′, y′)
]
. Even in the case that the expectation is approximated via sampling, the

former requires sampling from a lower-dimensional successor state distribution.

89

• Second, (4.10) can effectively be viewed as |X | independent MDPs, one for each x ∈ X ,

allowing for the possibility of computing the policy with additional parallelism. In the

nominal-state approximation discussed Section 4.3.7, we analyze the error of an approach

that solves only a small number out of the |X | independent MDPs.

4.3.2 The Upper-Level MDP (True State Dynamics)

Let us now consider the upper-level problem of the frozen-state approximation, which

is an infinite horizon problem with groups of T periods aggregated. Denote the stationary

upper-level policy by µ : S → A, which is the policy that we are attempting to optimize in the

upper-level problem. The upper-level problem takes two “inputs” related to the lower-level

problem: (1) J1, an approximation of the optimal lower-level value J∗
1 , (2) π, a lower-level

finite-horizon policy. Fixing these inputs, the value at state s0 = (x0, y0) by executing policy

µ is

V µ(s0, J1,π) = E
[
R̃(s0, µ(s0), J1) + γTV µ(sT , J1,π)

]
. (4.11)

where sT is the state reached according to the true system dynamics by following (µ,π),

starting from s0 and

R̃(s0, a, J1) = r(s0, a) + γ J1
(
fX (x0, w), fY(x0, y0, a, w)

)
is a one-step approximation to the T -period reward function R, defined in (4.6). The optimal

value (for this approximation) at state s0 can be written as

V ∗(s0, J1,π) = max
a

E
[
R̃(s0, a, J1) + γTV ∗(sT , J1,π)

]
. (4.12)

Recall that the optimal lower-level policy (that solves the frozen-state model) is denoted π̃∗

and its optimal value is J∗
1 . Let µ̃∗ be the optimal upper-level policy corresponding to these

inputs, i.e., the policy greedy with respect to V ∗(s0, J
∗
1 , π̃

∗).

Thus, (µ̃∗, π̃∗) is the resulting T -periodic policy from the overall frozen-state hierarchical

approximation; we refer to it as the T -periodic frozen-state policy.

90

Algorithm 3: Frozen-State Value Iteration (FSVI)
Input: Initial values JT (·, ·) = 0, V0(·, ·, ·) = 0; terminal condition ∆.

Output: Optimal T -periodic policy (µ̃∗, π̃∗).

1 for t = T − 1, T − 2, . . . , 1 do

2 for each slow state x ∈ X do

3 for each fast state y ∈ Y do

4 J∗
t (x, y) = maxa E[r(x, y, a) + γJ∗

t+1(x, fY(x, y, a, w))].

5 π̃∗
t (x, y) = argmaxa E[r(x, y, a) + γJ∗

t+1(x, fY(x, y, a, w))].

6 end

7 end

8 end

9 while ∥Vk − Vk−1∥∞ > ∆ do

10 for s0 = (x0, y0) in the state space X × Y do

11 Vk(x0, y0, J
∗
1 , π̃

∗) = maxaE
[
R̃(s0, a, J

∗
1) + γTVk−1(xT , yT , J

∗
1 , π̃

∗)
]
.

12 end

13 end

14 for s0 = (x0, y0) in the state space X × Y do

15 µ̃∗(x0, y0) = argmaxaE
[
R̃(s0, a, J

∗
1) + γTVk(xT , yT , J

∗
1 , π̃

∗)
]
.

16 end

91

4.3.3 Frozen-State Value Iteration

The full frozen-state value iteration (FSVI) algorithm is given in Algorithm 3. The idea

is to first solve the lower-level MDP with frozen states and then feed the resulting policy

into the upper-level problem. We then apply value iteration (VI) in the upper level, which

is a problem with discount factor γT . In this section, we will show an upper bound for the

on the regret from applying applying the T -periodic policy (µ̃∗, π̃∗) instead of the optimal

policy ν∗ in the base model.

Definition 4.3.1 (Regret of the Frozen-State Policy). Consider a fast-slow MDP with initial

state s0 and optimal policy ν∗. The regret of the T -periodic frozen-state policy (µ̃∗, π̃∗) is

defined as:

R(µ̃∗, π̃∗, T) = Uµ∗
(s0)− Ū µ̃∗

(s0, π̃
∗) = Ū∗(s0)− Ū µ̃∗

(s0, π̃
∗),

where the second equality uses the value equivalence between the base model and its hierar-

chical reformulation.

Remark 4.3.2. As a follow-up comment to Remark 4.3.1, notice that V ∗(s0, J
∗
1 , π̃

∗) does

not enter the regret definition as this is the optimal value of the frozen-state approximation,

not the value of the policy (generated by the frozen-state approximation) when evaluated in

the base model.

4.3.4 Exact and Frozen-State (Lower-Level) Bellman Operators

Next, we introduce the two Bellman operators, one for the base model and another one

for lower level of the frozen-state approximation. Denote by H the Bellman operator of the

base model; for any state (x, y) and value function U , define

(HU)(x, y) = max
a

r(x, y, a) + γE
[
U(fX (x,w), fY(x, y, a, w))

]
.

Recall that (µ∗,π∗) is an optimal T -periodic policy of the base model’s hierarchical refor-

mulation (4.8). Suppose π∗ is available. Then, the Bellman equation of the base model

reformulation can be written as

U∗(x0, y0) = Ū∗(x0, y0)

92

= max
a

E
[
R(x0, y0, a,π

∗) + γT Ū∗(xT , yT)
]

= max
a

E

[
r(x0, y0, a) +

T−1∑
t=1

γt r(xt, yt, π
∗
t) + γT U∗(xT , yT)

]
= max

a
E
[
r(x0, y0, a) + γ

(
HT−1U∗)(x1, y1)

]
. (4.13)

Therefore, the expected T -horizon reward can be written as

E
[
R(x0, y0, a,π

∗)
]
= E

[
r(x0, y0, a) + γ

(
HT−1U∗)(x1, y1)− γT U∗(xT , yT)

]
. (4.14)

Moving on to the frozen-state approximation, we denote by H̃ the Bellman operator

of the lower-level problem, which is on the same timescale as the base model (hence, the

discount factor is γ), but the transition of the slow-state x is frozen. For any state (x, y) and

lower-level value function Jt+1, (We include time indexing on the value function to emphasize

that this Bellman operator is used in a finite-horizon (i.e., non-stationary) setting, but the

definition of H̃ itself does not depend on t.) define:

(
H̃Jt+1

)
(x, y) = max

a
r(x, y, a) + γE

[
Jt+1(x, fY(x, y, a, w))

]
.

Given the optimal value J∗
1 of the lower level (4.10), the T -horizon reward of the upper level

(4.12) can be written as

E
[
R̃(x0, y0, a, J

∗
1)
]
= r(x0, y0, a) + γE

[
J∗
1 (x1, y1)

]
= r(x0, y0, a) + γ

(
H̃T−1J∗

T

)
(x1, y1),

= r(x0, y0, a) + γ
(
H̃T−1 0

)
(x1, y1), (4.15)

where 0 is the all-zero value function. The difference between (4.14) and (4.15) can be

interpreted as follows: in the former, we follow a lower-level policy that is aware of a terminal

value U∗ (but exclude value when defining the T -horizon reward), while in the latter, we

follow a lower-level policy that sees zero terminal reward at the end of the T − 1 periods.

93

4.3.5 Analyzing the Regret of Frozen-State Policy

In this section, we derive a bound on R(µ̃∗, π̃∗, T), the regret of applying T -periodic

policy (µ̃∗, π̃∗) to the base model.

We notice that the difference between the base model and the frozen-state approximation

exists in their transition functions and reward functions. For two MDPs, MDP1 and MDP2,

with different transition functions and reward functions, Lemma 4.3.1 bounds the difference

between their optimal value functions, and Lemma 4.3.2 bounds the error of apply the

optimal policy of MDP2 to MDP1.

Lemma 4.3.1 (Optimal Value Bound of Different MDPs). Consider two MDPs who differ

in their transition and reward functions ⟨S,A,W , f1, r1, γ⟩ and ⟨S,A,W , f2, r2, γ⟩. Let U∗
1

and U∗
2 be their respective optimal value functions. Suppose that

(a) |r1(s, a)− r2(s, a)| ≤ ϵr for all s ∈ S and a ∈ A;

(b) ∥f1(s, a, w)− f2(s, a, w)∥2 ≤ d for all s ∈ S, a ∈ A and w ∈ W; and

(c) there exists L1 > 0 such that |U∗
1 (s)− U∗

1 (s
′)| ≤ L1∥s− s′∥2 for all s, s′ ∈ S.

Then, the difference in optimal values of the two MDPs can be bounded as follows:

∣∣U∗
1 (s)− U∗

2 (s)
∣∣ ≤ ϵU =

ϵr + γL1d

1− γ

for all s ∈ S.

The proof is in Appendix C.1.3.

Lemma 4.3.2 (Simulation Lemma Variant). Consider two MDPs who differ in their tran-

sition and reward functions ⟨S,A,W , f1, r1, γ⟩ and ⟨S,A,W , f2, r2, γ⟩. Let U∗
1 and U∗

2 be

their respective optimal value functions, and let π∗
2 be an optimal policy for the second MDP.

Suppose that

(a) |r1(s, a)− r2(s, a)| ≤ ϵr for all s ∈ S and a ∈ A;

(b) ∥f1(s, a, w)− f2(s, a, w)∥2 ≤ d for all s ∈ S, a ∈ A and w ∈ W;

(c) there exists L1 > 0 such that |U∗
1 (s)− U∗

1 (s
′)| ≤ L1∥s− s′∥2 for any s, s′ ∈ S; and

(d) |U∗
1 (s)− U∗

2 (s)| ≤ ϵU for all s ∈ S.

94

Then, the value of π∗
2 when implemented in the first MDP has regret bounded by:

U∗
1 (s)− U

π∗
2

1 (s) ≤ 2ϵr + 2γϵU + γL1d

1− γ
.

for all s ∈ S.

The proof is in Appendix C.1.4.

Proposition 4.3.1. Consider a (α, dy, Lr, Lf)-fast-slow MDP ⟨S,A,W , f, r, γ⟩. If γLf < 1,

then the optimal value U∗ of the base model (4.5) satisfies:

∣∣U∗(x, y)− U∗(x̃, ỹ)
∣∣ ≤ Lr

1− γLf

(
∥x− x̃∥2 + ∥y − ỹ∥2

)
. (4.16)

for any states (x, y) ∈ S and (x̃, ỹ) ∈ S.

The proof is in Appendix C.1.5.

Proposition 4.3.2. Consider a (α, dy, Lr, Lf)-fast-slow MDP ⟨S,A,W , f, r, γ⟩ with γLf <

1. Let π∗ be the optimal lower-level policy for the base model reformulation (4.8) and J∗
1 be

the optimal (first-stage) value of the lower-level problem in the frozen-state approximation

(4.10). For any state s0 = (x0, y0) and action a, the approximation error between the T -

horizon reward of hierarchical reformulation and the frozen-state approximation, i.e., the

discrepancy between (4.14) and (4.15), can be bounded as:

∣∣E[R(s0, a,π
∗)]− E[R̃(s0, a, J

∗
1)]

∣∣
≤ ϵr(γ, α, dy, Lr, Lf , T)

= (α + 2)Lr dy

[
γ2

(1− γ)2
− A(γ, α, Lf) γ

T +B(γ, α, Lf)Tγ
T

]
,

where

A(γ, α, Lf) =
γ2

(1− γ)2
+

1

1− γLf

and B(γ, α, Lf) =
2

1− γLf

− γ

1− γ
.

95

The proof is in Appendix C.2. Proposition 4.3.2 shows that the distance between the

two reward functions is dependent on the problem and the choice of T . We discuss the bound

on T for a given error level in Section 4.3.6.

The expected regretR(µ̃∗, π̃∗, T) of applying a suboptimal policy learned from the frozen-

state hierarchical approximation to the base model is bounded in Theorem 4.3.1. The proof

is based on Lemmas 4.3.1 and 4.3.2, and Propositions 4.3.1 and 4.3.2.

Theorem 4.3.1. Consider a (α, dy, Lr, Lf)-fast-slow MDP ⟨S,A,W , f, r, γ⟩ with γLf < 1.

The regret of applying (µ̃∗, π̃) in the base model is bounded by

R(µ̃∗, π̃∗, T) =
1

(1− γT)2

(
2ϵr(γ, α, dy, Lr, Lf , T) +

Lr

1− γLf

d(α, dy, T)γ
T (1 + γT)

)
,

where d(α, dy, T) = 2(α + 1)dy(T − 1), and

ϵr(γ, α, dy, Lr, Lf , T) = (α + 2)Lrdy

(γ2

(1− γ)2
− A(γ, α, Lf)γ

T +B(γ, α, Lf)Tγ
T .

Proof. Let MDP1 = ⟨S,A,W , f1, r1, γ
T ⟩ and MDP2 = ⟨S,A,W , f2, r2, γ

T ⟩ be the base

model reformulation and the frozen-state hierarchical approximation respectively. Denote

(µ∗,π∗) and (µ̃∗, π̃∗) the optimal T -horizon policies of MDP1 and MDP2 respectively. The re-

ward functions r1 and r2 are defined as r1(s, a) = E[R(s, a,π∗)] and r2(s, a) = E[R̃(s, a, J∗
1)].

Proposition 4.3.2 provides a bound that |r1(s, a)− r2(s, a)| ≤ ϵr(γ, α, dy, Lr, Lf , T).

Given noise sequence w = (w0, w1, . . . , wT−1), sT = (xT , yT) = f1(s, a,w) is the state

starting from s, and taking action a, then following policy π∗ for the next T − 1 steps. As

for MDP2, s̃T = (x̃T , ỹT) = f2(s, a,w) is the state starting from s, and taking action a, then

following policy π̃∗ for the next T − 1 steps. According to Lemma C.1.1, ∥xT − x̃T∥2 ≤
2(T − 1)αdy, and ∥yT − ỹT∥2 ≤ 2(T − 1)dy. Therefore,

∥f1(s, a,w)− f2(s, a,w)∥2 ≤ d(α, dy, T)

= max
s,a,w

(∥xT − x̃T∥2 + ∥yT − ỹT∥2)

≤ 2(α + 1)dy(T − 1),

and the bound
∣∣U∗

1 (s)− U∗
2 (s)

∣∣ in Lemma 4.3.1 becomes

∣∣U∗
1 (s)− U∗

2 (s)
∣∣ ≤ ϵU(γ, α, dy, Lr, Lf , T) =

ϵr(γ, α, dy, Lr, Lf , T) +
Lr

1−γLf
d(α, dy, T)γ

T

1− γT
.

96

With all the above information, the regret bound in Lemma 4.3.2 becomes

R(µ̃∗, π̃∗, T) = max
x,y

Ū∗(x, y)− Ū µ̃∗
(x, y, π̃∗)

≤
2ϵr(γ, α, dy, Lr, Lf , T) + 2γT ϵU(γ, α, dy, Lr, Lf , T) +

Lr

1−γLf
d(α, dy, T)γ

T

1− γT

=
1

(1− γT)2

(
2ϵr(γ, α, dy, Lr, Lf , T) +

Lr

1− γLf

d(α, dy, T)γ
T (1 + γT)

)
.

4.3.6 Discussion of the Choice of T

In this section, we focus on the exact VIs for the base model and the frozen-state hi-

erarchical approximation, and provide a bound on the value of T for a desired error level.

Denote Uk and Vk the value functions in iteration k of VI for the base model and the upper

level of the frozen-state hierarchical approximation respectively, denote νk and µ̃k the greedy

policies in iteration k of the two models respectively. For the base model, Proposition 4.3.3

gives the required number of iterations to achieve a desired error for exact VI.

Proposition 4.3.3. The base model requires at least

Kbase(ξ) =
1

log(γ)
log

((1− γ)2ξ

4rmax

)
− 1

iterations to achieve an error of ξ for exact VI, i.e., R(Kbase(ξ)) = ∥UνKbase(ξ) − U∗∥∞ ≤ ξ.

Let us next consider the frozen-state hierarchical approximation. The lower-level value

functions are exactly solved by value iteration. For the upper-level problem, denote F and

F µ the Bellman operators of the upper-level problem of the approximation (4.12), i.e.,

(FV)(x0, y0, J1,π) = max
a

E
[
R̃(x0, y0, a, J1) + γTV (xT , yT , J1,π)

]
,

and

(F µV)(x0, y0, J1,π) = E
[
R̃(x0, y0, µ(x0, y0), J1) + γTV µ(xT , yT , J1,π)

]
.

Proposition 4.3.4 gives the the required number of iterations to achieve a desired error for

exact VI.

97

Proposition 4.3.4. The frozen-state hierarchical approximation requires

Kfrozen(ξ, T) =
1

T log(γ)
log

(ξ(1− γ)(1− γT)

4rmax

)
− 1

iterations to achieve an error of ξ for exact VI, i.e.,

R(Kfrozen(ξ, T)) = ∥V µ̃Kfrozen(ξ,T)(·, ·, J∗
1 , π̃

∗)− V ∗(·, ·, J∗
1 , π̃

∗)∥∞ ≤ ξ.

Propositions 4.3.3 and 4.3.4 show the required number of iterations to achieve desired

error level ξ for exact VI for the base model (4.5) and the upper level of the frozen-state

approximation (4.12) respectively. Let us now discuss the regret of applying the policy

learned from frozen-state VI to the base model in Corollary 4.3.1. The regret is composed

of two parts, one is an error caused by freezing slow state x for every T periods, the other is

the VI error discussed in Proposition 4.3.4.

Corollary 4.3.1. If T satisfies ϵU(γ, α, dy, Lr, Lf , T) ≤ ξ2, and k ≥ Kfrozen(ξ1, T), then the

error of applying T -periodic policy (µ̃k, π̃
∗) to the base model is bounded by

∥Ũ µ̃k(·, ·, π̃∗)− U∗∥∞ ≤ ξ1 + 2ξ2,

where ϵU(γ, α, dy, Lr, Lf , T) =
1

1−γT

(
ϵr(γ, α, dy, Lr, Lf , T) +

Lr

1−γLf
d(α, dy, T)γ

T
)
.

The proofs for this section are in Appendix C.2.1.

10 20 30 40
T

10

20

30

40

50

Nu
m

be
r o

f i
te

ra
tio

ns Kfrozen(1, T) + T 1
Kbase()

Figure 23: The choice of T

98

10 20 30 40
T

10

20

30

40

50

K f
ro

ze
n(

1,
T)

+
T

1
Lr = 0.1
Lr = 0.2
Lr = 0.3
Kbase()

(a) Lr

10 20 30 40
T

10

20

30

40

50

K f
ro

ze
n(

1,
T)

+
T

1

Lf = 1.0
Lf = 1.04
Lf = 1.08
Kbase()

(b) Lf

10 20 30 40
T

10
20
30
40
50

K f
ro

ze
n(

1,
T)

+
T

1

= 100
= 300
= 500
= 700
= 900

(c) ξ

Figure 24: Sensitivity analysis for the choice of T

We next show the benefits of adopting frozen-state model and discuss the choice of T

numerically. Consider a fast-slow MDP with parameters γ = 0.9, rmax = 100, α = 0.2,

dy = 1 Lr = 0.1, Lf = 1. We consider an error level ξ = 200, which is 80% of the optimal

value, and let R(Kbase(ξ)) ≤ ξ and ∥Ũ µ̃k(·, ·, π̃∗) − U∗∥∞ ≤ ξ respectively. The latter one

leads to R(Kfrozen(ξ, T)) ≤ ξ1 = ξ − 2ϵU(γ, α, dy, Lr, Lf , T). According to Proposition 4.3.4,

the minimum number of iterations Kfrozen(ξ, T) to achieve error ξ of the frozen-state model is

impacted by the value of T . Figure 23 shows Kfrozen(ξ1, T) +T − 1, the number of iterations

for error level ξ1 plus the number of periods of the lower level, as a function of T given the

parameters provided above. The value of Kfrozen(ξ1, T)+T − 1 first decreases then increases

as T increases, and the minimum value is taken at T = 7. The dotted line denotes the value

99

of Kbase(ξ). In the range of T shown in the plot, the number of iterations of the frozen-state

model (including the computation for the lower level) is smaller than the number of iterations

of the base model to achieve the same error ξ.

Figure 24 shows the value of Kfrozen(ξ1, T)+T−1 as a function of T for different Lipschitz

constants Lr, Lf and ξ. As Lr increases, Kfrozen(ξ1, T)+T −1 increases, while the increment

diminishes as T increases. When Lr is large (Lr = 0.3), the error from freezing slow state is

high that ξ1+2ξ2 > ξ for small T (T < 15). The impact of Lf is similar, Kfrozen(ξ1, T)+T−1
increases as Lf increases. Note that the value of γLf must be smaller than 1. Otherwise,

the analysis in this paper will follow another path discussed in Appendix C.1.5.1, and the

discussion of the choice of T will also be different. We focus on the case with γLf < 1 in this

paper. As for ξ, it impact both Kbase(ξ) (the dotted lines) and Kfrozen(ξ1, T)+T −1. A small

error level ξ requires more number of iterations of the base model and the frozen-state model.

The error level ξ has higher impact in on Kbase(ξ) than Kfrozen(ξ1, T) + T − 1. Moreover,

when ξ is large and T is large, Kfrozen(ξ1, T) + T − 1, is larger than Kbase(ξ).

4.3.7 Nominal-State Approximation

Assumption 4.3.1 (Nearly Factored Reward). The reward function is “nearly factored,” in

the sense that |g(x) + h(y, a)− r(x, y, a)| ≤ ζ for any x ∈ X , y ∈ Y, and a ∈ A.

Property 1. The functions g : X → R and h : Y×A → R are Lipschitz w.r.t. the state and

action variables, i.e., there exists L′
r > 0 such that for all x, x′ ∈ X , y, y′ ∈ Y and a, a′ ∈ A,

|g(x)− g(x′)| ≤ L′
r∥x− x′∥2, (4.17)

and

|h(y, a)− h(y′, a′)| ≤ L′
r∥(y, a)− (y′, a′)∥2. (4.18)

This terminology comes from the notion factored MDPs, a commonly-studied type of

weakly-connected structure that notably assumes an additive reward function [229, 230].

Note that although the analysis in this paper is based on the |g(x)+h(y, a)−r(x, y, a)| ≤ ζ, it

is easy to extend the analysis to other types of separable rewards: for example, |g(x)h(y, a)−
r(x, y, a)| ≤ ζ.

100

Algorithm 4: Value Iteration for the Nominal State Approximation
Input: The nominal slow state x∗; initial values J̄T (x∗, ·) = 0, V̄0(·, ·, ·, ·) = 0; terminal

condition ∆.

Output: Optimal T -periodic policy (µ̄∗, π̄∗).

1 for t = T − 1, T − 2, . . . , 1 do

2 for y in the fast state space Y do

3 J̄t(x
∗, y) = maxa E[g(x

∗) + h(y, a) + γJ̄t+1(x
∗, f(x∗, y, a, w))].

4 π̄∗
t (x, y) = argmaxaE[g(x

∗) + h(y, a) + γJ̄t+1(x
∗, f(x∗, y, a, w))], ∀x.

5 end

6 end

7 while ∥V̄k − V̄k−1∥∞ > ∆ do

8 for s0 = (x0, y0) in the state space X × Y do

9 V̄k(x0, y0, J̄1, π̄
∗) = maxaE

[
R̄(s0, a, J̄1) + γT V̄k−1(xT , yT , J̄1, π̄

∗)
]
.

10 end

11 end

12 for s0 = (x0, y0) in the state space X × Y do

13 µ̄∗(x0, y0) = argmaxaE
[
R̄(s0, a, J̄1) + γT V̄k(xT , yT , J̄1, π̄

∗)
]
.

14 end

101

To further efficiently solve the lower level of the frozen-state hierarchical approximation,

we make use of a nominal slow state x∗. In this section, we discuss the case with a single

nominal slow state x∗ for simplicity. It is easy to be extended to multiple nominal slow

states.

Let us first introduce the lower-level MDP with factored reward function g(x) + h(y, a)

(Assumption 4.3.1). The value function can be written as, for t = 1, 2, . . . , T − 1,

J̄t(x, y) = max
a∈A

E
[
g(x) + h(y, a) + γJ̄t+1(x, fY(x, y, a, w))

]
, (4.19)

and J̄T (·, ·) = 0. Denote J̄∗
t the optimal value, π̄∗ the optimal (T − 1)-period policy. Let us

solve (4.19) only for the nominal slow state x∗. The value of other slow state x ∈ X can be

approximated by J̄t(x
∗, yt) as follows,

J̄t(x, y) =
T−t−1∑
i=0

γi(g(x)− g(x∗)) + max
a∈A

E
[
g(x∗) + h(y, a) + γJ̄t+1(x

∗, fY(x
∗, y, a, w))

]
(4.20)

=
T−t−1∑
i=0

γi(g(x)− g(x∗)) + J̄t(x
∗, y). (4.21)

According to Assumption 4.3.1, using g(x) + h(y, a) as the reward function in the lower

level instead of r(x, y, a) incurs an error. The value approximation (4.21) also incurs an

error. Lemma 4.3.3 bounds the error in the lower level.

Lemma 4.3.3. The error in the lower level value function introduced by using nominal state

approximation to the frozen-state hierarchical approximation is

|J̄t(x, y)− Jt(x̃, ỹ)| ≤
T−t−1∑
i=0

γiζ + Lr

T−t−1∑
i=0

(γLf)
i(∥x− x̃∥2 + ∥y − ỹ∥2)

+ γLrLf

(T−t−2∑
i=0

Li
f

T−t−2∑
j=i

γj
)
∥x− x∗∥2.

102

The proof is in Appendix C.2.2. Denote H̄ and H̄π the Bellman operators of lower level

of the nominal state approximation, i.e.,

(H̄J̄t)(x, y) =
T−t−1∑
i=0

γi(g(x)− g(x∗)) + max
a∈A

E
[
g(x∗) + h(y, a) + γJ̄t+1(x

∗, fY(x
∗, y, a, w))

]
,

and

(H̄πJ̄t)(x, y) =
T−t−1∑
i=0

γi(g(x)− g(x∗)) + E
[
g(x∗) + h(y, πt(x

∗, y)) + γJ̄t+1(x
∗, fπt

Y (x∗, y, w))
]
.

Let us now consider the upper-level problem. Given the lower-level policies π, the value

at state s0 = (x0, y0) by executing policy µ is

V̄ µ(x0, y0, J̄1,π) = E
[
R̄(s0, µ(s0), J̄1) + γT V̄ µ(xT , yT , J̄1,π)

]
. (4.22)

where

E[R̄(s0, a, J̄1)] = E
[
r(x0, y0, a) + γJ̄1(x1, y1)

]
= E

[
r(x0, y0, µ) + (g(x1)− g(x∗))

T−1∑
i=1

γi + γJ̄1(x
∗, y1)

]
,

and x1 = fX (x0, w0), y1 = fµ
Y(x0, y0, w0). The value at state s0 = (x0, y0) can be written as

V̄ (x0, y0, J̄1,π) = max
a

E
[
R̄(s0, a, J̄1) + γT V̄ (xT , yT , J̄1,π)

]
. (4.23)

Given the optimal lower-level policy π̄∗, denote V̄ ∗(x0, y0, J̄1, π̄
∗) the optimal upper-level

value, and µ̄∗ the corresponding optimal policy. Denote (µ̄∗, π̄∗) the optimal T -periodic

policy for the nominal state approximation. The algorithm is introduced in Algorithm 4.

Next, we discuss the regret in the value of applying T -periodic policy (µ̄∗, π̄∗) to the base

model reformulation, i.e.,

R(µ̃∗, π̃∗, T) = ∥Ū∗(·, ·)− Ū µ̄∗
(·, ·, π̄∗)∥∞. (4.24)

The analysis is similar to the analysis in Section 4.3.3. We focus on the extra error introduced

by leveraging the nominal slow state in the lower level in this section. The extra error is

bounded in Proposition 4.3.5.

103

Proposition 4.3.5. Leveraging the nominal slow state leads to an error in the lower level,

∣∣E[R̃(s0, a, J
∗
1)]− E[R̄(s0, a, J̄

∗
1)]

∣∣ ≤ ϵ′r(γ, Lr, Lf , T)

=
T−1∑
i=1

γiζ + γ2LrLf

(T−3∑
i=0

Li
f

T−3∑
j=i

γj
)
max

x
∥x− x∗∥2.

The proof is in Section C.2.3. Combining Lemma 4.3.3 and Proposition 4.3.5 with the

analysis of Theorem 4.3.1, we show the expected regret R(µ̄∗, π̄∗, T) in Theorem 4.3.2.

Theorem 4.3.2. Consider a (α, dy, Lr, Lf)-fast-slow MDP. The expected regret is bounded

by

R(µ̄∗, π̄∗, T)

= ∥Ū∗(·, ·)− Ū µ̄∗
(·, ·, π̄∗)∥∞

≤ 1

(1− γT)2

(
2(ϵr(γ, α, dy, Lr, Lf , T) + ϵ′r(γ, Lr, Lf , T)) + (1 + γT)

Lr

1− γLf

d(α, dy, T)γ
T
)
,

where ϵr(γ, α, dy, Lr, Lf , T) is the error in Proposition 4.3.2, ϵ′r(γ, Lr, Lf , T) is the error in

Proposition 4.3.5, and d(α, dy, T) = 2(α + 1)dy(T − 1).

Proof. The proof is similar to the proof of Theorem 4.3.1. Consider three MDPs, let

MDP1 = ⟨S,A,W , f1, r1, γ
T ⟩ be the base model reformulation, MDP2 = ⟨S,A,W , f2, r2, γ

T ⟩
be the frozen-state hierarchical approximation, and MDP3 = ⟨S,A,W , f3, r3, γ

T ⟩ be the

nominal state approximation. Their optimal policies are (µ∗,π∗), (µ̃∗, π̃∗) and (µ̄∗, π̄∗). The

reward functions r1, r2 and r3 are defined as r1(s, a) = E[R(s, a,π∗)], r2(s, a) = E[R̃(s, a, J∗
1)]

and r3(s, a) = E[R̄(s, a, J̄∗
1)]. According to Propositions 4.3.2 and 4.3.5, we have

|r1(s, a)− r3(s, a)| ≤ |r1(s, a)− r2(s, a)|+ |r2(s, a)− r3(s, a)|

≤ ϵr(γ, α, dy, Lr, Lf , T) + ϵ′r(γ, Lr, Lf , T),

where ϵr(γ, α, dy, Lr, Lf , T) is the error in Proposition 4.3.2, ϵ′r(γ, Lr, Lf , T) is the error in

Proposition 4.3.5.

Given noise sequence w = (w0, w1, . . . , wT−1), initial state s and initial action a, denote

sT = (xT , yT) = f1(s, a,w), s̃T = (x̃T , ỹT) = f2(s, a,w), and s̄T = (x̄T , ȳT) = f3(s, a,w)

the final states of the three models after taking action a and then following policies π∗, π̃∗,

104

and π̄∗ for the next T − 1 steps respectively. According to the analysis in Theorem 4.3.1,

∥f1(s, a,w)− f3(s, a,w)∥2 ≤ d(α, dy, T) = 2(α + 1)dy(T − 1).

Therefore, the regret bound is

R(µ̄∗, π̄∗, T)

= max
x,y

Ū∗(x, y)− Ū µ̄∗
(x, y, π̄∗)

≤ 1

(1− γT)2

(
2
(
ϵr(γ, α, dy, Lr, Lf , T) + ϵ′r(γ, Lr, Lf , T)

)
+ (1 + γT)

Lr

1− γLf

d(α, dy, T)γ
T
)
.

4.4 The Case of Endogenous Slow States

This section considers the MDP with endogenous slow states, i.e., ⟨X ×Y ,AX ×AY ,W ,

fX , fY , r, γ⟩, where the transition functions are fX : X×AX×W → X and fY : S×AY×W →
Y . In this section, in violation of the notations in Sections 4.2 and 4.3, we use the bar

notations for the value function, the policy, and the Bellman operators of the base model

and the hierarchical approximation model. Assume that the slow state and the fast state

are nearly separable in the reward function.

Assumption 4.4.1. (Factored reward function). The reward function is factored over X ×
Y ×A such that |g(x, ax) + h(y, ay)− r(x, y, ax, ay)| ≤ ζ.

An example is the inventory management with two products, where the demand for

product 1 is much lower than the demand for product 2. Since demand of product 1 is

low, its inventory level changes slowly. Checking the inventory and making the procurement

decision every period might be inefficient. Therefore, it is beneficial for the decision maker

to manage the inventory of product 1 every several periods, while manage the inventory of

product 2 every period. Details are in Section 4.6.4.

In the hierarchical approximation, the lower level is independent from the actions cor-

responding to the slow states AX . The action ax is taken every T periods at the upper

level.

105

For the nominal state approximation, the value function of the lower level problem can

be written as, for t = 1, 2, . . . , T − 1,

J̄t(x, ax, y) = max
ay∈AY

E
[
g(x, ax) + h(y, ay) + γJ̄t+1(x, ax, fY(x, y, ay, w))

]
, (4.25)

and J̄T (·, ·, ·) = 0. Denote J̄∗
t the optimal value, π̄∗ : S×AX → AY the optimal T −1-period

policy. Let us solve (4.25) only for the nominal slow state-action pair (x∗, a∗x). The value of

other slow state-action pairs (x, ax) ∈ X ×AX can be approximated by J̄t(x
∗, a∗x, yt):

J̄t(x, ax, y) =
T−t−1∑
i=0

γi(g(x, ax)− g(x∗, a∗x)) (4.26)

+ max
ay∈AY

E
[
g(x∗, a∗x) + h(y, ay) + γJ̄t+1(x

∗, a∗x, fY(x
∗, y, ay, w))

]
(4.27)

=
T−t−1∑
i=0

γi(g(x, ax)− g(x∗, a∗x)) + J̄t(x
∗, a∗x, y). (4.28)

Denote H̄ and H̄π the Bellman operators of lower level of the nominal state approxima-

tion, i.e.,

(H̄J̄t)(x, ax, y) =
T−t−1∑
i=0

γi(g(x, ax)− g(x∗, a∗x))

+ max
ay∈AY

E
[
g(x∗, a∗x)) + h(y, ay) + γJ̄t+1(x

∗, a∗x, fY(x
∗, y, ay, w))

]
,

and

(H̄πJ̄t)(x, ax, y) =
T−t−1∑
i=0

γi(g(x, ax)− g(x∗, a∗x))

+ E
[
g(x∗, a∗x)) + h(y, πt(x

∗, y)) + γJ̄t+1(x
∗, a∗x, f

πt
Y (x∗, y, w))

]
.

Given the lower-level policies π, the value at state s0 = (x0, y0) by executing policy

µ : S → A is

V̄ µ(x0, y0, J̄1,π) = E
[
R̄(s0, µ(s0), J̄1) + γT V̄ µ(xT , yT , J̄1,π)

]
. (4.29)

where

E[R̄(s0, ax, ay, J̄1)] = E
[
r(x0, y0, ax, ay)) + γJ̄1(x1, ax, y1)

]
106

= E
[
r(x0, y0, µ) + (g(x1, ax)− g(x∗, a∗x))

T−1∑
i=1

γi + γJ̄1(x
∗, a∗x, y1)

]
,

and x1 = fµ
X (x0, w0), y1 = fµ

Y(x0, y0, w0). The value at state s0 = (x0, y0) can be written as

V̄ (x0, y0, J̄1,π) = max
a∈A

E
[
R̄(s0, a, J̄1) + γT V̄ (xT , yT , J̄1,π)

]
. (4.30)

Given the optimal lower-level policy π̄∗, denote V̄ ∗(x0, y0, J̄1, π̄
∗) the optimal upper-level

value, and µ̄∗ the corresponding optimal policy. Denote (µ̄∗, π̄∗) the optimal T -periodic

policy for the nominal state approximation.

Theorem 4.4.1. Consider a (α, dy, Lr, Lf)-fast-slow MDP. The expected regret is bounded

by

R(µ̄∗, π̄∗, T) = ∥Ū∗(·, ·)− Ū µ̄∗
(·, ·, π̄∗)∥∞

≤ 1

(1− γT)2

(
2ϵ̄r(γ, α, dy, Lr, Lf , T, ζ) + (1 + γT)

Lr

1− γLf

d(α, dy, T)γ
T
)
,

where

ϵ̄r(γ, α, dy, Lr, Lf , T, ζ) = dy(α + 2)
(
Lr

t∑
i=1

iγi +
Lr

1− γLf

tγt
)
+

T−t−1∑
i=0

γiζ

+ γLrLf

(T−t−2∑
i=0

Li
f

T−t−2∑
j=i

γj
)
max
(x,ax)

∥(x, ax)− (x∗, a∗x)∥2

and d(α, dy, T) = 2(α + 1)dy(T − 1).

The proof is in Appendix C.2.4. In the next section, we will focus on the exogenous slow

state model and discuss solving the nominal state approximation problem approximately.

4.5 Approximate Value Iteration for Nominal State Approximation

This section introduces parameterized approximation to VI for the nominal state ap-

proximation, and proves the converges of the algorithm.

107

4.5.1 The Algorithm

In this section, we use linear architecture to approximate the value functions for the lower

and upper level problems of the nominal state approximation. Formally, the value functions

are approximated by the following form,

Ĵt(s,ωt) = ϕ
⊺(s)ωt, ∀t,

V̂ (s, Ĵ1, π̂,ν) = ϕ
⊺(s)ν,

where Ĵ1 and π̂ are a given lower level value and policy, ϕ(s) =
(
ϕ1(s), ϕ2(s), . . . , ϕM(s)

)⊺ ∈
RM is the feature vector associated with state s, ωt and ν are the parameter vectors of the

lower level and upper level respectively.

Let S̃ = {s1, s2, . . . , sM} be the pre-selected states for AVI. For the lower level, the

parameter ωt is estimated by first evaluating H̄Ĵt+1(s,ωt+1) at the pre-selected states, and

then computing ωt so that Ĵt(s,ωt) = H̄Ĵt+1(s,ωt+1) for s ∈ S̃. For the upper level, the

parameter νk is improved to νk+1 in iteration k + 1 by first evaluating FV̂ (s, Ĵ1, π̂,νk) at

the pre-selected states, then computing νk+1 so that V̂ (s, Ĵ1, π̂,νk+1) = FV̂ (s, Ĵ1, π̂,νk) for

s ∈ S̃. Assume the feature vectors satisfy Assumption 4.5.1.

Assumption 4.5.1. Let S̃ = {s1, s2, . . . , sM} be the pre-selected states.

1. The vectors ϕ(s1),ϕ(s2), . . . ,ϕ(sM) are linearly independent.

2. There exists a value γ′ ∈ [γT , 1) such that for any state s ∈ S, there exist θ1(s), θ2(s), . . . ,

θM(s) ∈ R with ∑
m=1M

|θm(s)| ≤ 1,

and

ϕ(s) =
γ′

γT

M∑
m=1

θm(s)ϕ(sm).

With Assumption 4.5.1, we introduce the matrices for AVI. Let i be the ith state in the

state space S. Recall that sm is the mth state in the pre-selected state set S̃ ⊂ S. Let

Φ ∈ RN×M be a matrix with the ith row equal to ϕ⊺(i). Let L ∈ RM×M be a matrix with

the mth row equal to ϕ⊺(sm). The matrix L has a unique matrix inverse L−1 ∈ RM×M

Since its rows are linearly independent. Define Φ† ∈ RM×N as follows: for sm = i ∈ S̃, the

108

ith column equals to the mth column of L−1; the other entries are zero. Without loss of

generality, assume that s1 = 1, s2 = 2, . . . , sK = K, we have

Φ†Φ = [L−1 0]

L
G

 = L−1L = I,

where I ∈ RM×M is the identity matrix and G is the remaining rows of Φ. Therefore, Φ† is

a left inverse of Φ. For the lower level, the approximate value can be written as

Ĵt(ωt) = Φωt,

and the parameter vector ωt is updated as follows

ωt = H̄ ′(ωt−1),

where H̄ ′ = Φ† ◦ H̄ ◦ Φ. Define the linear architecture approximation error as

ϵL = max
t

min
ω
∥J̄∗

t − Ĵt(ωt)∥∞.

The AVI for the upper level can be written as

V̂ (Ĵ1, π̂,ν) = Φν,

and the parameter vector ν is updated as follows

νk+1 = F ′(νk),

where F ′ = Φ† ◦ F ◦ Φ. Define error ϵU as

ϵU(Ĵ1, π̂) = min
ν
∥V̄ ∗(·, Ĵ1, π̂)− V̂ (·, Ĵ1, π̂,ν)∥∞.

Lemma 4.5.1. For any vectors J and J ′,

∥ΦΦ†(J)− ΦΦ†(J ′)∥∞ ≤
γ′

γ
∥J − J ′∥∞ <

γ′

γT
∥J − J ′∥∞.

The proof of Lemma 4.5.1 is in Appendix C.2.5.1.

109

Algorithm 5: Approximate Value Iteration for the Nominal State Approximation
Input: The nominal slow state x∗; pre-selected states S̃ = {s1, s2, . . . , sM}; initial

weights ωx∗
T , ν0.

Output: Weights ωt, νK .

1 for t = T − 1, T − 2, . . . , 1 do

2 for s = (x∗, y) ∈ S̃ do

3 Observe value Jt(x
∗, y) = maxa∈A E

[
g(x∗) + h(y, a) + γϕ(s′)⊺ωx∗

t+1

]
.

4 end

5 Update ωx∗
t : ωx∗

t = Φ†Jt, where Jt is as follows: for sm = i ∈ S̃, the ith entry

equals to Jt(sm); the other entries are zero.

6 for s = (x, y) ∈ S do

7 The policy π̂t(x, y) = argmaxaE[g(x
∗) + h(y, a) + γϕ(s′)⊺ωx∗

t+1].

8 end

9 end

10 for k = 1, 2, . . . , K do

11 for s ∈ S̃ do

12 Observe value: V (s, J1, π̂) = maxa E
(
R̄(s, a, J̄1) + γTϕ(s′)⊺νk−1

)
.

13 Update νk: νk = Φ†V , where V is as follows: for sm = i ∈ S̃, the ith entry

equals to V (sm, J1, π̂); the other entries are zero.

14 end

15 end

110

4.5.2 Convergence of the Lower Level

Lemma 4.5.2. If (ω∗
1,ω

∗
2, . . . ,ω

∗
T) is the optimal solution of ωt = H̄ ′ωt+1, then

∥J̄∗
t − Ĵt(ω

∗
t)∥∞ ≤ ϵL

(
1 +

γ + 1

γ

T−t∑
i=1

(γ′)i
)
< ϵL

(
1 +

γ + 1

γ
(T − t)

)
.

The proof of Lemma 4.5.2 is in Appendix C.2.5.2.

Lemma 4.5.3. If ∥J̄∗
t − Ĵt(ω

∗
t)∥∞ ≤ ϵbias

t ≤ ϵbias for all t, then

∥J̄∗
t − J̄ π̂∗

t ∥∞ ≤ 2γ
T−1∑

τ=t+1

ϵbias
τ ≤ 2γϵbias(T − t− 1),

where π̂∗ is the greedy policy w.r.t. Ĵt(ω
∗
t).

The proof of Lemma 4.5.3 is in Appendix C.2.5.3.

Theorem 4.5.1. Let π̂∗ be the greedy policy w.r.t. Ĵt(ω
∗
t). The error bound ∥J̄∗

1 − J̄ π̂∗
1 ∥∞ is

∥J̄∗
1 − J̄ π̂∗

1 ∥∞ ≤ 2γϵL(T − 2)
(
1 +

γ + 1

γ
(T − 1)

)
.

4.5.3 Convergence of the Upper Level

Lemma 4.5.4. The mapping F ′ = Φ† ◦ F ◦ Φ is a contraction with coefficient γ′, w.r.t. a

norm ∥ · ∥ on RM defined by ∥ν∥ = ∥Φν∥∞, i.e.,

∥F ′(ν)− F ′(ν ′)∥ ≤ γ′∥ν − ν ′∥.

The proof of Lemma 4.5.4 is in Appendix C.2.5.4.

Lemma 4.5.5. If ν∗ is the fixed point of F ′, i.e., ν∗ = F ′ν∗, then

∥V̄ ∗(Ĵ1, π̂)− V̂ (Ĵ1, π̂,ν
∗)∥∞ ≤

γT + γ′

γT (1− γ′)
ϵU(Ĵ1, π̂).

The proof of Lemma 4.5.5 is in Appendix C.2.5.5.

Lemma 4.5.6. If ∥V̄ ∗(Ĵ1, π̂)− V̂ (Ĵ1, π̂,ν
∗)∥∞ ≤ ϵbias, then

∥V̄ ∗(Ĵ1, π̂)− V̄ µ̂∗
(Ĵ1, π̂)∥∞ ≤

2γT

1− γT
ϵbias,

where µ̂∗ is the greedy policy w.r.t. V̂ (Ĵ1, π̂,ν
∗).

111

Lemma 4.5.7. The optimal value of the lower level of nominal state approximation J̄∗
1 is

Lipschitz w.r.t. the state, i.e.

∥J̄∗
1 (x, y)− J̄∗

1 (x̄, ȳ)∥∞ ≤ L′
r

T−2∑
i=0

γi(∥x− x̃∥2 + ∥y − ỹ∥2) + 2dyL
′
r

T−2∑
i=1

iγi

≤ 1− γT

1− γ
L′
r(∥x− x̃∥2 + ∥y − ỹ∥2) + ∆J ,

where ∆J = 2dyL′
r

1−γ

(
γ

1−γ
− γ

1−γ
γT − TγT

)
.

The proof of Lemma 4.5.7 is a mimic of the analysis in Lemmas C.1.2, C.1.3 and C.1.4.

Theorem 4.5.2. Let µ̂∗ be the greedy policy w.r.t. V̂ (Ĵ1, π̂,ν
∗). The error bound is

∥V̄ ∗(J̄∗
1 ,π

∗)− V̄ µ̂∗
(Ĵ1, π̂)∥∞

≤ 2γT
(
G(γ, α)L′

rdy +
1 + α

1− γ
L′
rdyT +H(γ, α)L′

rdyγ
T − 2 + α

1− γ
L′
rdyTγ

T
)

+ ϵL −
γ + 1

γ
+

γ + 1

γ
ϵLT +

2(γT + γ′)

(1− γT)(1− γ′)
ϵU(Ĵ1, π̂).

Proof. Let ŝ = argmaxs |V̄ ∗(s, J̄∗
1 , π̄

∗)− V̄ ∗(s, Ĵ1π̂)|. We have

∥V̄ ∗(J̄∗
1 , π̄

∗)− V̄ ∗(Ĵ1, π̂)∥∞ ≤ |V ∗(ŝ, J̄∗
1 , π̄

∗)− V ∗(ŝ, Ĵ1, π̂)|

By Lemmas 4.5.5 and 4.5.6, we have

∥V̄ ∗(Ĵ1, π̂)− V̄ µ̂∗
(Ĵ1, π̂)∥∞ ≤

2(γT + γ′)

(1− γT)(1− γ′)
ϵU(Ĵ1, π̂).

We next consider the distance between V̄ ∗(J̄∗
1 ,π

∗) and V̄ ∗(Ĵ1, π̂). They are the optimal

values of two MDPs with different reward functions and transition functions. According

to (4.23), the distance between the two reward functions is |J̄∗
1 (x, y) − Ĵ1(x, y)|, which is

bounded by ϵL
(
1 + γ+1

γ
(T − 1)

)
according to Lemma 4.5.2. The distance between the two

transition functions is bounded by d = 2(α + 1)dy(T − 1) according to the analysis in

Theorem 4.3.1. Therefore, according to Lemmas 4.3.1 and 4.5.7, d = 2(α + 1)dy(T − 1),

∆J = 2dyL′
r

1−γ

(
γ

1−γ
− γ

1−γ
γT − TγT

)
, and

∥V̄ ∗(J̄∗
1 ,π

∗)− V̄ ∗(Ĵ1, π̂)∥∞

≤ 1

1− γT

(
ϵL
(
1 +

γ + 1

γ
(T − 1)

)
+ γT (

1− γT

1− γ
L′
rd+∆J)

)
112

= ϵL −
γ + 1

γ
+

γ + 1

γ
ϵLT

+ 2γT
(
G(γ, α)L′

rdy +
1 + α

1− γ
L′
rdyT +H(γ, α)L′

rdyγ
T − 2 + α

1− γ
L′
rdyTγ

T
)
,

where G(γ, α) = γ−(1−γ)(1+α)
(1−γ)2

, H(γ, α) = (1−γ)(1+α)−γ
(1−γ)2

. Therefore,

∥V̄ ∗(J̄∗
1 ,π

∗)− V̄ µ̂∗
(Ĵ1, π̂)∥∞

≤ ∥V̄ ∗(J̄∗
1 ,π

∗)− V̄ ∗(Ĵ1, π̂)∥∞ + ∥V̄ ∗(Ĵ1, π̂)− V̄ µ̂∗
(Ĵ1, π̂)∥∞

≤ 2γT
(
G(γ, α)L′

rdy +
1 + α

1− γ
L′
rdyT +H(γ, α)L′

rdyγ
T − 2 + α

1− γ
L′
rdyTγ

T
)

+ ϵL −
γ + 1

γ
+

γ + 1

γ
ϵLT +

2(γT + γ′)

(1− γT)(1− γ′)
ϵU(Ĵ1, π̂).

4.6 Numerical Experiment

In this section, we apply our algorithms to a few MDP problems, including a machine

maintenance problem, a dynamic serve allocation for a multi-class queuing model, a demand

response problem, and a multi-product joint procurement and pricing problem. Specifically,

we apply VI to the first two problems, and AVI to the last two problem. For AVI, we use

Gaussian radial basis function. We respectively call the frozen-state algorithm and nominal

state algorithm “FSVI” and “Nominal FSVI” when VI is used, and “FSAVI” and “Nominal

FSAVI” when AVI is used. In the procurement and pricing problem, the length of the state-

frozen periods is T = 5, in other problems, the length is T = 10. In the policy evaluation,

we sample the cumulative reward over 10T periods of all the initial states. Each evaluation

is an average over 10 runs.

To illustrate the convergence and the computation efficiency of our algorithms, we com-

pare against a few baseline algorithms. The first baseline is the base model (4.5), denoted as

“base VI” when using VI and “base AVI” when using AVI. Another popular baseline is the

Q-learning algorithm (QL) [40, 170] and Deep Q network (DQN) [231, 232].

113

We also propose Slow-agnostic model that ignores the slow state, i.e., the value function

is

U(y) = max
a∈A

E
[
r(·, y, a) + γU(y′)

]
, (4.31)

where the expectation is over the slow state x and the exogenous noise w.

4.6.1 Machine Maintenance

(a) The system condition is “bad” (b) The system condition is “good”

Figure 25: Transition matrices in different system conditions

0.0 0.2 0.4 0.6 0.8 1.0
Computational Cost 1e5

12

14

16

18

Te
st

 R
ew

ar
d

QL
Base VI
Slow-agnostic VI
FSVI
Nominal FSVI

Figure 26: Performance of VI for the maintenance problem

114

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 1

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 2

Figure 27: Policy for the maintenance problem: Base VI

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 1

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 2

(a) Upper level

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 1

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 2

(b) Lower level t = 5

Figure 28: Policy for the maintenance problem: FSVI

Consider a machine maintenance problem [233, 234, 235] with q = 2 machines, each

machine i has two states: operating (yi = 1) and not operating (yi = 0). At the end of

each period, the operator decides which machines to maintain. The state of machine i in the

next period is influenced by three factors, its current state yi, whether it is maintained ai,

and the condition of the system x. The machines have higher probability to stop operating

when the system condition is “bad” than when the system condition is “good”, as shown in

Figure 25. In general, if the machine is operating and is maintained at the end of the period,

and the system is in good condition, it will have higher probability to be operating in the

next period.

115

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 1

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 2

(a) Upper level

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 1

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 2

(b) Lower level t = 5

Figure 29: Policy for the maintenance problem: Nominal FSVI

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 1

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 2

Figure 30: Policy for the maintenance problem: Slow-agnostic VI

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 1

0 5 10 15
(0,0)
(0,1)
(1,0)
(1,1)

Machine 2

Figure 31: Policy for the maintenance problem: QL

The system condition x is the slow state, while the operating status of the machines

yt = (yt,1, yt,2) is the fast state. We consider 25 values of x (x ∈ {0, 1, . . . , 24}). Each

x transits to x + 2, x + 1, x − 1 and x − 2 with probabilities 0.05, 0.15, 0.15, and 0.05

116

respectively. At the end of each period, the operator makes a decision on the machines to

be maintained at the end of the period, at = (at,1, at,2). The immediate reward function is

r(xt, yt, at) = 2
∑q

i=1 yt,i −
∑

i at,i.

Figure 26 shows the performance of the algorithms as a function of the computational

cost. Each evaluation is the cumulative reward over 100 periods. Each point in the plot is an

average over 30 runs. The plot shows that except for Slow-agnostic VI, all other algorithms

converge. What’s more, the proposed algorithms, especially Nominal FSVI, converge much

faster than the baseline algorithms.

To understand the difference in the performance of the algorithms, Figures 27 to 29 show

the policies at the last iteration of the algorithms. In each of the figures, the x-axis represent

the exogenous information, the y-axis represent the status (y1, y2) of the two machines.

The left plot shows whether to maintenance machine 1, the right plot shows whether to

maintenance machine 2. A grey square means maintaining the machine, a white square

means the opposite. The shade of the grey color represents the frequency of taking the

maintenance action over 10 runs. We have the following observations.

1. Among the policies of the five algorithms, Base VI, FSVI and Nominal FSVI are similar

to each other in that: (i) the policies to a machine are stationary and the same when

the machine failed, that is to maintain it; and (ii) when the machine did not fail and the

system status is bad (the x-axis value is small), the policies of FSVI and Nominal FSVI

are the same, that is to maintain when x < 5 no matter the machine failed or not; while

the policies from the 10 runs of Base VI are unstable, but there is a higher probability

to maintain as the system status gets worse.

2. The policy of Slow-agnostic VI is not influenced by the system status x, and shade reflects

that the policies are not stationary. The policies from the 10 runs of QL are unstable

and the influence of x and y is not clear.

4.6.2 Dynamic Service Allocation for a Multi-class Queuing Model

In the service allocation problem [199], we consider a single server and two classes of

customers. the arrival rates and service rates for the two classes are µ1 = µ2 = 0.2 and

117

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Computational Cost 1e6

60

55

50

45

40

Te
st

 R
ew

ar
d

QL
Base VI
Slow-agnostic VI
FSVI
Nominal FSVI

Figure 32: Performance of VI for the queuing problem

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

Figure 33: Policy for the queuing problem: Base VI

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

(a) Upper level

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

(b) Lower level t = 8

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

(c) Lower level t = 9

Figure 34: Policy for the queuing problem: FSVI

λ1 = λ2 = 0.3. The problem is converted to a discrete-time model through “uniformization”

[228]. The capacities of the queues are Q1 = 3 and Q2 = 3. Denote yt,1 and yt,2 the number

of customers in the queues, zt ∈ {0, 1, 2} the class of customer that is currently served (0

118

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

(a) Upper level

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

(b) Lower level t = 8

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

(c) Lower level t = 9

Figure 35: Policy for the queuing problem: Nominal FSVI

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

Figure 36: Policy for the queuing problem: Slow-agnostic VI

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 0

0 1 2 3
Queue 1

0
1
2
3

Q
ue

ue
 2

Case 1

Figure 37: Policy for the queuing problem: QL

means no customer being served). The transition of the length of the queue j is a function

of the current number of customers yt,j and the customer that is currently served zt.

1. With probability µt,j, a class j customer arrives, yt+1,j = min(yt,j + 1, Qj).

2. With probability λzt , the server completed serving the current customer, yt+1,j = yt,zt−1.

3. With probability 1− λi −
∑

j µt,j, no event happens, yt+1,j = yt,j.

119

When the server completed serving the current customer, the decision maker decides the class

of customer to serve, denoted as at ∈ {0, 1, 2}, where 0 represents when there is no decision to

make. Customers waiting in the queues incurs a cost. The unit cost of queue j is stochastic,

denoted as xt,j. Consider 6 values of the unit cost xt,j, which is uniformly distributed in

[0.01, 0.2]. The next unit cost xt+1,j follows a truncated discrete normal distribution centered

at xt,j with standard deviation 0.01. The immediate reward function is r(xt,1, xt,2, yt,1, yt2) =

−∑2
j=1 xt,jyt,j.

Figure 32 shows the performance of the algorithms. Nominal FSVI converges the fastest.

FSVI and QL also converge fast. Base VI, although converges slowly, improves as the

computational cost increases. On the other hand, the performance of Slow-agnostic VI is

good at the beginning, but does not improve as the computational cost increases.

Figures 33 to 35 show the policies at the last iteration of the algorithms. We show

policies for two different unit cost: case 1, the unit cost of queue 1 is lower than the unit

cost of queue 2; and case 2, the unit cost of queue 1 is higher than the unit cost of queue

2. In each plot, the x- and y-axis represents the length of the first and the second queues

respectively. The red color denotes serving customers in queue 1, and the blue color denotes

serving customers in queue 2. The shade of the colors represents the frequency of taking

the maintenance action over 10 runs. When the class to be served at a state is different in

different runs, we show the color of the class that is the majority in all the runs. We have

the following observations:

1. The policies of Base VI, the upper levels and the first 8 periods of the lower levels of

FSVI and Nominal FSVI are similar. That is to always serve customers in the queue

with a higher unit cost as long as the queue is nonempty. As for the last period of the

lower levels of FSVI and Nominal FSVI, when one of the queues is empty, the policies are

to serve customers in the nonempty queue; when both queues are nonempty, the policies

are stochastic. This is because no matter serving queue 1 or queue 2, the lengths of the

queues are not shortened, which means the immediate rewards are the same. Considering

this is the last period of the two lower-level problems, the decision does not impact the

following periods.

120

2. The policy of Slow-agnostic VI is not impacted by the slow state (xt,1, xt,2). Given any

slow state, the policy is to serve the nonempty queue when the other queue is empty,

and to serve the shorter queue when both queues are nonempty.

3. As for the policy of QL, the server serves the queue with higher unit cost when both

queues have more than 1 customers. When there is 0 or 1 customer in the higher cost

queue and more than 1 customer in the lower cost queue, the server serves the longer

queue (the lower cost queue).

4.6.3 Energy Demand Response

0 1 2 3 4 5
Computational Cost 1e7

11000

12000

13000

14000

Te
st

 R
ew

ar
d

DQN
Base AVI
Slow-agnostic AVI
FSAVI
Nominal FSAVI

Figure 38: AVI for the demand response problem

In the demand response problem in the energy market [208], the energy consumption

reduction is dependent on the unit compensation. The state is composed of the DA price xt,

which follows discretized Ornstein Uhlenbeck process xt+1 − xt = c1(c2 − xt) + ϵt, and the

real-time (RT) shortage price and the RT overage price, which are represented as fractions

of the the DA price, i.e., the shortage price is p−t = xty
−
t , the overage price is p+t = xty

+
t .

Assume (y−t , y
+
t) satisfies that y+t < 1 < y−t . At the beginning of each period t, the aggregator

commits an amount of at to a forward contract for energy in the DA market at the DA price.

The aggregator must deliver the amount of at energy in the RT market. If the delivered

energy falls short of the forward contract, the aggregator must purchase the shortfall at the

RT shortage price p−t . If the delivered energy exceeds the forward contract, the aggregator

has to sell the excess amount at the RT overage price p+t .

121

1250 1500 1750
Bidding Amount

0.0

0.1

0.2

0.3

(a) Base AVI

1250 1500 1750
Bidding Amount

0.0

0.1

0.2

0.3

(b) FSAVI

1250 1500 1750
Bidding Amount

0.0

0.1

0.2

0.3

(c) Nominal FSAVI

1250 1500 1750
Bidding Amount

0.0

0.1

0.2

0.3

(d) Slow-agnostic AVI

1250 1500 1750
Bidding Amount

0.0

0.1

0.2

0.3

(e) DQN

Figure 39: The bidding amount of the algorithms

To meet the forward contract, the aggregator must elicit a reduction in demand from its

customers. We consider two customers in this section, i.e., m ∈ {1, 2}. The reduction in

demand is call demand response, which is a function of the compensation provided by the

aggregator. Represent the compensation as fractions of the the DA price, i.e., qt,m = xtαt,m,

where αt,m < 1. The demand response is modeled as dm(xt, αt,m) = bm,1 + bm,2xtαt,m + σt,m,

where σt,m is the noise. Let b1,2 > b2,2, b1,1 < b2,1, and let the maximum expected demand

response of customer 1 be bigger than that of customer. The immediate reward function is

r(xt, y
+
t , y

−
t , at,αt) = xtat + E

[
−
∑
m

xtαt,mdm(xt, αt,m) + xty
+
t

(∑
m

dm(xt, αt,m)− at
)+

− xty
−
t

(
at −

∑
m

dm(xt, αt,m)
)+]

,

122

0.4 0.6
Ratio

0.0

0.1

0.2

0.3

(a) Base AVI

0.4 0.6
Ratio

0.0

0.1

0.2

0.3

(b) FSAVI

0.4 0.6
Ratio

0.0

0.1

0.2

0.3

(c) Nominal FSAVI

0.4 0.6
Ratio

0.0

0.1

0.2

0.3

(d) Slow-agnostic AVI

0.4 0.6
Ratio

0.0

0.1

0.2

0.3
Customer 1
Customer 2

(e) DQN

Figure 40: The proportion of the bidding amount satisfied by each customer

where αt = (αt,1, αt,2, . . . , αt,m). The reward function can be approximated as h(xt) g(x
∗
t , y

+
t ,

y−t , at,αt), where

g(x∗
t , y

+
t , y

−
t , at,αt) = at + E

[
−
∑
m

αt,mdm(x
∗
t , αt,m) + y+t

(∑
m

dm(x
∗
t , αt,m)− at

)+
− y−t

(
at −

∑
m

dm(x
∗
t , αt,m)

)+]
.

Figure 38 shows the performance of the algorithms as a function of the computational

cost. The proposed algorithms, especially Nominal FSAVI, converge fast. The performance

of Base AVI and DQN improves slowly. The performance of Slow-agnostic AVI is good

comparing to other algorithms at the beginning, but oscillates at a small value and does not

converge.

123

To understand the policies of the algorithms, Figure 39 shows the histograms of the

cumulative bidding amount over 100 periods starting from 1000 random states. Figures 40

shows histograms of the proportions of the bidding amount that is satisfied by the two

customers. We have the following observations:

1. The bidding amount of Base AVI, FSAVI and Nominal FSAVI are similar. Their mean

values are all about 1400. The mean bidding amount of Slow-agnostic AVI is smaller

than 1400, and the amount of DQN is higher than 1400.

2. The shapes of the histograms of Base AVI, FSAVI and Nominal FSAVI are similar. The

average proportion of customer 1 is a higher than that of customer 2, the difference is

small. The histograms of customer 1 of Slow-agnostic AVI and DQN are wider than the

other three models. DQN is the only algorithm that the average proportion of customer

1 is smaller than that of customer 2.

4.6.4 Multi-product Joint Procurement and Pricing

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Computational Cost 1e5

1
2
3
4
5

Te
st

 R
ew

ar
d

1e3

DQN
Base AVI
Slow-agnostic AVI
FSAVI
Nominal FSAVI

Figure 41: AVI for the joint procurement and pricing problem

Finally, we apply the algorithms to an MDP with endogenous slow state. We con-

sider the multi-product joint procurement and pricing problem with price-dependent de-

mand [210, 211, 212] with two products. Assume that the demand for product 1 is high,

and the demand for product 2 is relatively low. The state is the procurement costs and the

inventory levels at the beginning of period t, denoted by (ct,1, yt,1, ct,2, yt,2), where ct,1, ct,2 ∈

124

1 2 3
Procurement 1e3

0.0

0.076

0.152

0.227

(a) Base AVI

1 2 3
Procurement 1e3

0.0

0.076

0.152

0.227

(b) FSAVI

1 2 3
Procurement 1e3

0.0

0.076

0.152

0.227

(c) Nominal FSAVI

1 2 3
Procurement 1e3

0.0

0.076

0.152

0.227

(d) Slow-agnostic AVI

1 2 3
Procurement 1e3

0.0

0.076

0.152

0.227
Customer 1
Customer 2

(e) DQN

Figure 42: The procurement quantities of the algorithms

{1, 1.05, . . . , 2}, yt,1, yt,2 ∈ {0, 10, . . . , 100}. The cost (ct,1, ct,2) forms the exogenous Markov

process: (ct+1,1, ct+2,2) = fC(ct,1, ct,2, wt). Denote the stochastic demand di(pt,i) = αi− βipt,i,

where α1 = 40, β1 = 6.7, α2 = 160, and β2 = 26.7. The transition function of the in-

ventory level is yt+1,i = yt,i + at,i − Dt,i, where Dt,i is a realization of the demand di(pt,i).

Given the state, the decision maker decides the procurement quantities and selling prices

at = (at,1, pt,1, at,2, pt,2), where at,1 ∈ {0, 20, . . . , 100}, pt,1 ∈ {3, 4.5}. The immediate reward

function is

r(ct,yt,at) = Et

[∑
i=1,2

pt,idi(pt,i)− ct,iat,i

− h+
i (yt,i + at,i − di(pt,i))

+ − h−
i (di(pt,i)− yt,i − at,i)

+
]
,

where h+ = 0 is the inventory cost, h− = 3 is the lost-sales cost. Consider the large difference

in the expected demand of the two products, we treat (ct,1, yt,1) as the slow state. That is,

125

the decision maker checks and updates the inventory level of product 1 every T periods, and

makes the procurement and pricing decisions every T periods. During the lower level, the

procurement quantity of product 1 is 0 (no procurement), and its price is frozen.

Figure 41 shows the performance of the algorithms as a function of the computational

cost. FSAVI and Nominal FSAVI converge fast. The performance of Base AVI improves

slowly. The performance of Slow-agnostic AVI never improves as the computational cost

increases.

To illustrate the policies of the algorithms, Figure 42 shows the histograms of the total

procurement quantities over 50 periods starting from 1000 random states. We have the

following observations:

1. The procurement quantities of product 1 is smaller than the procurement quantities of

product 2 in every algorithm. This coincides with the difference in the expected demand

of the two products.

2. The average procurement quantity of product 1 in Slow-agnostic AVI is 1139, much higher

than the values of DQN (792), Base AVI (778), FSAVI (640) and Nominal FSAVI (643).

In the latter four algorithms, the distributions of the procurement quantity of product

1 are different, Base AVI has the smallest variance, DQN has the largest variance. That

means starting from different states, the cumulative procurement decisions are more

stable in the Base AVI than the other algorithms.

3. The average procurement quantities of product 2 in the algorithms are similar, which are

2789 in Slow-agnostic AVI, 2864 in DQN, 2844 in Base AVI, 3061 in FSAVI, and 3060 in

Nominal FSAVI. Hierarchical algorithms leads to higher procurement quantity than the

base model. This is a result of freezing the slow states, i.e., the cost and inventory level

of product 1, which influences the transition function of the cost of product 2, which in

turn impacts the pricing decision, the demand and the procurement decision of product

2.

126

4.6.5 Discussion

We offer some important observations and takeaways from figures of the VI (or AVI)

performance and the policies of the algorithms for all the studied problems.

1. The proposed models converge faster than the baseline algorithms, and the nominal

state model converges even faster than the frozen-state model. The fast convergence

comes from two parts: one is freezing the slow state in the lower level, which reduce the

computational cost of estimating the expected value of next state; the other is utilizing

the nominal slow states in the lower level, which reduce the number of lower level MDPs.

2. The policies of the proposed hierarchical approximation algorithms have similar perfor-

mance to the base model.

3. It is risky to ignore the slow state, it leads to convergence to a worse value.

4.7 Conclusions

In this chapter, we study the MDPs with fast-slow structure, in which the slow state

is either exogenous or endogenous with a separability assumption on the action space. We

respectively propose hierarchical value iteration algorithms based on the idea of freezing the

slow states, solving a set of finite-horizon MDPs, and applying value iteration to an auxiliary

MDP that transitions on a slower timescale. We show the errors caused by freezing slow

states and adopting nominal slow states in the approximation. We then discuss the choice

of T , the length of the state-frozen periods, to achieve the desired error level. We propose

VI and AVI for the hierarchical approximation problems. The proposed algorithms and the

baseline algorithms are applied to four problems to show the performance and the difference

in the learned policies.

127

5.0 Conclusions and Future Work

In this thesis, we exploit structural properties to efficiently solve the MDPs. We first

study the problems with concave value function and basestock policy. The inspiration is

the PODs operated by first responders or first receivers for distributing critical medical

supplies during emergency situations. We develop a hierarchical, finite-horizon MDP model,

where the upper-level MDP is an inventory model that controls the lower-level dispensing

problem. The MDP features basestock-like structure in a discrete state setting and discretely-

concave value functions. Based on the properties, we propose a new actor-critic algorithm

that exploits the structural properties of the MDP. In the algorithm, both policy and value

function approximations are tracked and the structural properties are utilized to improve the

empirical convergence rate. We also apply an aggregation-based version of the algorithm to

a case study for the problem of dispensing naloxone. We showed how an aggregation-based

version of S-AC along with k-means clustering can be used to handle the multi-dimensional

continuous features used in the case study. There are also other possible extensions to

S-AC that can make it more scalable to high-dimensional problems. For example, shape-

constrained deep neural networks [92] [93] can handle both monotonicity and concavity

via penalization of derivatives during training. In principle, our S-AC algorithm could be

extended to use techniques like these, but the same core principles of S-AC would remain

intact. We leave these investigations to future work.

Considering the challenge of exploration in unknown environments, as interactions with

the environment are usually expensive or limited, we secondly study the problem of ex-

ploration in RL. We focus on problems with sparse and delayed rewards, and that has a

distribution of possible environments (or tasks) that are related through common state and

action spaces. The agent faces an unknown task in the future and is given prior opportuni-

ties to “practice” on related tasks where the interactions are still expensive. We propose a

cost-aware Bayesian optimization approach that efficiently searches over a class of dynamic

subgoal-based exploration strategies. The algorithm adjusts a variety of levers — the loca-

tions of the subgoals, the length of each episode, and the number of replications per trial

128

— in order to overcome the challenges of sparse rewards, expensive interactions, and noise.

Our experimental evaluation demonstrates that, when averaged across problem domains, the

proposed algorithm outperforms the meta-learning algorithm MAML by 19%, the hyperpa-

rameter tuning method Hyperband by 23%, BO techniques EI and LCB by 24% and 22%,

respectively. We also provide a theoretical foundation and prove that the method asymptot-

ically identifies a near-optimal subgoal design from the search space. Future work includes

scalable extensions of the model and optimization formulation for high dimensional subgoal

parameterizations, and apply the dynamic subgoal exploration strategies in a real-world

application involving a navigation task.

Finally, we consider infinite horizon MDPs with fast-slow structure, meaning that certain

parts of the state space move fast (and are more influential) while other parts of the state

space transition move slowly (and are less influential). We propose the idea of freezing the

slow states, and develop frozen-state algorithm and nominal state algorithm which solve a

set of finite-horizon MDPs and apply value iteration to an auxiliary MDP that transitions

on a slower timescale. Theoretically, we bound the loss caused by freezing the slow state

and leveraging the nominal slow states respectively. We provide a bound over T given

desired error level. Empirically, we compare the proposed algorithms and a few benchmarks.

We show that when the slow state is exogenous, the policies from the proposed algorithms

are similar to the base model value iteration. We also show that with either exogenous

or endogenous slow state, the proposed algorithms converge faster than base model value

iteration.

129

Appendix A

A.1 Proofs for Chapter 2

In this section, we give the proofs of results from the main paper: Proposition 2.3.2,

Lemma 2.4.1, and Theorem 2.4.1.

A.1.1 Proof of Proposition 2.3.1

We prove the L♮-concavity of the Q-value function of the lower-level problem by backward

induction. Note that if this is true, then the discrete concavity of Uw,i(x, ξ) in x follows by

Lemma 2 of [83]. Let Jw,i(x, ξ, y) be the Q-value for a given state-action pair (x, ξ, y) at

period i:

Jw,i(x, ξ, y) = uw

(
y, ξ

)
+ Ew

[
Uw,i+1(Xi+1,Ξi+1)

]
.

The base case is Jw,n+1(x, ξ, y) = b x, which is L♮-concave in (x, y). The induction hypothesis

is that Jw,i+1(x, ξ, y) is L♮-concave in (x, y).

We analyze Jw,i(x, ξ, y) by breaking it up into two terms. The first term is L♮-concave in

y according to Assumption 2.3.1. The second term Uw,i+1(Xi+1,Ξi+1) is L♮-concave in Xi+1

according to Lemma 2 of [83]. Since Xi+1 = x− y, Uw,i+1(Xi+1,Ξi+1) is L♮-concave in (x, y)

by Lemma 2 in [66]. This concludes the proof.

A.1.2 Proof of Proposition 2.3.2

First, we prove part 1. Let us define the state-action value function (or the Q-value).

The terminal value is defined as Qrep
T (r, w; zrep) = −b r. For t < T , replenish-up-to decision

zrep ∈ Z̄(r), and dispense-down-to decision zdis ∈ Z(zrep),

Qrep
t (r, w; zrep) = (cw − h) r − cwz

rep + V dis
t (zrep, w), (A.1)

130

Qdis
t (zrep, w; zdis) = Ew

[
Uw,0

(
zrep − zdis,Ξt,0

)
+ V rep

t+1(Rt+1,Wt+1)
]
, (A.2)

where Rt+1 = zdis. We now prove the L♮-concavity of Q-value by backward induction.

Note that if this is true, then the L♮-concavity of Ṽ rep
t and Ṽ dis

t follows. The base case is

Qrep
T (r, w; zrep) = −b r, which is L♮-concave in (r, zrep), and the induction hypothesis is the

same property for Qrep
t+1(r, w; z

rep).

We first analyze (A.2) by breaking it up into two terms. The first term Ew

[
Uw,0

(
zrep −

zdis,Ξt,0

)]
is discretely concave in (zrep, zdis) according to Proposition 2.3.1 and Lemma 2 in

[66]. In the second term, V rep
t+1(r, w) = maxzrep∈Z̄(r) Q

rep
t+1(r, w; z

rep). Lemma 2 of [83] shows

that V rep
t+1(r, w) is L♮ concave in r. Since Rt+1 = zdis, the term V rep

t+1(Rt+1,Wt+1) is L♮-concave

in zdis. L♮-concavity is preserved under expectations, so Qdis
t (zrep, w; zdis) is L♮-concave in

(zrep, zdis).

Next, we analyze (A.1) by breaking it up into two terms. The first term (cw−h) r−cwzrep

is clearly L♮-concave in (r, zrep). The second term is

V dis
t (zrep, w) = max

zdis∈Z(zrep)
Qdis

t (zrep, w; zdis).

Lemma 2 of [83] shows that V dis
t (zrep, w) is L♮ concave in zrep. This concludes Part 1.

A.1.3 Proof of Lemma 2.4.1

Let us show part (1), the convergence of v̄rep,k
t (zrep, w). The convergence of v̄dis,k

t (zdis, w)

in part (2) of the lemma is similar. Since the demand Dt,i is bounded by Dmax, there exists

a vrep
max > 0 such that |vrep

t (zrep, w)| ≤ vrep
max for all t, zrep, and w. We first construct two

deterministic sequences {Gm} and {Im} such that G0 = vrep + vrep
max and I0 = vrep − vrep

max

with

Gm+1 =
Gm + vrep

2
and Im+1 =

Im + vrep

2
. (A.3)

It is easy to show that

Gm → vrep and Im → vrep. (A.4)

Our goal in this proof is to show that for any m and sufficiently large k,

Imt (zrep, w) ≤ v̄rep,k−1
t (zrep, w) ≤ Gm

t (z
rep, w). (A.5)

131

If (A.5) is true, then we can conclude the result of Lemma 2.4.1 by (A.4).

We now introduce a random set of states S−
t that are increased by the projection operator

(16) on finitely many iterations k. Formally, let

S−
t =

{
(zrep, w) ∈ S : ṽrep,k

t (zrep, w) < v̄rep,k
t (zrep, w) finitely often

}
.

Let K̄ be the random variable that describes the iteration number after which states in

S−
t are no longer increased by the projection step; i.e., for all (zrep, w) ∈ S−

t , it holds that

ṽrep,k
t (zrep, w) ≥ v̄rep,k

t (zrep, w) for all k ≥ K̄. We break apart (A.5) into two separate

inequalities; this proof will focus on showing that for a fixed m, there exists a finite random

index K̂m
t such that for all k ≥ K̂m

t ,

v̄rep,k−1
t (zrep, w) ≤ Gm

t (z
rep, w). (A.6)

The state space S can be partitioned into two parts: (1) states (zrep, w) ∈ S−
t and (2)

states (zrep, w) ∈ S \ S−
t . The proof of (A.6) will consider each partition separately. We

now define some noise terms and stochastic sequences. Recall from (2.15) and (2.17) that

v̂rep,k
t = V̂ rep,k

t (zrep,k
t , wk

t)− V̂ rep,k
t (zrep,k

t − 1, wk
t), where

V̂ rep,k
t (zrep, wk

t) =− cwk
t
zrep + Uµ∗

wk
t ,0

(
zrep − π̃dis,k−1

t (zrep, wk
t), ξ̌

k
t,0

)
+ fdis

t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (wt), z
rep),

By our assumption that lrep,kτ (w)→ lrepτ (w) almost surely for τ ≥ t+1, and ldis,k
τ (w)→ ldis

τ (w)

almost surely for τ ≥ t, and the fact that fdis
t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (wt), z
rep

)
depends only on

the replenish-up-to thresholds for periods t+1 onward and the dispense-down-to thresholds

for periods t onward, it follows that the simulated value of π̃rep,k−1 and π̃dis,k−1 becomes

unbiased asymptotically:

Ew

[
fdis
t

(
π̃rep,k−1, π̃dis,k−1;Zk

t (w), z
rep)]→ Ṽ dis

t

(
πdis,∗
t (zrep, w), w

)
a.s. (A.7)

We define the noise term ϵkt (z
rep,k
t , wk

t) such that

ϵkt (z
rep,k
t , wk

t) = E
[
v̂rep,k
t

]
− vrep

t (zrep,k
t , wk

t). (A.8)

132

Note that we can conclude from (A.7) that ϵkt (z
rep,k
t , wk

t) → 0 almost surely. We define

another noise term εkt (z
rep,k
t , wk

t) such that εkt (z
rep,k
t , wk

t) = v̂rep,k
t − E

[
v̂rep,k
t

]
. Thus, we can

see that

v̂rep,k
t = vrep

t (zrep,k
t , wk

t) + ϵkt (z
rep,k
t , wk

t) + εkt (z
rep,k
t , wk

t) (A.9)

Next, we need to define some stochastic sequences related to these noise terms. Let {s̄kt } be

defined such that for k < K̄, s̄kt (zrep, w) = 0, and for k ≥ K̄,

s̄kt (z
rep, w) =

(
1− αk

t (z
rep, w)

)
s̄k−1
t (zrep, w) + αk

t (z
rep, w)

[
ϵkt (z

rep,k
t , wk

t) + εkt (z
rep,k
t , wk

t)
]
.

(A.10)

This sequence averages both of the noise terms. Since ϵkt is unbiased and εkt converges to

zero, we can apply Theorem 2.4 of [80], a standard stochastic approximation convergence

result, to conclude that s̄kt (zrep, w)→ 0 almost surely. We then define a stochastic bounding

sequence {ḡt} such that for k < K̄, ḡkt (zrep, w) = Gk
t (z

rep, w) and for k ≥ K̄,

ḡkt (z
rep, w) =

(
1− αk

t (z
rep, w)

)
ḡk−1
t (zrep, w) + αk

t (z
rep, w) vrep

t (zrep, w). (A.11)

As in [43], we provide an ω-wise argument, meaning that we consider a fixed ω ∈ Ω

(although the dependence of random variables on ω is omitted for notational simplicity).

Here, we show the existence of a finite index K̃m
t such that for all states (zrep, w) ∈ S−

t , it

holds that for all iterations k ≥ K̃m
t , v̄rep,k−1

t (zrep, w) ≤ Gm
t (z

rep, w). The proof is a forward

induction on m where the base case is m = 0. The base case can be easily proved by applying

the definition of G0 (note that we can select K̃m
t ≥ K̄. The induction hypothesis is that

there exists an integer K̃m
t ≥ K̄ such that for all k ≥ K̃m

t , the inequality (A.6) is true. The

next step is m + 1: we must show the existence of an integer K̃m+1
t ≥ K̄ such that for all

states (zrep, w) ∈ S−
t , it holds that

v̄rep,k−1
t (zrep, w) ≤ Gm+1

t (zrep, w) (A.12)

for all iterations k ≥ K̃m+1
t . We require the following lemma.

Lemma A.1.1. The inequality

v̄rep,k−1
t (zrep, w) ≤ ḡk−1

t (zrep, w) + s̄k−1
t (zrep, w) (A.13)

holds almost everywhere on {k ≥ K̃m
t , (zrep, w) ∈ S−

t }.

133

Proof. When k = K̃m
t , the relationship (A.13) can be shown using the definitions of

ḡk−1
t (zrep, w) and s̄k−1

t (zrep, w), along with the induction hypothesis (A.6). We now in-

duct on k. Suppose that (A.13) is true for a given k ≥ K̃m
t . The inductive step is

to show v̄rep,k
t (zrep, w) ≤ ḡkt (z

rep, w) + s̄kt (z
rep, w). To simplify notation, let α̌k

t , v̌kt , škt ,

and ǧkt respectively denote αk
t (z

rep, w), v̄rep,k
t (zrep, w), s̄kt (zrep, w) and ḡkt (z

rep, w). For state

(zrep, w) = (zrep,k
t , wk

t), we have

v̌kt = ṽrep,k
t (zrep, w) = (1− α̌k

t)v̌
k−1
t + α̌k

t v̂
rep,k
t

≤ (1− α̌k
t)
(
ǧk−1
t + šk−1

t

)
+ α̌k

t v̂
rep,k
t − α̌k

t v
rep
t (zrep,k

t , wk
t) + α̌k

t v
rep
t (zrep,k

t , wk
t)

= (1− α̌k
t)
(
ǧk−1
t + šk−1

t

)
+ α̌k

t

[
ϵkt (z

rep,k
t , wk

t) + εkt (z
rep,k
t , wk

t)
]
+ α̌k

t v
rep
t (zrep,k

t , wk
t)

= (1− α̌k
t)ǧ

k−1
t + škt + α̌k

t v
rep
t (zrep,k

t , wk
t)

= ǧkt + škt .

The first equality is due to the fact that (zrep, w) = (zrep,k
t , wk

t), which is unaltered by

the projection operator (16). The second inequality follows from the induction hypothesis

(A.13). The last three steps follow by (A.9), (A.10) and (A.11) respectively.

For (zrep, w) ̸= (zrep,k
t , wk

t), which are the states that are not updated by a direct obser-

vation of the sample slope at iteration k, period t, the stepsize α̌k
t = 0. Then, we have

škt = šk−1
t and ǧkt = ǧk−1

t .

Therefore, from the definition of set S−
t , the fact that K̃m

t ≥ K̄, and the induction hypothesis,

we have

v̌kt ≤ ṽrep,k
t (zrep, w) = v̌k−1

t ≤ ǧk−1
t + šk−1

t = ǧkt + škt ,

which concludes the proof of (A.13).

Since Gm ≥ Gm+1 ≥ vrep for all m, when Gm
t (z

rep, w) = vrep
t (zrep, w) = Gm+1

t (zrep, w),

the inequality v̄rep,k−1
t (zrep, w) ≤ Gm

t (z
rep, w) implies that v̄rep,k−1

t (zrep, w) ≤ Gm+1
t (zrep, w).

Thus, the only remaining states to consider are the ones where Gm
t (z

rep, w) > vrep
t (zrep, w).

Let δm be the minimum of the quantity [Gk
t (z

rep, w)− vrep
t (zrep, w)]/4 over states (zrep, w) ∈

134

S−
t with Gm

t (z
rep, w) > vrep

t (zrep, w). Define an integer KG ≥ K̃m
t such that for all states

(zrep, w) ∈ S−
t , ∏KG−1

k=K̃m
t

(
1− αk

t (z
rep, w)

)
≤ 1/4 and s̄kt (z

rep, w) ≤ δm.

for every iteration k ≥ KG. We can find such a KG because the stepsize conditions of

Assumption 2.4.1 imply that ∏∞
k=K̃m

t

(
1− αk

t (z
rep, w)

)
= 0,

and because s̄kt (z
rep, w) converges to zero.

Now we are ready to show (A.12). The definition of the sequence {ḡkt } implies that

ḡkt (z
rep, w) is a convex combination of Gk

t (z
rep, w) and vrep

t (zrep, w), of the form

ḡkt (z
rep, w) = α̂k

t (z
rep, w)Gk

t (z
rep, w) +

(
1− α̂k

t (z
rep, w)

)
vrep
t (zrep, w),

where α̂k
t (z

rep, w) =
∏K−1

k=K̃m
t

(
1− αk

t (z
rep, w)

)
≤ 1/4 for k ≥ KG. Because Gm ≥ vrep for any

m, it follows that

ḡkt (z
rep, w) ≤ 1

4
Gk

t (z
rep, w) + 3

4
vrep
t (zrep, w)

= 1
2
Gk

t (z
rep, w) + 1

2
vrep
t (zrep, w)− 1

4

(
Gk

t (z
rep, w)− vrep

t (zrep, w)
)

≤ Gk+1
t (zrep, w)− δm,

where the second inequality follows from (A.3) and the definition of δm. Recall that we

are concentrating on the case where Gm
t (z

rep, w) > vrep
t (zrep, w), so δm is well-defined and

positive. This inequality, together with Lemma A.1.1 and s̄kt (z
rep, w) ≤ δm, imply that for

all k ≥ KG,

ḡkt (z
rep, w) ≤ Gk+1

t (zrep, w)− δm + s̄kt (z
rep, w) ≤ Gk+1

t (zrep, w)− δm + δm ≤ Gk+1
t (zrep, w).

We conclude Part (1) of the proof by letting K̃m+1
t = KG.

We now focus on the states (zrep, w) ∈ S \ S−
t that are increased infinitely often. For

a fixed m and state (zrep, w) ∈ S \ S−
t , we wish to prove the existence of a random index

K̂m
t (zrep, w) such that for all k ≥ K̂m

t (zrep, w), it holds that v̄rep,k−1
t (zrep, w) ≤ Gm

t (z
rep, w).

Note that K̂m
t (zrep, w) differs from K̃m

t in that it depends on a specific (zrep, w) ∈ S \ S−
t

(while we K̃m
t is chosen uniformly for all states in S−

t). The crux of the proof depends on

the following lemma.

135

Lemma A.1.2. Fix m ≥ 0 and consider a state (zrep − 1, w) ∈ S \ S−
t and suppose that

there exists a random index K̂m
t (zrep, w) such that the required condition v̄rep,k−1

t (zrep, w) ≤
Gm

t (z
rep, w) is true, then there exists another random index K̂m

t (zrep − 1, w) such that

v̄rep,k−1
t (zrep − 1, w) ≤ Gm

t (z
rep − 1, w)

for all iterations k ≥ K̂m
t (zrep − 1, w).

Proof. See the proof of Lemma 6.4 of [43]. The only modification that needs to be made is

to redefine the Bellman operator ‘H’ from [43] so that it maps to the optimal value function

slopes v for any argument (we no longer interpret H as a Bellman operator as our algorithm

is not based on value iteration).

Consider some m ≥ 0 and a state (zrep, w) ∈ S \ S−
t . Now, let state (zrep

min, w) where

zrep
min is the minimum replenish-up-to postdecision resource level such that zrep

min > zrep and

(zrep
min, w) ∈ S−

t . We note that such a state certainly exists because (Rmax, w) ∈ S−
t . The

state (zrep
min, w) satisfies the condition of Lemma A.1.2 with K̂m

t (zrep
min, w) = Km

t , so we may

conclude that there is an index K̂m
t (zrep

min− 1, w) associated with state (zrep
min− 1, w) such that

for all k ≥ K̂m
t (zrep

min − 1, w), the required condition v̄rep,k−1
t (zrep

min − 1, w) ≤ Gm
t (z

rep
min − 1, w)

holds. This process can be repeated until we reach the state of interest (zrep, w), which

provides the required K̂m
t (zrep, w). Finally, if we choose an iteration large enough, i.e.,

Km
t = max

{
K̃m

t ,max(zrep,w)∈S\S−
t
K̂m

t (zrep, w)
}
,

then (A.6) is true for all k ≥ K̂m
t and states (zrep, w) ∈ S. A symmetric proof can be given

to verify that the other half of the inequality (A.5), v̄rep,k−1
t (zrep, w) ≥ Imt (zrep, w), holds for

sufficiently large k, which completes the proof.

136

A.1.4 Proof of Theorem 2.4.1

The proof of Theorem 2.4.1 is a backward induction over time periods t. For the

replenish-up-to value function and threshold, the base case is t = T , where the conver-

gence of v̄rep,k
T (zrep, w) and l̄rep,kT (w) to their optimal counterparts (both equal to zero) are

trivial by assumption (see Section 2.4.3). The induction hypothesis is that lrep,kτ (w)→ lrepτ (w)

almost surely for τ ≥ t+ 1, and π̄dis,k
τ (zrep, w)→ πdis

τ (zrep, w) almost surely for τ ≥ t. Now,

consider period t. The almost sure convergence of v̄rep,k
t (zrep, w) to vrep

t (zrep, w) follows by

Lemma 2.4.1. Therefore, by Assumption 2.4.2, we can conclude that

l̂rep,kt = argmaxzrep∈Z(0)

∑zrep

j=0 v̄
rep,k
t (j, wk

t)→ lrept (w) a.s.

Combining this with the update formula for l̄rep,kt (w), the stepsize properties of Assump-

tion 2.4.1, and Theorem 2.4 of [80], we see that l̄rep,kt (w) converges to lrept (w) almost surely.

For the dispense-down-to value function and policy, the proof is similar. We only need

to notice that the dispense-down-to decision is made after the replenish-up-to decision, and

the induction hypothesis for it is that lrep,kτ (w) → lrepτ (w) and π̄dis,k
τ (zrep, w) → πdis

τ (zrep, w)

almost surely for τ ≥ t+ 1.

137

A.2 Actor-Critic Method

The actor-critic method is shown in Algorithm 6.

Algorithm 6: Actor-Critic Method

Input: RBFs ψ(r, w) for the state value, and ϕ(r, w; zrep, zdis) for the policy.
Initial parameter estimate η0 and θ0.
Stepsize rules α̃k

t and β̃k
t for all t, k.

Output: Parameters ηk and θk.

1 for k = 1, 2, . . . ,K do

2 Sample an initial state sk0.

3 for t = 0, 1, . . . , T − 1 do

4 Observe wk
t and ξkt,1.

5 Take action
(
zk,rept , zk,dis

t

)
∼ πk−1

t (zrep, zdis|rkt , wk
t ;θ

k−1), observe the next state
(rkt+1, w

k
t+1) and the immediate reward

Ct = (cwk
t
− h) r − cwk

t
zk,rept + Uwk

t ,0

(
zk,rept − zk,dis

t , ξkt,0
)
.

6 Calculate the temperal difference δt ← Ct +ψ(r
k
t+1, w

k
t+1)

Tηkt+1 −ψ(rkt , wk
t)

Tηkt .

7 Critic update: ηkt = ηk−1
t + αk

t (r, w)δtψ(r
k
t , w

k
t), where

αk
t (r, w) = α̃k

t 1{(r, w) = (rkt , w
k
t)}.

8 Actor update: θkt = θk−1
t + βk

t (r, w; z
rep, zdis)δt∆θk−1

t
ln π̇k−1

t (zrep, zdis|rkt , wk
t ;θ

k−1),

where βk
t (r, w; z

rep, zdis) = β̃k
t 1{(r, w; zrep, zdis) = (rkt , w

k
t ; z

k,rep
t , zk,dis

t)}.
9 end

10 end

138

A.3 A Practical, Aggregation-based Version of S-AC

To deal with potentially continuous information states Wt ∈ W , we now introduce a

practical version of our algorithm that utilizes aggregation in the information state. The

essential idea is that the structural results from Section 2.3 continue to hold when we perform

aggregation, so the S-AC idea can be applied almost directly. We partition the exogenous

information space W into J sets, i.e., let

W =W1 ∪W2 ∪ . . . ∪WJ with Wi ∩Wj = ∅ if i ̸= j.

Note that we do not aggregate in the inventory state and only do so in the information

state. Each partition Wj contains a representative state, denoted ẇj ∈ Wj, similar to what

is done in [213]. We also assign a distribution over each partition and we suppose that

the distribution is described with a density function pj(w), with w ∈ Wj. This allows

us to map the original MDP to an aggregate version by integrating with respect to this

distribution (which should be thought of as a design choice). For the remainder of the

paper, we assume that pj(·) is a uniform density function, but remark that the algorithm

can easily accommodate other aggregation distributions by including a likelihood ratio factor.

We use “dot” notation to denote variables related to state aggregation. For example,

Ẇt denotes the aggregate exogenous information at period t. Further, let V̇ rep
t (r, ẇj) and

V̇ dis
t (zrep, ẇj) respectively denote the optimal aggregate value functions for the replenish-

up-to decision and the dispense-down-to decision, let ˙̃V rep
t (z, ẇj) and ˙̃V dis

t (zrep, ẇj) respec-

tively denote their corresponding aggregate postdecision value function, let ˙̃πrep and ˙̃πdis

be the rounded policies under state aggregation. The terminal aggregate value function is

V̇ rep
T (r, ẇj) = −b r and for t < T , we have

V̇ rep
t (r, ẇj) = max

zrep∈Z̄(r)

∫
w∈Wj

pj(w)
{
(cw − h)r − cwz

rep + V̇ dis
t (zrep, ẇj)

}
dw,

V̇ dis
t (zrep, ẇj) = max

zdis∈Z(zrep)

∫
w∈Wj

pj(w)
{
Ew

[
U µ̄
w,0(z

rep − zdis,Ξt,0) + V̇ rep
t+1

(
zdis, Ẇt+1

)]}
dw,

where the transition to Ẇt+1 satisfies Ẇt+1 =
∑k

j=1 Ẇj1{Wt+1 ∈ Ẇj}, and µ̄ is the ap-

proximate policy for the lower-level. For the lower-level dispensing problem, similar the the

139

discrete state space version, we solve the optimal policy µ∗ for each aggregate state. Then

the policy is extrapolated to the continuous state space by linear regression. Similar to the

definition of postdecision value functions (2.6) and (2.7), define

˙̃V rep
t (z, ẇj) =

∫
w∈Wj

pj(w)
{
−cwzrep + V̇ dis

t (zrep, ẇj)
}
dw,

˙̃V dis
t (zrep, ẇj) =

∫
w∈Wj

pj(w)Ew

[
V̇ rep
t+1

(
zdis, Ẇt+1

)]
dw.

The optimal replenish-up-to and dispense-down-to policies under state aggregation can be

written as

π̇rep,∗
t (r, ẇj) ∈ argmaxzrep∈Z̄(r)

˙̃V rep
t (z, ẇj),

π̇dis,∗
t (zrep, ẇj) ∈ argmaxzdis∈Z(zrep)

˙̃V dis
t (zdis, ẇj),

The postdecision Bellman equation under state aggregation is ˙̃V dis
T−1(z

dis, ẇj) = −b zdis, and

for any t < T − 1,

˙̃V rep
t (zrep, ẇj) =

∫
w∈Wj

pj(w)
{
−cwzrep + Ew

[
U µ̄
w,0

(
zrep − π̇dis,∗

t (zrep, ẇj),Ξt,0

)]
+ ˙̃V dis

t

(
π̇dis,∗
t (zrep, ẇj), ẇj

)}
dw,

˙̃V dis
t (zdis, ẇj) =

∫
w∈Wj

pj(w)
{
Ew

[
(cẆt+1

− h)zdis + ˙̃V rep
t+1

(
π̇rep,∗
t (zdis, Ẇt+1), Ẇt+1

)]}
dw.

The properties of the aggregate problem are stated in Proposition A.3.1. The result fol-

lows from the proof of Proposition 2.3.2 and the fact that L♮-concavity is preserved under

expectations.

Proposition A.3.1. Suppose Assumption 2.3.1 is satisfied. Then, the structural properties

in Proposition 2.3.2 hold for the aggregate postdecision value functions ˙̃V rep
t (zrep, ẇj) and

˙̃V dis
t (zdis, ẇj) as well as the thresholds l̇rept (ẇj) and l̇dis

t (ẇj).

Proposition A.3.1 is the theoretical basis of the algorithm for the aggregate problem.

At each iteration and each period in the algorithm, we sample/observe the true exogenous

information process as in Algorithm 1, while using the corresponding aggregate exogenous

information states to update values and thresholds. The details are in Appendix A.3.1.

140

A.3.1 Algorithm for the Aggregate Problem

We define some other notations. At iteration k and period t, we use the same no-

tations as in Section 2.4 to represent the observation of the exogenous information and

the attribute, which are wk
t and ξkt,1 respectively. The corresponding information partition

and the aggregate exogenous information are Wk
t and ẇk

t respectively. For the process

Zk
t (w) =

{
(w̌k

τ , ξ̌
k
τ,1) : τ = t, . . . , T − 1

}
, denote W̌k

t and ˙̌wk
t the corresponding informa-

tion partition and the aggregate exogenous information at period τ respectively, and we

have w̌k
t ∈ W̌k

t . Let ḟ rep
t

(
˙̃πrep,k−1, ˙̃πdis,k−1;Zk

t (wt), rt
)

be the Monte Carlo estimates of the

replenish-up-to postdecision value starting in period t under the current aggregate policy

approximations and an initial state (rt, wt):

ḟ rep
t

(
˙̃πrep,k−1, ˙̃πdis,k−1;Zk

t (wt), rt
)
=
∑T−2

τ=t

[
−cw̌k

τ
˙̃zrep
τ + U µ̄

w̌k
τ

(
˙̃zrep
τ − ˙̃zdis

τ , ξ̌kτ,0
)
+ (cw̌k

τ+1
− h) ˙̃zdis

τ

]
− cw̌k

T−1

˙̃zrep
T−1 + U µ̄

w̌k
T−1,0

(
˙̃zrep
T−1 − ˙̃zdis

T−1, ξ̌
k
T−1,0

)
− b ˙̃zdis

T−1,

where for all τ ≥ t, the aggregate policies are

˙̃zrep
τ = ˙̃πrep,k−1

τ (rτ , ˙̌w
k
τ), ˙̃zdis

τ = ˙̃πdis,k−1
τ

(
π̃rep,k−1
τ (rτ , ˙̌w

k
τ), ˙̌w

k
τ

)
.

Let ḟdis
t

(
˙̃πrep,k−1, ˙̃πdis,k−1;Zk

t (wt), z
rep
t

)
be the Monte Carlo estimates of the dispense-down-to

postdecision value starting in period t under the current aggregate policy approximations

and an initial state (zrep
t , wt):

ḟdis
t

(
˙̃πrep,k−1, ˙̃πdis,k−1;Zk

t (wt), z
rep
t

)
=

∑T−2
τ=t

[
(cw̌k

τ+1
− h) ˙̃zdis

τ − cw̌k
τ+1

˙̃zrep
τ+1 + U µ̄

w̌k
τ+1,0

(
z̃rep
τ+1 − ˙̃zdis

τ+1, ξ̌
k
τ+1,0

)]
− b ˙̃zdis

T−1,

where ˙̃zdis
t = ˙̃πdis,k−1

t

(
zrep
t , ˙̌wk

τ

)
, and for all τ ≥ t+ 1,

˙̃zrep
τ = ˙̃πrep,k−1

τ (rτ , ˙̌w
k
τ), ˙̃zdis

τ = ˙̃πdis,k−1
τ

(
˙̃zrep
τ , ˙̌wk

τ

)
.

At each period t, to compute the approximate slopes, we use ḟdis
t to observe values

˙̂
V rep,k
t (zrep,k

t , ẇk
t) and ˙̂

V rep,k
t (zrep,k

t − 1, ẇk
t), and ḟ rep

t+1 to observe values ˙̂
V dis,k
t (zdis,k

t , ẇk
t) and

˙̂
V dis,k
t (zdis,k

t −1, ẇk
t), where ḟdis

t and ḟ rep
t+1 are implied by the current aggregate policies ˙̄πrep,k−1

141

and ˙̄πdis,k−1; specifically, for zrep, zdis ≥ 0, the observations ˙̂
V rep,k
t (zrep, ẇk

t) and ˙̂
V dis,k
t (zdis, ẇk

t)

are
˙̂
V rep,k
t (zrep, ẇk

t) =− cẇk
t
zrep + U µ̄

w̌k
t ,0

(
zrep − ˙̃πdis,k−1

t (zrep, ẇk
t), ξ̌

k
t,0

)
+ ḟdis

t

(
˙̃πrep,k−1, ˙̃πdis,k−1;Zk

t (ẇt), z
rep),

and

V̂ dis,k
t (zdis, ẇk

t) =(cwt+1 − h)zdis + ḟ rep
t+1

(
˙̃πrep,k−1, ˙̃πdis,k−1;Zk

t+1(wt+1), z
dis),

where wt+1 is a realization from the distribution Wt+1 |Wt = ẇk
t . The approximate slopes

˙̂vrep,k
t and ˙̂vdis,k

t are given by:

˙̂vrep,k
t =

˙̂
V rep,k
t (zrep,k

t , ẇk
t)− ˙̂

V rep,k
t (zrep,k

t − 1, ẇk
t), (A.14)

˙̂vdis,k
t =

˙̂
V dis,k
t (zdis,k

t , ẇk
t)− ˙̂

V dis,k
t (zdis,k

t − 1, ẇk
t), (A.15)

where we define ˙̂
V rep,k
t (−1, ẇk

t) =
˙̂
V dis,k
t (−1, ẇk

t) ≡ 0. Under the assumption that pj(·) is

a uniform density function for all j, an algorithm for the aggregate problem is given in

Algorithm 7.

142

Algorithm 7: Aggregate Structured Actor-Critic Method

Input: Lower-level approximate policy µ̄ (learned from backward dynamic programming in
the aggregate state space and extrapolated to continuous state space by linear
regression). Initial policy estimates ˙̄lrep,0 and ˙̄πdis,0, and value estimates ˙̄vrep,0 and
˙̄vdis,0 (nonincreasing in zrep and zdis respectively). Stepsize rules α̃k

t and β̃k
t for all

t, k.

Output: Approximations { ˙̄lrep,k}, { ˙̄πdis,k}, { ˙̄vrep,k}, and { ˙̄vdis,k}.
1 for k = 1, 2, . . . do

2 Sample initial states zrep,k
0 and zdis,k

0 .

3 for t = 0, 1, . . . , T − 1 do

4 Observe wk
t and ξkt,1, then observe ˙̂vrep,k

t and ˙̂vdis,k
t according to (A.14) and (A.15)

respectively.

5 Perform SA step:
˙̃vrep,k
t (zrep, ẇ) =

(
1− αk

t (z
rep, ẇ)

)
˙̄vrep,k−1
t (zrep, ẇ) + αk

t (z
rep, ẇ) ˙̂vrep,k

t ,

6 ˙̃vdis,k
t (zdis, ẇ) =

(
1− αk

t (z
dis, ẇ)

)
˙̄vdis,k−1
t (zdis, ẇ) + αk

t (z
dis, ẇ) ˙̂vdis,k

t .

7 Perform the concavity projection operation (16):
˙̄vrep,k
t = Π

zrep,k
t ,ẇk

t
(˙̃vrep,k

t), ˙̄vdis,k
t = Π

zdis,k
t ,ẇk

t
(˙̃vdis,k

t).

8 Observe and update the replenish-up-to threshold:
˙̂
lrep,kt = argmaxzrep∈Z̄(0)

∑zrep

j=0
˙̄vrep,k
t

(
j, ẇk

t

)
,

9 ˙̄lrep,kt (ẇ) =
(
1− βk

t (ẇ)
) ˙̄lrep,k−1

t (ẇ) + βk
t (ẇ)

˙̂
lrep,kt .

10 Observe and update the dispense-down-to policy:

11 for zrep
t = 0, 1, . . . , Rmax do

12 ˙̂πdis
t = argmaxzdis∈Z(zrep

t) U
µ̄

wk
t ,0

(
zrep
t − zdis, ξkt,0

)
+
∑zdis

j=0
˙̄vdis,k
t

(
j, ẇk

t

)
,

13 ˙̄πdis,k
t (zrep, ẇ) =

(
1− αk(zrep, ẇ)

)
˙̄πdis,k−1
t (zrep, ẇ) + αk(zrep, ẇ) ˙̂πdis

t .

14 end

15 If t < T − 1, take zrep,k
t+1 and zdis,k

t+1 according to the ϵ-greedy exploration policy.
16 end
17 end

143

Appendix B

B.1 Proofs for Chapter 3

B.1.1 Proof of Theorem 3.3.1

The proof is based on theoretical results of [111]. Our result, however, includes the ability

to select the number of replications q. Denote λ(θ, τ, q) = σ2
env +σ2

rep/q. Also, let F n denote

the σ-algebra generated by the history Hn. The expectation En := E[· |F n] is taken with

respect to F n. Recall that µn and kn are the mean and covariance matrix of the time n

belief on f . Define the quantities

Zn+1 =
yn+1(θ, τ)− µn(θ, τ)√

Var
[
yn+1(θ, τ)− µn(θ, τ) |F n

] ,
and

σ̃n
q

(
(θ′, τ ′), (θ, τ)

)
=

kn
(
(θ′, τ ′), (θ, τ)

)√
λ(θ, τ, q) + kn

(
(θ, τ), (θ, τ)

) .
Observe that Zn+1 is standard normal (conditional on F n). We have the following recursive

updating equation for µn+1:

µn+1(θ, τ) = µn(θ, τ) + σ̃n
qn+1

(
(θ, τ), (θn+1, τn+1)

)
Zn+1, (B.1)

and another recursive formula kn+1:

kn+1
(
(θ′, τ ′), (θ, τ)

)
= kn

(
(θ′, τ ′), (θ, τ)

)
− σ̃n

qn+1

(
(θ′, τ ′), (θn+1, τn+1)

) [
σ̃n
qn+1

(
(θ, τ), (θn+1, τn+1)

)]⊤
.

(B.2)

These updating equations are based on the Sherman-Woodbury identity; see [176] for a full

derivation. The objective of the acquisition function is thus:

νn(θ, τ, q)

qτ
=

1

qτ
En

[
(µn+1

∗ − µn
∗) | (θn, τn, qn) = (θ, τ, q)

]
144

=
1

qτ
En

[
max
θ′

{
µn(θ′,τmax) + σ̃n

q

(
(θ′, τmax), (θ, τ)

)
Zn+1

}
−max

θ′
µn(θ′, τmax)

∣∣∣ (θn, τn, qn) = (θ, τ, q)
]
.

(B.3)

We also define the quantity

V n(θ, τ, θ′, τ ′) = En[f(θ, τ) · f(θ′, τ ′)] = kn
(
(θ, τ), (θ′, τ ′)

)
+ µn(θ, τ) · µn(θ′, τ ′). (B.4)

Next, we restate a useful technical lemma from [111].

Lemma B.1.1 (Restatement of Lemma 1 of [111]). Let τ, τ ′ ∈ T and θ, θ′ ∈ Θ. The

limits of the series {µn(θ, τ)}n and {V n(θ, τ, θ′, τ ′)}n exist. Denote them by µ∞(θ, τ) and

V ∞(θ, τ, θ′, τ ′) respectively. We have

lim
n→∞

µn(θ, τ) = µ∞(θ, τ), (B.5)

lim
n→∞

V n(θ, τ, θ′, τ ′) = V ∞(θ, τ, θ′, τ ′) (B.6)

almost surely. If (θ′, τ ′) is sampled infinitely often, then

lim
n→∞

V n(θ, τ, θ′, τ ′) = µ∞(θ, τ) · µ∞(θ′, τ ′).

Fix a sample path ω, which corresponds to a particular path of measurements and ob-

servations

{(θn, τn, qn, yn+1(θn, τn, qn))}n.

By the finiteness of Θ̄, T , and Q, there must exist a configuration (θ′, τ ′, q′) that is visited

infinitely often on sample path ω. The following lemma states the asymptotic behavior of

νn(θ′, τ ′, q′)/(q′τ ′) for n→∞ as a function of µn(·, ·) and σ̃n
·
(
(·, ·), (·, ·)

)
.

Lemma B.1.2. Consider the sample path ω and (θ′, τ ′, q′) described above. Then, on that

sample path ω, it holds that

lim
n→∞

σ̃n
q′

(
(θ′′, τmax), (θ

′, τ ′)
)
= 0

for every θ′′ ∈ Θ. Also, the acquisition value tends to zero: limn→∞ νn(θ′, τ ′, q′)/(q′τ ′) = 0

145

Proof. It follows from Lemma B.1.1 that

kn
(
(θ, τ), (θ′, τ ′)

)
= En[f(θ, τ) · f(θ′, τ ′)]− µn(θ, τ) · µn(θ′, τ ′)

n→∞−−−→ 0

for any θ ∈ Θ, τ ∈ T . Then for all θ′′ ∈ Θ̄, we have

lim
n→∞

σ̃n
q′

(
(θ′′, τmax), (θ

′, τ ′)
)
= lim

n→∞

kn
(
(θ′′, τmax), (θ

′, τ ′)
)√

λ
(
θ′, τ ′, q′

)
+ kn

(
(θ′, τ ′), (θ′, τ ′)

) = 0.

Note that we made use of the fact that the observation noise λ(θ′, τ ′, q′) > 0 for any q′. From

the proof of Lemma 1 of [111], it is shown that for any θ′′ ∈ Θ̄,

{
µn(θ′′, τmax)

}
n

and
{
σ̃n
q′

(
(θ′′, τmax), (θ

′, τ ′)
)}

n

are uniformly integrable (u.i.) families of random variables that converge almost surely to

their respective limits µ∞(θ′′, τmax) and σ̃∞
q′

(
(θ′′, τmax), (θ

′, τ ′)
)
= 0. Note that the family of

random variables
{
σ̃n
q′

(
(θ′′, τmax), (θ

′, τ ′,)
)
Zn+1

}
n

is also uniformly integrable since Zn+1 is

independent of σ̃n
q′

(
(θ′′, τmax), (θ

′, τ ′)
)
. Let Z be a standard normal random variable (inde-

pendent from all other quantities). It holds that

lim
n→∞

νn(θ′, τ ′, q′)

q′τ ′

=
1

q′τ ′

[∫ +∞

−∞
ϕ(Z) max

θ′′∈Θ̄

{
µ∞(θ′′, τmax) + σ̃∞

q′

(
(θ′′, τmax), (θ

′, τ ′)
)
Z
}
dZ

−max
θ′′∈Θ̄

µ∞(θ′′, τmax)
] (B.7)

= 0.

The first equality is due to (B.3) and the fact that the operations of summing and tak-

ing maximum over a finite set of uniform integrable random variables maintains uniform

integrability.

146

From (3.7), we know that in each iteration n, the configuration (θn, τn, qn) is selected

from according to argmaxθ,τ,q ν
n(θ, τ, q)/(qτ). Now, for the sake of contradiction, suppose

that there exists some configuration (θ̆, τ̆ , q̆) such that limn→∞ νn(θ̆, τ̆ , q̆)/(q̆τ̆) > 0. This

immediately leads to a contradiction, since then it cannot be the case that (θ′, τ ′, q′) is

visited infinitely often.

Since the sample path ω was arbitrary, we conclude that

lim
n→∞

νn(θ, τ, q)/(qτ) = 0 a.s. (B.8)

for all θ ∈ Θ̄, τ ∈ T , and q ∈ Q.

Lemma B.1.3. Given that (B.8) holds, we have that

argmax
θ∈Θ̄

µ∞(θ, τmax) = argmax
θ∈Θ̄

f(θ, τmax)

almost surely.

Proof. We can conclude from (B.4) and Lemma B.1.1 that

lim
n→∞

kn
(
(θ, τmax), (θ, τmax)

)
= k∞(

(θ, τmax), (θ, τmax)
)

a.s.

for all θ ∈ Θ̄. In the case that the posterior variance k∞((θ, τmax), (θ, τmax)) = 0 for all θ ∈ Θ̄,

then the maximizer is known perfectly and we are done.

If not, then we define Θ̂ =
{
θ ∈ Θ̄ | k∞((θ, τmax), (θ, τmax)) > 0

}
and consider some θ̂ ∈ Θ̂

where the posterior variance is positive. Fix any q̂ ∈ Q. We now argue that

σ̃∞
q̂

(
(θ̂, τmax), (θ̂, τmax)

)
= σ̃∞

q̂

(
(θ′′, τmax), (θ̂, τmax)

)
(B.9)

for all θ′′ ∈ Θ̄. Suppose, for the sake of contradiction, that there exist some θ1, θ2 ∈ Θ̄ with

σ̃∞
q̂

(
(θ1, τmax), (θ̂, τmax)

)
̸= σ̃∞

q̂

(
(θ2, τmax), (θ̂, τmax)

)
. (B.10)

Recall (B.7) and note that it can be rewritten as

lim
n→∞

νn(θ′, τ ′, q′)

q′τ ′
=

1

q′τ ′

[
E
[
h(Z)

]
−max

θ′′∈Θ̄
µ∞(θ′′, τmax)

]
, (B.11)

147

where h(z) = maxθ′′∈Θ̄

{
µ∞(θ′′, τmax) + σ̃∞

q′

(
(θ′′, τmax), (θ

′, τ ′)
)
z
}

. Since Θ̄ is finite and each

function within the maximization in h is affine in z, the h(z) is convex1 and piecewise linear.

Since h is convex, there is an affine function l such that

l(0) = h(0), l(z) ≤ h(z) for all z ∈ R.

The assumption we made in (B.10), which effectively says that the h is created by taking

maximum over affine functions of differing slopes, implies h cannot itself be affine (and

indeed, must consist of various “pieces”). Therefore, there exists an interval I, either of the

form (z0,∞) or (−∞, z0), such that l(z) < h(z) for z ∈ I. It follows that E[l(Z)] < E[h(Z)].

By th linearity of l, we have

E[l(Z)] = l(E[Z]) = l(0) = h(0) = max
θ′′∈Θ̄

µ∞(θ′′, τmax) < E
[
h(Z)

]
.

This implies that (B.11) is strictly positive, contradicting (B.8). We thus conclude that (

B.9) holds, which is equivalent to

k∞(
(θ′′, τmax), (θ̂, τmax)

)√
λ(θ̂, τmax, q̂) + k∞

(
(θ̂, τmax), (θ̂, τmax)

) =
k∞(

(θ′′′, τmax), (θ̂, τmax)
)√

λ(θ̂, τmax, q̂) + k∞
(
(θ̂, τmax), (θ̂, τmax)

) ,

for all θ′′, θ′′′ ∈ Θ̄. Moreover, since θ̂ was chosen from Θ̂, we know that

λ(θ̂, τmax, q̂) + k∞(
(θ̂, τmax), (θ̂, τmax)

)
> 0,

and hence k∞(
(θ′′′, τmax), (θ̂, τmax)

)
= k∞(

(θ′′, τmax), (θ̂, τmax)
)

for all θ′′, θ′′′ ∈ Θ̄.

This means the covariance matrix of {f(θ, τmax) | θ ∈ Θ̄} is proportional to the all-ones

matrix, and that draws from f(θ, τmax)−µ(∞)(θ, τmax) are constant across θ ∈ Θ̄. Therefore,

argmaxθ∈Θ̄ µ(∞)(θ, τmax) = argmaxθ∈Θ̄ f(θ, τmax) and the statement of the theorem holds.

1Pointwise maximum of convex functions is convex.

148

B.1.2 Proof of Theorem 3.3.2

In Theorem 3.3.2, we establish an additive bound on the loss of the solution obtained

by BESD, f(θ̄, τmax), with respect to the unknown optimum f(θOPT, τmax), as the number of

iterations N →∞. Recall that we suppose µ(θ, τ) = 0 for all θ, τ , and that the kernel k(·, ·)
has continuous partial derivatives up to the fourth order. According to Theorem 3.2 of [177],

for any δ ∈ (0, 1], with probability at least 1− δ, the quantity

∥Lδ∥ =
∥∥(L1

δ , L
2
δ , · · · , Lm

δ)
∥∥

is a Lipschitz constant of f on Θ , i.e., it holds that

|f(θ, τmax)− f(θ′, τmax)| ≤ ∥Lδ∥ · dist(θ, θ′),

where θ, θ′ ∈ Θ. By the definition of d, there exists a θ̄ ∈ Θ̄ such that dist(θ̄, θOPT) ≤ d.

Therefore, it follows that the suboptimality due to optimizing in Θ̄ is bounded by

f(θOPT, τmax)− f(θ̄, τmax) ≤ ∥Lδ∥ · d. (B.12)

Theorem 3.3.1 completes the proof of Theorem 3.3.2 since (B.12) holds with probability

1− δ.

149

Appendix C

C.1 Proofs for Chapter 4

C.1.1 Additional Lemmas

Lemma C.1.1. Consider a (α, dy, Lr, Lf)-fast-slow MDP. For any states (x0, y0) and

(x̃0, ỹ0), let (xt, yt) and (x̃t, ỹt) be the states reached after t transitions under a policy π =

(π0, . . . , πt−1), i.e., (xt, yt) = fπ(xt−1, yt−1, wt) and (x̃t, ỹt) = fπ(x̃t−1, ỹt−1, wt). Then, for

any policy π, we have

(i) ∥xt − x̃0∥2 ≤ tαdy + ∥x0 − x̃0∥2,
(ii) ∥xt − x̃t∥2 ≤ 2tαdy + ∥x0 − x̃0∥2,
(iii) ∥yt − ỹt∥2 ≤ 2tdy + ∥y0 − ỹ0∥2.

Proof. Lemma C.1.1 is a consequence of Assumption 4.2.1.

C.1.2 Proof of Proposition 4.2.1

We consider an MDP ⟨S,A,W , f, r, γ⟩ and note that U∗ is the unique optimal solution of

the base model (4.5), and there exists a stationary optimal policy ν∗(x, y) = argmax U∗(x, y)

that attains this optimal value [236, Proposition 4.3]. Fix a state s0 ∈ S and for t > 0 and

a sequence of policies π0, . . . , πt−1, define the notation:

s1(π0) = fπ0(s0, w1) and st′+1(π0, . . . , πt′) = fπt′ (st′(π0, . . . , πt′−1), wt′+1)

for t′ ≥ 1. Therefore, we have

U∗(s0) = max
π0

r(s0, π0) + γE
[
U∗(s1(π0))

]
= r(s0, ν

∗) + γE
[
U∗(s1(ν

∗))
]
. (C.1)

150

By expanding the U∗(s1(π0)) and U∗(s1(ν
∗)) terms in (C.1), we have the following:

U∗(s0) = max
π0,π1

E
[
r(s0, π0) + γ r(s1(π0), π1) + γ2 U∗(s2(π0, π1))

]
= E

[
r(s0, ν) + γ r(s1(ν

∗), ν∗) + γ2 U∗(s2(ν
∗, ν∗))

]
.

Let π = (π0, π1, . . . , πT−1). Repeating the expansion, we obtain:

U∗(s0) = max
π

E

[
T−1∑
t=0

γt r
(
st(π0, . . . , πt−1), πt

)
+ γTU∗(sT (π0, . . . , πT−1)

)]
(C.2)

= E

[
T−1∑
t=0

γt r
(
st(ν

∗, . . . , ν∗), ν∗)+ γT U∗(sT (ν∗, . . . , ν∗)
)]

. (C.3)

Observe that (C.2) is in same form as the Bellman equation (4.8) for the hierarchical re-

formulation (with T -horizon reward function R and value function Ū), which has a unique

optimal solution Ū∗. Therefore U∗(s0) = Ū∗(s0) and (i) is proved when we recall that s0

was chosen arbitrarily. Part (ii) follows because by (C.3), it is clear that (ν∗, . . . , ν∗) solves

(C.2) and hence also (4.8).

C.1.3 Proof of Lemma 4.3.1

Let ŝ = argmaxs∈S
∣∣U∗

1 (s)− U∗
2 (s)

∣∣. We have
∣∣U∗

1 (s)− U∗
2 (s)

∣∣ ≤ ∣∣U∗
1 (ŝ)− U∗

2 (ŝ)
∣∣. Let us

show the bound of
∣∣U∗

1 (ŝ)− U∗
2 (ŝ)

∣∣.∣∣U∗
1 (ŝ)− U∗

2 (ŝ)
∣∣

=
∣∣max
a∈A

(
r1(ŝ, a) + γE[U∗

1 (f1(ŝ, a, w))]
)
−max

b∈A

(
r2(ŝ, b) + γE[U∗

2 (f2(ŝ, b, w))]
)∣∣

≤ max
a∈A

∣∣r1(ŝ, a) + γE[U∗
1 (f1(ŝ, a, w))]− r2(ŝ, a)− γE[U∗

2 (f2(ŝ, a, w))]
∣∣

≤ max
a∈A

∣∣r1(ŝ, a)− r2(ŝ, a)
∣∣+max

a∈A
γ
∣∣E[U∗

1 (f1(ŝ, a, w))]− E[U∗
2 (f2(ŝ, a, w))]

∣∣
≤ ϵr +max

a∈A
γ
∣∣E[U∗

1 (f1(ŝ, a, w))]− E[U∗
1 (f2(ŝ, a, w))]

∣∣
+max

a∈A
γ
∣∣E[U∗

1 (f2(ŝ, a, w))]− E[U∗
2 (f2(ŝ, a, w))]

∣∣
≤ ϵr + max

a∈A,w∈W
γL1∥f1(ŝ, a, w)− f2(ŝ, a, w)∥+max

a∈A
γ
∣∣U∗

1 (ŝ)− U∗
2 (ŝ)

∣∣
≤ ϵr + γL1d+ γ

∣∣U∗
1 (ŝ)− U∗

2 (ŝ)
∣∣.

Therefore, ∣∣U∗
1 (ŝ)− U∗

2 (ŝ)
∣∣ ≤ ϵr + γL1d

1− γ
.

151

C.1.4 Proof of Lemma 4.3.2

The proof follows the technique of Corollary 1 in [237]. Let π∗
1 be an optimal policy for

MDP1. Since π∗
2 is the optimal policy for MDP2, for any s ∈ S,

r2(s, π
∗
1(s)) + γE[U∗

2 (f2(s, π
∗
1(s), w))] ≤ r2(s, π

∗
2(s)) + γE[U∗

2 (f2(s, π
∗
2(s), w))].

According to the assumptions of the lemma, for any s and a, U∗
1 (s)−ϵU ≤ U∗

2 (s) ≤ U∗
1 (s)+ϵU ,

and r1(s, a)− ϵr ≤ r2(s, a) ≤ r1(s, a) + ϵr. Therefore,

r1(s, π
∗
1(s))− ϵr + γ(E[U∗

1 (f2(s, π
∗
1(s), w))]− ϵU)

≤ r1(s, π
∗
2(s)) + ϵr + γ(E[U∗

1 (f2(s, π
∗
2(s), w))] + ϵU),

which can be transformed into

r1(s, π
∗
1(s))− r1(s, π

∗
2(s)) ≤ 2ϵr + 2γϵU + γ

(
E[U∗

1 (f2(s, π
∗
2(s), w))]

− E[U∗
1 (f2(s, π

∗
1(s), w))]

)
. (C.4)

Let state ŝ be the state that achieves the maximum loss, i.e., Lπ∗
2
(ŝ) ≥ Lπ∗

2
(s) for all s ∈ S.

The maximum loss is

Lπ∗
2
(ŝ) = U∗

1 (ŝ)− U
π∗
2

1 (ŝ)

= r1(ŝ, π
∗
1(ŝ))− r1(ŝ, π

∗
2(ŝ)) + γ

(
E[U∗

1 (f1(ŝ, π
∗
1(ŝ), w))]− E[U

π∗
2

1 (f1(ŝ, π
∗
2(ŝ), w))]

)
.

Substituting from (C.4) gives

Lπ∗
2
(ŝ) ≤ 2ϵr + 2γϵU + γ

(
E[U∗

1 (f2(ŝ, π
∗
2(ŝ), w))]− E[U∗

1 (f2(ŝ, π
∗
1(ŝ), w))]

+ E[U∗
1 (f1(ŝ, π

∗
1(ŝ), w))]− E[U

π∗
2

1 (f1(ŝ, π
∗
2(ŝ), w))]

)
= 2ϵr + 2γϵU + γ

(
E[U∗

1 (f2(ŝ, π
∗
2(ŝ), w))]− E[U

π∗
2

1 (f1(ŝ, π
∗
2(ŝ), w))]

)
+ γ

(
E[U∗

1 (f1(ŝ, π
∗
1(ŝ), w))]− E[U∗

1 (f2(ŝ, π
∗
1(ŝ), w))]

)
≤ 2ϵr + 2γϵU + γLπ∗

2
(ŝ) + γL1max

w∈W
∥f1(ŝ, π∗

1(ŝ), w)− f2(ŝ, π
∗
1(ŝ), w)∥2

≤ 2ϵr + 2γϵU + γLπ∗
2
(ŝ) + γL1d.

Therefore,

Lπ∗
2
(ŝ) ≤ 2ϵr + 2γϵU + γL1d

1− γ
.

152

C.1.5 Proof of Proposition 4.3.1

Lemma C.1.2. Consider the base model ⟨X ×Y ,A,W , fX , fY , r, γ⟩ and let U : X ×Y → R

be a value function such that there exists LU , for any states (x, y) and (x̃, ỹ),

|U(x, y)− U(x̃, ỹ)| ≤ LU∥(x, y)− (x̃, ỹ)∥2. (C.5)

Define

Q(x, y, a) = r(x, y, a) + γE[U(fX (x,w), fY(x, y, a, w))].

Then for any state-action pairs (x, y, a) and (x̃, ỹ, ã), Q satisfies∣∣Q(x, y, a)−Q(x̃, ỹ, ã)
∣∣ ≤ (Lr + γLULf)(∥x− x̃∥2 + ∥y − ỹ∥2 + ∥a− ã∥2).

Proof. For any state-action pairs (x, y, a) and (x̃, ỹ, ã),∣∣Q(x, y, a)−Q(x̃, ỹ, ã)
∣∣

=
∣∣r(x, y, a) + γE[U(x′, y′)− r(x̃, ỹ, ã)− γE[U(x̃′, ỹ′)

∣∣
≤

∣∣r(x, y, a)− r(x̃, ỹ, ã)
∣∣+ γ

∣∣E[U(x′, y′)− E[U(x̃′, ỹ′)
∣∣

≤ Lr(∥x− x̃∥2 + ∥y − ỹ∥2 + ∥a− ã∥2) + γLU max
x′,y′,x̃′,ỹ′

∥(x′, y′)− (x̃′, ỹ′)∥2 (C.6)

≤ Lr(∥x− x̃∥2 + ∥y − ỹ∥2 + ∥a− ã∥2) + γLULf∥(x, y)− (x̃, ỹ)∥2 (C.7)

≤ (Lr + γLULf)(∥x− x̃∥2 + ∥y − ỹ∥2 + ∥a− ã∥2),

where (C.6) is from the lemma assumption, (C.7) is from (4.3).

Lemma C.1.3. For the base model ⟨X × Y ,A,W , fX , fY , r, γ⟩, let Q : X × Y × A → R

be a Q-value function that there exists LQ such that for any state-action pairs (x, y, a) and

(x̃, ỹ, ã), ∣∣Q(x, y, a)−Q(x̃, ỹ, ã)
∣∣ ≤ LQ(∥x− x̃∥2 + ∥y − ỹ∥2 + ∥a− ã∥2).

Define

U(x, y) = max
a

Q(x, y, a).

Then for any states (x, y) and (x̃, ỹ), U satisfy∣∣U(x, y)− U(x̃, ỹ)
∣∣ ≤ LQ(∥x− x̃∥2 + ∥y − ỹ∥2).

153

Proof. Consider states (x, y) and (x̃, ỹ),

∣∣U(x, y)− U(x̃, ỹ)
∣∣ = ∣∣max

a
Q(x, y, a)−max

ã
Q(x̃, ỹ, ã)

∣∣
≤ max

a

∣∣Q(x, y, a)−Q(x̃, ỹ, a)
∣∣

≤ LQ(∥x− x̃∥2 + ∥y − ỹ∥2).

Lemma C.1.4. Consider the base model ⟨X ×Y ,A,W , fX , fY , r, γ⟩. Start with U0 = 0 and

recursively define Qk+1 and Uk+1 as follows:

Qk+1(x, y, a) = r(x, y, a) + γE[Uk(fX (x,w), fY(x, y, a, w))],

and

Uk+1(x, y) = max
a

Qk+1(x, y, a).

Then Uk is Lipschitz continuous and its Lipschitz constant LUk
satisfies

LUk
= Lr + γLfLUk−1

.

Proof. The proof is an induction. For k = 1, |Q1(x, y, a) − Q1(x̃, ỹ, ã)| = |r(x, y, a) −
r(x̃, ỹ, ã)| ≤ Lr(∥x− x̃∥2+∥y− ỹ∥2+∥a− ã∥2) by Property 4.2. Then, |U1(x, y)−U1(x̃, ỹ)| ≤
Lr(∥x− x̃∥2 + ∥y − ỹ∥2) by Lemma C.1.3.

Now, assume that LUk
satisfy

LUk
= Lr + γLfLUk−1

.

Then, by Lemma C.1.2, Qk+1 is (Lr + γLfLUk
)-Lipschitz continuous. By Lemma C.1.3,

Uk+1 is (Lr + γLfLUk
)-Lipschitz continuous.

According to Proposition 7.3.1 of [238], the value Uk in Lemma C.1.4 converges to the

optimal value U∗. Let k →∞, we have that for any states (x, y) and (x̃, ỹ),

|U∗(x, y)− U∗(x̃, ỹ)| ≤ Lr

1− γLf

(∥x− x̃∥2 + ∥y − ỹ∥2).

154

C.1.5.1 The Case that γLf ≥ 1 Next, we consider the case that γLf ≥ 1, optimal

value at different states |U∗(x, y) − U∗(x̃, ỹ)| cannot be bounded by the technique above.

Instead, we use Proposition C.1.1.

Proposition C.1.1. The optimal value U∗ of the base model (4.5) satisfies that, for any

states (x, y) and (x̃, ỹ),

|U∗(x, y)− U∗(x̃, ỹ)| ≤ 1

1− γ
Lr(∥x− x̃∥∞ + ∥y − ỹ∥∞) + ∆U , (C.8)

where ∆U = 2
(1−γ)2

(α + 1)dyLr.

To prove Proposition C.1.1, we need the following lemmas.

Lemma C.1.5. Consider the base model ⟨X ×Y ,A,W , fX , fY , r, γ⟩ and let U : X ×Y → R

be a value function such that there exist LU ,∆ > 0 such that for any states (x, y) and (x̃, ỹ),

|U(x, y)− U(x̃, ỹ)| ≤ LU(∥x− x̃∥∞ + ∥y − ỹ∥∞) + ∆. (C.9)

Define

Q(x, y, a) = r(x, y, a) + γE[U(fX (x,w), fY(x, y, a, w))].

Then for any state-action pairs (x, y, a) and (x̃, ỹ, ã), Q satisfies

∣∣Q(x, y, a)−Q(x̃, ỹ, ã)
∣∣

≤ (Lr + γLU)(∥x− x̃∥∞ + ∥y − ỹ∥∞ + ∥a− ã∥∞) + 2(α + 1)dyγLU + γ∆.

Proof. For any state-action pairs (x, y, a) and (x̃, ỹ, ã),

∣∣Q(x, y, a)−Q(x̃, ỹ, ã)
∣∣

=
∣∣r(x, y, a) + γE[U(x′, y′)− r(x̃, ỹ, ã)− γE[U(x̃′, ỹ′)

∣∣
≤

∣∣r(x, y, a)− r(x̃, ỹ, ã)
∣∣+ γ

∣∣E[U(x′, y′)− E[U(x̃′, ỹ′)
∣∣

≤ Lr(∥x− x̃∥∞ + ∥y − ỹ∥∞ + ∥a− ã∥∞)

+ γLU max
x′,x̃′,y′,ỹ′

(
∥x′ − x̃′∥∞ + ∥y′ − ỹ′∥∞

)
+ γ∆ (C.10)

≤ Lr(∥x− x̃∥∞ + ∥y − ỹ∥∞ + ∥a− ã∥∞)

+ γLU

(
2(α + 1)dy + ∥x− x̃∥∞ + ∥y − ỹ∥∞

)
+ γ∆ (C.11)

155

≤ (Lr + γLU)(∥x− x̃∥∞ + ∥y − ỹ∥∞ + ∥a− ã∥∞) + 2(α + 1)dyγLU + γ∆,

where (C.10) is from Property 4.2, (C.11) is from Lemma C.1.1.

Lemma C.1.6. For the base model ⟨X × Y ,A,W , fX , fY , r, γ⟩, let Q : X × Y ×A → R be

a Q-value function that there exist LQ,∆ > 0 such that for any state-action pairs (x, y, a)

and (x̃, ỹ, ã),

∣∣Q(x, y, a)−Q(x̃, ỹ, ã)
∣∣ ≤ LQ(∥x− x̃∥∞ + ∥y − ỹ∥∞ + ∥a− ã∥∞) + ∆.

Define

U(x, y) = max
a

Q(x, y, a).

Then for any states (x, y) and (x̃, ỹ), U satisfy

∣∣U(x, y)− U(x̃, ỹ)
∣∣ ≤ LQ(∥x− x̃∥∞ + ∥y − ỹ∥∞) + ∆.

Proof. Consider states (x, y) and (x̃, ỹ),

∣∣U(x, y)− U(x̃, ỹ)
∣∣ = ∣∣max

a
Q(x, y, a)−max

ã
Q(x̃, ỹ, ã)

∣∣
≤ max

a

∣∣Q(x, y, a)−Q(x̃, ỹ, a)
∣∣

≤ LQ(∥x− x̃∥∞ + ∥y − ỹ∥∞) + ∆.

Lemma C.1.7. Consider the base model ⟨X ×Y ,A,W , fX , fY , r, γ⟩. Start with U0 = 0 and

recursively define Qk+1 and Uk+1 as follows:

Qk+1(x, y, a) = r(x, y, a) + γE[Uk(fX (x,w), fY(x, y, a, w))],

and

Uk+1(x, y) = max
a

Qk+1(x, y, a).

Then for any states (x, y) and (x̃, ỹ),

|Uk(x, y)− Uk(x̃, ỹ)| ≤ Lr

k−1∑
i=0

γi(∥x− x̃∥∞ + ∥y − ỹ∥∞) + 2(α + 1)dyLr

k−1∑
i=1

iγi.

156

Proof. The proof is an induction. For k = 1, |Q1(x, y, a) − Q1(x̃, ỹ, ã)| = |r(x, y, a) −
r(x̃, ỹ, ã)| ≤ Lr(∥x−x̃∥∞+∥y−ỹ∥∞+∥a−ã∥∞) by Property 4.2. Then, |U1(x, y)−U1(x̃, ỹ)| ≤
Lr(∥x− x̃∥∞ + ∥y − ỹ∥∞) by Lemma C.1.6.

Now, assume that Uk satisfy

|Uk(x, y)− Uk(x̃, ỹ)| ≤ Lr

k−1∑
i=0

γi(∥x− x̃∥∞ + ∥y − ỹ∥∞) + 2(α + 1)dyLr

k−1∑
i=1

iγi.

Then, by Lemma C.1.5,

|Qk+1(x, y, a)−Qk+1(x̃, ỹ, ã)|

≤ (Lr + γLr

k−1∑
i=0

γi)(∥x− x̃∥∞ + ∥y − ỹ∥∞ + ∥a− ã∥∞)

+ 2(α + 1)dyγLr

k−1∑
i=0

γi + γ2(α + 1)dyLr

k−1∑
i=1

iγi

= Lr

k∑
i=0

γi(∥x− x̃∥∞ + ∥y − ỹ∥∞ + ∥a− ã∥∞) + 2(α + 1)dyLr(
k∑

i=1

γi +
k−1∑
i=1

iγi+1)

= Lr

k∑
i=0

γi(∥x− x̃∥∞ + ∥y − ỹ∥∞ + ∥a− ã∥∞) + 2(α + 1)dyLr

k∑
i=1

iγi.

By Lemma C.1.6,

|Uk+1(x, y)− Uk+1(x̃, ỹ)| ≤ Lr

k∑
i=0

γi(∥x− x̃∥∞ + ∥y − ỹ∥∞) + 2(α + 1)dyLr

k∑
i=1

iγi.

According to Proposition 7.3.1 of [238], the value Uk in Lemma C.1.7 converges to the

optimal value U∗. Let k →∞, we have that for any states (x, y) and (x̃, ỹ),

|U∗(x, y)− U∗(x̃, ỹ)| ≤ 1

1− γ
Lr(∥x− x̃∥∞ + ∥y − ỹ∥∞) +

2

(1− γ)2
(α + 1)dyLr.

157

C.2 Proof of Proposition 4.3.2

C.2.0.1 Additional Lemmas The following two lemmas are about properties of Bell-

man operators H and H̃.

Lemma C.2.1. For any state (x, y) and any value functions V and Ṽ : X × Y → R, we

have

|(H tV)(x, y)− (H tṼ)(x, y)| ≤ max
xt,yt

γt
∣∣V (xt, yt)− Ṽ (xt, yt)

∣∣,
and

|(H̃ tV)(x, y)− (H̃ tṼ)(x, y)| ≤ max
yt

γt
∣∣V (x, yt)− Ṽ (x, yt)

∣∣,
where (xt, yt) is the state reached after t transitions under a policy π = (π0, . . . , πt−1).

Lemma C.2.2. Suppose there exists LV > 0 that for any states (x, y) and (x̃, ỹ), any value

functions V and Ṽ : X × Y → R, |V (x, y)− V (x̃, ỹ)| ≤ LV ∥(x, y)− (x̃, ỹ)∥2, then

|(H tV)(x, y)− (H̃ tV)(x̃, ỹ)|

≤ (∥x− x̃∥2 + ∥y − ỹ∥2)
(
Lr

t−1∑
i=0

γi + LV γ
t
)
+ dy(α + 2)

(
Lr

t∑
i=1

iγi + LV tγ
t
)
.

Proof.

|(H tV)(x, y)− (H̃ tV)(x̃, ỹ)|

=
∣∣max

a
r(x, y, a) + γE[(H t−1V)(x′, y′)]−max

b

(
r(x̃, ỹ, b) + γE[(H̃ t−1V)(x̃, ỹ′)]

)∣∣
≤ max

a0∈A,x1,y1,ỹ1

∣∣r(x, y, a0) + γ(H t−1V)(x1, y1)− r(x̃, ỹ, a0)− γ(H̃ t−1V)(x̃, ỹ1)
∣∣

≤ max
a0∈A

∣∣r(x, y, a0)− r(x̃, ỹ, a0)
∣∣+ γ max

x1,y1,ỹ1

∣∣(H t−1V)(x1, y1)− (H̃ t−1V)(x̃, ỹ1)
∣∣

≤ Lr(∥x− x̃∥2 + ∥y − ỹ∥2) + γ max
x1,y1,ỹ1

∣∣(H t−1V)(x1, y1)− (H̃ t−1V)(x̃, ỹ1)
∣∣

≤ . . .

≤ Lr(∥x− x̃∥2 + ∥y − ỹ∥2) +
t−1∑
i=1

max
xi,yi,ỹi

γiLr(∥xi − x̃∥2 + ∥yi − ỹi∥2)

+ max
xt,yt,ỹt

γt
∣∣V (xt, yt)− V (x̃, ỹt)

∣∣
158

≤ Lr(∥x− x̃∥2 + ∥y − ỹ∥2) +
t−1∑
i=1

max
xi,yi,ỹi

γiLr(∥xi − x̃∥2 + ∥yi − ỹi∥2)

+ max
xt,yt,ỹt

γtLV (∥xt − x̃∥2 + ∥yt − ỹt∥2)

≤ Lr(∥x− x̃∥2 + ∥y − ỹ∥2) +
t−1∑
i=1

γiLr(iαdy + ∥x− x̃∥2 + 2idy + ∥y − ỹ∥2)

+ γtLV (tαdy + ∥x− x̃∥2 + 2tdy + ∥y − ỹ∥2) (C.12)

= (∥x− x̃∥2 + ∥y − ỹ∥2)
(
Lr

t−1∑
i=0

γi + LV γ
t
)
+ dy(α + 2)

(
Lr

t∑
i=1

iγi + LV tγ
t
)
,

where (C.12) is from Lemma C.1.1.

C.2.0.2 Proof of Proposition 4.3.2 The difference between the two reward functions

can be expanded as follows.

∣∣E[R(s0, a,π
∗)]− E[R̃(s0, a, J

∗
1)]

∣∣
=

∣∣r(x0, y0, a) + γE[(HT−1U∗)(x1, y1)]− γTE[U∗(xT , yT)]

− r(x0, y0, a)− γE[(H̃T−10)(x1, y1)]
∣∣

= γ
∣∣E[(HT−1U∗)(x1, y1)]− E[(H̃T−10)(x1, y1)]− γT−1E[U∗(xT , yT)]

∣∣
≤ γ

∣∣E[(HT−1U∗)(x1, y1)]− E[(H̃T−1U∗)(x1, y1)]
∣∣

+ γ
∣∣E[(H̃T−1U∗)(x1, y1)]− E[(H̃T−10)(x1, y1)]− γT−1E[U∗(xT , yT)]

∣∣
≤ dy(α + 2)

(
Lr

T−1∑
i=1

iγi+1 +
Lr

1− γLf

(T − 1)γT
)

+ max
xT ,yT ,y′T

γT
∣∣U∗(x, y′T)− E[U∗(xT , yT)]

∣∣ (C.13)

≤ dy(α + 2)
(
Lr

T−1∑
i=1

iγi+1 +
Lr

1− γLf

(T − 1)γT
)

+ max
xT ,yT ,y′T

Lrγ
T

1− γLf

(∥x− xT∥2 + ∥yT − y′T∥2) (C.14)

≤ dy(α + 2)
(
Lr

T−1∑
i=1

iγi+1 +
Lr

1− γLf

(T − 1)γT
)
+

Lr

1− γLf

(α + 2)dyTγ
T (C.15)

= dy(α + 2)Lr

T−1∑
i=1

iγi+1 +
Lr

1− γLf

(α + 2)dy(T − 1)γT +
Lr

1− γLf

(α + 2)dyTγ
T

159

=
1

(1− γ)2
(α + 2)Lrdy

(
γ2(1− γT)− (1− γ)γTγT

)
+

1

1− γLf

(α + 2)Lrdy
(
2TγT − γT

)
=

1

(1− γ)2
(α + 2)Lrdy

(
γ2 − γ2γT − (1− γ)γTγT

)
+

1

1− γLf

(α + 2)Lrdy
(
2TγT − γT

)
= (α + 2)Lrdy

(γ2

(1− γ)2
−

(γ2

(1− γ)2
+

1

1− γLf

)
γT +

(2

1− γLf

− γ

1− γ

)
TγT

)
,

where (C.13) is from Lemmas C.2.1 and C.2.2, (C.14) comes from Proposition 4.3.1,

(C.15) comes from Lemma C.1.1.

C.2.1 Proof for Section 4.3.6

C.2.1.1 Additional Lemmas

Lemma C.2.3. For any vectors J and J ′, the Bellman operators H̃ and H̃π satisfy

∥H̃J − H̃J ′∥∞ ≤ γ∥J − J ′∥∞, ∥H̃πJ − H̃πJ ′∥∞ ≤ γ∥J − J ′∥∞.

Lemma C.2.4. For any vectors V and V ′, the Bellman operators F and F µ satisfy

∥FV − FV ′∥∞ ≤ γT∥V − V ′∥∞, ∥F µV − F µV ′∥∞ ≤ γT∥V − V ′∥∞.

Lemmas C.2.3 and C.2.4 are from Lemma 2.5 of [37].

Lemma C.2.5. Let ⟨S,A, P, R, γ⟩ be an MDP. Let U∗ be its optimal value function, and

let Uk be the value function in iteration k of VI. If the immediate reward R(s, a) is bounded

within [−rmax, rmax], then

∥Uk − U∗∥∞ ≤
2rmaxγ

k

1− γ
. (C.16)

Proof. Since R(s, a) is bounded within [−rmax, rmax], the value U(s) is bounded within

[− rmax
1−γ

, rmax
1−γ

]. In the worst case, the value function is initialize as

∥U0 − U∗∥∞ =
2rmax

1− γ
.

Let H be the Bellman operator such that

(HU)(s) = max
a∈A

∑
s′

P (s′|s, a)
[
R(s, a) + γU(s′)

]
.

160

For each iteration k of VI, we have Uk = HUk−1. Therefore,

∥Uk − U∗∥∞ = ∥HUk−1 −HU∗∥∞ ≤ γ∥Uk−1 − U∗∥∞ ≤ . . . ≤ γk∥U0 − U∗∥∞ ≤
2rmaxγ

k

1− γ
.

Lemma C.2.6. Let ⟨S,A, P, R, γ⟩ be an MDP. Let νk be the greedy policy w.r.t. R+γE[Uk].

If ∥Uk − U∗∥∞ ≤ ε, then

∥Uνk − U∗∥∞ ≤
2γ

1− γ
ε. (C.17)

Proof.

∥Uνk − U∗∥∞ = ∥HνkUνk − U∗∥∞
≤ ∥HνkUνk −HνkUKbase(ξ)∥∞ + ∥HνkUKbase(ξ) − U∗∥∞
≤ γ∥Uνk − UKbase(ξ)∥∞ + ∥HUKbase(ξ) −HU∗∥∞
≤ γ∥Uνk − U∗ + U∗ − UKbase(ξ)∥∞ + γ∥UKbase(ξ) − U∗∥∞
≤ γ∥Uνk − U∗∥∞ + 2γ∥UKbase(ξ) − U∗∥∞.

Therefore, ∥Uνk − U∗∥∞ ≤ 2γ
1−γ
∥UKbase(ξ) − U∗∥∞ ≤ 2γ

1−γ
ε.

Proposition C.2.1. Consider a (α, dy, Lr, Lf)-fast-slow MDP ⟨S,A,W , f, r, γ⟩. Denote ν

a policy. If γLf < 1, then the value Uν of the base model (4.5) satisfies:

∣∣Uν(x, y)− Uν(x̃, ỹ)
∣∣ ≤ Lr

1− γLf

(
∥x− x̃∥2 + ∥y − ỹ∥2

)
. (C.18)

for any states (x, y) ∈ S and (x̃, ỹ) ∈ S.

Proof. The proof follows the same technique in Appendix C.1.5 by replacing U(x, y) and

Q(x, y, a) with Uν(x, y) and Qν(x, y, a) respectively.

Lemma C.2.7. Consider two MDPs who differ in their transition and reward functions

⟨S,A,W , f1, r1, γ⟩ and ⟨S,A,W , f2, r2, γ⟩. Let U∗
1 and U∗

2 be their respective optimal value

functions. Suppose that

(a) |r1(s, a)− r2(s, a)| ≤ ϵr for all s ∈ S and a ∈ A;

(b) ∥f1(s, a, w)− f2(s, a, w)∥2 ≤ d for all s ∈ S, a ∈ A and w ∈ W; and

161

(c) there exists L1 > 0 such that |Uν
1 (s) − Uν

1 (s
′)| ≤ L1∥s − s′∥2 for all states s, s′ ∈ S and

policy ν.

Then, the difference in optimal values of the two MDPs can be bounded as follows:

∣∣Uν
1 (s)− Uν

2 (s)
∣∣ ≤ ϵU =

ϵr + γL1d

1− γ

for all s ∈ S.

Proof. Let ŝ = argmaxs∈S
∣∣Uν

1 (s) − Uν
2 (s)

∣∣. We have
∣∣Uν

1 (s) − Uν
2 (s)

∣∣ ≤ ∣∣Uν
1 (ŝ) − Uν

2 (ŝ)
∣∣.

Let us show the bound of
∣∣Uν

1 (ŝ)− Uν
2 (ŝ)

∣∣.

∣∣Uν
1 (ŝ)− Uν

2 (ŝ)
∣∣

=
∣∣(r1(ŝ, ν) + γE[Uν

1 (f
ν
1 (ŝ, w))]

)
−
(
r2(ŝ, ν) + γE[Uν

2 (f
ν
2 (ŝ, w))]

)∣∣
≤ max

a∈A

∣∣r1(ŝ, a) + γE[Uν
1 (f1(ŝ, a, w))]− r2(ŝ, a)− γE[Uν

2 (f2(ŝ, a, w))]
∣∣

≤ max
a∈A

∣∣r1(ŝ, a)− r2(ŝ, a)
∣∣+max

a∈A
γ
∣∣E[Uν

1 (f1(ŝ, a, w))]− E[Uν
2 (f2(ŝ, a, w))]

∣∣
≤ ϵr +max

a∈A
γ
∣∣E[Uν

1 (f1(ŝ, a, w))]− E[Uν
1 (f2(ŝ, a, w))]

∣∣
+max

a∈A
γ
∣∣E[Uν

1 (f2(ŝ, a, w))]− E[Uν
2 (f2(ŝ, a, w))]

∣∣
≤ ϵr + max

a∈A,w∈W
γL1∥f1(ŝ, a, w)− f2(ŝ, a, w)∥+max

a∈A
γ
∣∣Uν

1 (ŝ)− Uν
2 (ŝ)

∣∣
≤ ϵr + γL1d+ γ

∣∣Uν
1 (ŝ)− U ν

2 (ŝ)
∣∣.

Therefore, ∣∣Uν
1 (ŝ)− Uν

2 (ŝ)
∣∣ ≤ ϵr + γL1d

1− γ
.

162

C.2.1.2 Proof of Propositions 4.3.3 and 4.3.4 For the base model ⟨S,A,W , fX , fY ,

r, γ⟩, the reward function r is bounded by −rmax and rmax. According to Lemmas C.2.5 and

C.2.6,

∥Uνk − U∗∥∞ ≤
2γ

1− γ

2rmaxγ
k

1− γ
=

4rmaxγ
k+1

(1− γ)2
.

Let ∥Uνk − U∗∥∞ ≤ ξ, solving inequality ξ ≤ 4rmaxγk+1

(1−γ)2
gives a bound on the number of

iteration k:

k ≥ Kbase(ξ) =
1

log(γ)
log

((1− γ)2ξ

4rmax

)
− 1.

For the upper level MDP of the hierarchical approximation with nominal slow state, the

immediate reward function R is bounded within [−1−γT

1−γ
rmax,

1−γT

1−γ
rmax], and the discount

factor is γT . According to Lemmas C.2.5 and C.2.6,

∥V̄ µk(·, ·, J̄∗
1 , π̄

∗)− V̄ ∗(·, ·, J̄∗
1 , π̄

∗)∥∞ ≤
2γT

1− γT

2
(
1−γT

1−γ
rmax

)(
γkT

)
1− γT

=
4rmaxγ

T (k+1)

(1− γ)(1− γT)
.

Let ∥V̄ µk(·, ·, J̄∗
1 , π̄

∗)− V̄ ∗(·, ·, J̄∗
1 , π̄

∗)∥∞ ≤ ξ, then the number of iterations is bounded by

k ≥ Kfrozen(ξ, T) =
1

T log(γ)
log

(ξ(1− γ)(1− γT)

4rmax

)
− 1.

C.2.1.3 Proof of Corollary 4.3.1 This corollary is a result of Propositions 4.3.4.

∥Ū µ̃k(·, ·, π̃∗)− U∗∥∞
= ∥Ū µ̃k(·, ·, π̃∗)− V µ̃k(·, ·, J∗

1 , π̃
∗) + V µ̃k(·, ·, J∗

1 , π̃
∗)

− V ∗(·, ·, J∗
1 , π̃

∗) + V ∗(·, ·, J∗
1 , π̃

∗)− U∗∥∞
≤ ∥Ū µ̃k(·, ·, π̃∗)− V µ̃k(·, ·, J∗

1 , π̃
∗)∥∞ + ∥V µ̃k(·, ·, J∗

1 , π̃
∗)− V ∗(·, ·, J∗

1 , π̃
∗)∥∞

+ ∥V ∗(·, ·, J∗
1 , π̃

∗)− Ū∗∥∞
≤ ∥Ū µ̃k(·, ·, π̃∗)− V µ̃k(·, ·, J∗

1 , π̃
∗)∥∞ + ∥V µ̃k(·, ·, J∗

1 , π̃
∗)− V ∗(·, ·, J∗

1 , π̃
∗)∥∞

+ ϵU(γ, α, dy, Lr, Lf , T) (C.19)

≤ 2ϵU(γ, α, dy, Lr, Lf , T) + ∥V µ̃k(·, ·, J∗
1 , π̃

∗)− V ∗(·, ·, J∗
1 , π̃

∗)∥∞ (C.20)

≤ ξ1 + 2ξ2,

where (C.19) is due to Lemma 4.3.1, (C.20) is due to Proposition C.2.1 and Lemma C.2.7.

163

C.2.2 Proof of Lemma 4.3.3

The proof is a backward induction. Consider states (x, y) and (x̃, ỹ). When t = T − 1,

the difference between the two values is

|J̄T−1(x, y)− JT−1(x̃, ỹ)| =
∣∣g(x)− g(x∗) + max

a
(g(x∗) + h(y, a))−max

ã
r(x̃, ỹ, ã)

∣∣
≤ max

a

∣∣g(x) + h(y, a)− r(x̃, ỹ, a)
∣∣

≤ max
a

∣∣g(x) + h(y, a)− r(x, y, a)
∣∣+max

a

∣∣r(x, y, a)− r(x̃, ỹ, a)
∣∣

≤ ζ + Lr(∥x− x̃∥2 + ∥y − ỹ∥2),

where the last inequality is from Property 4.2 and Assumption 4.3.1.

For period t, suppose the value difference is bounded by

|J̄t(x, y)− Jt(x̃, ỹ)| ≤
T−t−1∑
i=0

γiζ + Lr

T−t−1∑
i=0

(γLf)
i(∥x− x̃∥2 + ∥y − ỹ∥2)

+ γLrLf

(T−t−2∑
i=0

Li
f

T−t−2∑
j=i

γj
)
∥x− x∗∥2.

Then for period t− 1, the value difference can be expanded as

|J̄t−1(x, y)− Jt−1(x̃, ỹ)|

=
∣∣T−t∑
t=0

γt(g(x)− g(x∗)) + max
a∈A

E
[
g(x∗) + h(y, a) + γJ̄t(x

∗, fY(x
∗, y, a, w))

]
−max

ã

(
r(x̃, ỹ, ã) + γE[Jt(x̃, fY(x̃, ỹ, ã, w))]

)∣∣
≤ max

a∈A

∣∣T−t∑
t=0

γt(g(x)− g(x∗)) + g(x∗) + h(y, a) + γE[J̄t(x
∗, fY(x

∗, y, a, w))]

− r(x̃, ỹ, a)− γE[Jt(x̃, fY(x̃, ỹ, a, w))]
∣∣

= max
a∈A

∣∣T−t∑
t=0

γt(g(x)− g(x∗)) + g(x∗) + h(y, a)− r(x̃, ỹ, a)− γE[Jt(x̃, fY(x̃, ỹ, a, w))]

+ γE[J̄t(x, fY(x
∗, y, a, w))−

T−t−1∑
t=0

γt(g(x)− g(x∗))]
∣∣ (C.21)

= max
a∈A

∣∣g(x) + h(y, a) + γE[J̄t(x, fY(x
∗, y, a, w))]− r(x̃, ỹ, a)− γE[Jt(x̃, fY(x̃, ỹ, a, w))]

∣∣
164

≤ max
a∈A
|g(x) + h(y, a)− r(x̃, ỹ, a)|

+max
a,w

γ
∣∣E[J̄t(x, fY(x∗, y, a, w))]− E[Jt(x̃, fY(x̃, ỹ, a, w))]

∣∣
≤ ζ + Lr(∥x− x̃∥2 + ∥y − ỹ∥2)

+ γ
(T−t−1∑

i=0

γiζ + Lr

T−t−1∑
i=0

(γLf)
iLf (∥x− x̃∥2 + ∥y − ỹ∥2 + ∥x− x∗∥2)

+ γLrLf

(T−t−2∑
i=0

Li
f

T−t−2∑
j=i

γj
)
∥x− x∗∥2

)
(C.22)

=
T−t∑
i=0

γiζ + Lr

T−t∑
i=0

(γLf)
i(∥x− x̃∥2 + ∥y − ỹ∥2) + γLrLf

(T−t−1∑
i=0

Li
f

T−t−1∑
j=i

γj
)
∥x− x∗∥2,

where (C.21) is from (4.21), (C.22) is from the induction assumption and (4.3).

C.2.3 Proof of Proposition 4.3.5

|J̄t(x, y)− Jt(x̃, ỹ)| ≤
T−t−1∑
i=0

γiζ + Lr

T−t−1∑
i=0

(γLf)
i(∥x− x̃∥2 + ∥y − ỹ∥2)

+ γLrLf

(T−t−2∑
i=0

Li
f

T−t−2∑
j=i

γj
)
∥x− x∗∥2.

The difference of the reward functions
∣∣E[R̃(s0, a, J

∗
1)]−E[R̄(s0, a, J̄

∗
1)]

∣∣ can be expanded as

follows,

∣∣E[R̃(s0, a, J
∗
1)]− E[R̄(s0, a, J̄

∗
1)]

∣∣
= γ

∣∣E[J∗
1

(
fX (x0, w0), f

µ
Y(x0, y0, w0)

)]
− E

[
J̄∗
1 (fX (x0, w0), f

µ
Y(x0, y0, w0))

]∣∣
≤

T−1∑
i=1

γiζ + γ2LrLf

(T−3∑
i=0

Li
f

T−3∑
j=i

γj
)
max

x
∥x− x∗∥2,

where the inequality is by Lemma 4.3.3.

165

C.2.4 Proof of Theorem 4.4.1

Note that in this section, in violation of the notations in Sections 4.2 and 4.3, we use the

same notation as in the exogenous slow state models in Sections 4.2 and 4.3.

Define the frozen-state hierarchical MDP for the endogenous slow state MDP, whose

lower-level value function is

Jt(x, ax, y) = max
ay∈AY

E
[
r(x, y, ax, ay) + γJt+1(x, ax, fY(x, y, ay, w))

]
, (C.23)

and JT = 0. Given the lower-level policies π, the upper-level value at state s0 = (x0, y0) is:

V ∗(x0, y0, J1,π) = max
ax∈AX ,ay∈AY

E
[
R̃(s0, µ(s0), J1) + γTV ∗(xT , yT , J1,π)

]
. (C.24)

Denote H̃ and H̃π the Bellman operators of lower level of the frozen-state model, i.e.,

(H̃Jt)(x, ax, y) = max
ay∈AY

E
[
r(x, y, ax, ay) + γJt+1(x, ax, fY(x, y, ay, w))

]
,

and

(H̃πJt)(x, ax, y) = E
[
r(x, y, ax, πt(x, y))) + γJt+1(x, ax, f

πt
Y (x∗, y, w))

]
.

166

C.2.4.1 Additional Lemmas

Lemma C.2.8. Suppose there exists LV > 0 that for any state (x, y) and any pair (x̃, ãx, ỹ),

any value functions V : X × Y → R and Ṽ : X × AX × Y → R, |V (x, y) − Ṽ (x̃, ãx, ỹ)| ≤
LV ∥(x, y)− (x̃, ỹ)∥2, then

|(H tV)(x, y)− (H̃ tṼ)(x̃, ãx, ỹ)|

≤ (∥x− x̃∥2 + ∥y − ỹ∥2 + ∥ax − ãx∥2))Lr

t−1∑
i=0

γi

+ (∥x− x̃∥2 + ∥y − ỹ∥2)LV γ
t + dy(α + 2)

(
Lr

t∑
i=1

iγi + LV tγ
t
)
.

Proof. The proof is similar to Lemma C.2.2. The difference between (H tV)(x, y) and

(H̃ tṼ)(x̃, ãx, ỹ) can be expanded as,

|(H tV)(x, y)− (H̃ tṼ)(x̃, ãx, ỹ)|

=
∣∣max

a
r(x, y, a) + γE[(H t−1V)(x′, y′)]−max

by

(
r(x̃, ỹ, ãx, by) + γE[(H̃ t−1Ṽ)(x̃, ãx, ỹ

′)]
)∣∣

≤ max
a0∈A

∣∣r(x, y, a0)− r(x̃, ỹ, ãx, a0,y)
∣∣

+ γ max
x1,y1,ỹ1

∣∣(H t−1V)(x1, y1)− (H̃ t−1Ṽ)(x̃, ãx, ỹ1)
∣∣

≤ Lr(∥x− x̃∥2 + ∥y − ỹ∥2 + ∥ax − ãx∥2)

+ γ max
x1,y1,ỹ1

∣∣(H t−1V)(x1, y1)− (H̃ t−1Ṽ)(x̃, ãx, ỹ1)
∣∣

≤ . . .

= (∥x− x̃∥2 + ∥y − ỹ∥2 + ∥ax − ãx∥2))Lr

t−1∑
i=0

γi

+ (∥x− x̃∥2 + ∥y − ỹ∥2)LV γ
t + dy(α + 2)

(
Lr

t∑
i=1

iγi + LV tγ
t
)
, (C.25)

where (C.25) is from Lemma C.1.1.

Similar to Lemma 4.3.3, we have Lemma C.2.9 for the endogenous slow state MDP.

167

Lemma C.2.9. The error in the lower level value function introduced by using nominal

state approximation to the frozen-state hierarchical approximation is

|J̄t(x, ax, y)− Jt(x̃, ãx, ỹ)| ≤
T−t−1∑
i=0

γiζ + Lr

T−t−1∑
i=0

(γLf)
i(∥x− x̃∥2 + ∥y − ỹ∥2 + ∥ax − ãx∥2)

+ γLrLf

(T−t−2∑
i=0

Li
f

T−t−2∑
j=i

γj
)
max
(x,ax)

∥(x, ax)− (x∗, a∗x)∥2.

C.2.4.2 Sketch of the Proof of Theorem 4.4.1 The proof is similar to the proof

for Section 4.3.3. We introduce the sketch of the proof, and focus on the difference from

Section 4.3.3. We first notice that in the case of endogenous slow state, Proposition 4.3.1

still holds, i.e., the optimal value function of the base model is Lipschitz:

|U∗(x, y)− U∗(x̄, ȳ)| ≤ Lr

1− γLf

(∥x− x̃∥2 + ∥y − ỹ∥2).

Secondly, we prove a bound for the difference in the reward functions,
∣∣E[R(s0, a,π

∗)] −
E[R̄(s0, a, J

∗
1)]

∣∣. The technique is the same as Appendix C.2. The only difference is that we

use Lemma C.2.8 instead Lemma C.2.2, and Lemma C.2.9 instead of Lemma 4.3.3 in the

proof. The difference between the two reward functions is

∣∣E[R(s0, a,π
∗)]− E[R̄(s0, a, J

∗
1)]

∣∣
≤ dy(α + 2)

(
Lr

t∑
i=1

iγi +
Lr

1− γLf

tγt
)
+

T−t−1∑
i=0

γiζ

+ γLrLf

(T−t−2∑
i=0

Li
f

T−t−2∑
j=i

γj
)
max
(x,ax)

∥(x, ax)− (x∗, a∗x)∥2.

Finally, we are able to show the expected loss R(µ̄∗, π̄∗, T) by using the new reward

error,

R(µ̄∗, π̄∗, T)

= max
x,y

Ū∗(x, y)− Ū µ̄∗
(x, y, π̄∗)

≤ 1

(1− γT)2

(
2ϵr + (1 + γT)

Lr

1− γLf

dγT
)
.

168

C.2.5 Proof for Section 4.5

C.2.5.1 Proof of Lemma 4.5.1 Let Dt = Φ
(
Φ†(J) − Φ†(J ′)

)
. Then, for any state s,

we have

|Dt(s)| =
∣∣ϕ⊺(s)

(
Φ†(J)− Φ†(J ′)

)∣∣.
Select θ1(s), θ1(s), . . . , θM(s) ∈ R that satisfy Assumption 4.5.1, we have

|Dt(s)| =
∣∣γ′

γ

M∑
m=1

θm(s)ϕ
⊺(sm)

(
Φ†(J)− Φ†(J ′)

)∣∣
≤ γ′

γ
max
m

∣∣ϕ⊺(sm)
(
Φ†(J))− Φ†(J ′)

)∣∣
≤ γ′

γ
max
m
|Dt(sm)|

=
γ′

γ
max
m
|J(sm)− J ′(sm)|

≤ γ′

γ
∥J − J ′∥∞.

C.2.5.2 Proof of Lemma 4.5.2 Let ϵ′ = ϵL + δ for some δ > 0. Choose ω̄t ∈ RM such

that ∥J̄∗
t − Ĵt(ω̄t)∥∞ < ϵ′ for all t. Then,

∥Ĵt(ω̄t)− ΦH̄ ′(ω̄t+1)∥∞ = ∥Φω̄t − ΦΦ† ◦ H̃Ĵt+1(ω̄t+1)∥∞
= ∥ΦΦ†Φω̄t − ΦΦ† ◦ H̃Ĵt+1(ω̄t+1)∥∞

≤ γ′

γ
∥Φω̄t − H̃Ĵt+1(ω̄t+1)∥∞ (C.26)

=
γ′

γ
∥Ĵt(ω̄t)− H̃Ĵt+1(ω̄t+1)∥∞

≤ γ′

γ
∥Ĵt(ω̄t)− J∗

t ∥∞ +
γ′

γ
∥J∗

t − H̃Ĵt+1(ω̄t+1)∥∞

<
γ′

γ
ϵ′ +

γ′

γ
∥H̃J∗

t+1 − H̃Ĵt+1(ω̄t+1)∥∞

≤ γ′

γ
ϵ′ + γ′∥J∗

t+1 − Ĵt+1(ω̄t+1)∥∞

<
γ′

γ
ϵ′ + γ′ϵ′

=
γ + 1

γ
γ′ϵ′,

169

where (C.26) is by Lemma 4.5.1. Let ϵ′′ = γ+1
γ
γ′ϵ′.

∥Ĵt(ω̄t)− Ĵt(ω
∗
t)∥∞ ≤ ∥Ĵt(ω̄t)− ΦH̄ ′(ω̄t+1)∥∞ + ∥ΦH̄ ′(ω̄t+1)− Ĵt(ω

∗
t)∥∞

< ϵ′′ + ∥ΦΦ† ◦ H̃ ◦ Ĵt+1(ω̄t+1)− ΦΦ† ◦ H̃ ◦ Ĵt+1(ω
∗
t+1)∥∞

≤ ϵ′′ +
γ′

γ
∥H̃Ĵt+1(ω̄t+1)− H̃Ĵt+1(ω

∗
t+1)∥∞

≤ ϵ′′ + γ′∥Ĵt+1(ω̄t+1)− Ĵt+1(ω
∗
t+1)∥∞

< ϵ′′ + γ′(ϵ′′ + γ′∥Ĵt+2(ω̄t+2)− Ĵt+2(ω
∗
t+2)∥∞)

< . . .

< ϵ′′
T−t−1∑
i=0

(γ′)i + (γ′)T−t∥ĴT (ω̄T)− ĴT (ω
∗
T)∥∞

=
γ + 1

γ
ϵ′

T−t∑
i=1

(γ′)i,

where the last equation is by letting ω∗
T = ω̄T = 0 since JT (s) = 0 for all s. Therefore,

∥J∗
t − Ĵt(ω

∗
t)∥∞ ≤ ∥J∗

t − Ĵt(ω̄t)∥∞ + ∥Ĵt(ω̄t)− Ĵt(ω
∗
t)∥∞

≤ ϵ′
(
1 +

γ + 1

γ

T−t∑
i=1

(γ′)i
)
.

Since δ can be arbitrarily small, the proof is complete.

C.2.5.3 Proof of Lemma 4.5.3 For any vectors (J̄1, J̄2, . . . , J̄T−1), H̄J̄t = H̄πJ̄Jt for

any J̄ , where πJ̄ is the greedy policy w.r.t. the vectors (J̄1, J̄2, . . . , J̄T−1).

∥J̄∗
t − J̄ π̂∗

t ∥∞ ≤ ∥J̄∗
t − H̄Ĵt+1(ω

∗
t+1)∥∞ + ∥H̄Ĵt+1(ω

∗
t+1)− J̄ π̂∗

t ∥∞
= ∥H̄J̄∗

t+1 − H̄Ĵt+1(ω
∗
t+1)∥∞ + ∥H̄ π̂∗

Ĵt+1(ω
∗
t+1)− H̄ π̂∗

J̄ π̂∗

t+1∥∞
≤ γ∥J̄∗

t+1 − Ĵt+1(ω
∗
t+1)∥∞ + γ∥Ĵt+1(ω

∗
t+1)− J̄ π̂∗

t+1∥∞
≤ γϵbias

t+1 + γ∥Ĵt+1(ω
∗
t+1)− J̄∗

t+1 + J̄∗
t+1 − J̄ π̂∗

t+1∥∞
≤ γϵbias

t+1 + γ∥Ĵt+1(ω
∗
t+1)− J̄∗

t+1∥∞ + γ∥J̄∗
t+1 − J̄ π̂∗

t+1∥∞
≤ 2γϵbias

t+1 + γ∥J̄∗
t+1 − J̄ π̂

t+1∥∞
< 2γϵbias

t+1 + ∥J̄∗
t+1 − J̄ π̂

t+1∥∞

170

< . . .

< 2γ
T−1∑

τ=t+1

ϵbias
τ .

C.2.5.4 Proof of Lemma 4.5.4

∥F ′(ν)− F ′(ν ′)∥ = ∥Φ† ◦ F ◦ Φ(ν)− Φ† ◦ F ◦ Φ(ν ′)∥

= ∥ΦΦ† ◦ F ◦ Φ(ν)− ΦΦ† ◦ F ◦ Φ(ν ′)∥∞

<
γ′

γT
∥F ◦ Φ(ν)− F ◦ Φ(ν ′)∥∞

≤ γ′∥Φ(ν)− Φ(ν ′)∥∞
= γ′∥ν − ν ′∥.

C.2.5.5 Proof of Lemma 4.5.5 Let ϵ′ = ϵU(Ĵ1, π̂)+δ for some δ > 0. Choose ν̄ ∈ RM

such that ∥V̄ ∗(Ĵ1, π̂)− V̂ (Ĵ1, π̂, ν̄)∥∞ < ϵ′. Then,

∥V̂ (Ĵ1, π̂, ν̄)− ΦF ′(ν̄)∥∞
= ∥Φν̄ − ΦΦ† ◦ FV̂ (Ĵ1, π̂, ν̄)∥∞
= ∥ΦΦ†Φν̄ − ΦΦ† ◦ FV̂ (Ĵ1, π̂, ν̄)∥∞

<
γ′

γT
∥Φν̄ − FV̂ (Ĵ1, π̂, ν̄)∥∞ (C.27)

=
γ′

γT
∥V̂ (Ĵ1, π̂, ν̄)− FV̂ (Ĵ1, π̂, ν̄)∥∞

≤ γ′

γT
∥V̂ (Ĵ1, π̂, ν̄)− V̄ ∗(Ĵ1, π̂)∥∞ +

γ′

γT
∥V̄ ∗(Ĵ1, π̂)− FV̂ (Ĵ1, π̂, ν̄)∥∞

<
γ′

γT
ϵ′ +

γ′

γT
∥FV̄ ∗(Ĵ1, π̂)− FV̂ (Ĵ1, π̂, ν̄)∥∞

≤ γ′

γT
ϵ′ + γ′∥V̄ ∗(Ĵ1, π̂)− V̂ (Ĵ1, π̂, ν̄)∥∞

<
γ′

γT
ϵ′ + γ′ϵ′

=
γT + 1

γT
γ′ϵ′,

171

where (C.27) is by Lemma 4.5.1. Let ϵ′′ = γ+1
γ
γ′ϵ′.

∥V̂ (Ĵ1, π̂, ν̄)− V̂ (Ĵ1, π̂,ν
∗)∥∞ ≤ ∥V̂ (Ĵ1, π̂, ν̄)− ΦF ′(ν̄)∥∞ + ∥ΦF ′(ν̄)− V̂ (Ĵ1, π̂,ν

∗)∥∞
< ϵ′′ + ∥ΦΦ† ◦ FV̂ (Ĵ1, π̂, ν̄)− ΦΦ† ◦ FV̂ (Ĵ1, π̂,ν

∗)∥∞

< ϵ′′ +
γ′

γT
∥FV̂ (Ĵ1, π̂, ν̄)− FV̂ (Ĵ1, π̂,ν

∗)∥∞

≤ ϵ′′ + γ′∥V̂ (Ĵ1, π̂, ν̄)− V̂ (Ĵ1, π̂,ν
∗)∥∞,

and it follows that

∥V̂ (Ĵ1, π̂, ν̄)− V̂ (Ĵ1, π̂,ν
∗)∥∞ ≤

(1 + γT)γ′

(1− γ′)γT
ϵ′.

Therefore,

∥V̄ ∗(Ĵ1, π̂)− V̂ (Ĵ1, π̂,ν
∗)∥∞

≤ ∥V̄ ∗(Ĵ1, π̂)− V̂ (Ĵ1, π̂, ν̄)∥∞ + ∥V̂ (Ĵ1, π̂, ν̄)− V̂ (Ĵ1, π̂,ν
∗)∥∞

≤ ϵ′ +
(1 + γT)γ′

(1− γ′)γT
ϵ′ =

γT + γ′

γT (1− γ′)
ϵ′.

Since δ can be arbitrarily small, the proof is complete.

C.2.5.6 Proof of Lemma 4.5.6 The proof is similar to Lemma 4.5.3.

∥V̄ ∗(Ĵ1, π̂)− V̄ µ̂∗
(Ĵ1, π̂)∥∞

≤ ∥V̄ ∗(Ĵ1, π̂)− FV̂ (Ĵ1, π̂,ν
∗)∥∞ + ∥FV̂ (Ĵ1, π̂,ν

∗)− V̄ µ̂∗
(Ĵ1, π̂)∥∞

= ∥FV̄ ∗(Ĵ1, π̂)− FV̂ (Ĵ1, π̂,ν
∗)∥∞ + ∥F µ̂∗

V̂ (Ĵ1, π̂,ν
∗)− F µ̂∗

V̄ µ̂∗
(Ĵ1, π̂)∥∞

≤ γT∥V̄ ∗(Ĵ1, π̂)− V̂ (Ĵ1, π̂,ν
∗)∥∞ + γT∥V̂ (Ĵ1, π̂,ν

∗)− V̄ µ̂∗
(Ĵ1, π̂)∥∞

≤ γT ϵbias + γT∥V̂ (Ĵ1, π̂,ν
∗)− V̄ ∗(Ĵ1, π̂) + V̄ ∗(Ĵ1, π̂)− V̄ µ̂∗

(Ĵ1, π̂)∥∞
≤ γT ϵbias + γT∥V̂ (Ĵ1, π̂,ν

∗)− V̄ ∗(Ĵ1, π̂)∥∞ + γT∥V̄ ∗(Ĵ1, π̂)− V̄ µ̂∗
(Ĵ1, π̂)∥∞

≤ 2γT ϵbias + γT∥V̄ ∗(Ĵ1, π̂)− V̄ µ̂∗
(Ĵ1, π̂)∥∞.

Therefore,

∥V̄ ∗(Ĵ1, π̂)− V̄ µ̂∗
(Ĵ1, π̂)∥∞ ≤

2γT

1− γT
ϵbias.

172

Bibliography

[1] Elizabeth Ablah, Eileen Scanlon, Kurt Konda, Annie Tinius, and Kristine M Geb-
bie. A large-scale points-of-dispensing exercise for first responders and first receivers
in Nassau County, New York. Biosecurity and Bioterrorism: Biodefense Strategy,
Practice, and Science, 8(1):25–35, 2010.

[2] CDC Media Relations. Still not enough naloxone where it’s most needed, 2019.

[3] Morgan Godvin. The us faces a naloxone shortage at the worst possible time, 2021.

[4] The Economist. Opioid deaths in america reached new highs in the pandemic, 2021.

[5] Eva K Lee, Fan Yuan, Ferdinand H Pietz, Bernard A Benecke, and Greg Burel.
Vaccine prioritization for effective pandemic response. Interfaces, 45(5):425–443, 2015.

[6] Rose A Rudd, Noah Aleshire, Jon E Zibbell, and R Matthew Gladden. Increases in
drug and opioid overdose deaths—United States, 2000–2014. American Journal of
Transplantation, 16(4):1323–1327, 2016.

[7] Chris Christie, Charlie Baker, Roy Cooper, Patrick J Kennedy, Bertha Madras, and
Pam Bondi. The president’s commission on combating drug addiction and the opioid
crisis. WhiteHouse.gov, 2017.

[8] Jeffrey M Goodloe and Michael W Dailey. Should naloxone be available to all first
responders? Journal of Emergency Medical Services, 2014.

[9] Jessica Rando, Derek Broering, James E Olson, Catherine Marco, and Stephen B
Evans. Intranasal naloxone administration by police first responders is associated
with decreased opioid overdose deaths. The American Journal of Emergency Medicine,
33(9):1201–1204, 2015.

[10] West Virginia Department of Health and Human Resources. DHHR begins distribut-
ing naloxone statewide for first responders, 2018.

[11] Meredith Cohn. Baltimore city running low on opioid overdose remedy. 2017.

[12] Centers for Disease Control and Prevention. Trends in number of COVID-19 cases
and deaths in the US reported to CDC, by state/territory, 2021.

[13] Centers for Disease Control and Prevention. Risk for COVID-19 infection, hospital-
ization, and death by age group, 2021.

173

[14] Centers for Disease Control and Prevention. How CDC is making COVID-19 vaccine
recommendations, 2021.

[15] Gabriele Neumann, Takeshi Noda, and Yoshihiro Kawaoka. Emergence and pandemic
potential of swine-origin H1N1 influenza virus. Nature, 459(7249):931, 2009.

[16] World Health Organization. H1N1 in post-pandemic period. 2010.

[17] Tao Sheng Kwan-Gett, Atar Baer, and Jeffrey S Duchin. Spring 2009 H1N1 influenza
outbreak in King County, Washington. Disaster Medicine and Public Health Prepared-
ness, 3(S2):S109–S116, 2009.

[18] Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Emergence of a
novel swine-origin influenza A (H1N1) virus in humans. New England Journal of
Medicine, 360(25):2605–2615, 2009.

[19] Centers for Disease Control and Prevention. 2009 H1N1 early outbreak and disease
characteristics. 2009.

[20] Kunal J Rambhia, Matthew Watson, Tara Kirk Sell, Richard Waldhorn, and Eric
Toner. Mass vaccination for the 2009 H1N1 pandemic: Approaches, challenges, and
recommendations. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and
Science, 8(4):321–330, 2010.

[21] Centers for Disease Control and Prevention. Vaccine against 2009 H1N1 influenza
virus. 2009.

[22] Centers for Disease Control and Prevention. Widespread person-to-person outbreaks
of hepatitis A across the United States. 2021.

[23] U.S. Department of Health and Human Services and Centers for Disease Control and
Prevention. Vaccine storage and handling toolkit. 2018.

[24] Steven Nahmias. Simple approximations for a variety of dynamic leadtime lost-sales
inventory models. Operations Research, 27(5):904–924, 1979.

[25] Albert Y Ha. Inventory rationing in a make-to-stock production system with several
demand classes and lost sales. Management Science, 43(8):1093–1103, 1997.

[26] Esmail Mohebbi. Supply interruptions in a lost-sales inventory system with random
lead time. Computers & Operations Research, 30(3):411–426, 2003.

[27] Paul Zipkin. Old and new methods for lost-sales inventory systems. Operations
Research, 56(5):1256–1263, 2008.

[28] Marco Bijvank and Iris FA Vis. Lost-sales inventory theory: A review. European
Journal of Operational Research, 215(1):1–13, 2011.

174

[29] Larissa Janssen, Thorsten Claus, and Jürgen Sauer. Literature review of deteriorating
inventory models by key topics from 2012 to 2015. International Journal of Production
Economics, 182:86–112, 2016.

[30] Andrew J Clark and Herbert Scarf. Optimal policies for a multi-echelon inventory
problem. Management Science, 6(4):475–490, 1960.

[31] Felipe K Tan. Optimal policies for a multi-echelon inventory problem with periodic
ordering. Management Science, 20(7):1104–1111, 1974.

[32] Stephen C Graves. A multiechelon inventory model with fixed replenishment intervals.
Management Science, 42(1):1–18, 1996.

[33] Fangruo Chen and Rungson Samroengraja. A staggered ordering policy for one-
warehouse, multiretailer systems. Operations Research, 48(2):281–293, 2000.

[34] Geert-Jan Van Houtum, Alan Scheller-Wolf, and Jinxin Yi. Optimal control of serial
inventory systems with fixed replenishment intervals. Operations Research, 55(4):674–
687, 2007.

[35] Wei-Qi Zhou, Long Chen, and Hui-Ming Ge. A multi-product multi-echelon inventory
control model with joint replenishment strategy. Applied Mathematical Modelling,
37(4):2039–2050, 2013.

[36] Christopher Grob. Inventory Management in Multi-Echelon Networks: On the Opti-
mization of Reorder Points, volume 128. Springer, 2018.

[37] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming, volume 3.
Athena Scientific, 1996.

[38] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction,
volume 1. MIT press Cambridge, 1998.

[39] Warren B Powell. Approximate Dynamic Programming: Solving the Curses of Di-
mensionality, volume 703. John Wiley & Sons, 2007.

[40] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD
thesis, King’s College, Cambridge, 1989.

[41] MVF Pereira and LMVG Pinto. Stochastic dual dynamic programming. Mathematical
Programming, 52:359–375, 1991.

[42] Warren Powell, Andrzej Ruszczyński, and Huseyin Topaloglu. Learning algorithms for
separable approximations of discrete stochastic optimization problems. Mathematics
of Operations Research, 29(4):814–836, 2004.

175

[43] Juliana M Nascimento and Warren B Powell. An optimal approximate dynamic pro-
gramming algorithm for the lagged asset acquisition problem. Mathematics of Oper-
ations Research, 34(1):210–237, 2009.

[44] Andrew B Philpott and Z Guan. On the convergence of stochastic dual dynamic
programming and related methods. Operations Research Letters, 36(4):450–455, 2008.

[45] Alexander Shapiro. Analysis of stochastic dual dynamic programming method. Eu-
ropean Journal of Operational Research, 209(1):63–72, 2011.

[46] Nils Löhndorf, David Wozabal, and Stefan Minner. Optimizing trading decisions for
hydro storage systems using approximate dual dynamic programming. Operations
Research, 61(4):810–823, 2013.

[47] Sumit Kunnumkal and Huseyin Topaloglu. Using stochastic approximation meth-
ods to compute optimal base-stock levels in inventory control problems. Operations
Research, 56(3):646–664, 2008.

[48] Paul John Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. PhD thesis, Harvard University, 1974.

[49] Ian H Witten. An adaptive optimal controller for discrete-time Markov environments.
Information and Control, 34(4):286–295, 1977.

[50] Paul J Werbos. Approximate dynamic programming for real-time control and neural
modeling. Handbook of Intelligent Control, pages 493–526, 1992.

[51] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in Neural
Information Processing Systems, pages 1008–1014, 2000.

[52] Bennett L Fox. Discretizing dynamic programs. Journal of Optimization Theory and
Applications, 11(3):228–234, 1973.

[53] James C Bean, John R Birge, and Robert L Smith. Aggregation in dynamic program-
ming. Operations Research, 35(2):215–220, 1987.

[54] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Reinforcement learning
with soft state aggregation. In Advances in Neural Information Processing Systems,
pages 361–368, 1995.

[55] Paul J Schweitzer, Martin L Puterman, and Kyle W Kindle. Iterative aggregation-
disaggregation procedures for discounted semi-Markov reward processes. Operations
Research, 33(3):589–605, 1985.

[56] Victoria CP Chen, David Ruppert, and Christine A Shoemaker. Applying experi-
mental design and regression splines to high-dimensional continuous-state stochastic
dynamic programming. Operations Research, 47(1):38–53, 1999.

176

[57] Victoria CP Chen. Application of orthogonal arrays and MARS to inventory fore-
casting stochastic dynamic programs. Computational Statistics & Data Analysis,
30(3):317–341, 1999.

[58] Seyed Jamshid Mousavi, Kourosh Mahdizadeh, and Abbas Afshar. A stochastic dy-
namic programming model with fuzzy storage states for reservoir operations. Advances
in Water Resources, 27(11):1105–1110, 2004.

[59] Hegazy Zaher and Taher Taha Zaki. Optimal control theory to solve production
inventory system in supply chain management. Journal of Mathematics Research,
6(4):109, 2014.

[60] D Bertsekas. Convergence of discretization procedures in dynamic programming.
IEEE Transactions on Automatic Control, 20(3):415–419, 1975.

[61] Zhiyuan Ren and Bruce H Krogh. State aggregation in Markov decision processes. In
Proceedings of the 41st IEEE Conference on Decision and Control, volume 4, pages
3819–3824. IEEE, 2002.

[62] Benjamin Van Roy. Performance loss bounds for approximate value iteration with
state aggregation. Mathematics of Operations Research, 31(2):234–244, 2006.

[63] Satoru Fujishige and Kazuo Murota. Notes on L-/M-convex functions and the sepa-
ration theorems. Mathematical Programming, 88(1):129–146, 2000.

[64] Kazuo Murota and Akiyoshi Shioura. Extension of M-convexity and L-convexity to
polyhedral convex functions. Advances in Applied Mathematics, 25(4):352–427, 2000.

[65] Yingdong Lu and Jing-Sheng Song. Order-based cost optimization in assemble-to-
order systems. Operations Research, 53(1):151–169, 2005.

[66] Paul Zipkin. On the structure of lost-sales inventory models. Operations Research,
56(4):937–944, 2008.

[67] Woonghee Tim Huh and Ganesh Janakiraman. On the optimal policy structure in
serial inventory systems with lost sales. Operations Research, 58(2):486–491, 2010.

[68] Zhan Pang, Frank Y Chen, and Youyi Feng. A note on the structure of joint inventory-
pricing control with leadtimes. Operations Research, 60(3):581–587, 2012.

[69] Xiting Gong and Xiuli Chao. Optimal control policy for capacitated inventory systems
with remanufacturing. Operations Research, 61(3):603–611, 2013.

[70] CHEN Xin. L-natural-convexity and its applications in operations. Frontiers of En-
gineering Management, 4(3):283–294, 2017.

[71] Sol Fanshel and James W Bush. A health-status index and its application to health-
services outcomes. Operations Research, 18(6):1021–1066, 1970.

177

[72] George W Torrance, Warren H Thomas, and David L Sackett. A utility maximization
model for evaluation of health care programs. Health Services Research, 7(2):118,
1972.

[73] Milton C Weinstein and William B Stason. Foundations of cost-effectiveness analysis
for health and medical practices. New England Journal of Medicine, 296(13):716–721,
1977.

[74] Milton C Weinstein, Louise B Russell, Marthe R Gold, Joanna E Siegel, et al. Cost-
effectiveness in health and medicine. Oxford University Press, 1996.

[75] Phillip O Coffin and Sean D Sullivan. Cost-effectiveness of distributing naloxone to
heroin users for lay overdose reversal. Annals of Internal Medicine, 158(1):1–9, 2013.

[76] Sue Langham, Antony Wright, James Kenworthy, Richard Grieve, and William CN
Dunlop. Cost-effectiveness of take-home naloxone for the prevention of overdose fa-
talities among heroin users in the United Kingdom. Value in Health, 21(4):407–415,
2018.

[77] Mahip Acharya, Divyan Chopra, Corey J Hayes, Benjamin Teeter, and Bradley C
Martin. Cost-effectiveness of intranasal naloxone distribution to high-risk prescription
opioid users. Value in Health, 23(4):451–460, 2020.

[78] Kazuo Murota. Discrete convex analysis. Mathematical Programming, 83(1):313–371,
1998.

[79] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals
of Mathematical Statistics, pages 400–407, 1951.

[80] Harold Kushner and George Yin. Stochastic Approximation and Recursive Algorithms
and Applications, volume 35. Springer-Verlag New York, 2003.

[81] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

[82] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances
in Neural Information Processing Systems, pages 1057–1063, 2000.

[83] Xin Chen, Zhan Pang, and Limeng Pan. Coordinating inventory control and pricing
strategies for perishable products. Operations Research, 62(2):284–300, 2014.

[84] Open Data Pennsylvania. Overdose information network data CY January 2018 -
current monthly county state police, 2021.

[85] Centers for Disease Control and Prevention. Understanding the epidemic, 2021.

178

[86] Christopher Ingraham. Heroin deaths surpass gun homicides for the first time, CDC
data shows. The Washington Post, December, 8, 2016.

[87] Drug Enforcement Administration. 2015 national drug threat assessment summary.
2015.

[88] Drug Enforcement Administration. DEA releases 2015 national drug threat assess-
ment: Heroin and painkiller abuse continue to concern. 2015.

[89] The Economist. Opioid deaths in America reached new highs in the pandemic, 2021.

[90] Robert M Kaplan and James W Bush. Health-related quality of life measurement for
evaluation research and policy analysis. Health Psychology, 1(1):61, 1982.

[91] GoodRx. Evzio naloxone, 2021.

[92] Akhil Gupta, Naman Shukla, Lavanya Marla, Arinbjörn Kolbeinsson, and Kartik
Yellepeddi. How to incorporate monotonicity in deep networks while preserving flex-
ibility? arXiv preprint arXiv:1909.10662, 2019.

[93] Akhil Gupta, Lavanya Marla, Ruoyu Sun, Naman Shukla, and Arinbjörn Kolbeinsson.
PenDer: Incorporating shape constraints via penalized derivatives. 2021.

[94] Dimitrios S Apostolopoulos, Liam Pedersen, Benjamin N Shamah, Kimberly Shillcutt,
Michael D Wagner, and William L Whittaker. Robotic antarctic meteorite search:
Outcomes. In International Conference on Robotics and Automation, volume 4, pages
4174–4179. IEEE, 2001.

[95] David Ferguson, Aaron Morris, Dirk Haehnel, Christopher Baker, Zachary Omohun-
dro, Carlos Reverte, Scott Thayer, Charles Whittaker, William Whittaker, Wolfram
Burgard, et al. An autonomous robotic system for mapping abandoned mines. In
Advances in Neural Information Processing Systems, pages 587–594, 2004.

[96] Sebastian Thrun, Scott Thayer, William Whittaker, Christopher Baker, Wolfram Bur-
gard, David Ferguson, Dirk Hahnel, D Montemerlo, Aaron Morris, Zachary Omohun-
dro, et al. Autonomous exploration and mapping of abandoned mines. Robotics &
Automation Magazine, 11(4):79–91, 2004.

[97] Larry Matthies, Erann Gat, Reid Harrison, Brian Wilcox, Richard Volpe, and Todd
Litwin. Mars microrover navigation: Performance evaluation and enhancement. Au-
tonomous Robots, 2(4):291–311, 1995.

[98] Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Automatic
gait optimization with Gaussian process regression. In International Joint Conference
on Artifical Intelligence, volume 7, pages 944–949, 2007.

179

[99] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian
optimization for learning gaits under uncertainty. Annals of Mathematics and Artifi-
cial Intelligence, 76(1):5–23, 2016.

[100] Rafael Oliveira, Lionel Ott, Vitor Guizilini, and Fabio Ramos. Bayesian optimisation
for safe navigation under localisation uncertainty. In Robotics Research, pages 489–
504. Springer, 2020.

[101] Zhengkun Yi, Roberto Calandra, Filipe Veiga, Herke van Hoof, Tucker Hermans, Yilei
Zhang, and Jan Peters. Active tactile object exploration with Gaussian processes. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4925–
4930. IEEE, 2016.

[102] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[103] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimiza-
tion of machine learning algorithms. In Advances in Neural Information Processing
Systems, pages 2951–2959, 2012.

[104] Henry C Herbol, Weici Hu, Peter Frazier, Paulette Clancy, and Matthias Poloczek.
Efficient search of compositional space for hybrid organic–inorganic perovskites via
Bayesian optimization. NPJ Computational Materials, 4(1):51, 2018.

[105] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811,
2018.

[106] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization.
In Advances in Neural Information Processing Systems, pages 2004–2012, 2013.

[107] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw Bayesian op-
timization. arXiv preprint arXiv:1406.3896, 2014.

[108] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. Initializing Bayesian
hyperparameter optimization via meta-learning. In Association for the Advancement
of Artificial Intelligence, pages 1128–1135, 2015.

[109] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of learning
curves. In International Joint Conferences on Artificial Intelligence, volume 15, pages
3460–8, 2015.

[110] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A novel bandit-based approach to hyperparameter optimization.
The Journal of Machine Learning Research, 18(1):6765–6816, 2017.

180

[111] Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source opti-
mization. In Advances in Neural Information Processing Systems, pages 4288–4298,
2017.

[112] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast
Bayesian optimization of machine learning hyperparameters on large datasets. In
Artificial Intelligence and Statistics, pages 528–536, 2017.

[113] Mickaël Binois, Jiangeng Huang, Robert B Gramacy, and Mike Ludkovski. Replication
or exploration? sequential design for stochastic simulation experiments. Technomet-
rics, 61(1):7–23, 2019.

[114] Peter I Frazier, Warren B Powell, and Savas Dayanik. A knowledge-gradient policy
for sequential information collection. SIAM Journal on Control and Optimization,
47(5):2410–2439, 2008.

[115] Warren Scott, Peter Frazier, and Warren Powell. The correlated knowledge gradient
for simulation optimization of continuous parameters using gaussian process regres-
sion. SIAM Journal on Optimization, 21(3):996–1026, 2011.

[116] Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch bayesian
optimization. Advances in neural information processing systems, 29, 2016.

[117] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polyno-
mial time. Machine Learning, 49(2-3):209–232, 2002.

[118] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in
reinforcement learning with deep predictive models. arXiv preprint arXiv:1507.00814,
2015.

[119] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying count-based exploration and intrinsic motivation. In Advances
in Neural Information Processing Systems, pages 1471–1479, 2016.

[120] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan
Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study
of count-based exploration for deep reinforcement learning. In Advances in Neural
Information Processing Systems, pages 2753–2762, 2017.

[121] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via
randomized value functions. In International Conference on Machine Learning, pages
2377–2386, 2016.

[122] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling.
Mathematics of Operations Research, 39(4):1221–1243, 2014.

181

[123] Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism
for reinforcement learning? In International Conference on Machine Learning, pages
2701–2710. JMLR. org, 2017.

[124] Philippe Morere and Fabio Ramos. Bayesian RL for goal-only rewards. In Conference
on Robot Learning, 2018.

[125] Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Meta-reinforcement learning of structured exploration strategies. In Advances in Neu-
ral Information Processing Systems, pages 5302–5311, 2018.

[126] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In International Conference on Machine Learning,
pages 1126–1135. JMLR. org, 2017.

[127] Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Pre-
cup. A survey of exploration methods in reinforcement learning. arXiv preprint
arXiv:2109.00157, 2021.

[128] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999.

[129] Doina Precup, Richard S Sutton, and Satinder Singh. Theoretical results on reinforce-
ment learning with temporally abstract options. In European conference on machine
learning, pages 382–393. Springer, 1998.

[130] Kishor Jothimurugan, Osbert Bastani, and Rajeev Alur. Abstract value iteration for
hierarchical reinforcement learning. In International Conference on Artificial Intelli-
gence and Statistics, pages 1162–1170. PMLR, 2021.

[131] Xinlei Pan, Eshed Ohn-Bar, Nicholas Rhinehart, Yan Xu, Yilin Shen, and Kris M Ki-
tani. Human-interactive subgoal supervision for efficient inverse reinforcement learn-
ing. arXiv preprint arXiv:1806.08479, 2018.

[132] Sujoy Paul, Jeroen van Baar, and Amit K Roy-Chowdhury. Learning from trajectories
via subgoal discovery. arXiv preprint arXiv:1911.07224, 2019.

[133] Martin Stolle and Doina Precup. Learning options in reinforcement learning. In
International Symposium on abstraction, reformulation, and approximation, pages
212–223. Springer, 2002.

[134] Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforce-
ment learning using diverse density. 2001.

[135] Sandeep Goel and Manfred Huber. Subgoal discovery for hierarchical reinforcement
learning using learned policies. In FLAIRS Conference, pages 346–350, 2003.

182

[136] Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in
reinforcement learning via clustering. In Proceedings of the twenty-first international
conference on Machine learning, page 71, 2004.

[137] Özgür Şimşek and Andrew G Barto. Using relative novelty to identify useful tempo-
ral abstractions in reinforcement learning. In International Conference on Machine
Learning, page 95, 2004.

[138] Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. Identifying useful subgoals
in reinforcement learning by local graph partitioning. In Proceedings of the 22nd
international conference on Machine learning, pages 816–823, 2005.

[139] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diver-
sity is all you need: Learning skills without a reward function. arXiv preprint
arXiv:1802.06070, 2018.

[140] Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discov-
ering intrinsic options. arXiv preprint arXiv:2101.06521, 2021.

[141] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hier-
archical deep reinforcement learning: Integrating temporal abstraction and intrinsic
motivation. Advances in neural information processing systems, 29, 2016.

[142] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals,
John Agapiou, et al. Strategic attentive writer for learning macro-actions. Advances
in neural information processing systems, 29, 2016.

[143] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[144] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learn-
ing shared hierarchies. arXiv preprint arXiv:1710.09767, 2017.

[145] Vivek Veeriah, Tom Zahavy, Matteo Hessel, Zhongwen Xu, Junhyuk Oh, Iurii Ke-
maev, Hado P van Hasselt, David Silver, and Satinder Singh. Discovery of options
via meta-learned subgoals. Advances in Neural Information Processing Systems, 34,
2021.

[146] Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using reinforcement
learning and shaping. In International Conference on Machine Learning, volume 98,
pages 463–471. Citeseer, 1998.

[147] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In International Confer-
ence on Machine Learning, volume 99, pages 278–287, 1999.

183

[148] Xiao Huang and John Weng. Novelty and reinforcement learning in the value system
of developmental robots. In 2nd International Workshop on Epigenetic Robotics: Mod-
eling Cognitive Development in Robotic Systems. Lund University Cognitive Studies,
2002.

[149] Frédéric Kaplan and Pierre-Yves Oudeyer. Maximizing learning progress: An internal
reward system for development. In Embodied Artificial Intelligence, pages 259–270.
Springer, 2004.

[150] Özgür Şimşek and Andrew G Barto. An intrinsic reward mechanism for efficient
exploration. In Proceedings of the 23rd international conference on Machine learning,
pages 833–840, 2006.

[151] Ana C Tenorio-Gonzalez, Eduardo F Morales, and Luis Villaseñor-Pineda. Dynamic
reward shaping: Training a robot by voice. In Ibero-American Conference on Artificial
Intelligence, pages 483–492. Springer, 2010.

[152] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In International Conference on Machine
Learning, volume 2017, 2017.

[153] Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep
reinforcement learning. arXiv preprint arXiv:1703.01732, 2017.

[154] Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep re-
inforcement learning. In Association for the Advancement of Artificial Intelligence,
pages 2140–2146, 2017.

[155] Jonathan Sorg, Richard L Lewis, and Satinder P Singh. Reward design via online
gradient ascent. In Advances in Neural Information Processing Systems, pages 2190–
2198, 2010.

[156] Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for
reward design to improve Monte Carlo tree search in ATARI games. In International
Joint Conference on Artificial Intelligence, pages 1519–1525, 2016.

[157] Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for
policy gradient methods. In Advances in Neural Information Processing Systems,
pages 4649–4659, 2018.

[158] Marc Pickett and Andrew G Barto. Policyblocks: An algorithm for creating useful
macro-actions in reinforcement learning. In International Conference on Machine
Learning, volume 19, pages 506–513, 2002.

[159] George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in
reinforcement learning. In International Conference on Machine Learning, pages 489–
496. ACM, 2006.

184

[160] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforce-
ment learning: a hierarchical bayesian approach. In Proceedings of the 24th interna-
tional conference on Machine learning, pages 1015–1022, 2007.

[161] Fernando Fernández, Javier García, and Manuela Veloso. Probabilistic policy reuse
for inter-task transfer learning. Robotics and Autonomous Systems, 58(7):866–871,
2010.

[162] Marc Peter Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task policy
search for robotics. In International Conference on Robotics and Automation, 2014.

[163] Finale Doshi-Velez and George Konidaris. Hidden parameter Markov decision pro-
cesses: A semiparametric regression approach for discovering latent task parametriza-
tions. In International Joint Conferences on Artificial Intelligence, page 1432. NIH
Public Access, 2016.

[164] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-
shot visual imitation learning via meta-learning. In Conference on Robot Learning,
pages 357–368, 2017.

[165] Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple
tasks for effective learning. In 2017 IEEE international conference on robotics and
automation (ICRA), pages 2161–2168. IEEE, 2017.

[166] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures. In Interna-
tional Conference on Machine Learning, pages 1407–1416. PMLR, 2018.

[167] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt,
and Hado van Hasselt. Multi-task deep reinforcement learning with PopArt. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3796–
3803, 2019.

[168] Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep
reinforcement learning. Electronics, 9(9):1363, 2020.

[169] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[170] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[171] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced Lec-
tures on Machine Learning, pages 63–71. Springer, 2004.

[172] Bo Chen, Rui Castro, and Andreas Krause. Joint optimization and variable selection
of high-dimensional gaussian processes. arXiv preprint arXiv:1206.6396, 2012.

185

[173] Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional gaussian
process bandits. Advances in neural information processing systems, 26, 2013.

[174] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas.
Bayesian optimization in a billion dimensions via random embeddings. Journal of
Artificial Intelligence Research, 55:361–387, 2016.

[175] Mojmir Mutny and Andreas Krause. Efficient high dimensional bayesian optimization
with additivity and quadrature fourier features. Advances in Neural Information
Processing Systems, 31, 2018.

[176] Peter Frazier, Warren Powell, and Savas Dayanik. The knowledge-gradient policy for
correlated normal beliefs. INFORMS Journal on Computing, 21(4):599–613, 2009.

[177] Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error bounds for Gaussian
process regression with application to safe control. In Advances in Neural Information
Processing Systems, pages 657–667, 2019.

[178] Carl Edward Rasmussen and Christopher K.̃I. Williams. Gaussian Processes for Ma-
chine Learning. MIT Press, 2006.

[179] Subhashis Ghosal, Anindya Roy, et al. Posterior consistency of Gaussian process prior
for nonparametric binary regression. The Annals of Statistics, 34(5):2413–2429, 2006.

[180] Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian op-
timization with gradients. In Advances in Neural Information Processing Systems,
pages 5267–5278, 2017.

[181] Scott Clark, Eric Liu, Peter Frazier, JiaLei Wang, Deniz Oktay, and Norases Vesda-
punt. Moe: A global, black box optimization engine for real world metric optimization.
https://github.com/Yelp/MOE, 2014.

[182] Jonas Močkus. On Bayesian methods for seeking the extremum. In Optimization
Techniques IFIP Technical Conference, pages 400–404. Springer, 1975.

[183] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global Optimization, 13(4):455–492,
1998.

[184] Dennis D Cox and Susan John. A statistical method for global optimization. In
International Conference on Systems, Man, and Cybernetics, pages 1241–1246. IEEE,
1992.

[185] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. In
International Conference on Machine Learning, pages 1015–1022, 2010.

186

https://github.com/Yelp/MOE

[186] J González. GPyOpt: A Bayesian optimization framework in Python. http://
github.com/SheffieldML/GPyOpt, 2016.

[187] Tristan Deleu. Model-Agnostic Meta-Learning for Reinforcement Learning in Py-
Torch, 2018. Available at: https://github.com/tristandeleu/pytorch-maml-rl.

[188] Remi Lam, Karen Willcox, and David H Wolpert. Bayesian optimization with a
finite budget: An approximate dynamic programming approach. Advances in Neural
Information Processing Systems, 29, 2016.

[189] Javier González, Michael Osborne, and Neil Lawrence. Glasses: Relieving the my-
opia of bayesian optimisation. In Artificial Intelligence and Statistics, pages 790–799.
PMLR, 2016.

[190] Shali Jiang, Daniel Jiang, Maximilian Balandat, Brian Karrer, Jacob Gardner, and
Roman Garnett. Efficient nonmyopic bayesian optimization via one-shot multi-step
trees. Advances in Neural Information Processing Systems, 33:18039–18049, 2020.

[191] Eric Lee, David Eriksson, David Bindel, Bolong Cheng, and Mike Mccourt. Efficient
rollout strategies for bayesian optimization. In Conference on Uncertainty in Artificial
Intelligence, pages 260–269. PMLR, 2020.

[192] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and
John P Cunningham. Bayesian optimization with inequality constraints. In ICML,
volume 2014, pages 937–945, 2014.

[193] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with
unknown constraints. arXiv preprint arXiv:1403.5607, 2014.

[194] Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained
bayesian optimization with noisy experiments. Bayesian Analysis, 14(2):495–519,
2019.

[195] Raul Astudillo, Daniel Jiang, Maximilian Balandat, Eytan Bakshy, and Peter Frazier.
Multi-step budgeted bayesian optimization with unknown evaluation costs. Advances
in Neural Information Processing Systems, 34, 2021.

[196] Eric Hans Lee, David Eriksson, Valerio Perrone, and Matthias Seeger. A nonmy-
opic approach to cost-constrained bayesian optimization. In Uncertainty in Artificial
Intelligence, pages 568–577. PMLR, 2021.

[197] Jia Yuan Yu and Shie Mannor. Arbitrarily modulated Markov decision processes. In
Proceedings of the 48h IEEE Conference on Decision and Control, pages 2946–2953.
IEEE, 2009.

[198] PS Ansell, Kevin D Glazebrook, José Nino-Mora, and M O’Keeffe. Whittle’s index
policy for a multi-class queueing system with convex holding costs. Mathematical
Methods of Operations Research, 57(1):21–39, 2003.

187

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

[199] David B Brown and Martin B Haugh. Information relaxation bounds for infinite
horizon Markov decision processes. Operations Research, 65(5):1355–1379, 2017.

[200] Dabeen Lee and Milan Vojnovic. Scheduling jobs with stochastic holding costs. Ad-
vances in Neural Information Processing Systems, 34, 2021.

[201] Shaolei Ren, Yuxiong He, and Fei Xu. Provably-efficient job scheduling for energy and
fairness in geographically distributed data centers. In 2012 IEEE 32nd International
Conference on Distributed Computing Systems, pages 22–31. IEEE, 2012.

[202] Zhou Zhou, Zhiling Lan, Wei Tang, and Narayan Desai. Reducing energy costs for
ibm blue gene/p via power-aware job scheduling. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 96–115. Springer, 2013.

[203] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and
Mohammad Alizadeh. Learning scheduling algorithms for data processing clusters. In
Proceedings of the ACM special interest group on data communication, pages 270–288.
2019.

[204] Alon Halevy, Cristian Canton-Ferrer, Hao Ma, Umut Ozertem, Patrick Pantel,
Marzieh Saeidi, Fabrizio Silvestri, and Ves Stoyanov. Preserving integrity in online
social networks. Communications of the ACM, 65(2):92–98, 2022.

[205] Mohamed H Albadi and Ehab F El-Saadany. A summary of demand response in
electricity markets. Electric Power Systems Research, 78(11):1989–1996, 2008.

[206] Cherrelle Eid, Elta Koliou, Mercedes Valles, Javier Reneses, and Rudi Hakvoort.
Time-based pricing and electricity demand response: Existing barriers and next steps.
Utilities Policy, 40:15–25, 2016.

[207] Kia Khezeli and Eilyan Bitar. An online learning approach to buying and selling
demand response. arXiv preprint arXiv:1707.07342, 2017.

[208] Kia Khezeli, Weixuan Lin, and Eilyan Bitar. Learning to buy (and sell) demand
response. IFAC-PapersOnLine, 50(1):6761–6767, 2017.

[209] Shuoyao Wang, Suzhi Bi, and Ying-Jun Angela Zhang. Demand response management
for profit maximizing energy loads in real-time electricity market. IEEE Transactions
on Power Systems, 33(6):6387–6396, 2018.

[210] Amy Hing-Ling Lau and Hon-Shiang Lau. The newsboy problem with price-dependent
demand distribution. IIE Transactions, 20(2):168–175, 1988.

[211] Snigdha Banerjee and Ashish Sharma. Optimal procurement and pricing policies for
inventory models with price and time dependent seasonal demand. Mathematical and
Computer Modelling, 51(5-6):700–714, 2010.

188

[212] Xiangling Hu and Ping Su. The newsvendor’s joint procurement and pricing prob-
lem under price-sensitive stochastic demand and purchase price uncertainty. Omega,
79:81–90, 2018.

[213] John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale
dynamic programming. Machine Learning, 22(1-3):59–94, 1996.

[214] Hyeong Soo Chang, Pedram Jaefari Fard, Steven I Marcus, and Mark Shayman.
Multitime scale markov decision processes. IEEE Transactions on Automatic Control,
48(6):976–987, 2003.

[215] Jnana Ranjan Panigrahi and Shalabh Bhatnagar. Hierarchical decision making in
semiconductor fabs using multi-time scale Markov decision processes. In 2004 43rd
IEEE Conference on Decision and Control, volume 4, pages 4387–4392. IEEE, 2004.

[216] Shalabh Bhatnagar and J Ranjan Panigrahi. Actor-critic algorithms for hierarchical
Markov decision processes. Automatica, 42(4):637–644, 2006.

[217] Chengjun Zhu, Jianzhong Zhou, Wei Wu, and Li Mo. Hydropower portfolios man-
agement via Markov decision process. In IECON 2006-32nd Annual Conference on
IEEE Industrial Electronics, pages 2883–2888. IEEE, 2006.

[218] Wuthichai Wongthatsanekorn, Matthew J Realff, and Jane C Ammons. Multi-time
scale Markov decision process approach to strategic network growth of reverse supply
chains. Omega, 38(1-2):20–32, 2010.

[219] Matthew Jacobson, Nahum Shimkin, and Adam Shwartz. Piecewise stationary
Markov decision processes, I: Constant gain. 1999.

[220] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforce-
ment learning. Discrete event dynamic systems, 13(1-2):41–77, 2003.

[221] Ronald Edward Parr and Stuart Russell. Hierarchical control and learning for Markov
decision processes. University of California, Berkeley Berkeley, CA, 1998.

[222] Thomas G Dietterich. Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[223] Doina Precup. Temporal abstraction in reinforcement learning. Ph. D. thesis, Uni-
versity of Massachusetts, 2000.

[224] Bruce L Digney. Learning hierarchical control structures for multiple tasks and chang-
ing environments. In Proceedings of the 5th International Conference on Simulation
of Adaptive Behavior on From Animals to Animats 5, pages 321–330, 1998.

[225] Anders Jonsson and Andrew G Barto. A causal approach to hierarchical decompo-
sition of factored MDPs. In Proceedings of the 22nd International Conference on
Machine Learning, pages 401–408, 2005.

189

[226] Kamil Ciosek and David Silver. Value iteration with options and state aggregation.
Planning and Learning (PAL-15), page 1, 2015.

[227] Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut-dynamic discovery of sub-
goals in reinforcement learning. In Proceedings of the 13th European Conference on
Machine Learning, pages 295–306, 2002.

[228] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[229] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic pro-
gramming with factored representations. Artificial intelligence, 121(1-2):49–107, 2000.

[230] Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored
mdps. Advances in Neural Information Processing Systems, 27, 2014.

[231] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[232] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

[233] Richard D Smallwood and Edward J Sondik. The optimal control of partially observ-
able Markov processes over a finite horizon. Operations Research, 21(5):1071–1088,
1973.

[234] Chaoqun Duan, Chao Deng, Abolfazl Gharaei, Jun Wu, and Bingran Wang. Selective
maintenance scheduling under stochastic maintenance quality with multiple mainte-
nance actions. International Journal of Production Research, 56(23):7160–7178, 2018.

[235] Jackson A Killian, Arpita Biswas, Sanket Shah, and Milind Tambe. Q-learning La-
grange policies for multi-action restless bandits. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages 871–881, 2021.

[236] Dimitir P Bertsekas and Steven Shreve. Stochastic optimal control: the discrete-time
case. 2004.

[237] Satinder P Singh and Richard C Yee. An upper bound on the loss from approximate
optimal-value functions. Machine Learning, 16(3):227–233, 1994.

[238] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I. Athena
Scientific, 2012.

190

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Performance (% optimality) at iterations 500 and 1000.
	2. Performance (% optimality) after 5 and 10 seconds of CPU time.
	3. Impact of parameters on ADP algorithms for the Rmax = 50, |W| = 9 instance.
	4. Parameters used in the NFRP case study.
	5. Simulated value of the policies on instances with different ordering costs (value in 10 million).
	6. Performance ratios as a function of interactions in the test environment.

	List of Figures
	1. Sequence of events.
	2. An illustration of how value and policy functions interact under the S-AC algorithm.
	3. An illustration of the sequence of updates used in the S-AC algorithm.
	4. Comparison of ADP algorithms with respect to iteration number.
	5. Comparison of ADP algorithms with respect to CPU time.
	6. Convergence of replenish-up-to thresholds at t=0 for the Rmax = 60, |W| = 9 instance.
	7. Convergence of replenish-up-to thresholds at t=0 for the Rmax = 60, |W| = 12 instance.
	8. Convergence of replenish-up-to thresholds at t=0 for the Rmax = 60, |W| = 15 instance.
	9. The hierarchical system structure used in the case study.
	10. Total overdose incidents of the five PODs and k-means visualization.
	11. Convergence curve of S-AC and AC compared to performance of heuristics.
	12. The relationship between total cost and total utility for each method.
	13. Historical overdose incidents learned by S-AC+DPR.
	14. Comparison of the cumulative utilities for each method.
	15. Example of a dynamic subgoal exploration strategy.
	16. Outline of the BESD algorithm.
	17. An example that visualizes an environment and a random dynamic subgoal exploration strategy along with the rewards of the associated subgoal-augmented MDP.
	18. Performance as a function of the total training costs.
	19. Recommendation paths for GW10 and GW20.
	20. Recommendation paths for TR and MC.
	21. Recommendation paths for KEY2 and KEY3.
	22. Illustration of the base model versus the frozen-state approximation
	23. The choice of T
	24. Sensitivity analysis for the choice of T
	25. Transition matrices in different system conditions
	26. Performance of VI for the maintenance problem
	27. Policy for the maintenance problem: Base VI
	28. Policy for the maintenance problem: FSVI
	29. Policy for the maintenance problem: Nominal FSVI
	30. Policy for the maintenance problem: Slow-agnostic VI
	31. Policy for the maintenance problem: QL
	32. Performance of VI for the queuing problem
	33. Policy for the queuing problem: Base VI
	34. Policy for the queuing problem: FSVI
	35. Policy for the queuing problem: Nominal FSVI
	36. Policy for the queuing problem: Slow-agnostic VI
	37. Policy for the queuing problem: QL
	38. AVI for the demand response problem
	39. The bidding amount of the algorithms
	40. The proportion of the bidding amount satisfied by each customer
	41. AVI for the joint procurement and pricing problem
	42. The procurement quantities of the algorithms

	1.0 Introduction
	1.1 Structured Actor-Critic for Managing Public Health Points-of-Dispensing
	1.2 Subgoal-based Exploration via Bayesian Optimization
	1.3 Frozen-State Approximate Value Iteration for Fast-Slow Markov Decision Processes

	2.0 Structured Actor-Critic for Managing Public Health PODs
	2.1 Literature Review
	2.2 Model Formulation
	2.2.1 The Dispensing MDP
	2.2.2 The Inventory Control MDP

	2.3 Structural Properties
	2.4 The Structured Actor-Critic Method
	2.4.1 Overview of the Main Idea
	2.4.2 Algorithm Description
	2.4.3 Convergence Analysis

	2.5 Numerical Experiments
	2.5.1 Benchmark Instances and Parameters
	2.5.2 Optimality Gap of Approximate Policies
	2.5.3 Convergence of Implied Basestock Thresholds
	2.5.4 Sensitivity Analysis

	2.6 Case Study: Naloxone for First Responders in Pennsylvania
	2.6.1 Description of Naloxone for First Responders in Pennsylvania
	2.6.2 Performance of the Algorithm
	2.6.2.1 Convergence and Comparison with Heuristics
	2.6.2.2 Utilities of Different First Responders
	2.6.2.3 Ordering Cost Sensitivity Analysis

	2.6.3 Extensions

	2.7 Conclusions

	3.0 Subgoal-based Exploration via Bayesian Optimization
	3.0.1 Our Contributions
	3.1 Related Work
	3.1.1 Bayesian Optimization
	3.1.2 Exploration in Reinforcement Learning
	3.1.3 Options in Reinforcement Learning
	3.1.4 Intrinsic Reward and Reward Design
	3.1.5 Multi-task RL and Transfer Learning

	3.2 Problem Formulation
	3.2.1 Original MDPs M with Sparse Rewards
	3.2.2 Dynamic Subgoal Exploration Strategies
	3.2.3 Subgoal-Augmented MDPs M,
	3.2.4 Optimizing the Exploration Strategy
	3.2.5 Iterative Training and Additional Cost-Reduction Levers

	3.3 Bayesian Optimization for Cost-Efficient Exploration
	3.3.1 Surrogate Model
	3.3.2 Acquisition Function
	3.3.3 Theoretical Analysis

	3.4 Numerical Experiments
	3.4.1 Baseline Algorithms
	3.4.2 Windy Gridworlds with Walls
	3.4.2.1 Recommendation Paths for GW10

	3.4.3 Larger, Three-Room Windy Gridworlds
	3.4.3.1 Recommendation Paths for GW20

	3.4.4 Treasure-in-Room
	3.4.4.1 Recommendation Paths for TR

	3.4.5 The Mountain Car Problem (MC)
	3.4.5.1 Recommendation Paths for MC

	3.4.6 Key-Door with Highly Varying Key Locations (KEY2 and KEY3)
	3.4.6.1 Recommendation Paths for KEY2/KEY3

	3.4.7 Takeaways from Baseline Comparisons in Figure 18
	3.4.8 How Much Does a Dynamic Subgoal Exploration Strategy Help RL?

	3.5 Conclusion and Future Work

	4.0 Frozen-State Approximate Value Iteration for Fast-Slow Markov Decision Processes
	4.0.1 Main Contributions
	4.1 Related Work
	4.2 Fast-Slow MDPs with Exogenous Slow States
	4.2.1 Base Model
	4.2.2 Hierarchical Reformulation using Fixed-Horizon Policies

	4.3 The Frozen-State Approximation
	4.3.1 The Lower-Level MDP (Frozen Slow States)
	4.3.2 The Upper-Level MDP (True State Dynamics)
	4.3.3 Frozen-State Value Iteration
	4.3.4 Exact and Frozen-State (Lower-Level) Bellman Operators
	4.3.5 Analyzing the Regret of Frozen-State Policy
	4.3.6 Discussion of the Choice of T
	4.3.7 Nominal-State Approximation

	4.4 The Case of Endogenous Slow States
	4.5 Approximate Value Iteration for Nominal State Approximation
	4.5.1 The Algorithm
	4.5.2 Convergence of the Lower Level
	4.5.3 Convergence of the Upper Level

	4.6 Numerical Experiment
	4.6.1 Machine Maintenance
	4.6.2 Dynamic Service Allocation for a Multi-class Queuing Model
	4.6.3 Energy Demand Response
	4.6.4 Multi-product Joint Procurement and Pricing
	4.6.5 Discussion

	4.7 Conclusions

	5.0 Conclusions and Future Work
	Appendix A.
	 A.1 Proofs for Chapter 2
	 A.1.1 Proof of Proposition 2.3.1
	 A.1.2 Proof of Proposition 2.3.2
	 A.1.3 Proof of Lemma 2.4.1
	 A.1.4 Proof of Theorem 2.4.1

	 A.2 Actor-Critic Method
	 A.3 A Practical, Aggregation-based Version of S-AC
	 A.3.1 Algorithm for the Aggregate Problem

	Appendix B.
	 B.1 Proofs for Chapter 3
	 B.1.1 Proof of Theorem 3.3.1
	 B.1.2 Proof of Theorem 3.3.2

	Appendix C.
	 C.1 Proofs for Chapter 4
	 C.1.1 Additional Lemmas
	 C.1.2 Proof of Proposition 4.2.1
	 C.1.3 Proof of Lemma 4.3.1
	 C.1.4 Proof of Lemma 4.3.2
	 C.1.5 Proof of Proposition 4.3.1
	 C.1.5.1 The Case that Lf 1

	 C.2 Proof of Proposition 4.3.2
	 C.2.0.1 Additional Lemmas
	 C.2.0.2 Proof of Proposition 4.3.2

	 C.2.1 Proof for Section 4.3.6
	 C.2.1.1 Additional Lemmas
	 C.2.1.2 Proof of Propositions 4.3.3 and 4.3.4
	 C.2.1.3 Proof of Corollary 4.3.1

	 C.2.2 Proof of Lemma 4.3.3
	 C.2.3 Proof of Proposition 4.3.5
	 C.2.4 Proof of Theorem 4.4.1
	 C.2.4.1 Additional Lemmas
	 C.2.4.2 Sketch of the Proof of Theorem 4.4.1

	 C.2.5 Proof for Section 4.5
	 C.2.5.1 Proof of Lemma 4.5.1
	 C.2.5.2 Proof of Lemma 4.5.2
	 C.2.5.3 Proof of Lemma 4.5.3
	 C.2.5.4 Proof of Lemma 4.5.4
	 C.2.5.5 Proof of Lemma 4.5.5
	 C.2.5.6 Proof of Lemma 4.5.6

	Bibliography

