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Counting parabolic principal G-bundles with nilpotent sections over P1

Rahul Singh, PhD

University of Pittsburgh, 2022

A Higgs bundle over an algebraic curve is a vector bundle with a twisted endomorphism.

An important question is to calculate the volume of the groupoid of Higgs bundles over finite

fields. In 2014, Olivier Schiffmann succeeded in finding the corresponding generating function

and together with Mozvogoy reduced the problem to counting pairs of a vector bundle and

a nilpotent endomorphism. It was generalized recently by Anton Mellit to the case of Higgs

bundles with regular singularities. An important step in Mellit’s calculations is the case of

P1 and two marked points, which allows him to relate the corresponding generating function

with the Macdonald polynomials. It is a natural question to generalize Mellit’s calculations

to arbitrary reductive groups.

We consider the case of P1 with two marked points and an arbitrary split connected

reductive group G over Fq. Firstly, we give an explicit formula for the number of Fq-rational

points of generalized Steinberg varieties of G. Secondly, for each principal G-bundle over P1,

we give an explicit formula counting the number of triples consisting of parabolic structures

at 0 and ∞ and compatible nilpotent sections of the associated adjoint bundle.

Keywords: Reductive group, principal G-bundle, parabolic structure, generalized Springer

variety, generalized Steinberg variety, affine fibration, stratification, coproduct, symmetric

function.
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1.0 Introduction.

Let k be a field. Let G be a reductive group over k. Reductive groups include some of

the most important groups in mathematics, such as the group of invertible matrices GLn,

the special orthogonal group SOn and the symplectic group Sp2n.

LetX be an algebraic curve over k. By a principalG-bundle overX, we mean a morphism

π : E → X with a fibrewise action of G on E such that for any q ∈ X, there is an etale

neighbourhood U of q such that there exists an isomorphism EU ∼= U×G compatible with the

action of G, that is, E locally looks like U ×G in the etale topology. A typical example of a

principal bundle is the frame bundle of a vector bundle, which consists of all ordered bases of

the vector space attached to each point. The group GLn acts on the collection of all ordered

basis by changes of basis. From this perspective, principal bundles are a generalization of the

vector bundles to more general groups and also include orthogonal and symplectic bundles,

which are vector bundles with a non-degenerate symmetric and skew-symmetric bilinear form

respectively. Principal bundles are central objects in the geometric Langlands program ([2],

[16], [17], [37]).

A Higgs G-bundle over X is a principal G-bundle over X together with a section of the

adjoint vector bundle twisted by the canonical bundle (in the case of vector bundles, roughly

speaking it can be thought of as a matrix of 1-forms on the curve). Higgs G-bundles have a

rich structure and recently received vast attention from researchers ([16], [17], [37]). In this

thesis, we are interested in the moduli stack of Higgs G-bundles over an Fq-algebraic curve,

whose points parametrize Higgs G-bundles over the curve.

Let us now give more precise definitions (see Section 2.2). Let Fq denote the finite field

of q elements. In this introduction from now on, our base field will be Fq. Let X be a

smooth geometrically connected projective curve over Fq (geometrically connected means

that the curve remains connected after base change to the algebraic closure Fq). Let E be

a principal G-bundle over X, then we can form a vector bundle ad(E) over X, which is the

vector bundle associated to the adjoint representation of G. It is defined as follows: let

g := Lie(G) be the Lie algebra of G and Ad: G → GL(g) be the adjoint representation, then
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ad(E) is the quotient of E×g under the right action of G given by g ·(e, f) = (e ·g,Adg−1(f)),

e ∈ E , f ∈ g, g ∈ G.

Definition. Let ΩX denote the line bundle of algebraic differential 1-forms on X. A Higgs

G-bundle over X is a pair (E ,Θ), where E is a principal G-bundle over X and Θ is a global

section of the vector bundle ad(E)⊗ ΩX . The section Θ is called a Higgs field.

1.1 Volume of stack of Higgs G-bundles.

It is a natural question to calculate the volume of the groupoid of Higgs G-bundles over a

finite field. In addition, we mention two important applications. When G = GLn, counting

the number of stable Higgs bundles over X is related to the number of geometrically inde-

composable vector bundles (vector bundles that remain indecomposable after base change

to the algebraic closure) (see [37, Theorem 1.2]). Now let G be a reductive group. Define

a principal G-bundle over X to be indecomposable if it does not admit a reduction to a

proper Levi subgroup. In this case, we expect that counting the number of stable Higgs

G-bundles is related to the number of geometrically indecomposable principal G-bundles,

(that is principal G-bundles that remain indecomposable after base change to the algebraic

closure).

Another application is related to the E-polynomial [24, Definition 2.1.4], which is an

important invariant of an algebraic variety over C. By a theorem of Katz [24, Theorem

2.1.8], in many cases one can compute the E-polynomial of a separated scheme of finite

type over C by counting its number of points over finite fields. Since Higgs G-bundles over a

complex algebraic variety form a stack over C, one computes its E-polynomial by calculating

the volumes of groupoids of Higgs G-bundles over finite fields.

Let us consider the case G = GLn as this case is completely solved. One shows that the

number of Higgs GLn-bundles is infinity. In order to overcome this problem, one needs to

impose a stability condition on the Higgs bundles that we consider to get a finite answer:

Definition. Let (V,Θ) be a Higgs bundle over X. A subbundle W ⊂ V is called Θ-invariant

2



if Θ(W ) ⊂ W ⊗ ΩX . We say that the Higgs bundle (V,Θ) is stable if for every proper Θ-

invariant subbundle W ⊂ V , we have

deg(W )/ rk(W ) < deg(V )/ rk(V ).

In a breakthrough paper [37], O. Schiffmann computed the number of stable Higgs bun-

dles over X of coprime rank and degree when char(Fq) is sufficiently large (see [37, Theorem

1.2]). In a later paper [32] with Mozvogoy, the condition on char(Fq) was removed. A major

step in their calculation is computing the weighted number of vector bundles over X with

nilpotent endomorphisms.

It is clear that, while the general strategy of Schiffmann may work for arbitrary reductive

group G, there are significant difficulties to overcome in the general case. One of the difficul-

ties comes from the fact that while the conjugacy classes of nilpotent matrices of size n are

easily parametrized by partitions of n (thanks to Jordan form theorem), it is complicated to

describe conjugacy classes of nilpotent elements of g for a general reductive group G.

1.2 Volumes of stacks of parabolic Higgs G-bundles.

A. Mellit in [29] has generalized the result of Mozvogoy and Schiffmann to the parabolic

case. In particular, Mellit counts vector bundles over X with nilpotent endomorphisms

preserving parabolic structures at marked points. An important part of his calculation

is the case of P1 and two marked points. This case allows him to relate the count with

modified Macdonald polynomials. It is a natural question to generalize Mellit’s calculation

to arbitrary reductive groups. In this thesis, we complete this step, namely, we count the

number of principal G-bundles over P1 with nilpotent sections of adjoint bundles compatible

with parabolic structures at 0 and ∞ for any split connected reductive group over Fq (see

Corollary 3.2.2).
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1.2.1 P1 with two marked points.

Fix a set of simple roots Π of G. For J ⊂ Π, let PJ denote the standard parabolic

Fq-subgroup corresponding to J . We need the following definition.

Definition. Let x be an Fq-rational point of X. A parabolic structure on a principal G-

bundle E over X at x of type J is a choice of a Fq-rational point Px of Ex/PJ where Ex is

the fiber of E at x. For vector bundles, this is equivalent to having a partial flag in the fiber

of the corresponding vector bundle at x.

For reductive groups, the case of P1 with two marked points reduces to the following

question.

Problem 1. Fix a principal G-bundle E over P1. Count the number of triples (P0, P∞,Ψ),

where P0 and P∞ are parabolic structures on E at 0 and ∞ and Ψ is a nilpotent section

of ad(E) compatible with P0 and P∞ (for vector bundles, this means that the nilpotent

endomorphism preserves the corresponding partial flags at 0 and ∞).

As part of this thesis, we have an explicit formula (see Corollary 3.2.2) for Problem 1

when G is a split reductive group. In the case of P1, Mellit uses Hall algebras, which are not

easily accesible for a general reductive group. Instead, we use geometric techniques in our

proof. We also derive the Mellit’s result in the case of GLn using our methods.

The counting has two important steps. In the first step, we give an explicit formula

for the number of points of generalized Steinberg varieties in Theorem 3.1. To this end we

introduce a coproduct (see Section 3.1 for more details) for any reductive group, which might

be of independent interest.

In the second step, we reduce the problem to counting the number of points of generalized

Steinberg varieties using the Bialynicki–Birula decomposition in Theorem 3.2. We note that

the applicability of the Bialynicki–Birula decomposition is not obvious since the schemes

that we work with are neither smooth nor projective.
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1.2.2 P1 with an arbitrary number of marked points.

The next step in this project is the case of P1 with an arbitrary number of marked points.

Problem 2. Given a set D of rational points of P1, a collection J• of subsets of Π indexed by

D and a nilpotent n ∈ Lie(G), calculate the volume of the stack of triples (E , P•,Ψ), where

E is a principal G-bundle over P1, E satisfies a certain stability condition, Px is a parabolic

structure of type Jx, x ∈ D and Ψ is a nilpotent section of ad(E) compatible with parabolic

structures such that Ψ is conjugate to n at the generic point.

I am working on this problem with R. Fedorov. The idea is to write the generating

functions for the volumes as a product of a global term independent of the points of D and

local terms corresponding to the points of D. We plan to follow the strategy of Mellit [29,

Thm. 5.6]. If Problem 2 is solved, we are hopeful of calculating the volumes of the stacks

of parabolic Higgs G-bundles for X = P1. A more ambitious goal for the future is to solve

Problem 2 for higher genus algebraic curves.
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2.0 Preliminaries.

Convention 2.1. k denotes an arbitrary field. When k is fixed, we denote by P1 the projec-

tive line over k and by Gm the multiplicative k-group Gm,k. We denote by Fq the finite field

with q elements. For any scheme X over Fq, we denote by |X| the number of Fq-rational

points of X.

2.1 Affine algebraic groups.

2.1.1 Split reductive groups and its Lie algebras.

By an affine algebraic group over k, we mean a smooth affine k-group scheme. A torus

over k is said to be split if it is isomorphic to Gr
m for some r. A connected affine algebraic

group G over k is said to be reductive ([30, Section 6.46]) if Gk is reductive. Recall that

a connected reductive group over k is called split ([30, Definition 19.22]) if it contains a

maximal torus that is split.

Let us recall the notion of the Lie algebra of an affine algebraic group over k from [30,

Section 10.6]. For an affine algebraic group G over k, the tangent space of G at the identity

element e is defined as:

Te,G := ker(G(k[ϵ]) → G(k)),

where k[ϵ] is the ring of dual numbers over k. Let IG be the augmentation ideal, which is

defined to be ker(O(G)
e∗−→ k), where e∗ : O(G) → k is the co-identity map. One has the

following isomorphism

Te,G ≃ Homk−linear(IG/I
2
G, k).

We define the Lie algebra of G to be Homk−linear(IG/I
2
G, k), which we will denote by g or

sometimes by Lie(G). For the definition of the Lie bracket on g, we refer to [30, Section

10.22]
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Recall that an element x ∈ g is said to be nilpotent if r(x) is nilpotent for every Lie

algebra homomorphism r : g → gl(V ), where V varies over all finite dimensional vector

spaces over k.

2.1.2 Parabolic and Levi k-subgroups.

Recall that a smooth closed k-subgroup P ⊂ G is parabolic if the coset space G/P is

proper over k (see [9, Section 1.3]). Since G/P is quasi-projective over k (see [11, Theorem

18.1.1]), we see that for a parabolic k-subgroup P of G, G/P is projective over k. By a Levi

k-subgroup of G we mean a Levi factor of a parabolic k-subgroup.

In the rest of the thesis, G will denote a split connected reductive group over k with a

fixed split maximal torus T and a Borel k-subgroup B containing T with unipotent radical

U . Denote by W the Weyl group of G relative to T . Further, X∗(T ) := Homk(T,Gm) and

X∗(T ) := Homk(Gm, T ) will denote the lattices of k-characters of T and k-cocharacters of

T respectively. There is a natural perfect pairing X∗(T )×X∗(T ) → Z, which we denote by

⟨·, ·⟩. Next, Π ⊂ Φ+ ⊂ Φ ⊂ X∗(T ) will denote the corresponding simple roots, the positive

roots and the root system (see [9, Proposition 11.3.8]).

2.1.3 Parametrization of standard parabolic k-subgroups.

Let us now recall the description of standard parabolic k-subgroups of G and their Levi

factors. Pick J ⊂ Π and let LJ be the the scheme-theoretic centralizer of the identity

component of (
⋂

α∈J Ker α)red. Then LJ is a split reductive k-group with root system ΦJ :=

ZJ ∩ Φ ([30, Proposition 21.90]). Next, let UJ be the k-subgroup of G generated by Uα

(root subgroups), α ∈ Φ+ \ ΦJ . Then PJ := LJUJ is a parabolic k-subgroup and UJ is

the unipotent radical of PJ ([30, Theorem 21.91]). The subgroups PJ are called standard

parabolic k-subgroups and the subgroups LJ are called standard Levi k-subgroups. It is

known that every parabolic k-subgroup is G(k)-conjugate to PJ for a unique J ⊂ Π (see

[30, Theorem 21.91 and Theorem 25.8]). It follows that in the case of G = GLn, parabolic

k-subgroups are precisely the stabilizers of flags in kn and that the Levi k-subgroups are

precisely the stabilizers of ordered direct sum decompositions kn = V1 ⊕ . . .⊕ Vm.
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Notation. We denote by X+(T ) the semilattice of dominant k-cocharacters of T , i.e, λ ∈

X+(T ) if and only if (α, λ) ∈ Z≥0 for all α ∈ Φ+. We note that every W -orbit of X∗(T )

contains exactly one element of X+(T ), so we can identify X+(T ) with X∗(T )/W .

2.2 Principal G-bundles.

Convention 2.2. We make the following convention about fibre products of schemes over

k. For any two schemes X and Y over k, we will denote X ×k Y by X × Y .

Definition. Let Y be a scheme over k. Let H be a quasi-compact group scheme over Y . Let

us review the definition of principal H-bundles. Recall that a Y -scheme P equipped with a

right action

P ×H → P

of H such that the morphism P → Y is H-invariant is called a principal H-bundle over Y ,

if P is faithfully flat and quasi-compact over Y and the action is simply transitive, i.e, the

natural morphism P×H → P×Y P is an isomorphism. A morphism of principal H-bundles

π1 : P1 → Y and π2 : P2 → Y is a morphism of H-schemes ϕ : P1 → P2 such that π1 = π2◦ϕ.

Remark 2.1. (a) The above definition is equivalent to requiring the existence of a covering

U = (Ui → Y ) in the fpqc topology such that for any i, PUi
is H-equivariantly isomorphic

to H ×Y Ui with H acting on H ×Y Ui by right multiplication on the first factor. ([39,

Section 2.2]).

(b) When the underlying group scheme H is smooth over Y , P can be trivialized in the

etale topology. Indeed, by Lemma 2.2 (to be proved later) it is enough to show that

there exists an etale cover U = (Ui → Y ) such that P ×Y Ui → Ui has a section. Since

H → Y is smooth and smooth morphisms satsify fpqc descent, we have that P is smooth

over Y . Now the claim follows from the fact that every smooth surjective morphism has

a section etale-locally ([21, Proposition 17.16.3(ii)]).

Now let H be an affine algebraic group over k. Let us recall the construction of associated

bundles. Let Z be a quasi-projective k-scheme equipped with a left H-action and let E be a

8



principal H-bundle over a k-scheme S. Then we denote by E ×H Z (or sometimes E(Z)) the

associated bundle with fibre type Z, which is the following scheme (see [18, Proposition 3.1]):

E ×H Z = (E × Z)/H for the right action of H on E × Z given by h · (e, z) = (e · h, h−1 · z).

Definition. Let H and M be affine algebraic groups over k and let E be a principal H-

bundle over a k-scheme S. If ρ : H → M is a homomorphism of groups defined over k, then

the associated bundle E ×H M for the action of H on M by left multiplication through ρ, is

naturally a principal M–bundle over S. We denote this principal M–bundle over S often by

ρ∗E and we say this principal M -bundle is obtained from E by extension of structure group.

Let F be a principal M -bundle over S. By a reduction of F to H, we mean a pair

(E , ϕ), where E is a principal H-bundle and ϕ : ρ∗E → F is an isomorphism of principal

M -bundles over S. Two H-reductions (E1, ϕ1) and (E2, ϕ2) of F are said to be isomorphic

if there exists an isomorphism of principal H-bundles ω : E1 → E2 such that the following

triangle is commutative:

ρ∗E1 ρ∗E2

F

ρ∗ω

ϕ1 ϕ2

If ρ : H → M is a closed subgroup, then we have the following well-known lemma (see [1,

Remark 2.5] for the details):

Lemma 2.1. There is a natural 1 − 1 correspondence between sections S → F(M/H) and

reductions of F to H up to isomorphism.

The following lemma tells us when a principal bundle is trivial.

Lemma 2.2. Let H be an affine algebraic group over k and let π : P → Y be a principal

H-bundle. Then P is trivial if and only if π has a section.

We only sketch the proof of Lemma 2.2. If P is a trivial principal H-bundle, then

we compose the identity section of the group scheme H × Y → Y with the isomorphism

H × Y ∼= P to get the required section. Conversely, let σ : Y → P be a section of π. Then

the morphism ϕ : H × Y → P , (h, y) 7→ σ(y) · h gives a morphism of principal H-bundles

over Y . Since any morphism of principal H-bundles is an isomorphism (this can be checked
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etale-locally since isomorphisms satisfy etale descent), ϕ gives the required isomorphism of

principal H-bundles.

2.3 The theorem of Grothendieck and Harder.

In this section, we give a sketch of the proof of the existence part of the theorem of

Grothendieck and Harder. We follow [35, Lemma 3.3]. The proof serves three purposes:

making the exposition more self-contained, making it clear why there is a natural description

of principal G-bundles over P1 and discusses important techniques in the theory of principal

G-bundles over curves.

Consider the Gm-bundle O(1)× over P1, which is O(1) minus the zero section. Let

µ ∈ X∗(T ), define a principal G-bundle over P1 as:

Eµ := µ∗O(1)×,

where we view µ as a morphism µ : Gm → G.

2.3.1 Principal T -bundles over P1.

Recall T from Section 2.1.2. Note that T ∼= Gr
m for some r. Let E be a T -bundle over

P1. Define a homomorphism µE : X∗(T ) → Z by mapping χ to the degree of the line bundle

E ×T A1
k, where T acts on A1

k via χ. Using the natural duality between X∗(T ) and X∗(T ),

we will view µE as an element in X∗(T ). We have the following classification of principal

T -bundles over P1:

Lemma 2.3. Let G = T in the above notations. The association µ 7→ Eµ gives a 1 − 1

correspondence between X∗(T ) and the isomorphism classes of principal T -bundles over P1,

with the inverse given by E 7→ µE .

Proof. Note that X∗(T ) can be identified with Zn and a principal T -bundle is just an

ordered n-tuple of principal Gm-bundles, which can be identified with line bundles. Now
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the lemma follows by the well-known isomorphism (see [23, Proposition 6.4]) Z → Pic (P1),

d 7→ O(d).

2.3.2 Principal B-bundles over P1.

Recall B from Section 2.1.2, which is the Borel k-subgroup containing T with unipotent

radical U .

Definition. Let E be a principal B-bundle over P1. Let p : B → B/U ≃ T be the natural

projection. By the classification of principal T -bundles over P1, there exists a unique λ ∈

X∗(T ) such that p∗E ≃ Tλ. We call λ the T -type of E .

Let E be a principal B-bundle over P1 and let B act on U by conjugation. Then the

associated bundle E(U) is a group scheme over P1, locally isomorphic to U in the etale

topology. We have the following lemma.

Lemma 2.4. Keep notations as above. Let B act on B/T by left multiplication. Then the

associated bundle E(B/T ) is a principal E(U)-bundle over P1.

Proof. Note that we have a simply transitive action of U on B/T acting by left multipli-

cation. Moreover, the action morphism U × B/T → B/T is B-equivariant where B acts

on U via conjugation. By functoriality of the construction of associated bundles, we have a

morphism of associated bundles

E(U)× E(B/T ) → E(B/T ).

Now the lemma follows since the above action of E(U) on E(B/T ) is a simply transitive

action as it can be easily checked etale-locally.

The next lemma guarantees that the B-bundle E has a reduction to T when its T -type

satisfies a certain condition.

Lemma 2.5. Keep notations as above. Let λ be the T -type of E. If ⟨α, λ⟩ ≥ −1 for all

α ∈ Φ+, then every principal E(U)-bundle over P1 is trivial and E ≃ i∗Tλ, where i : T → B

is the inclusion.
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Proof. Since the first etale cohomology set classifies principal bundles for affine groups (see

[31, Chapter III, Corollary 4.7] and Remark 2.1(b)), we show that every principal E(U)-

bundle over P1 is trivial by showing that H1(P1, E(U)) = 1. By ([22, Section 1.1]), U has a

filtration by T -invariant normal subgroups such that the successive quotients are isomorphic

to Ga with T acting by positive roots:

U0 = U ⊃ U1 ⊃ . . . ⊃ Ui ⊃ Ui+1 ⊃ . . . ⊃ Ul = {e}.

Note that the subgroups Ui, 0 ≤ i ≤ l in the above filtration are B-invariant since they

are T -invariant and normal in U . Consider the following exact sequence of affine algebraic

groups with action of B:

1 → Ui+1 → Ui → (Ga)i → 1,

where (Ga)i ≃ Ga as groups and B is acting by αi ∈ Φ+, 0 ≤ i ≤ l − 1. We get the exact

sequence of “twisted” groups:

1 → E(Ui+1) → E(Ui) → E((Ga)i) → 1,

By [31, Proposition 4.5], we have the associated exact sequence of pointed sets

H1(P1, E(Ui+1)) → H1(P1, E(Ui)) → H1(P1, E((Ga)i)).

Note that E((Ga)i) ≃ O(−⟨αi, λ⟩) as group schemes over P1, which by Serre duality and the

assumption gives H1(P1, E((Ga)i)) = 1. Therefore, the first map is surjective for all i. Now

using induction, we have H1(P1, E(U)) = 1.

Now we can easily prove the second part of the lemma. Since H1(P1, E(U)) = 1, E(B/T )

is a trivial principal E(U)-bundle over P1 and so there is a section P1 → E(B/T ). Hence

by Lemma 2.1, E has a reduction to T . The lemma follows by noting that this reduction is

given by Tλ.
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2.3.3 Sketch of the proof of the existence theorem of Grothendieck-Harder.

The following theorem says that every Zariski locally trivial principal G-bundle E over

P1 is isomorphic to exactly one Eµ, µ ∈ X+(T ):

Theorem 2.6. (Grothendieck-Harder) Let E → P1 be a principal G-bundle, which is locally

trivial in the Zariski topology. Then E ≃ Eµ for some µ ∈ X∗(T ). For µ1, µ2 ∈ X∗(T ),

Eµ1 ≃ Eµ2 if and only if µ1 = w · µ2 for some w ∈ W . Therefore the Zariski locally trivial

principal G-bundles over P1 are classified by X∗(T )/W .

Before we proceed, we need the following useful consequence of the valuative criterion

for properness:

Proposition 2.1. Let X be a smooth projective curve over k and let f : Y → X be a proper

morphism. Let K be the function field of X. Then any morphism η : Spec(K) → Y of X-

schemes can be uniquely extended to X, that is, there exists a unique morphism η̃ : X → Y

of X-schemes such that η̃|Spec(K)
= η.

Proof. (of Theorem 2.6) We only give a sketch of the proof of the existence part. For the

proof of uniqueness of the cocharacter upto the action of Weyl group, see [35, Corollary

6.17]. We show that E has a reduction to T from which the claim will follow. To do so, note

that by Lemma 2.5 it is enough to find a B-reduction of E of T -type µ with ⟨α, µ⟩ ≥ 0 for

all α ∈ Φ+.

Let K denote the function field of P1. Since E is assumed to be Zariski locally trivial,

EK is a trivial principal G-bundle over Spec(K), thus by Lemma 2.1, E(G/B) has a section

over Spec(K). Since G/B is proper, this section extends to whole of P1 by Propostion 2.1.

Therefore by Lemma 2.1, E has a reduction to a principal B-bundle.

Let σ : P1 → E(G/B) be a section of E(G/B) → P1. Then under the bijection in Lemma

2.1, σ corresponds to a reduction σ∗E of E to B. More explicitly, σ∗E is the pullback of the

principal B-bundle E → E/B along σ, where we note that E(G/B) ∼= E/B. For a character

χ of B, let χ∗σ
∗E denote the line bundle associated to the principal B-bundle σ∗E through

the character χ. Set

n(χ, σ) := degχ∗σ
∗E .
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We note that n(χ, σ) = ⟨χ, λσ⟩, where λσ is the T -type of σ∗E .

Let ω1, . . . , ωl be the fundamental weights of G corresponding to the pair (B, T ). Let

s be a positive integer such that sω1, . . . , sωl are characters of B. We claim that the set

of integers of the form n(sωi, σ) is bounded from above as σ varies over all B-reductions of

E . Indeed, fix i and let V i be the irreducible representation of G with highest weight sωi.

Let V i
sωi

denote the highest weight space of V i. Since V i
sωi

is B-invariant, we can consider

the line bundle (sωi)∗σ
∗E = σ∗E ×B V i

sωi
of degree n(sωi, σ). Note that (sωi)∗σ

∗E is a line

subbundle of the vector bundle (σ∗E)×B V i =
(
(σ∗E)×B G

)
×G V i = E(V i). Now we need

the following lemma ([27, Lemma 13]):

Lemma 2.7. Let E be a vector bundle over a smooth projective irreducible curve X over

k. Then there exists an integer n(E) such that for every coherent subsheaf F ⊂ E, we have

deg(F ) ≤ n(E).

Proof. Our lemma will proceed using induction on the rank of the vector bundle E. If E is a

line bundle, then one can take n(E) = max(0, deg(E)) since any non-zero coherent subsheaf

of E is locally free of rank one of smaller degree. Now suppose E has rank > 1. Take any

rational section of E and let E1 be the corresponding line subbundle of E. Then we have a

short exact sequence of vector bundles

0 → E1 → E → E/E1 → 0.

Note that E/E1 is a vector bundle since X is a curve. Now let F be a coherent subsheaf of

E. Then we have an exact sequence

0 → E1 ∩ F → F → F/(E1 ∩ F ) → 0.

Since degree is addtive, we have

deg(F ) = deg(E1 ∩ F ) + deg(F/(E1 ∩ F )).

By inductive hypothesis, we have

deg(E1 ∩ F) + deg(F/(E1 ∩ F )) ≤ n(E1) + n(E/E1) =: n(E).

14



We return to the proof of Theorem 2.6. By Lemma 2.7, the set of integers of n(sωi, σ) is

bounded from above as σ varies over all B-reductions of E . Let σ be such that n(sωi, σ) are

maximal in the following sense: there exists no σ′ with

n(sωi, σ
′) ≥ n(sωi, σ) for all i

and

n(sωi0 , σ
′) > n(sωi0 , σ) for some i0.

We claim that n(α, σ) ≥ 0 for all α ∈ Π. Let α ∈ Π and let Pα be the minimal

parabolic k-subgroup corresponding to α. Let Tα denote the identity component of ker(α),

i.e, Tα = (ker(α)red)
◦ and let UPα denote the unipotent radical of Pα. Consider Pα/(Tα ·UPα),

it is a connected semisimple group of rank 1, therefore by [40, Theorem 7.2.4], Pα/(Tα·UPα) ≃

SL2 or PSL2. Moreover, under the surjective morphism Pα → Pα/(Tα · UPα), the Borel

k-subgroups of G that are contained in Pα are in one-to-one correspondence with Borel

k-subgroups of Pα/(Tα ·UPα). Thus if we consider a reduction of the principal SL2 or PSL2-

bundle σ∗E(Pα/(Tα ·UPα)) to a Borel k-subgroup, then it gives a reduction of the G-bundle E

to a Borel k-subgroup of G contained in Pα. Using explicit calculations with SL2 and PSL2,

one can show ([35, Theorem 4.2]) that there exists a reduction σ′ of the G-bundle E to a

Borel k-subgroup of G contained in Pα such that if n(α, σ) < 0, then n(sωi, σ
′) = n(sωi, σ),

i ̸= i0 and n(sωi0 , σ
′) > n(sωi0 , σ), where ωi0 is the fundamental weight corresponding to α.

This contradicts the maximality of σ and thus n(α, σ) ≥ 0 for all α ∈ Π. Since n(χ, σ) is

additive in χ, we get that n(α, σ) ≥ 0 for all α ∈ Φ+. Now by Lemma 2.5, we get that E

has a T -reduction and this finishes the sketch of the proof of the existence part of Theorem

2.6.

In the case k = Fq, every principal G-bundle is isomorphic to exactly one Eµ, µ ∈ X+(T ).

This follows from the following pair of results (see [25] and [20, Theorem 3.8a)] for proofs):

Theorem 2.8. (Lang) Let Fq be the finite field with q elements and let H be a connected

affine algebraic group over Fq. Then every principal H-bundle over Spec(Fq) is trivial.
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Theorem 2.9. Let k be any field. Then the principal G-bundles over P1 that can be trivialized

locally in the Zariski topology can be identified with the principal G-bundles over P1 that are

trivial when restricted to the point {∞}, i.e, the following sequence of pointed sets is exact:

H1
Zar(P1, G) → H1(P1, G)

ev∞−−→ H1(k,G),

where for any principal G-bundle E, ev∞(E) is the fiber E{∞} of E at ∞.

Remark 2.2. The statement that every principal G-bundle over P1 is Zariski-locally trivial

holds for more general fields. Recall that a field k is of dimesnion ≤ 1 if BrK = 0 for every

algebraic extension K of k ([34, Proposition 1.5.25]). Let k be a perfect field of dim k ≤ 1.

Then a theorem of Steinberg (see [43, Theorem 1.9]) says that H1(k,G) = {∗}. Therefore

by the above theorem, every principal G-bundle over P1 is Zariski-locally trivial in this case.

For algebraic curves of positive genus, we have the following result when k = k:

Proposition 2.2. Let X be a smooth connected projective curve over k = k. Then any

principal G-bundle E over X is locally trivial in the Zariski topology.

The main ingredient in proving this result is Tsen’s theorem [26, Theorem 17]:

Theorem 2.10. (Tsen’s theorem) Every principal G-bundle over Spec(K) is trivial, where

K is the function field of a smooth connected projective curve over an algebraically closed

field.

Proof. (of Proposition 2.2) Since any principal T -bundle is locally trivial in the Zariski

topology (see [31, Proposition 4.9, Chapter III]), it is enough to show that E has a reduction

to B and that every principal B-bundle has a reduction to T .

Let K be the function field of X. By Tsen’s theorem, EK is a trivial principal G-bundle

over Spec(K). Thus by Lemma 2.1, E(G/B) has a section over Spec(K). Since G/B is

proper, this section extends to whole of X by Propostion 2.1. Therefore by Lemma 2.1 E

has a reduction to a principal B-bundle.

Since principal T -bundles are Zariski locally trivial, it is enough to show that F admits

a reduction to T over every affine open subset Spec(A) ⊂ X. This is very similiar to the

proof of Lemma 2.5 using exact sequence of cohomology groups along with the fact that

H1(Spec(A),F(Ga)) = 1.

16



Remark 2.3. Theorem 2.10 is a particular case of Grothendieck-Serre conjecture in dimen-

sion one [33].

2.3.4 Examples of principal G-bundles over P1.

Let us give examples of the Grothendieck-Harder theorem in the classical cases.

1. G = GLn: Over any scheme, principal GLn-bundles can be identified with vector bundles

of rank n. Any vector bundle over P1 of rank n is isomorphic to exactly one vector bundle

of the form:

O(a1)⊕ . . .⊕O(an), ai ∈ Z, a1 ≥ . . . ≥ an.

2. G = Sp2n (n ≥ 2): Any principal Sp2n-bundle over P1 is Zariski locally trivial [38, 4.4

(c)]. Moreover, principal Sp2n-bundle over P1 can be regarded as vector bundles with

extra structures. In this case, the corresponding vector bundles are of the form

(
O(a1)⊕O(−a1)

)
⊕ . . .⊕

(
O(an)⊕O(−an)

)
, ai ∈ Z, a1 ≥ . . . ≥ an

equipped with a non-degenerate skew-symmetric form induced by the perfect pairing

between O(ai) and O(−ai), 1 ≤ i ≤ n.

3. G = SO2n (n ≥ 3): (char k ̸= 2) Consider the even dimensional special orthogonal

group SO2n, which is the subgroup of SL2n preserving the non-degenrate quadratic form

q(x1, . . . , x2n) = x1xn+1 + . . .+ xnx2n. Principal SO2n-bundles over P1 which are Zariski

locally trivial can be identified with vector bundles of the form

(
O(a1)⊕O(−a1)

)
⊕ . . .⊕

(
O(an)⊕O(−an)

)
, ai ∈ Z, a1 ≥ . . . ≥ an ≥ 0

equipped with a non-degenerate quadratic form given by the orthogonal sum of the

hyperbolic form on O(ai) ⊕ O(−ai) induced by the perfect pairing between O(ai) and

O(−ai), 1 ≤ i ≤ n.
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4. G = SO2n+1 (n ≥ 2): (char k ̸= 2) Consider the odd dimensional special orthogonal

group SO2n+1, which is the subgroup of SL2n+1 preserving the non-degenrate quadratic

form q(x0,x1, . . . , x2n) = x2
0 + x1xn+1 + . . . + xnx2n. Principal SO2n+1-bundles over P1

which are Zariski locally trivial can be identified with vector bundles of the form

O ⊕
(
O(a1)⊕O(−a1)

)
⊕ . . .⊕

(
O(an)⊕O(−an)

)
, ai ∈ Z, a1 ≥ . . . ≥ an ≥ 0

equipped with a non-degenerate quadratic form given by the orthogonal sum of the

quadratic form x2
0 on O and the hyperbolic form on O(ai) ⊕ O(−ai) induced by the

perfect pairing between O(ai) and O(−ai), 1 ≤ i ≤ n.
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3.0 Main Results.

In this chapter we formulate the main results of this thesis. In the special case G = GLn

and k = Fq, they give a counting result of Mellit [29, Section 5.4].

3.1 Coproduct.

Let H be a split connected reductive group over Fq with a split maximal torus TH and

let BH be a Borel Fq-subgroup containing TH . Let ΠH ⊂ X∗(TH) denote the corresponding

set of simple roots of H. For J ⊂ ΠH , let PJ denote the standard parabolic Fq-subgroup of

H and let LJ denote the standard Levi factor of PJ (see Section 2.1.3). Let WH denote the

Weyl group of H relative to TH and J1, J2 ⊂ ΠH . We let Wi denote the subgroup of WH

generated by sα, α ∈ Ji, i = 1, 2. We need the following notation:

Notation. It is known that every double coset in W1\WH/W2 has a unique minimal length

representative (see [7, Proposition 2.7.3]) and we denote this set of representatives by DH
J1,J2

.

Let P(ΠH) denote the set of subsets of ΠH . We let Z[P(ΠH)] denote the lattice of

functions on P(ΠH) taking values in Z. For any f ∈ Z[P(ΠH)], define

∆H(f) : P(ΠH)× P(ΠH) → Z,

which is given by

∆H(f)(J1, J2) :=
∑

w∈DH
J1,J2

f(J1 ∩ w · J2).

We will call ∆H(f) the coproduct of f . We have:

∆H : Z[P(ΠH)] → Z[P(ΠH)]⊗ Z[P(ΠH)] ∼= Z[P(ΠH)× P(ΠH)].
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3.1.1 Generalized Springer and generalized Steinberg varieties.

For any J ⊂ ΠH , let SpH(J) denote the generalized Springer variety of H with respect

to J , which is defined as the following scheme of pairs:

SpH(J) := {(n, P ) : P is Fq-conjugate to PJ , n is nilpotent, n ∈ Lie(P )}.

In particular, P is a parabolic subgroup defined over Fq. For any two subsets J1, J2 ⊂

ΠH , let StH(J1, J2) denote the generalized Steinberg variety of H with respect to J1 and

J2, which is defined as the scheme of triples (n, P,Q), where P is Fq-conjugate to PJ1 ,

Q is Fq-conjugate to PJ2 , n is nilpotent such that n ∈ Lie(P ) ∩ Lie(Q). In particular, P

and Q are parabolic subgroups defined over Fq.

Observe that SpH(J) ∼= StH(ΠH , J). Define

[SpH ] : P(ΠH) → Z, J 7→ |SpH(J)|

and define

[StH ] : P(ΠH)× P(ΠH) → Z, (J1, J2) 7→ |StH(J1, J2)|.

Let ΦH denote the root system of H with respect to TH and let Φ+
H denote the set of positive

roots with respect to BH and TH . For J ⊂ ΠH , let ΦJ denote the root system of LJ with

respect to TH and let Φ+
J denote the set of positive roots with respect to BH ∩ LJ and TH .

Notation. Let M be an affine algebraic group over Fq and let m be the associated Lie

algebra. Recall that the rank of M is the dimension of a maximal torus of M or equivalently

the dimension of a Cartan subalgebra of m. We will denote the rank of M by rk(M) or

rk(m).

The following theorem gives an explicit formula for the number of points of generalized

Steinberg varieties:

Theorem 3.1. With notations as above, we have

(i) |SpH(J)| = q|Φ
+
J |+|Φ+

H |∑
w∈WH/WJ

ql(w), where l(w) represents the minimal length of the

elements in wWJ and also, |Φ+
J |+ |Φ+

H | = dim(PJ)− rk(PJ).

(ii) ∆H([SpH ]) = [StH ].

We give the proof of Theorem 3.1 in Chapter 4.
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3.2 Stratification of triples.

Definition. Fix a k-rational point x of P1. For J ⊂ Π, a parabolic structure on a principal

G-bundle E over P1 at x of type J is a choice of a k-rational point Px of Ex/PJ where Ex is

the fiber of E at x.

Let µ ∈ X+(T ) and let Eµ = µ∗O(1)× be as in Section 2.3. Let ad(Eµ) denote the adjoint

vector bundle over P1 associated to Eµ. Recall that ad(Eµ) = E×Gg = (E×g)/G for the right

action of G on E×g given by g ·(e, x) = (e ·g,Adg−1 ·x). Note that ad(Eµ) = O(1)××Gm g, i.e,

it is the quotient of O(1)××g under the action of Gm given by g · (e, f) = (e ·g,Adµ(g)−1(f)),

e ∈ O(1)×, f ∈ g, g ∈ Gm. The sheaf of sections of the adjoint vector bundle ad(Eµ) form a

sheaf of Lie algebras and thus H0(P1, ad(Eµ)) has the structure of a Lie algebra. Nilpotent

elements of the Lie algebra H0(P1, ad(Eµ)) are called nilpotent sections of ad(Eµ).

Let µ ∈ X+(T ) and J0, J∞ ⊂ Π, define T ripµ(J0, J∞) to be the scheme parameterizing

triples (P0, P∞,Ψ) such that Ψ is a nilpotent section of ad(Eµ), P0 (resp. P∞) is a parabolic

structure at 0 (resp. ∞) of type J0 (resp. J∞) and Ψ0 ∈ Lie(P0), Ψ∞ ∈ Lie(P∞) (we

will explain the meaning of this condition later). We note that T ripµ(J0, J∞) is a scheme

because it is the closed subscheme of E0/PJ0×E∞/PJ∞×H0(P1, ad(Eµ)) given by three closed

conditions, which are: Ψ is nilpotent, Ψ0 ∈ Lie(P0), Ψ∞ ∈ Lie(P∞).

Now let us explain the meaning of Lie(Px), x = 0,∞ in the definition of T ripµ(J0, J∞).

For x = 0,∞, we view (Eµ)x as a principal G-bundle over the point x and we let Aut((Eµ)x)

denote the k-group scheme whose R-valued points are the principal G × Spec(R)-bundle

automorphisms of (Eµ)x × Spec(R). Since Eµ is a pushforward of the Gm-bundle O(1)×,

(Eµ)x is a trivial principal G-bundle over the point x and therefore Aut((Eµ)x) can be non-

canonically identified with G. Now, Aut((Eµ)x) acts on (Eµ)x/PJx and the stabilizer of Px is

a parabolic subgroup of Aut((Eµ)x). We denote by Lie(Px) the Lie algebra of this stabilizer.

This is a parabolic subalgebra of Lie(Aut((Eµ)x)) = ad(Eµ)x.

Since O(1)× is a principal Gm-bundle over P1, Gm acts on Eµ = (O(1)× × G)/Gm by

acting on the first component. This gives a Gm-action on the parabolic structures and on

ad(Eµ), which gives a Gm-action on H0(P1, ad(Eµ)). On combining these actions, we get a
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Gm-action:

Gm ↷ T ripµ(J0, J∞). (1)

In this thesis, in the case when k = Fq we want to count the number of Fq-points of

T ripµ(J0, J∞) for each µ ∈ X+(T ), J0, J∞ ⊂ Π. For this, we would like to apply the

Bialynicki–Birula decomposition to T ripµ(J0, J∞) with respect to the Gm-action (1). Note

that it is not immediate in this case because T ripµ(J0, J∞) is neither smooth nor projective

in general but nevertheless we will prove below Theorem 3.2, which allows to reduce counting

|T ripµ(J0, J∞)| to counting points of the generalized Steinberg varieties.

Notation. For J ⊂ Π, denote by WJ ⊂ W the subgroup generated by sα, α ∈ J , here sα

denotes the reflection corresponding to α. For any µ ∈ X∗(T ), let Πµ ⊂ Π denote the set

of simple roots that are annihilated by µ and denote by Lµ the identity component of the

centralizer of µ(Gm) in G. Since Lie(Lµ) = Lie(LΠµ) ([30, Theorem 13.33] and Section 2.1.3),

Lµ = LΠµ . We note that Πµ is the set of simple roots of Lµ corresponding to T and B ∩Lµ.

Example. In the special case G = GLn, if µ is of the form

t 7→ diag(tm1 , . . . , tm1︸ ︷︷ ︸
i1 times

, . . . , tms , . . . , tms︸ ︷︷ ︸
is times

), mi ̸= mj for i ̸= j,mj ∈ Z for 1 ≤ j ≤ s,

then Lµ ≃ GLi1 × . . .×GLis .

Notation. Let X be a scheme over k and let H be an affine algebraic group over k acting

on X. We will denote the fixed point locus of this action by XH .

Theorem 3.2. Keep notations as above. Let Gm act on T ripµ(J0, J∞) as in (1). Then there

exists a stratification of T ripµ(J0, J∞) by locally closed subsets as:

T ripµ(J0, J∞) =
⊔

w∈WΠµ\W/WJ0

w′∈WΠµ\W/WJ∞

T ripµ(J0, J∞)+w,w′

and a decomposition of T ripµ(J0, J∞)Gm as:

T ripµ(J0, J∞)Gm =
⊔

w∈WΠµ\W/WJ0

w′∈WΠµ\W/WJ∞

T ripµ(J0, J∞)Gm

w,w′ ,
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where T ripµ(J0, J∞)Gm

w,w′ are the connected components of T ripµ(J0, J∞)Gm with morphisms

T ripµ(J0, J∞)+w,w′ → T ripµ(J0, J∞)Gm

w,w′ ,

which are given by the limit map as t → 0 and are affine fibrations for w ∈ WΠµ\W/WJ0 , w
′ ∈

WΠµ\W/WJ∞ of relative dimensions dim(Aut(Eµ))− dim(Lµ).

Moreover, the schemes T ripµ(J0, J∞)Gm

w,w′ are isomorphic to the generalized Steinberg va-

rieties StLµ(Πµ ∩ w · J0,Πµ ∩ w′ · J∞), w ∈ DG
Πµ,J0

, w′ ∈ DG
Πµ,J∞.

The proof of Theorem 3.2 will be given in Chapter 6.

Upto this point, the base field k in Theorem 3.2 was arbitrary. Now let k = Fq. For

µ ∈ X+(T ), define πµ : Z[P(Πµ)] → Z[P(Π)] as:

πµ(f)(J) :=
∑

w∈DG
Πµ,J

f(Πµ ∩ w · J), f ∈ Z[P(Πµ)].

and define [T ripµ] : P(Π)× P(Π) → Z as:

[T ripµ](J0, J∞) := |T ripµ(J0, J∞)|

As an easy corollary of Theorem 3.2, we get:

Corollary 3.2.1. Keeping the above notations, we have:

[T ripµ] = qdim(Aut(Eµ))−dim(Lµ)(πµ ⊗ πµ)([StLµ ]).

Proof. Let J0, J∞ ⊂ Π. From Theorem 3.2, we have

[T ripµ](J0, J∞) =
∑

w∈WΠµ\W/WJ0

w′∈WΠµ\W/WJ∞

|T ripµ(J0, J∞)+w,w′ |

=
∑

w∈WΠµ\W/WJ0

w′∈WΠµ\W/WJ∞

qdim(Aut(Eµ))−dim(Lµ)|T ripµ(J0, J∞)Gm

w,w′ |.

Since the schemes T ripµ(J0, J∞)Gm

w,w′ are isomorphic to the generalized Steinberg varieties

StLµ(Πµ ∩ w · J0,Πµ ∩ w′ · J∞), w ∈ DG
Πµ,J0

, w′ ∈ DG
Πµ,J∞ (see Theorem 3.2), we have

[T ripµ](J0, J∞) = qdim(Aut(Eµ))−dim(Lµ)
∑

w∈DG
Πµ,J0

w′∈DG
Πµ,J∞

|StLµ(Πµ ∩ w · J0,Πµ ∩ w′ · J∞)|.

Now the corollary follows from the defintion of πµ.
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Remark 3.1. (i) For deducing Corollary 3.2.1 from Theorem 3.2, it is crucial that all

fibers of the morphism T ripµ(J0, J∞)+w,w′ → T ripµ(J0, J∞)Gm

w,w′ have the same dimen-

sion.

(ii) Notice that πµ is an instance of ∆G. More precisely, let f ∈ Z[P(Πµ)] and let f̃

be any extension of f to P(Π), i.e, f̃ ∈ Z[P(Π)] and f̃|P(Πµ)
= f . Then we have

πµ(f) = ∆G(f̃)(Πµ, ·).

More explicitly, we have the following corollary.

Corollary 3.2.2. Keep notations as above. Then |T ripµ(J0, J∞)| is equal to

q
|Φ+

Πµ
|+

∑
⟨α,µ⟩>0

(
⟨α,µ⟩+1

) ∑
w∈DG

Πµ,J0

w′∈DG
Πµ,J∞

∑
w′′∈DLµ

Πµ∩w·J0,Πµ∩w′·J∞

q

∣∣Φ+
Πµ∩w·J0∩w′′·(Πµ∩w′·J∞)

∣∣
A(µ,w,w′, w′′; q),

where ΦΠµ∩w·J0∩w′′·(Πµ∩w′·J∞) is the root system of LΠµ∩w·J0∩w′′·(Πµ∩w′·J∞) with respect to T and

A(µ,w,w′, w′′; q) =
∑

w′′′∈DLµ

∅,Πµ∩w·J0∩w′′·(Πµ∩w′·J∞)

ql(w
′′′).

In particular, we see that |T ripµ(J0, J∞)| is a polynomial in q with non-negative integer

coefficients.

To prove Corollary 3.2.2, we need the following result (see [35, Proposition 5.2]), which

describes Aut(Eµ) as a scheme:

Fact 3.1. Let Eµ be as above. Then Aut(Eµ) is isomorphic as a scheme to

Lµ ×
∏

α∈Φ:⟨α,µ⟩>0

H0(P1,O(⟨α, µ⟩)).

Proof. (of Corollary 3.2.2) By Theorem 3.1(ii) and Corollary 3.2.1, we get

[T ripµ](J0, J∞) = qdim(Aut(Eµ))−dim(Lµ)
∑

w∈DG
Πµ,J0

w′∈DG
Πµ,J∞

∆Lµ([SpLµ ])(Πµ ∩ w · J0,Πµ ∩ w′ · J∞). (2)

Using the defintion of ∆Lµ , [T ripµ](J0, J∞) is equal to

qdim(Aut(Eµ))−dim(Lµ)
∑

w∈DG
Πµ,J0

w′∈DG
Πµ,J∞

∑
w′′∈DLµ

Πµ∩w·J0,Πµ∩w′·J∞

|SpLµ(Πµ ∩ w · J0 ∩ w′′ · (Πµ ∩ w′ · J∞))|.

Now the corollary follows from Theorem 3.1(i) and Fact 3.1.
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It follows from definitions that T rip0(J0, J∞) = StG(J0, J∞) and T rip0(Π,Π) = N (g),

the nilpotent cone of g. In particular, we see that even in the trivial case µ = 0, J0 = J∞ = Π,

T ripµ(J0, J∞) is neither smooth nor projective.

We note the following corollary.

Corollary 3.2.3. Keep notations as above and assume that µ ∈ X+(T ) is a central cochar-

acter. Then [T ripµ] = [StG].

Proof. It follows from Corollary 3.2.2 that [T ripµ] = [T rip0].

3.3 Comparison between different groups.

In this section, we let k = Fq. We will compare |T ripµ(J0, J∞)| for different groups

below. For this, we introduce the following notation.

Notation. Let H,TH , BH ,ΠH be as in Section 3.1. Let ν ∈ X+(TH) and let Eν denote the

principal H-bundle over P1 induced by ν. For J0, J∞ ⊂ ΠH , as before we let T ripµ,H(J0, J∞)

denote the scheme parameterizing triples (P0, P∞,Ψ) such that Ψ is a nilpotent section of

ad(Eν), P0 (resp. P∞) is a parabolic structure at 0 (resp. ∞) of type J0 (resp. J∞) and

Ψ0 ∈ Lie(P0), Ψ∞ ∈ Lie(P∞). Again as before, define

[T ripν,H ] : P(ΠH)× P(ΠH) → Z

by

[T ripν,H ](J0, J∞) := |T ripν,H(J0, J∞)|

Consider the following two situations:

(i) Recall G, T,B,Π from Section 2.1.2. Let G′ := [G,G] be the derived group of G.

Let j : G′ → G be the natural inclusion. Denote the split maximal torus T ∩ G′ of

G′ by T ′ and the Borel Fq-subgroup B ∩ G′ of G′ by B′. Let µ′ ∈ X+(T
′), we have

µ := j ◦ µ′ ∈ X+(T ). Since the root systems of G and G′ are isomorphic, we will

consider [T ripµ′,G′ ] and [T ripµ,G] as functions with domain Π× Π.
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(ii) Recall that a morphism u : G1 → G2 of connected affine algebraic groups over Fq is

called a central isogeny if it is a finite flat surjection such that ker(u) is central in G1

(see [10, Definition 3.3.9]). Now let u : G1 → G2 be a central isogeny of split connected

reductive groups over Fq. Let T1 be a split maximal torus of G1 and let B1 be a Borel

Fq-subgroup of G1 containing T1. Then T2 := u(T1) is a split maximal torus of G2

and B2 := u(B1) is a Borel Fq-subgroup of G2 containing T2 (see [9, Section 3.3]). Let

µ1 ∈ X+(T1), we have µ2 := u ◦ µ1 ∈ X+(T2). Since the root systems of G1 and G2

are isomorphic, we will consider [T ripµ1,G1 ] and [T ripµ2,G2 ] as functions with domain

Π1 × Π1, where Π1 is the set of simple roots of G1 with respect to (B1, T1).

We have the following:

Corollary 3.2.4. (a) With notations as in (i) above, we have

[T ripµ′,G′ ] = [T ripµ,G].

(b) With notations as in (ii) above, we have

[T ripµ1,G1 ] = [T ripµ2,G2 ].

We give the proof of Corollary 3.2.4 in Chapter 6.

As special cases, we may take G = GLn and G′ = SLn in Corollary 3.2.4 (a) and

SLn → PGLn
∼= SLn/µn or Spinn → SOn in Corollary 3.2.4 (b).
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4.0 Generalized Steinberg Varieties.

In this chapter, we give a proof of Theorem 3.1. Recall that for any scheme X over Fq,

we denote the number of Fq-rational points of X by |X|.

We now prove a simple lemma that will be used several times in the thesis:

Lemma 4.1. Let M be an affine algebraic group over Fq and let M ′ be a connected Fq-

subgroup of M . Then |M/M ′| = |M |/|M ′|.

Proof. Let x : Spec(Fq) → M/M ′ be an Fq-rational point of M/M ′ and let M
π−→ M/M ′

be the natural morphim giving M a structure of a principal M ′-bundle over M/M ′. Pulling

back the principal M ′-bundle M
π−→ M/M ′ along x, we get a principal M ′-bundle x∗M →

Spec(Fq). Recall that a theorem of Lang ([25]) asserts that for any connected affine algebraic

group H over a finite field K, every principal H-bundle over Spec(K) is trivial, thus we get

that x∗M → Spec(Fq) is a trivial principal M ′-bundle and so, x∗M ∼= M ′. Since Fq-rational

points of M map to Fq-rational points of M/M ′ under π, the number of Fq-rational points

of M mapping to x is equal to |M ′| and the lemma follows.

Notation. Let M be an affine algebraic group over Fq and let m be the associated Lie

algebra. We will denote the nilpotent cone of m by N (m).

We will need the following proposition later.

Proposition 4.1. Let k be a perfect field. Let M be a connected affine algebraic group

over k and let Ru(M) denote the k-unipotent radical of M . Then M/Ru(M) is a connected

reductive k-group.

Proof. Consider the k-groupMk/Ru(Mk). We claim thatMk/Ru(Mk)
is a connected reductive

group over k. To see this, consider the natural projection π : Mk → Mk/Ru(Mk), assume

that there exists a non-trivial connected, unipotent, normal subgroup U of Mk/Ru(Mk),

then π−1(U)◦ satisfies the same properties and strictly contains Ru(Mk), which contradicts

the fact that Ru(Mk) is the unipotent radical of Mk. Next, we need the following result [8,

Proposition 1.1.9(1)]:
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Fact 4.1. Let G be a connected affine algebraic group over k and let K/k be a separable

extension of fields. Then we have Ru,k(G)K = Ru,K(GK) inside GK.

We return to the proof of Proposition 4.1. Since (M/Ru(M))k
∼= Mk/Ru(M)k and

Ru(Mk) = Ru(M)k inside Mk, we get that Ru(M/Ru(M))k = {1}. As a consequence, we

have Ru(M/Ru(M)) = {1}, therefore M/Ru(M) is a connected reductive group over k.

Remark 4.1. When k is not necessarily perfect, then M/Ru(M) is only a pseudo-reductive

group (see [8] for the theory of pseudo-reductive groups).

The following proposition is proved in [41, (7)] in the case of connected reductive groups

over Fq. We deduce the statement in the general case using the case of connected reductive

groups over Fq.

Proposition 4.2. Let M be an arbitrary connected affine algebraic group over Fq and m be

its Lie algebra. Then |N (m)| = qdim(m)−rk(m).

Proof. The case of connected reductive groups over Fq is proved in [41, (7)]. We claim that

the general case follows from the case of connected reductive groups over Fq. Indeed, let

Ru(M) denote the Fq-unipotent radical of M . Then by Proposition 4.1, M/Ru(M) is a

connected reductive group over Fq. Now let u denote the Lie algebra of Ru(M), we have

Lie(M/Ru(M)) = m/u.

We need a simple lemma:

Lemma 4.2. With notations as above, we have

|N (m)| = qdim(u)|N (m/u)|.

Proof. Consider the natural projectionm
π−→ m/u. We will prove thatN (m) = π−1(N (m/u))

from which the lemma would follow easily. Since π maps nilpotent elements of m to nilpotent

elements of m/u, we get π(N (m)) ⊂ N (m/u). Now suppose x ∈ π−1(N (m/u)), using Jordan

decomposition write x = xs+xn, where xs is a semisimple element, xn is a nilpotent element

and [xs, xn] = 0. Assume on the contrary that xs ̸= 0. Since π is a Lie algebra morphism,

π(x) = π(xs)+π(xn) is the Jordan decomposition of π(x). Since xs ̸∈ u, we have π(xs) ̸= 0 .

Therefore, π(x) ̸∈ N (m/u), which is a contradiction. Thus, we have N (m) = π−1(N (m/u)).

28



Since π is clearly surjective, we get |N (m)| = |u||N (m/u)|. Now the lemma follows from

|u| = qdim(u).

We return to the proof of Proposition 4.2. Since the statement of Proposition 4.2 is

known for reductive groups (see [41, (7)]), we obtain

|N (m/u)| = qdim(m/u)−rk(m/u).

Since rk(m) = rk(m/u), we get

|N (m/u)| = qdim(m/u)−rk(m). (3)

By applying Lemma 4.2 to (3), we get

|N (m)| = qdim(u)qdim(m/u)−rk(m) = qdim(m)−rk(m).

This finishes the proof of Proposition 4.2.

4.1 Proof of Theorem 3.1(i).

Let H be a split reductive group over Fq with a split maximal torus TH and let BH be a

Borel Fq-subgroup containing TH . Let ΠH ⊂ X∗(TH) denote the corresponding set of simple

roots of H. Let WH denote the Weyl group of H relative to TH . For any J ⊂ ΠH , let PJ be

the corresponding standard parabolic Fq-subgroup of H. Let LJ and UJ be the Levi factor

and the unipotent radical of PJ , respectively and let WJ be the corresponding subgroup of

WH .

The number of points of the generalized Springer variety of H corresponding to J ⊂ ΠH

is given by

|SpH(J)| =
|H|
|PJ |

|N (Lie(PJ)| =
|H|
|PJ |

qdim(PJ )−rk(PJ ), (4)

where the first equality holds because the normalizer of PJ is itself and the fact that if P

is a parabolic subgroup of G conjugate over Fq to PJ , then N (Lie(P )) ∼= N (Lie(PJ)). The

second equality follows from Proposition 4.2.
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Since H/PJ has a stratification by locally closed subsets as
⊔

w∈WH/WJ
Al(w) (see [4,

Proposition 3.16]), where l(w) represents the minimal length of the elements in wWJ , using

Lemma 4.1 we get that |H|/|PJ | =
∑

w∈WH/WJ
ql(w), which gives

|SpH(J)| = q|Φ
+
J |+|Φ+

H |
∑

w∈WH/WJ

ql(w).

This finishes the proof of part (i) of Theorem 3.1.

4.2 Proof of Theorem 3.1(ii).

In the proof of part (ii) of Theorem 3.1, we will need another formula for |SpH(J)|, which

we now give. First we need a lemma.

Lemma 4.3. Let U be a connected unipotent group over k. Assume that k is perfect. Then

U ≃ Adim(U) as schemes over k.

Recall that a connected solvable group M over k is k-split ([40, Section 14.1]) if there

exists a sequence

{e} = M0 ⊂ M1 ⊂ . . . ⊂ Mn−1 ⊂ Mn = M

of closed, connected, normal k-subgroups such that the quotients Mi/Mi−1 are k-isomorphic

to either Ga or Gm over k. Lemma 4.3 is an easy consequence of the following two facts (see

[40, Corollary 14.2.7 and Corollary 14.3.10]):

Fact 4.2. Let M be a connected solvable group over k that is k-split. Then M is isomorphic

to Gr
m × Gs

a as k-schemes with r = dim(M/Ru(M)) and s = dim(Ru(M))). In particular,

if in addition M is unipotent, then M ≃ Adim(M) as schemes over k.

Fact 4.3. Let M be a connected solvable group over k. Assume that k is perfect. Then

Ru(M) is k-split.

Let us return to the proof of Theorem 3.1(ii). Let J ⊂ ΠH be as in the statement of

Theorem 3.1. Let UJ denote the unipotent radical of PJ . Then, we have |UJ | = qdim(UJ ) by
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Lemma 4.3. Since PJ
∼= LJ × UJ as schemes over Fq, we have |PJ | = |LJ ||UJ |. Substituting

this in (4) gives

|SpH(J)| =
|H|
|LJ |

qdim(LJ )−rk(LJ ). (5)

Now Proposition 4.2 gives

|SpH(J)| = |H| |N (Lie(LJ))|
|LJ |

. (6)

For any Ji ⊂ ΠH , let Pi := PJi be the corresponding standard parabolic Fq-subgroup of H,

i = 1, 2. Let Li := LJi and Ui := UJi be the Levi factor and the unipotent radical of Pi

respectively, and let Wi := WJi be corresponding subgroup of WH , i = 1, 2. Consider the

natural action of H(Fq) on StH(J1, J2). Since the normalizer of P1 in H(Fq) is P1(Fq), the

number of points of StH(J1, J2) is given by

|StH(J1, J2)| =
|H|
|P1|

∑
h∈H(Fq)/P2(Fq)

|N (Lie(P1 ∩ h · P2))|

=
|H|
|P1|

|P1|
∑

h∈P1(Fq)\H(Fq)/P2(Fq)

|N (Lie(P1 ∩ h · P2))|
|P1 ∩ h · P2|

where the second equality follows from the following easy lemma.

Lemma 4.4. Let A be a finite abstract group and let B and C be subgroups of A. Then for

any x ∈ A, we have

|BxC| = |B||C|
|B ∩ xCx−1|

.

We will need the following fact:

Proposition 4.3. Keep notations as above. Then we have a natural bijection

P1(Fq)\H(Fq)/P2(Fq) ∼= W1\WH/W2.

Proof. (Sketch) The proposition follows from [14, Theorem 65.21] , [30, Theorem 21.91] and

the well-known fact that H(Fq) is a finite group with a BN -pair [13] for B = BH(Fq), N =

NTH
(Fq), where NTH

is the normalizer of TH in H.
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We return to the proof of Theorem 3.1. By Proposition 4.3, Lemma 4.1 and Proposition

4.2, we get

|StH(J1, J2)| = |H|
∑

w∈W1\WH/W2

qdim(P1∩w·P2)−rk(P1∩w·P2)

|P1 ∩ w · P2|
.

Next, we have the following decomposition (the statement is easily reduced to Fq in which

case it is given by [15, Proposition 2.15]):

P1 ∩ w · P2 = (L1 ∩ w · L2)(L1 ∩ w · U2)(U1 ∩ w · L2)(U1 ∩ w · U2), (7)

which is a direct product of varieties over Fq. By Lemma 4.3, we obtain

|StH(J1, J2)| = |H|
∑

w∈W1\WH/W2

qdim(L1∩w·L2)−rk(L1∩w·L2)

|L1 ∩ w · L2|

= |H|
∑

w∈W1\WH/W2

|N (Lie(L1 ∩ w · L2))|
|L1 ∩ w · L2|

.

where we use Proposition 4.2 for the second equality. Recall DH
J1,J2

from Section 3.1 and let

w ∈ DH
J1,J2

. In this case, we also have the following decomposition (the statement is easily

reduced to Fq in which it is given by [7, Theorem 2.8.7]):

P1 ∩ w · P2 = (LJ1∩w·J2)(L1 ∩ w · U2)(U1 ∩ w · L2)(U1 ∩ w · U2) (8)

By (7), (8) and the fact that LJ1∩w·J2 ⊂ L1 ∩ w · L2, we get LJ1∩w·J2 = L1 ∩ w · L2, which

gives

|StH(J1, J2)| = |H|
∑

w∈DH
J1,J2

|N (Lie(LJ1∩w·J2))|
|LJ1∩w·J2|

. (9)

Recalling that ∆H is given by

∆H(f)(J1, J2) =
∑

w∈DH
J1,J2

f(J1 ∩ w · J2),

we get from (6) and (9) that

∆H([SpH ]) = [StH ].

This finishes the proof of part (ii) of Theorem 3.1.

32



4.3 More on coproduct.

In this section, we would like to prove a few properties of ∆H that are of independent

interest and will be used later in Chapter 7 in the case of GLn. First we need some definitions.

Definition. Let J1, J2 ⊂ ΠH , we say J1 and J2 are associates whenever ΦJ2 = w · ΦJ1 for

some w ∈ WH . This gives an equivalence relation on P(ΠH), which we denote by ∼H . Let

f ∈ Z[P(ΠH)], we say f is associate invariant if f(J1) = f(J2) whenever J1 and J2 are

associates.

Let O be an equivalence class of ∼H . Let δO ∈ Z[P(ΠH)] be the function on P(ΠH)

that takes the value 1 on J if J ∈ O and 0 otherwise. Let us fix a representative JO in each

equivalence class O. We say that a function of two variables is associate invariant if it is

associate invariant in each variable. The following lemma states that ∆H preserves associate

invariant functions.

Lemma 4.5. Keep notations as above. Then

∆H(δO) =
∑

(O1,O2)∈
(
P(ΠH)/∼

)
×
(
P(ΠH)/∼

)nO1,O2

O δO1 ⊗ δO2 , (10)

where

nO1,O2

O =
∣∣{w ∈ WJO1

\WH/WJO2
: ΦJO1

∩ w · ΦJO2
= w′ · ΦJO for some w′ ∈ WH}

∣∣.
In particular, ∆H preserves the subspace of associate invariant functions.

Proof. First we rewrite the coproduct ∆H for associate invariant functions. SetR(J) := ΦJ ,

so that R is a bijection from P (ΠH) onto the set of root systems of all Levi subgroups of

H containing TH . Let f ∈ Z[P(ΠH)] be associate invariant. Then for (J1, J2) ∈ P(ΠH) ×

P(ΠH),

∆H(f)(J1, J2) =
∑

w∈WJ1
\WH/WJ2

f
(
R−1(ΦJ1 ∩ w · ΦJ2)

)
. (11)
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We note that in this reformulation of ∆H for associate invariant functions the summands does

not depend on a particular choice of the element of a double coset. For any J1, J2 ∈ P(ΠH),

∆H(δO) evaluated at (J1, J2) is equal to∑
w∈WJ1

\WH/WJ2

δO
(
R−1(ΦJ1 ∩ w · ΦJ2)

)
,

which in turn is equal to

∣∣{w ∈ WJ1\WH/WJ2 : ΦJ1 ∩ w · ΦJ2 = w′ · ΦJO for some w′ ∈ WH}
∣∣.

On the other hand, RHS of (10) evaluated at (J1, J2) is equal to nO1,O2

O , where O1 (resp. O2)

is the equivalence class of J1 (resp. J2). There exists w1, w2 ∈ WH such that ΦJ1 = w1 ·ΦJO1
,

ΦJ2 = w2 ·ΦJO2
and so, WJ1 = w1WJO1

w−1
1 and WJ2 = w2WJO2

w−1
2 . Now the lemma follows

from the bijection

WJO1
\WH/WJO2

→ WJ1\WH/WJ2 , WJO1
wWJO2

7→ WJ1(w1ww
−1
2 )WJ2 .

This finishes the proof of Lemma 4.5.

Remark 4.2. The proof of Lemma 4.5 suggests that (11) may be a better definition for ∆H

as it does not use [7, Proposition 2.7.3]. In fact, it may be even better to view f as a function

on the set of root systems of the Levi subgroups. Moreover, using this formulation it is easy

to see that ∆H is co-commutative for associate invariant functions.

We have the following corollary.

Corollary 4.5.1. Let [SpH ] and [StH ] be as in Section 3.1. Then [SpH ] and [StH ] are

associate invariant functions.

Proof. Let J, J ′ ∈ ΠH be such that J ∼H J ′. Then we have LJ ≃ LJ ′ and as a consequence

of (6), it follows that [SpH ] is associate invariant. Now Lemma 4.5 together with Theorem

3.1(ii) imply that [StH ] is associate invariant in each variable.
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Assume that H = H1× . . .×Hn. For k = 1, . . . , n, let Πk be the set of simple roots of Hk

with respect to some maximal torus and a Borel subgroup containing it. We can identify ΠH

with the disjoint union
⊔

k Πk. Thus, P(ΠH) =
∏

k P(Πk) and Z[P(ΠH)] =
⊗

k Z[P(Πk)].

Under this isomorphism, the following lemma follows from the definitions.

Lemma 4.6. Keep notations as above. Then

[StH ] = [StH1 ]⊗ . . .⊗ [StHn ].
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5.0 Bialynicki–Birula decomposition.

In this chapter we recall the Bialynicki–Birula decomposition. We will use these facts in

the next chapter to give a proof of Theorem 3.2.

Definition. Let X and Z be two schemes. A morphism ϕ : X → Z is called an affine

fibration of relative dimension d if for every z ∈ Z, there is a Zariski open neighborhood

U of z such that XU
∼= U × Ad and this isomorphism identifies ϕ|U : XU → Z with the

projection on the first factor.

A morphism ϕ : X → Z is called a trivial affine fibration of relative dimension d if

X ∼= Z × Ad and this isomorphism identifies ϕ : X → Z with the projection on the first

factor.

We use the following result (see [6, Theorem 3.2]), known as the Bialynicki–Birula de-

composition which is key to our calculation:

Fact 5.1. (Bialynicki–Birula, Hesselink, Iversen). Let X be a smooth, projective scheme

over k equipped with a Gm-action. Then the following holds:

(i) The fixed point locus XGm is a closed subscheme of X and is smooth over k.

(ii) There exists a numbering XGm =
⊔n

i=1 Zi of the connected components of XGm, and a

filtration of X by closed subschemes:

X = Xn ⊃ Xn−1 ⊃ ... ⊃ X0 ⊃ X−1 = ∅

and affine fibrations ϕi : Xi −Xi−1 → Zi.

(iii) The relative dimension of ϕi is the dimension of the positive eigenspace of the Gm-

action on the tangent space of X at an arbitrary closed point z ∈ Zi and dim(Zi) =

dim(TGm
z,X ) .

In particular, we obtain a stratification of X by locally closed subsets X+
i := Xi −Xi−1.
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Definition. Let Y be a separated scheme over k. Let ϕ : A1\{0} → Y be a morphism. If

ϕ extends to a morphism ϕ̃ : A1 → Y , we say that limt→0 ϕ(t) exists and we set it equal to

ϕ̃(0). Since Y is separated over k and A1 is reduced, the extension ϕ̃ is unique. Note that

if, moreover, Y is proper over k then an extension of ϕ always exists.

Remark 5.1. (see [6, Section 3]) The Bialynicki–Birula decomposition is explicit in the sense

that the locally closed subscheme X+
i is the set of all points x ∈ X such that limt→0 t · x ∈ Zi

where (t, x) 7→ t · x is the Gm-action. Moreover, the map ϕi : X
+
i → Zi is then given by

x 7→ limt→0 t · x.

Example. Consider the Gm-action on Pn given by:

t · [x0 : . . . : xi : . . . : xn] = [t0x0 : . . . : t
ixi : . . . : t

nxn], t ∈ Gm, [x0 : . . . : xi : . . . : xn] ∈ Pn.

This action has n+ 1 fixed points, namely pi = [0 : . . . : 0 : 1︸︷︷︸
i

: 0 : . . . : 0], 0 ≤ i ≤ n. For

0 ≤ i ≤ n, over the i-th coordinate chart Ui = {[x0 : . . . : xi : . . . : xn] : xi ̸= 0}, this action

is

t · [x0 : . . . : 1 : . . . : xn] = [t−ix0 : . . . : 1 : . . . : tn−ixn].

Therefore, Xi = {[0 : . . . : 0 : 1 : xi+1 . . . : xn]} ≃ An−i, 0 ≤ i ≤ n and we have the following

decomposition, which is analogous to the CW-decomposition of the classical projective space:

Pn = A0 ⊔ . . . ⊔ Ai ⊔ . . . ⊔ An.

Let k be a field. Let S be a smooth separated scheme over k equipped with a Gm-action.

By [8, Proposition A.8.10], SGm is smooth over k. By a smooth equivariant compactification

of S, we will mean a scheme S that is smooth and projective over k, S is an open and dense

subscheme of S and S is equipped with a Gm-action that extends the Gm-action on S. The

following proposition is a consequence of Fact 5.1.
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Proposition 5.1. Assume that there is a smooth equivariant compactification S of S. Let

Sfin be the subset of S consisting of points x in S for which limt→0 t ·x exists in S. Then Sfin

is a constructible subset of S and there exists a stratification of Sfin by locally closed subsets

as:

Sfin =
⊔
α∈I

S+
α

and a decomposition of SGm as:

SGm =
⊔
α∈I

SGm
α ,

where Sα are the connected components of SGm, α ∈ I. Moreover, there are affine fibrations

limα : S+
α → SGm

α given by the limit map as t → 0.

Proof. By Fact 5.1 applied to S, we get a stratification of S by locally closed subsets as:

S =
⊔
α∈I

S
+

α

and a decomposition of S
Gm

as:

S
Gm

=
⊔
α∈I

S
Gm

α

where S
Gm

α are the connected components of S
Gm

, α ∈ I. Moreover, we get retractions

limα : S
+

α −→ S
Gm

α , α ∈ I. Note that these retractions are given by the limit map as t → 0

(see Remark 5.1).

Now by base change of S
+

α
limα−−→ S

Gm

α along S
Gm

α ∩ S → S
Gm

α , we get a scheme say S+
α

with a retraction to SGm
α := S

Gm

α ∩ S, which is an affine fibration and we denote it again by

limα : S+
α → SGm

α . Next, we claim that S+
α ⊂ S. Indeed, since S\S is projective and Gm-

stable, limα preserves S\S and hence S+
α ⊂ S. Thus Sfin =

⊔
α∈I S

+
α and Sfin is constructible

since S
+

α , α ∈ I are locally closed subsets of S.

Now we show that SGm
α are the connected components of SGm . Since S is projective, S

Gm

is noetherian. Thus there are finitely many irreducible components of S
Gm

. Since S
Gm

is

smooth ([8, Proposition A.8.10]), S
Gm

α is irreducible and we get that S
Gm

α ∩ S is irreducible.

This gives us that S
Gm

α ∩ S, α ∈ I are the connected components of SGm since the number

of connected components of S
Gm

is finite.

This finishes the proof of Proposition 5.1.
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In the case of an equivariant vector bundle over a smooth projective scheme equipped

with a Gm-action, we can say a bit more about the strata in Proposition 5.1. Let k be a field

and let X be a smooth projective scheme over k equipped with a Gm-action. Let π : E → X

be an equivariant vector bundle over X. Compactify E by considering the projectivization

P
(
E ⊕ (X × A1)

)
=: E. We extend the given Gm-action on E to a Gm-action on E by

letting Gm act trivially on A1 and via the given Gm-action on X. Since a projectivization

of a vector bundle over a smooth scheme is smooth, E is smooth. Thus E is a smooth

equivariant compactification of E.

Now let us consider the Bialynicki–Birula decomposition of X. By Fact 5.1, X has a

stratification by locally closed subsets as:

X =
⊔
α∈I

X+
α

and a decomposition of XGm as:

XGm =
⊔
α∈I

XGm
α

where XGm
α are the connected components of XGm , α ∈ I.

Since Gm acts trivially on XGm
α and π is Gm-equivariant, Gm acts on the vector bundle

π−1(XGm
α ) → XGm

α fibrewise. Therefore, π−1(XGm
α ) decomposes according to the characters

of Gm,

π−1(XGm
α ) = ⊕n∈ZVα,n,

where Vα,n is the subbundle of π−1(XGm
α ) on which t ∈ Gm acts via multiplication by tn. We

have the following proposition.

Proposition 5.2. Keep notations as above and as in Proposition 5.1. Then Efin is a con-

structible subset of E and there exists a stratification of Efin by locally closed subsets as:

Efin =
⊔
α∈I

E+
α

and a decomposition of EGm as:

EGm =
⊔
α∈I

Vα,0,

where Vα,0 are the connected components of EGm, α ∈ I and there are affine fibrations

limα : E+
α → Vα,0 given by the limit map as t → 0.

39



Proof. Notice that we have EGm =
⊔

α∈I Vα,0. Since Vα,0 =
(
π−1(XGm

α )
)Gm

, Vα,0 is closed,

α ∈ I. Moreover, since Vα,0, α ∈ I are connected, we get that Vα,0, α ∈ I are the connected

components of EGm . It remains to use Proposition 5.1.
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6.0 Counting triples.

This chapter will be devoted to the proof of Theorem 3.2. Let G, T,B,Π,W,Φ be as in

Section 2.1.2 and let µ, J0, J∞ be as in the statement of Theorem 3.2. Let g := Lie(G) be

the Lie algebra of G. Since µ, J0 and J∞ are fixed in the statement of Theorem 3.2, we will

denote T ripµ(J0, J∞) by T rip in the proof of Theorem 3.2.

6.1 Strategy of the proof.

In this section, we outline the strategy of the proof of Theorem 3.2. Let Gm act on g

via µ, so t ∈ Gm acts trivially on h and via multiplication by t⟨α,µ⟩ on the root spaces gα.

Let g0 := h ⊕⟨α,µ⟩=0 gα, g
+ := ⊕⟨α,µ⟩>0gα and g− := ⊕⟨α,µ⟩<0gα. Then we get the following

Gm-stable decomposition of g:

g = g0 ⊕ g+ ⊕ g−. (12)

Note that we have g0 = Lie(Lµ).

For J ⊂ Π, define BJ to be the scheme of pairs (P, v) such that P ∈ G/PJ , v ∈ Lie(P ),

where we identify G/PJ with the scheme of parabolic subgroups of G that are conjugate to

PJ . Note that BJ is vector bundle over G/PJ (see Lemma 6.2 for the proof), in fact, it is a

vector subbundle of the trivial vector bundle G/PJ × g over G/PJ . As vector bundles over

smooth schemes are smooth, we get that BJ is smooth. Note that G acts in a natural way

on G/PJ × g preserving BJ . Pulling back this action along µ : Gm → T → G, we get an

action

Gm ↷ BJ . (13)

We introduce the following object for our proof of Theorem 3.2.

Definition. Let Quad be the closed subscheme of BJ0 × BJ∞ consisting of quadruples

(P0, v0, P∞, v∞) such that v0 and v∞ are nilpotent and with respect to the decomposition

(12), the g−-components of v0 and v∞ are zero and their g0-components are equal.

41



Note that Quad depends on µ, J0 and J∞.

Remark 6.1. The requirement of v0 and v∞ being nilpotent in the definition of Quad is

equivalent to the requirement of the g0-components of v0 and v∞ being nilpotent.

Recall Bfin
J from Proposition 5.1. Since BJ is an equivariant vector bundle over G/PJ ,

we stratify Bfin
J by applying Proposition 5.2 on BJ . We obtain the required stratification of

T rip in the following manner: trivialize the fibers of the line bundle O(1) at 0 and ∞ to

identify ad(Eµ)0 and ad(Eµ)∞ with g, now evaluating the nilpotent sections at 0 and ∞ gives

us a Gm-equivariant morphism T rip → BJ0 ×BJ∞ with Gm acting diagonally on BJ0 ×BJ∞ .

We will see in Lemma 6.1 that this evaluation morphism is a trivial affine fibration onto its

image, which is equal to Quad. Thus it is enough to stratify Quad. We show that for points

in Quad, the limit exists in BJ0 × BJ∞ as t → 0 (see Lemma 6.3), so Quad ⊂ Bfin
J0

× Bfin
J∞ .

We will see in Lemma 6.4 that intersecting the strata of Bfin
J0

×Bfin
J∞ with Quad, we obtain a

stratification of Quad.

6.2 Reduction to Quad.

Now we consider evaluations of the nilpotent sections of ad(Eµ) at 0 and ∞ and then

use them to reduce Theorem 3.2 to finding a stratification of Quad. Recall that as O(1)×

is a Gm-bundle over P1, Gm acts on ad(Eµ) = O(1)× ×Gm g (Section 2.2) and this gives an

action:

Gm ↷ H0(P1, ad(Eµ)). (14)

First, we describe sections of the adjoint bundle ad(Eµ) over P1. Since ad(Eµ) = O(1)××Gm g,

the Gm-stable decomposition (12) of g gives a Gm-stable decomposition of ad(Eµ) as

ad(Eµ) = ad(Eµ)0 ⊕ ad(Eµ)+ ⊕ ad(Eµ)−,

where ad(Eµ)0 := O(1)× ×Gm g0, ad(Eµ)+ := O(1)× ×Gm g+ and ad(Eµ)− := O(1)× ×Gm g−.

Since ad(Eµ)− is a direct sum of the line bundles O(m), m < 0 and H0(P1,O(m)) = 0 for

m < 0, we get

H0(P1, ad(Eµ)) = g0 ⊕H0
(
P1, ad(Eµ)+

)
.
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Thus

H0(P1, ad(Eµ)) = g0 ⊕
(
⊕α:⟨α,µ⟩>0 H

0
(
P1,O(⟨α, µ⟩)

))
. (15)

For x = 0,∞, ad(Eµ)x has a structure of a Lie algebra and for Ψ ∈ H0(P1, ad(Eµ)), denote

the value of Ψ at x by Ψx, which is an element of ad(Eµ)x.

We get the following Gm-stable decomposition of ad(Eµ)x:

ad(Eµ)x = ad(Eµ)0x ⊕ ad(Eµ)+x ⊕ ad(Eµ)−x , x = 0,∞.

Remark 6.2. By trivializing the fibers of the Gm-bundle O(1)× at 0 and ∞, we identify

(Eµ)x/PJx with G/PJx and we get a Gm-equivariant isomorphism (which is fixed from now

on) ad(Eµ)x ∼= g, which maps ad(Eµ)0x isomorphically onto g0, x = 0,∞. We note that the

isomorphism ad(Eµ)0x ∼= g0 is independent of the trivialization. From now on, we will use the

isomorphism ad(Eµ)x ∼= g to identify elements of ad(Eµ)x with those of g, x = 0,∞.

The Gm-action (13) on BJx , x = 0,∞ gives a Gm-action on BJ0 × BJ∞ by Gm acting

diagonally. Since the decomposition (12) is Gm-stable, we get an action

Gm ↷ Quad. (16)

Using Remark 6.2, we consider the evaluation morphism at 0 and ∞ as taking values in

BJ0 × BJ∞ :

ev0,∞ : T rip → BJ0 × BJ∞ , (P0, P∞,Ψ) 7→ (P0,Ψ0, P∞,Ψ∞).

Consider the evaluation map at 0 and ∞,

eval : H0(P1, ad(Eµ)) → g⊕ g, Ψ 7→ (Ψ0,Ψ∞).

Notice that for Ψ ∈ g0, eval(Ψ) = (Ψ,Ψ). Since Ψ ∈ H0(P1, ad(Eµ)) is nilpotent if and only

if the g0-component of Ψ is nilpotent and the evaluation map H0(P1,O(m)) → A1 × A1,

ϕ 7→ (ϕ0, ϕ∞) is surjective for m > 0, the image of ev0,∞ is equal to Quad.

The next lemma relates T rip and Quad via evaluation at 0 and ∞.
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Lemma 6.1. The evaluation morphism

ev0,∞ : T rip → Quad

is Gm-equivariant and a trivial affine fibration of relative dimension
∑

⟨α,µ⟩>0

(
⟨α, µ⟩ − 1

)
.

Moreover, ev0,∞ gives the following commutative triangle:

T rip Quad×W

Quad

∼

ev0,∞ pr1

where W is a Gm-representation with Gm acting by positive weights and all morphisms in

the above triangle are Gm-equivariant. In particular, ev0,∞ : T rip → Quad induces an

isomorphism

ev0,∞ : T ripGm ∼−→ QuadGm . (17)

Proof. Put g0,∞ to be the affine space consisting of pairs (v0, v∞) ∈ g ⊕ g such that

g0-components of vx are equal, g−-components of vx are 0, x = 0,∞. Since the image of

eval lies inside g0,∞, we will consider eval with codomain g0,∞,

eval : H0(P1, ad(Eµ)) → g0,∞.

Since the evaluation map H0(P1,O(m)) → A1 × A1, ϕ 7→ (ϕ0, ϕ∞) is surjective for m > 0

and eval(v) = (v, v) for v ∈ g0, the morphism eval is surjective.

Let W := ker(eval). Notice that W is a Gm-representation acting by positive weights.

Since Gm is reductive, we get a Gm-equivariant isomorphism:

H0(P1, ad(Eµ)) ∼= W × g0,∞.

Denote the nilpotent elements of H0(P1, ad(Eµ)) by H0(P1, ad(Eµ))nil. Let gnil0,∞ denote the

set of elements (v0, v∞) ∈ g0,∞ such that the g0-components of v0 and v∞ are nilpotent.
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Since Ψ ∈ H0(P1, ad(Eµ)) is nilpotent if and only if the g0-component of Ψ is nilpotent, we

get a Gm-equivariant isomorphism

H0(P1, ad(Eµ))nil ∼= W × gnil0,∞.

Since ev0,∞ : T rip → Quad is the pullback of H0(P1, ad(Eµ))nil
eval−−→ gnil0,∞ along the natural

projection Quad → gnil0,∞, we get a Gm -equivariant isomorphism

T rip ∼= W ×Quad.

The statement about relative dimension follows from the fact that Ψ ∈ H0(P1, ad(Eµ)) is

nilpotent if and only if the g0-component (12) of Ψ is nilpotent, (15), eval(Ψ) = (Ψ,Ψ) for

Ψ ∈ g0 and by the fact that the evaluation map H0(P1,O(m)) → A1×A1, ϕ 7→ (ϕ0, ϕ∞) has

nullity m− 1 for m > 0. This finishes the proof of Lemma 6.1.

Thus we have reduced the problem of finding a stratification of T rip to finding a strati-

fication of Quad.

6.3 Stratification of Bfin
J .

First let us give a quick proof that BJ is in fact a vector bundle over G/PJ .

Lemma 6.2. Consider the natural morphism BJ → G/PJ . Then BJ becomes a vector bundle

over G/PJ .

Proof. Consider G×PJ Lie(PJ) := (G×Lie(PJ))/PJ , which is the quotient of G×PJ for the

twisted action of PJ on G×Lie(PJ) given by p ·(g, v) = (g ·p−1,Adp(v)). Then G×PJ Lie(PJ)

becomes a vector bundle over G/PJ via (g, v) 7→ gPJg
−1. The assignment

F : (g, v) 7→ (gPJg
−1,Adg(v))

gives a G-equivariant isomorphism G×PJ Lie(PJ) → BJ of schemes over G/PJ , where G acts

on the first factor via left multiplication on G ×PJ Lie(PJ). This isomorphism gives BJ a

structure of a vector bundle over G/PJ .
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The following example of the Bialynicki–Birula decomposition will be important to us.

Let Gm act on G/PJ via µ. We have an explicit description of the connected components

of the fixed point locus given by the following result (the statement follows by reducing to k

and by noting that the proof of [19, Lemma 1] works for any algebraically closed field):

Fact 6.1. Recall from Section 3.2 that Lµ is the identity component of the centralizer of

µ(Gm) in G. Then

(G/PJ)
Gm =

⊔
w∈WΠµ\W/WJ

Zw

with Zw the orbit of w · PJ under Lµ. In particular, the connected components Zi of the

fixed point locus (G/PJ)
Gm appearing in the Bialynicki–Birula decomposition of G/PJ (Fact

5.1(ii)) are in one to one correspondence with the elements of WΠµ\W/WJ .

Note that Zw
∼= Lµ/(Lµ ∩ w · PJ) (see [30, Proposition 7.12]), which is a partial flag

variety of the Levi subgroup Lµ of G defined over k. From Fact 6.1 we get:

(G/PJ)
Gm ∼=

⊔
w∈WΠµ\W/WJ

Lµ/(Lµ ∩ w · PJ).

Let π : BJ → G/PJ be the projection. Note that π is Gm-equivariant where Gm acts on

BJ as in (13). Thus BJ is an equivariant vector bundle over the smooth projective scheme

G/PJ . By Proposition 5.2, we have a stratification of Bfin
J by locally closed subsets as:

Bfin
J =

⊔
w∈WΠµ\W/WJ

B+
J,w (18)

and a decomposition of BGm
J as

BGm
J =

⊔
w∈WΠµ\W/WJ

Vw,0, (19)

where Vw,0 are the connected components of BGm
J , w ∈ WΠµ\W/WJ . Moreover, there are

affine fibrations limw : B+
J,w → Vw,0 given by the limit map as t → 0.
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Remark 6.3. We can describe Vw,0 more explicitly, it is isomorphic to BΠµ∩w·J , where the

underlying group is Lµ. Indeed, identify Lµ/(Lµ ∩ w · PJ) with the scheme of parabolic

subgroups of Lµ that are conjugate to Lµ ∩ w · PJ . By Fact 6.1, we obtain

Vw,0
∼= {(P ′, v) : P ′ ∈ Lµ/(Lµ ∩ w · PJ), v ∈ Lie(P ′)}, (20)

where the above isomorphism is given by (P, v) 7→ (P ∩ Lµ, v). Note that if, for some v′ ∈ g

we have Adµ(t) · v′ = v′ for all t ∈ Gm, then v′ ∈ Lie(Lµ). Therefore, v ∈ Lie(P )∩ Lie(Lµ) =

Lie(P ∩ Lµ). Thus (P, v) 7→ (P ∩ Lµ, v) is a well-defined morphism.

The next proposition gives the relative dimension of limw.

Proposition 6.1. The relative dimension of the affine fibration limw : B+
J,w → Vw,0 is

(dimG− dimLµ)/2.

Proof. To calculate the relative dimension of limw : B+
J,w → Vw,0, we will use Fact 5.1(iii)

on BJ (this gives us the desired relative dimension because limw is obtained by base change

of the affine fibration that we get by applying the Bialynicki–Birula decomposition on BJ).

Let a = (w ·PJ , 0) ∈ Vw,0(k). Since a is a Gm-fixed point (see Fact 6.1), we get an action

Gm ↷ Ta(BJ) = Ta(BJ),

where Ta(BJ) = Ta(BJ) because BJ is an open subscheme of BJ . Let T
+
a (BJ) (resp. T

−
a (BJ))

denote the positive (resp. negative) eigenspace of the Gm-action on the tangent space of BJ

at a and let T 0
a (BJ) denote the fixed eigenspace of the Gm-action of the tangent space of BJ

at a. Since a ∈ Vw,0(k), the relative dimension of the affine fibration limw : B+
J,w → Vw,0 is

equal to dimT+
a (BJ) by Fact 5.1(iii), so it suffices to calculate dimT+

a (BJ). Note that Ta(BJ)

is Gm-equivariantly isomorphic to g/Lie(w · PJ)⊕ Lie(w · PJ). Since Lµ is in the centralizer

of µ(Gm), we see that Adµ(t) acts on Adw(gα) via multiplication by t⟨w·α,µ⟩, t ∈ Gm, α ∈ Φ

and acts trivially on Adw(h). Thus, Ta(BJ) is Gm-equivariantly isomorphic to g, which gives

dimT+
a (BJ) = (dimG− dimLµ)/2.
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6.4 Stratification of Quad.

We will now work towards obtaining a stratification of Quad by using the stratification

(18) of Bfin
J . Once we have such a stratification, Theorem 3.2 will be an easy consequence of

it as explained in Section 6.1. First, let us show that the Quad is contained in Bfin
J0

× Bfin
J∞ .

Lemma 6.3. Keep notations as above. We have Quad ⊂ Bfin
J0

× Bfin
J∞.

Proof. Note that it is enough to show that Quad is contained in the constructible subset

Bfin
J0
×Bfin

J∞ at the level of closed points. LetK be a finite extension of k. Let (P0, v0, P∞, v∞) ∈

Quad(K), then (P0, v0) ∈ BJ0(K) and (P∞, v∞) ∈ BJ∞(K). The lemma will follow if we show

limt→0 t · (Px, vx) exists in BJx , x = 0,∞.

Since G/PJx is a projective scheme, we get that limt→0 t·Px exists, x = 0,∞. By defintion

of Quad, g−-component (12) of vx is 0 and therefore limt→0 t ·vx exists and is equal to the g0-

component (12) of vx, x = 0,∞. Thus, limt→0 t · (P0, v0) exists in BJ0 and limt→0 t · (P∞, v∞)

exists in BJ∞ .

Recall WΠµ ,WJ0 ,WJ∞ , Lµ from Section 3.2. For w ∈ WΠµ\W/WJ0 , w
′ ∈ WΠµ\W/WJ∞ ,

recall Vw,0, Vw′,0, limw, limw′ from Section 6.3 and put

QuadGm

w,w′ := (Vw,0 × Vw′,0) ∩Quad.

Let Quad+w,w′ be the pullback of limw × limw′ : B+
J0,w

× B+
J∞,w′ −→ Vw,0 × Vw′,0 along

QuadGm

w,w′ → Vw,0 × Vw′,0, that is, we have the following cartesian square:

Quad+w,w′ B+
J0,w

× B+
J∞,w′

QuadGm

w,w′ Vw,0 × Vw′,0

limw×limw′

Let us denote the left vertical arrow in the above diagram again by limw × limw′ . Next,

we would like to show that the schemes Quad+w,w′ give a stratification of Quad, which is the

content of the next lemma.

Lemma 6.4. Keep notations as above. We have Quad+w,w′ ⊂ Quad.
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Proof. Note that it is enough to show that Quad+w,w′ is contained in Quad at the level of

closed points. Let K be a finite extension of k. Let (P0, v0, P∞, v∞) ∈ Quad+w,w′(K), then

we have limt→0 t · (P0, v0, P∞, v∞) ∈ QuadGm

w,w′(K). In particular, limt→0 t · vx exists in g and

is equal to the g0-component (12) of vx, x = 0,∞. Since for any v ∈ g, limt→0 t · v exists

in g if and only if the g−-component (12) of v is zero, the g−-components of v0 and v∞ are

zero. Moreover, since QuadGm

w,w′ is the closed subscheme of Quad consisting of quadruples

(P0, n, P∞, n) such that P0 ∈ Zw (resp. P∞ ∈ Zw′), n is a nilpotent element of g such that

n ∈ Lie(P0) and n ∈ Lie(P∞), we get that the g0-components (12) of v0 and v∞ are equal

and nilpotent. The lemma now follows from Remark 6.1.

The following lemma identifies the schemes QuadGm

w,w′ with the generalized Steinberg

varieties.

Lemma 6.5. Keep notations as above. Then the schemes QuadGm

w,w′ are isomorphic to the

generalized Steinberg varieties StLµ(Πµ ∩ w · J0,Πµ ∩ w′ · J∞), w ∈ DG
Πµ,J0

, w′ ∈ DG
Πµ,J∞.

Proof. Notice that QuadGm

w,w′ is the closed subscheme of Quad consisting of quadruples

(P0, n, P∞, n) such that P0 ∈ Zw (resp. P∞ ∈ Zw′), n is a nilpotent element of g such that

n ∈ Lie(P0) and n ∈ Lie(P∞) (note that the g+ and g−-components of n are 0 since Gm acts

trivially on QuadGm

w,w′). Thus we have

QuadGm

w,w′
∼= StLµ(Πµ ∩ w · J0,Πµ ∩ w′ · J∞), (21)

where the above isomorphism is given by (P0, n, P∞, n) 7→ (n, P0 ∩ Lµ, P∞ ∩ Lµ).

Next, we show that the generalized Steinberg varieties (see Section 3.1) are connected.

Lemma 6.6. Recall ΠH , J1, J2 and StH(J1, J2) from Section 3.1. Then StH(J1, J2) is con-

nected.

Proof. We show that StH(J1, J2) is geometrically connected, that is, StH(J1, J2)K is con-

nected where K is the algebraic closure of k. Note that natural projection StH(J1, J2)K →

StH(J1, J2) is surjective as surjective morphisms are preserved under base change [42, Lemma

29.9.4]. Thus we will have that StH(J1, J2) is connected.
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Since closed points of StH(J1, J2)K are dense in StH(J1, J2)K and the connected compo-

nents are closed, it suffices to show that all the closed points of StH(J1, J2)K are contained

in the same connected component. Let (n, P,Q) ∈ StH(J1, J2)(K). Consider the morphism

ϕ : A1
K → StH(J1, J2)K , t 7→ (t · n, P,Q).

Since A1
K is connected, the image of ϕ is connected. Therefore, (n, P,Q) and (0, P,Q) are

contained in the same connected component of StH(J1, J2)K . SinceH/PJ1×H/PJ2 is geomet-

rically connected (see [34, Proposition 5.2.4] and use the fact that quotient commutes with

field extensions), each closed point of StH(J1, J2)K is contained in the connected component

containing {0} ×K (H/PJ1)K ×K (H/PJ2)K . This finishes the proof of the lemma.

Thus by Lemma 6.3 and Lemma 6.4 we get a stratification of Quad by locally closed

subsets as:

Quad =
⊔

w∈WΠµ\W/WJ0

w′∈WΠµ\W/WJ∞

Quad+w,w′ (22)

and a decomposition of the fixed point locus QuadGm as:

QuadGm =
⊔

w∈WΠµ\W/WJ0

w′∈WΠµ\W/WJ∞

QuadGm

w,w′ ,

where QuadGm

w,w′ are the connected components (see Lemma 6.5 and Lemma 6.6) of QuadGm .

Moreover, we have retractions

limw × limw′ : Quad+w,w′ → QuadGm

w,w′ ,

which are affine fibrations.

Finally we calculate the relative dimension of the affine fibration limw × limw′ .

Corollary 6.6.1. The relative dimension of the affine fibration

limw × limw′ : Quad+w,w′ → QuadGm

w,w′

is equal to dimG− dimLµ.

Proof. Since the affine fibration limw × limw′ : Quad+w,w′ → QuadGm

w,w′ is obtained by base

change of the affine fibration limw × limw′ : B+
J0,w

× B+
J∞,w′ → Vw,0 × Vw′,0, the corollary

follows from Proposition 6.1.
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6.5 Completing the proof of Theorem 3.2.

Recall ev0,∞ defined in Lemma 6.1. For each w ∈ WΠµ\W/WJ0 , w
′ ∈ WΠµ\W/WJ∞ , put

T rip+w,w′ :=
(
ev0,∞

)−1(Quad+w,w′

)
.

Since Quad+w,w′ , w ∈ WΠµ\W/WJ0 , w
′ ∈ WΠµ\W/WJ∞ form a stratification of Quad, we get

a stratification of T rip by locally closed subsets as:

T rip =
⊔

w∈WΠµ\W/WJ0

w′∈WΠµ\W/WJ∞

T rip+w,w′ .

Now let
(
ev0,∞

)
w,w′ := ev0,∞|T ripµ(J0,J∞)+

w,w′
. Consider the morphism

(
limw × limw′

)
◦
(
ev0,∞

)
w,w′ : T rip+w,w′ → QuadGm

w,w′ .

Lemma 6.1 and Corollary 6.6.1 have the following consequence.

Lemma 6.7. The morphism
(
limw × limw′

)
◦
(
ev0,∞

)
w,w′ is an affine fibration of relative

dimension dim(Aut(Eµ))− dim(Lµ).

Proof. Since limw × limw′ is a trivial affine fibration (see Lemma 6.1) and
(
ev0,∞

)
w,w′ is

an affine fibration (see Corollary 6.6.1), their composition
(
limw × limw′

)
◦
(
ev0,∞

)
w,w′ is an

affine fibration.

Now let us calculate the required relative dimension. By Fact 3.1, we have

dim(Aut(Eµ))− dim(Lµ) = dim
( ∏

α∈Φ:⟨α,µ⟩>0

H0(P1,O(⟨α, µ⟩))
)
=

∑
⟨α,µ⟩>0

(
⟨α, µ⟩+ 1

)
.

As
(
ev0,∞

)
w,w′ is of relative dimension

∑
⟨α,µ⟩>0

(
⟨α, µ⟩−1

)
(see Lemma 6.1) and limw×limw′

is of relative dimesnsion dimG− dimLµ (see Corollary 6.6.1), we see that
(
limw × limw′

)
◦(

ev0,∞
)
w,w′ is of relative dimension

dimG− dimLµ +
∑

⟨α,µ⟩>0

(
⟨α, µ⟩ − 1

)
.

Now the lemma follows by noting that dimG− dimLµ = 2|{α ∈ Φ : ⟨α, µ⟩ > 0}|.

51



We define T ripGm

w,w′ to be the subscheme of T ripGm corresponding to QuadGm

w,w′ in (17).

Thus, Lemma 6.7 gives the required affine fibration in Theorem 3.2:

T rip+w,w′ → T ripGm

w,w′ .

This finishes the proof of Theorem 3.2.

6.5.1 Connection with calculation of volumes.

Definition. Let X be a groupoid having finitely many isomorphism classes of objects and

finite automorphism groups. We define the volume of the groupoid X as

[X] =
∑

ξ∈X/∼

1

#Aut(ξ)

where the sum is taken over the set of isomorphism classes of objects of X, and for an

isomorphism class of objects ξ, Aut(ξ) is the automorphism group of any representative of

ξ. In case X = X is a set, [X] is just the number of elements of X.

We need a simple lemma which compares volumes of groupoids:

Lemma 6.8. Let X and Y be two groupoids having finitely many isomorphism classes of

objects and finite automorphism groups and let ϕ : X → Y be a morphism such that ϕ is

surjective at the level of isomorphism classes of objects. Then

[X] =
∑

η∈Y/∼

[Fib(η)]

#Aut(η)

where Fib(η) is the groupoid defined as:

Ob(Fib(η)) = {(x, f) : x ∈ Ob(X), f : ϕ(x) → η}

and for (x, f), (x′, f ′) ∈ Ob(Fib(η)),

Mor((x, f), (x′, f ′)) = {g : x → x′ : f ′ ◦ ϕ(g) = f}.
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Proof. It is clear that the lemma can be reduced to the case when Y has a single isomorphism

class of objects, say η. Thus we have to prove∑
ξ∈X/∼

1

#Aut(ξ)
=

1

#Aut(η)

∑
ζ∈Fib(η)/∼

1

#Aut(ζ)
.

For each isomorphism class of object ξ ∈ X/ ∼, choose a representative xξ. Now let (x, f) ∈

Fib(η), then there is a unique ξ ∈ X/ ∼ such that (x, f) ∼= (xξ, f
′) for some f ′ : ϕ(x) → η.

Thus the required sum can be rewritten as∑
ξ∈X/∼

1

#Aut(ξ)
=

1

#Aut(η)

∑
ξ∈X/∼

∑
[(xξ,f)]∈Fib(η)/∼

1

#Aut([x, f ])
.

Thus its enough to prove

1

#Aut(ξ)
=

1

#Aut(η)

∑
[(xξ,f)]∈Fib(η)/∼

1

#Aut([x, f ])

for all ξ ∈ X/ ∼. Now for any xξ, we get the natural group morphism ϕxξ
: Aut(xξ) →

Aut(ϕ(xξ)). We have by definition that #Aut([(xξ, f)]) = ker(ϕxξ
).

Now fix xξ as above. Consider the action of ϕxξ
(Aut(xξ)) on Mor(ϕ(xξ), η) by precom-

posing. Then

#{[(xξ, f)] : [(xξ, f)] ∈ Fib(η)/ ∼} = ϕxξ
(Aut(xξ))\Mor(ϕ(xξ), η).

Thus we want to show

1

#Aut(xξ)
=

1

#Aut(η)
· 1

#ϕxξ
(Aut(xξ))\Mor(ϕ(xξ), η)

· 1

#ker(ϕxξ
)
.

The above identity holds by noting that size of the stabilizer of any f ∈ Mor(ϕ(xξ), η) equals

#ker(ϕxξ
).
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Consider the case when k = Fq. Define a nilpotent parabolic pair of type (G,P1, {0,∞})

to be a collection (E , P0, P∞,Ψ), where E is a principal G-bundle over P1, Px is a parabolic

structure on E at x, Ψ is a nilpotent section of ad(E) such that Ψ0 ∈ Lie(P0) and Ψ∞ ∈

Lie(P∞). We will denote the groupoid of nilpotent parabolic pairs by Pairnilp(G,P1, {0,∞}).

Then Pairnilp(G,P1, {0,∞}) decomposes into subgroupoids according to the type of parabolic

structures at 0 and ∞. We denote these subgroupoids by PairnilpJ0,J∞
(G,P1, {0,∞}), J0, J∞ ⊂

Π.

For µ ∈ X+(T ), J0, J∞ ⊂ Π, let Pairnilp,µJ0,J∞
(G,P1, {0,∞}) denote the subgroupoid of

PairnilpJ0,J∞
(G,P1, {0,∞}) such that the underlying principal G-bundle over P1 is isomorphic

to Eµ. Explicitly knowing |T ripµ(J0, J∞)| allows us to calculate the volume of the groupoid

Pairnilp,µJ0,J∞
(G,P1, {0,∞}). More concretely, by Lemma 6.8 we have

[Pairnilp,µJ0,J∞
(G,P1, {0,∞})] = |T ripµ(J0, J∞)|

|Aut(Eµ)|
,

where [X] denotes the volume of any groupoid X.

6.6 Proof of Corollary 3.2.4.

In this section, we will give the proof of Corollary 3.2.4. First we need the following

notation:

Notation. For any affine algebraic group H over Fq and a cocharacter µ of a maximal torus,

we will denote the centralizer of µ(Gm) in H by ZH(µ).

Now we will prove Corollary 3.2.4. We need a lemma:

Lemma 6.9. Keep notations as in Section 3.3. Then we have

[Lµ, Lµ] = [Lµ′ , Lµ′ ].

In particular, the root systems of Lµ and Lµ′ are isomorphic.
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Proof. We have Lµ = ZG(µ)
◦ and

Lµ′ = ZG′(µ′)◦ = (ZG(µ) ∩G′)◦ = (Lµ ∩G′)◦ (23)

Clearly by (23), we have [Lµ′ , Lµ′ ] ⊂ [Lµ, Lµ]. Now we show the other inclusion. Since

G′ = [G,G], we have [Lµ, Lµ] ⊂ G′. Thus we have [[Lµ, Lµ], [Lµ, Lµ]] ⊂ [G′, G′]. Since

derived group of any connected reductive group over Fq is perfect (see [8, Proposition 1.2.6]),

[[Lµ, Lµ], [Lµ, Lµ]] = [Lµ, Lµ] and hence [Lµ, Lµ] ⊂ [G′, G′]. Combining it with the fact that

[Lµ, Lµ] is connected, we get that

[Lµ, Lµ] ⊂ (Lµ ∩G′)◦

Now (23) gives us that [Lµ, Lµ] ⊂ Lµ′ and hence we have the other inclusion [Lµ, Lµ] ⊂

[Lµ′ , Lµ′ ]. This finishes the proof of Lemma 6.9.

We return to the proof of Corollary 3.2.4. By Lemma 6.9, root systems of Lµ and Lµ′ are

isomorphic, which gives us that [SpLµ ] = [SpLµ′ ] as the number of points of the generalized

Springer variety depend only on the root system of the underlying affine algebraic group (see

Theorem 3.1(i)), hence ∆Lµ([SpLµ ]) = ∆Lµ′
([SpLµ′

]) (see the definition of coproduct in 3.1).

Now Corollary 3.2.4 (a) follows from the equality dim(Aut(Eµ))−dim(Lµ) = dim(Aut(Eµ′))−

dim(Lµ′) (see Theorem 3.2 and Fact 3.1).

Now we give a proof of Corollary 3.2.4 (b). Keep notations as in Section 3.3. We

have u|Lµ1
: Lµ1 → Lµ2 is a flat surjective morphism (see [8, Corollary 2.1.9]). Morover,

u|Lµ1
: Lµ1 → Lµ2 is finite as the restriction of a finite morphism to closed subschemes is

again a finite morphism. Clearly, ker(u|Lµ1
) is central in Lµ1 as ker(u) is central in G1.

Hence, u|Lµ1
: Lµ1 → Lµ2 is a central isogeny. So we get that the root systems of Lµ1 and

Lµ2 are isomorphic (see [9, Proposition 3.4.1]), which gives us that [SpLµ1
] = [SpLµ2

] as the

number of points of the generalized Springer variety depend only on the root system of the

underlying affine algebraic group (see Theorem 3.1(i)), hence ∆Lµ1
([SpLµ ]) = ∆Lµ2

([SpLµ′
])

(see the definition of coproduct in 3.1). Now Corollary 3.2.4 (b) follows from the equality

dim(Aut(Eµ1))− dim(Lµ1) = dim(Aut(Eµ2))− dim(Lµ2) (see Theorem 3.2 and Fact 3.1).

This finishes the proof of Corollary 3.2.4 (b).
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7.0 Special case of vector bundles over P1.

In this chapter, we work over k = Fq and derive the Mellit’s result [29, Section 5.4] using

our method. Let us recall the notions of lambda rings, plethystic substitutions and plethystic

exponentials from [29, Section 2.1, Section 2.2].

7.1 Symmetric functions.

Fix a base ring R. Let f ∈ R[x1, . . . , xn]. We say that f is a symmetric polynomial if f

remains unchanged when the variables x1, . . . , xn are permuted, i.e,

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn), σ ∈ Sn.

We denote the ring of symmetric polynomials in the variables x1, . . . , xn with coefficients in

R by SymR[x1, . . . , xn]. Consider the morphism of R-algebras

πn : R[x1, . . . , xn] → R[x1, . . . , xn−1], f(x1, . . . , xn) 7→ f(x1, . . . , xn−1, 0) n ≥ 2.

Note that πn preserves symmetric polynomials, thus we get a direct system of the rings

of symmetric polynomials. We define the ring of symmetric functions in the sequence of

variables (x1, x2, . . .) with coefficients in R as the direct limit lim−→ SymR[x1, . . . , xn] and we

will denote it by SymR[X], where X = (x1, x2, . . .). In other words, a symmetric function

in X is a sequence (fn)n≥1 of symmetric polynomials, fn ∈ SymR[x1, . . . , xn] such that

πn(fn) = fn−1 for all n. Note that there is a well-defined notion of the degree of a symmetric

function since πn preserves the degrees of symmetric polynomials. We will denote the degree

d component of SymR[X] by Symd
R[X].

We will denote the ring of symmetric functions with coefficients in R that are symmetric

in the two sequences of variables X = (x1, x2, . . .) and Y = (y1, y2, . . .) by SymR[X, Y ]. We

have

SymR[X, Y ] ≃ SymR[X]⊗R SymR[Y ].
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We will denote the bidegree (d, d) component of SymR[X, Y ] by Symd
R[X, Y ].

Now let us give examples of symmetric functions, which will be used later in this chapter.

Example. For n ∈ N, consider the following symmetric functions:

hn(X) =
∑

i1≤...≤in

xi1 . . . xin and pn(X) =
∑
i

xn
i .

Let ν = (ν1, ν2, . . . , νl) be a finite sequence of positive integers. We define the following three

types of symmetric functions:

• Complete homogeneous functions: hν(X) =
∏l

i=1 hνi(X).

• Power sum functions: pν(X) =
∏l

i=1 pνi(X).

• Monomial symmetric functions: mν(X) =
∑

xν1
i1
. . . xνl

il
, where the sum is taken over all

distinct monomials of the form xν1
i1
. . . xνl

il
such that is ̸= it for s ̸= t.

We will need the following fact about SymR[X].

Fact 7.1. If Q ⊂ R, then SymR[X] is isomorphic to the polynomial ring R[p1, p2, . . .], given

by pn(X) 7→ pn, n ∈ N. In particular, {pλ : λ is a partition} forms an R-module basis of

SymR[X].

Definition. Let Λ be a ring such that Q ⊂ Λ. A lambda ring structure on Λ is a collection

of ring homomorphisms pn : Λ → Λ, n ∈ Z>0 satisfying:

1. p1(x) = x, x ∈ Λ and

2. pm(pn(x)) = pmn(x), m,n ∈ Z>0, x ∈ Λ.

In other words, giving a lambda ring structure on Λ is equivalent to giving a monoid ho-

momorphism Z>0 → EndRings(Λ). By a lambda ring, we will mean a ring together with a

lambda ring structure.

Remark 7.1. In the above defintion, we require Λ to contain Q because of the fact that

{pλ : λ is a partition} forms an R-basis of SymR[X] when R contains Q (Fact 7.1).

When our base ring R is itself a lambda ring, then we define a lambda ring structure

on SymR[X] as follows: note that our ring is freely generated as an R-algebra by pm(X)

since R ⊃ Q (Fact 7.1). Thus for each n ∈ Z>0, there is a unique homomorphism pn :
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SymR[X] → SymR[X] whose restriction to R is given by the lambda ring structure on R and

pn(pm(X)) = pnm(X) for all m ∈ Z>0. We define the lambda ring structure on SymR[X, Y ]

similarly.

The lambda ring structure that we consider on Q(q) is defined as:

pn : Q(q) → Q(q), n ∈ N

r 7→ r, q 7→ qn, r ∈ Q.

The lambda ring structure that we consider on Q[[q−1]] is defined as:

pn : Q[[q−1]] → Q[[q−1]], n ∈ N

r 7→ r, q−1 7→ q−n, r ∈ Q.

The lambda ring structure that we consider on Q[[q−1]][[t]] is defined as:

pn : Q[[q−1]][[t]] → Q[[q−1]][[t]], n ∈ N

r 7→ r, q−1 7→ q−n, t 7→ tn, r ∈ Q.

Note that Q(q)[[t]] is a sub lambda ring of Q[[q−1]][[t]], that is, the inclusion

Q(q)[[t]] ↪→ Q[[q−1]][[t]]

is equivariant with respect to the action of the monoid Z>0.

Definition. Let Λ be a lambda ring containing Q. Let F ∈ SymQ[X] and x ∈ Λ. We define

the plethystic action of F on x as follows: write F as a polynomial in power sum symmetric

functions, say F = f(p1, p2, . . .) for some f ∈ Q[p1, p2, . . .], we set

F [x] = f(p1(x), p2(x), . . .).

The plethystic action satisfies the following properties:

(FG)[x] = F [x]G[x], (F+G)[x] = F [x]+G[x], r[x] = r, F,G ∈ SymQ[X], r ∈ Q, x ∈ Λ.

For each x ∈ Λ, the plethystic action F 7→ F [x] gives a homomorphism of Q-algebras from

SymQ[X] to Λ.
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We will need the following lemma later:

Lemma 7.1. Let hn(X) ∈ SymQ(q)[X] be the complete homogeneous symmetric function.

Then we have hn[qA] = qnhn[A] for any A ∈ SymQ(q)[X].

Proof. Let A ∈ SymQ(q)[X]. Let us recall one of the Newton’s identity that expresses

complete homogeneous symmetric polynomials in terms of power sum functions:

hn(X) =
∑

m1,...,mn≥0:∑
imi=n

n∏
i=1

pi(X)mi

mi!imi
.

By the properties of the plethystic action mentioned above, we have

hn[qA] =
∑

m1,...,mn≥0:∑
imi=n

n∏
i=1

pmi
i

mi!imi
[qA] =

∑
m1,...,mn≥0:∑

imi=n

n∏
i=1

(pi[qA])
mi

mi!imi
=

∑
m1,...,mn≥0:∑

imi=n

n∏
i=1

qimi(pi[A])
mi

mi!imi

= qn
∑

m1,...,mn≥0:∑
imi=n

n∏
i=1

(pi[A])
mi

mi!imi
= qnhn[A].

Definition. Let R be a base ring such that Q ⊂ R. Let Λ be a topological lambda ring

containing R, that is, a lambda ring equipped with a topology such that pn : Λ → Λ is

continuous for all n ≥ 1. For x ∈ Λ, define Exp[x] as:

Exp[x] = exp

( ∞∑
n=1

pn[x]

n

)
provided that the right hand side converges.
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7.2 Counting vector bundles over P1 with nilpotent endomorphisms

preserving flags at 0 and ∞.

Let Ξn := {e1 − e2, . . . , en−1 − en} denote the set of simple roots of GLn relative to

the diagonal torus Tn and the Borel subgroup Bn consisting of upper-triangular matrices.

Consider the standard full flag E• = {Ej} in Fn
q . Let J ⊂ Ξn. Recall from Section 2.1.3

that PJ denotes the standard parabolic subgroup of GLn corresponding to the subset J .

Then PJ is the stabilizer in GLn of the flag obtained by removing from E• the terms Ej for

ej − ej+1 ∈ J . From now on, we identify P(Ξn) with the set of standard parabolic subgroups

of GLn via J 7→ PJ .

Let Πn denote the set of partitions of {1, · · · , n}. For any partition ν = (ν1 ≥ ν2 ≥ . . . ≥

νl) ∈ Πn, set

J(ν) := {ei − ei+1 : i ̸= ν1, ν1 + ν2, . . . , ν1 + ν2 + . . .+ νl = n, 1 ≤ i ≤ n− 1}.

This gives a inclusion from Πn to P(Ξn), ν 7→ PJ(ν), where the image consists of stabilizers

in GLn of standard partial flags with jumps given by partitions. If we compose this map

with the map that associates to each standard parabolic subgroup its Levi factor, then we

get a bijection between the set of partitions of n and GLn(Fq)-conjugacy classes of Levi

Fq-subgroups of GLn. Define µ(ν) : Gm → Tn as:

t 7→ diag(

ν1 times︷ ︸︸ ︷
tl, . . . , tl, . . . ,

νl times︷ ︸︸ ︷
t, . . . , t).

Recall Lµ from Section 3.2. We set Lν := Lµ(ν). Notice that we have Lν
∼= GLν1 × . . .×GLνl

(see Section 3.2).

Before proceeding, we make the following convention.

Convention 7.1. We identify symmetric functions of degree n with the associate invariant

functions on P(Ξn) by identifying mλ with δ[J(λ)], λ ∈ Πn.
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Let µ ∈ X+(Tn). Recall from Section 3.2 that [T ripµ] is the function on P(Ξn)×P(Ξn)

that counts the number of Fq-points of T ripµ(J0, J∞), (J0, J∞) ∈ P(Ξn) × P(Ξn). Since

[StLµ ] is an associate invariant function (Lemma 4.5) and πµ = ∆GLn(Πµ, ·) (Remark 3.1(iii)),

(πµ ⊗ πµ)([StLµ ]) is associate invariant by Corollary 4.5.1. Now using Corollary 3.2.1, we

consider [T ripµ] as a symmetric function (see Convention 7.1). Thus we can write [T ripµ]

as:

[T ripµ] =
∑

(ν0,ν∞)∈Πn×Πn

|T ripµ(J(ν
0), J(ν∞))|mν0(X)mν∞(Y ).

Notice that [T ripµ] ∈ SymQ(q)[X, Y ] by Corollary 3.2.2. Let µ ∈ X+(Tn), define the sym-

metric function Cµ[X, Y ; q] as:

Cµ[X, Y ; q] =
[T ripµ]

|Aut(Eµ)|

and consider

Ω≤0
n,(0,∞)(P

1)[X, Y ; q, t] =
∑

µ∈X+(Tn)∗

t− deg(Eµ)Cµ[X, Y ; q],

where X+(Tn)
∗ consists of cocharaters µ : Gm → Tn of the form

t 7→ diag(

µ1 times︷ ︸︸ ︷
t−d1 , . . . , t−d1 , . . . ,

µm times︷ ︸︸ ︷
t−dm , . . . , t−dm), 0 ≤ d1 < . . . < dm,

m∑
i=1

µi = n, µi > 0∀i.

Explicitly, Ω≤0
n,(0,∞)(P

1)[X, Y ; q, t] is equal to

∑
µ∈X+(Tn)∗

t− deg(Eµ)
∑

(ν0,ν∞)∈Πn×Πn

|T ripµ(J(ν
0), J(ν∞))|

|Aut(Eµ)|
mν0(X)mν∞(Y ).

Notice that Ω≤0
n,(0,∞)(P

1)[X, Y ; q, t] defined above is the same as the one considered in [29,

Section 5.4]. Now using our techniques, we would like to re-derive the following result of

Mellit [29, Section 5.4].

Proposition 7.1. The following holds as formal series in t with coefficients in the completion

of SymQ(q)[X, Y ]:

∞∑
n=0

Ω≤0
n,(0,∞)(P

1)[X, Y ; t] = Exp

[
XY

(q − 1)(1− t)

]
, where XY =

∑
i,j

xiyj.

The proof of Proposition 7.1 will be given in Section 7.2.2.
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7.2.1 Reproducing kernel.

Let us briefly mention how the plethystic exponential occuring in the right hand side of

Proposition 7.1 is used in the proof of [29, Theorem 5.5].

Notation. We will denote the set of all partions by P . For any λ ∈ P , we will denote the

size of the partition λ by |λ|.

Let us consider SymR[X] where R ⊃ Q. Then the Hall scalar product on SymR[X] is

defined as: (
hµ(X),mλ(X)

)
= δλ,µ,

where λ, µ ∈ P .

Let (αλ(X))λ∈P be a basis of SymR[X] such that deg(αλ(X)) = |λ| and let (βλ(X))λ∈P

be the dual basis. We define the reproducing kernel to be the infinite sum
∑

λ∈P αλ(X)βλ(X)

(this makes sense in the completion of SymR[X, Y ]). Then we have

Exp[XY ] =
∑
λ∈P

αλ(X)βλ(X).

In particular, the infinite sum is independent of the basis (αλ(X))λ∈P . One of the main

properties of the reproducing kernel is the following: if (α′
λ(X))λ∈P and (β′

λ(X)) are such

that deg(α′
λ(X)) = |λ| = deg(β′

λ(X)) and

Exp[XY ] =
∑
λ∈P

α′
λ(X)β′

λ(X),

then (α′
λ(X))λ∈P and (β′

λ(X)) are dual basis of SymR[X, Y ].

Now let us consider the ring SymQ(q,t)[X]. Define a q, t-scalar product on SymQ(q,t)[X]

as: 〈
f(X), g(X)

〉
q,t

=
(
f
[
X
]
, g
[
(q − 1)(1− t)X

])
.

Definition. The modified Macdonald polynomials H̃λ

[
X; q, t

]
∈ SymQ(q,t)[X], λ ∈ P are

the unique symmetric functions defined by the following three properties:

• orthogonality:
〈
H̃λ

[
X; q, t

]
, H̃µ

[
X; q, t

]〉
q,t

= 0 if λ ̸= µ.

• normalization: H̃λ

[
1
]
= 1.
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• upper-triangularity: H̃λ

[
(t − 1)X

]
∈ M≤λ, where M≤λ is the span of the monomial

symmetric functions mµ(X), µ ≤ λ.

Mellit in the proof of [29, Theorem 5.5] used the above property of the reproducing

kernel to identify certain unknown functions (namely, Fλ,q[X; t] in [29, Theorem 5.6]) with

the modified Macdonald polynomials. We refer the reader to [29] for details.

7.2.2 Proof of Proposition 7.1.

Recall from Section 3.1 that [SpGLn ] is the function on P(Ξn) that counts the number of

Fq-points of SpGLn(J), J ∈ P(Ξn). Using Corollary 4.5.1 and Convention 7.1, we consider

[SpGLn ] as a symmetric function.

As a first step in proving Proposition 7.1, we prove the following:

Proposition 7.2. The following holds in SymQ(q)[X]:

hn

[
X

q − 1

]
=

1

|GLn|
[SpGLn ].

Proof. By (5), the desired equality can be rewritten as:

hn

[
X

q − 1

]
=
∑
ν∈Πn

qdim(Lν)

qn|Lν |
mν(X). (24)

We have the following idenitity(see [28, Chapter 4, Section 2]) in SymQ(q)[X, Y ]:

hn(XY ) =
∑
ν∈Πn

mν(X)hν(Y ). (25)

Then the specialization xi 7→ xi, yj 7→ q−(j−1), i, j ∈ N gives a homomorphism of lambda

rings SymQ(q)[X, Y ] → SymQ[[q−1]][X]. Thus this specialization commutes with the plethystic

action and we have

hn

[
X

(
1 +

1

q
+ · · · 1

qj
+ · · ·

)]
=
∑
ν∈Πn

mν(X)hν

[
1 +

1

q
+ · · · 1

qj
+ · · ·

]
in SymQ[[q−1]][X]

hn

[
qX

q − 1

]
=
∑
ν∈Πn

mν(X)hν

[
q

q − 1

]
in SymQ[[q−1]][X].

Since the terms of the above identity lie in SymQ(q)[X], the equality holds in SymQ(q)[X].
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Since hν [qA] = q|ν|hν [A] for any A ∈ SymQ(q)[X] (see Lemma 7.1), we get

hn

[
X

q − 1

]
=
∑
ν∈Πn

mν(X)hν

[
1

q − 1

]
. (26)

Now we need to calculate hν

[
1

q−1

]
, this follows from the following lemma:

Lemma 7.2. The following holds in Q(q):

hn

[
1

1− q

]
=

1

(1− q)(1− q2) · · · (1− qn)
.

Proof. Let H(w) :=
∑

r≥0 hr(X)wr ∈ (SymQ(q)[X])[[w]] be the generating function for the

homogeneous symmetric functions and let P (w) :=
∑

r≥1 pr(X)wr−1 ∈ (SymQ(q)[X])[[w]] be

the generating function for the power sum symmetric functions. Then we have the following

well-known identity in (SymQ(q)[X])[[w]]:

H(w) = exp

(∫
P (w)dw

)
.

Now,

P

[
1

1− q

]
=
∑
r≥1

pr

[
1

1− q

]
wr−1 =

∑
r≥1

1

1− qr
wr−1

=
∑
r≥1

wr−1

(∑
m≥0

(qr)m
)

=
∑
m≥0

qm

1− wqm
. (27)

By (27) we have

H

[
1

1− q

]
= exp

(∫
P

[
1

1− q

]
dw

)
= exp

(∫ ∑
m≥0

qm

1− wqm
dw

)
=
∏
m≥0

1

1− wqm
.

Now the lemma follows from [28, Chapter I, Section 2, Example 4].
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We return to the proof of Proposition 7.2. The specialization q 7→ 1/q, xi 7→ xi, i ∈ N

gives an automorphism of lambda rings SymQ(q)[X] → SymQ(q)[X]. Thus, this specialization

commutes with the plethystic action on SymQ(q)[X] and we have

hn

[
1

1− 1
q

]
=

1

(1− 1
q
)(1− 1

q2
) · · · (1− 1

qn
)
=

qq2 · · · qn

(q − 1)(q2 − 1) · · · (qn − 1)

Since hn[qA] = qnhn[A] for any A ∈ SymQ(q)[X] (see Lemma 7.1), we get

hn

[
1

q − 1

]
=

1

qn
qq2 · · · qn

(q − 1)(q2 − 1) · · · (qn − 1)
.

Now (26) gives

hn

[
X

q − 1

]
=
∑
ν∈Πn

mν(X)
k∏

i=1

hνi

[
1

q − 1

]
=
∑
ν∈Πn

mν(X)
1

qn

∏k
i=1 qq

2 · · · qνi∏k
i=1(q − 1)(q2 − 1) · · · (qνi − 1)

.

(28)

The coefficient of mν(X) in equation (28) is equal to

1

qn

∏k
i=1(qq

2 · · · qνi)2∏k
i=1 q

νi(qνi − qνi−1) · · · (qνi − 1)
=

q
∑

ν2i q
∑

νi

q2n
∏k

i=1 |GLνi(Fq)|
=

1

qn
q
∑

ν2i∏k
i=1 |GLνi(Fq)|

.

Since Lν
∼= GLν1 × . . .×GLνl , Proposition 7.2 follows.

Next, consider one of the two standard coproducts on symmetric functions:

∆n : Symn
Z[X] → Symn

Z[X]⊗ Symn
Z[Y ] = Symn

Z[X, Y ], f(X) 7→ f(XY ).

Let ∆′
GLn

denote the restriction of ∆GLn to the associate invariant functions. We would like

to show that ∆n agrees with ∆′
GLn

by identifying symmetric functions of degree n with the

associate invariant functions on P(Ξn) (see Convention 7.1). First we need a notation.

Notation. For any sequence of positive integers α = (α1, . . . , αm) such that
∑m

j=1 αj = n,

we will denote the subgroup Sα1 × . . .× Sαm of Sn by Sα.

We have the following proposition.

Proposition 7.3. Keep notations as above. Then we have ∆′
GLn

= ∆n.

65



Proof. Since mν , ν ∈ Πn form a basis of Symn
Z[X], it is enough to check that ∆′

GLn
agrees

with ∆n on this basis. We re-write the conclusion of Lemma 4.5 for GLn. Let ν be a partition

of n. It gives an equivalence relation ∼ν on {1, . . . , n}, where i ∼ν j if and only if there

exists a t such that ν1+ . . .+ νt ≤ i, j < ν1+ . . .+ νt+1. Note that Sn acts on {1, . . . , n} and

thus on the equivalence relations. For an equivalence relation ∼ on {1, . . . , n}, we will write

Part(∼) ∈ Πn for the corresponding partition of n, that is, the ordered sequence of sizes of

equivalence classes. By Lemma 4.5, we have

∆′
GLn

(mν) =
∑

λ,µ∈Πn

nλ,µ
ν mλ ⊗mµ,

where

nλ,µ
ν =

∣∣{w ∈ Sλ\Sn/Sµ : Part(∼λ ∩w(∼µ)) = ν}
∣∣.

Thus we have

nλ,µ
ν =

∑
w∈Sn :

Part(∼λ∩w(∼µ))=ν

|w−1Sλw ∩ Sµ|
|Sµ||Sλ|

. (29)

Now consider the coproduct ∆n. We have

∆n(mν) =
∑

[(i1,j1),...,(in,jn)]

(Xi1Yj1) . . . (XinYjn)

where the sum is over all multisets [(it, jt)], where the multiplicities of elements are given by

ν.

The group Sn is acting naturally on length n sequences. Let (µ) be the standard sequence

1, . . . , 1︸ ︷︷ ︸
µ1 times

, 2, . . . , 2︸ ︷︷ ︸
µ2 times

, . . . .

In ∆n(mν), X
λY µ occurs as:∑

j1,...,jn

1

|orbit of Sλ on j1, . . . , jn|
(X1Yj1 . . . X1Yjλ1

)(X2Yjλ1+1
. . . X2Yjλ2

) . . . ,

where the summation is over all sequences j1, . . . , jn such that [j1, . . . , jn] = [(µ)] and

Part(∼λ ∩ ∼j) = ν, where ∼j denotes the equivalence relation t ∼j s iff jt = js. Let
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ñλ,µ
ν denote the coefficient of mλ⊗mµ in ∆n(mν). The condition [j1, . . . , jn] = [(µ)] is equiv-

alent to the existence of w ∈ Sn such that w · (µ) = (j1, . . . , jn), in which case w · (∼µ) =∼j.

Since there are exactly |Sµ| such w, we get

ñλ,µ
ν =

∑
w∈Sn :

Part(∼λ∩w(∼µ))=ν

|w−1Sλw ∩ Sµ|
|Sµ||Sλ|

,

which agrees with (29). This finshes the proof of Proposition 7.3.

Recall the vector bundle E of rank n over P1 in [29, Section 5.4], which is defined as:

E = O(−d1)
µ1 ⊕ ...⊕O(−dm)

µm , 0 ≤ d1 < . . . ≤ dm, µi > 0, 1 ≤ i ≤ m,
m∑
i=1

µi = n.

Let µ : Gm → Tn be the cocharacter of the form

t 7→ diag(

µ1 times︷ ︸︸ ︷
t−d1 , . . . , t−d1 , . . . ,

µm times︷ ︸︸ ︷
t−dm , . . . , t−dm), 0 ≤ d1 < . . . < dm,

m∑
i=1

µi = n, µi > 0∀i.

Then we have µ ∈ X+(Tn) and we get that E = Eµ (see Section 2.2).

Let us write µ = (µ̃1, . . . µ̃m), where µ̃k : Gm → Tµk
, 1 ≤ k ≤ m is the cocharacter

t 7→ diag(

µk times︷ ︸︸ ︷
t−dk , . . . , t−dk).

We have µ̃k ∈ X+(Tµk
). The following is a key factorization result, which is a corollary of

Theorem 3.2:

Corollary 7.2.1. For the vector bundle E over P1, we have

Cµ[X, Y ; q] =
m∏
k=1

Cµ̃k
[X, Y ; q].

Proof. Let fk be an associate invariant function on P(Ξµk
), where Ξµk

is the set of simple

roots of GLµk
, 1 ≤ k ≤ m. According to our Convention 7.1, fk is viewed as an element

of Symµk

Z [X]. However, we can also view fk as a symmetric polynomial f ′
k in the variables

xµ1+...+µk−1+1, . . . , xµ1+...+µk
. Recall the map πµ defined in Section 3.2. In the case of GLn,

this map relates products for the two different interpretations of the associate invariant

functions fk, 1 ≤ k ≤ m in the following way:
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Lemma 7.3. Keep notations as above. Then

f1 . . . fk = πµ(f
′
1 . . . f

′
k).

Proof. Note that in the case of GLn the map πµ is the symmetrization map.

We return to the proof of Corollary 7.2.1. Recall from Section 3.1 that [StGLµk
] is

the function on P(Ξµk
) × P(Ξµk

) that counts the number of Fq-points of StGLµk
(J1, J2),

(J1, J2) ∈ P(Ξµk
) × P(Ξµk

). Using Corollary 4.5.1, we consider [StGLµk
] as a symmetric

function (see Convention 7.1). We can also view [StGLµk
] as a symmetric function [StGLµk

]′

in the variables xµ1+...+µk−1+1, . . . , xµ1+...+µk
. We have

Cµ[X, Y ; q] = qdim(Aut(Eµ))−dim(Lµ)
(πµ ⊗ πµ)

(
[StLµ ]

)
|Aut(Eµ)|

= (πµ ⊗ πµ)
(
[StLµ ]

)/∏
k

|GLµk
|,

where the first equality follows from Corollary 3.2.1 and the second equality follows from

Fact 3.1. Now by Lemma 4.6, we get

Cµ[X, Y ; q] = (πµ ⊗ πµ)
(∏

k

[StGLµk
]′
)/∏

k

|GLµk
|.

Using Lemma 7.3 in each variable, we get

(πµ ⊗ πµ)
(∏

k

[StGLµk
]′
)/∏

k

|GLµk
| =

∏
k

[StGLµk
]/|GLµk

| =
∏
k

Cµ̃k
[X, Y ; q],

where we used Corollary 3.2.3 for the second equality. This finishes the proof of Corollary

7.2.1.

Let us illustrate the Corollary 7.2.1 with the following example.

68



Example. Consider the rank 2 vector bundle E := O ⊕ O(−1) over P1. Let µ ∈ X+(T2)
∗

be the following cocharacter

t 7→ diag(1, t−1),

here µ1 = µ2 = 1 and d1 = 0, d2 = 1. The cocharacters µ̃1, µ̃2 : Gm → Gm are t 7→ 1 and t 7→

t−1 respectively. Then E ≃ Eµ, Lµ ≃ Gm ×Gm and we have that Cµ̃1 [X, Y ; q]×Cµ̃2 [X, Y ; q]

is equal to (
|T ripµ̃1(∅, ∅)|
|Aut(Eµ̃1)|

m(1)(X)m(1)(Y )

)(
|T ripµ̃2(∅, ∅)|
|Aut(Eµ̃2)|

m(1)(X)m(1)(Y )

)

=

(
1

q − 1

(∑
i

xi

)(∑
j

yj

))(
1

q − 1

(∑
i

xi

)(∑
j

yj

))
=

1

(q − 1)2

(∑
i

xi

)2(∑
j

yj

)2

.

On the other hand,

Cµ[X, Y ; q] =
∑

(ν0,ν∞)∈Π2×Π2

|T ripµ(J(ν
0), J(ν∞))|

|Aut(Eµ)|
mν0(X)mν∞(Y )

=
|T ripµ(∅, ∅)|
|Aut(Eµ)|

m(1,1)[X]m(1,1)[Y ] +
|T ripµ(∅, {e1 − e2})|

|Aut(Eµ)|
m(1,1)[X]m(2)[Y ]

+
|T ripµ({e1 − e2}, ∅)|

|Aut(Eµ)|
m(2)[X]m(1,1)[Y ] +

|T ripµ({e1 − e2}, {e1 − e2})|
|Aut(Eµ)|

m(2)[X]m(2)[Y ]

=
4q2

q2(q − 1)2

(∑
i<j

xixj

)(∑
i′<j′

yi′yj′

)
+

2q2

q2(q − 1)2

(∑
i<j

xixj

)(∑
i′
y2i′

)
+

2q2

q2(q − 1)2

(∑
i′
x2
i′

)(∑
i′<j′

yi′yj′

)
+

q2

q2(q − 1)2

(∑
i
x2
i

)(∑
i′
y2i′

)
.

Thus, we get

Cµ[X, Y ; q] = Cµ̃1 [X, Y ; q]× Cµ̃2 [X, Y ; q].

We have the following corollary.

Corollary 7.3.1. Keep notations as in Corollary 7.2.1. Then

Cµ[X, Y ; q] =
m∏
k=1

hµk

[
XY

q − 1

]
.
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Proof. By Corollary 7.2.1, we have

Cµ[X, Y ; q] =
m∏
k=1

Cµ̃k
[X, Y ; q] =

m∏
k=1

[StGLµk
]

|GLµk
|
=

m∏
k=1

∆GLµk

(
[SpGLµk

]
)

|GLµk
|

,

where the second equality follows from Corollary 3.2.3 and the last equality follows from

Theorem 3.1 (ii). By Proposition 7.3, we have

Cµ[X, Y ; q] =
m∏
k=1

∆µk
(
[SpGLµk

]
)

|GLµk
|

=
m∏
k=1

hµk

[
XY

q − 1

]
,

where the second equality follows from Proposition 7.2.

Now we are ready to prove Proposition 7.1. We have

∞∑
n=0

Ω≤0
n,(0,∞)(P

1)[X, Y ; q, t] =
∞∑
n=0

∑
µ∈X+(Tn)∗

t− deg(Eµ)Cµ[X, Y ; q]

=
∞∑
n=0

∑
µ=(µ1,...,µm),

d=(0≤d1<d2<...<dm):∑
µk=n

t
∑m

k=1 dkµkhµ

[
XY

q − 1

]
,

where the second equality follows from Corollary 7.3.1. The above is equal to

∞∏
d=0

∞∑
k=0

tdkhk

[
XY

q − 1

]
=

∞∏
d=0

Exp

[
tdXY

q − 1

]
= Exp

[
XY

q − 1

∞∑
d=0

td

]
= Exp

[
XY

(q − 1)(1− t)

]
.

This finishes the proof of Proposition 7.1.
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