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Abstract 

Quantum Thermal Transport in Disordered Media using Atomistic Simulation and 

Machine Learning 

Amirreza Hashemi, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

Topological disorder provides tremendous opportunities to design and manipulate solid 

materials due to added degrees of freedom to the atomistic structures. Disorder directly impacts 

electric, magnetic, thermal, electrical and mechanical properties. In many disordered materials, the 

engineering electronic properties are interlocked on understanding the relationship between the 

topological disorder and thermal transport. However, this requires a multidisciplinary approach 

that combines the structural and transport properties.  

In the first phase of this thesis, we focus on thermal transport in the amorphous silicon 

structure. Several recent experimental and computational studies show that the thermal 

conductivity of amorphous silicon varies with sample size. This suggests that phonon-like 

propagating vibrational modes carry a significant amount of heat in amorphous silicon. In this 

work, we show the dependence of the propagon thermal conductivity to the structural medium-

range order (MRO) which has been uncorroborated in previous studies. The results indicate that 

the structures with MRO show significantly larger propagon thermal conductivity than the 

structures without MRO. As the extent of MRO depends on the material preparation method, our 

study suggests that the thermal conductivity of amorphous Si also should depend on the material 

preparation methods.  

We also tackled quantum thermal transport across grain boundaries in graphene. For 

disordered structures like GBs, developing a high-fidelity machine learning interatomic potential 

(MLIP) requires a large training dataset due to the variation of GBs and large configurational 



 v 

space. In this work, we present an efficient approach based on the small set of GBs to develop 

MLIPs while covering the entire configurational space. The simulation results unveil the interplay 

of dislocation density with out-of-plane buckling. We revealed the influence of GB buckling on 

the scattering of flexural modes. Furthermore, we lay the foundation to expand the current 

framework to mode resolved atomistic Green’s function in order to obtain a full phonon scattering 

matrix.   
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1.0 Introduction 

The continuous increase of thermal loads on the devices and materials has brought thermal 

transport studies into the forefront of the engineering process. The demands even seem to be 

increasing thanks to the new frontier technologies on semiconductors, information technology, 5G, 

and quantum computing [1]. Thermal transport in many of these applications is predominantly 

conductive and according to Fourier’s law, conductive thermal transport is proportional to thermal 

conductivity which is a second-order tensor [2]. Therefore, the thermal conductivity values of the 

materials are key to engineering and designing new devices.  

However, unlike the electrical conductivity, the range of thermal conductivity values of 

dense solids at room temperature is between 1 W/m-K (amorphous materials) to 2300 W/m-K 

(diamond) [3] which puts some constraints on the engineering process. One solution to ease these 

constraints, aside from discovering new materials with high and low thermal conductivity, is to 

tune the structure and material processing. Another key parameter in the thermal transport of solid 

materials is the mean free path (MFP) which is defined as the extent to which a phonon transports 

in space. The range of MFP can vary from several nanometers to micrometers [2]. Both thermal 

conductivity and MFP are size-dependent parameters and upon the sample size. That means we 

should deal with these parameters vigilantly as the size of the electrical device and the technology 

application is inclined to routinely become smaller. In recent years, a good understanding of 

thermal conductivity value and MFP has been obtained for crystalline materials. Several 

experimental works using ultrafast lasers measured thermal conductivities, also theoretical and 

simulation works have demonstrated good agreements with experimental results for a large 

number of crystalline materials [4].  
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However, thermal transport in disordered media has many open questions for a variety of 

reasons including difficulty with consistent material processing, the lack of full understanding of 

how the disorder affects the scattering process, and a large number of involved structural-

dependent variables to the thermal transport. This issue is the main motivation for our current 

research. 

In this thesis, we discuss a two-phase study on thermal transport in disordered media. In 

the first phase, we discuss the dependence of phonon-like propagating vibrational modes 

(propagons) thermal conductivity on medium-range order (MRO) which is defined as 10 to 20 Å 

in amorphous silicon (a-Si) structure. Several recent experimental and computational studies show 

that the thermal conductivity of a-Si varies with sample size. [5-8] This suggests that propagons 

carry a significant amount of heat in a-Si. The previous computational studies used the continuous 

random network (CRN) atomistic structure [9, 10] that represents an ideal random structure 

without medium- and long-range orders.  

However, recent spectroscopy results [11, 12] reveal that the actual atomistic structure of 

a-Si contains MRO that the CRN structure does not. Here, we show the dependence of the 

propagon thermal conductivity on the MRO which has not been discussed in the previous studies. 

We compare the extent of MRO and the propagon thermal conductivity in several model 

amorphous Si structures using simulated fluctuation electron microscopy, dihedral angle 

distribution, and molecular dynamics simulation. We use empirical potential (Tersoff) and 

molecular dynamics simulation to calculate the thermal conductivity of a-Si. We calculate total 

thermal conductivity using the Green-Kubo approach and Allen-Feldman thermal conductivity of 

two sets of structures with and without MRO. Two sets of structures have the same short-range 

order while one includes MRO and the other does not. We estimate the propagon thermal 
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conductivity values by subtracting Allen-Feldman thermal conductivity from total thermal 

conductivity. The results indicate that the structures with MRO show significantly larger propagon 

thermal conductivity (over 50 %) than the structures without MRO. We also provide structural 

factor analysis and lifetime calculation with normal mode decomposition. As the extent of MRO 

depends on the material preparation methods, our study suggests that the thermal conductivity of 

amorphous Si also should depend on the material preparation method [13]. 

In the second phase, we discuss a simulation framework to study quantum thermal transport 

across grain boundaries of graphene. The grain boundary structures are incredibly important in the 

design of polycrystalline materials for applications including energy storage, electronic systems, 

and sensors. However, thermal transport through grain boundaries with the inclusion of structural 

differences and bonding strengths has not been studied in-depth and with high accuracy. For the 

grain boundaries, the experimental works are limited and the thermal conductance values are 

varied significantly [14]. Analytical models to calculate the transmission function such as the 

acoustic mismatch model [15] and diffusive mismatch model [16, 17] fail to include the structural 

differences and bonding strengths. [18, 19] In terms of simulations, molecular dynamic simulations 

are mostly done in combination with wave-packet simulation [14, 20, 21] to find spectral 

transmission function; these simulations are expensive and the spectral range of calculation is 

limited. Another set of simulations [22-24] was done using Green’s function where a few numbers 

of grain boundary structures were studied for graphene.  

To the best of our knowledge, the past works are limited to the use of empirical potentials 

and the number of grain boundary structures do not include all possible structural differences. In 

the current research, we studied graphene GB structures with the full inclusion of the structural 

and bonding strength information using first principle level accuracy.The steps for the simulation 
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framework are a) machine learning interatomic potential which is trained by first-principle 

calculations b) calculation of the transmission function of grain boundary structures using quantum 

field theory approach known as atomistic Green’s function (AGF) c) develop the mode resolved 

AGF that provides polarization resolved transmission information. AGF is designed to solve the 

non-periodic dynamical system with Hamiltonian matrices of interatomic force constants, 

therefore, we employ the trained machine learning-based potential into the second step to calculate 

the transmission function using AGF. To calculate the thermal transport, we model the grain 

boundary as an interfacial junction with two crystalline structures on the sides. Under the 

assumption of ballistic transport, we use the Landauer formula to calculate the thermal 

conductance and Kapitza resistance in interfacial junctions. We further show how the AGF is 

combined with the mode matching approach to calculate the mode resolved transmission 

properties of the non-periodic system. We show the validation of the mode resolved AGF for the 

perfect graphene structure. 

1.1 . Contributions 

In Chapter 2, we simulated fluctuation electron microscopy and analyzed dihedral angle 

distribution to distinguish the amorphous structures with and without MRO. We calculated the 

thermal conductivity of the amorphous structures using the Green-Kubo approach and the Allen-

Feldman approach. Then we show the dynamical structure factor as evidence of the larger 

propagon contribution of structures with MRO. We implemented modal analysis using normal 

mode decomposition to confirm our proposition for the dependence of propagating vibrational 

modes on the MRO. 
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In Chapter 3, we review the previous conventional methodologies which are used in the 

simulation framework from structure generation to interfacial thermal conductance calculation. 

We introduce the method to generate the grain boundary structures of graphene. We show how 

machine learning potential is trained from the first principle dataset. Finally, we provide a detailed 

description of the Landauer formula, Green’s function, and AGF. Also, we discuss the physical 

interpretation of AGF simulation. 

In Chapter 4, we discuss ab initio phonon transport across GBs of graphene using Machine 

Learning Interatomic Potential (MLIP) based on a small dataset. We show a systematic approach 

based on the dissimilarity calculations of the local atomic environment to find the best 

representatives for the training of MLIPs. We provide the details of the training process and show 

the success of the calculations for MLIPs based on the empirical potential and ab initio data. Using 

AGF and MLIPs, we present the transmission function and transport properties of graphene GBs.  

In Chapter 5, we discuss the details of the mode resolved AGF approach based on our 

understanding of the original mode matching approach, Bloch theorem, and Bloch wave 

representation, and the connection between the Bloch waves and transmission functions. We 

provide the detailed derivations of the Bloch equation and we discuss our modifications that 

enhance the numerical simulations of mode resolved AGF for large atomistic structures. Finally, 

we show the verification of the in-house code for perfect graphene and large atomistic structure. 

In Chapter 6, we conclude the thesis research and present the possible future directions. 

This thesis results in the following publications: 

1. One published paper in the Journal of Applied Physics as a first author which 

discusses the research on a-Si. I conducted numerical simulations and analyzed the 

simulation results. The details of this paper are presented in chapter 2. [13] 
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2. One published paper as a co-author discusses the MLIP for crystalline Si and 

crystalline Si with vacancies. I helped with the implementation of the machine 

learning approach. [25] 

3. One unpublished paper as a first author paper (under review) discusses the quantum 

thermal transport in graphene GBs. I assembled and conducted a simulation 

framework including the development of the necessary codes and analyzing the 

final results. The details of this paper are presented in chapters 3 and 4. [26] 
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2.0 Dependence of Propagon Thermal Conductivity on Medium-range Order in 

Amorphous Si 

2.1 Background 

Amorphous silicon (a-Si) is widely used in many applications, such as thin film transistors, 

active matrix displays, image sensor arrays, multi-junction solar cells, and multilayer color 

detectors. Effective thermal management is one of the key challenges in these applications, and 

thus it is necessary to understand thermal transport in a-Si. [27] Although the thermal conductivity 

of amorphous materials usually has a very weak classical size effect, recent studies showed that 

the thermal conductivity of a-Si largely depends on the sample size. [6-8, 28] The size dependence 

of the thermal conductivity in a-Si has an important implication on the thermal management of a 

broad range of applications, particularly where the characteristic length is in the sub-micrometer 

scale. [29]  

Thermal transport in non-metallic solids is attributed to atomic vibrations. The vibrational 

eigenmodes in amorphous materials are mainly divided into two groups: propagating and non-

propagating modes. The propagating modes have longer wavelengths than the non-propagating 

modes as amorphous materials at a sufficiently large length scale can be considered a nearly 

homogenous medium. For a-Si, the vibrational eigenmodes with wavelengths longer than 1.5 nm 

(or frequencies of less than 2 THz) are known to exhibit propagating characteristics. [9, 30] The 

propagating vibrational modes, called propagons, resemble phonons in crystalline solids. The 

thermal conductivity of the propagon can be calculated using the simple kinetic theory of phonon 

gas similar to the phonon thermal conductivity of crystalline materials. The non-propagating 
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modes are further divided into diffusons and locons; diffusons are vibrational eigenmodes that are 

extended into the entire amorphous sample, while locons are spatially localized. [31] The thermal 

conductivity of non-propagating modes is often calculated with an expression given by Allen and 

Feldman (here, referred to as A-F). [31-33]  

In a-Si, propagons significantly contribute to thermal transport, resulting in the size-

dependent thermal conductivity. [6, 7] While the non-propagons contribution is not affected by the 

classical size effect, the propagons contribution can be largely affected through diffuse boundary 

scattering. Previous experimental studies clearly show that propagon thermal conductivity is 

significant in a-Si. [5-8, 34] In these experimental studies, thermal conductivity strongly depends 

on the sample size, suggesting that the propagon largely contributes to the total thermal 

conductivity. Propagons are scattered by diffuse boundary scattering and they experience less 

scattering in large samples which results in a larger thermal conductivity. If heat is carried mostly 

by non-propagating modes, the thermal conductivity should not depend on the sample size as long 

as the sample size is large enough that the quantum size effect can be ignored. Also, numerical 

studies indicate that the propagon contribution to total thermal conductivity is large in a-Si 

compared with other amorphous materials. Larkin and McGaughey showed that the propagon 

thermal conductivity can be as large as 40 % in a-Si while the propagon contribution of amorphous 

silica is about 6 %. [9] Also, Moon et al. [28] and He et al. [35] showed that the propagon vibrations 

are the dominant contributor of thermal conductivity in a-Si using the structural factor and lifetime 

of vibrational modes.  

Common amorphous structures maintain a short-range order (SRO) in the length scale less 

than 5 Å while they lack long-range order. [36] A continuous random network (CRN) is a good 

example of this notion. Atomistic structures generated from the CRN are a random-based atomic 
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setting with a bond-swapping algorithm. CRN builds the structure with SRO and retains the 

disorder beyond the second neighbor lengths such that the defects and voids are eliminated. [37] 

The CRN structure of a-Si contains less than 1-3% defect and void concentration. [38]  

Though CRN is sufficiently reliable to represent the SRO, the recent reports on a-Si 

indicate that some experimentally observed structures rather exhibit low degrees of disorder and 

some order in the length scale of 10 to 20 Å, called medium-range order (MRO). [39, 40] An 

example configuration of MRO observed in a-Si is a paracrystalline phase. Paracrystalline is 

defined as a parallel piped structural order which embedded into the structure within a longer range 

than SRO. [41] In amorphous structures, it is generally difficult to find the correlation between the 

atoms in a long-range using atomic correlation tools such as radial distribution function (RDF). 

[42] Treacy and Borisenko were able to measure the existence of local order and the possibility of 

paracrystalline structure inclusion inside a-Si using the fluctuation electron microscopy (FEM). 

[11] The FEM is a hybrid diffraction/imaging technique that exhibits the topological crystallinity 

in the length corresponding to its probe size. They estimated that the volumetric portion of the 

paracrystalline phase is about 10 to 15% in their ion-implanted a-Si samples. [11] The FEM data 

led to the development of model a-Si structures. [43] The clear difference is that the CRN 

structures do not exhibit any MRO, while those based on the experimental FEM data inherit certain 

degrees of MRO. [40]  

The evidence of MRO was reported in previous studies for a-Si structures, [44-46] and the 

magnitude of MRO largely depends on the materials processing method. It has been shown that a 

significant MRO exists in many as-deposited amorphous silicon samples. [47] In particular, 

deposition conditions can largely affect the MRO. For a vapor-deposited sample, the presence and 

magnitude of MRO increase with the temperature of the substrate. [43] One reason may be related 



 10 

to the fact that the two-level tunneling system is diminished by increasing the substrate 

temperature. [48] Besides, post-annealing processes can affect MRO. The degree of MRO could 

be reduced by post-annealing of the amorphous samples, but it does not fully disappear. [11] If the 

thermal conductivity depends on MRO, the large variance of experimental thermal conductivity 

values of a-Si from the literature [5-7, 34, 49-54] may be related to the different material processing 

methods and conditions in addition to the different uncertainty level of each experiment. However, 

previous computational studies either considered the sample model similar to CRN structure [9] 

or used a melt-quench procedure [28, 35] to create the structure using empirical potentials. The 

CRN-like structures have SRO but lack MRO. To our best knowledge, the relationship between 

MRO and thermal conductivity in a-Si has not been studied.  

In this chapter, we study the influence of MRO on propagon thermal conductivity. We 

examine MRO in three different model a-Si structures with the same size of 3.28 nm, using 

dihedral angle distribution and FEM simulations. Then, we calculate the propagon thermal 

conductivity using the Green-Kubo (G-K) approach, normal mode decomposition (NMD), and A-

F formalisms for those structures. Finally, we discuss the relationship between MRO and propagon 

contribution to thermal transport.  

2.2 Atomistic Structure 

We use three structures with the same size (3.28 nm) but the different extent of MRO 

(figure 1). The two model structures that contain MRO are from literature. [11] Those structures 

were constructed by modifying a crystalline configuration or a fully random configuration through 

a hybrid-reverse Monte Carlo technique [43] such that the resulting model structures exhibit the 
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same MRO from the experimental FEM data. The computational cost of the generation of the 

structures with MRO is extremely high due to large computational cost of FEM simulations that 

are required to enforce the MRO constrain, which limits the sample size in the current work.  In 

this chapter, these structures are referred to as MROC (MRO modified from Crystal) and MROR 

(MRO modified from Random structure). The third structure that was generated using CRN is also 

from literature. [37] To minimize uncertainty, 10 CRN structures were studied and the results were 

averaged over all CRN samples. The MRO and CRN structures have similar RDF. [11] However, 

RDF is based on a two-body correlation and cannot capture MRO. [55] Before performing the 

structure characterization and thermal transport simulations, all three structures were relaxed using 

the energy minimization method with Tersoff potential [56] to find the equilibrium atomistic 

structure at 0 K. All the simulation results presented in this work are from the Tersoff potential. 

 

Figure 1 Prospecive views of a-Si structures for (a) CRN (b) MROC (c) MROR, the blue and grey lines 

indicate regions with SRO and MRO respectively. The length of all three structures is 3.28nm. The figure is 

from Ref. [11].  

2.2.1 Dihedral Angle Distribution 

To estimate MRO in all three structures, first, we calculate dihedral angle distribution. A 

dihedral angle is an intersecting angle between two sets of three atoms having two atoms in 

 (a)  (b) (c) 

3.28nm 3.28nm 3.28nm 
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common and its distribution measures atomic order in a longer range than the bond angle 

distribution. While the bond angle distribution usually identifies SRO, the dihedral angle 

distribution can be used to examine MRO. [39] In figure 2, the three structures have two peaks 

near 60 and 180, which are the dihedral angles of a perfect crystal Si structure. [57] However, 

those peaks have different widths in the three structures; the peaks of MROC and MROR are 

narrower and sharper than those of the CRN structure. These results agree well with previous 

reports [58, 59] indicating more significant MRO in the MROC and MROR structures than in the 

CRN structure. 

 

Figure 2 Dihedral angle distribution in the MRO and CRN structures 

2.2.2 Fluctuation Electron Microscopy 

We further analyze MRO in the three model structures using FEM. The FEM provides 

detailed information about the structural arrangement and orientation through three or four body 
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correlation while RDF measures two-body correlation. [55, 60, 61] In principle, FEM measures 

the normalized variance (𝑉) of electron beam diffraction intensity defined as 

𝑉(𝐤,𝑄) =
〈𝐼2(𝐤,𝑄)〉

〈𝐼(𝐤, 𝑄)〉2
− 1 2-1 

where 𝐼 is the beam intensity. Both variance and intensity depend on the wavevector (𝐤) of the 

incident electron beam and the inverse of the probe size (𝑄). The variance measures the fluctuation 

of the diffraction beam intensity. If the structure is fully random with no order in the length scale 

of the probe size, then the diffracted intensity pattern should be homogenous regardless of the 

diffraction angle. However, for the structures with MRO, the intensity has a fluctuation; the 

diffracted beam intensity becomes large if the incident beam sees a paracrystalline region and the 

Bragg’s condition is satisfied. Previous studies observed a large variance in a-Si for the probe size 

of 10 Å, representing MRO in this length scale. [11, 40, 41, 43]  

In order to identify the structural order, we change the probe size from 5 to 30 Å 

incrementally and perform the FEM simulation on each structure. We use FEMSIM code [62] for 

all the FEM simulations. We apply incident beams to a sample with 200 different orientations. The 

FEM probe surfs the sample over smaller cubes at different orientations of the sample. The 

diffraction signals are averaged over all the raster positions and orientations, which can be used to 

determine the variance ensemble. Among different tested probe sizes, we observe that only for the 

probe size of 10 Å, there is a clear significant FEM variance difference between MRO and CRN 

structures. Considering that the probe size of 10 Å is defined on projected two-dimensional planes, 

the structural orders are considered to exist roughly within 10 to 20 Å in three-dimensional space. 

In figure 3, we compare the variance for MRO and CRN structures calculated using a probe size 

of 10 Å. The variance of CRN structure is nearly constant with minimal peaks while MRO 

structures show large variance in the range of wavevectors between 0.2 to 0.9 Å-1. The clear peak 
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of MRO structures around 0.3 and 0.5 Å-1 indicates the existence of MRO in those model 

structures. While a previous study [11] shows a similar variance of MROR and MROC structures, 

our results show that the variance of MROR is slightly larger than that of MROC. This may 

originate from the number of orientations for the FEM simulation [63]; the previous study [11] 

used 50 orientations and we used more than 200 orientations and confirmed the convergence with 

respect to the number of orientations.  

 

Figure 3 Calculated FEM for MRO and CRN structures 

2.3 Thermal Conductivity Calculation 

2.3.1 Allen Feldman Thermal Conductivity a Green-Kubo Approach 

The thermal conductivity of amorphous materials can be divided into propagon 

contribution (pr) and non-propagon contribution (AF) 
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vib = pr + AF.  2-2 

The non-propagon thermal conductivity, AF, is calculated as  

AF =
1

Ω
∑ 𝐶(𝜔𝑖)𝐷AF(𝜔𝑖)

𝑖,𝜔𝑖>𝜔cut

 
2-3 

where Ω is the volume of a sample. The 𝜔𝑖 is the frequency of the ith diffuson mode and 𝜔cut is 

the cutoff frequency that distinguishes between propagons and diffusons. The 𝐶(𝜔𝑖) =

𝑘B [
ℏ𝜔𝑖

2𝑘B𝑇⁄

sinh(
ℏ𝜔𝑖

2𝑘B𝑇⁄ )
]

2

 is the specific heat of vibrational eigenmodes and 𝐷AF(𝜔𝑖)  is the mode 

diffusivity which is expressed as [32]  

𝐷AF(𝜔𝑖) =
𝜋Ω2

ℏ2𝜔𝑖
2 ∑|𝑆𝑖𝑗|

2
𝛿(𝜔𝑖 − 𝜔𝑗)

𝑗≠𝑖

   2-4 

where 𝑆𝑖𝑗  indicates the heat current operator [32] in the tensor form and 𝛿  is the Dirac delta 

function. The total thermal conductivity is calculated using the G-K formalism given as  

GK =
Ω

3𝑘𝐵𝑇2
∫ < 𝐒(𝑡) ∙ 𝐒(0) > 𝑑𝑡

∞

0

 2-5 

where 𝐒 = (1 Ω)⁄ [∑ 𝐸𝑖𝐯𝑖𝑖 − ∑ (𝐟𝑖𝑗 ∙ 𝐯𝑗)𝐫𝑖𝑗𝑖<𝑗 ] is the heat current vector and is calculated as the 

summation of the potential energy and kinetic energy per atom (𝐸𝑖). In the heat current vector, the 

 𝐟𝑖𝑗 is the force between atoms i and j, the 𝐫𝑖𝑗 is the distance vector of two atoms, and the 𝐯𝑗 is the 

velocity vector. The  𝑘𝐵  and 𝑇  are the Boltzmann constant and temperature, respectively. The 

integrand is the heat current autocorrelation function. We roughly estimate the propagon thermal 

conductivity as 

pr = GK − AF.   2-6 

In order to calculate AF, we need to determine the cutoff frequency separating propagating 

and non-propagating modes. In the past studies [6, 9, 28, 30, 31], there exist different choices of 
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cutoff between propagon and diffuson using different criteria. Here we choose 2 THz for cutoff 

frequency based on the onset of the density of states (DOS) where it follows 𝜔−2 scaling at low 

frequency. [9] Figure 4 shows the DOS of all three structures with an eyeguide for the 𝜔−2 scaling. 

For all three structures, the DOS below 2 THz follows the the 𝜔−2 scaling, showing that the 

vibrational eigenmodes below 2 THz exhibit a linear dispersion like Debye phonon dispersion of 

the crystalline phase.  

 

Figure 4 Comparison of DOS for MRO and CRN structures with an eyeguide for the ω2 scaling 

In addition, we present the mode diffusivity defined in Eq. 2-4 for all three structures in 

figure 5. We also included the mode diffusivity of  the melt-quench structure with a similar size 

(3.28 nm) that has been widely used for thermal transport simulation. [64] It is worth mentioning 

that the phonon calculation for a melt-quench structure produces imaginary frequencies due to 

metastability; in our case, the percentage of the number of imaginary frequencies to the total 
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number of frequencies is less than 0.06 % and we dismiss them here. All four structures were 

relaxed with the Tersoff potential and mode diffusivities were calculated using the GULP package 

[65].  

 

Figure 5 Comparison of mode diffusivity for different structures. The dashed line located at 2 THz shows the 

distinction of the propagon and diffuson modes 

The mode diffusivity in figure 5 exhibits remarkably different behaviors for frequencies 

below and above 2 THz; it has very large values below 2 THz but shows a plateau region above 2 

THz. The drastic change of mode diffusivity at around 2 THz was considered as a feature of the 

transition from propagon to diffuson in a previous study. [9] In addition, it was shown previously 

that the vibrational eigenvectors with frequencies below 2 THz show the periodic nature as is 

expected for propagon. [30] Thus we believe the 2 THz cutoff is a reasonable choice for all three 

structures.  
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With the cutoff frequency of 2 THz and mode diffusivity, the A-F thermal conductivity 

was calculated using the GULP package [65]. The broadening factor for the A-F thermal 

conductivity is 5 times the average mode frequency spacing (0.0016 THz) and the uncertainty of 

the A-F thermal conductivity is calculated by changing the broadening factor within 10 % 

differences. The A-F thermal conductivity of MROR, MROC, CRN, and melt-quench structures 

are 0.880.05, 0.70.05, 0.70.05, and 0.690.05 W/m-K respectively. It is observed that the 

MROR structure has a larger A-F thermal conductivity compared to the CRN structure. A similar 

behavior that A-F thermal conductivity increases with the order of atomic arrangements was 

reported in the previous work on hydrogenated a-Si thin film. [34]  

The G-K bulk thermal conductivity was calculated using LAMMPS GPU [66] with Tersoff 

potential [36] for Si atoms. First, we thermalized all structures at 300 K through NVT simulations 

which were followed by 20 million iterations of NVE with a time step of 0.5 fs for G-K 

calculations. We confirmed that the heat current autocorrelation function approaches a statistically 

stationary state for all simulation results. The G-K calculations were performed on each structure 

with 10 random seeds for initial velocity distribution and the final value was averaged over all the 

samples and seeds. We considered 20000 iterations with a lag time of 5 timesteps to perform the 

heat current autocorrelation calculation. The calculated G-K thermal conductivity values are 

shown in figure 6. The G-K thermal conductivity of MROR, MROC, and CRN structures are 1.35, 

1.15, and 1.0 W/m-K, respectively.  

The difference between A-F and G-K thermal conductivity values can provide a rough 

estimate for propagon thermal conductivity. The propagon thermal conductivity of MROR and 

MROC structures are as large as 0.47 and 0.45 W/m-K which are over 50 % larger than the 



 19 

propagon thermal conductivity of CRN structure. This suggests that there is a strong correlation 

between propagon thermal conductivity and MRO. 

 

Figure 6 Propagon and A-F thermal conductivity values for the different structures. The propagon thermal 

conductivity (pr) is roughly estimated as GK-AF. 

The propagon thermal conductivity of CRN structure seems to be smaller than the previous 

study [9] which shows as large as 40 % contribution with the same CRN structure. We believe this 

difference originates from the different sizes of samples. The propagon thermal conductivity 

depends on the size of the sample as it limits the number of available propagon modes. In our case, 

the MRO structures available in the literature [11] are small and we had to use the CRN structures 

with the same size (3.28 nm) for the direct comparison between the MRO and CRN structures. 

The previous studies [9, 28] used a relatively large sample with a size of 4.3 nm and the bulk 

thermal conductivity is extrapolated to the infinitely large sample. Later in this chapter, we will 

estimate the propagon thermal conductivity for larger systems by extrapolating the lifetime of 

propagons from the NMD to the long-wavelength limit.  
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2.4 Vibrational Mode Properties and Analysis 

2.4.1 Dynamic Structural Factor 

In order to characterize the behavior of vibrational mode, we calculate the dynamic 

structural factors. The dynamic structural factors are defined as 

𝑆𝐿,𝑇(𝐤, 𝜔) = ∑𝐸𝐿,𝑇(𝐤, 𝜈)𝛿(𝜔 − 𝜔(𝐤 = 𝟎, 𝜈))

𝜈

   2-7 

where the 𝐤 is the phonon wavevector, the 𝜔 is the frequency and the 𝜈 is the phonon branch. The 

subscript L and T refer to longitudinal and transverse polarizations. The 𝐸𝐿,𝑇  is  

𝐸𝐿,𝑇(𝐤, 𝜈) = |∑𝑢𝑏
𝐿,𝑇(𝐤, 𝜈)𝑒𝑖𝐤·𝐫𝑏

𝑏

|

2

   2-8 

where 𝐫𝑏 is the equilibrium position of atom 𝑏. The 𝑢𝑏
𝐿,𝑇

 are the longitudinal (L) and transverse 

(T) components of vibrational eigenvectors defined as 𝑢𝑏
𝐿 = �̂� ∙ 𝐞(𝜈, 𝑏) and 𝑢𝑏

𝑇 = |�̂� × 𝐞(𝜈, 𝑏)| 

where �̂� is a unit vector along the longitudinal direction and 𝐞 is a vibrational eigenvector. Since 

a-Si is isotropic, the structural factor is independent of the direction and is calculated in one 

direction. Also, the maximum wavevector (𝐤max ) is π 𝑎⁄  where 𝑎  is the lattice constant of 

crystalline silicon (5.43 Å) and the minimum wavevector is limited by the size of the sample. 

The comparisons between the structural factors of the MRO and CRN structures are shown 

in figure 7 for the two wavevectors representing propagons and diffusons. The small wavevector, 

0.34|𝐤max|, corresponds to the frequency of around 1.8 THz and 1.1 THz for longitudinal and 

transverse polarization respectively. The large wavevector, 0.8 |𝐤max| , corresponds to the 

frequency of around 4 THz and 2.2 Thz for longitudinal and transverse polarization respectively. 

The corresponding frequency is defined as a frequency where the structural factor has a maximum 
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peak. For the short wavevector representing propagons, the peaks for both longitudinal and 

transverse structural factors of MRO structures are narrower than the CRN case showing the 

significant periodic nature of vibrational eigenmodes in those structures. For the large wavevector 

representing diffusons, however, structural factors of MRO and CRN structures have a similar 

width. The results clearly indicate the strong dependence of propagon vibrational modes on MRO. 

The large difference in the structural factors is clearly seen between propagons and diffusons which 

agrees with previous works. [9, 28]  

 

Figure 7 Dynamic structural factor for two wavevectors representing propagon and diffuson: (a) longitudinal 

and (b) transverse structural factors for propagons and (c) longitudinal and (d) transverse structural factors 

for diffusons 

2.4.2 Calculation of Lifetimes and Thermal Conductivity using Mormal Mode 

Decomposition 

Further, we calculated the lifetimes of vibrational modes for low frequencies below the 

cutoff frequency (2 THz) using NMD [67] of molecular dynamics (MD) simulation results. We 
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collected 100,000 snapshots of velocity trajectories in an equilibrium state of NVE simulation 

which was run over 1 million iterations with a time step of 0.5 fs at 300K. The velocity trajectories 

of atomic structure are projected onto vibrational modes as follows: 

�̇�(𝐤 = 𝟎, 𝜈; 𝑡) = ∑∑ √
𝑚𝑏

𝑁
�̇�𝛼(𝑏; 𝑡)𝑒𝛼

∗(𝐤 = 𝟎, 𝜈; 𝑏)𝑒𝑖(𝐤=𝟎)·𝐫𝑏

𝑛

𝑏

3

𝛼

   2-9 

where �̇�𝛼 is the 𝛼 component of the atomic velocity. Then we calculate the spectral energy of each 

vibrational mode by integrating over the simulation time. The spectral energy is calculated as 

Φ(𝜈, 𝜔) =
1

4𝜋𝜏0
|∫ �̇�(𝜈; 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

𝜏0

0

|

2

   2-10 

where 𝜏0  is the simulation time. The lifetime of vibrational mode can be found by fitting the 

spectral energy with the Lorentzian function in the following form  

Φ(𝜈, 𝜔) =
𝐶0(𝜈)

[𝜔0(𝜈) − 𝜔]2 + Γ2(𝜈)
   2-11 

where 𝐶0(𝜈) is a constant value. The Γ(𝜈) has a relation with the lifetime as follows: 

τ(𝜈) =
1

2Γ(𝜈)
.   2-12 

We extrapolate the lifetime of propagons to the long-wavelength limit in order to calculate 

the propagon thermal conductivity for an infinitely large a-Si sample. The rough estimation of 

propagon thermal conductivity using GK − AF  does not include the contributions from 

propagons with wavelengths larger than the sample size (3.28 nm). We extrapolate the lifetime 

using the widely assumed 𝜔−2 and 𝜔−3 dependences of phonon lifetime below 2 THz: 
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τ(𝜔) = 𝐵𝜔−𝑛   2-13 

where B is a constant and 𝑛 is a scaling exponent i.e., 2 or 3 [5, 9, 34, 50]. The fitting was 

performed using the least square of error method. The lifetime as well as the fitted line are 

compared in figure 8. 

 

Figure 8 Lifetimes and fitted lines for (a) MROR (b) MROC (c) CRN structures and (d) the zoom-in 

comparison of three structures in the propagon frequency range. 

In Table 1, we show the fitting constant (B) for three different structures. The fitting 

constant B assuming 𝜔−2 dependence for CRN structure agrees well with that reported in the 

previous study assuming the same structure and 𝜔−2 dependence. [9] The B for MRO structures 

are considerably larger than the CRN structure which lead to longer lifetime and mean free path 

of propagon.  
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Table 1 Fitting of propagon lifetimes (B in THz2-s for ω-2 and THz3-s for ω -3) 

 𝜔−2
 𝜔−3

 

CRN 1.210-11 1.610-11 

MROC 1.510-11 1.910-11 

MROR 2.010-11 2.610-11 

 

The propagon thermal conductivity for an infinitely large sample is then calculated as 

pr

=
1

3Ω
∫ 𝐷𝑂𝑆L(𝜔)𝐶(𝜔)𝑣L

2τ(𝜔)𝑑𝜔
𝜔cut

0

+
2

3Ω
∫ 𝐷𝑂𝑆T(𝜔)𝐶(𝜔)𝑣T

2τ(𝜔)𝑑𝜔
𝜔cut

0

 

  2-14 

where 𝐷𝑂𝑆L,T(𝜔) is the DOS based on the 3D Debye model and is given as Ω𝜔2 2𝜋2𝑣L,T
3⁄ . The 

𝐶(𝜔) is the heat capacity and 𝑣L,T are the longitudinal and transverse group velocities. Here the 

group velocities are obtained from the structural factors at low frequency. Based on our dynamic 

structural factors calculation, all three structures have similar group velocities; the transverse (𝑣T) 

and longitudinal (𝑣L) group velocities are about 3620 m/s and 7240 with a variance of 1 %. The 

group velocity values are in close agreement with the previous work [9] for CRN. It is worth 

mentioning that the thermal conductivity would diverge when the 𝜔−3 dependence is assumed. In 

this case, to bound the thermal conductivity, we consider a boundary scattering based on the largest 

experimental sample which has the thickness (𝑡B) of 80 m. [34] Hence the lifetime is estimated 

following the simple model for boundary scattering rate which is combined with the intrinsic 

scattering rate through the Matthiessen rule [68] 
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1

τeff
=

1

τbulk
+

2𝑣𝑠

𝑡B
   2-15 

In figure 9, based on the extrapolation, we calculate the propagon thermal conductivity 

values for each structure including contributions from propagons with long wavelengths. When 

the propagon lifetime is assumed to follow 𝜔−2 dependence, the propagon thermal conductivities 

are 1.49 and 1.14 W/m-K for MROR and MROC, respectively, which show 116 and 65 % larger 

than that of CRN structure. If the 𝜔−3 dependence is assumed, the propagon thermal conductivity 

values are 2.87 and 2.19 W/m-K for MROR and MROC, respectively, which are 117 and 66 % 

larger than that of the CRN structure. For both MRO structures, the predictions indicate that 63 

and 77 % of total thermal conductivity is contributed from propagons when the propagon lifetime 

is assumed to follow 𝜔−2  and 𝜔−3 , respectively. The predicted values clearly show a more 

pronounced contribution of propagon in MRO structures.  
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Figure 9 Propagon and A-F thermal conductivity values for the different structures. The propagon thermal 

conductivity is predicted by extrapolating the lifetime of propagons to low frequency limit using NMD. The 

left and right figures assume the ω-2 and ω-3 

2.5 Summary 

We have discussed the dependence of thermal conductivity on MRO. We showed two 

atomistic structures for amorphous silicon with MRO. We confirmed the presence of MRO using 

dihedral angle distribution and FEM simulation in those two structures. The results show the 

presence of structural order in the medium range of 10 to 20 Å. The rough estimation of pr using 

the G-K and A-F thermal conductivities for a small system with a size of 3.28 nm show that pr 

of MRO structures are 50 % larger than that of CRN structure. We also compared the propagons 

in MRO and CRN structures using the structure factor and the lifetime of propagons from NMD 
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of MD simulation data, showing the noticeably longer lifetimes of propagons for MRO structures. 

Then, the pr was calculated for a larger system by extrapolating the lifetime of propagons to the 

infinite wavelength limit. The pr is up to 117 % larger in MRO structures compared to the CRN 

structure. Our study provides evidence of a strong correlation between MRO and propagon thermal 

conductivity. This has an important implication for understanding and manipulating thermal 

transport in a-Si. The MRO often depends on the synthesis methods and post-annealing processes 

[11, 12] and thus the thermal conductivity of a-Si is expected to also depend on those conditions. 

Our study may explain the large thermal conductivity of a-Si that had been reported previously [5-

8, 34] while conclusive determination of the influence of MRO on measurements of thermal 

conductivity requires a side-by-side structural analysis of experimental samples. Our work may 

prompt the future experimental studies in that direction. 
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3.0 Graphene Grain Boundary, Atomistic Green’s Function, and Transport Properties 

3.1 Grain Boundary Structure  

In order to create structures with periodic boundary conditions, we constructed structures 

containing two identical grain boundaries (GBs) which are placed in the inversed direction with 

respect to each other. Therefore, we maintain the periodic boundary conditions along with both 

parallel and perpendicular directions to the GB direction, as shown in figure 10.  

 

Figure 10 A typical structure containing two identical GBs with periodic boundary conditions along both the 

directions parallel and perpendicular to the GB direction. Each rectangle formed by the dashed line 

represents one unit cell. The lattice vectors of the two grains forming the GB are (𝒂i1, 𝒂i2), with i=1, 2 for 

grains 1 and 2, respectively. The tilt angle between the chiral vector Li= 𝒏i1𝒂i1+ 𝒏i2𝒂i2 and the lattice vector 

along the armchair direction 𝒂i2 is θi. The GB is characterized by the misorientation angle θM = θ1 +θ2 and the 

boundary line angle θL=|θ1 -θ2|. 
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We first construct a single GB (the left one in figure 10) which is periodic along the GB 

direction and nonperiodic along the perpendicular direction. The lattice vectors of the two grains 

forming the GB are (𝒂𝑖1, 𝒂𝒊𝟐), with 𝑖 =1, 2 for grains 1 and 2, respectively and the lattice constant 

is 𝑎. The tilt angle (𝜃𝑖) is defined as angle between the chiral vector 𝐋𝒊 = 𝑛𝑖1𝒂𝒊𝟏+𝑛𝑖2𝒂𝒊𝟐 and the 

lattice vector 𝒂𝒊𝟐  along the armchair direction. The GB (of any two-dimensional material) is 

characterized by the misorientation angle defined as 𝜃𝑀 = 𝜃1 + 𝜃2 and the boundary line angle 

defined as 𝜃𝐿 = |𝜃1 − 𝜃2|. The symmetries of graphene lattice result in 𝜃𝑀 varying from 0 to 60, 

and 𝜃𝐿 from 0 to 𝜃𝑀 . [69] 

For each grain 𝑖, the length of the chiral vector |𝐋𝒊| = 𝑎√(𝑛𝑖1
2 + 𝑛𝑖2

2 + 𝑛𝑖1𝑛𝑖2) is defined 

as the periodic repeating unit length along the GB direction, where 𝑛𝑖1, 𝑛𝑖2 are integer numbers 

such that tan 𝜃𝑖 = (𝑛𝑖1 − 𝑛𝑖2)/√3(𝑛𝑖1 + 𝑛𝑖2). To form a GB, |𝐋𝒊|of the corresponding two grains 

should be commensurate, i.e., |𝐋𝟏|/|𝐋𝟐| = 𝑝/𝑞, where p, q are positive integers, in which case the 

GB length is 𝑙𝐺𝐵 = 𝑞|𝐋𝟏| = 𝑝|𝐋𝟐|. In this work, we consider only high symmetric GBs with 𝜃1 =

𝜃2, for which the GB length of the unit cell is |𝐋𝟏| = |𝐋𝟐|. 

After constructing a single GB supercell (named A), we rotate it by 180 to build the GB 

supercell named B. Then, we merge the two supercells A and B to construct a periodic structure 

along the direction perpendicular to the GB direction by shifting B to match the hexagonal rings 

at the right boundary of A and left boundary of B, and then removing the superposition atoms, as 

illustrated in figure 11.  
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Figure 11 Constructing a supercell by matching the hexagonal rings at the right boundary of A and left 

boundary of B. The atoms 1 and 2 are labeled by 1’ and 2’ after rotating A by 180. The periodic structure is 

constructed by shifting B so that the atom 1’ over 

 

3.2 Machine Learning Interatomic Potential 

 Density functional theory (DFT) simulations are widely considered a high-fidelity 

simulation method in the materials science and solid-state physics. The DFT has shown high 

accuracy for many-body systems, atoms, molecules, and electronic structure modeling. However, 

DFT simulations are computationally expensive and its scalability is unfavorable; the 

computational cost increases as ~ O(N3) where N is the total number of electrons in a system. For 

years, empirical interatomic potentials have been used to do classical MD simulations for large 

atomistic structures and in a variety of problems. The empirical potentials are analytical 

formulations which are mostly interpolated from DFT calculations. They are computationally 

cheaper and thus can be useful for large scale simulations. However, there are two major issues 

with empirical potentials: a) conventionally they have rigid functional form that limits their 

applicability to the limited number of applications or properties b) a good agreement may be 

related to the fortitude cancellation of the embedded errors [70]. Machine learning interatomic 
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potentials (MLIPs) have emerged as an alternative to overcome the aforementioned problems [71, 

72]. They do not require rigid functional forms and thus can describe multiple phases with an 

accuracy comparable to ab initio calculations, while the cost is much cheaper than the density 

functional theory (DFT) calculations. MLIPs have been shown to successfully describe properties 

of materials with an accuracy of ~1 meV/atom for energy [70-84]. Notably, several previous 

studies showed that MLIPs can have higher accuracy and reproduce correct harmonic force 

constants for the crystalline phase [20,22,24,32]. MLIP often has a tradeoff of the transferability 

and accuracy [70] which are both necessary for thermal transport calculation. A large set of input 

training data enforces the interpolation to be dominant which diminishes the transferability, or in 

other words extrapolations.  Hence, we believe focusing on grain boundary structures of two-

dimensional materials, such as graphene, yields a good balance for an MLIP with good 

transferability and high accuracy. Additionally, to our best knowledge, the MLIPs have not been 

examined for thermal transport of interfacial materials such as grain boundary structures. The 

structures of grain boundaries are widely varied and they show some uncertainty upon the 

buckling. Here, we demonstrate that the Gaussian approximation potential (GAP) [20], which is a 

type of MLIP, has high accuracy and flexibility to describe interatomic interactions with a DFT 

accuracy for a large set of grain boundary structures of graphene. 

3.2.1 Gaussian Approximation Potential 

Here I provide a summary of the GAP developed by [85-87]. Our goal is to develop a 

machine-learning potential based on the data from density functional theory calculations. The GAP 

method has two major components. First, a set of descriptors for the atomistic structure is 

developed so that (1) it satisfies the translation, rotation, and permutation invariances, and (2) the 
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atomistic structures are captured precisely while the high-dimensional atomic position data are 

mapped onto relatively low dimensional space. Second, the mapping between environments and 

the target quantities such as atomic energies and forces is done by a kernel which is associated 

with the similarity of environments. We use the smooth overlap of atomic positions (SOAP) [87]. 

One advantage of GAP is that the training is performed using simple linear algebra rather than 

iterative nonlinear optimization of a multimodal function, as in the case of neural networks.  

The interatomic potential is a relatively high dimensional function to accurately describe 

the energy and forces of any given atom. In GAP, the high dimensional interatomic potential is 

divided into purely repulsive and attractive potential descriptors. The repulsive pair potential 

descriptors are pre-defined/pre-calculated interaction of a pair of atoms using DFT results with 

cubic spline fitting. The attractive potential descriptor is a many-body kernel fit. Therefore, the 

total GAP model energy for a system is the linear combination of the repulsive and attractive 

descriptors as follows 

𝐸 = ∑𝑉(2)(𝑟𝑖𝑗)

𝑖<𝑗

+ ∑∑𝛼𝑠𝐾(ℛ𝑖 , ℛ𝑠)

𝑀

𝑠𝑖

   3-1 

where 𝑖 and 𝑗 are the atomic indices, 𝑉(2) is the repulsive pair potential, 𝑟𝑖𝑗 is the distance between 

any pair of atoms, 𝐾  and ℛ𝑖  are kernel basis function and the collection of relative position 

vectors, also known as neighborhood, respectively. The first term is the predefined function in the 

GAP library. The second term is quantified by the similarity of neighboring pairs of atoms. Here, 

the objective is to pick a set of dissimilar pairs that captures the most variation of the energy field. 

To this point, neighbor density is calculated using the SOAP kernel as  
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𝜌𝑖(𝐫) = ∑ 𝑓cut(𝑟𝑖𝑖′)𝑒
−(𝐫−𝐫𝑖𝑖′) 2𝜎atom

2⁄

𝑖′

   3-2 

where the summation is the decaying functions to zero over the neighbors 𝑖′ of atom 𝑖, 𝑓cut and 

𝜎atom are a cutoff function and smearing parameter respectively. Then the SOAP kernel of two 

neighbor environments is calculated over all possible 3D rotation, SO(3) rotation group [87], of 

two neighbor density as 

𝐾(ℛ𝑖 , ℛ𝑗) = ∫ 𝑑�̂� |∫𝑑𝐫𝜌𝑖(𝐫)𝜌𝑗(�̂�𝐫)|
2

�̂�∈SO(3)

   3-3 

and after normalization and raising to an integer power, the final kernel is calculated as: 

𝐾(ℛ𝑖 , ℛ𝑗) = 𝛿2 |
�̃�(ℛ𝑖 , ℛ𝑗)

�̃�(ℛ𝑖 , ℛ𝑖)𝐾(ℛ𝑗 , ℛ𝑗)
|

𝜁

   3-4 

here 𝛿  is the hyperparameter corresponding to the energy scale of the many-body potential. 

Practically to calculate the integral (Eq. 3-3), we expand the integral to a summation of the basis 

in a spherical harmonic space. Thus, the density function is given as 

𝜌𝑖(𝐫) = ∑ 𝑐𝑛𝑙𝑚
𝑖 𝑌𝑙𝑚(�̂�)𝑔𝑛(𝑟)

𝑛𝑙𝑚

   3-5 

where 𝑌𝑙𝑚 are the spherical harmonics, 𝑔𝑛 are the radial functions, which are equispaced Gaussian 

functions, and 𝑐𝑛𝑙𝑚
𝑖  are the spectral coefficients on spherical space. The indices 𝑖, 𝑛, 𝑙, and 𝑚 are 

atomic number, radial index, the coordinate, and spectral indices. Since the descriptors are unique 

rotationally and permutationally invariant of the neighbor environment, we can write the following 

spherical power spectrum vector: 

�̃�𝑛′𝑛𝑙
𝑖 = ∑ 𝑐𝑛𝑙𝑚

𝑖∗ 𝑐𝑛′𝑙𝑚
𝑖

𝑙

𝑚=−𝑙

 

𝐩𝒊 = 𝐩𝒊 |𝐩𝒊|⁄  

  3-6 

If we use this notation, the SOAP kernel can be written as the scalar product of the above relation 

as: 



 34 

𝐾(ℛ𝑖 , ℛ𝑗) = 𝛿2|𝐩𝑖 ∙ 𝐩𝑗|
𝜁
   3-7 

Practically the SOAP kernel is then used in Eq. 3-1 in order to calculate the coefficients, 

𝛼𝑠, in a linear system. This sums up the novelty of GAP to compare with other MLIPs where the 

many-body potential is projected into an infinite spectrum of spherical harmonics that yield the 

full description of the many-body interactions. Since the descriptors are defined in spherical space, 

they preserve the complete rotational invariance that eventually decreases the number of 

environments and configurations required to train the potential. However, since the representative 

set is infinite in an ideal case, a matrix reconstruction technique, known as CUR [88], is used to 

find the most important subset of the SOAP kernels. Therefore, the kernel calculations are reduced 

to a linear system with finite size and straight-forward formalism to calculate the spectrum 

coefficient is given by [89, 90] as: 

𝛼∗ = [𝐊𝑀𝑀 + (𝐋𝐊𝑁𝑀)𝑇Λ−1𝐋𝐊𝑁𝑀]−1(𝐋𝐊𝑁𝑀)𝑇Λ−1𝐲   3-8 

where 𝐊𝑀𝑀  is the kernel matrix corresponding to the 𝑀  reduced representative atomic 

environment, and 𝐋 is the linear differential operator of size 𝑁 × 𝐷 where 𝑁 and 𝐷 are the number 

of atoms from the input and the number of input data respectively, 𝐲 is the vector containing all 

the input data such as energies, forces, and virial stress components and lastly Λ−1 is the diagonal 

matrix where the elements represent the empirical weights of the input data values. More details 

about the details of GAP and input parameters can be found in Ref. [70]. 

3.3 Landauer Formula and Ballistic Transport 

Landauer formula was first introduced to find the electron conductance in nanoscale 

junction based on the wave scattering. The formula also has been widely applied to predict phonon 
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transport and thermal transport in the ballistic regime. The ballistic regime is the regime in which 

the size of the system is considerably smaller than the mean free path of phonons. For a lattice 

model with the harmonic interaction, the scattering process is purely elastic with no energy loss 

and the Landauer formula is well suited to measure the thermal transport in this regime. For a 

junction with two heat baths when the heat flow transport is from left to right, the Landauer formula 

is given as  

𝐼 = ∫
ℏ𝜔

2𝜋

∞

0

𝑇(𝜔)(𝑓L − 𝑓R)𝑑𝜔   3-9 

where 𝑓L/R =
1

exp(
ℏ𝜔

𝑘B𝑇L/R
)

 is the Bose-Einstein phonon distribution and 𝑇(𝜔)  is called the 

transmission function or transmittance. We should note that the transmission function is 

independent of temperature and only the distribution function is temperature-dependent. 

Thermal conductance is defined as  

𝐺 = lim
𝑇L→𝑇,𝑇R→𝑇

𝐼

𝑇L − 𝑇R
   3-10 

As we mentioned earlier, this relation gives the thermal conductance of ballistic thermal 

transport when the dissipation is minimal. Furthermore, the thermal conductivity is defined as 𝜅 =

𝐺𝐿/𝑆 where 𝐿 and 𝑆 are the length and cross-sectional area of the system respectively. In many 

thermal transport experiments/applications, the cross-sectional area is not well defined and, thus, 

it is better to measure thermal conductance.  

In this chapter, we aim to calculate a transmission function using Green’s function 

approach in particular for the set of problems where the thermal resistance occurs at interfaces. In 

the next sections, we will introduce AGF for thermal transport in interfacial materials and derive 

the transmission function based on the Landauer formula. 
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3.4 Atomistic Green’s Function 

3.4.1 What is Green’s Function? 

Mathematically Green’s function is defined as an inverse of the differential operation in a 

linear dynamical system. Green’s function is also known as the response function. Let’s consider 

that the linear dynamical system is given as  

𝐿𝑢(𝑥) = 𝑓(𝑥)   3-11 

where the 𝐿 is a linear differential operator and 𝑢(𝑥) is the system’s response . For a system with 

linear response upon given source 𝑓(𝑥), the response can be represented by responses upon many 

unit impulses. Thus, the dynamical equation for a unit impulse can be written as 

𝐿𝐺(𝑥, 𝑟) = 𝛿(𝑥 − 𝑟)   3-12 

where 𝐺(𝑥, 𝑟)  is Green’s function of the linear operator 𝐿 . In the above equation, 𝐺(𝑥, 𝑟) 

represents the system’s response at location 𝑥 upon the unit impulse which is applied at location 

𝑟. Hence the solution of Eq. 3-11 at any location, 𝑢(𝑥), is 

𝑢(𝑥) = ∫𝐺(𝑥, 𝑟)𝑓(𝑟)𝑑𝑟   3-13 

here the integration over the unitary responses results in the total response of the system.  

The solution for Green’s function may not be unique due to the complexity and non-

linearity of the 𝐿 kernel. Based on the symmetry assumption and the certain boundary conditions, 

the solution can be uniquely calculated for the Green’s function. As a result, there are two common 

solutions for Green’s function which are known as retarded and self-advance. These solutions are 

dependent on the choice of boundary conditions. The boundary conditions for retarded and self-

advance Green’s function are given as [91] 

𝐺retarded(𝑟, 𝑟) = 1   3-14 
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𝐺retarded(±∞, 𝑟) = 0 

𝐺self−advance(𝑟, 𝑟) = 1 

𝐺self−advance(±∞, 𝑟) = ∞ 

since the boundary conditions of the retarded Green’s function are bounded, then the solution is 

possible. Therefore, hereafter, when we discuss Green’s function, we refer to retarded Green’s 

function. If the solutions for retarded and self-advance are well-posed, then they are the adjoint 

matrix of each other which means that the retarded solution can be mapped and transformed to the 

self-advance solution. 

The physical interpretation of the Green’s function is that it describes a response function 

which is propagating upon unit excitation at a specific location. The Green’s function waves are 

similar to the water ripple and can be propagated in all directions symmetrically. For a retarded 

solution, the excitation is formed as a decaying propagation while for the self-advance solution is 

formed as a growing propagation. The physical interpretation of the Green’s functions in one 

dimension is shown in figure 12. The solution waves for the retarded Green’s function are 

propagating outward to the source location while the solution waves of self-advance are moving 

toward the source location.  

 

 

Figure 12 The excitation propagation of (a) retarded Green’s function and (b) self-advance Green’s functions 
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3.4.2 Dynamical System of Equations for a Harmonic System 

Based on the Newtonian mechanics, the dynamical system for the atomistic vibration is 

described by the equation of motion of each atom 

𝐹𝑖 = 𝑀𝑖

𝑑2𝑢𝑖

𝑑𝑡2
= −

𝜕𝐸

𝜕𝑢𝑖
   3-15 

where the 𝑢𝑖  is the displacement, 𝑀𝑖  is the mass and 𝐹𝑖  is the interacting force on atom 𝑖. The 

dynamical system represents the time-dependent evolution or trajectory of the atomic displacement 

in space. The potential landscape around atoms is described by its Taylor series about small atomic 

displacement 

𝐸 = 𝐸0 + ∑ 𝐹𝑖𝑢𝑖

𝑖

+
1

2
∑

𝜕2𝐸

𝜕𝑢𝑖𝜕𝑢𝑗
𝑢𝑖𝑢𝑗

𝑖,𝑗

+ 𝐻.𝑂   3-16 

here 𝐸0 is the energy at the equilibrium position. The second term would be canceled since the 

summation of interacting forces on the equilibrium state is zero. Also in order to linearize the 

dynamical system and seize the calculation to the harmonic properties, the high order terms of 

Taylor expansion are dismissed. The shortened expansion of the Taylor series of energy is  

𝐸 = 𝐸0 +
1

2
∑𝜙𝑖𝑗𝑢𝑖𝑢𝑗

𝑖,𝑗

   3-17 

where the 𝜙𝑖𝑗 =
𝜕2𝐸

𝜕𝑢𝑖𝜕𝑢𝑗
 is the second-order force constant between two atoms of 𝑖 and 𝑗. Then, Eq. 

3-15 can be expressed using the second-order force constant 

𝐹𝑖 = 𝑀𝑖

𝑑2𝑢𝑖

𝑑𝑡2
= −∑𝜙𝑖𝑗𝑢𝑗

𝑗

   3-18 

Now to solve the dynamical equations (Eq. 3-17), we would substitute the wavefunction 

solution to reformulate the Eq. 3-17. The wavefunction solution is given as 
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𝑢𝑗 =
�̅�𝑗

√𝑀𝑗

𝑒𝑥𝑝(𝑖𝜔𝑡)   3-19 

where �̅�𝑗 is the wavefunctions. When we substitute the given solution into the Eq. 3-18, we get an 

eigenvalue problem that contains a set of independent frequencies and wavefunctions 

𝜔2�̅�𝑖 = −∑𝜙𝑖𝑗

�̅�𝑗

√𝑀𝑖𝑀𝑗𝑗

   3-20 

To simplify this equation, we stack the wavefunctions into a vector, force constants, and 

masses into matrices, hence we get 

(𝜔2Ι − 𝐻)�̅� = 0,   𝐻 =
Φ

𝑀
   3-21 

where 𝐻 is the Hamiltonian matrix that its elements are force constants over effective masses of 

the atomistic structure. The wavefunctions are the shape functions of the solution. The multiplier 

of the wavefunctions (�̅�) is an operator for the dynamical system, 𝐿 = (𝜔2Ι − 𝐻). As it was 

mention in the previous section, Green’s function is namely the inverse of this operator, thus 

𝐺 = (𝜔2Ι − 𝐻)−1   3-22 

If the operator matrix is invertible then the Green’s function calculation is rather trivial. 

However, mostly the operator is not well-posed. Also, the size of the operator matrix can be 

infinitely large if we assume an infinitely large crystal. In this chapter, we focus on the Green’s 

function for an interface between two bulk samples that are semi-infinite, and thus our operator 

matrix size is semi-infinite. In the following section, we discuss atomistic Green’s function (AGF) 

for an interface. 

3.4.3 Atomistic Green’s Function for a Decoupled Device with Two Contacts 

Here I provide a summary of the atomistic Green’s function method that was developed by 

[18, 91, 92]. We consider a system where two bulk materials share a physical interface. This system 
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can be decomposed of a bulk portion of two materials and an interface region sandwiched by the 

two materials. The interface region is called the device and the bulk portions are semi-infinitely 

large contacts that are coupled to the device. The schematic view of the system is shown in figure 

13. 

 

Figure 13 schematic view of the device with two semi-infinte contacts. Transmission direction is assumed to 

be left to right (from contact 1 to contact 2) 

In many thermal transport applications, the goal is to calculate the conductance or 

resistance in the device. The device contains atomistic structures that differ from those of the bulk 

portion of materials, such as point defects, grain boundaries, etc. Here we begin from the Eq. 3-21 

in order to develop the dynamical equations that will be used to find the thermal transport in the 

device. The coupled dynamical equation of the device with two contacts can be written as the 

following: 

𝜔2Ι {
�̅�1

�̅�d

�̅�2

} = [

𝐻1 𝜏1
† 0

𝜏1 𝐻d 𝜏2

0 𝜏2
† 𝐻2

] {
�̅�1

�̅�d

�̅�2

}   3-23 

where the �̅� is the wavefunctions, 𝐻 is the Hamiltonian matrix and 𝜏 is the coupling Hamiltonian 

submatrix. The subscripts d, 1, and 2 represent the device, left contact, and right contact, 

respectively. The contacts are periodic and semi-infinitely large, therefore the Hamiltonian 

matrices of 𝐻1 and 𝐻2 have a semi-infinitely large size in two dimensions. However, 𝜏1 and 𝜏2 
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have an infinitely large size in a dimension align with one of the contacts and a finite size in a 

dimension aligns with the device. The current system of equation is infinitely large and inverse 

calculation of the matrix (i.e., Green’s function) is not trivial.  

To find the Green’s function of the device, we first need to curtail the contact solution. 

Here the idea is to deal with the device portion in such a way that the influence of contacts would 

be imposed as boundary conditions on the device. In this way, the influence of two periodic 

contacts could be calculated and added to the device as some input boundary conditions. Then, we 

can solve the dynamical equation for the device only, which has a finite size.  

The Hamiltonian system of Eq. 3-23 can be written with the wavefunctions of the contacts 

which are divided into the isolated portion (�̅�i ) representing the bulk solution of periodic contact 

and the reflected portion (�̅�r) representing the change due to the coupling interface: 

[

(𝜔2 + 𝑖𝜂)Ι − 𝐻1 −𝜏1
† 0

−𝜏1 𝜔2Ι − 𝐻d −𝜏2

0 −𝜏2
† (𝜔2 + 𝑖𝜂)Ι − 𝐻2

] {
�̅�1

i + �̅�1
r

�̅�d

�̅�2
i + �̅�2

r

}

= {
𝑆1

0
𝑆2

} 

  3-24 

 

here (𝜔2 + 𝑖𝜂) is a perturbed frequency and we consider 𝜂 as a perturbation to the frequency with 

a small positive value. Note that we imposed sources on the left and right contacts represented by 

𝑆1  and 𝑆2  to equalize the equations upon added perturbation to the system. Both sources and 

wavefunctions are unknown at this point, but there are relations between sources and isolated 

wavefunctions which we will use to solve Eq. 3-24. In an ideal case without any perturbation, the 

Hamiltonian system of the isolated contacts would yield the periodic solution for an infinitely large 

contact. In order to solve the system of Eq. 3-24, we make two assumptions concerning 
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perturbation: first is that the perturbation is a positive value which leads to the retarded Green’s 

function solution, and secondly perturbation is small enough that the dynamical system remains 

fully linear.  

The contact Green’s function known as decoupled Green’s function or bulk Green’s 

function is defined as 𝑔1 = ((𝜔2 + 𝑖𝜂)Ι − 𝐻1)
−1, representing the Green’s function of an isolated 

(decoupled) and infinitely large bulk contact 1. The damping term, 𝑖𝜂, is related to the source term 

through ((𝜔2 + 𝑖𝜂)Ι − 𝐻1)�̅�1
i = 𝑆1 for the isolated contact 1. Similarly using the bulk Green’s 

function of the contact 2, 𝑔2 = ((𝜔2 + 𝑖𝜂)Ι − 𝐻2)
−1 and ((𝜔2 + 𝑖𝜂)Ι − 𝐻2)�̅�2

i = 𝑆2. Then, Eq. 

3-24 can be simplified as follows: 

𝑔1
−1�̅�1

r − 𝜏1
†�̅�d = 0

(𝜔2Ι − 𝐻d)�̅�d − 𝜏1(�̅�1
i + �̅�1

r) − 𝜏2(�̅�2
i + �̅�2

r) = 0

𝑔2
−1�̅�2

r − 𝜏2
†�̅�d = 0

   3-25 

 

The Eq. 3-25 is simplified using the reflected wavefunctions of contact 1 (�̅�1
r = 𝑔1𝜏1

†�̅�d)  

and contact 2 (�̅�2
r = 𝑔2𝜏2

†�̅�d) as follows:  

(𝜔2Ι − 𝐻d − 𝜏1𝑔1𝜏1
† − 𝜏2𝑔2𝜏2

†)�̅�d = (𝜏1�̅�1
i + 𝜏2�̅�2

i )   3-26 

the right-hand side is considered a source term for dynamical behavior of the device, 𝑆 = 𝜏1�̅�1
i +

𝜏2�̅�2
i . Finally, the Green’s function for the device which is known as coupled Green’s function is 

expressed as follows: 

 𝐺d = (𝜔2Ι − 𝐻d − ∑1 − ∑2)
−1   3-27 

where ∑1  and ∑2  are  𝜏1𝑔1𝜏1
†

 and 𝜏2𝑔2𝜏2
†

, respectively, and they are called self-energy. In 

essence, the self-energy terms represent the change of device Hamiltonian due to the coupling with 

contacts. These boundary conditions include the coupling terms which show the strength of 

coupling interaction between the device and contacts as well as the bulk Green’s function. Next 
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section, we will discuss the physical interpretation of the Green’s function and the computational 

techniques to calculate the bulk and surface Green’s function. 

3.4.4 Surface Green’s Function 

 Surface Green’s function is what curtails the infinitely large bulk Green’s function to finite 

size and an invertible portion of Green’s function that captures the decay of response. This allows 

us to limit the size of Hamiltonian matrices that are defined in the previous section. Here we use 

periodicity and decaying aspects of the bulk Green’s function to solve or approximate the bulk 

Green’s function. Since the retarded Green’s functions decays and contact is periodic, the bulk 

Green’s function can be divided into an unlimited number of finite size matrices representing a 

bulk contact and a finite size matrix representing a portion close to the device. The latter portion 

of Green’s function is called surface Green’s function. Surface Green’s function is a sufficient 

estimation of the bulk Green’s function of contact to calculate the self-energies. In the next 

sections, we will discuss the ways to calculate the surface Green’s function both analytically and 

numerically.  

3.4.4.1 Analytical Approach to Solve Surface Green’s Function 

 

The main idea for finding surface Green’s function in both analytical and numerical 

approaches is to use the invertibility of submatrices. If an infinitely large operator matrix is 

simplified as [91]  
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𝐿c = (
𝐴 𝐶
𝐵 𝐷

)   3-28 

where 𝐴, 𝐵, 𝐶, and 𝐷 are submatrices. For left contact as an example, only 𝐷 considered having a 

finite size which resembles the surface Green’s function and the rest is infinitely large. Here we 

assume that the submatrix of 𝐷 is large enough that it includes all the dynamical interaction with 

the device. Hence the submatrix 𝐴 solely represents the bulk portion of the set of force constants. 

It is easy to find the inverse of submatrix 𝐴 due to periodicity. Also, from linear algebra, the 

following relation holds for the Eq. 3-28 

𝑔b = (𝐿c)
−1 =  (

… …
… (𝐷 − 𝐶𝐴−1𝐵)−1).   3-29 

In Eq. 3-21 the submatrix 𝐴 represents a periodic portion of bulk and thus can be inverted. 

If we implement this formulation for the surface Green’s function of left contact, then the generic 

formulation for surface Green’s function is  

𝑔L = (𝐷 − 𝐶𝐴−1𝐵)−1.   3-30 

Even though this analytical solution is simple, the inverse of matrix 𝐴 can be non-trivial or 

computationally expensive. This motivates the decimation technique for the solution of the surface 

Green’s function which is discussed in the following section. 

3.4.4.2 Decimation Technique to Solve Surface Green’s Function 

 

The decimation technique is a computational approach that calculates the surface Green’s 

function recursively using bulk Green’s function. [93-95] Here the full contact Green’s function is 

divided into several finite size Green’s function representing a periodic portion of contact far from 

the device and a finite size Green’s function representing a portion which is connected to a device. 

The requirement for the size of each submatrix is that each submatrix is large enough for the 

interaction to be limited to their neighboring submatrices. Since it is easier to follow the 
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mathematical operations up to down, here we begin with the Green’s function of the right contact 

which is shown as  

𝑔b = [

𝑔0,0 𝑔1,0

𝑔0,1 ⋱
⋯ ⋯
⋱

⋮ ⋱
⋮

𝑔𝑛,𝑛

⋱

]   3-31 

where 𝑔0,0is the surface Green’s function for the right contact. In the decimation technique, the 

recursive technique is employed to solve the surface Green’s function. 

(𝜔2Ι + 𝑖𝜂 − 𝐻c)𝑔b = 𝐼   3-32 

here 𝐻c  is the Hamiltonian of contact. The algorithm for the decimation technique can be 

summarized in the following steps: 

1. Divide the full contact Green’s function and the operator matrix to finite portions where 

each portion is sufficiently large to cover the surface Green’s and the interaction between 

two units is limited to the neighboring ones 

[
 
 
 
 
𝜔2Ι − 𝐻0

s 𝜏0 0 ⋯

𝜏0
† 𝜔2Ι − 𝐻0

b 𝜏0 ⋯

0 𝜏0
† ⋱ ⋱

⋮ ⋮ ⋱ ⋱]
 
 
 
 

[

𝑔0,0 𝑔0,1

𝑔1,0 ⋱     
⋯ ⋯

⋱      

⋮ ⋱        
⋮

𝑔𝑛,𝑛  

⋱

]=I   3-33 

here 𝐻0
s and 𝐻0

b are the Hamiltonian matrices of the surface and bulk finite portion of one 

contact and the 𝜏0 is the coupling matrix of two divided portions. The subindices for the 

Hamiltonian matrices show the iteration number and the Eq. 3-33 is demonstrated at iteration 

0. 

2. Create and solve the system of equations obtained by multiplication of the operator matrix 

with a column of the Green’s function matrix. As an example, in compact form for column 

0, we get 

(𝜔2Ι − 𝐻0
s)𝑔0,0 + 𝜏0𝑔1,0 = I   3-34 
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𝜏0
†𝑔𝑚−1,0 + (𝜔2Ι − 𝐻0

b)𝑔𝑚,0 + 𝜏0𝑔𝑚+1,0 = 0,

𝑚 = 1,2,… 

 

3. Use the first equation in order to eliminate the divided Green’s function element with odd 

indices and calculate the Green’s function with even indices.  

𝑔2𝑚+1,0 = (𝜔2Ι − 𝐻0
b)

−1
(−𝜏0

†𝑔2𝑚,0 − 𝜏0𝑔2𝑚+2,0)       𝑚 = 0,1,2,… 

𝐻1
s = 𝐻0

s − 𝜏0(𝜔
2Ι − 𝐻0

b)
−1

𝜏0
†, 𝐻1

b

= 𝐻0
b − 𝜏0(𝜔

2Ι − 𝐻0
b)

−1
𝜏0

† − 𝜏0
†(𝜔2Ι − 𝐻0

b)
−1

𝜏0, 𝜏1

= −𝜏0(𝜔
2Ι − 𝐻0

b)
−1

𝜏0 

  3-35 

 

4. Use the same strategy as described in step 3 and remove another half of the remaining 

indices (now for the even indices). 

 

5. Recursively repeat steps 3 and 4 to find the solution for the divided Green’s functions. The 

generic form of the Green’s function calculation is shown in the compact form of  

𝐻𝑛
s𝑔0,0 + 𝜏𝑛𝑔2𝑛,0 = I 

𝜏𝑛
†𝑔(𝑚−1)2𝑛,0 + 𝐻𝑛

b𝑔𝑚2𝑛,0 + 𝜏𝑛𝑔(𝑚+1)2𝑛,0 = 0,

𝑚 = 1,2,… 

  3-36 

then the divided recursive matrices are derived as following 

𝐻𝑛
s = 𝐻𝑛−1

s − 𝜏𝑛−1(𝜔
2Ι − 𝐻𝑛−1

b )
−1

𝜏𝑛−1
† , 𝐻𝑛

s

= 𝐻𝑛−1
b − 𝜏𝑛−1(𝜔

2Ι − 𝐻𝑛−1
b )

−1
𝜏𝑛−1

†

− 𝜏𝑛−1
† (𝜔2Ι − 𝐻𝑛−1

b )
−1

𝜏𝑛−1,  𝜏𝑛
2

= −𝜏𝑛−1(𝜔
2Ι − 𝐻𝑛−1

b )
−1

𝜏𝑛−1 

  3-37 
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6. The recursive process would continue until 𝜏𝑛 → 0 and, therefore, the choice of 𝑛 should 

be large enough to satisfy this condition. This condition is obvious since the separated 

portions are within 2𝑛 difference and the long-range interaction are zero as 𝑛 increases. As 

a result, we can calculate 𝑔0,0 = (𝜔2Ι − 𝐻𝑛
s)−1 which is surface Green’s function for the 

right contact. A similar process could be applied for the left contact as well. 

 

3.4.5 Self-energy and Coupled Green’s Function 

After surface Green’s function calculation, we are going to solve the Eq. 3-26 for the device 

and calculate the coupled Green’s function. The coupled Green’s function is inverse of the operator 

and since the relation 3-27 is coupled with the surface Green’s functions of contacts, it is called 

coupled Green’s function.[91] Additionally, self-energies are the actual boundary condition that 

as a result of the decoupling of the system is appeared in the device equation. Self-energy is 

calculated as the projection of the surface Green’s functions of contacts with the coupling matrices 

of such. 

Σ = 𝜏𝑔s𝜏
†   3-38 

We should note that the coupling matrices here are different from what was described in 

section 3.4.3 in terms of the size. In relation 3-27, the coupling matrices are infinitely large in one 

of the dimensions, while for the surface Green’s function, the coupling matrices have a finite size 

in both dimension wherein one dimension they have a similar size to the device and the other 

dimension has the similar size as surface Green’s function. The calculation for the coupled Green’s 

function is a rather simple mathematical operation. The coupled Green’s function for the device 

with two contacts is  
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𝐺d = (𝜔2Ι − 𝐻d − ∑L − ∑R)−1   3-39 

where ∑L and ∑R are the self-energies of the left and the right contacts respectively. Self-energies 

have a similar size to the Hamiltonian matrix of the device but unlike that, the self-energies are 

non-Hermitian matrices. In mathematics, a non-Hermitian matrix is a matrix that is not self-adjoint 

or in other words, the conjugate transpose of this matrix is not equivalent to the matrix itself (∑ ≠

∑†). The dynamical system of the non-Hermitian operator generates imaginary eigenvalues while 

the Hermitian operator which generates only real eigenvalues. To understand the self-energy and 

impact of the imaginary eigenvalues on the solution, here we discuss the dynamical system in the 

time domain. The dynamical equation is defined 

𝑑2Ψ

𝑑𝑡2
= 𝜀2Ψ   3-40 

and its solution is expressed as Ψ = exp(−𝑖𝜀𝑡) where 𝜀 is the eigenvalue of the dynamical system. 

When the operator is Hermitian, 𝜀’s are real values. We should note that the Eq. 3-40 can be seen 

as an inverse Fourier transform of the Eq. 3-19 for a Harmonic system. Also, we should note that 

for a Harmonic system, the operator is always Hermitian and, thus, generates the real eigenvalues. 

But in the case of the non-Hermitian operator such as when the self-energy is added to the equation, 

the eigenvalues have imaginary components. The solution of Eq. 3-40 with the self-energy is  

Ψ = exp(−𝑖(√𝜀2 − Σ)𝑡),   3-41 

this relation can be simplified as follows   

Ψ ≈ exp(−𝑖𝜀𝑡)exp (𝑖
Σ𝑡

2𝜀
)   3-42 

If we differentiate the Σ based on its imaginary and its real components, we get 

Ψ ≈ exp (−𝑖 (𝜀 +
Re(Σ)

2𝜀
) 𝑡) exp (−

Im(Σ)

2𝜀
𝑡),   3-43 

the first part is similar to the solution for Eq. 3-40 where the real part of 𝜎 indicates the energy 

shift. The second part indicates the decaying function where the imaginary part of Σ is the decaying 
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factor. The decaying rate in the function represents a lifetime and its distribution has a broadening 

factor that has an inverse relation with the lifetime. For a given self-energy, the broadening factor 

(imaginary part) is what encounters the shift in energy (real part). It is easy to show that the 

broadening factor of the self-energy as   

Γ = i(∑ − ∑†)   3-44 

where ∑† is the adjoint matrix of ∑ and Γ is called “escape rate” or “leakage”. This relation simply 

returns the imaginary component of the self-energy. To find the width, the Lorentzian function can 

be fit into Γ in order to find the width of broadening as follows 

1

𝜏
= −

Im(Σ)

𝜀
   3-45 

where 𝜏 identifies as a lifetime. 

Similar to relation 3-44, the real part of the self-energy is calculated as 

Γ =
1

2
(∑ + ∑†)   3-46 

Additionally, recalling from the surface Green’s function calculation, it is apparent now 

that how small imaginary perturbation adds a decaying function into the Hamiltonian equation of 

contact. However, the encounter component of the energy shift comes as output source term on 

the right-hand side rather than the real value shift in the frequency. 

In summary, in the past few sections, we tried to lay down a detailed interpretation and 

derivation which lead to the calculation of coupled Green’s function and self-energy of the device. 

We observed the non-Hermitian aspect of self-energy generates a shift in energy and a broadening 

which encounters the generated shift. Thus, it is clear why we added a small perturbation to the 

frequency in Eq. 3-24. Small perturbation creates leakages on two sides of the device which result 

in non-equilibrium conditions and consequantly allows phonon modes to transmit through the 

device. In this condition, leakages of energy in two sides of the device are not equilibrated and 
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that’s why in many texts this method is known as non-equilibrium Green’s function. Therefore, it 

is possible to calculate the transmission function. The process of adding and decaying for perturbed 

frequency often is seen as injection and removal of phonon frequency into the system respectively. 

This process tags the contact as a source and device as a channel that allows the sources to transmit 

the phonon through. It is obvious that if the perturbation would not be added to the system then 

the leakage is zero and there is no transmission and neither surface/bulk Green’s function nor the 

source terms are defined. Here the question might be why small perturbation is only added to the 

contacts and not the device. Added small imaginary perturbation on each contact generates 

decaying wave propagation that could be dissipated along the semi-infinite length (for left contact, 

the decaying waves are left-going while for right contact, the decaying waves are right-going). 

Regarding the device, mathematically, the addition of perturbation to the dynamical system is not 

solvable since the boundary conditions for the Green’s function is not clear. Also, the influence of 

added perturbation to the frequency physically is minimal for the device with a finite size. In the 

next sections, we show how the coupled Green’s function and self-energies are used to calculate 

the transmission function and thermal conductance in the device. 

 

3.4.6 Transmission Function and Transmittance 

Here before getting to the calculation of transmission function based on Green’s function, 

we are going to provide the definitions for common terms regarding the transmission process. The 

transmission process is quantified in different forms such as transmission function, transmissivity, 

and transmittance. The transmission function is defined as the number of transmitted phonon 

modes between two materials in contact with each other. The transmission function includes 
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important information such as the density of state of interfacial material and group velocity of the 

transmitting phonon modes. Transmittance is defined as a fraction of the incident phonon modes 

which are transmitted which is a proportional relation in contrast to the transmission function. Its 

value lies between 0 to 1 and is shown as follows 

𝜃 =
Ξtransmitted(𝜔)

Ξincident(𝜔)
   3-47 

where Ξtransmitted and Ξincident are the number of phonon modes which are transmitted and the 

number of incident phonon modes respectively. Additionally, transmissivity is defined as the 

probability of the phonon modes that are transmitted from the incident. Transmissivity is the main 

component of the classical approach such as DMM.  

Next, we are going to derive the relation for the spectral transmission function based on 

the density matrix and then calculate the transmission function. The density matrix is what 

describes the statistical states of a quantum system. In one way, transmission function from contact 

to the device can be defined as a rate of change between their density matrices. Therefore, to 

calculate the transmission function, first, we need to calculate the density matrices of the device 

and contacts. For an isolated contact, the density matrix is given as  

𝜌c(𝑟, 𝑟
′) = ∑ 𝑓0(𝜔𝑛

2)𝜙𝑛(𝑟)𝜙𝑛
∗(𝑟′)𝑛     3-48 

where 𝜙𝑛 and 𝑓0 are the isolated wavefunctions and distribution function respectively. The above 

relation can be rewritten in matrix notation as  

Ρc = ∑ 𝑓0(𝜔𝑛
2)Φ𝑛Φ𝑛

†
𝑛     3-49 

Moreover, we need to calculate the density matrix of the device. We also know that there 

is a Green’s function for this system that connects the eigenfunctions of the device based on the 

eigenfunctions of the contact. If we incorporate a similar process as section 3.4.5 for the device, 

we get the wavefunction solution based on the wavefunctions of contact as Ψ𝑛 = 𝐺𝜏Φ𝑛 where the 
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𝐺 is the Green’s function of device and 𝜏 is the coupling matrix between device and contact. The 

right-hand side (source term) is calculated to be 𝑆c = 𝜏Φ𝑛 . The density matrix for the device 

similar to contact is defined as  

Ρd = ∑ 𝑓0(𝜔𝑛
2)Ψ𝑛Ψ𝑛

†
𝑛     3-50 

Using the relation between eigenfunctions of device and contact, we can expand the 

relation 3-50 based on the eigenfunctions of contact as 

Ρd = ∑ 𝑓0(𝜔𝑛
2)Ψ𝑛Ψ𝑛

†
𝑛 =

∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)∑ 𝛿(𝜔𝑛
2)Ψ𝑛Ψ𝑛

†
𝑛 =

∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)𝐺𝜏[∑ 𝛿(𝜔𝑛
2)Φ𝑛Φ𝑛

†
𝑛 ]𝜏†𝐺†  

  3-51 

If we consider the following relations  

𝐴c = ∑ 𝛿(𝜔𝑛
2)Φ𝑛Φ𝑛

†
𝑛   

Γ = 𝜏𝐴c𝜏
† 

  3-52 

then we can simplify relation 3-50 to 

Ρd = ∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)𝐺Γ𝐺†    3-53 

now by defining 𝐴 = 𝐺Γ𝐺†, the relation 3-53 further simplifies to  

Ρd = ∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)𝐴    3-54 

This relation is the density matrix of the device with one contact. Now we derive the density 

matrix for a device with two contacts. We begin with the wavefunction of the device which is 

defined as  

Ψ𝑛Ψ𝑛
† = 𝐺𝑆𝑆†𝐺†   3-55 

where the source term can be expanded in the following form 
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𝑆𝑆† = 𝜏1Φ1Φ1
†𝜏1

† + 𝜏2Φ2Φ2
†𝜏2

† + 𝜏1Φ1Φ2
†𝜏2

†

+ 𝜏2Φ2Φ1
†𝜏1

†
 

  3-56 

and we know that the wavefunctions of two contacts are disjoint and disconnected, therefore Φ1Φ2
†
 

and Φ2Φ1
†
 are zero and the relation 3-56 is simplified as 𝑆𝑆† = 𝜏1Φ1Φ1

†𝜏1
† + 𝜏2Φ2Φ2

†𝜏2
†
. Now it 

is straightforward to show the density matrix of the device is 

Ρ = ∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)∑ 𝛿(𝜔𝑛
2)Ψ𝑛Ψ𝑛

†
𝑛 =

∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)∑ 𝛿(𝜔𝑛
2)𝐺(𝜏1Φ1Φ1

†𝜏1
† + 𝜏2Φ2Φ2

†𝜏2
†)𝐺†

𝑛 =

∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)𝐺𝜏1(∑ 𝛿(𝜔𝑛
2)Φ1Φ1

†
𝑛 )𝜏1

†𝐺† +

∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)𝐺𝜏2(∑ 𝛿(𝜔𝑛
2)Φ2Φ2

†
𝑛 )𝜏2

†𝐺† 

=∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)𝐺𝜏1𝐴1𝜏1
†𝐺† + ∫𝑑𝜔𝑛

2 𝑓0(𝜔𝑛
2)𝐺𝜏2𝐴2𝜏2

†𝐺† 

  3-57 

where 𝐴1  and 𝐴2  are the spectral function of the isolated right and the isolated left contacts 

respectively. If we consider Γ1 = 𝜏1𝐴1𝜏1
†

 and Γ2 = 𝜏2𝐴2𝜏2
†

, the relation 3-50 can be further 

simplified as 

Ρ = ∫𝑑𝜔𝑛
2 𝑓0(𝜔𝑛

2)𝐺Γ1𝐺
† + ∫𝑑𝜔𝑛

2 𝑓0(𝜔𝑛
2)𝐺Γ2𝐺

†    3-58 

This relation points directly to the non-equilibrium density matrix for a device which 

results in the flow of the phonon modes from one contact to another. Now we calculate the current 

phonon flow in the device by finding the expression for derivative of the probability density. We 

begin with the dynamical system in Eq. 3-24 and we use the same notation here. The time 

derivative of probability density is given as 

𝐼 ≡
𝑑

𝑑𝑡
�̅�d�̅�d

†
 3-59 

where �̅�d is the wavefunctions of the device. If we take a similar implementation to the relation 3-

57 here, the rate of change of probability density is calculated as   
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𝐼 ≡
𝑑

𝑑𝑡
�̅�𝑑�̅�𝑑

† =
𝜔(𝑇𝑟[𝑢d

†𝜏1𝑢1−𝑢1
†𝜏1

†𝑢d])

2𝑖
    3-60 

We take Eq. 3-60 from here and expand it with the eigenfunction that is divided into 

isolated and reflected wavefunctions as 

𝐼 =
𝜔

2𝑖
Tr[�̅�d

†𝜏1�̅�1
i − �̅�1

i†𝜏1
†�̅�𝑑]

−
𝜔

2𝑖
Tr[�̅�1

r†𝜏1�̅�d − �̅�d
†𝜏1

†�̅�1
r] 

  3-61 

the current flow is now divided into two terms where the first and second terms are known as 

inflow and outflow respectively. The inflow is the rate of change of probability density 

proportional to the incident phonon modes (isolated contact modes) and the outflow is the rate of 

change proportional to the reflected/scattered phonon modes (reflected contact modes) from 

contact 1. The inflow can be modified in terms of the Green’s function and source terms such that 

𝐼inflow =
𝜔

2𝑖
Tr[𝑆†𝐺†𝑆1 − 𝑆1

†𝐺𝑆] =
𝜔

2𝑖
Tr[𝑆1𝑆1

†(𝐺† − 𝐺)]

=
𝜔

2
Tr[𝑆1𝑆1

†𝐴] 

  3-62 

similarly, for outflow, we get 

𝐼outflow =
𝜔

2𝑖
Tr[�̅�𝑑

†𝜏1𝑔1
†𝜏1

†�̅�𝑑 − �̅�𝑑
†𝜏1𝑔1𝜏1

†�̅�𝑑]

=
𝜔

2𝑖
Tr[𝑆†𝐺†𝐺𝑆(𝜏1𝑔1

†𝜏1
† − 𝜏1𝑔1𝜏1

†)]

=
𝜔

2𝑖
Tr[𝐺𝑆𝑆†𝐺†Γ1] 

  3-63 

Next, we sum over all the eigenstates and subtract the outflow from inflow, therefore we 

get  
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𝐽1 = 𝐼inflow − 𝐼outflow

= ∫
ℏ𝜔

2𝜋
{Tr[𝐴dΓ1]𝑓1 − Tr[𝑓1𝐴1Γ1 + 𝑓2𝐴2Γ2]}𝑑𝜔

= ∫
ℏ𝜔

2𝜋
Tr[𝐴2Γ1][𝑓1 − 𝑓2]𝑑𝜔

= ∫
ℏ𝜔

2𝜋
Tr[Γ1𝐺Γ2𝐺

†][𝑓1 − 𝑓2]𝑑𝜔 

  3-64 

where Ξtransmitted = Tr[Γ1𝐺Γ2𝐺
†] is known as transmission function in spectral space and the 

relation 3-64 is equivalent of Landauer formula. An exactly similar process could be applied 

concerning the device and contact 2 and the transmission function in this case is 

Ξtransmitted = Tr[Γ2𝐺Γ1𝐺
†] 

𝐽2 = ∫
ℏ𝜔

2𝜋
Ξtransmitted[𝑓2 − 𝑓1]𝑑𝜔 

  3-65 

This concludes the spectral transmission function calculation. In many instances for 

transmission matrix and transmission function itself, a spectral function of 𝐴 was defined in the 

derivations, next we will see how this function is used to calculate the local DOS. 

3.4.7 Local Density of States 

One of the important feathers of Green’s function approach is the ability to calculate local 

DOS for any component of the system. To find the local DOS, first, we need to define global DOS 

which measures the number of the phonon modes at a particular frequency (𝜔) with a determined 

broadening factor (𝛿). The global DOS for a Harmonic matrix as 𝐻 is defined as  

𝐷(𝜔) = ∑𝛿(𝜔 − 𝜔𝑛)

𝑁

𝑛

= ∑2𝜔𝛿(𝜔2 − 𝜔𝑛
2)

𝑁

𝑛

   3-66 

here both relations satisfy the following property for a DOS 
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∫ 𝛿(𝜔 − 𝜔𝑛)𝑑𝜔
𝜔𝑛+0+

𝜔𝑛−0+

= ∫ 2𝜔𝛿(𝜔2 − 𝜔𝑛
2)𝑑𝜔

𝜔𝑛+0+

𝜔𝑛−0+

= 1   3-67 

Then the local DOS is calculated as a weighted form of relation 3-61 based on the 

probability density as 

𝐷(𝑑,𝜔) = ∑2𝜔𝛿(𝜔2 − 𝜔𝑛
2)𝜙𝑛(𝑑)𝜙𝑛

∗(𝑑)

𝑁

𝑛

   3-68 

where 𝜙𝑛’s are the local eigenfunctions for mode 𝑛 which are calculated for the contacts or the 

device. The local DOS can be written into a matrix form where the diagonal elements are 

calculated from relation 3-68. The modified relation is 

𝐷(𝑑,𝑑′; 𝜔) = 2𝜔∑𝛿(𝜔2 − 𝜔𝑛
2)𝜙𝑛(�⃗�)𝜙𝑛

∗(�⃗�′)

𝑁

𝑛

   3-69 

where the diagonal components of this relation are the spectral local DOS. Additionally, we define 

the spectral function as 

𝐴(𝑑, 𝑑′; 𝜔) = 2𝜋 ∑𝛿(𝜔2 − 𝜔𝑛
2)𝜙𝑛(�⃗�)𝜙𝑛

∗(�⃗�′)

𝑁

𝑛

   3-70 

This relation enables us later to derive the local DOS based on the Lorentzian function. 

Here we can write the local DOS based on this spectral function such that  

𝐷(𝑑, 𝑑′; 𝜔) =
𝜔𝐴(𝑑, 𝑑′; 𝜔)

𝜋
   3-71 

here we can fit a Lorentzian function for diagonal elements of matrix 𝐴. If 𝑛th element of the 

matrix 𝐴 is given then the spectral function of that element is 

𝐴(𝜔) = 2𝜋𝛿(𝜔2 − 𝜔𝑛
2) = lim

𝜂→0+

2𝜂

(𝜔2 − 𝜔𝑛
2)2 + 𝜂2

   3-72 

where the Lorentzian function further can be separated into two fractions as 



 57 

lim
𝜂→0+

2𝜂

(𝜔2 − 𝜔𝑛
2)2 + 𝜂2

≈ 𝑖 (
1

𝜔2 − 𝜔𝑛
2 + 𝑖0+

−
1

𝜔2 − 𝜔𝑛
2 − 𝑖0+

) 

  3-73 

It is apparent that the first fraction is the definition of retarded Green’s function and the 

second fraction is the definition of the self-advance Green’s function. Therefore, the spectral 

function is calculated such that 𝐴(𝑛, 𝑛;𝜔) = 𝑖(𝐺(𝑛, 𝑛; 𝜔) − 𝐺∗(𝑛, 𝑛;𝜔)). Furthermore, we can 

generalize these relations in matrix notation. The generalized spectral function is  

𝐴(𝜔) = 2𝜋𝛿(𝜔2Ι − 𝐻)   3-74 

where 𝐻  is the Hamiltonian matrix with diagonal elements. Based on this relation, spectral 

function 𝐴 can be generalized with the Green’s function as 

𝐴(𝜔) = 2𝜋𝛿(𝜔2Ι − 𝐻)

= 𝑖((𝜔2 − 𝐻 + 𝑖0+)−1 − (𝜔2 − 𝐻 − 𝑖0+)−1)

= 𝑖(𝐺 − 𝐺†) 

  3-75 

here 𝐺 is a retarded Green’s function in a matrix format.  

As we have seen before, the broadening of DOS is tied with the choice of 𝜂. Earlier we 

mentioned that 𝜂 should be small enough to retain a linear dynamical system. However, continuity 

of DOS requires a broadening factor which is larger than the frequency difference between two 

local DOS’s of interfacial materials. This means that the choice of 𝜂 should be large enough that 

the continuous local DOS’s are obtained for a coupled system of device and contacts. Figure 14 

shows the interpretation of the frequency exchange in the interface as a source (contact) and drain 

(device). 
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Figure 14 Frequency distribution exchange for the isolated contact (left) and a broadening of frequency level 

for a coupled system of contact and device (right) 

 

Figure 14 indicates how the frequency from an isolated contact is changed to the 

frequencies in the coupled system of contact and device. The frequency levels in isolated contact 

are a quantized set. We can see two quantized frequency levels which would indicate the frequency 

of the device and contact. The set of frequencies would match each other at the interface. The 

difference in frequency level is included in the source term and the broadening necessary to match 

the quantized frequency levels is the small perturbation. The only way to get continuous DOS is 

to maintain a fine frequency grid and appropriate choice of 𝜂 to cover the differences. 

Additionally, from Green’s function representation, we know that the broadening is also 

described by the self-energy term. If the self-energy term is calculated, then its imaginary 

component shows the broadening factor, which in this case, Green’s function is given as 𝐺 =

(𝜔2Ι − 𝐻 − Σ)−1; if we put this equation back into the local DOS, we obtain second relation to 

calculate the local DOS as 
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𝐴(𝜔) = 𝐺Γ𝐺† 3-76 

If we compare relations 3-68 with 3-64 or 3-65, we could see how the local DOS is playing 

a role in the transmission function formulation. Also, we note this formulation is more useful when 

the self-energy or escape rate terms are calculated.  

Moreover, in many instances, the frequency times DOS is reported. In literature [91, 93], 

usually, the frequency times Green’s function is noted as 𝐺<, therefore the relations for frequency 

times local DOS are calculated as  

𝑓𝐴 = 𝑖(𝐺< − 𝐺<†) = 𝐺<Γ𝐺<†   3-77 

 

3.4.7.1 Remarks 

1. In practical applications, the size of each component is important. The device usually 

includes all the dissimilarities but it should be large enough to make a clear separation 

between two contacts. As we have assumed and shown in this chapter, two contacts do not 

interact with each other. Also, the size of contacts depends on their periodic units and the 

size of small perturbation. The size of contact should be large enough that the periodicity 

is fully obtained and the frequency demonstrates a decaying behavior. 

2. The surface Green’s function is the response to the addition of a small decaying component 

(imaginary frequency) to the dynamical system of contact. The decay of the additional 

component constitutes the Dirichlet boundary condition at the far end of the contact which 

satisfies the requirement for surface Green’s function solution. The validity of the surface 

Green’s function depends on capturing the full decay length; however, the extent of decay 

depends on the value of a small imaginary component which is an arbitrary value in our 

simulations. In this regard, the decimation technique provides a robust recurrent numerical 
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technique that guarantees the convergence of the decaying process in contact for any 

arbitrary value of an imaginary component. The analytical approach is only good when 

there is a full understanding of the extent of the decaying process in a contact. 

3. All the given calculations can be generalized into the 2D and 3D materials. If the material’s 

non-periodicity is along transmission direction only, other periodic dimensions could be 

dealt with as a simple lattice dynamics calculation. For instance, if we have a 3D material 

with only non-periodic structure along the transmission direction, we only need to solve 

the Green’s function along the transmission direction and the transmission function would 

be the average over all the polarization in two other periodic dimensions. In this case, the 

problem reduces to the solution which resembles many 1D atomic chains of the device and 

two contacts. [18, 96, 97] 
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4.0 Quantum Phonon Transport Across Grain Boundaries in Graphene using Machine 

Learning Based on Small Dataset 

4.1 Introduction 

Grain boundaries (GBs) are of interest in many applications because they are common 

defects and largely affect electrical, mechanical, and thermal properties. For two dimensional (2D) 

materials such as graphene, experimental studies showed that GBs commonly exist in graphene 

sheets prepared by exfoliation [69, 98-101], causing the fundamental physical properties of 

polycrystal samples largely deviate from those of single crystals. Therefore, engineering GBs is 

an effective way to achieve desired electronic, thermal, and mechanical properties in many 

applications [14, 102-109]. 

The physical properties are largely dependent on the local atomic structure of GB [101, 

102, 110] and thus it is important to establish the structure-property relationship on how a GB 

structure affects the physical properties. However, establishing such a structure-property 

relationship has been challenging mainly for two reasons. The first is that GBs have extremely 

large configurational space. For example, three dimensional (3D) materials have 5 degrees of 

freedom (misorientation angle noted as M hereafter, line angle, and three degrees of freedom of 

crystalline grain orientation in 3D space) for GB structures, making the configurational space 

extremely large. The second is that the experimental characterization of individual GB requires 

significant efforts particularly for preparing samples with a geometrically well-defined GB. The 

samples with GBs have been prepared by bonding two wafers with a twist angle but it often leaves 
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a void at the interface [111]. Therefore, it is challenging to experimentally study enough number 

of GBs to draw a statistically conclusive finding on the structure-property relationship. 

Atomistic simulation can be a useful tool for the study of GBs if it has high predictive 

power, but also has major challenges. The atomistic simulation for thermal transport such as 

molecular dynamics (MD) [103-105, 112-114] and the atomistic Green’s function (AGF) [109, 

115] require an interatomic potential. A common approach for the interatomic potential has been 

empirical potentials that have a rigid functional form parametrized based on quantum mechanical 

calculation results and experimental data. Although the empirical potentials have been useful for 

promoting the understanding of physical phenomena from an atomistic level, they have clear 

limitations. For the physical properties that were not considered for the parametrization, empirical 

potentials do not provide an accurate prediction. Also, because of its rigid functional form, it is 

usually not flexible enough to describe a wide range of atomic configurations. On the contrary, ab 

initio calculation can be highly accurate and have a predictive power without adjustable parameters 

as demonstrated by the recent studies. For example, the high thermal conductivity of boron 

arsenide was experimentally confirmed [116-118] after the prediction from ab initio simulation 

[119]. Also, the significant hydrodynamic phonon transport in graphitic materials was predicted 

using ab initio simulation first [120, 121] and then experimentally confirmed [122, 123]. However, 

the ab initio simulation for thermal transport has been limited to single crystalline phase and point 

defect cases. For the thermal transport across GBs, the ab initio simulation is not feasible due to 

its high computational cost considering the size of GB atomic structures.   

A recently emerging method is to use machine learning schemes to predict the interatomic 

interactions based on the dataset from ab initio simulations [25, 124-134]. This so-called machine 

learning interatomic potential (MLIP) was motivated by the fact that the interatomic interaction is 
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a function in a high dimensional space where machine learning outperforms conventional 

regression methods. Recently developed MLIPs show that the MLIP can be as accurate as ab initio 

calculations while its computational cost is several orders-of-magnitude cheaper than the ab initio 

calculations [25, 70, 124, 125]. In particular, the MLIP was proven for predicting the thermal 

transport in the crystalline phase [25, 125, 128] and partially disordered crystalline phase that has 

vacancies [25]. This confirms that the MLIP is accurate enough to correctly capture subtle 

anharmonicity, which is critical for phonon-phonon scattering and phonon-strain field scattering, 

and is also flexible enough to describe various atomic configurations including vacancies. 

However, extending the past success of MLIP to spatially extended disorder case (e.g., GBs) has 

some challenges. Unlike vacancies, the GBs have extremely large atomic configurational space. 

Therefore, the training dataset should be carefully designed such that it can represent the entire 

configurational space. In addition, the size of the training dataset should be minimal since 

generating the training dataset from ab initio calculation can be prohibitively expensive 

considering the typical size of GB structures. 

In this work, we develop MLIPs using the Gaussian regression, called the Gaussian 

approximation potential (GAP) [70, 72], for studying phonon transport across graphene GBs. We 

use a systematic framework based on the structural unit model to select the complete and 

orthogonal training dataset. With the carefully chosen a few GBs for the training dataset, we show 

that the GAP can produce identical results as the ab initio calculations for the wide range of GBs 

while its computational cost is 6 orders of magnitude cheaper than the ab initio calculations. We 

should note that our MLIP is 3 orders of magnitude more expensive than the empirical potential 

for a molecular dynamic simulation. Using the GAP and AGF, we then report several important 

features of phonon transport across GBs in graphene with its high predictive power. We distinguish 
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the influence of dislocation core and extended strain field on phonon scattering, and reveal an 

intriguing scattering of flexural phonon modes by out-of-plane buckling in graphene GBs. We also 

briefly evaluate an empirical Tersoff potential (TSF) [135, 136] that has been widely used in past 

studies by comparing it to GAP. 

4.2 Methods 

4.2.1 Identifying the Small Set of GBs Representing the Entire Configurational Space of 

GBs  

In this work, we consider a total 20 GBs that covers the full span of M (0° to 60°) which 

include a variety of disclination densities and different topological arrangement of disclinations. 

We focus on symmetric GBs with zero line angle because several parameters that are expected to 

affect phonon scattering such as GB formation energy, dislocation density, and out-of-plane 

roughness are nearly unchanged with the line angle in graphene [100]. To best of our knowledge, 

the set of selected GBs represent the most complete set of graphene GBs which are studied for 

thermal properties. The M and coincidence site lattice (CSL) Σ values of the 20 GBs are listed in 

Table 1. The supercells containing each of GBs were generated using an algorithm based on the 

centroidal Voronoi tessellation [100]. Then, we appended the same supercell that is rotated by 

180 resulting in two GBs along with the opposite directions in a supercell. Such supercells are 

preferred for the subsequent relaxation process using MD simulation since they have translational 

symmetry along all directions including the direction perpendicular to the GB line. An example 

supercell is shown in figure 10. 
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 We then relaxed the obtained supercell by running MD simulations at 300 K in the NVT 

ensemble over 100 ps using the LAMMPS package, with a time step of 0.5 fs and TSF potential. 

Those supercells were used for training a GAP based on TSF interatomic potential (GAPTSF), 

which was used for the validation of our methods. A separate set of 20 supercells were further 

relaxed by density functional theory (DFT) calculation to develop another GAP based on DFT 

(GAPDFT) which we used to study the phonon transport across GBs in graphene. For the DFT 

calculations, we used the energy minimization scheme in the VASP package using ultrasoft 

pseudopotentials with a plane wave cutoff energy of 286 eV. The convergence criteria for energy 

and force were set to 10-8 eV and 10-6 eV/Å, respectively. The resulting supercells relaxed by TSF 

and DFT slightly differ as shown in Table 2. 
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Table 2 List of the 20 GBs with their structural properties. The 5 representative GBs chosen by the SOAP 

dissimilarity analysis are indicated with superscripts † and ‡ for the structures relaxed by TSF and DFT, 

respectively. 

index θM (deg.) 
CSL 

∑ 

Structures relaxed by TSF Structures relaxed by DFT 

GB period (Å) 
Disclination 

density (Å-1) 
GB period (Å) 

Disclination 

density (Å-1) 

1 6.01† 91 23.7608 0.0842 23.3084 0.0858 

2 7.34 61 19.4537 0.1028 19.0835 0.1048 

3 9.43 37 15.1509 0.132 14.8627 0.1346 

4 10.99 109 26.0123 0.1537 25.5172 0.1568 

5 13.17‡ 19 10.8593 0.1842 10.6527 0.1877 

6 16.43 49 17.4449 0.2293 17.1116 0.2337 

7 17.9† 93 24.0326 0.2497 23.5727 0.2545 

8 21.79‡ 7 6.6012 0.3029 6.4725 0.309 

9 26.01‡ 79 22.1546 0.3611 21.7306 0.3681 

10 27.8 39 15.5647 0.3855 15.2662 0.393 

11 29.41 97 24.5397 0.4075 24.0737 0.4154 

12 32.2 13 8.9919 0.4448 8.8178 0.4536 

13 35.57 67 20.3977 0.3922 20.0072 0.3998 

14 40.35†,‡ 103 25.2933 0.3163 24.8106 0.3224 

15 42.1 31 13.8792 0.2882 13.6149 0.2938 

16 44.82† 43 16.3393 0.2448 16.0284 0.2496 

17 46.83 57 18.8093 0.2127 18.4503 0.2168 

18 48.36†,‡ 73 21.2859 0.1879 20.8804 0.1916 

19 49.58 91 23.7631 0.1683 23.3122 0.1716 

20 50.57 111 26.2369 0.1524 25.7374 0.1554 
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A challenge in developing an MLIP for GBs is how to prepare a complete set of training 

data. Considering the typical period length of GBs and the area strained by a GB, a supercell that 

contains a GB can be often too large for the ab initio calculation. Thus, for the training dataset, it 

is critical to select a small set of GBs that can represent the entire configurational space of GBs. 

In early studies developing an MLIP for general purpose, a fraction of the total database was 

chosen for the training dataset without much rationale, with the remaining as the testing dataset 

[25, 70, 72, 73, 137]. Recently, active learning schemes have been proposed to reduce the size of 

training dataset [138-140], making it possible to simulate the dynamic evolution of systems such 

as phase change in a large scale for a long time period. While the active learning scheme can be 

used for general cases, it does not allow to use of preexisting knowledge on the system of study 

even when it is available. Besides, the active learning scheme is more suitable for molecular 

dynamics simulation in which a training dataset is added based on the measured uncertainty at 

each time step. For phonon transport simulation, the lattice dynamics-based method (e.g., AGF) 

has several important advantages over molecular dynamics simulations such as modal analysis and 

no statistical error. 

We use the fact that most GBs have hierarchical structures with basic building blocks as 

demonstrated in the previous studies that analyzed the GB structures with the structural unit model 

[141-143]. A basic idea is to identify those basic building blocks or unique local atomic 

environments (LAEs) from many GBs and find a small set of GBs that contain the complete set of 

the unique LAEs [144]. Then, an MLIP trained with the data from the small set of GBs is expected 

to accurately capture the interatomic interactions of GBs in the entire configurational space.  



 68 

We used the smooth overlap of atomic positions (SOAP) [87] descriptor to find the smallest 

GB dataset that contains all the representative LAEs in the 20 GBs. The SOAP descriptor places a 

Gaussian function on each atom to construct the density of neighbor atoms 𝜌𝑖 , which is then 

expanded in a basis set of radial functions gn(r) and spherical harmonics Ylm(r) as 

𝜌𝑖(𝐫) = ∑ 𝑐𝑛𝑙𝑚
(𝑖)

g
𝑛
(𝑟)𝑛𝑙𝑚 𝑌𝑙𝑚(𝐫),  4-1 

where 𝑐𝑛𝑙𝑚
(𝑖)

 are the expansion coefficients for atom i. The descriptor is formed from these 

coefficients by computing the power spectrum elements 

𝑝
𝑛𝑛′𝑙

(𝑖)
=

1

√2𝑙+1
∑ 𝑐𝑛𝑙𝑚

(𝑖) (𝑐
𝑛′𝑙𝑚

(𝑖) )∗
𝑚 .  4-2 

The resulting descriptor has invariance under translation, rotation, and the permutation of 

atoms. For each GB, a SOAP descriptor for each atom i in the GB is calculated and represented as 

coefficients of basis functions 𝒑𝑖 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑁} . The length of the SOAP vector N is 

determined by a radial basis cutoff nmax and an angular basis (spherical harmonic) cutoff lmax. We 

evaluate the dissimilarity of LAEs using SOAP descriptors which is defined as [144]: 

𝑑𝑖𝑗 = √𝒑𝑖 ∙ 𝒑𝑖 + 𝒑𝑗 ∙ 𝒑𝑗 − 2𝒑𝑖 ∙ 𝒑𝑗 4-3 

where 𝒑𝑖 and 𝒑𝑗 are the SOAP vectors for the two atoms i and j. We introduce a parameter 

, serving as a criterion for the unique LAE. If 𝑑𝑖𝑗 > , the 𝒑𝑖 and 𝒑𝑗 are different from each other 

indicating that the two atoms i and j are surrounded by different LAEs. Otherwise, we determine 

𝒑𝑖 and 𝒑𝑗 represent the same LAE. In this work, we used 0.04 for the value of . 

The 20 GBs covering the full span of M contain a total of 5544 LAEs and the dissimilarity 

analysis show that there exists significant overlap among the 5544 LAEs; the total 5544 LAEs can 

be reduced to only 12 and 13 unique LAEs for the structures relaxed by TSF and DFT, respectively. 

The TSF and DFT produce slightly different structures after relaxation, and hence the number of 
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unique LAEs also differ. The analysis shows that the total 20 GBs covering the full span of M can 

be composed using those 12 or 13 unique LAEs, confirming the idea that the extremely large 

configurational space of GBs in fact have a very small number of basic building blocks. We then 

identified 5 representative GBs shown in figure 16 that contain all of the 12 or 13 unique LAEs. 

The selected GBs significantly differ from each other in terms of the topological arrangements and 

the density of disclinations. We used the 5 GBs to generate a training dataset for our GAP, train 

the GAP, and performed the AGF simulation with the GAP to simulate the phonon transport across 

GBs as discussed in the method sections. 

 

Figure 15 Five representative GBs from (a) TSF and (b) DFT showing distinct features such as density of 

disclinations and their topological arrangements. The angle in each figure shows the misorientation angle. 

The green circle shows the cutoff radius for defining LAE. 

 

4.2.2 Training GAP 

We trained two separate GAPs: GAPTSF for the validation of our methods using relatively 

cheap TSF potential and GAPDFT for studying of phonon transport across GBs with ab initio 

accuracy. For training dataset, we performed MD simulations of the 5 representative GBs and 

obtained the snapshots of the atomic position, force, and energy. The MD simulations were 

44.82º

(b)

(a)

48.36º40.35º17.9º6.01º

21.79º 48.36º13.17º 40.35º26.01º

LAE



 70 

performed at 300 K in the NVT ensemble with a time step of 0.5 fs. After initial time steps for 

thermal equilibration, we took one snapshot every 50 time steps to reduce the correlation between 

snapshots. The training datasets for both GAPTSF and GAPDFT include relaxed structures of the 

5 selected GB structures and 50 snapshots for each GB at 300K. After obtaining the training 

dataset, we used the hyperparameters listed in Table 3 to train GAPTSF and GAPDFT. 

 

Table 3 List of hyperparameters for GAPTSF and GAPDFT 

Hyperparameter Note 2-body 3-body SOAP 

rcut (Å) Cutoff radius of the descriptor 4.0 4.0 4.0 

d (Å) 

Transition width over which the 

magnitude of SOAP descriptor 

monotonically decrease to 0 

- - 1.0 

 (eV) Weight of different descriptors 10.0 3.7 0.07 

Nt 

Number of representative atomic 

environments selected using the 

corresponding sparse method 

50 200 650 

Sparse method  Uniform Uniform CUR 

nmax Radial basis cutoff - - 12 

lmax Angular basis cutoff - - 12 

energy (eV/atom) Expected error for atomic energy 0.001 

force (eV/Å) Expected error for force 0.0005 
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4.2.3 AGF Simulation 

For the AGF simulation, the supercell needs to be sufficiently large so that the leads do not 

have strain from a GB. The supercell we used for the AGF calculation is 10 times longer in the 

direction perpendicular to GBs than those we used for SOAP dissimilarity analysis and training 

GAP. Since the AGF simulation does not require translational symmetry along the heat flow 

direction, the supercells for the AGF calculation contain only one GB for each unlike those for 

training the GAP that have two GBs. The comparison of supercells for GAP training and AGF 

simulation in terms of the size can be found in Table S1 in the supplementary information. The 

second-order force constants were calculated using phonopy [145] and LAMMPS [146] with 

GAPTSF or GAPDFT. In the AGF simulation, we used decimation technique [94, 95] to 

approximate surface Green’s functions and we used a frequency broadening factor of 1 cm-1 for 

the continuous representation of discrete eigenfrequencies. We observed a good convergence of 

transmission function with 20 transverse wavevectors for the GB with the largest width 

(M=50.57°). For other GBs, the number of transverse wavevectors was determined such that the 

product of the number of transverse wavevectors and the width of GB is the same for all GBs. We 

should note that our AGF simulation framework result in nearly similar transmission function and 

thermal conductance to compare with previous work which used empirical potential and AGF 

simulation for graphene GBs [109]. From previous study, the calculated thermal conductance of 

two common GBs, GB17 and GB20, are 0.66GW/m2K and 4.2GW/m2K at 100K and 300K 

respectively which are close to our calculation of 0.65GW/m2K and 4.18GW/m2K at 100K and 

300K respectively. This may serve as validation for our AGF simulation framework. 



 72 

4.3 Results and Discussions 

We use the GAPTSF to validate our simulation framework from selecting representative 

GBs to the AGF calculation. Unlike the ab initio calculation, the TSF potential is computationally 

cheap enough to generate the data of interatomic force constants and transmission function of all 

the 20 GBs. Therefore, the GAPTSF can be directly validated against the results from TSF for all 

the 20 GBs. In figure 17, we compare the GAPTSF and TSF for the GB formation energy, and 

spectral phonon transmission function. The GAPTSF and TSF agree well with each other for the 

prediction of the GB energy for both the training and testing GBs. In particular, the spectral phonon 

transmission functions, the property of interest in this work, are identical for all GBs. This confirms 

that the 5 GBs chosen from the LAE analysis are enough to represent the entire 20 GBs and thus 

the resulting GAP is highly accurate and reliable for a wide range of GBs.  

 

Figure 16 Validation of GAPTSF against TSF for (a) formation energy of GBs, and (b) transmission function. 

The solid symbols in (a) represent GBs used for training the GAPTSF. The solid lines and dots in (b) are from 

GAPTSF and TSF, respectively. In (b), the two GBs with θM=6.0° and 48.36° and the other two GBs with 

θM=9.43° and 50.57° are from the training and testing dataset, respectively. 

With the success of GAPTSF, we proceeded to developing GAPDFT using the training 

dataset from DFT calculation. Like GAPTSF, the GAPDFT also shows excellent accuracy. The 
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root-mean-square of errors (RMSE) of energy and force are 0.0011 eV and 0.052 eV/Å 

respectively for the training set, and the RMSE of energy and force are 0.0019 eV and 0.066 eV/Å 

respectively for the testing set. In figure 18, we examine the GAPDFT compared to DFT for the 

relaxed atomistic structures. The structures relaxed by the GAPDFT are identical to those by DFT 

in particular for the out-of-plane atomic displacements. 

 

 

Figure 17 Validation of GAPDFT against DFT for relaxed structures projected onto a-b plane. (a) θM =48.36º 

from the training dataset and (b) θM=9.43º from the test dataset.  The color represents out-of-plane 

displacement in Å. 

Figure 19 presents the GB formation energy from GAPDFT and DFT, showing good 

agreement between them for the entire range of M. The overall trend of GB formation energy 

from the GAPDFT follows the trend predicted by the Read-Shockley model [147]; the GB 
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formation energy is linear to M for low M (<15°) and high M (>45°) while the mid-range M 

show non-monotonic behavior of GB formation energy with respect to M.  

 

Figure 18 Comparison of DFT, GAPDFT, and TSF for (a) GB formation energy, (b) core energy, and (c) 

strain energy. The solid symbols in (a) represent the GBs that were used for training GAPDFT. 

In figures 19b and 19c, we separate the GB formation energy into the contribution from 

local dislocation cores (core energy, 𝐸core) and surrounding strain field (strain energy, 𝐸strain) 

[148, 149] to better understand the GB formation energy and its effects on phonon transport. We 

should note that this is one of the noteworthy advantages of MLIPs. The MLIPs can predict each 
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atom’s contribution to total energy while DFT cannot in principle. The core energy (𝐸core) and 

strain energy (𝐸strain) can be defined as: 

𝐸core =  
∑ 𝐸𝑖 −

𝑁core
𝑁tot

𝐸bulk
𝑁core
𝑖

𝑙unit
 

4-4 

 

𝐸strain =  
∑ 𝐸𝑖 −

𝑁strain
𝑁tot

𝐸bulk
𝑁strain
𝑖

𝑙unit
 

4-5 

where 𝑁core and 𝑁strain are the number of atoms forming dislocation cores (pentagons and 

heptagons) and hexagon lattices, respectively. The 𝑁tot is the total number of atoms. The 𝐸bulk 

and 𝑙unit are the energy per atom in the perfect crystalline phase and the length of GB. The core 

energy and strain energy from GAPDFT in figures 18b and 18c seem physically reasonable. Since 

the GB in 2D material is equivalent of 1D chains of aligned dislocations, the dislocation density 

only depend on the number of dislocations that are placed along the GB line. The dislocation 

density linearly increases with M, have a maximum value at mid-M, and linearly decreases with 

M (see figure 20). Therefore, the core energy in figure 19b is maximum in the mid-M range where 

the dislocation density is maximum. The strain energy is minimum in the same M range where 

the lattice can open up to insert one additional lattice plane to form an edge dislocation and thus 

the strain is minimized [150].  
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Figure 19 Density of disclination for selected 20 GBs relaxed with TSF and GAPDFT showing the maximum 

at the θM of around 35°. 

In figure 21, we present the thermal resistance as a function of M at various temperatures 

from the AGF and the Landauer formalism calculations. At high temperatures of 500 K and 1500 

K in figures 21c and 21d, the thermal resistance has a concave shape with respect to M, having a 

maximum resistance value at mid M range. This behavior is similar to the case of Si and diamond 

at 1000 K that a previous study reports using molecular dynamics simulation with an empirical 

potential [104]. A common explanation for this behavior has been that the dislocation density is 

the maximum in the mid-M and thus the phonon scattering by GBs is expected to be maximum in 

the mid-M range. However, we observe different behaviors at low temperatures at 300 K and 100 

K. At 300 K in figure 21b, the concave shape of thermal resistance becomes negligible and the 

resistance is nearly independent of the M. As temperature further decreases to 100 K in figure 

21a, the thermal resistance shows a convex shape with respect to M, having the lowest thermal 

resistance at mid-M. The behavior of thermal resistance at 100 K and 300 K is clearly opposite to 

the current understanding that the higher dislocation density leads to higher thermal resistance. For 

graphene GBs, the higher dislocation density does not necessarily lead to higher thermal resistance. 

In particular, at 100 K, the thermal resistance is even higher when the dislocation density is smaller.  
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Figure 20 Thermal resistance with varying misorientation angles at (a) 100 K, (b) 300 K, (c) 500 K, and (d) 

1500 K. 

A possible explanation for this intriguing behavior of thermal resistance as a function of 

M at different temperatures is that dislocation core and nearby strain field affect the phonon 

scattering by GBs to the different extents at different temperatures. At low temperatures, heat is 

mostly carried by long wavelength phonons which experience only weak scattering by dislocation 

cores since the wavelength is much longer than the characteristic size of the cores. The strain field 

can be a major contributor to the phonons scattering at low temperatures due to its spatially 

extended characteristics. This is supported by the fact that the strain energy distribution in figure 

19c and the thermal resistance at 100 K in figure 21a have a similar trend with respect to M; both 

thermal resistance and strain energy are minimum in the mid-M. At high temperatures where the 

short wavelength phonons are the major heat carriers, the wavelengths become comparable to the 

size of dislocation cores which thus cause strong scattering due to its nature of large lattice 
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distortion compared to the strain field. The thermal resistance at 500 K and 1500 K in figure 21 

follow a similar trend as the core energy in figure 19b.  

Observing the important role of the strain field for phonon scattering at low temperatures, 

we further investigate its detailed mechanisms. Figures 22a and 22b show the thermal conductance 

normalized by the ballistic thermal conductance of perfect graphene as a function of temperature. 

The normalization eliminates the specific heat effects from the conductance and thus shows how 

much the thermal conductance is suppressed by phonon scattering at a GB at various temperatures. 

The total 20 GBs can be clearly separated into two groups: one showing monotonously decreasing 

normalized thermal conductance as a function of temperature shown in figure 22a and the other 

showing increasing at low temperature and then decreasing normalized thermal conductance with 

temperature shown in figure 22b. It is interesting to see that most GBs of the first group are from 

mid-M while the latter group is from the small and large M. To explain the different behavior of 

the two GB groups, we consider spectral transmissivity defined as the phonon transmission 

function across a GB normalized by the ballistic phonon transmission function across single 

crystalline graphene. In figure 22c, we present the spectral transmissivity for the two GBs with M 

of 6.02° and 32.20° that represent each group. In the frequency range below 15 THz which 

dominates the thermal transport below room temperatures, the two GBs show a remarkable 

difference. While the spectral transmissivity is high and nearly constant for the GB with 

M=32.20°, the transmissivity for the GB with M=6.02° is low and increases rapidly with 

frequency. It is noteworthy that the majority of phonon states below 15 THz are from the flexural 

acoustic phonon branch due to the quadratic phonon dispersion and large density-of-states. 
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Figure 21 Role of out-of-plane buckling for scattering of flexural phonon modes. (a-b) normalized thermal 

conductance as a function of temperature for (a) GBs showing monotonously decreasing behavior and (b) 

GBs showing increasing behavior at low temperatures. The values in the legends represent misorientation 

angle. (c) Phonon transmissivity for two representative GBs showing a remarkable difference in low phonon 

frequency range below 15 THz. (d) Comparison of the two representative GBs in terms of out-of-plane 

buckling. The color represents out-of-plane displacement of atoms and the pentagon and heptagon are 

marked in blue and red, respectively. 

The remarkably different scattering of flexural modes in the two GB groups is originated 

from the structural difference, in particular buckling induced by a GB. This is consistent with the 

previous studies [151, 152] that showed flexural modes are strongly scattered by buckling of GB 

structure. Previous study [151] reported the transmission reductions at low and high MA GBs 

exceed 40% and 20% respectively and could be as high as 80% for long wavelength phonons 

which are in the realm of low transmissivity values of our AGF results at long wavelength phonons 

due to buckling. Figure 22d shows that the two groups of GBs are very different in terms of out-

of-plane buckling. The common disclinations in graphene, pentagon and heptagon, create 
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compression and dilation stress at the tips of disclinations, respectively. When a GB has low or 

high M, the pentagon and heptagon disclinations are far from each other due to the low density of 

dislocations, and thus the out-of-plane buckling is induced to reduce the compressive and dilation 

strain. On the contrary, when a GB has a mid M, the disclination cores are densely packed along 

the GB line with the pentagon and heptagon cores placed next to each other. In such a case, the 

compressive and dilation strain are canceled and the out-of-plane buckling does not occur [147]. 

Therefore, at low temperatures where the thermal phonon wavelength is comparable to the 

characteristic length of buckling, the significant buckling in GBs with low and high M causes 

strong scattering of the flexural phonon modes. As a result, the GBs with low and high M exhibit 

higher thermal resistance at 100 K than those with mid M in figure 21a, although they have lower 

dislocation density.  

Lastly, it would be interesting to present a brief comparison of GAPDFT and TSF since 

the TSF has been widely used in past studies while its accuracy for phonon transport across GBs 

has not been comprehensively examined. In figure 19, we compare GAPDFT and TSF for the GB 

formation, core, and strain energies. Figure 19a shows that the TSF overestimates the GB 

formation energy compared to the GAPDFT. This is because the core energy from TSF is larger 

than that from GAPDFT in the mid-M range where the density of dislocation core is maximum as 

shown in figure 19b. On the contrary, for strain energy in figure 19c, the TSF and GAPDFT show 

similar predictions for the wide range of M although the strain energy from TSF is slightly smaller. 

The comparison of the core and strain energy from TSF and GAPDFT indicates that TSF is 

reasonably accurate in predicting the energy of strained hexagon structure while poor in predicting 

the energy of severely distorted structures such as pentagons and heptagons. 



 81 

The thermal resistances from TSF and GAPDFT in figures 21 are observed similar, but the 

force constants and spectral transmission functions behind the thermal resistance values are 

noticeably different for TSF and GAPDFT. For the self-interaction force constant in the crystalline 

phase, the TSF overpredicts by 35% compared to the GAPDFT (see figure 23). The force constant 

prediction by TSF has a more pronounced error in the core region of GBs.  

 

Figure 22 Comparison of magnitudes of self-interaction force constants from GAPDFT and TSF for a 

training structure with M =48.36° and a test structure with M=9.43°. The difference between GAPDFT and 

TSF is as large as 35%. 

In figures 24a and 24b, we present the error of TSF in predicting force constant change 

upon the introduction of GBs. We define the normalized error as |ΔΦii,TSF−ΔΦii,GAPDFT|/ΔΦii,GAPDFT 

where Φii is a self-interaction force constant and ΔΦii is the difference of a self-interatomic force 

constant from the perfect crystalline case (i.e., Φii,GB−Φii,crystal). The figure shows that the error in 

the core region is pronounced and reaches up to 50% while the error is small for the surrounding 
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hexagons. This agrees with the aforementioned observation that the TSF has significant error for 

dislocations while is reasonably accurate for strained hexagons.  

 

Figure 23 Comparison of TSF and GAPDFT showing inaccuracy of TSF for predicting force constants on 

dislocation cores. (a-b) normalized error of self-interatomic force constants, defined as 

|∆𝝓𝒊𝒊,𝐓𝐒𝐅 − ∆𝝓𝒊𝒊,𝐆𝐀𝐏𝐃𝐅𝐓| ∆𝝓𝒊𝒊,𝐆𝐀𝐏𝐃𝐅𝐓⁄  where ∆𝝓𝒊𝒊 is the difference of self-interaction force constants in GB and 

perfect graphene.  

 

As a result, the spectral transmissions from GAPDFT and TSF in figures 24a and 24b show 

substantial difference above 20 THz where dislocation cores are important for phonon scattering. 

Overall, the suppression of transmission functions from the perfect crystalline phase is noticeably 

larger in TSF than in GAPDFT, also supported by the overprediction of core energy by TSF in 

figure 19b. However, below 20 THz where the strain field is the dominant cause for phonon 

scattering, the GAPDFT and TSF show similar suppression of the spectral transmission function.  
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Figure 24 Comparison of TSF and GAPDFT showing inaccuracy of TSF for transmission function above mid 

phonon frequency. (a-b) suppressed transmission function from perfect graphene for 20 GBs. The values in 

the legend are misorientation angles. 

4.4 Conclusion 

In summary, we demonstrated that MLIPs trained with the rationally designed minimal 

dataset can predict phonon transport across GBs with ab initio predictive power and accuracy while 

the computational cost is affordable. Special attention was paid on reducing the required training 

dataset by employing the idea of structural unit model that GBs have hierarchical structures and 

have only a few basic building blocks. Our approach shows that only 5 GBs are enough to represent 

the entire configurational space and thus the small training dataset using those 5 GBs is sufficient 

for an MLIP. Indeed, our test using TSF and GAPTSF shows that force constants and spectral 

transmission functions from the TSF and GAPTSF are nearly identical for 20 GBs covering the 

entire configurational space.  

The GAPDFT trained with the dataset from DFT reveals several intriguing characteristics 

of phonon scattering by GBs with ab initio accuracy. Previous studies for three dimensional bulk 
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materials suggested that thermal resistance increases with dislocation density, but we showed that 

graphene does not follow the same trend. The thermal resistance at room temperature does not 

depend on the dislocation density and even decreases with increasing dislocation density. We 

explained this with the two-dimensional structural characteristics of graphene: flexural phonon 

modes carrying the majority of heat and out-of-plane buckling induced by GBs. The heat-carrying 

flexural phonon modes are strongly scattered by the out-of-plane buckling which is pronounced 

for the GBs with low dislocation density. Thus, dislocation density alone cannot determine the 

scattering of phonons in polycrystalline graphene but the surrounding strain field plays an 

important role.  

We also briefly examined the accuracy of TSF for thermal transport across GBs by 

comparing it to GAPDFT. The overall thermal resistance values from both TSF and GAPDFT 

reasonably agree with each other, but the force constants and spectral transmission functions show 

a noticeable difference. In particular, TSF shows inaccuracy in predicting dislocation cores 

(pentagons and heptagons) while is reasonably accurate for the strain field. As a result, the 

transmission functions from TSF agree with those from GAPDFT at low frequency where the 

strain field is important for phonon scattering, but shows noticeable error in the mid to high 

frequency range.  

Our work provides deep insights into the atomic-level mechanisms governing phonon 

transport across graphene GBs, particularly for the buckling effects on phonon transmission and 

thermal resistance. This understanding may help to explain phonon transport across GBs in other 

two-dimensional materials and also to engineer their thermal properties using GBs. The present 

method for developing MLIPs with minimal training dataset can be easily extended to three 

dimensional materials. It would help to predict and understand thermal transport in the 
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polycrystalline phase of emerging materials for which a reliable interatomic potential has not been 

developed yet.  
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5.0 Mode Resolved Atomistic Green’s Function  

5.1 Bloch Wave 

The mode matching scheme was first introduced to calculate the transmission function of 

electrons along with the periodic medium [153]. The approach is based on the Bloch theorem 

which states that the wavefunction can be written as Bloch waves of spatially periodic solution in 

a periodic medium. Hence the Bloch wave can be decomposed to an eigenfunction that repeats in 

unit cells and plane wave as shown as   

𝑢(𝐫) = �̅�(𝐫)exp(𝑖𝜔𝑡)exp(𝑖𝑘𝐫) 5-1 

where �̅�(𝐫)exp(𝑖𝜔𝑡)  is the wavefunction and exp(𝑖𝑘𝐫)  is the plane wave. Schematic 

representation of the Bloch wave decomposition is shown in figure 26 where one mode with two 

wavefunctions and different plane waves are demonstrated 
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Figure 25 A Bloch wave (bottom) can be decomposed into the product of a periodic function (top) and a plane 

wave (center). The left side and right side represent the same Bloch wave broken up in two different ways, 

involving the wave vector k1 (left) or k2 (right). In all plots, blue is real part and red is imaginary part.[154] 

5.2 Mode Matching Approach 

We first discuss the original mode matching implementation and then we incorporate Green’s 

function into the mode-matching approach. Figure 27 shows the schematic view of the divided 

units for the system of the device with periodic contacts 
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Figure 26 Schematic view of the device with two semi-infinite contacts which are divided into Bloch units 

Here we derive the dynamical equation of a unit 𝑖th about the contact where the contact units are 

periodic. The Hamiltonian dynamical equation is given as 

−𝐻𝑖,𝑖−1𝑢𝑖−1 + (𝜔2Ι − 𝐻𝑖,𝑖)𝑢𝑖 − 𝐻𝑖,𝑖+1𝑢𝑖+1=0 5-2 

where 𝑢𝑖 is the displacement of the unit 𝑖 and 𝑢𝑖−1, and 𝑢𝑖+1 are the displacements of the units  

𝑖 + 1, and 𝑖 − 1 respectively.  Based on the Bloch theorem, 𝑢𝑖−1, and 𝑢𝑖+1 displacements have the 

same wavefunction with a phase difference. In the case of equisized unit division (equispaced), 

the phase difference is a constant number and is called the Bloch factor (𝜆). Thus, the neighboring 

displacements can be represented as 𝑢𝑖+1 = 𝜆𝑢𝑖  and 𝑢𝑖−1 = 𝜆−1𝑢𝑖 . We call 𝐻𝑖,𝑖  “on-slice” 

Hamiltonian matrix that includes the force constants and effective masses of the isolated unit and 

we call 𝐻𝑖,𝑖−1 and 𝐻𝑖,𝑖+1 “hopping” Hamiltonian matrices that include the coupling force constants 

and effective masses of interacting neighbors of 𝑖th unit. The middle term represents the interaction 

of the atomistic model within the unit 𝑖 and left and right terms refer to the coupling interaction 

with the neighboring left and right units respectively. For the sake of simplicity, we change the 

notation slightly for hopping Hamiltonian matrices such that 𝐵L/R and 𝐵L/R
†

 are corresponding to 

𝐻𝑖,𝑖−1 (left Hamiltonian matrix) and 𝐻𝑖,𝑖+1 (right Hamiltonian matrix) respectively. Therefore, the 

equation 5-2 is rewritten as  

−𝐵L/R𝑢𝑖−1 + (𝜔2Ι − 𝐻𝑖,𝑖)𝑢𝑖 − 𝐵L/R
† 𝑢𝑖+1 = 0 5-3 
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which is true for all the units of 𝑖 = −∞,… ,0 and 𝑖 = 𝑟 + 1,… ,∞. Now we aim to derive this 

equation such that the solution from Bloch wave calculation is relevant. Hence, we substitute the 

set of Bloch waves into the equation 5-3 for each Bloch mode as  

−𝐵𝜆𝑛
−1�̅�𝑛(±) + (𝜔2Ι − 𝐻𝑖,𝑖)�̅�𝑛(±) − 𝐵†𝜆𝑛�̅�𝑛(±) = 0 5-4 

where �̅�𝑛(±) is the right going or left going wavefunctions and 𝜆𝑛 is the Bloch factor of the 𝑛th 

mode of the unit 𝑖. Here we drop the subindices of L/R for simplification while the equation is 

valid for both left and right contacts. If we consider that a dual wavefunction, �̃�, is available such 

that �̃�𝑚(±)�̅�𝑛(±) = 𝛿𝑛,𝑚 ; then we can project the equation 5-4 into the dual wavefunction 

(transpose conjugate of the wavefunction) where the result is 

−𝐵𝜆𝑛
−1�̅�𝑛(±)�̃�𝑛 (±) + (𝜔2Ι − 𝐻𝑖,𝑖)�̅�𝑛(±)�̃�𝑛 (±) − 𝐵†𝜆𝑛�̅�𝑛(±)�̃�𝑛 (±) = 0 5-5 

This new formulation is beneficial since contains the information of the probability density as well 

as the Bloch factor which includes the spatial information. Therefore, it is reasonable to define the 

Bloch matrix as 𝐹𝑛
𝑖 = 𝜆𝑛

𝑖 �̅�𝑛�̃�𝑛  and re-write the equation 5-5 in terms of 𝐹 as 

−𝐵𝐹−1(±) + (𝜔2Ι − 𝐻𝑖,𝑖) − 𝐵†𝐹(±) = 0, 5-6 

we should note that the Bloch matrices have a direct relation with the displacements where the 

solution for the displacement can be obtained as  

𝑢 = 𝑢𝑖(+) + 𝑢𝑖(−) = 𝐹𝑖−𝑗(+)�̅�𝑗(+) + 𝐹𝑖−𝑗(−)�̅�𝑗(−). 5-7 

Up to here, we obtained the equation based on the Bloch matrices which is simple and 

relevant for any unit of the periodic contacts and we showed the relation for the displacement with 

the Bloch matrix solution. Now we use the solutions from contacts to calculate the dynamical 

equation of the device. If the solutions for the contacts are available, then we can use them as 

boundary conditions to find the solution of the device. We remind that the wavefunctions are 

transmitting from left contact to right contact. Therefore, the boundary conditions of the device 

using the relation 5-7 for the unit of -1 is set to be 
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𝑢−1 = 𝐹L
−1(+)𝑢0(+) + 𝐹L

−1(−)𝑢0(−)

= [𝐹L
−1(+) − 𝐹L

−1(−)]𝑢0(+) + 𝐹L
−1(−)𝑢0 

5-8 

and the boundary condition for the right side of the device is set to be 

𝑢𝑟+1 = 𝐹R(+)𝑢𝑟+2(+) 5-9 

The equation 5-2 is only valid for the contacts and in order to derive the dynamical equation 

of the device, we need to incorporate the boundary conditions into a similar system of equations. 

Here we generalize the equation 5-2 in the form that is valid for both contact and device. If the 

device is a periodic medium, similar to the contacts, it can be divided into equisized units where 

the indices are 𝑖 = 0, … , 𝑟. The compact modified version of equation 5-2 is given as  

−𝐻𝑖,𝑖−1
′ 𝑢𝑖−1 + (𝜔2Ι − 𝐻𝑖,𝑖

′ )𝑢𝑖 − 𝐻𝑖,𝑖+1
′ 𝑢𝑖+1 = 𝑄𝑖𝑢0(+) 5-10 

where the 𝐻𝑖,𝑖
′  now is the on-slice Hamiltonian matrix of device or contacts. The indices of the 

equation represent the divided units of device or contacts and its arrangement is shown in figure 

26. The 𝑄𝑖  represents the source term of energy that only takes the values for the device. If we 

follow the same process as discussed earlier, we can write the equation 5-10 based on the Bloch 

matrix as 

−𝐻𝑖,𝑖−1
′ 𝐹−1 + (𝜔2Ι − 𝐻𝑖,𝑖

′ ) − 𝐻𝑖,𝑖+1
′ 𝐹 = 𝑄𝑖  5-11 

and using the relations 5-8 and 5-9, the modified Hamiltonian matrices and source term are 

calculated as  

𝐻0,0
′ = 𝐻L + 𝐵L𝐹L

−1(−) 

𝐻𝑟+1,𝑟+1
′ = 𝐻R + 𝐵R

†𝐹R
−1(+) 

𝑄0 = 𝐵L[𝐹L
−1(+) − 𝐹L

−1(−)] 

𝑄𝑖 = 0    𝑖 ≠ 0 

5-12 

The details of the calculations are provided in appendix A. It is worth mentioning to recall 

that all the calculations are done based on the left to right transmission direction. Therefore, for 

instance, if we consider an incoming wave of 𝑢0 = �̅�L,𝑚 transmitting through the device from left 
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contact to the right contact, the transmission coefficient can be calculated using the right-side 

boundary condition of the device as 

𝑢𝑟+2 = ∑ �̅�R,𝑛(+)𝜏𝑛,𝑚

𝑁

𝑛=1

 5-13 

Here the 𝜏𝑛,𝑚 is 𝑛th mode transmission coefficient of right going wave which is generated from 

the 𝑚th mode of the wavefunctions on the left contact. 𝑢𝑟+2  is the solution of the boundary 

condition on the right contact of the device and �̅�R,𝑛  represents the outgoing/right-going 

wavefunction on the right contact. A summary of the calculations for the mode-matching approach 

is as follows: 

1. Calculate the system of equations (equation 5-6 or 5-11) for left and right contacts to find 

𝐹L/R 

2. Calculate the Hamiltonian matrices and source term of a device based on left and right 

boundary conditions 

3. Calculate the system of equations (equation 5-11) for the device 

4. Calculate the mode resolved transmission and the displacements 

Next, we will show the physical interpretation of the Bloch matrix and discuss the 

correlation between the Bloch matrix and the wavevector. 

5.3 Bloch Theorem and Bloch Matrix 

We already showed that the general equation describes the device and contacts based on 

the divided units and Bloch matrices. In addition to a simple representation of the dynamical 

matrix, here we show the importance of the Bloch matrix for the calculation of the wavevectors. 
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In a concise definition, the Bloch matrix is the projection of the wavefunction and its dual vector 

with the Bloch factor. The Bloch factor is a phase factor which for equisized and equispaced units 

becomes a constant. The general form of the Bloch matrix is given as 

𝐹 = ∑ 𝜆𝑛�̅�𝑛�̃�𝑛

𝑁

𝑛=1

 5-14 

If we stack the modes into a single vector for both wave functions and Bloch factors, we can then 

show the Bloch matrix as  

F = 𝚲U̅Ũ 5-15 

where 𝚲 (𝚲𝑛,𝑚 = 𝜆𝑛𝛿𝑛,𝑚) includes all the Bloch factors for all the orthogonal modes and U̅’s are 

the stacked wavefunctions. When the solution for the Bloch matrix is calculated with a dynamical 

system, then the information could translate to the wavefunctions and Bloch factor. For each Bloch 

matrix, an eigenvalue problem can be written that the eigenvalues are the Bloch factors and the 

eigenfunctions are the wavefunctions of the sliced unit. The Bloch eigenvalue problem is shown 

as  

F(±)U̅(±) = 𝚲(±)U̅(±) 5-16 

Once the Bloch factor, 𝚲, is obtained, the modes which are defined for left and right 

contacts and self-advance and retarded are calculated with independent eigenvalue problems as 

following 

FR/L
ret/adv

(±)U̅R/L
ret/adv

(±) = 𝚲R/L
ret/adv

(±)U̅R/L
ret/adv

(±) 5-17 

where superscripts differentiate the retarded and self-advance solutions and subindices 

differentiate the right and left contacts. The solutions provide a set of modes which are propagating 

or evanescent in the left and right contacts. Propagating modes are the ones that are growing toward 

the source and evanescent modes are the ones which are decaying toward the source. The 

conditions to describe the type of modes are summarized as  
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𝜆𝑛
ret(±) = 𝜆𝑛

adv(∓);   �̅�𝑛
ret(±) = �̅�𝑛

adv(∓) for 

propagating 

𝜆𝑛
ret(±) = 𝜆𝑛

adv(±);   �̅�𝑛
ret(±) = �̅�𝑛

adv(±) for 

evanescent 

5-18 

If the Bloch factors or eigenvalues for retarded and self-advance move into the opposite 

directions, then the modes are propagating waves and vice versa condition is the evanescent mode. 

This shows that the Bloch matrix is the implication of bulk translational symmetry along the 

transmission direction. When the Bloch factors are found; the wavevectors of propagating modes 

are then calculated with 

𝜆𝑛R/L
= [𝚲R/L(±)]

𝑛,𝑛
= exp(𝑖k𝑛𝑎R/L) 

k =
1

𝑎R/L
cos−1 Re [𝜆𝑛R/L

] 
5-19 

where 𝑎 is the size of a divided unit of left or right contact and k is the wavevectors corresponding 

to the eigenvalue of the 𝑛th mode. This concludes the importance of the mode-matching approach 

to find the spatial and wavevector information. For a periodic model, the mode-matching approach 

significantly reduces the computational cost while remaining deficient for non-periodic models.  

For AGF simulation of the non-periodic device with two contacts, the periodic contacts 

can be decomposed into plane waves and eigenfunctions using the mode-matching approach. 

Therefore the combination of mode-matching approach and atomistic Green’s function (MAGF) 

was proposed to resolve the lack of wavevector resolution in AGF [155]. In MAGF, we consider 

similar assumptions to AGF where the device is sandwiched by two periodic and semi-infinite size 

contacts. Additionally, we divide the periodic medium into the periodic units where the Bloch 

waves are defined for each unit. Here it is assumed that the divided units have the same length and 

they are large enough that only interact with their neighboring units.  
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5.4 Combined Approach: Mode-matching Approach with Green’s Function Solution 

In this section, we aim to combine the mode-matching approach with Green’s function. 

Our objective is to deal with the device and two contacts where the device is a non-periodic or a 

periodic medium. We pursue a similar process to the mode-matching approach, however, here we 

utilize Green’s function to solve Bloch matrices of the dynamical system. The details of derivations 

are given previously and we continue to build on those formulations with the same notation. We 

initiate with the dynamical equation based on Bloch matrices for the contact as  

−𝐻𝑖,𝑖−1
′ 𝐹−1 + (𝜔2Ι − 𝐻𝑖,𝑖

′ ) − 𝐻𝑖,𝑖+1
′ 𝐹 = 0 5-20 

similar to the definition of the divided units and Hamiltonian matrices, the Green’s function can 

be divided into the number of Green’s functions submatrices where each is defined as the inverse 

of a unit operator. If we apply this methodology to the equation 5-14, the relevant Green’s 

functions equation will be obtained in which that represents the response of the unit 𝑖 upon the 

excitation which is located at the unit 𝑗. The general form of Green’s function equation for device 

and contacts is given as  

−𝐻𝑖,𝑖−1
′ 𝐺𝑖−1,𝑗

′ + (𝜔′2Ι − 𝐻𝑖,𝑖
′ )𝐺𝑖,𝑗

′ − 𝐻𝑖,𝑖+1
′ 𝐺𝑖+1,𝑗

′ = Ι𝛿𝑖,𝑗 5-21 

Here we show the Green’s function as 𝐺′to indicate that the response function can be divided into 

the isolated and the connected/coupled units. The 𝐺𝑖,𝑗
′  is the response function that the isolated unit 

𝑖 sees upon excitation at unit 𝑗 and the 𝐺𝑖−1,𝑗
′  and 𝐺𝑖+1,𝑗

′  are the response functions of the units 𝑖 −

1 and 𝑖 + 1 upon excitation at unit 𝑗. Similar to the mode-matching approach, we assume that the 

transmission is right going from left contact to right contact. For right contact, the displacement 

solution can be expanded in terms of Green’s function and source term which is initiated/executed 

at unit 0 from left contact. The expansion of displacements at unit 𝑖 is given as 
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𝑢𝑖 = 𝐺𝑖,0
′ (+)𝑄0(+)𝑢0(+) 5-22 

If we use the relation 5-13, we can find the elements of transmission matrix or namely modal 

transmittance as  

𝜏𝑛,𝑚 = �̃�𝑅,𝑛(+)𝐺𝑟+1,0
′ (+)𝑄0(+)�̅�𝐿,𝑚(+) 5-23 

Next, we use a recursive calculation to solve Green’s functions of contacts. For instance, 

the divided Green’s function of left contact for units 𝑖 = −∞,… , 𝑛 where 𝑛 is an arbitrary unit 

number below 0 is defined as 𝐺𝑖,𝑗
′ = 𝐺𝑖,𝑗

[𝑘]
 where the subindices 𝑖, 𝑗 are the responsive and excitative 

unit indices respectively while the super indices [𝑘] shows the recursive sequence. If we apply a 

similar process for the calculation of the surface Green’s function for contact here, then the Green’s 

function of the left contact is derived as  

[𝜔′2Ι − 𝐻𝑛+1,𝑛+1 − 𝐻𝑛+1,𝑛𝐺𝑛,𝑛
[𝑛](𝜔′2)𝐻𝑛,𝑛+1] 𝐺𝑛+1,𝑛+1

[𝑛+1] (𝜔′2) = Ι 5-24 

The solution is similar to what is solved from the decimation technique where the recursive 

Green’s function, in the ideal case, will converge to the surface Green’s function, therefore𝑔L =

𝐺𝑛,𝑛
[𝑛]

 and 𝑔L = 𝐺𝑛+1,𝑛+1
[𝑛+1]

. We should note that the choice of 𝑛 is important, 𝑛 should be large 

enough that the convergence occurs within the ascending recursive calculation. Thus, we can write 

the solution for surface Green’s function in a simplified fashion of 

[𝜔′2Ι − 𝐻L − 𝐵L𝑔L(𝜔
′2)𝐵L

†]𝑔L(𝜔
′2) = Ι 5-25 

here 𝐻L is the on-slice Hamiltonian, 𝐻𝑛+1,𝑛+1 in equation 5-18, and 𝐵L is the hopping Hamiltonian 

matrix, 𝐻𝑛+1,𝑛 in equation 5-24. In a similar way, we can calculate the surface Green’s function 

for right contact which is  

[𝜔′2Ι − 𝐻R − 𝐵R𝑔R(𝜔′2)𝐵R
†]𝑔𝑅(𝜔′2) = Ι 5-26 
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we just note that the recursive process for the right contact in contrast to the left contact is a 

descending process. Now the solutions for the surface Green’s functions are calculated, we can 

find the self-energies as   

ΣL = 𝐵L𝑔L(𝜔
′2)𝐵L

†;  ΣR = 𝐵R
†𝑔R(𝜔′2)𝐵R 5-27 

we use these self-energy terms as boundary conditions for the device to calculate the coupled 

Green’s function.  

In an ideal case for infinitely large contact where 𝑛 is also considered to be large, the 

modified version of equation 5-20 turns to  

−𝐵R/L
†/

𝐹R/L
−1 (±) + (𝜔2Ι − 𝐻R/L) − 𝐵R/L

/†
𝐹R/L(±) = 0 5-28 

Accordingly, the recursive Green’s function of an ideal contact is represented as   

−𝐵R/L
†/

𝐺𝑖−1,𝑗
[𝑛]

+ (𝜔2Ι − 𝐻R/L)𝐺𝑖,𝑗
[𝑛]

− 𝐵R/L
/†

𝐺𝑖+1,𝑗
[𝑛]

= Ι𝛿𝑖,𝑗 5-29 

Using the similar recursion relation as 5-7, we can write the recursion Green’s function based on 

the Bloch matrices as 

𝐺𝑖,𝑗
[𝑛](𝜔2) = 𝐹𝑖−𝑗(−)𝐺𝑗,𝑗

[𝑛](𝜔2),   𝑖 < 𝑗 

𝐺𝑖,𝑗
[𝑛](𝜔2) = 𝐹𝑖−𝑗(+)𝐺𝑗,𝑗

[𝑛](𝜔2),   𝑖 > 𝑗 
5-30 

For the diagonal elements of 𝐺𝑖,𝑗
[𝑛]

 (𝑖 = 𝑗), if we incorporate the relation 5-30 into the equation 5-

29, then we get 

(𝜔′2Ι − 𝐻R/L − 𝐵R/L
/†

𝐹R/L(+) − 𝐵R/L
†/

𝐹R/L
−1 (−))𝐺𝑖,𝑗

[𝑛]
= Ι 5-31 

If we combine this equation with the previous equation in order to find the substitution for 𝜔′2Ι −

𝐻R/L, then the diagonal elements of Green’s function become as  

[𝐺𝑗,𝑗
[𝑛](𝜔2)]

−1
= 𝐵R/L

/†
[𝐹R/L

−1 (+) − 𝐹R/L
−1 (−)] 5-32 

or equivalently 

[𝐺𝑗,𝑗
[𝑛](𝜔2)]

−1
= 𝐵R/L

†/
[𝐹R/L(−) − 𝐹R/L(+)] 5-33 
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Similar relations for the self-advance Bloch matrices can be derived. Now once the solution for 

the ideal and infinitely large contacts are defined, we implement the problem for a system of the 

device with two semi-infinitely large contacts where the surface Green’s function is calculated. In 

this case, the surface Green’s function is the closest recursion Green’s function to the device, for 

instance for left contact is 𝑔L(𝜔
2) = 𝐺0,0

[𝑛]
(𝜔2). Using equation 5-23, we can write the equation 

for Green’s function calculation of left contact with semi-infinite size as  

(𝜔′2Ι − 𝐻L − 𝐵L
†𝐹L

−1(−))𝑔L = Ι 5-34 

We should note that the right going wave is absent here because the contact has a semi-

infinite size and is blocked on the right side. A similar equation can be written for the neighboring 

unit of 𝑖 = −1, and 𝑗 = 0 using the surface Green’s function as 

(𝜔′2Ι − 𝐻L − 𝐵L
†𝐹L

−1(−))𝐹L
−1(−)𝑔L = 𝐵L

†𝑔L 5-35 

by comparing two equations 5-34 and 5-35, we can find the surface Green’s function based on the 

Bloch matrix 

𝑔L = 𝐹L
−1(−)(𝐵L

†)
−1

 5-36 

In a similar fashion, recursion Green’s functions for 𝑖 = −∞, . . . , −1 can be calculated 

based on the Bloch matrix with left going or right going waves. The final relations for recursion 

Green’s function of left contact and in the ideal case are given as 

𝐺𝑖,0
[𝑛]

= 𝐹L
𝑖+1(−)(𝐵L

†)
−1

 

𝐺𝑖,0
[𝑛]

= 𝐹L
𝑖+1(+)(𝐵L)

−1 

5-37 

A similar process could take place for the right contact and recursion Green’s function can be 

calculated. Furthermore, it is easy to show that the self-energy terms are defined based on the 

Bloch matrices. Here are the definitions of the self-energies of left and right contacts 

ΣL = 𝐵L𝐹L
−1(−) 5-38 
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ΣR = 𝐵R
†𝐹R(+) 

these relations point out to the major advantage of the combined approach where once the Bloch 

matrices are calculated, then the calculations for many terms such as surface Green’s functions 

and self-energy are rather straightforward.  

Next is to use the contacts information in order to find the solution for the device. The 

dynamical system for the device or in general form is given as  

−𝐻𝑖,𝑖−1
′′ 𝐺𝑖−1,𝑗

′ + (𝜔2Ι − 𝐻𝑖,𝑖
′′ )𝐺𝑖,𝑗

′ − 𝐻𝑖,𝑖+1
′′ 𝐺𝑖+1,𝑗

′ = Ι𝛿𝑖,𝑗  5-39 

similarly, the Hamiltonian matrices are defined based on the surface Green’s functions of the left 

and right contacts. The abbreviated Hamiltonian matrices and source term relations of equation 5-

39 are 

𝐻0,0
′′ (𝜔′2) = 𝐻L + 𝐵L𝑔L(𝜔

′2)𝐵L
†
 

𝐻𝑟+1,𝑟+1
′′ = 𝐻R + 𝐵R

†𝑔R(𝜔′2)𝐵R 

𝑄0 = 𝐵L[𝐹L
−1(+) − 𝐹L

−1(−)] 

5-40 

The calculation is similar to appendix A for the mode-matching approach. Up to this point, 

we have demonstrated that the solution for the Bloch matrices and Green’s functions of the entire 

device and contacts. Next, we are going to draw a connection between the displacements and the 

transmission matrix. 

5.5 Transmission Matrix and Transmission Coefficient 

The transmission matrix is a physical matrix with the elements that are found by 

normalizing the modal transmission which was discussed earlier in equations 5-13. Transmission 

matrix is defined as 
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𝑡𝑛,𝑚 = √
𝑣R,𝑛(+)𝑎L

𝑣L,m(+)𝑎R
𝜏𝑛,𝑚 5-41 

where 𝑣R,𝑛 and 𝑣L,m are called Bloch velocities or mode resolved group velocities, also 𝑎Land 𝑎R 

are the left and the right length of each unit. The modes 𝑚 and 𝑛 are related to the left and right 

contacts respectively. The transmission matrix indicates how probable is that waves propagate 

from right to left contacts. Then the total transmission probability of propagating modes is given 

by  

𝑇(𝐸) = ∑|𝑡𝑛,𝑚|
2

(+)

𝑛,𝑚

 5-42 

which is a summation of all the elements of the transmission matrix (trace of transmission matrix). 

The transmission matrix also can be obtained by Green’s function and Bloch matrix. In order to 

do that, we need to find the relation between displacement and Green’s function. We begin with 

the equation known as the Lippmann-Schwinger equation given by 

𝑢𝑖 = �̅�L,𝑚,𝑖(+) + ∑𝐺𝑖,𝑗𝑉𝑗,𝑘�̅�L,𝑚,𝑘(+)

𝑗,𝑘

= [𝐹L
𝑖(+) + ∑𝐺𝑖,𝑗𝑉𝑗,𝑘𝐹L

𝑘(+)

𝑗,𝑘

] �̅�L,𝑚(+) 

5-43 

where 𝑢𝑖 known as the displacement of the unit 𝑖 are divided into two portions. The first portion, 

�̅�L,𝑚,𝑖(+), represents the wavefunction which obeys the Bloch symmetry (and periodicity) and the 

second portion indicates the perturbed displacement. 𝑉𝑗,𝑘 is the perturbation matrix and 𝐺𝑖,𝑗 is the 

Green’s function which is projected into the perturbation matrix. The second portion indicates the 

non-equilibrium nature of the displacement in terms of time evolution. This relation (5-43) was 

derived from the combination of perturbation theory and the Kubo approach. The wavefunction 

�̅�L,𝑚,𝑖, also can be translated with the Bloch matrix such that �̅�L,𝑚,𝑖 = 𝐹L
𝑖(+)�̅�L,𝑚. The second 
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relation shows the incorporation of Bloch matrices into the Lippmann-Schwinger equation. 

Furthermore, the equation 5-43 can be simplified by the Dyson equation which results in the 

equation for the Green’s function calculation as following 

𝐺𝑖,0 = 𝐺𝑖,0
(0)

+ ∑𝐺𝑖,𝑗𝑉𝑗,𝑘𝐺𝑘,0
(0)

𝑗,𝑘

= [𝐹L
𝑖(+) + ∑𝐺𝑖,𝑗𝑉𝑗,𝑘𝐹L

𝑘(+)

𝑗,𝑘

]𝐺0,0
(0)

 

5-44 

If we compare the equations 5-44 and 5-43 and use the relation 5-30, then we can easily find the 

source term as 

𝑢𝑖 = 𝐺𝑖,0(𝐸)[𝐺0,0
(0)(𝜔2)]

−1
�̅�L,𝑚(+) 

𝑄0 = [𝐺0,0
(0)(𝜔2)]

−1
 

5-45 

and from relation 5-13, the generalized form of modal transmittance is obtained as 

𝜏𝑛,𝑚 = �̃�R,𝑛(+)𝐺𝑟+1,0(𝐸)[𝐺0,0
(0)(𝜔2)]

−1
�̅�L,𝑚(+) 5-46 

This is explicit relation for the modal transmittance or elements of the transmission matrix.  

5.6 The Caroli Expression 

In regard to Green’s function approach, the transmission function is calculated using Caroli 

expression[92, 156]. Following the same notation as previous sections, the Caroli expression is 

given by   

𝑇 = Tr[ΓR𝐺0,𝑟+1ΓL𝐺𝑟+1,0
† ] 5-47 

here the Γ’s are the escape rate or leakage of the self-energy terms which fundamentally point to 

the non-equilibrium aspect of Green’s function approach; they are defined as  
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ΓR/L = 𝑖[ΣR/L − ΣR/L
† ]. The Caroli expression is derived from the Kubo-Greenwood formula in the 

linear response regime. The expression is equivalent to the transmission coefficient in the 

Landauer formula as well. Physically it calculates the response on contact from an excitation on a 

distanced location and the normalized response counts for the transmission probability. Here we 

are going to expand the Caroli expression based on the transmission matrix.  

As we discussed earlier the total transmission probability of the propagating modes is given 

in relation 5-47. Moreover, we can generalize the transmission probability that includes all the 

propagating and evanescent modes by defining the probability matrix as  

𝑡 = 𝑉R
0.5(+)𝜏�̃�L

0.5(+) 5-48 

here the probability matrix is given for the right going wave and 𝑉’s are the mode group velocities 

of left and right contact. Mode group velocity is a diagonal element of the group velocity. For the 

right going propagating waves, the mode group velocity of right contact, 𝑉R(+), is the velocity 

𝑣R,𝑛 times (𝑎R)−1 and for evanescent waves, the mode group velocity of right contact is zero. 

Likewise, for the left going waves and left contact, the pseudoinverse mode group velocity �̃�L is 

velocity 1/𝑣L,𝑛 times 𝑎L. If the solution for eigenvalues of the Bloch matrices is available, we can 

find an expression for the mode group velocities of left and right contacts. The general form of the 

Bloch velocity matrix is given by (the derivation is provided in appendix B) 

𝑉(±) = 𝑖[𝑈†(±)𝐵†𝑈(±)Λ(±) − Λ†(±)𝑈†(±)𝐵𝑈(±)] 5-49 

This relation can be expanded based on the Bloch matrices and hopping Hamiltonian 

matrices as shown below for the right contact mode group velocity of right going waves 

𝑉R(+) = 𝑖𝑈R
†(+)[𝐵R

†𝐹R(+) − 𝐹R
†(+)𝐵R]𝑈R(+)

= 𝑖𝑈R
†(+)[ΣR(+) − ΣR

†]𝑈R(+)

= 𝑈R
†(+)ΓR𝑈R(+) 

5-50 

similar relation can be written for the left contact as 
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𝑉L(+) = 𝑈L
𝑎†(−)ΓL𝑈L

𝑎(−) 5-51 

These two relations mean the leakage on the left and right contacts are projected into the 

propagating states of each contact. For left contact, propagating waves are the result of reflection, 

therefore the wavefunctions are the self-advance left going waves. For right contact, propagating 

modes are propagating right going as retarded wavefunctions of the right contact.   

Now we recall the transmission relation 5-50 which is given as  

𝜏𝑛,𝑚 = �̃�R,𝑛(+)𝐺𝑟+1,0(𝐸)[𝐺0,0
(0)(𝜔2)]

−1
�̅�L,𝑚(+) 5-52 

If we mix relation 5-48, 5-52 and 𝑉L�̃�L
0.5 = 𝑉L

0.5 , then we get the following relation for 

transmission matrix in a compact form of 

𝑡 = 𝑖𝑉R
0.5(+)𝑈R

−1(+)𝐺[𝑈L(−)]−1𝑉L
0.5(+) 5-53 

Additionally, the relation 5-42 can be expressed as  

𝑇 = Tr[𝑡†𝑡] 5-54 

and by inserting the relation 5-48, the total transmission probability based on the mode group 

velocities become 

𝑇 = Tr[𝜏†𝑉R(+)𝜏�̃�L(+)] 5-55 

this is called transmission matrix which its elements are known as modal transmittance and they 

can be calculated as  

𝑡𝑛,𝑚 = 2𝑖𝜔√
𝑣R,𝑛𝑣L,m

𝑎L𝑎R
�̃�R,𝑛(+)𝐺𝑟+1,0(𝐸)�̃�L,𝑚(−) 5-56 

which is a simplified form of the relations 5-41 and 5-46 in conjunction with flux-normalized 

factors. This concludes our calculation for modal transmittance and information that we would 

need to calculate when the transmission process is from left to right contact. All the calculations 

in this section could also be done in the reversed direction when the transmission process is from 

right to left contact.  
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5.7 Remarks 

1. The results of eigenvalue problems are not necessarily orthonormal and particularly near 

the degenerate points of dispersion due to complex eigenvalues (nonequilibrium). 

Therefore, we use the Gram-Schmidt process to resolve the issue of orthonormality of 

Bloch states and we use QR decomposition to assure that we have the orthonormal set of 

Bloch states near the degenerate points (we will discuss them in appendix C). 

2. We observed that for large eigenvalue problem of Bloch waves, the Bloch states are deeply 

ill-posed and non-orthogonal. We discovered singular value decomposition (SVD) on the 

set of Bloch states will remedy the ill-condition. We should note, in this case, the inverse 

Bloch states is equivalent of the conjugate transpose of the Bloch states.  

3. There are multiple ways to calculate the modal transmittance and transmission matrix.  

4. The conditions to determine the propagating states are described in Appendix D. 

 

The full summary of the calculations for MAGF is as follows: 

1. Using original AGF, calculate surface Green’s functions, hopping and on-slice 

Hamiltonian matrices, and self-energy terms 

2. Create four independent systems of equations for Bloch matrix calculations (retarded and 

self-advances for right and left contact) based on surface Green’s function and hopping 

matrices (equations 5-36 & 5-37) 

3. Solve the eigenvalue problems in step 2 in order to find the Bloch states and Bloch factors 

4. Use Gram-Schmidt, QR decomposition, and SVD to orthonormalize the Bloch states and 

solve the eigenvalue crossing issue near the degeneracy occurrence. 
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5. Use the Bloch states to calculate the Bloch velocities (equations 5-51 & 5-52) and modal 

transmittance (equations 5-53 or 5-56) 

6. Find the wavevectors for the propagating Bloch waves (equation 5-19 and appendix D) 

5.8 Verifications 

We developed in house code to solve the mode resolved AGF for large atomistic structures 

and embedded force constant from phonopy. Our verifications were done for pure graphene 

structures and empirical potential (Tersoff potential). Verification process takes two folds: one is 

to verify the propagating wavefunctions (corresponding to section 5.7 remarks 6) and second is to 

verify the reconstructed total transmission function based on the mode resolved transmission 

functions (e.g., check the equivalency of results of 5-54 or 5-55 with 3-65). The figure 28 compares 

the dispersion between propagating wavefunctions on the left or right lead obtained from mode 

resolved AGF simulation of pure graphene with the dispersion directly calculated from the 

phonopy. 

 



 105 

 

Figure 27 comparison of the dispersion between mode resolved AGF and direct phonopy calculation for pure 

graphene structure. Blue lines show the direct calculation from phonopy and red dotts are the propagating 

modes of left or right contact calculated from mode resolved AGF solution of pure graphene 

 

There is an excellent agreement between the mode resolved AGF and correct dispersion 

which indicates that eigenvalue problem based on the Bloch matrices are solved correctly and 

spatial resolution of mode resolved AGF code is verified. Next step is to verify the mode resolved 

transmission function. Regarding this step, we show that the trace of the transmission matrices of 

left and right leads are equivalent to the total transmission function calculated in equations 3-65 
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and 5-47. Figure 29 shows the comparison of aforementioned transmission functions for pure 

graphene structure. 

 

Figure 28 comparison of total transmission functions between total transmission function calculated from 

equations 3-65 and 5-47 with the trace of mode resolved transmission matrices of left and right leads 

 

There is an excellent agreement between all the transmission function calculations. This means 

that decomposition of transmitting waves and reconstruction of total transmission through the trace 

calculation is validated. Successful outputs of above two-step process concludes the verification 

of the mode resolved AGF code. 
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5.9 Appendices 

5.9.1 Appendix A: Boundary Condition for the Left Side of the Device 

Here is the proof for the abbreviated terms of Hamiltonian matrices and the source term. 

We begin with the dynamical equation for the unit 0 

−𝐻0,−1𝑢−1 + (𝜔2Ι − 𝐻0,0)𝑢0 − 𝐻0,1𝑢1 = 0 5-A1 

If we put the given boundary condition based on the Bloch matrices into 5-A1, we get 

−𝐵L([𝐹L
−1(+) − 𝐹L

−1(−)]𝑢0(+) + 𝐹L
−1(−)𝑢0)

+ (𝜔2Ι − 𝐻0,0)𝑢0 − 𝐻0,1𝑢1 = 0 
5-A2 

where it can be simplified as 

−𝐵L[𝐹L
−1(+) − 𝐹L

−1(−)]𝑢0(+) − 𝐵L𝐹L
−1(−)𝑢0

+ (𝜔2Ι − 𝐻0,0)𝑢0 − 𝐻0,1𝑢1 = 0 
5-A3 

If we simplify the operator multipliers and take the remaining to the right-hand side, we get 

(𝜔2Ι − [𝐻0,0 + 𝐵L𝐹L
−1(−)])𝑢0 − 𝐻0,1𝑢1

= 𝐵L[𝐹L
−1(+) − 𝐹L

−1(−)]𝑢0(+) 
5-A4 

comparing 5-A4 with the equation 5-A10, we can write the abbreviated terms of the similar 

equation as 

𝐻0,0
′ = [𝐻0,0 + 𝐵L𝐹L

−1(−)] 

𝐻0,−1
′ = 0 

𝑄0 = 𝐵L[𝐹L
−1(+) − 𝐹L

−1(−)] 

𝑄𝑖 = 0, 𝑖 = 1, … . , 𝑟 + 1 

5-A5 
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5.9.2 Appendix A: Boundary Condition for the Right Side of the Device 

Similarly, here we pursue the same process as left side. We begin with the dynamical 

equation for the unit 𝑟 + 1 which is closest to the device 

−𝐻𝑟+1,𝑟𝑢𝑟 + (𝜔2Ι − 𝐻𝑟+1,𝑟+1)𝑢𝑟+1 − 𝐻𝑟+1,𝑟+2𝑢𝑟+2 = 0 5-A6 

We impose the given boundary condition of the right side 

−𝐻𝑟+1,𝑟𝑢𝑟 + (𝜔2Ι − 𝐻𝑟+1,𝑟+1)𝑢𝑟+1 − 𝐵𝑅
†𝐹𝑅(+)𝑢𝑟+2 = 0 5-A7 

and by simplifications, the abbreviated terms are calculated as 

𝐻𝑟+1,𝑟+1
′ = 𝐻R + 𝐵R

†𝐹R(+) 

𝐻𝑟+1,𝑟+2
′ = 0 

𝐻0,−1
′ = 0 

𝑄𝑖 = 0, 𝑖 = 1,… , 𝑟 + 1 

5-A8 

 

5.9.3 Appendix B: Mode Group Velocity 

Here we show how the mode group velocity is derived. We begin with equation 5-5 which 

is multiplied by a Bloch factor 

−𝐵�̅�𝑛�̃�𝑚 + (𝜔2Ι − 𝐻𝑖,𝑖)𝜆𝑛�̅�𝑛�̃�𝑚
∗ − 𝐵†𝜆𝑛

2 �̅�𝑛�̃�𝑚 = 0 5-B1 

Here we dropped (±) for a sake of simplicity. Also, we can show the conjugate transpose of 5-B1 

which is  

−𝐵†�̅�𝑛�̃�𝑚 + (𝜔2Ι − 𝐻𝑖,𝑖)𝜆𝑚
∗ �̅�𝑛�̃�𝑚 − 𝐵(𝜆𝑚

∗ )2�̅�𝑛�̃�𝑚 = 0 5-B2 

If we subtract the 5-B2 from 5-B1, we end up getting the following relation: 

[𝐵†𝜆𝑛�̅�𝑛�̃�𝑚 − 𝐵𝜆𝑚
∗ �̅�𝑛�̃�𝑚](Ι − 𝜆𝑚

∗ 𝜆𝑛) = 0 5-B3 
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and we know that 𝜆𝑚
∗ 𝜆𝑛 ≠ 1, therefore [𝐵†𝜆𝑛�̅�𝑛�̃�𝑚 − 𝐵𝜆𝑚

∗ �̅�𝑛�̃�𝑚] = 0. This term is the mode 

group velocity which in the compact form is given as  

𝑉(±) = 𝑖[𝑈†(±)𝐵†𝑈(±)Λ(±) − Λ†(±)𝑈†(±)𝐵𝑈(±)] 5-B4 

Similarly, we can derive the mode group velocity based on the self-advance matrices, thus we get 

𝑉(±) = 𝑖[𝑈a†(±)𝐵†𝑈a(±)Λa(±)

− Λa†(±)𝑈a†(±)𝐵𝑈a(±)] 
5-B5 

which is also equivalent to  

𝑉(±) = 𝑖 [(Λa†(±))
−1

𝑈a†(±)𝐵†𝑈a(±)

− 𝑈a†(±)𝐵𝑈a(±)(Λa(±))
−1

] 

5-B6 

 

5.9.4 Appendix C: Gram-Schmidt Procedure and QR Decomposition 

The purpose of the Gram-Schmidt procedure is to orthonormalize the set of vectors which 

are slightly deviated through non-orthogonality. Here we define 

proju(𝑣) =
〈𝑢, 𝑣〉

〈𝑢, 𝑢〉
𝑢 5-C1 

where 〈 〉 indicates the inner product. This relation rotates the matrix 𝑢 into the direction which 

is orthogonal to the 𝑣. If we recursively do this for a set of non-orthogonal vectors of 𝑣𝑘 ,   𝑘 =

0,1,… , we can define the corresponding set of vectors which are orthogonal like as  

𝑢𝑘+1 = 𝑣𝑘+1 − proj𝑣𝑘
(𝑣𝑘+1) 5-C2 

with the initial condition of 𝑢0 = 𝑣0. In principle, column-wise Gram-Schmidt orthonormalization 

is equivalent to QR decomposition. In our work, we used both Gram-Schmidt and QR 

decomposition for all the Bloch states. 
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5.9.5 Appendix D: Propagating Waves 

The eigenvalues are pairs function with either propagating or decaying behaviors where 

the solution is calculated using equation 5-19 for a Bloch state. In an infinite solid only real 

eigenvalues are available for Bloch states and the complex eigenvalues diverge eventually. In this 

case, eigenvalues of 𝜆𝜆† = |𝜆|=1are propagating waves and the rest of the modes are evanescent 

modes. However, for a finite solid, both real and complex eigenvalues are available. As we know 

for AGF calculation, the complex eigenvalues are important for surface Green’s function 

calculation where a small imaginary value is added to eigenfrequencies. This will displace the 

propagating modes from the real axis. [157] In order to predict the change in propagating modes, 

we consider 𝛿 = 0+ as an addition to eigenstates in equation 5-19 

|𝑒𝑥𝑝(𝑖𝑘𝑎(𝜔 + 𝑖𝛿))| = |𝑒𝑥𝑝(𝑖𝑎 {𝑘(𝜔) +
𝜕𝑘(𝜔)

𝜕𝜔
𝑖𝛿 + ⋯})|

= |𝑒𝑥𝑝(−
𝛿𝑎

𝑣𝑔
)| 

5-D1 

where 𝑎 is the size of the Bloch contact unit and 𝑣𝑔  is the group velocity of the Bloch state. 

Therefore, propagating waves of finite contacts are the ones with the following condition 

|𝜆| = 1 − |𝑒𝑥𝑝(−
𝛿𝑎

𝑣𝑔
)| 5-D2 

Here for forward-going propagating waves 𝑣𝑔 > 0, then |𝜆| < 1. [93] 

 

 

 

 

 



 111 

6.0 Summary and Future Directions 

6.1 Summary  

In this thesis, we discussed the quantum thermal transport in disordered media such as 

amorphous Si and grain boundary structures of graphene.  

In the second chapter, we demonstrated the effect of MRO on propagon thermal 

conductivity in amorphous Si. We showed that MRO increases the propagon thermal conductivity 

up to 50% due to an increase of MFP of propagon modes. Our accomplishments include FEM 

implementation, equilibrium molecular dynamic simulations, and modal analysis of phonon 

properties. The outcome of our research was published in the Journal of Applied Physics [13] and 

was presented in IMECE 2019 [158].  

In the third chapter, we lay the foundation for the AGF and the thermal conductance 

calculations. We particularly discussed the methodologies behind Green’s function, AGF, local 

DOS, transmission function, and Landauer formalism. The in-house code was developed using the 

AGF simulation code based on the empirical potential which was received from Dr. Esfarjani. Our 

developments include the generalization of Hamiltonian matrices calculation with force constants 

calculation from phonopy, enhancing the system of equations solvers and surface Green’s function 

calculations, and implementation of the parallel processing algorithm. Our modifications to the 

code showed three orders of magnitude reduction in computational cost. 

In the fourth chapter, we implemented a simulation framework based on the MLIP to study 

the thermal resistance for a wide range of GB structures. We used the structural unit model to find 

a computationally efficient training set with high fidelity and transferability. Our MLIP shows the 
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high accuracy of thermal properties and interatomic force interactions as well as the ability to 

capture local atomistic properties such as core and strain energies. We showed 15-35 percent 

reduction in thermal conductance of GB structures in comparison with pristine graphene at room 

temperature, and we reported a temperature dependence of thermal conductance which is in 

contrast with previous studies at low temperatures. Also, we discussed the interplay of dislocation 

density with out-of-plane buckling and their influence on the scattering of flexural modes at GB. 

Thus, MLIP is a useful and powerful tool to study the structure with the disorder with a rational 

computational cost. Additionally, our findings will shed clarity on the growth process of 

polycrystalline graphene structures and their use in a wide range of applications. 

In the fifth chapter, we lay the foundation for the mode resolved AGF in order to calculate 

the mode resolved transmission where the spatial resolution is resolved. We discussed the 

methodologies behind the Bloch theorem and Bloch waves, mode matching approach, mode 

resolved AGF and the connection with the total transmission function. The in-house code was 

developed for the AGF simulation with the inclusion of the force constants from phonopy 

calculations. 

6.2 Future Directions 

The mode matching AGF for ballistic phonon transport has been used in recent works for 

crystalline graphene structures [159, 160] and non-symmetric graphene GBs [115]; however, the 

analysis of symmetric graphene's grain boundary structures have not been studied to the best of 

our knowledge. Thus, it is possible to utilize the mode matching AGF to find detailed information 

on thermal transport through grain boundary structures. Previously, we discussed the grain 
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boundary structures perpendicularly placed with respect to the heat carrier's direction since the 

traditional AGF is unable to address the directionality of heat flux through the grain boundary 

structures. One possible future direction is to investigate the directionality of the heat carrier 

dependence on thermal transport through grain boundary structures. Furthermore, mode matching 

AGF, in contrast to traditional AGF, distinguishes between different polarizations and, as a result 

of plane wave calculation, allows us to calculate MFP, group velocity, transmission probabilities, 

and modal transmission. These pieces of information are essential for our understanding of thermal 

transport through grain boundaries; for instance, in graphene, the flexural branch has an immense 

contribution to thermal transport; however, these modes' role and contribution are unsettled for 

graphene’s GBs especially the influence of disorder on the scattering process. The previous studies 

show a direct correlation between buckling of GB scattering of flexural modes in graphene GBs 

[151, 152], but they do not consider a full range of MAs for graphene GBs and mode conversion 

analysis of the transmitting modes near the GB disorder. Also, previous works are limited to the 

use of empirical potentials which are shown to be inaccurate near the GB dislocations.   

Additionally, a grain boundary is a disordered structure that alters the structural order from 

crystallinity and, therefore, the modes with wavelength larger than the structural disorder are more 

likely to transmit while the modes with wavelengths smaller than the structural order are more 

likely to behave reflected diffusively. The distinction between the propagating- or diffusive-like 

behavior is the advantage of mode matching AGF where the modes are polarization-resolved, and 

the wavelengths are calculated. All in all, a more detailed analysis of phonon transport will be 

delivered. Finally, the outcome of mode resolved AGF lead to calculating the scattering matrix 

useful for the simulation of phonon transport based on the Boltzmann transport equation. 



 114 

Additionally, it is possible to investigate the effect of chemical bonding on thermal 

conductance. Thermal conductance is significantly affected by the type of chemical bonding, e.g., 

covalent and ionic bondings. So far, we have discussed the graphene grain boundaries with 

covalent bondings; however, it is indeed that ionic character adds interesting and challenging 

issues to the thermal transport problem. Furthermore, in recent years, ionic materials' applications 

are increasing in compound semiconductors and insulators because of their electronic and optical 

properties with a larger electronic bandgap compared to covalent bonding semiconductors. Thus, 

it is important to examine the ionic bonding character of materials (e.g., GaN, h-BN) on thermal 

conductance and phonon transmission. Our simulation framework for mode matching AGF can be 

used to study the interplay of the structural order with the wavelengths of transmitting modes 

through the grain boundaries to understand the thermal resistance of the disorder grain boundary 

for ionic materials. The differences between ionic and covalent material in two compasses are: one 

is the difference of atomic structure of dislocations in the grain boundaries, and the second is the 

presence of Coulomb interaction. 

First, it is observed that the dislocations of ionic bonding material have a larger void 

volume compared with covalent bonding materials. [161] For instance, while the dislocations in 

graphene consist of heptagon and pentagon [100], the dislocations in h-BN can additionally have 

square and octagon rings shown in Figure 30 [161]. The square-octagon dislocations are 

energetically more favorable in ionic bonding materials because it retains no ions with the same 

charge sign as nearest neighbors. This results in the grain boundary dislocations which are more 

distinct and variational in terms of structural order. Also, the structural order's variation and 

distinction would cause a larger variation of force constants near the grain boundaries. Therefore, 
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we hypothesize the differences in dislocation structures between the covalent and ionic materials 

affect the thermal transport and scattering process near the grain boundaries. 

 

Figure 29. Dislocations in h-BN 

Secondly, Coulomb interaction in ionic bonding materials differentiates their 

characteristics in terms of directionality and the range of interactions compared with covalent 

materials. In this case, we speculate that the long-range Coulombic interaction would allow more 

propagating-like transmitting modes and consequently contribute to the larger thermal transport 

through ionic structures' grain boundaries. However, the disorder grain boundary structure in ionic 

materials changes the ion’s distribution near the grain boundaries and can converse long-range 

interaction as a transmitting factor. The interplay of the disorder ion’s distribution and long-range 

order interaction and its influences on the total and modal thermal transport is not evident. 

Therefore, one immediate future direction is to investigate the differences between ionic and 

covalent structures, and in order to do that, we follow a similar simulation framework to graphene 

structures. The implemented simulation framework is equipped to capture the modal transmission 

through the grain boundaries. It is worth mentioning that the thermal transport process for this set 

of materials has not been investigated to the best of our knowledge. 
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