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The supply chain is an integrated process of suppliers, plants, warehouses, and manufacturers
all working together in an effort to procure raw materials, process the raw materials into final
products, and deliver the final products to customers. However, the supply chain today has grown
into a complex network, leading to vulnerabilities and an increase of uncertainty for decision makers.
These vulnerabilities are defined as events with an associated likelihood to cause disruptions. With
a limited amount of information on events occurring, the uncertainty decision makers encounter
ultimately impedes the goals of the supply chain. These consequences are prevalent in low-volume,
high-value supply chains such as the nuclear power generating industry.

The goal of this research is to reduce the uncertainty decision makers face in the nuclear power
generating supply chain by developing a Bayesian network to monitor, plan, and control supply
chain disruptions. The aim is to integrate models of event disruptions, resource availability, and
mitigation options. Events that disrupt the flow of goods and information are identified through an
ontological approach and are quantified with a likelihood of occurring through a general elicitation
method. Resource availability of the nuclear power generating supply chain is modeled using control
theory to simulate inventory data. The inventory data of upstream suppliers is estimated using
Kalman filters and particle filters. The likelihood of events and the resource availability data are
integrated into a Bayesian network depicting the nuclear power plant supply network. Mitigation
options are added to the Bayesian network to reduce the likelihood of events at a financial cost to
deploy the option. Several scenarios are used to illustrate the application of the Bayesian network
in terms of the supplier selection problem to demonstrate how uncertainty in decision making is

reduced.
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1.0 Introduction

1.1 Goals and Outcomes

The goal of this research is to develop a method to reduce the uncertainty in the nuclear power
generating supply chain by exploiting new research and technology that exposes risks events to
ultimately aid decision making when attempting to maintain the goals of the supply chain.

The supply chain today consists of individual, interdependent agents that procure raw materials,
transform them into goods and deliver the products to the end customers. Within the past two
years, the world has faced a vast amount of supply chain issues regarding events that impact the flow
of resources and the material availability in several market sectors [2]. The supply chain continues to
navigate the black swan event of the COVID-19 pandemic, whose ripple effects were first observed
in the lumber industry and the hygiene paper market [58, 59]. In addition to black swan events,
there exists a long list of events that can impact the supply chain resulting in undesirable effects.
Transportation delays occurred when the container ship, Ever Given, was lodged in the world’s
crucial shipping artery, the Suez Canal. It was estimated that the stalled ship caused a loss of $10
billion a day by preventing other goods to move through the canal to their final destinations [68].
In the end, these events have the potential to produce severe economic consequences, imposing
high risks to all industries. This includes the nuclear power industry, which is characterized by
long lead-times and demand from a limited amount of suppliers due to highly customized products.

The ability to monitor, plan, and control the disrupting events and making well-informed deci-
sions to support the supply chain goals is difficult. The uncertainty surrounding events has increased
with the growing complexity of the supply chain. In terms of the nuclear power industry, there
is more uncertainty due to the demand for unique qualifications of products and long lead-times.
This consequentially clouds the decisions making process, leading to negative effects on the supply
chain goals. By identifying and quantifying the uncertainties surrounding events as a likelihood of
occurrence, supply chain professionals can monitor and manage the events, their uncertainties, and
how they impact the major areas in the supply chain. With the ability to reduce the uncertainties,
supply chain professionals can make decisions to successfully mitigate events, improve the flow of

materials and reduce the consequences that may impede the supply chain goals.



Individual goals are identified and used to form a comprehensive approach to establish a method
that will aid the decision making made by supply chain professionals using a risk-based decision

making network. The goals and their impact are:

1. Design a supply chain network with inventory-production models to generate syn-
thetic supply chain data. The supply chain exists as a network consisting of suppliers,
plants, warehouses, and manufacturers identified commonly as agents. This network is modeled
to illustrate the interdependent relationship between agents. The dynamics of the supply chain
and inventory-production processes are introduced to the model to generate synthetic data.
With the data, resource availability from participating suppliers is estimated. By having this
estimate, the uncertainty surrounding the decision making process regarding procurement is
reduced by knowing if and/or when a supplier’s inventory has the desired product.

2. Integrated models of risk, resource availability, and mitigation options within a
graphical model of the supply chain network.

The graphical supply chain network model is integrated with the following: (1) a model of risk
events and their consequences on the flow of goods, (2) a model of available resources from
upstream suppliers, and (3) a model containing mitigation options to reduce the effects of risk
events.

The risk event model is illustrated to contain the risk events and potential disruptions that
may occur in the four main areas of the supply chain [35]: (1) production, (2) inventory, (3)
location, and (4) transportation. The propagating effects of the risk events are modeled with
respect to lead-time and how the delay in the final product impacts the supply chain goals.
Identifying and evaluating risk events with an estimate of its uncertainty as a probability of
occurring enables transparency through the supply chain network and provides the ability to
deploy risk management strategies to reduce their impact. Ultimately, this effort enables the
use of additional monitoring and planning techniques that the decision makers have at their
disposal.

Resource availability is modeled as an estimate of inventory of upstream suppliers, which is
shown graphically at participating agents in the supply chain network. Mitigation options are
graphically depicted in the model to enable supply chain professionals the ability reduce the
likelihood of a risk event occurring in order to maintain the goals of the company. The graphical

model, with its integrated models, provide a visual aid of the entire supply chain network for



the supply chain professionals, which includes where potential disruptions can occur and how
decisions to mitigate them can be enabled.

Monitor, plan, and control events and resource availability.

The ability to monitor, plan, and control the events and resource availability is an arduous task.
There are a number of influencing uncertainties that may determine when a resource has become
available or if an event occurred that increased the lead-time of a desired product. Some of
these influencing uncertainties that impact the business goals of the company include political
policies related to the companies commodity, market fluctuations, instability, and economic
viability, technical uncertainties of commodity development, and the influence of all actors and
agents in the supply chain to operate in harmony.

In order for supply chain professionals to be effective, events are categorized in an attempt
to understand how the events propagate throughout the supply chain. After categorization,
the uncertainty surrounding events are assigned a probability to the demonstrate the likeli-
hood of the event occurring. Supply chain professionals aim to find opportunities to improve
resource availability; to some effect, this is the ability to match the ebb and flow of supply
and demand in the supply chain. Moreover, resource availability depends on influencing uncer-
tainties, customer-supplier relationships, and the demand forecasting and dynamic allocation of
resources as a consequence of the relationship. By modeling events and resource availability in a
comprehensive model, decision makers will have the ability to monitor events as a probabilistic
assessment that has a likelihood of occurrence and an overall impact to the supply chain.
Planning in the supply chain comes in the form of contingency plans and mitigation strategies
to ensure the goals set by supply chain management are met. Contingency plans and mitigation
strategies serve as a controlling mechanism to reduce the likelihood of events that may impede
the goals of the supply chain. These contingency plans and mitigation strategies can range from
supplier visits to ensure quality risks are deterred or the use of a supplier portfolio to choose a
supplier that is geographically located in an area outside that is prone to natural disasters. In
the event that mitigation strategies are appropriately planned then supply chain management
has the ability to control risks events and their negative impact. To this end, decision makers

are granted the ability to plan and control events in order to reduce their negative impacts [30].



4. Support decision making in the supplier selection process through data-driven mod-
els.
The supply chain has grown into a complex network with a number of interdependent agents.
As the supply chain stretches across the globe, companies are more prone to risk events and
uncertainties increase due to vast number of players in the supply chain system. This in turn
clouds the decision making process when attempting to satisfy the goals set by the supply chain.
One decision clouded by uncertainty is the supplier selection process. The process requires
measuring the performance of each supplier and comparing their resilience to risk events in order
to choose the supplier that satisfies the goals of the supply chain. By successfully completing
the previous objectives, the uncertainty surrounding decision making is reduced by identifying
how risk events impact the reliability of suppliers.
This research helps aid supply chain professionals in deciding which supplier to choose in order to
meet goals of the company. By including models of events, resource availability, and mitigation
options for each supplier, then supply chain professionals have the ability to evaluate their
supplier portfolio. Through this evaluation, supply chain professionals can analyze the risks
surrounding each supplier and observe the likelihood that a supplier may encounter a disruption
that impacts the lead-time. Supply chain professionals are able to finalize their decision on which

supplier to choose from by selecting the supplier that encounters the least amount of disruptions.

1.2 State of the Art and Limits of Current Practice

Decision makers in supply chain management are up against a supply chain that is growing in
size and complexity. Because of this, decision makers are more vulnerable to events that can disrupt
the flow of resources, which clouds decisions in the supplier selection process or whether resources
are available from suppliers. Research today treat each of these in isolation and fail to consider the
causal relationship between events, the supplier selection process, and resource availability. There is
a critical need to integrate all the uncertainties into one model to perform the following: (1) reduce
the likelihood of disruption in the flow of goods and resources through mitigation techniques and
contingency plans, (2) reduce the negative consequences of risk events on the supply chain goals by
analyzing the supplier selection process, and (3) increase the likelihood that resources are available

in the supply chain by appropriately modeling the push-pull nature of supply and demand.



This section highlights the state of the art dealing with the uncertainties encountered within the
supply chain. It explains the approaches made by researchers that aid supply chain management in
achieving their goals and the limitations of their approach. The remainder of this section highlights
the state of the art concerning modelling the supply chain with its associated uncertainties and
the limitations to their approach, followed by a brief overview of the current practices dealing with
the supplier selection process along with their limitations. Finally, a discussion on how resource

availability is currently studied along with the limits of their approach.

1.2.1 Supply Chain Modelling and Disrupting Events

Modelling a supply chain is an attempt to include all dependent agents (i.e. supplier, manu-
facturers, customers, etc.) in a supply chain that govern the flow of materials and information to
its end-user [6]. This activity is typically defined as supply chain network design (SCND) and is
considered the most basic decision made by supply chain management [93]. It includes designing
the flow of raw material from suppliers, how they are turned into finished products, and finally
delivered to end-customers in the most optimistic way [7]. A crucial component to modelling the
supply chain network is including the potential disruptions and the uncertainties managing the
risk events. Today, supply chains with their uncertainties are modeled by a wide range of methods.
These methods cover applied uncertainty theory, fault-tree analysis, and elicitation techniques. The
application of uncertainty analysis and theory method designed the supply chain model and the
likelihood of occurrence of disruptions to counter supply chain issues [93]. Uncertainty theory is a
mathematical system used for modeling decisions made in the state of indeterminacy [54]. Indeter-
minacy is a phenomena whose outcomes cannot be exactly predicted and is described quantitatively
through belief degrees given by domain experts [53]. The approach to employ uncertainty theory
to characterize the events encountered in the supply chain was chosen due to an inability to obtain
valid data [93]. This required the use of domain expertise to develop a supply chain model and
quantify risk events. However, the restriction to only using domain experts severely limits accuracy
for model development. There exists legitimate data that can be used in parallel with domain
experts to help develop the supply chain model [86]. Fusion between data and domain expertise to
model the supply chain can be achieved through the use of Bayesian networks.

Bayesian networks are a type of probabilistic graphical model that can be used to build the

supply chain model from data and/or expert opinion. Bayesian networks provide flexible frame-



works to combine different data types and prior knowledge [95]. This ability to handle disparate
and incomplete data provides a more accurate approach for modelling the supply chain and the
uncertainties surrounding risk events.

Uncertainty theory does not provide the means to update degree of beliefs in the model. The
inability to update the likelihood of occurrence hinders the accuracy of the model. The likelihood
of events change over time and this dynamic behavior must be reflected in the model [75]. Updating
the likelihood of occurrence can be accomplished through Bayes theory and thus strengthen the
decision making capabilities of the model. As an example, ground transportation of resources may
have more risk associated with it when road conditions are dangerous, much like those encountered
in the winter time. In the event that a supplier is located in a region where snowfall occurs in
the winter months, then the likelihood of a risk event delaying transportation increases during the

winter months.

LIMITATION — Applications of uncertainty theory limit the supply chain modeling by using domain
expertise, which restricts data usage and labels risk as static events. This fails to fully depict the
dynamic nature of the supply chain and the evolution of impacting risk events with respect to time.

Another approach to supply chain modelling was achieved by deconstructing a product being
manufactured through its bill of materials [73]. The bill of materials provided a supply chain
network for each component of the product, which was defined by the most basic services used in
their manufacturing processes. Within these manufacturing processes, uncertainties were identified
as potential sources of delay risks and were defined as the inability for the process to perform
as intended thus delaying the delivery of the final product [72]. The delay risks were quantified
as individual probabilities in terms of quality and capability deficiencies and were modeled using
fault-tree analysis.

The formulation of a physical system into a structured logic diagram, which is used to analyze
the causes that lead to the failure of a specified event of interest defined as the top event, is called
fault-tree analysis [49]. The fault-tree graphically represents a logical relationship between the
undesirable event and the basic events that may cause it. The logic developed provides a Boolean
formula built over all combinations of basic events that will lead to the occurrence of the top event,
creating a logical framework for understanding ways a system can fail [92].

The supply chain was modeled using the fault-tree analysis approach. The fault-tree related
the delay risks in the manufacturing processes as basic events that can lead to the top event of

failing to deliver the ordered product on-time. The top event was analyzed by structuring the basic



events of the manufacturing services through two Boolean gates, AND gates and OR gates [73]. If
a delay occurred at a manufacturing service, then the output of the given gate propagated through
the fault-tree to show a failure to deliver on-time. This passage of fault-tree logic enabled supply
chain management to proactively understand where in their supply chain network a risk may occur
[72].

Although fault-tree analysis is effective in showing the consequences of delays, the method fails
to model the complex environment of the supply chain by limiting the consequences of events to
binary outcomes in Boolean logic. Additionally, the analysis of a single top event fails to reveal
additional useful information in terms of risk management and decision analysis for supply chain
professionals. Restricting the model to only binary events fails to identify the number of risks events
that can cause delays outside the basic services in manufacturing processes. To account for these
risks, the fault-tree model would become cumbersome with the addition of logic gates and the need
to replace the logic to evaluate all scenarios. This requires the fault-tree to be reconstructed to
consider all risks and undesirable events, which can result in a number of iterations of the fault-tree
model when replacing the appropriate Boolean logic to evaluate the final top event. There is a
critical need in supply chain modelling to account for all potential uncertainties in order to aid
decision makers in the face of uncertainty.

Such an holistic approach to supply chain modelling can be achieved through Bayesian networks,
which enables decision makers the ability to analyze risk events for more than single top events.
Bayesian networks are ideal for analyzing complex sets of variables and representing the probabilistic
relationships between them [16]. Through this approach, risk management and reasoning strategies
can be deployed by recognizing all potential risk events and to proactively maintain the supply chain
goals.

There also exists a serious limitation in using static probabilities for basic events when using
fault-tree analysis, when the likelihood of these basic events, or risk events, in the supply chain are
dynamic in nature [75]. The Bayesian approach to modeling the supply chain presents a way to
update the probabilities of events based on the arrival of new, relevant pieces of evidence [78]. By
successfully updating the supply chain model with new evidence, then the uncertainty surrounding

the events is reduced for supply chain professionals.

LIMITATION — Fuault-tree analysis fails to comprehensively model the supply chain by constraining
events to single failure events and defining their likelihood as static probabilities.



1.2.2 Supplier Selection

Another decision impeded by uncertainty in the supply chain is the supplier selection process.
The supplier selection process is a strategic approach to selecting a supplier that meets a desired
criteria. The supplier selection process is considered one of the key issues supply chain managers
handle in order to remain competitive due to the number of uncertainties in purchasing situations
[40]. Depending on the market, these uncertainties include the consideration of the product life
cycle and an attempt to satisfy various quantitative and/or qualitative criteria for each potential
supplier where this criteria for each supplier may be in the form of financial risks, quality assurance,
or supplier resiliency [61].

In one approach, the uncertainties in the supplier selection process were identified using differ-
ent linguistic scales and a performance criteria was obtained according to individual accounts for
potential suppliers [40]. The performance criteria of each supplier was evaluated as a multi-criteria
decision making (MCDM) problem. MCDMs are integrated decision-making systems that provide
decision makers the ability to make decisions in domains where selection is highly complex [4]. The
application of the MCDM modeled the decision process for supplier selection and the uncertainties
encountered when evaluating the performance criteria of each supplier was addressed using fuzzy
set theory [39].

Fuzzy set theory takes advantage of fuzzy logic, which is a way to model logical reasoning where
the truth of a statement is not binary but rather a degree of truth ranging between zero and one
[97]. Through fuzzy set theory, the desired goals of the decision makers in the supplier performance
criteria was evaluated with a quality function deployment (QFD). Quality function deployment
(QFD) is “an overall concept that provides a means of translating customer requirements into the
appropriate technical requirements for each stage of product development and production (i.e.,
marketing strategies, planning, product design and engineering, prototype evaluation, production
process development, production, sales)” [12]. The QFD in presented by Karsak used supply chain
information through the MCDM model in an attempt to identify which of the supplier’s attributes
had the greatest impact on the goals established by the decision makers [40].

The supplier selection process that was evaluated in the MCDM model failed to identify the
conditional relationship between supplier characteristics and supplier assessment qualities, for ex-
ample, the relationship between quality and reliability for each supplier. In the supplier selection

process, desired goal of maintaining a lead-time is dependent on risk events surround quality, which



describes the reliability of a supplier to produce a product that meets those standards. To this end,
not all uncertainties are revealed in the decision making for the supplier selection process. There
exists a critical need to show the causal relationship between uncertainties in the supplier selection

process to ensure the supplier selected meets the goals of the decision maker.

LIMITATION — Managing the supplier selection process through a multi-criteria decision making
problem does not reduce uncertainty by failing to consider the conditional events that impact the
criteria for supplier selection.

The supplier selection process can benefit a company’s goals in many ways if the uncertainties
are successfully managed. Properly navigating through these uncertainties of the supplier selection
process not only promotes greater efficiency and lower cost for an entire supply chain network but
also enhances the stability and robustness of the supply chain [34]. During the production process,
suppliers may experience a number of operational risks. In order to overcome the uncertainties in
operational risks, the supplier selection process promotes a technique, as was performed by Fang,
for reducing the financial consequences by modeling a supplier portfolio [22].

The supplier portfolio characterizes each supplier by the common uncertainties of operational
risks of defect rate and late delivery. The defect rate and late delivery were quantified through
historical data and by treating the supplier portfolio as a risk portfolio, the final model was evaluated
using the Value-at-Risk (VaR) theoretical tool. This tool is often used in the financial market to
manage market risk. The tool takes into account a given time horizon and a confidence level to
determine the value at risk as a loss in market value over the defined time horizon [52]. The
VaR approach determined the risk exposure and helped identify a competent supplier portfolio.
The uncertainties are limited by the confidence interval and a defined time horizon in the VaR
assessment tools. Risks associated with the supply chain are dynamic and the probabilities of their
occurrence change daily. There is a critical need to model and mitigate the risks as their probability
of occurrence changes over time. For example, the risk associated with a impeding weather during
hurricane season is more likely to disrupt the supply chain during a particular duration throughout
the year. As the months continue and the season ends, the probability of occurrence decreases and
an accurate model of a supply chain should reflect this behavior.

The VaR method bundles suppliers in a portfolio to measure the benefit of a collection of sup-
pliers rather than the individual suppliers. In this case, the VaR method fails to measure individual
suppliers, which would benefit the decision making process when selecting individual suppliers to

meet their goals.



To this end, the supplier selection process needs to evaluate individual suppliers in order to re-

duce purchasing risk and maximize overall value to the end customer [80].

LIMITATION — Risks and uncertainties within the supplier selection process are limited to a spec-
ified period with a degree of confidence rather than a shifting degree of belief that the risk will occur
with time. Suppliers should be evaluated on an individual basis rather than in a collective portfolio
in order to reduce purchasing risk.

1.2.3 Resource Availability

Decision makers in the supply chain encounter a fundamental process to effectively match supply
and demand to ensure the incoming orders matches the work-in-progress and that the output of
resources reaches their customer in the allotted time [25]. The very nature of supply and demand is
clouded by uncertainty, placing the decision makers at odds against a number of influencing drivers
that determine when resources may become available [87].

In one approach, the most significant drivers that influence resource availability was studied
in order to inform decision makers on how to maximize resources in a biomass resource market
model. This biomass resource market model developed a baseline using a literature review for
each influencing driver and forecast how the driver may change and impact supply. Through this
analysis, the influencing drivers reflected the variances and dynamics that controlled the supply,
which was collected in a database where a series of ‘literature informed’ averages for each driver
was calculated. Thereafter, the averages were projected into the future to estimate the resource
availability for years to come [87]. The averaged literature review proposed by this approach fails
to successfully forecast the behavior of inventory-production strategies that are governed by push
and pull type supply chains. Resources in the supply chain follow a push and pull behavior, which
is identified as a supply chain performance strategy [94]. Within these strategies, the uncertainties
surround available inventory follow the inventory-production dynamics and how different alloca-
tions of inventory impact overall risk [18]. A better alternative is to generate synthetic data by
accurately modelling the inventory-production process of a supplier given a demand input. This
approach to resource availability would account for the push-pull nature of supply and demand,
which will enable decision makers to predict and plan when the available resources are acquirable

to fit their company’s goal.
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LIMITATION — Resource availability was accounted for using a static averaged to project future
supply. Available resources depend on the push and pull type supply chain strategies, which can make
the inventory count of suppliers fluctuate.

1.3 Research Approach

In order to overcome the state of the art and limitations of current practices, this research
approach involves a data-driven decision making model through the use of a Bayesian network.
The Bayesian network is constructed to mimic a supply chain network. For supply chain network
development, an ontology surrounding the supply chain is used for the basis of supply chain agent
relationships and their dependencies, risk event definitions, and overall flow of goods and resources.
In this case, an ontology defines the basic terms and relationships in a shared conceptualization of
a domain. The basic terms and relationships help formulate the interconnections between supply
chain agents and the potential risks that can occur.

In addition to the supply chain network, an inventory-based manufacturing model is created
to generate synthetic data representing inventory position and to perform particle filter estimation
of suppliers using state-space representation. Process and measurement noise is added to account
for uncertain fluctuations in the inventory measurement. State estimation techniques are employed
to infer estimates of supplier inventory data and processes, including addition upstream suppliers.
The synthetic data trains the resource availability of the Bayesian network and presents the degree
of belief for inventory position of suppliers. The final Bayesian network includes potential events,
their impact on lead-time, and how financial goals of the company with the addition of mitigation

options to reduce likelihood of risk event occurrence at some monetary cost.

1.3.1 Supply Chain Network Development through Supply Chain Ontology and Data
Mining

The supply chain today consists of individual, interdependent agents that procure raw materials,
transform them into goods and deliver the products to customers through a distribution system
[47]. By identifying the agents and their relationship with one another, a supply chain network can
be graphically organized into its respective tiers of supplier, manufacturer, and distribution agents.

By doing so, the graphic can depict the transformation and flow of goods from agent to agent until
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the product reaches its final destination or customer. However, creating a graphical representation
of a supply chain network can be a difficult task due to the complexity of identifying all agents and
their relationships in a particular supply chain. Typically, these tasks are completed by collecting
data from participating agents through questionnaires via an elicitation technique. This adds more
complexity to creating the network due to the need of communicating with vast amounts of supply
chain agents thus requiring additional time and effort to successfully create the network.

To reduce time and effort, the supply chain network is developed through an ontology method-
ology [28]. This methodology captures the various supply chain concepts and their relationships
among each other by combining data and information from multiple sources. In other words, the
ontology methodology is a data integration approach resulting from data mining sources regarding
the supply chain stages, functions, and decisions [85]. Once the ontology surrounding the supply
chain is sufficient enough to understand the relationships and functions, then the supply chain
network is created. This supply chain network depicts how resources and information flow between
agents, where risk events may occur and their impact on the supply chain, and how decisions re-
garding contingency plans develop with respect to the financial goals of the company’s supply chain

in question [79].

1.3.2 Dynamic Supply Chain Model Development and State Estimation

This research requires data on inventory and production processes in order to gain useful infor-
mation regarding resource availability of upstream suppliers. However, supply chain data contains
sensitive information, which leads to companies protecting their data and a lack of sharing infor-
mation across the supply chain as a whole [31]. In order to estimate the likelihood that a supplier
has inventory, synthetic data is generated by modeling the supply chain through state-space rep-
resentation with process and measurement noise to account for random fluctuations in inventory
position and uncertainty of upstream suppliers. Two models are created to represent the supply
chain dynamics between suppliers and the behavior of inventory position. The models respond to
an abrupt change in demand depending on the parameters of the models. As a result, the response
produces a typical inventory position or an inventory position that is saturated or low-in-stock.

The first model is a linear, series supply chain with demand acting as the input and the output
is the supply of the first supplier in the series [64]. The second model depicts the behavior of a

production and inventory system with a demand input on a make-to-order (MTO) manufacturer in
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series with a make-to-stock (MTS) manufacturer [90]. The model includes a nonlinear saturation
around the inventory capacity of MTS manufacturer. The output represents the back order rate of
the MTO manufacturer. Both models contain states representing the inventory position and other
useful information of upstream suppliers.

State estimation is used to estimate inventory position of upstream suppliers. For the linear
model, a Kalman filter is developed to estimate the inventory position of the immediate upstream
supplier and the following supplier in sequence. The nonlinear model, containing the MTS and
MTO manufacturers, a particle filter is developed to estimate the inventory levels of the MTS
manufacturer and the back order rate of the MTS manufacturer. The parameters are adjusted to
produce synthetic data containing a time-series inventory position for one year showing stable and

unstable responses.

1.3.3 Bayesian Network Model Development

Risk analysis and modelling generally use a combination of qualitative and quantitative meth-
ods, such as fuzzy logic, fault-tree analysis, etc.. But these methods have some limitations — they
cannot reflect the interdependence between risks and cannot be disseminated and updated after re-
ceiving new information. A more dominant method to study the risk is through Bayesian networks
because they are most effective models for uncertain knowledge representation and analysis, which
is superior for risk assessment of complex systems [23].

The constructed Bayesian network is a representation of the supply chain network, enabling the
decision maker the ability to plan, monitor, and control the knowledge and data collected in the
supply chain. The Bayesian network provides the decision maker with the probabilities of when
risks may occur, including their relationship to the surrounding environment, and how they will
impact the financial goals of the company. Additionally, the benefit of Bayesian networks include
updating the network with qualitative evidence. In the Bayesian supply chain network, this depicts
mitigation strategies and contingency plans to reduce the likelihood of risk events. To this end,
the decision maker can actively observe unique probabilities over the Bayesian network variables
representing the supply chain network while simultaneously attempting to satisfy the financial goals

of the company.
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1.4 Impact to the Nuclear Power Generating Industry

For advanced nuclear reactors to be cost effective, nuclear reactor technology must take advan-
tage of improvements in advanced instrumentation and big data analytics in order to operate plants
more efficiently, streamline maintenance, and have minimal staffing levels. With the obvious need
for advanced nuclear power to meet changing electricity and energy demands, the technology today
must develop and demonstrate advanced online monitoring techniques and begin to learn now how
such tools can be used to support and improve decision making. One key aspect of this advanced
technology is modeling how the unique characteristics of the nuclear industry supply chain impact
resource availability and lead-times. This involves modeling the risk propagation behavior and its
relationship on resource availability from suppliers and how the measurement of overall risk expo-
sure can result in delays. To achieve this, this research begins by examining today’s supply chain

and the relationship between each participating actor in the network.
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2.0 Supply Chain Modeling and System Dynamics

The need to model the supply chain is to generate synthetic data that relates to the functions and
processes surrounding production, inventory positions, and how the flow of resources moves between
different supply chain agents. The synthetic data is used to estimate the resource availability of
upstream suppliers, providing likelihoods of supplier inventory levels, and the ability to extract
information on back order rates. This data and their associated likelihoods are used in a risk-based
decision making network.

To achieve this, the relationships between processes and supply chain agents are studied. There-
after, their dynamics are considered through causal relationships between production and inventory
environments. By identifying the flow of information and material in these environments, systems
theory is employed as a modeling tool and state-space representation is formulated for inventory
level-based systems and inventory order-based production systems. Finally, the state-space model

is used to demonstrate how the bullwhip effect impacts the supply chain processes.

2.1 Block Diagrams for Supply Chain Dynamics

The supply chain consists of a number of different agents such as suppliers, manufacturers,
and distributors. There are strong dependencies between the agents that determine how the flow
of products, services, finances, and/or information moves and must be established to model the
supply chain. The model must also take into account the internal processes enforced by each agent
that are established by supply chain and inventory management. The design of the supply chain
model begins by locating the agents and facilities in different tiers of the chain. Thereafter, the
dependencies between each agent are evaluated by determining the directional flow of materials and
information throughout. Once the relationship between agents is established, the characteristics
of the manufacturing processes is developed for each agent in terms of their production-inventory
scheme, all of which can be achieved using block diagrams.

Block diagrams stem system dynamics, which is the study of interactions between components
and their environment [82]. The goal of the block diagram is to qualitatively represent the key

elements that are important within the system under examination and to provide an understanding
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Figure 2.1: Simple multi-stage block diagram for a supply chain with n stages.

into the causal relationship between the key elements. Block diagrams have been employed to study
the system dynamics of health care systems, pests and natural enemy interactions, and economic
systems [56, 63, 77].

Within this framework, the supply chain modeling process is performed by creating a block
diagram. The critical elements for a supply chain include identifying how information and products
flow between agents and how this flow creates the structured network of interdependent causal links.
The block diagram can be extended further to each agent by identifying their respective critical
elements for manufacturing processes and inventory strategies. This can be achieved by examining
the production-inventory strategies at the agent level.

In this research, simple multi-stage supply chain diagrams are developed to model how the flow
of demand information and products within the supply chain impact inventory position [64]. This
model is chosen to provide a simple relationship between agents and how information and resources
flow between them. The model can be extended to have n general agents with ¢ denoting the
intermediate agent index. Each intermediate agent has a causal relationship between its neighboring
stages with respect to its inventory position and incoming/outgoing products [65]. Figure 2.1 shows
a generic multi-stage case.

This research includes an additional block diagram depicting the manufacturing processes and
inventory strategies by studying how information and products flow within a supply chain agent.
This encompassing review of the internal processes establishes functions and mechanisms that
provide a more thorough model at the agent level. This model defines the production-inventory
systems, which are integrated systems of inventory control policies and production processes [21, 83].

Figure 2.2 depicts a general production-inventory system as a block diagram. It should also be noted
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Figure 2.2: A block diagram for manufacturing processes.

that all the elements in the production-inventory block diagram system can be modified to represent
any supply chain market[1].

The key elements in this block diagram represent the decisions made by supply chain and inven-
tory management and how the flow of goods and information impact the order rate and inventory
levels. For example, the input to the diagram is sales or incoming demand. This arrow from sales
to smoothed sales rate shows the propagation of information as a positive feedback shown by the
positive sign. In the smoothed sales rate, management makes a decision on an appropriate forecast-
ing method. The arrows coming from the smoothed sales rate depict the impacted information by
the forecasting method as they propagate through the diagram. If management chooses an effective
forecasting method, then the order rate will align with production. There are additional control
mechanisms that are chosen by the management in these systems, where depending on the input

demand, the output of inventory or production can result in a stable or unstable response.
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2.2 Control Theory and State-Space Representation

In order to model the dynamics of the control mechanisms studied from the proposed block
diagram systems, control theory is employed. Systems and control theory is a branch of engineer-
ing for the purpose of developing a model or a governing function to drive a dynamical system
to a desired state [26]. Control theory is a common tool in studying supply chain systems and
production-inventory policies [50]. The theory enables the crucial evaluation of feedback systems
and identification of causal relationship, which are common attributes in the supply chain.

Modeling in control theory makes use of the state of a system, which is a collection of variables
that summarizes the past of a system for the purpose of predicting the future [5]. State variables
are defined in the state vector z € R™. The control variables are defined in the input vector u € R?.
The measured signal are defined in the output vector y € R?. A system can then be defined by the

following differential equation, which is a non-linear state-space representation:

X = Fawy = b ) (2.1)
where f : R" x R — R"™ and h : R™ x RP — R? are smooth mappings. The model in this form
is defined as a state-space model. The model can be further simplified as a linear state-space
representation:

dx

i Az + Buy = Cz + Du (2.2)

where A, B,C and D are constant matrices. The matrix A is defined as the dynamics matrix, the
matrix B is defined as the control matrix, the matrix C is defined as the output matrix, and the
matrix D is defined as the feedthrough matrix. State-space representation can be defined for both

differential and difference equations. Further properties and derivations can be found in [5].

2.3 Multi-Stage Supply Chain State-Space Representation
Using the block diagrams illustrated in Figure 2.1, a state-space representation for the model

can be formulated. The purpose of this model is to demonstrate the observed amplification of

inventory position due to a sudden change in demand input. It is assumed that there is no delay
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time between resources being transported between supply chain agents and that no back-orders
can accumulate.

Figure 2.1 shows a generic multi-stage, series supply chain with n stages, where each stage
depicts a supplier chain agent. The inventory position of the supply chain agent ¢ at time ¢
is defined as I;(¢) and is controlled with a proportional inventory-replenishment policy through
the parameter k;. In this model, the inventory-replenishment policy indicates that the inventory
position is always trying to maintain a setpoint defined by inventory management. Additional
details about the model can be found in [64].

The products to be delivered moves from right-to-left, indicating that the resources are flowing
from agent, i, to its downstream agent, i — 1, at time ¢. This resource flow relationship is defined as
Yii—1(t). Additionally, the measured output for this relationship is inventory position for agent ¢
with respect to time ¢. The inventory includes products still in transit and those that are currently

held in inventory. This yields the inventory position, IP(t), difference equation:

IP;(t) =Li(t — 1) + Yig1,(t) — Yii—1(t) (2.3)

The orders placed between supply chain agents moves from left-to-right, indicating that ordering
information is flowing from agent, 4, to its upstream agent, ¢+1, at time ¢. Additionally, the ordering
dynamics includes the inventory-replenishment policy, which returns the inventory position to its
desired setpoint after an order has been made. The dynamics in ordering products between agents

is formulated in the following difference equation:

Os41(t) = ki(SP; — IP4(1)) (2.4)

where k; is the inventory-replenishment gain factor for agent ¢ and SP; is the inventory target
setpoint, which are chosen by inventory management to define their inventory-replenishment policy
set by inventory management

Unfulfilled orders at each agent ¢ is accounted for by introducing the standing orders variable
O;(t). This variable defines the amount of orders to be processed by agent i at time ¢ 4 1 through

the following difference equation:

O;(t) = 0j—1,i(t) + O (t = 1) = Yi;-1(t) (2.5)
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To further simplify the model, it is assumed that each agent can satisfy demand, indicating that
back-orders cannot accumulate, such that Y;,;_i(t) = Of(t — 1). This implies that the unfulfilled
orders at the previous time step are counted for as the resources being transported.

Next consider the dynamics of one supply chain agent in this model. There are two inputs for
each agent: incoming demand information (/F; ;) and incoming resources (R; ). Each agent has
two outputs: outgoing demand information (IF; o) and outgoing resources (R; ). There exits a
relationship between the inputs and outputs such that IF;; = IFi—1,0 and R;; = R;+1,0. The
last agent is assumed to be a manufacturing agent producing raw materials, which is modeled as a

time delay defined as ¢. In state-space form, each agent can be represented as:

IFip Rio IF;;
:El'(t + 1) = All'z(t) + B yl(t) = = Cl‘z(t) + D (2.6)
Rir IF;0 Rir
For the manufacturer producing raw materials, the state-space model is:
m'@(t + 1) = Aq;l’q)(t) + B<I>[Fz‘+1,ORi+1,I = Cq;.rq)(t) (2.7)

where A = 0 and By = Cp = 1.
Let z;(t) = (IPi(t — 1) Yi;—1(t)), IF;1(t) = Oi—1.4(t), Ri1(t) = Yir14(t), Rio(t) = Yii-1(t),

and IF; 0 = O;;41(t). By setting n = 3 to represent a four-tier supply chain, including the raw

material manufacturer, defines the following state-space:
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2.3.1 Bullwhip Effect Modeled as a Step Response for Multi-Stage Supply Chain

Uncertainty regarding incoming customer demand can lead to risks for any supply chain system
[36]. A sudden change in demand is a key factor in the dynamics of supply chain modeling and
often causes the phenomenon known as the bullwhip effect. The bullwhip effect typically starts
with a sudden, unexpected increase in consumer demand. There has been a direct observation
that the sudden increase in demand amplifies and propagates throughout the entire supply chain,
causing extreme fluctuations in inventory and production environments [48]. The bullwhip effect
is depicted in Figure 2.3. Such an effect propagates throughout the entire supply chain, impacting
the inventory position of all agents, which can increase lead-times due to shortages or lost revenue
due to excessive inventory [15].

The bullwhip effect can be analyzed by modelling the dynamics of the supply chain and how the
behavior of goods and information flow between agents. As is done in this research, the dynamics
and behaviors of the bullwhip effect are often modelled using a step response. By modeling sudden
demand as step inputs to the models, the consequences of bullwhip can be observed as extreme
fluctuations in their states and observed outputs [64].

For the multi-stage supply chain model, the bullwhip is observed by choosing the proportional

gain that serves as a inventory-replenishment mechanism. For typical inventory position behavior
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Figure 2.3: The bullwhip effect and its impact on the supply chain as shown by [48].
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the gains were set to k1 = 0.8 and k3 = 0.6 and the desired setpoints for the inventory positions
were SP1 = 100 and SP2 = 750 for supply chain agent 1 and supply chain agent 2, respectively.
These parameters are assumed only to illustrate the dynamics of the model and the behavior of
inventory position. The model is simulated with a step input to depict incoming demand. The
inventory position at agent 1 is stable at its defined inventory position setpoint of 100 units.
Similary, the inventory position at agent 2 is stable at its defined inventory position setpoint of
750 units. Figure 2.4 shows the simulated results for 30 days.

For a bullwhip impacted inventory position, the gains were set to k1 = 1.8 and k9 = 2.1 and the
desired setpoints were unchanged. These parameters are assumed only to illustrate the dynamics
of the model and the behavior of inventory position when the inventory-replenishment gains are
incorrectly chosen. The model is simulated with a step input to depict incoming demand. The
inventory position at agent 1 overshoots its defined inventory position setpoint of 100 units followed
by large fluctuations until stabilization occurs at SP1 = 100. The inventory position at agent 2
depicts an unstable inventory position with extreme fluctuations that increases beyond the setpoint

at SP2 = 750. Figure 2.4 shows the simulated results for ¢t = 30 days.

23



Incoming Customer Demand

g T T
2
E 08— —
Bos— ,
&
E
8 oa -
@
E 02— -
7
G, ! \ ! ! !
0 5 10 15 20 25 30
Inventory Position at Agent 1
o 100
@ 1 i
e
5
S 80— —
2
3
[
= 60 — —
2
E 40 — =
=
Z
L8 20— —
£
]
Z | ! \ l \
0 5 10 15 20 25 30
Inventory Position at Agent 2
o 800 T T
8
E
5
3
g 600 — =
3
c
S aoo — —
7]
3
o
Z 200 - =
g
£ \ \ \ l !
0 5 10 15 20 25 30

Time (Days)

Figure 2.4: Typical inventory position behavior when the inventory-replenishment policy is appro-

priately set.

24



Incoming Customer Demand
I

s o o
2 @ @ -
I I I
| 1 1

Customer Demand Amplitude
S
I
1

=]

20 25 30

°
o
&
2

Inventory Position at Agent 1
T

3
S

&
B
T
|

2
s
T

Inventory Position (Resouces)
2
I
|

=

20 25 30

B
o
=
&

Inventory Position at Agent 2
I

¥ g
3 3
T

2000 [—

1000 —

@
2
s

I

Inventory Position {Resouces)
@
2
I

|
0 5 10 15 20 25 30
Time (Days)

]

Figure 2.5: The bullwhip effect observed as amplified inventory positions.

25



2.4 Inventory Order-Based Production Control Systems

Advanced control laws with additional feedback loops for supply chain modelling has been
investigated throughout the years, where the works of Towill [83] and Coyle [14] most notably
introduced the inventory and order-based production control systems (IOBPCS). Its creation is
based on the block diagram shown in Figure 2.2. The IOBPCS has evolved into a family with
custom components and parameters depicting a general production and inventory control structure
[51].

The IOBPCS has been described by several different formulations including differential /difference
equations, state-space representation, and transfer functions in both the continuous and discrete do-
main [70]. The main components consist of an inventory policy (inventory feedback loop), pipeline
policy (work-in-progress (WIP) loop), a desired stock setting, a lead-time, and a demand policy
(forecasting setting). The IOBPCS structure in block diagram representation and its components

are shown in Figure 2.6.
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Abbrev. Description
AINV actual inventory
AVCON average consumption
AWIP actual work-in-progress
COMRATE completion rate
CONS market demand
DINV desired inventory
DWIP desired work-in-progress
EINV error in inventory
EWIP error in work-in-progress

ORATE order rate

Figure 2.6: The block diagram for a generic IOBPCS and nomenclature.
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Various systems from the family of IOBPCS can be modeled by tuning the following main

components:

1. Lead-Time: the time between the initial order and when the product is settled into inventory.
For manufacturing agents, lead time may include production delays or a production smoothing
element and can be tuned according to the particular process in question i.e. MTO or MTS.

2. Demand Policy: the mechanism that represents a statistical forecasting task that averages
the incoming demand. If the forecasting setting is chosen correctly, then the inventory will
approach the required demand in the supply chain.

3. Inventory Policy: the feedback loop that controls the error between the actual inventory level
and the desired inventory level.

4. Pipeline Policy: the work-in-progress (WIP) feedback loop that determines the error in WIP
(EWIP) and refers to the inventory items that have yet to reach their final destination.

5. Desired/Target Inventory: the fixed inventory setting and, in some cases, the setting can

be tuned to a multiple of current average sales rates [70].

2.4.1 IOBPCS Dynamics

The dynamics of the IOBPCS have two performance objectives [70]:

e inventory/resource level recovery

e reduce error in incoming demand on the ordering rate

These objectives are achieved through the design of the IOBPCS dynamics and can be observed
when a step input is introduced as a sudden change to incoming demand. The response of the system
is studied in terms of the system’s inventory with respect to common control theory characteristics
such as rise time, settling time, and maximum overshoot.

The designer of the system chooses the target stock level, the lead-time, and selects the three
policies discussed in 2.4 in order to replicate the supply chain under investigation. Figure 2.6 shows
the system with the policies in block diagram form. When the policies are tuned, different members
of the IOBPCS family are derived in state-space representation. The dynamics of the target stock

level, the lead time, demand policy, inventory policy, and pipeline policy are as follows:

1. Target Stock Level: The target stock level is defined by the parameter k£ and is a typical

capacity limit in inventory management, which can also serve as a buffer stock.
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Lead-Time: The lead-time is a fixed parameter, modeled using Padé approximations, that
the designer cannot control but must be established in the model to represent the production
lead-time of the system. The lead-time controller identifies the time, or delay, a resource is in
production until it is finished and can be shipped to the customer. The continuous-time delay
was introduced by Winker [89] as the following:

1

) = (@ s 1y (29)

where n = 1 for a first-order delay, n = 3 for a third-order delay, and n — 8 for an infinite order
delay. The parameter T}, is defined as the average lead-time of the product in production for
when n = 1 and n = 3. The parameter T}, is defined as a fixed lead-time when n — 8. If the
designer is to choose a fixed lead-time, then the dynamics for continuous-time and discrete-time

are as follows:

continuous-time: G, (s) = e 17*

(2.10)
discrete-time: Gp(z) = 277

where T}, = ¢T},, and T, is the sampling interval for the discrete-time dynamics.

Demand Policy: The dynamics of the demand policy attempts to measure the current or
incoming market demand and aims to produce zero steady-state offsets with virtually no os-
cillatory transient responses in the output, AVCON. This is achieved by modeling the demand
policy as an exponential weighted average process, which is commonly used in industry to-
day [70]. The parameter, T;, changes the sensitivity demand process and resembles a moving

average that is defined by the following:

1
continuous-time: G4 (s) =
() Tys +1 (2.11)
discrete-time: G4(z) = —a a_ P
where a in the discrete-time domain is defined as:
1
a= (2.12)

(1 +(To/Tm))
Equation 2.11 is a standard exponential smoothing function. Other academics [19] proposed a
linear or quadratic exponential smoothing forecasting technique. These forecasting techniques

are defined in the continuous-domain by the following:
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B 2T,s +1

C T2s2+2T,s+1

_ 3T28% +3T,s+ 1
T334 3T2s2 + 3T,s + 1

Linear: G,(s)
(2.13)
Quadratic: G4(s)

4. Inventory Policy: The dynamics of the inventory policy defines the rate at which the inventory
replenishes through the 7T; parameter. Ideally, if the inventory is low then the production
system would want to replenish to the target inventory as soon as possible. The parameter
adjusts the ORATE in the system, in other words, how quickly the inventory replenishes from
the discrepancy between the target stock level and actual inventory (AINV). The inventory
policy also takes into account the lead-time of the system because if the policy replenishes the
inventory prior to the lead-time then oscillatory behavior will occur due to excessive work-in-
progress (WIP). The dynamics can be modeled with a simple gain block with the following

parameter:

continuous-time: G;(s) =
(2.14)
discrete-time: G;(z) =

S8

5. Pipeline Policy: The dynamics of the pipeline policy attempts to correct and reduce the error
between the desired work-in-progress (DWIP) and the actual work-in-progress (AWIP). The
pipeline policy contains two parameters the designer can tune: T, and 7). The T, parameter
calculates the quantity that should be added to the orders by evaluating the error between the
desired WIP and the actual WIP. The T}, parameter is associated with the lead-time mechanism
and was discussed earlier in this section. In the pipeline policy, both parameters are modeled

as gain blocks:

1
continuous-time: Gy, (s) = —, Gq(s) =T
T
! (2.15)
discrete-time: G, (2) = —
The IOBPCS block diagram depicted in Figure 2.6 contains one input, CONS, and two outputs,
AINV and COMRATE. The input-output relationship defines the following transfer function in the

continuous-domain:
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AINV  —Ty(T,Tps* + (Tu + Tp)s
CONS  (Tus + 1)(TiTps® + Tys + 1)
COMRATE (To +Ti)s + 1

CONS (Tas + 1)(TiTps? + Tis + 1)

It should be noted that both transfer functions share the same third-order characteristic equa-

(2.16)

tion. Additionally, all of the coefficients are positive, which implies that the transfer functions
are stable for all non-zero choices in the design of the IOBPCS parameters. The dynamics of the
IOBPCS and its family has been extended to not only continuous-time transfer functions, but to
discrete-time transfer functions, which can be found in various sources on the matter [88]. With the
transfer functions, the state-space representation is derived for all flavors of the IOBPCS family.
Their derivations and state-space representation can be found in [45].

The benefit of using the IOBPCS not only lies in its variety of flavors when tuning the param-
eters, but also in its ability to mimic specific supply chain strategies. The strategies discussed in
the upcoming sections will show that there are make-to-order (MTO) and make-to-stock (MTS)
processes, that contain their own functions as portrayed by their tuned policies. To this end, the

IOBPCS family is employed to model the desired MTO/MTS supply chain.

2.4.2 Bullwhip Effect Modeled as a Step Response for Standard IOBPCS Model

The bullwhip effect can be analyzed by modelling the dynamics of the supply chain and how
the behavior of goods and information flow between agents when uncertain demand patterns are
introduced. In this research, the dynamics and behaviors are modelled by applying control theory
applications to represent the common supply chain operations and policies. By introducing sudden
demand inputs as step inputs into the IOBPCS model, the consequences of bullwhip can be observed
through the outputs of the control system models as extreme fluctuations in the states of the model
and its measured outputs [84].

The APVIOBPCS state-space from [45] is chosen for the simulation in order to show how policy
configurations can lead to the bullwhip effect. The reason for choosing the APVIOBPCS is because
this model supports the use of all policy components that include demand, inventory feedback,
inventory target, work-in-progress feedback, and lead-time. The state-space representation for this
model describing actual inventory output is shown in 2.17. The policies for a desired output and
a bullwhip impacted output are listed in Table 2.1 and the resulting simulations are found in

Figure 2.7 for typical behavior and Figure 2.8 for bullwhip impacted behavior.

31



[0 1 0
A= 0 0 1
Tty e t) g e —
-0
5o (2.17)
_1
O=[tthy+h Th-A -1
D=0

Table 2.1: Configuration of APVIOBPCS policies to simulated typical and bullwhip impacted

processes.

Model Configuration | T; | T, | Ty | T, a

Typical 2/31 1|1 ]-03]10
Bullwhip 2/5 | 1 1 1 10

APVIOBPCS

The APVIOBPCS state-space model is simulated for 290 days to account for an average num-
ber of work days. The policies in the APVIOBPCS model are configured to depict a inventory-
production process that can handle a sudden increase in demand. The resulting simulating shown
in Figure 2.7 illustrates the with the correct policies chosen then the inventory and work-in-progress
outputs can stabilize after an initial overshoot. The chosen policies demonstrate that the system
is underdamped and further analysis can be performed to ensure a faster settling time.

The policies in the APVIOBPCS model are configured to depict a inventory-production process
that undergoes a bullwhip phenomena when a sudden increase in demand is introduced. The
resulting simulating shown in Figure 2.8 illustrates the with the incorrect policies chosen then the
inventory and work-in-progress outputs will become unstable. This results in extreme fluctuations

in inventory space and the work-in-progress to match the incoming demand.
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Figure 2.7: Typical behavior for APVIOBPCS showing a stable output of inventory and work-in-

progress.
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Figure 2.8: Bullwhip impacted behavior for APVIOBPCS showing an unstable output of inventory
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2.5 Comparing Supply Chain Models

The multi-stage supply chain model and the IOBPCS model offer different dynamics and in-
formation when simulating the supply chain. The multi-stage supply chain has the freedom to be
constructed with n stages. This results in a simple series supply chain identifies more as a supply
chain network than the IOBPCS model since this represents a single agent in the supply chain. The
multi-stage supply chain only offers one inventory policy and makes use of a number of assumptions
when considering how products are delivered between agents and how this impacts the inventory
level. The only parameter that is available to adjust in the multi-stage model is the inventory
policy that acts as a gain for how much to replenish given the incoming demand.

On the other hand, the IOBPCS contains a number of adjustable parameters that depict the
policies employed in the supply chain today. The IOBPCS policies have the ability to depict a
number of scenarios that may cause issues in resource availability. If the demand policy is not
set correct, as shown in the previous section, the average of incoming demand may not be able
to maintain a steady state response given how the other policies are managed. Another example
is if the work-in-progress parameter is not tuned correctly, which may simulate a case where the
production is slowing due to an unforeseen error in machinery. Despite the IOBPCS model not
being easily adaptable to represent multi-stage supply chain, it remains the best choice in modeling

due to the dynamics of the policies and the scenarios that can represent their choices.
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3.0 Supply Chain Strategies using Simple Inventory Models and the IOBPCS
Model Family

Supply chains and their agents have inherent characteristics that define their manufacturing
strategies [81]. These strategies are employed depending on how incoming demand impacts the
start of production. The strategies can fall under three categories: (1) push-type, (2) pull-type,
or (3) push/pull hybrid. The push-type strategy pushes resources that are driven by a forecast
in demand, the pull-type initiates production through the pulling of customer demand, and the
push/pull hybrid consists of a mixture of both characteristics.

The strategies are implemented in the supply chain model by defining the location of points
that separate the forecast driven push-type demand from the customer driven pull-type demand
known as the customer order decoupling point (CODP) [62]. The location of the CODP refers to
where the customer no longer requires customization in its product. All activities upstream from
the CODP are produced through traditional forecast demand methods and downstream activities
are products pulled by the customer’s demand.

An additional point is added to the models by recognizing that a customer rarely has access to its
upstream supplier’s data and can be identified by another decoupling point defined as the demand
information decoupling point (DIDP) as investigated by [62]. The DIDP defines where a customer
decouples from information flow leading to uncertainty in resource availability and capacity of
upstream suppliers. This implies that if the location of the DIDP is immediately upstream to the
customer, resulting in the customer’s uncertainty surrounding resource availability increases.

In this chapter, the supply chain strategies and the location of the CODP and DIDP are in-
tegrated into the models developed in Chapter 2 to create a standard ship-to-stock (STS) supply
chain and a make-to-order/make-to-stock hybrid supply chain. The uncertainty surrounding un-
known orders being processed and other supply chain data due to the location of the DIDP is
modeled by incorporating process and measurement noise to account for uncertainty in demand of
upstream suppliers.

The first scenario, representing the STS market, uses the linear model described in Section 2.3.
The scenario is described to represent a simple ship-to-stock supply chain where no customer
customization exists in the supply chain. The purpose of this model is to demonstrate how the flow

of information and resources in a supply impacts the inventory position of each supplier.
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The second scenario uses the IOBPCS model described in Section 2.4 to represent a low-volume,
high-value (LVHV) supply chain. Low-volume, high-value supply chains consists of highly cus-
tomizable products [33], implying that the CODP location exists between supply chain agents.
Two IOBPCS systems are placed in series with the CODP located in between, thus categorizing
the first supply chain agent as a make-to-order (MTO) process since the customer is pulling the
demand through the product’s high levels of customization. The remaining supply chain agents
upstream from the CODP contain a push manufacturing process or a make-to-stock (MTS) process.
Thereafter, the mechanisms and policies within the IOBPCS systems are tuned to depict the MTO
and MTS systems to produce a final model of a LVHV supply chain. Finally, inventory position
and production-based states are observed by having both models undergo an input step demand,
whose response will result in a stable response. Then, an unstable response in inventory position
and production-based states is generated by introducing a sudden step demand that the supply

chain cannot control, resulting in extreme, amplified fluctuations.

3.1 Demand Strategies and Customer Decoupling Point Thinking

Supply chain strategies can fall under three types of systems: (1) push-type, (2) pull-type, or
(3) push/pull hybrid. The push-type implies a supply chain whose decisions regarding production
is anticipated by consumer demand while a pull-type is driven by actual consumer demand [81].
A high-level illustration of these strategies is shown in Figure 3.1. The blue arrows from the
customer imply that demand is being pulled by the customer and the red arrows starting from the
factor imply that the resources are being pushed by anticipated customer demand at the end retail
customer.

The push- and pull-type systems are further categorized by a range according to the customiza-
tion or standardization of the manufacturing process of the product as shown by Figure 3.2. As one
moves to the left, the manufacturing process produces more customized products, defining the sys-
tem as a pull-type since the customer is pulling the demand through higher levels of customization.
On the other extreme, moving to the right transforms the manufacturing process into producing a
standardized product where push-type systems push demand for basic and standardized resources.

The types of systems depend on the location of the customer order decoupling point (CODP)

as indicated by the dashed-lines in Figure 3.2. The CODP refers to where the customer no longer
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Figure 3.1: Supply chain strategies indicated by push or pull type demands.

requires customization in its product [27]. All activities upstream from the CODP are produced
through traditional forecast demand methods, or push-type production, and downstream activities
are products pulled by the true customer demand. The CODP is an important concept in struc-
turing and configuring supply chains to ensure the end customer receives its desired product. The
locations of the CODP requires an acute understanding of the market, its production properties,
and its ancillary processes [62]. Ultimately, the CODP indicates where the organisation or the
supply chain switches from a forecast driven production system and starts producing directly to a
customer order [91].

As the desired product becomes more customizable, the manufacturing process moves towards
rngineering-to-order (ETO), seen as moving left in Figure 3.2. At the ETO level, the production is
a pure pull-type supply chain because production is being pulled by a customer requiring a product
that is tailored to fit their own unique market. This is indicated by the CODP being located prior
to the design block.

On the other extreme, as the desired product becomes more standardized, the manufacturing
process moves to the right towards ship-to-stock (STS), becoming a push-type supply chain since
production is pushed by forecasting methods. For STS, the CODP is located after the distribution
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block indicating that the supply chain for this product was driven by purely forecasting demand
and standardized activities.

When modeling the supply chain, the CODP must be considered when identifying the market
because it determines the functions and dynamics of the manufacturing process. For this research,
two CODP strategies were chosen to develop two supply chain models: (1) supply chain that
consists of three suppliers in series that identify with the STS systems, indicating that the CODP
lies on the right side of Figure 3.2 and (2) supply chain that consists of a make-to-order (MTO),
make-to-stock (MTS) hybrid where the CODP lies between the MTO and MTS series. After the
CODP is established, the flow of resources and their interdependent relationships are studied in
each system to determine system dynamics. The basis for choosing model (1) is to establish a
simple linear model for how resources are shipped and received and to study how state-estimation
techniques can be used for resource estimation of upstream suppliers. The basis for choosing model
(2) is to establish a model depicting a LVHV supply chain with nonlinear capacity constraints due

to their vulnerabilities and limited supplier selection.
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40



3.2 Scenario 1: Inventory Position Model with Process and Measurement Noise

Consider the simple, three-tier series supply chain in Figure 3.3. It is assumed that the CODP
is located at the beginning of the series network thus defining the entire model as ship-to-stock.
For this research, the goods and resources in the STS system are shipped directly to the stock of
the neighboring supply chain agents. This assumption implies that all manufacturing steps, such
as design, fabrication, and assembly, have already been performed.

Further, the DIDP is located immediately upstream from the customers demand indicating
that information regarding demand is not shared among the agents in the supply chain. With the
addition of the DIDP at this location, process noise is summed with the input. This produces
an uncertainty about the demand information, which includes uncertainty of incoming orders from
other customers. The process noise is propagated into the model to account for how the uncertainty
of demand impacts the inventory levels of upstream suppliers.

The model is developed using state-space representation and the derivation of the dynamics
for the multi-stage supply chain can be found in Section 2. To simplify the model, the setpoint
levels for the inventory levels are assumed to be constant and that the inventory replenishment
policy is continuous through the proportional parameters k1 and k. This implies that inventory
management is reviewing its stock at each time step and is replenishing its stock if below the
desired setpoint. Additionally, the number of resources at the manufacturing agent is assumed to
be infinite indicating that the inventory can never be fully depleted.

Process and measurement noise are added to Equation 3.1 to account for uncertainty in inven-

tory as wy, and vy, respectively. The model used for synthetic data generation then becomes:
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3.2.1 Synthetic Data for Typical and Bullwhip Inventory Position

The step response of the model described by Equation 3.1 generated the data for inventory
position. The step input was used to depict incoming demand into the supply chain model. In
order to observe a stable inventory response, hereafter defined as healthy inventory levels, and a

bullwhip, unstable response the parameters were tuned to the values found in Table 3.1.

Table 3.1: Series supply chain parameters chosen for healthy and bullwhip impacted inventory

positions.

ki ko SPy SPo
Healthy 0.8 0.6 100 750
Bullwhip 1.99 04 100 750

The data is successfully generated into two sets: (1) healthy inventory position data set and
(2) bullwhip impacted inventory position data set. The healthy data set, shown in Figure 3.4, is
simulated for 104 days. Since the uncertainty is introduced into the demand input, the inventory
position of both suppliers parallel the fluctuations. Both suppliers satisfy the incoming demand as
time steps forward with an averaged position at their desired setpoint, which is indicated by the

red line in the figure.

This implies that the supply chain is under typical operating conditions and that resources are
readily available to satisfy incoming customer demand.

The bullwhip data, shown in Figure 3.5, is extended to 300 days to highlight the bullwhip
effect on inventory position. The bullwhip effect is observed as an amplified inventory position
at both suppliers, which exceeds beyond the desired setpoint. The bullwhip effect causes extreme
fluctuations in inventory position, indicating that the inventory replenishment policies for those
suppliers is overwhelmed by the incoming demand. Consequentially, the amplified data implies
that resources may not be readily available to satisfy incoming demand due to the saturating

effects on inventory position as it amplifies far beyond the red lined setpoint in the figure.

43



Incoming Customer Demand with Noise
5 T T T T T

Customer Demand

Average Customer Demand

/\/\f\/\’\A/\/\n/\/\/\/\AAAu/\]\r\VA /
VU V=WV NV \/V“\’V"V

0 20 100

Inventory Posmon at Agent 1
400 T I

/\/\Af\/\’\r\ Al kA /\v/\/\ /\/\/\ /\/\/\ g
VA AGLVAM N MASARA VAN LA

0 10 20

Inventory Position (Units)
2
:.

Inventory Position at Agent 2
a0 T T T T T T T

: /\/\_‘/\/\l\/\/\ /\/\/\/\
R ek e B ¥ ™ B =

0 10 20 50 100
Time (Days)

Inventory Position {Units)
2 a 8 B
g 8 8 8
T T 1
| |

Figure 3.4: Synthetic Data for a Healthy Inventory Position in Response to Customer Demand.
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3.3 Scenario 2: Low-Volume, High-Value Products

Low-volume, high-value (LVHV) products typically contain the following characteristics that
define their supply chain and manufacturing processes: high levels of customization, demand for
unique industrial processes, and often little-to-no suppliers that meet the customer’s requirements
[74]. These characteristics are sensitive to disruptions from upstream suppliers since the supplier of
the LVHV product does not have inventory buffers or a lack of resources to accommodate for late
deliveries [73]. Some examples of these supply chains include products developed for the aerospace

industry, nuclear power plant construction, energy exploration, and shipbuilding [20, 46, 57].
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One method to define LVHV supply chains is through decoupling thinking. The location of the
CODP categorizes the immediate supply chain agent as a make-to-order (MTO) process since the
customer is pulling the demand through the product’s high levels of customization [89]. The supply
chain does not end with this agent; it extends upstream to several suppliers and manufacturers.
Those supply chain agents upstream from the CODP point are considered to be forecast driven
and are categorized as make-to-stock (MTS) processes since the customer does not customize those
resources. Therefore, the LVHV supply chain exists in a hybrid MTO/MTS environment whose
dynamics consist of both a customer demand process and a forecast demand process.

With LVHV supply chains defined as a hybrid MTO/MTS environment, the system dynamics
can be developed using the IOBPCS model discussed in Section 2.4. First, a general MTO model
is developed using the IOBPCS model to depict the pull-type process. Thereafter, a general MTS
model using the same methodology is developed to depict the push-type process. Once both models
are formulated, the MTO model is integrated to the MTS model where the input of the MT'S model
is the output demand rate of the MTO model. The overall input of the hybrid model is the initial
customer demand for the LVHV product and the output can be defined as the completion rate of
the LVHV product.

3.3.1 Make-to-Stock Supply Chain Model

Push-type processes are those supply chain agents whose production depends on forecasting
methods to account for incoming demand [42]. The forecast demand dictates the production and
inventory schemes to satisfy the demand. These systems typically represent make-to-stock (MTS)
systems since the products require little-to-no customer customization effort. A general MTS system
is depicted in Figure 3.6. The MTS system operates similar to the standard IOBPCS dynamics
discussed in Section 2.4 with the addition of some logic to include back orders. The system responds
to the demand rate DRATEyrs and if there is no inventory for delivery, then back orders begin to
accumulate.

The MTS system contains two main management parameters that can be adjusted to contain
both linear or nonlinear elements: the back order management parameter, A, and the inventory
management parameter, B. For the system to be linear the dynamics require that no back orders

can accumulate and that the system will always satisfy incoming demand with available inventory.
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In order to materialize the linear M'TS model, the back order management parameter is set to
zero, A = 0, to turn off the logic that accounts for back orders.

A better representation of the real world system is to include back orders by creating a nonlinear
model. This implies that the available inventory in the MTS system is finite. Including back orders
allows actual inventory to be less than zero, AINV < 0, to account for the delay in production and
back orders accumulating. The additional logic of the back order management must distinguish
when there is excess inventory or when back orders start to accumulate. To do so, the nonlinear

model requires that the A block in the system becomes

A = —min(AINV,0), (3.2)

which diverts the positive inventory from the accumulating back orders as shown by the diverging
logic in Figure 3.6.

The inventory management can be turned off or on by setting B = 0 or B = 1, respectively.
When the inventory management is set to B = 0 in the nonlinear setting, then AINV, and
ABO4 can never be negative and the negative values of AINV are propagated to the calculation of
ORATEpNTs. When the inventory management is set to B = 1 in the nonlinear setting, then the
negative inventory values are accounted for in the production system.

In summary, with the B block set to either B = 0 or B = 1, two properties of the system can

be obtained:

e Infinite material: no back orders with A = 0.

e Finite material: back orders are enabled with A = —min(AINV,0).

where the finite material option implies that if the output of the system, BORATEy1s, is positive
then the DRATEyTg cannot be satisfied because back orders are increasing to only partially fulfill
the demand. When the finite material option is enabled, then the system has no capacity constraints

and the inventory will satisfy the incoming demand.

3.3.2 Make-to-Order Supply Chain Model

Supply chains in complex make-to-order (MTO) environments operate under different con-
straints and conditions than those in high-volume make-to-stock (MTS) structures. The IOBPCS

models used to create the MTS supply chain is updated to meet a unique single project. This
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is achieved by transforming the inventory of the IOBPCS model to an order book system. The
inventory of the IOBPCS model now depicts the error between the demand rate and the comple-
tion rate to represent an order book status. Because of this, the IOBPCS model no longer focuses
on inventory but rather capacity, where [90] defines these systems as capacity and order based
production control systems (COBPCS).

The IOBPCS model is updated to contain no feedback indicating an error in inventory to further
identify the model as a COBPCS. In this system, the MTO is capacity driven by taking into account
the actual order book variable, ABO. The ABO contains all customer orders received but not yet
delivered. The MTO system also introduces a backlog variable, BL, which contains all customer
orders that have been received but not yet released to production. The MTO supply chain system
is shown in Figure 3.7.

There are two delays within the system that define the business lead-time and the production
lead-time. The business lead-time defines the delay from when the customer has requested an order
with engineering specifications for their product to when the capacity is allocated. The production
lead-time is the delay for the entire production process of the requested good.

The MTO system contains two management parameter blocks: the capacity management C
and the backlog management D. The capacity management block represents a lag strategy, which
is when a manufacturer responds directly to an increase in demand then increases capacity to
account for the change. The backlog management block represents how the backlog is handled
by the system from a capacity perspective, which defines whether capacity is added to handle the
increase in backlog orders.

The MTO system can represent a linear or nonlinear model by defining an infinite or finite
capacity through manipulation of the C' and D blocks. For the linear case, C' can be set to unity
to indicate that the available capacity, CAPRATE, matches the incoming demand of DRATEy\To.
The backlog strategy is modelled as a linear system by having the fraction 1/Tgr, be added to the
capacity available based on available storage. Finally, based on the backlog management the orders

in the system are handled in two ways:

e If D =0 the backlogged orders are added to the new customer orders.
e If D =1 then the additional capacity is added to the order rate to handle the backlog.
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Figure 3.7: Make-to-Order Customer Driven System.
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For the nonlinear model, the capacity management block is modelled by setting a limited CAPRATE,
which is achieved by introducing a limited capacity constraint, CAPCON, and applying a first-order
delay to the REQRATE. This yields the following equation:

CAPRATE = min(CAPCON, Smoothed(REQRATE), REQRATE) (3.3)

This implies that either CAPCON or Smoothed(REQRATE) may limit CAPRATE. If capacity
is finite without the ability to increase capacity to account for orders in the backlog, then the
quantity in the backlog is summed with the DRATE yyr7o with D = 0. If capacity has the capability
to be increased to accommodate additional orders in the backlog, then that quantity is added to
the order rate, ORATEpnTo as is the case in the linear model by setting D = 1.

In summary, there are two different models defining the capacity of the MTO system:

e Infinite capacity: No capacity limit is used and C' = 1 implying that all orders are delivered
within the production lead-time CAPRATE = REQRATE.
e Finite capacity: Capacity of the system is finite when

C' = min(CAPCON, Smoothed(REQRATE), REQRATE where CAPCON is the maximum ca-

pacity available and no additional capacity is allocated to cover for the backlog e.g. D = 0.

3.3.3 Modeling the MTS/MTO Hybrid System for LVHV Products

For the LVHV scenario, the customer places an order for a highly customized product, which the
MTO supplier allocates space for in their inventory and adds its productions to the order book. In
order to produce the customized product, the MTO demands resources from its upstream supplier,
whose production strategy consists of a forecast demand MTS process. Within the MTS process,
the demand dictates the pipeline of production in order to provide the downstream MTO supplier
its requested resources. Once the MTS has finished goods in their inventory, they are shipped to
the MTO system to finalize the order book.

It is evident that the MTS/MTO hybrid model is a combination of the MTS and MTO system
previously described. The two systems work as two separate entities from a supply perspective
except for when insufficient inventory is available i.e. backorders in the MTS system start to ac-
cumulate which then impacts the amount of goods the MTO system receives. The integrated

MTS/MTO hybrid system is shown in Figure 3.8.
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It should be noted that the dynamics of the hybrid system show that when BORATE ;g is
positive this represents a growing ABO,. The increasing ABO. indicates that the delivery of
finished goods has not satisfied the requested DRATEyTs. This in turn reduces the ORATE N0
thus resulting in an unbalanced order book. Conversely, if the BORATEy s is negative then ABO
is reducing. This implies that the deliveries are reaching a stable state with respect to the requested
DRATEpMTs. When this occurs the backorders are recovering thus the MTO system can satisfy its
order book.

The availability of demand information is applied to the MTO/MTS hybrid through decoupling
thinking as represented by the position of the demand information decoupling point (DIDP). De-
mand information defines the information about true sales, which is represented by the demand
rate related to customer orders DRATEyrs.

For the MTO/MTS hybrid, there are two possible positions for the DIDP: limited demand trans-
parency or full demand transparency. For limited demand transparency, the DIDP is positioned
after the MTS system and before the MTO system as shown in Figure 3.8. The DIDP is positioned
in between the systems indicating that all the information from the customer orders dictates the
MTO system and the MTS system is driven by forecast methods of the expected demand.

Full demand transparency occurs when demand information is shared to upstream agents to
improve the forecasting methods employed in the MTS system. The DIDP is positioned upstream
of both the MTO and MTS system. The overall system then extends the input demand information
from the MTO system to the MTS input of the demand forecast block to account for full demand

transparency. This change in control logic is accounted for in Figure 3.9.

3.3.4 State-space Representation of the Nonlinear LVHV System

Prior to defining the state-space model for the MTO/MTS hybrid system, there are several
parameters that must be initialized. In this scenario, the MTO/MTS hybrid system takes on the
perspective of LVHV supply chain where the MTO supplier manufactures complex products that
are dependent on suppliers from a MTS supplier. For the purpose of this research, the MTO
supplier is assumed to have no issues with incoming demand and has no orders moving to their

backlog.
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This research assumes that the issues in this supply chain occur in the upstream MTS supplier,
where in one case the MTS supplier is able to keep up with the orders from the MTO supplier and
the other case depicts a MTS supplier whose backorder rate accumulates thus failing to ship the
requested products to the MTO supplier.

All real-world systems, including inventory-based production and capacity-based production
systems, are nonlinear. Therefore, the MTO/MTS hybrid system will contain the following non-
linear elements defined by the MTO/MTS structure:

A = —min(AINV,0), B =1 for backorder management.
C = min(CAPCON, Smoothed(REQRATE), REQRATE) for capacity management.

D = 0 for Backlog management.

For the LVHV system, the nonlinearity comes from the capacity constraint, which can be likened
to a saturation element that limits the inventory. This resembles real-world constraints because
supply chain agents are limited to their physical warehouse space [60].

The MTO system is modeled to contain a lead-time of 32 weeks to account for the time to
manufacturer complex LVHV products, while the MTS system has a lead-time of production of
4 weeks [24]. The remaining MTO parameters are chosen to ensure that no products are moved
to the backlog. The parameters for the MTS system are chosen to model a system that satisfy
the incoming demand from the MTO system, which are listed in the Healthy row in Table 3.2.
The MTS model parameters are also chosen to depict a supplier that fails to appropriately allocate
work-in-progress processes to account the demand, resulting in a positive back order rate and failure
to deliver the requested parts to the MTO system. These parameters are listed in the Bullwhip
row of Table 3.2.

With the LVHV established as a nonlinear MTO/MTS hybrid model, the state-space represen-
tation is developed by following the block diagram model shown in Figure 3.8. The state-space
equations as represented by difference equations are listed in Appendix A with the addition of

process and measurement noise to account for fluctuations and uncertainty in the system.

3.3.5 Synthetic Data for Typical and Bullwhip MTO/MTS Hybrid Models

Data is successfully generated for 52 weeks. The incoming demand is set to 50 units, which is
reflected by the top graph in Figure 3.10 as Incoming Demand to MTO system. The states of the

system that are most crucial are those plots titled Actual Inventory of MTS System and Actual
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Table 3.2: MTS and MTO parameters chosen for nonlinear LVHV system to generate healthy and
bullwhip data.

Make-to-Stock (MTS)
A B|\Ta |Tprp | Tr | Tw | Kinv | Kwrip
Healthy | —min(AINV,0) | 1 | 20 4 1 2 8 4
Bullwhip | —min(AINV,0) | 1 | 20 2 0.001 | 0.005 2 2

Make-to-Order (MTO)

C D | Tc | Tpep | Tro | CAPCON
Healthy | min(CAPCON, Smoothed(REQRATE), REQRATE) | 0 | 2 32 4 100
Bullwhip | min(CAPCON, Smoothed(REQRATE), REQRATE) | 0

2 32 4 100

Back Order of MTS System. These states indicate whether the MTS system has the capability
to ship the requested products to the downstream MTO system. In Figure 3.10 the generated
data shows that the system has the ability to satisfy orders by maintaining a zero back order rate
after an initial transient of the incoming demand. This behavior is further reinforced by the actual
inventory of the MTS system increasing as time steps forward.

The bullwhip impacted data is illustrated by identifying a positive non-zero back order rate in
the MTS system. Figure 3.11 reflects the non-zero back order rate whose MTS system parameters
cannot satisfy incoming demand, leading to a saturation inventory. Since the MTS system has
inventory issues with capacity constrains then the order book of the MTO system cannot be fulfilled

as would be the case in a LVHV scenario thus leading to delays with a lagging completion rate.
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Figure 3.10: Synthetic data for a healthy LVHV system in response to customer demand.
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4.0 State Estimation and Resource Availability of Supply Chain Control System

Improving supply chain performance is highly dependent on coordination and information shar-
ing between all agents in the supply chain network. Enabling the visibility of information benefits
all participating agents by reducing the uncertainty on production and resource availability, whose
processes depend on upstream or downstream supplier activities [44]. However, there are a number
of barriers that are preventing the commitment of information sharing among the supply chain
agents such as threats of information security, technological disparities, and financial constraints
[71, 13, 76]. Because of this, the information available to supply chain agents is limited and may only
consist of suppliers that they have contractual relationships with or agents who are immediately
upstream or downstream in their supply chain.

To overcome this, the internal states of the supply chain are estimated using state estimation
techniques. State estimation is a method of determining the current state of a complex system that
contains noisy measurements or inferred states [3]. When successfully applied to process monitor-
ing, state estimators can provide an estimate of an unmeasured state that is essential to provide
information about any plant such as space craft, autonomous vehicles, or robotic manipulators
[41, 66, 67]. For the supply chain case, state estimation techniques are applied to the scenarios
developed in Chapter 3. This provides a means of inferring states, such as inventory levels of
suppliers, from measurements of immediate upstream suppliers.

In this research, state estimation is achieved by using the probabilistic perspective of Bayesian
processing. Bayesian signal processing is applied to the supply chain models to estimate the in-
ventory positions of upstream suppliers inventory positions. This estimation can be achieved using
several different Bayesian processes, such as the Kalman filter or particle filter, to provide a means
of inferring the inventory level of suppliers from measurements of immediate upstream suppliers.
By successfully estimating the states of upstream resources, uncertainty surrounding resource avail-

ability is reduced.
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4.1 Bayesian Signal Processing and State-Space Models for Bayesian Processing

Bayesian signal processing is used to estimate the probability distribution of a random signal
in order to employ statistical inferences and provide a better signal estimation [11]. These statis-
tical inferences extract the desired signal from noisy uncertain measurement data. The Bayesian
approach begins with the estimate of the underlying conditional probability distribution, P(XY),

then the inferences to extract the estimated signal, X, are performed such that:

P(X]Y) = X = argmax P(X|Y) (4.1)
where the associated conditional probability, P(X|Y"), is defined as the posterior distribution be-
cause the estimated signal is conditioned after the measurements have been obtained. Since the
posterior distribution is used, the estimation method is deemed Bayesian due to the use of Bayes’
rule:

P(x|y) = LX) (Yl‘f((l)f; )

where P(X) is defined as the prior distribution, P(Y|X) is defined as the likelihood, and P(Y) is

(4.2)

defined as the evidence. As more data is obtained or measured, the prior evolves into the posterior
distribution with a peak that narrows towards the true desired value.
Bayesian signal processing applies Bayes’ rule to dynamic cases, which yields the following joint

dynamic distribution:

P(Yi| X¢) P(Xy)

(4.3)

where the added subscript for X — X; and Y — Y} define the dynamics as a function of time. This
implies that the dynamic approach of Bayesian signal processing yields an identical estimation to

non-dynamic cases:

P(X|Y:) = X; = argmaxy, P(X;|Y}) (4.4)

Therefore, Bayesian signal processing enables the use of statistical inferences on desired esti-
mates when the posterior distribution is determined.
In Chapter 2, a generic state-space representation was developed for a linear time-invariant

continuous-time and discrete-time model. From a Bayesian approach, it is assumed that the state
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variables propagate through time according to some probabilistic mechanism with the addition of

process and measurement noise. In discrete-time, the state-space representation becomes:

xlt] = f(z[t — 1, ult — 1], wlt — 1)) (4.5)

where w and v are the process and measurement noise sources, respectively, and v as a known
input to the system. The model begins with the state vector containing an initial distribution,
P(z(0)), that propagates throughout the model according to the probabilistic transition distribu-
tion, P(z(t)|(z(t —1)).

The model implies that the measurements evolve from the conditioned likelihood distribution
on the state variables, P(y(t)|z(¢)). The model also takes on the Markov property. The Markov
property defines that all future states of the process depend only upon the present state, then the
state at time t is obtained by the previous state (¢ —1) as well as information about the underlying
conditional probability. When the state reaches time ¢, then the likelihood probability and the new
measurement, y(t), is updated or corrected. Since the state propagates in a probabilistic manner
with process and measurement noise, the application of Bayesian estimation on the state-space

model extracts an unobserved or hidden state variable.

4.2 Linear Inventory Position Model with Kalman Filter

State estimation techniques are used to determine whether suppliers upstream have resources
available. The sought after state is inventory position. The estimated state of upstream supplier
inventory position has the potential. Estimation is achieved through the use of a Kalman filter
to provide a means of inferring the inventory level of suppliers from measurements of immediate
upstream suppliers.

The Kalman filter is applied to the state-space model discussed in Section 3.2. For this research,
the parameters that defined the inventory setpoint position and inventory-replenishment policy
remain unchanged for both healthy and bullwhip impacted models. The state-space model is
assumed to be linear, time-varying with additive Gaussian noise to the process and measurement

equations to account for the uncertainty in random fluctuations of inventory position.
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Given that the dynamics of the supply chain upstream are clouded with uncertainty, the Kalman
filter allows the estimation of the inventory position state through its two stages of prediction and
innovation (update). The algorithm begins by defining an initial state vector, #(0|0), and an initial
covariance matrix P(0|0). Thereafter, the process begins the prediction step, also referred to as the
time update step, where a projection of the estimated state and error covariance is computed given
information about the previous time step. Since this is the first projection, the initial estimates are
used to compute the prior estimate, Zy;_1, and the prior error covariance, ]5,6‘ b1~

With a prediction of the state and error covariance, the measurement update or correction step
is performed. In this step, the estimate of the state, Ty, is computed by using the Kalman gain K}
and the observed output at the current time step, yi. The error covariance, f’k| k, i1s updated to be
used for future estimates in the next time step. The values computed in this step are propagated to
the inputs for the k 4 1 step, thus leading back to the prediction step and the start of the iterative
algorithm. The algorithm for implementing a Kalman filter is shown in Algorithm 1. The full
derivation of the Kalman filter can be found in [11].

Figure 4.1 shows the Kalman filter results for estimating the inventory position of the suppliers.
Overall, the Kalman filter successfully estimates upstream supplier inventory assuming a linear
model with error converging to zero within a few time steps. By successfully estimating upstream
supplier inventory, the uncertainty is reduced with regards to resource availability. To this end, the
Kalman filter provides estimates of resource availability and can be used to in the decision making
process of supply chain management to satisfy the goals of their company.

For the bullwhip impacted model, the Kalman filter remains consistent with its estimation of
the inventory position as it parallels the true state. The estimation of the inventory positions
has an error that does not diverge despite estimation of an unstable model. The error appears to
decline after settling at 1.5 units and 2 units for supply chain agent 1 and supply chain agent 2,

respectively. The Kalman filter results and their errors are shown in Figure 4.2.
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Input: Initialize: #(0|0), P(0]0)
for k=0to N do
begin Prediction:
Trip—1 = AZp_1p—1 + Bug—
Pyp—1 = APy 1A'+ Q
end
begin Measure:
Read y
ex =Yk — CZppp—1
end
begin Calculate Gains:
Sk = CPy1C'+ R
Ky, = Py, C'Sy !
end
begin Update:
Tk = Tppr—1 + Kgex
Py = [I — KxCl Py
end
begin Delay:
Tk = Tp—1jk—1

Prjp = Pr_1jk—1

end

end

begin Return data:
Sxfps Pop, 1=0: N

end
Algorithm 1: Kalman filter algorithm.

63



400

Inventory Position at Supplier 1
I I I T

e T
’g True )
c = Kalman Filter
2 300 -
(=$
o
= “
7} L Z ]
8 200 /
o
= N
2 100 i / A\
=
5 > 4 ~ N 4
>
2 =
0 | | v | | | 1 | |
0 10 20 30 40 50 60 70 80 90 100

3000

v
2
€ 2500
2
c
§ 2000
-4
[
8 1500
o
2 1000
o]
L
5]
S 500
£
0
0 10 20 30 40 50 60 70 80 90 100
Time (Days)
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4.3 Non-linear Capacity Constraint Back-Order Model with Particle Filter

In Section 3.3.3, a nonlinear model due to capacity constraints was developed to generate
order-book and backlog data for a low-volume, high-value (LVHV) supply chain with the addition
of process and measurement noise. The Kalman filter designed for the linear model is not be able
to estimate the states of the model because the Kalman filter is limited to linear models [17]. To
overcome this, a particle filter is developed to estimate the states associated with the inventory
process.

Particle filtering is a Monte Carlo method that uses sequential estimation of relevant probability
distributions using discrete random approximation methods and importance sampling techniques.
The particle filter begins by generating a set of particles from an a priori distribution about the
initial state and using the initial state to observe the initial measurement. As the model steps
through time, the set of particles are propagated through the state-transition model to produce a
new set of state particles. The new set of state particles are used to update the observation, thereby
producing a set of particles surrounding the next observed measurement. Weights are generated for
each measurement particle defined by the probability of the measurement particle given the true
measurement at that time step.

The weights are normalized to form a the posterior probability distribution. From this new dis-
tribution, random samples are drawn to generate new particle estimates. When sampling randomly
over this distribution, values are selected based upon their statistical significance. Those that are
statistically significant are the higher valued weights, which are more likely to be chosen. This step
ensures that the newly sampled weights are more likely to be near the actual value, which becomes
the new set of particles. Finally, the final estimate is determined by averaging the set of parti-
cles. The particle filter algorithm applied to state-space models is described in Algorithm 2. The
histogram and probability distribution for several states are shown in Figure 4.3 and Figure 4.4,
respectively.

The particle filter successfully estimates the following states of the nonlinear MTS/MTO model:
input demand of the MTO system, the completion rate of the MTO system, the actual inventory
of the MTS system, and the back orders of the MTS system. This estimation provides valuable
information about the health of the supply chain and the ability to estimate upstream processes
reduces uncertainty in resource availability. The results are illustrated in Figure 4.5.

Most importantly, the particle filter successfully estimates the states of upstream suppliers when

66



‘ -

o

-

M
N

‘Tepouwt PLIqAY STLIN/OLIN Y} Jo sdois oull) [RI0A9S 10J UWI)SAS o1}

ysnoayy seprred surpesedord Aq pojerouss soje)s Jo WRISO)SIH ¢ 0INSIg

(spun) “ogv

©

Eaa 0m<
z e

4
oy
09

-
o
~

(swun) *ogv
3 0 - z &

junon

) °
3

(snun) “oav

©
~
o
g
@
<

09
25 =3 -~ waysAg SLIN JO J9PIQ Hoeg [eNdY

8zL 9zL veL (243 0zL 8LL

- 0 0 0
0 o o 0Z 0z
2 2 g
| El o 3 oy
09 09
09 09
26 =3 wayshg mhs_&o Aiojuanu [enmoy wayshg m.:zmo Kioyuanuj enjoy 92 =1 - wayshg S1IN jo Aiojudau| lenjoy ¢l =} wayshs g ._.Eo Kiojuaauj [enjoy
(ewry/spun) >~ 31vyo8 @EEm__:: mZmOm (ew/snun) M3 vy (ewn1/spun) >~ 31vd08
14 z 0 FAd s k4 3 0 S [4 0 Al i 9 S i4 £ [4 3 0 - z
0 u 0 0
o 0Z 0Z 0z
o 2 2 2
El or 3 or 3 B
09 09 9 09
26 =3 - waysAg S1I Jo ajey 18pIQ yoeg 6€ =1 - WaysAg SLIN J0 djey J8plQ Yoeq 9Z =} - WajsAg SN J0 ajey 19plIQ Yoed €1 =1 - WaysAg SN J0 djey JaplQ yoed
(shun) aoedg Aiojusau| Am._ca momuw >_o.:m>c_ (snun) eoedg Aioyuenu| (spun) eoedg Aiojusau|
s 5 0s 8y or €S o s 5 0s k14 o 09 65 85 1S 96 SS s €5
o 0 o o
o o) 2o (4
o5 2 2 g
2 or 2 or = or
00k 09 09 09
25 =1 - wajkg OLI Jo Ayoeded =3 --- walkg OLI Jo Ayoeden 9Z =1 - wajkg OLW jo Ayoeden €1 =1 - wajkg QLI o Ayoeded
(snun) puewaq Buiwoou| EEDV c:mEmn_ mc_Eooc_ (syun) puewaq Buiwoou| (syun) puewaq Buiwoou|
€5 4] s 05 6 8 pig mqo 65 mc €S k4 1S 05 67 8 PAd m«o 9 SS S L 5 3] 0s mwc
02 o 0 ~ 2 o 0z
2 g g
o2 w3 o3 or
09
09 09

(snun) ANIV

6€ =3 -~ WaysAS SLIN Jo J9pIQ Hoeg [EMOY

E__Sv >z_<
m

69 26
0z
oy

92 =3 -~ waysAg SLIN JO JOpPIQ yoeg [eNdY

(snun) ANV

<
3
3
~
s
8
9
]
5}
©
3
¢
©
8
<
<
3
¢
o
S
¢

junoy

004

€1 =3 - waysAS SLIN JO J9pIQ Hoeg [EMOY

e 0z 892 992 vz 292

(snun) ANIY

26 =} --- puewaq Buiwoou|

6E=3- v:mEon_ Buiwoou|

92 =} --- puewaq Buiwoou|

€1 =} --- puewaq Buiwoou|

67



‘Tepout PLIqAY STLIN/OLIN Y} Jo sdois oull) [RI0A9S 10J UWI)SAS o1}

ysnoay) seprired suryesedord Aq pajeIousd soje)s JO SAIISULpP AN[IqRqOI]

'y oIS

6=

8zL

(spun) “ogv Eaa 0m< (spun) “ogv (snun) “oav
[4 b 0 - 4 € r € £ 14 € k4 1 [ € € 4 3 0 15 Al € r
0 o 0 0
09 H o 3 09 3 o
e g rEg rge g
208 Z 0% 2 203 Z z0&
Z 2 2
. £0 £0 £0 €0
3 --- waysAg SLIN 4O 19pIQ Hoed |endy 6€ =1 -~ waysAg SN Jo J9p.IQ doed |enjoy 9Z =1 - waysAg SLIN 0 J9pIQ Xord [endY €l =3 - waysAg SN JO JapIQ ¥oeg [endy
(snun) ANIV (snun) ANIY (snun) ANIY (snun) ANIY
9zL veL L cNm 20L 004 969 14 5 ¥0S 208 ey mm e 02 892 99z vz N@M
P o W o3 o
109 3 10y 8 10
Sg 3 g ER £l
N,o,m'w M,W N.o.m..,w. z0&
£0 20 £0 0
26 =1 - wiaysAg S1IN Jo Aiojuanuj enjoy 6¢ =1 —— wayshg SLI Jo Aiojuaauj enjoy 92 =1 - wa)shg S1N Jo Kiojuaauj [enjoy €1 =1 — WojsAg SL 40 AI0jusAU] [ENjOY
(ewry/swun) S*'31v08 (ewri/siun) $"'31v08 (ewrr/swun) S*M'31vaoa (ewry/swun) S*M'31vaos
z 0 FAd v.o k4 3 0 id ‘c [4 3 0 s m‘o S i4 £ [4 3 0 - N40
T o o
00 O 3 09 3 o
vEE weg vEg
208 Z 20 Z z0% Z &
Z = Z -
€0 e €0 €0
26 =1 --- WaysAg SLIN JO ajey JapiQ yoeqg 6€ =1} --- WasAg SN JO ajey JapiQ yoeq 9Z =) --- WaysAg SN JO ajey JapiQ yoeqg €1 =} --- wasAg SN JO ajey JapiQ yoeg
(shun) aoedg Aiojusau| Am._ca momuw >_o.:m>:_ (snun) eoedg Aioyuenu| (spun) @oedg Alojusau|
[4 0S 8y mﬂn k4] vc €S s pid mwc S 8s i) 9 oS s mwo
o3 o3 o3 =
08 o g g g g
20& 2 ge 22 &
=3 4] 2 S i
€0
25 =1 - wajkg O LI jo Ayoeden =13 - waiks OLIN Jo Ayoeden 9z =3 - wajhs QLI jo Ayoeden ¢l =3 - wajks QLI o Ayoeden
(spun) puewaq Buiwoou| (snun) puewaq Buiwosu| Am._::w u:mEmG mc_Eouc_ (snun) puewsaq Buiwoou|
15 0s 6Y 8 pAd mvo 65 85 bl 95 S8 i mma 5 «o 9 SS s L 5 15 0s mwo
T o T
F3 1098 10y 3 1oy
103 § g g s 2
Zg o0& Z z0& 2 z0Z
<F =g <F 2
[4Y €0 €0 €0

Z§ = } -~ puewaq Buiwoou|

6€ = 3 --- puewaq Bujwoou|

=} --- puewaq Bulwoou|

€1 = }--- puewaq Buiwoou|

Aunqeqoid Aunqeqold Aunqeqoid Auiqeqoid

Aunqeqoid

68



Input: Initialize x;(0) — P(x(0)); W;(0) = NLZ =N,
fort=0to T do
for i =0 to N, do
begin Propagate particles through process
xi(t) «— A(z(t — 1), u(t — 1), w;(t — 1))
wi P(w;(t))
end
begin Update weights
Wi < C(x(t),u(t),v(t))

end

end

begin Normalize weights

®) itk Wilt)

end
for i =0 to Np do
begin Resample with decision

Neﬁ - &N o
Zi:pO Wiz (t)

if Neﬂ < Nthres then
| Accept

end

else
| Resample

end

end

end

i(t) = Wiv(t)

begin Estimation through expected value
B(t) = E{wi(t)}

end

end
Algorithm 2: Particle filter algorithm with resampling.
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Figure 4.5: Estimated states from the particle filter applied to the healthy configuration of the

MTO/MTS hybrid model.
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the system is unstable e.g. when a bullwhip occurs leading to an accumulation of back orders. This
estimation provides valuable information about the health of the supply chain and the ability to
estimate upstream processes reduces uncertainty in resource availability. The estimated results of

the particle filter applied to the bullwhip impact MTO/MTS model is illustrated in Figure 4.6.
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5.0 Supply Chain Uncertainties and Bayesian Networks

The supply chain consists of a number of uncertainties that have the ability to negatively
impact the flow of resources and information at all supporting areas such as location, inventory,
transportation, and production. The uncertainties within the supply chain are affected by events
and can encompass a vast range of incidents along with their associated impact on the supply chain.
In terms of supply chain management, these uncertainties can cloud the decision making process
when selecting the appropriate supplier that can meet their company’s goals.

This process is known as the supplier selection, where supply chain management attempts to
identify, evaluate, and contract with suppliers. The main objective of supplier selection process is to
reduce risk and to increase the overall value to the purchaser, and develop closeness and long-term
relationships between buyers and suppliers. To address the uncertainties and how risks impact the
flow of goods and resources in supply chain networks, a Bayesian network is constructed to model
events surrounding the supply chain and ultimately the supplier selection decision process.

In this section, Bayesian networks are introduced along with their advantages when applied to
analyzing supply chains. Bayesian networks are then constructed around the two scenarios discussed
in Chapter 2, which includes a Bayesian network for a ship-to-stock (STS) supply chain, and a
Bayesian network for the low-volume, high-value (LVHV) supply chain. Both Bayesian networks
include the uncertainties of the supply chain, including the synthetic inventory-production data
generated in Chapter 2. The synthetic data is integrated in the Bayesian network to determine the
likelihood of available resources. Finally, several suppliers are considered in each Bayesian network

to provide a data-driven decision making approach to the supplier selection process.

5.1 Data-driven Decision Making for Supply Chain Management — A Bayesian
Network Approach

The ability to monitor, plan, and control the uncertainties in the supply chain is an arduous
task due to the vast number of risk events that can lead to disruptions. Support for decision makers
in the face of uncertainty can be achieved through Bayesian networks. Bayesian networks enable a

preventive assessment of risks rather than a reactive choice to their consequences. The advantages
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of Bayesian networks provide an inference on the cause and effect nature that models how events
between the interdependent agents in the supply chain propagate throughout the entire network.
In this case, inference is defined to take on the Bayesian perspective by updating the probability for
a hypothesis as more evidence or information becomes available. To this end, Bayesian networks
can be used to monitor events, update their probability of occurrence given new information, and
plan mitigation decisions as a preventative measure to control or reduce the consequences.
Bayesian networks can be applied to the risks imposed on the supply chain due to their un-
certainty and causal relations between risks and their consequences on a company’s finances, the
overall lead-time, and resource availability. Before the use of Bayesian networks, probabilistic in-
ference was computed with the conditional probabilities of events from known sources using Bayes

theorem:

Theorem 1 (Bayes Rule). Consider two events A and B such that P(A) # 0 and P(B) # 0:

P(B|A)P(A)

(5.1)

Using Bayes rule, the conditional probabilities of an event are computed given the known informa-
tion.

Application of Bayes theorem leads to a representational device that organizes the knowledge
about a particular set of circumstances into a coherent whole known as Bayesian networks. To this
end, Bayesian networks can be employed as a graphical modeling tool for specifying probability dis-
tributions that can address uncertainty in the domain of knowledge in question. Bayesian networks
are directed acyclic graphs (DAG) that consist of nodes and arcs as shown by the simple network in
Figure 5.1. The nodes depict variables of interest and the arcs depict casual relationships between
the variables of interest. The Bayesian network encodes the causal relationships as conditional
probabilities between variables. By explicitly identifying which variables influence others, cause
and effect can be modeled. For example, the child Node C' is influenced by its parent nodes, Node
A and Node B. [16].

By applying Bayes rule, the conditional relationships between the nodes in Figure 5.1 generates

the following joint distribution:

P(A, B,C) = P(C|A, B)P(A)P(D) (5.2)

Two Bayesian networks are constructed to fit the scenarios formulated in Chapter 2: (1) a

Bayesian network for a ship-to-stock (STS) supply and (2) a Bayesian network for a low-volume,
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Figure 5.1: Simple Bayesian network.

high-value supply chain. Both networks aim to provide a data-driven decision making process for
supply chain management.

The construction of a Bayesian network involves three steps:

1. Decide on the set of relevant variables and their possible values.
2. Build the network structure by connecting the variables into a DAG.

3. Define the conditional probability tables (CPT) for each network variable.

The first step involves defining a set of relevant variables and their possible values surrounding
the supply chain for each scenario. In this research, the set of variables and their values are defined
through an ontological approach, which simultaneously defines the structure of the supply chain
networks. This includes the dependencies between supply chain agents, the risk events that impede
the flow of goods and information, the desired set of goals set by the supply chain management,
and the opportunities to provide a positive impact on the supply chain.

The second step consists of building the network structure into a DAG. The supply chain
networks created in the previous step already contain the relationships between supply chain agents.
Therefore, the DAG is easily generated by using the knowledge of the supply chain networks.
Additional network arcs are added to account for the risk events imposed on the supply chain

networks.
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The final step defines the CPT tables for each network variable. The CPTs consider the condi-
tional dependence of risk events occurring and how they impact the likelihood of on-time delivery.
To this end, the generated CPTs in the final Bayesian networks aid supply chain management in
their decision making in terms of the supply selection process by evaluating if the suppliers have a

higher probability of on-time delivery.

5.1.1 Ontological Approach to Supply Chain Network Development with Risks

Elicitation of expert knowledge to develop a supply chain network was attempted, however,
the sought after supply chain data contained sensitive information that many experts refused to
share. To overcome this, an ontological approach is used to develop the supply chain network, the
events, and their likelihood of occurrence. An ontology is a set of concepts and categories in a
subject field that contains their characteristics and the relationships between them. Supply chain
ontologies have been developing for several years in order to solidify a standardization of the supply
chain domain. When performed successfully, the ontology provides meaningful exchanges between
experts and/or data systems in the field because of the common information [96].

The ontology was built through an extensive literature review and a number of personal inter-
views with experts and decision makers in the supply chain. From the ontology, the three steps for
Bayesian network development can be accomplished and then the Bayesian networks are formulated
for the two scenarios.

The set of relevant variables in the supply chain are the supply chain agents, risk events and
their propagating effects on the goals of the company, and the opportunities to mitigate the risk
events. Table 5.1 lists a generalized set of variables with their associated values.

Most supply chains contain a vast number of acting agents to provide goods and services to
its market. The set of variables must contain the all participating agents in the supply chain.
Additionally, supply chain agents defined in the set of variables contain values of unreliability. This
value defines an agent’s inability to meet the goals of the customer for a specified period of time
[38]. For this research, unreliability is defined as the probability that the agent will fail to deliver
the product. Conversely, reliability is defined as the probability that the agent will successfully
deliver the produce on-time.

The set of variables in the Bayesian network also includes events. Broadly, events are those

that have a negative impact on an investment. In terms of the supply chain, risks focus on the
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Table 5.1: General list of the set of variables and their values that are used to construct a Bayesian

network.

Set of Variables Values

Supply Chain Agents | P(Unreliability)
Risk Events P(Risk Occurring) + Negative Impact
Goals Evidence Based

Mitigation Options Evidence Based + Positive Impact

probability of events that result in a loss or the impedance on the flow of information, materials,
or products from original suppliers to the end-user [73, 30].

From an ontological perspective, the supply chain approach to events are categorized as a purely
event-oriented concept and have likelihood of occurring as their associated values. Certain events
impact supply chain agents differently meaning there are controllable and uncontrollable factors.
For example, a controllable supplier risk is a quality issue. The reason it is controllable is because
the end customer has the ability to send a representative to the supplier to ensure the quality of the
product. On the other hand, an uncontrollable supplier example would include a natural disaster.

The set of variables must also account for the propagating consequences of risk events on the
goals set by supply chain management. Events are often only considered as isolating events, with
little consideration on their ripple effect. This ripple effect of a risk event can impact the lead-time
and delay the end product from reaching the customer, which then propagates to the finances of the
company. In this case, the risk event evolves to a disrupting event, characterized through likelihood
of occurrence and severity, and a consequential circumstance that threatens the normal course of
business operations.

This deviation of the objectives set by supply chain management requires further classification
of risk events with an additional financial parameter such that if an event occurs, the expected total
cost of the product is subject to change. To this end, the set of variables in the Bayesian network
must also consider the goals of the company and their financial impact when events disrupt the
flow of information, materials, or products.

A brief example includes if a transportation event occurs, consequentially delaying the product

77



from reaching the end customer. Since the delayed occurred, there may be financial repercussions
that reflect the product not being delivered on-time. The goals set by that supply chain management
with their associated risk factors and penalties must be accounted for in the set of variables, which
can be found in Table 5.2.

Finally, the set of variables must include the opportunities to improve the supply chain. This
comes in the form of mitigation techniques and contingency strategies to reduce the likelihood of
an event occurring. This is achieved by introducing qualitative Boolean evidence to the set of
variables. The qualitative decision may reduce events by securing evidence to a mitigation node
that propagates the statistical inference of successfully mitigating a risk throughout the model in
an attempt to secure the financial goals of the company.

However, mitigation decisions come at a cost to the company. Planning and mitigating events by
selecting decisions requires additional financial resources from the company, whether its a selection
decision of a supplier visit or a back-up-plan decision to ensure transportation of the product is
on time. The addition of the mitigation decision nodes enables decision makers the ability to
plan and potentially reduce the likelihood of events with the trade-off of additional costs. In this
research, each mitigation strategy is deployed to the likelihood of the events and ultimately the
risks propagating impact on lead-time.

For example, if a supply is having quality issues at their plant, the customer may have the
option to send an employee to oversee the operations to ensure the quality meets their company’s
standards. At the same time, if the customer chooses to send an employee, then the the company
has to pay for their expertise at the supplier. By doing so, this may reduce the likelihood of the
quality event occurring. The mitigation techniques paired with their positive impacts can be found

in Table 5.3.
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5.1.2 Directed Acyclical Graph Generation from Supply Chain Network

The second step in the Bayesian network development requires a definition of conditional in-
terdependence among the set of variables in the supply chain. The structure and dependencies
between supply chain agents in Figure 5.2 resembles the structure and dependencies of a directed
acyclical graph (DAG). In other words, the supply chain network replicates the dependencies be-
tween agents and how the flow of information, materials, or products moves among the facilities.
Therefore, the DAG can easily be translated by understanding the flow of goods and materials from
Figure 5.2.

By including the set of variables along with their conditional dependencies represented through
an arc, a DAG is constructed. This requires extending arcs between parent nodes and child nodes.
Parent nodes define the original states and are the inputs to the network. They have arcs extending
from their bodies and pointing towards its children. The child nodes show a conditional probability
towards its parents as indicated by the arc.

As an example, consider that a supplier is required to meet a lead-time goal set by its customer.
However, this supplier has a quality event associated where the customer has the mitigation option
to send an employee to oversee the operations. From the DAG perspective, the lead-time goal is
dependent on the supplier’s reliability, the supplier reliability is dependent on the quality event,
and the quality event is dependent on the evidence-based mitigation option. Additionally, the
mitigation expense is dependent the mitigation option and the penalty is dependent on the event.

Figure 5.3 illustrates this DAG example.

5.1.3 Conditional Probability Tables for Bayesian Network Construction

The conditional probability tables (CPT) are determined from the creation of the DAG. Given
the probabilities initialized by the parent nodes and conditional probabilities associated with the

children nodes, the probability of a given series of events can be calculated as follows:
P(X) =1, X9 =m9,..., Xy = x,) = Il P(X; = x;|Parents(X;)) (5.3)

where P(X; = x;|Parents(X;)) is the probability that the node for random variable X; is in state
x; given the states of the parent nodes of X;.
When empirical data is unavailable to populate the CPTs, experts may specify the conditional

probabilities [69]. Through expert knowledge obtained from the supply chain ontologies, the CPTs
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are generated to depict probabilistic relationships between the set of variables in the Bayesian
network. However, for most instances there is insufficient quantitative or reliable data for populating
the CPTs. Under these circumstances, methods can be applied during the ontological review to
translate qualitative descriptions written by experts to probabilities using the scale in Figure 5.4.
Thereafter, the translated probabilities can be used to estimate the CPTs in the Bayesian network

supply chain environment

5.1.4 TUpdate Beliefs and Reasoning with Bayesian Networks

Bayesian updating is the computation of the posterior probability distribution for a set of nodes,
given observations for some evidence nodes. In the Bayesian network the value that is observed
is conditioned on some observation. The process of Bayesian inference is performed via a flow of
information through the network [43].

Reasoning with a Bayesian network is done by updating the probabilities, which involves using
new information or evidence to compute the posterior probability distributions. The constructed
networks are used for forward reasoning and reverse reasoning of risk. Forward reasoning is to
modify the value of the corresponding risk nodes in BN according to the received risk-related
information, and then observe the changes of each node and analyze the influence of the changing
node on other risk items. Reverse reasoning is to infer the key influencing factors by adjusting the

assignment of a certain risk item and observing the changes of relevant nodes.
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Table 5.3: List of mitigation options that supply chain management can employ to positively impact

the supply chain.

Mitigation
Impact
Options
Supplier )
Reduces poor quality of ordered products.
Visit
Diversify ] ]
Ensures on-time delivery and low costs.
Suppliers
Reduces financial losses due to in-transit risks
Insurance
but increases lead-time.

Technology Increases planning, scheduling and internal
Upgrade processes, reduces forecasting errors.
Culture Strengthens business relations and customer
Training satisfaction.

Buffer ]
Ensures available resources.
Stock
Contingency | Reduces downtime of transportation and
Transportation | impact on lead-time
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Distribution
Suppliers Plants centres Customers

i

Figure 5.2: A general supply chain network.
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Mitigation Quality Lead-Time

Option Risk

Risk
Penalty

Figure 5.3: An example of a supply chain goals, risks, and mitigation strategies as a directed

acyclical graph.
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Figure 5.4: Probabilistic elicitation scale.
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5.2 Bayesian Network Construction for Ship-to-Stock Supply Chains

The steps in Section 5.1 define the basic building blocks for constructing a general Bayesian net-
work for a supply chain. This research will take advantage of the definitions to construct a Bayesian
network depicting a ship-to-stock (STS) supply chain with an integrated resource availability model
from the synthetic data generated in Section 4.

The Bayesian network aims to help supply chain management with the supplier selection pro-
cess. The decision maker has an illustrative perspective of the company’s supply chain including
two immediate upstream supplier nodes, where each supplier has their own upstream suppliers
to account for inventory-production activity risks. Additionally, the Bayesian network contains
event nodes impacting the immediate upstream supplier nodes, financial goal nodes set by supply
chain management, and mitigation option nodes. The Bayesian network is developed using GeNle
Modeler [8]. Figure 5.5 depicts a high-level Bayesian network containing the dependencies between
parent and child nodes.

For this research, the Bayesian network for the supplier selection process in Figure 5.5 is as-
sumed to have two competing suppliers. Further, it is assumed that supply chain management is
attempting to satisfy one supplier performance metric in their supplier selection process. In this
research, that supplier performance metric is to ensure that the ordered component is delivered
on-time given the set lead-time. Additionally, it is assumed that the immediate upstream suppliers,
Supplier 1 and Supplier 2, have a historic relationship with the end-customer. This implies that the
associated risks have the option to be mitigated through techniques and contingency plans enabled
by supply chain management. Finally, this research assumes that Supplier 1 has a lower overall risk
when compared to Supplier 2 to highlight the strengths of Bayesian networks as a decision making

tool.

5.2.1 Bayesian Network Learning from Synthetic Inventory Data

In Section 4.2, state-estimators were developed to estimate the inventory positions of the syn-
thetic inventory data from a three-tier series supply chain model. The data produced from the
model is used as a training set for Bayesian network learning to be performed. Bayesian network
learning uses the training data to provide probabilistic inference on hypotheses by populating the

CPTs of a resource availability model within the Bayesian network. This process is outlined in
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Figure 5.5: High level depiction of the ship-to-stock Bayesian network.

Figure 5.6.

GeNle has the capability of generating the CPTs for a model given there is suitable data for
learning. Bayesian network learning is a probabilistic approach to building models, which combines
prior knowledge with learning from data. In order to do so, a Bayesian network depicting the three-
tier supply chain is constructed. The constructed Bayesian network shows how the input demand
along with the flow of goods between suppliers has a conditional relationship between the inventory
positions. This Bayesian network is shown in Figure 5.7. The goal of this network is to determine
if resources are available throughout the entire supply chain given the inventory-production data
of the two upstream suppliers.

Two Bayesian networks were created from the two sets of synthetic data: (1) a network that
provides the likelihood of available resources given a set of data whose model was not impacted
by the step in input demand and (2) a network that provides the likelihood of available resources
given a set of data that was impacted negatively by the step input demand simulating the bullwhip
effect. The synthetic data is discretized into states using GeNle. For this research, the final child

node for resource availability contains two states as a measure of inventory health.
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Linear Supply Kalman Bayesian

Chain Model Filter Network

Figure 5.6: Process of integrating the synthetic data, Kalman filter, and Bayesian network model.

That is, if the node indicates HealthyResources then the likelihood of having a bullwhip impacted
event is unlikely, thus resulting in inventory positions that can satisfy the end-customer’s demand.
The remaining discretized states for each node is shown in Figure 5.7 along with both models for
each set of data.

Bayesian updating for any probabilistic inference is the computation of the posterior probability
distribution for a set of query nodes, given values for some evidence nodes [43]. GeNle has the
ability to automatically update beliefs in the network to provide a probabilistic inference to aid
decision makers when considering their goals. Figure 5.8 shows the updated GeNle results for the
resource availability Bayesian network.

The updated networks provide a probabilistic inference on whether the supply chain has HealthyRe-
source or UnhealthyResources. The network on the left illustrated in Figure 5.8 learned from the
data set that contained typical behavior thus resulting in a 64% probability that the supply chain
contains healthy resource levels. This learned Bayesian network inventory-production model is
integrated into the final network where the Available Resources node acts as an arc extending to
the Supplier 1 node as suggested in Figure 5.5. The network on the right illustrated in Figure 5.8
learned from the data set yields a probability of 87% for unhealthy resources, implying that this
supply chain may have been impacted by the bullwhip effect.
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This learned Bayesian network inventory-production model is integrated into the final network
where the Available Resources node acts has an arc extending to the Supplier 2 node as suggested

in Figure 5.5.

5.2.2 Building the Bayesian Network to Aid Supply Chain Managers in the Supplier

Selection Process

There still exists a number of unaccounted for variables that were discussed in Section 5.1 that
are needed in to generate the final Bayesian network. It has been established that the assumed
goal set by supply chain management is to ensure on-time delivery. In the Bayesian network, this is
reflected by including a Impacted Lead-Time node for each supplier and representing the lead-time

as a normal distribution shown in Equation 5.4.
Lead-Time ~ TNORM (. = 16,02 = 1, LB = 11,UB = 20) (5.4)

where p is the mean, ¢ is the standard deviation, LB is the lower bound, and UB is the upper
bound. The TNORM is an extension of the normal distribution that is bounded to values that
lie within a range and is readily available for implementation in GeNle [10]. The TNORM is an
appropriate distribution for lead-time since the mean value depicts the average amount of days for
the end-customer to receive the ordered product within a bounded time frame. Figure 5.9 shows
the Impacted Lead-Time as a TNORM node for Supplier 1.

The Impacted Lead-Time node is dependent on risk events, which negatively impact the lead-
time by shifting the mean lead-time to the left, and mitigation options, which positively impact the
lead-time by increasing the likelihood that the product is delivered on its averaged delivery time.
The Bayesian network showing the supplier selection process, the risks each immediate upstream
supplier, and their mitigation options for the STS supply chain is depicted in Figure A1, which can
be found in Appendix A.

To reduce computational efforts, two risks are chosen: (1) Quality Risk and (2) Transportation
Risk since these risk events are the most common to occur [37]. Both risks serve as umbrella terms
for the individual events that can occur, for example, quality issues in products can range from
safety recalls to inability to satisfy regulatory standards in production. Transportation risks range

from poor quality in roads, proximity to ports, and weather conditions.
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The risks in the Bayesian network can move into two possible states: RiskOccuring or NoRisk.
The former defines the likelihood that the risk event will occur and the latter defines the likelihood
that the risk event poses no risk at all.

All risk events are conditioned on mitigation options, in an attempt to plan and control the
negative impact. This comes in the form of mitigation techniques in the Bayesian network by
introducing qualitative evidence to the Bayesian network. The qualitative evidence is embedded
in the decision nodes, OPTION - Transportation Mitigation and OPTION - Quality Mitigation, as
a Boolean evidence-based observation for supply chain management to choose from. If supply
chain management chooses to enable the mitigation option, then the decision maker must provide
evidence to the mitigation node by selecting the Option Yes state.

The likelihood that items from a supplier are of sufficient quality or the items delivery is not
suffering from a transportation delay, as measured by binary states, is conditioned on the selected
evidence of the mitigation nodes. The conditional probability tables for the Quality Risk and
Transportation Risk with their respective mitigation options is shown in Table 5.4.

From the table, the probability that a quality related risk event will occur for Supplier 1 with
no option to mitigation is 8%. If the option to mitigate is chosen then the probability decreases to
5%. Similarly, for Supplier 2 the probability is 72% and if the mitigation option is chosen then the
probability decreases to 42%. The table also includes the transportation related risk for Supplier
1 with no option to mitigate as a probability of 3% and an option to mitigate of 2%. Finally,
for Supplier 2 the transportation risk with no mitigation option selected is 68%. If the mitigation
option is chosen then the risk probability decreases to 54%.

However, any mitigation decision comes at a cost to the company. Planning and mitigating risk
events by selecting desired states requires additional financial resources from the company, whether
its a selection decision of a supplier visit or a back-up-plan decision to ensure transportation of
the product is on-time. The trade-off of additional costs is constructed in the Bayesian network as
Mitigation Cost nodes. These nodes are implemented as equation nodes to contain an if-statement
that is conditioned on the option mitigation nodes. The GeNle modeler has the capability of
implementing Equation Nodes, which contains a user-input equation that describes an interaction
with its parent node. The conditional equation for the Mitigation Cost equation nodes for each
supplier are found in Table 5.5.

In the event that the risk event occurs, the risks propagate information to the Lead-Time Impact

nodes that negatively impacts the overall lead-time as well as a Financial Penalty. For this research,
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the Lead-Time Penalty represents the number of days that the lead-time is impacted if a risk event
has occurred and the Financial Penalty is the monetary value lost if a risk event were to delay the
delivery of the product.

In the Bayesian network, the Lead-Time Penalty nodes affect the Impacted Lead-Time through an
conditional statement. The same approach is used to account for the Financial Penalty nodes. The
values for the Impacted Lead-Time are assumed to be more significant for Supplier 2 when compared
to Supplier 1. This is reflected in Table 5.5 as conditional if-statements for each supplier in the
network.

Both the Financial Penalty nodes and the Mitigation Cost nodes are tabulated to help aid supply
chain management make financial trade-off decisions. The nodes are defined as equation nodes and

contain simple summation expressions as shown below:

TotalPenaltyCost = QualityPenalty + TransportationPenalty

TotalMitigationCost = QualityMitigationCost + TransportationMitigationCost

For the supplier selection process, all risk event nodes for each supplier, along with their conditional
relationships, are propagated to a Total Risk node, where the statistical inference for all potential

risks are accumulated.

This is achieved by employing the multiplication rule for independent, probabilistic events. The

general rule is shown below followed by an example used in the Bayesian network.

P(ANBNC) =P(A)P(B)P(C)
P(QualityRisk N TransportationRisk N Bullwhip) = P(QualityRisk) P(TransportationRisk)

P(Bullwhip)

This node has two states that consider the total amount of risk in the network: RiskOccurring and
NoRisk. It should be noted that the Total Risk node is dependent on the Available Resources node
that was discussed in Section 5.2.1 to propagate the risk of the upstream suppliers having available
resources.

The information contained in the Total Risk node is then propagated to a Primary Criteria node
for each supplier. It is necessary that the Primary Criteria node is conditional on the Impacted
Lead-Time node and the risks for the respective suppliers as shown in Figure Al, which can be

found in Appendix A. The Primary Criteria node considers all risks and impacted lead-times from
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both suppliers in the STS scenario by having its statistical inference take on two states: Late and
On-Time. The purpose of these states is to provide supply chain management an assessment of
each supplier, that is, the higher the probability for the state then the more likely the product will

be delivered on-time.

5.2.3 Updating Beliefs and Reasoning with the Ship-to-Stock Supplier Selection

Bayesian Network

Bayesian updating is the computation of the posterior probability distribution for a set of nodes,
given observations for some evidence nodes. In the Bayesian network, the value that is observed
is conditioned on some observation. Supply chain management has the ability to set evidence in
through the mitigation options. The scenarios below show the impacts on the supplier selection
process when certain mitigation options are selected.

Scenario 1: In this scenario, supply chain management has not selected any mitigation tech-
niques for either supplier due to financial constraints. The updated Bayesian network presents the
supplier criteria to supply chain management with a likelihood that Supplier 1 has a 71% chance of
on-time delivery compared to a 36% chance of on-time delivery for Supplier 2. However, the prob-
ability for a total penalty cost of $10,000 is approximately 40%. The updated Bayesian network is
shown in Figure A2, which can be found in Appendix A. The updated Primary Criteria nodes for
Supplier 1 and Supplier 2 are illustrated in Figure 5.10a and Figure 5.10b, respectively.

Scenario 2: Supply chain management wants to increase the likelihood of on-time delivery for
supplier 1 by sending an employee as quality control. The Bayesian network is provided with
evidence in the OPTION - Quality Mitigation 1 node by enabling the Option Yes state. When
updating the evidence for the whole network, the risk of quality related event decreases to 2% with
the addition of a mitigation cost of $5000 . Additionally, the mitigation option reduced the total
risk for supplier 1 to 18% from 33% shown in the Total Risk node and the penalty cost for $10,000
decreased below 10%. The final updated Bayesian network is depicted in Figure A3, which can
be found in Appendix A. The updated Primary Criteria nodes for Supplier 1 and Supplier 2 are
illustrated in Figure 5.11a and Figure 5.11b, respectively.

Scenario 3: Supply chain management wants to compare the outcome of the supplier selection
process by enabling all mitigation nodes to see which supplier yields the better likelihood of on-time

delivery. By doing so the total mitigation cost for both suppliers results in $35,000 for Supplier 1
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and $15,000 for Supplier 2. Deploying all mitigation strategies also reduces the risk for Supplier 1
to 13% and for Supplier 2 to 60%. Despite the total mitigation cost for Supplier 1 being higher, the
supplier selection process in the Bayesian network still favors Supplier 1 in terms of total risk as
illustrated in Figure A4 found in Appendix A. The updated Primary Criteria nodes for Supplier 1
and Supplier 2 are illustrated in Figure 5.12a and Figure 5.12b, respectively.

The outcomes for the scenarios listed above are arranged in Table 5.6. The ability to select
the mitigation options enables the decision makers with reasoning strategies by observing how
the addition of new evidence propagates throughout the Bayesian network. There are a number
of combinations and strategies that the network can be used for to aid in decision making. For
example, suppose supply chain management is willing to absorb the risk and financial penalties of
one supplier given that the mitigation costs are too high. This and more can be readily implemented
into a Bayesian network to help reduce the uncertainty supply chain management faces when dealing

with supply chain risks.
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Figure 5.7: Bayesian network constructed for the three-tier inventory supply chain that was trained

on the two sets of synthetic data.
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fx Impacted Lead-Time 1

Figure 5.9: The TNorm function implemented in GeNle for a lead-time distribution.
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Primary Criteria 1

(a) Primary criteria node with updated inference for suppler 1.

Primary Criteria 2
|

(b) Primary criteria node with updated inference for suppler 2.

Figure 5.10: Updated Primary Criteria nodes for Scenario 1.

Primary Criteria 1

(a) Primary criteria node with updated inference for suppler 1.

Primary Criteria 2
|

Late 64%
On_time 36%

(b) Primary criteria node with updated inference for suppler 2.

Figure 5.11: Updated Primary Criteria nodes for Scenario 2.

[@) Primary Criteria 1
Late 13%
On_time 87% i | 7

(a) Primary criteria node with updated inference for suppler 1.

O Primary Criteria 2
Late  37%
On_time 63% | -

(b) Primary criteria node with updated inference for suppler 2.

Figure 5.12: Updated Primary Criteria nodes for Scenario 2.
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Table 5.6: Updated Bayesian network results for scenarios when evaluating the risk associated with

on-time delivery.

Total Risk | Total Penalty Cost | Total Mitigation Cost | On-time Delivery
Supplier 1 33% 80 at 60% 30 1%
Scenario 1 $10,000 at 40%
$0 at 15%
Supplier 2 82% $50,000 at 50% $0 36%
$100,000 at 35%
$0 at 90%
Supplier 1 18% $10,000 at 5% $5,000 76%

Scenario 2
$20,000 at 5%

$0 at 15%
Supplier 2 82% $50,000 at 50% $0 36%

$100,000 at 35%

$0 at 99%
Supplier 1 13% $50,000 at {1% $35,000 87%

Scenario 3
$20,000 at 1%

$0 at 25%
Supplier 2 60% $50,000 at 53% $15,000 63%

$100,000 at 22%
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5.3 Bayesian Network Construction for Low-Volume, High-Value Supply Chains

Low-volume, high-value (LVHV) supply chains consist of components that are typically cus-
tomized to the customer’s specifications down to the raw materials used to create the product.
These type of components belong to the manufacturing process defined as make-to-order (MTO).
Typically, the components under the MTO process are complex due to the engineering requirements
set by the customer, leading to long lead-times that are sensitive to supply chain risks. Addition-
ally, the complexity in design and quality results in a limited number of suppliers and basic services
for production, furthering the challenges in LVHV supply chains. As the number of suppliers and
basic services reduce, then the supply chain is more vulnerable to risks since fewer suppliers are
qualified to meet strict requirements. Therefore, LVHV supply chains are more prone to risk events

and require advanced monitoring techniques to mitigation risks and improve reliability.

5.3.1 Low-Volume, High-Value Supply Chain Example — Nuclear Power Plant

The LVHYV supply chain and its associated vulnerabilities are found frequently in the nuclear
power industry. Since the quantity to produce the product is one or few, with the addition of
the product being in a LVHV market, the risk events have greater consequences. The increased
magnitude of risk events require additional management strategies because the nuclear industry
places high quality and regulatory requirements on suppliers in a already limited supply chain. In
the event that a risk occurs due to poor quality or failure to follow regulatory standards, then the
product and business suffers the consequence of long lead-times, high costs, and delays. To put this
in perspective, the cost of delay in the construction of a nuclear power plant has been estimated
at $2 million per day [32]. As a result, proactive risk mitigation techniques must be employed to
ensure that suppliers deliver a quality product on time.

In order to implement mitigation strategies and reduce risk for decision makers in the nuclear
power industry, a Bayesian network is constructed to depict the complexities in the LVHV supply
chain. The construction of the Bayesian network is performed by mapping the fault-tree analysis
method by [74] into a Bayesian network. The fault-tree methodology is built for two supply chains,
which are translated into Bayesian networks: (1) a fault-tree analysis for a pressurized water reactor
(PWR) around its bill of materials and (2) a fault-tree analysis for a PWR steam turbine thrust

bearing bill of materials. Both fault-tree methods contain data for suppliers and likelihood of on-
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time delivery for each component listed in the bill of materials. The fault-trees, along with the
data, are mapped to Bayesian networks where the synthetic data for resource availability regarding
the bullwhip effect is integrated into the network and mitigation options are added to help aid

decision makers in the supplier selection process.

5.3.2 Nuclear Power Plant Supply Chain through Bill of Materials — Fault-tree

Analysis Approach

One strategy in defining the complexity of the low-volume, high-value supply chain that the
nuclear power industry consists of is using the bill of materials to organize the components and
subcomponents with their competing suppliers. This approach used the PWR bill of materials to
model a fault-tree for supplier unreliability given supply chain data [73]. The PWR still remains
as a point of interest due to recent construction and their prevalence in the current U.S. nuclear
power generating fleet. Therefore, the PWR with its bill of materials, and supply chain data used
in this model is the basis for this research. Additionally, the fault-tree analysis from [73] provides
the foundation for Bayesian network mapping in this research.

The bill of material is initially refined into the eight major components that create the PWR, for
example, the reactor vessel and steam turbine are listed as separate items. The bill of materials in
full for the PWR is listed in Figure 5.13. The supply chain takes the perspective of the construction
company responsible for sourcing the primary goods and services for the PWR. From this perspec-
tive, the eight components listed in the PWR bill of materials consists of 11 suppliers. Table 5.7
lists the suppliers (i) with their associated service and the supplier’s unreliability (u;). The supply
chain data in this table reflects the unreliabilities experienced within the nuclear industry.

Using the PWR bill of materials and the supply chain data, fault-trees are constructed to
represent an event or series of events in the supply chain whose occurrence will result in the
unreliability of the PWR construction. Fault-tree analysis is based on identifying the likelihood
that the system under study will take on an undesired state defined as the Top Event (TE). For this
case, the TE is the PWR construction that is based on the identification of supply chain events that
cause suppliers to be unreliable in on-time delivery. The construction of the fault-tree begins with
the TE and cascades downwards from the events to their causes until failures of basic constituents
are reached. The fault-tree structure can be found in Sherwin’s work for additional details[73]. The

PWR fault-tree is found in Figure A5, which can be found in Appendix A.
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Figure 5.13: The main components in the bill of materials for a Pressurized Water Reactor.

The work presented by Sherwin also included a bill of materials approach for the thrust bearing
in a steam turbine. Similarly, the bill of materials for the steam turbine in the PWR is used to
develop a supply chain from the perspective of an upstream manufacturer of the steam turbine
assembly. From the bill of materials of the steam turbine, the thrust bearing subcomponent is
further broken down into its auxiliary components: thrust shoe, bracket, leveling links, and support
ring. Figure 5.14 shows the bill of materials for the thrust bearing.

In constructing the fault-tree, the auxiliary components each represent their own TE, which
extends upwards to the final TE of the thrust bearing. The events that define the fault-tree analysis
consisted of unreliability data obtained from the services each supplier performs in the supply chain
process for each auxiliary component. Figure A6 illustrates the high-level fault-tree for the thrust
bearing, which can be found in Appendix A. The unreliability data used in the fault-tree analysis
defines the probability that a failure will occur at one of the suppliers which prevents on-time
delivery. Table Al in Appendix A lists the suppliers (i) with their associated service and the
supplier’s unreliability (u;). The extension of the thrust bearing fault-tree can be found in [73].

With regards to the thrust bearing fault-tree, mitigation strategies are implemented to improve

reliability on a supplier while considering the cost to execute them. In one scenario, analysis
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is performed by either improving or replacing an existing supplier. The existing supplier option
improves supplier i = 13 by 25%, which costs $37,784 to execute the mitigation strategy. The
option to replace an existing supplier removes supplier ¢ = 13 and adds supplier ¢ = 29. This new
supplier has an improved casting source of 0.0947 where this replacement process costs $9,500 to
execute. This involves reconstructing the fault-tree in Figure A6 with the improved supplier data.
The modified fault-tree and the additional scenarios can be found in [73, 72, 74].

There are serious limitations in fault-tree analysis when modeling complex systems such as
the supply chain. Fault-tree analysis is confined to a single event that is dependent on binary
outcomes, which can drastically dilute the modeling process of the system under investigation.
Additionally, fault-tree analysis is further restricted to only supporting static probabilities as events
when in reality the likelihood of events are dynamic and in real-time in nature since the probability
distributions are conditioned on additional variables. When applied to supply chain analysis, the
fault-tree can only represent inference on a top event and fails to provide decision makers with
other important information like financial penalties due to risks or mitigation costs.

It should also be mentioned that in terms of supply chain analysis the addition of mitigation
strategies requires extending the fault-tree for each scenario resulting in a number of iterations. This
can lead to computationally heavy analysis and procedures. A better representation of modeling
uncertainty in probabilistic systems is through Bayesian networks. In fact, previously formulated
fault-trees can be translated into Bayesian networks to further exploit their advantages by mapping
individual gates with their events to the conditional probability tables (CPTs). For this research,

the data provided in [73, 74, 72| is exploited by mapping the fault-trees to Bayesian networks.

5.3.3 Mapping and Verifying Supply Chain Fault-Trees to Bayesian Networks

Fault-tree analysis was originally developed by Bell Telephone Laboratories to evaluate the
launch control systems in the mid-20th century[29]. Research has grown to use fault-tree analysis
for understanding hazards and failures associated with complex systems. The techniques employed
by fault-tree analysis is based on identifying the likelihood that the system under study will take on
an undesired state defined as the Top Event (TE). The construction of the fault-tree begins with
the TE and cascades downwards from the events to their causes until failures of basic constituents
are reached. The methodology is based on the following assumptions: (i) events are binary events;

(ii) events are statistically independent; and (iii) relationships between events and causes are repre-
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sented by means of logical AND and OR gates [55]. Figure 5.15 depicts the undesirable Top Event
and its dependency on events, Event A or Event B, through an OR-gate.

Previously formulated fault-trees can be translated into Bayesian networks to further exploit
their advantages by mapping individual gates with their events to the conditional probability tables
(CPTs). Figure 5.16 shows the mapping of an OR and an AND gate fault-tree into equivalent nodes
for a Bayesian network. This approach begins with identifying the probability values assigned to
the failure events in the fault-tree, denoted A and B, and mapping them as parent nodes, A and
B in a Bayesian network. The TE, denoted C' in the fault-tree, is mapped to the child node C in
the Bayesian network.

The entries into the CPTs correspond to the truth tables governed by the logic from the OR
and AND gates. To this end, the CPT entries are either 0’s or 1’s to satisfy the mapping of the
conditional relationship between the risk event nodes and their consequential failures. Additional
derivations and examples can be found in [9]. To this end, the mapping is performed on the fault-
trees presented in Section 5.3.2 for the PWR bill of materials supply chain and the steam turbine
thrust bearing bill of materials supply chain.

The PWR fault-tree and thrust bearing fault-trees with mitigation strategies are mapped to
Bayesian networks and are shown in Figure A7 and Figure A8, respectively, which can be found
in Appendix A. In order to verify that the mapping is performed successfully, the top event
unreliability for the PWR fault-tree and steam turbine thrust bearing fault-tree is compared to the
updated Bayesian network in scenarios listed below.

Scenario 1: PWR Fault-Tree and Updated Bayesian Network Inference: The original fault-tree
analysis for the PWR yields an unreliability of 0.1215 [74]. In other words, there is a 12.15%
probability that there exists one fault from the suppliers supporting the manufacturing process of
the PWR resulting in a failure to deliver the component on-time. In the Bayesian network, the
likelihood that the PWR will not be delivered on-time, according to node Pressurized Water Reactor,
is 12% as shown in Figure 5.17. The full Bayesian network is illustrated in Figure A7, which can
be found in Appendix A.

Scenario 2: Thrust Bearing Fault-Tree and Updated Bayesian Network: The fault-tree analysis
from [73] indicates that the supply chain has a 66.92% probability that there exists one fault
from the suppliers supporting the thrust bearing manufacturing process thus resulting in a failure
to deliver on-time. In the Bayesian network, the likelihood that the thrust bearing will not be

delivered on-time, according to node Thrust Bearing Criteria, is 67% as shown in Figure 5.18. The
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full Bayesian network is illustrated in Figure A8, which can be found in Appendix A.

Scenario 3: Risk Mitigation Thrust Bearing Fault-Tree and Updated Bayesian Network: In [73],
risk mitigation cases were studied by modifying the fault-tree for a comparison of either improving
supplier ¢ = 13 or replacing supplier ¢ = 13 with improved supplier ¢ = 29. Both strategies result
in a final unreliability of 65.72% with a cost of $37,784 for improving existing supplier ¢ = 13 and
$9,500 to replace the existing supplier with the new one.

In the Bayesian network, evidence-based nodes can be implemented to graphically depict mit-
igation strategies and their associated costs. When the Improve Existing Supplier node is selected
then the cost to execute the strategy is propagated to the Mitigation Cost node, which shows
$37,784. Deploying the mitigation strategy impacts the final unreliability, which matches the fault-
tree analysis of 65% as shown by the Thrust Bearing Criteria . This mitigation strategy is illustrated
in Figure 5.19.

On the other hand, when the Replace Existing Supplier node is selected then the cost to execute
the strategy is propagated to the Mitigation Cost node, which shows $9,500. Deploying the mitiga-
tion strategy impacts the final unreliability, which matches the fault-tree analysis of 65% as shown
by the Thrust Bearing Criteria. This mitigation strategy is illustrated in Figure 5.20.

The network successfully determines the mitigation strategies generated in [73]. The ability to
implement all mitigation strategies in one graphical network, along with their costs, highlights the
strengths of Bayesian networks. All mitigation strategies analyzed in [73] are implemented in this
research in the final Bayesian network illustrated by Figure A9, which can be found in Appendix
A.

In this research, the PWR Bayesian network and the thrust bearing Bayesian network are
combined to create the final network. The final Bayesian network reduces the uncertainty supply
chain decision makers face when performing the supplier selection process. The final Bayesian
network illustrates a supply chain whose perspective is from the construction company responsible
for sourcing the primary goods and services for the PWR. The reason for integrating both networks
is to reduce in uncertainty in the supply chain process by including upstream supplier information.
When integrating the two networks, synthetic data is used to reflect unreliable delivery time of
certain components. Additionally, the mitigation strategies proposed by [73] are included in the
final network as well as resource availability nodes that are trained on the synthetic data generated

in Section 4.3.
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Table 5.7: Suppliers and their unreliability to provide the goods and/or services for the main

components of a pressurized water reactor.

Supplier (i) | Good and/or Service | Supplier Unreliability (u;)
1 Containment Structure 0.0031
2 Pressurizer 0.0236
3 Steam Generator 0.0489
4 Control Rods 0.023
5 Control Rods 0.0215
6 Reactor Vessel 0.0441
7 Reactor Vessel 0.0263
8 Turbine 0.0347
9 Generator 0.0088
10 Condenser 0.0288
11 Condenser 0.0411

------ -I Thrust Shoe I

E‘ ------ 'I Bracket I
Steam Turbine I— —— lbl Thrust Bearing |- ------ -E

E' ------ >| Leveling Links I

1

1

=‘ ------ -'I Support Ring I

Figure 5.14: Bill of materials for a thrust bearing that is used in the construction of a PWR steam

turbine.
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Figure 5.15: A simple fault-tree where the top event is dependent on an OR-gate of Event A or
Event B.
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(b) Fault-tree to Bayesian network mapping for an AND-gate.

Figure 5.16: Fault-tree to Bayesian network mapping for a top event, C, that is dependent on

events A and B.

O Pressurized Water Reactor
Unreliability 12%ji |
Reliability 88% | =

Figure 5.17: Updated Pressurized Water Reactor node from mapped Bayesian network.
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Figure 5.18: Updated Thrust Bearing Criteria node from mapped Bayesian network.
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(a) Mitigation strategy for improving an existing supplier with its associated
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(b) Updated inference on the thrust bearing
reliability when improving an existing supplier
strategy is deployed.

Figure 5.19: Thrust bearing criteria when an improve supplier mitigation strategy is deployed.
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(b) Updated inference on the thrust bearing reli-
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egy is deployed.

Figure 5.20: Thrust bearing criteria when replacing an existing supplier mitigation strategy is

deployed.
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5.4 Particle Filter Inventory Data Integration for Estimated Resource Availability

In Section 4.3, state-estimators were developed to estimate the inventory positions of the syn-
thetic inventory data from a low-volume, high-value (LVHV) make-to-order/ship-to-stock (MTO/STS)
supply chain model. The data produced from the model is used as a training set for Bayesian net-
work learning to be performed. Bayesian network learning uses the training data to provide prob-
abilistic inference on hypotheses by populating the CPTs of a resource availability model within
the Bayesian network. This process is outlined in Figure 5.21.

GeNle has the capability of generating the CPTs for a model given there is suitable data for
learning. Bayesian network learning is a probabilistic approach to building models, which combines
prior knowledge with learning from data. In order to do so, a Bayesian network depicting the LVHV
supply chain is constructed. The constructed Bayesian network shows how the input demand has
a conditional relationship between the dynamics of the MTO system and the STS system with
respect to production, inventory, back-order rate, and order-book status. This Bayesian network is
shown in Figure 5.22. The goal of this network is to determine if resources are available throughout
the supply chain given the inventory-production data of the MTO upstream supplier.

Two Bayesian networks were created from the two sets of synthetic data: (1) a network that
provides the likelihood of available resources given a set of data whose model was not impacted
by the step input demand and (2) a network that provides the likelihood of available resources
given a set of data that was impacted negatively by the step input demand simulating the bullwhip
effect. The synthetic data is discretized into states using GeNle. For this research, the node that
is used for resource availability estimation is the Backorder Rate node of the STS system. The
Backorder Rate contains three states as a measure of the rate of backorders in the STS system:
(1) DecreasingBORATE indicating that the back orders are decreasing and that STS system is
shipping their resources to the downstream MTO supplier, (2) HealthyBORATE defining that the
order rate matches the amount of resources being shipped to the downstream MTO supplier, and
(3) IncreasingBORATE defining that the number of requested goods are not meeting production and
backorders are accumulating thus the downstream MTO supplier is not receiving any resources.
Figure 5.22 shows both Bayesian networks.

Bayesian updating for any probabilistic inference is the computation of the posterior probability
distribution for a set of query nodes, given values for some evidence nodes [43]. GeNle has the

ability to automatically update beliefs in the network to provide a probabilistic inference to aid
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Nonlinear Supply Particle Bayesian

Chain Model Filter Network

Figure 5.21: Process of integrating the synthetic data, particle filter, and Bayesian network model.

decision makers when considering their goals. Figure 5.23 shows the updated GeNle results for the
resource availability Bayesian network. These networks are later integrated into the final Bayesian
network.

The updated networks provide a probabilistic inference on whether the upstream MTS system
has a healthy level of backorders. The network on the right illustrated in Figure 5.8 learned
from the data set that contained typical behavior thus resulting in a 66% probability that the
backorders are healthy. This learned Bayesian network inventory-production model is integrated
into the final network as a mitigation strategy where a new supplier is introduced to depict risks
involving resource availability.

On the other hand, the network on the left illustrated in Figure 5.8 learned from the data
set that contained bullwhip impacted data. This results in a 69% likelihood that backorders are
accumulating, implying that the upstream MTS supplier may have been impacted by the bullwhip
effect resulting in an inability to satisfy incoming demand. This learned Bayesian network inventory-
production model is integrated into the final network as a mitigation strategy where a new supplier
is introduced to depict risks involving resource availability.

Additionally, particle filtering methods produce the posterior distribution of the model discussed
in Section 4.3. These were represented by the histograms and probability density functions for
several states. The benefit of having the posterior distributions is that they can be used directly
in the Bayesian network for inferring risk associated with resource availability. To this end, an

additional Bayesian networks was created from the probability distributions that infers available
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resources given posterior distributions from a healthy synthetic data set.

The Bayesian network is constructed to estimate the inventory levels of upstream suppliers
given the posterior distributions generated from the particle filter. Estimation of the resources
of the upstream supplier is achieved by training the Resource Availability node with the posterior
distributions. Since the model generated data for 52 weeks, the inventory is averaged for quar-
terly generated data. The reason for choosing an averaged quarterly estimate is to reduce the
computational effort in creating the final Bayesian network.

The Resource Availability node is dependent on an evidence-based Quarterly Report node. This
node can take on four states: (1) First Quarter, (2) Second Quarter, (3) Third Quarter, and
(4) Fourth Quarter. When the node is provided evidence for one of the states, the probability
distribution for that quarter is inferred in the final network. The final generalized Bayesian network

is illustrated in Figure 5.24.
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Figure 5.22: Bayesian network constructed for the MTS/MTO hybrid supply chain that was trained

on the two sets of synthetic data.
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Figure 5.24: Bayesian network constructed for the MTS/MTO hybrid supply chain that was trained

on the posterior distributions generated from a particle filter.
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5.5 Bayesian Network to Aid Supply Chain Managers in the Supplier Selection

Process

The final Bayesian network depicts the supply chain for the manufacturing of the main com-
ponents for a Pressurized Water Reactor (PWR) and includes the services performed by upstream
suppliers in the steam turbine main component by integrating the thrust bearing bill of materials
network constructed in the previous section. The final Bayesian network graphically illustrates
the PWR supply chain in Figure 5.25. The network aids decision makers in the supplier selection
process whose perspective is from the construction company responsible for sourcing the primary
goods and services for the PWR. The network also enables decision makers with the visibility of up-
stream suppliers, which further reduces uncertainty in supply chain risks by estimating likelihoods
that may impact the main components of the PWR. Finally, decision makers have the ability to
employ mitigation strategies to reduce potential risks to ensure construction of the PWR provided
that the main components are delivered on-time.

For the construction of the PWR to begin, its main components must be delivered on-time.
This is represented by the PWR Construction node, which can take on two states: (1) On-time
Delivery and (2) Late Delivery. The two states in the PWR Construction node are conditionally
dependent on the reliability of the suppliers for the main components in the PWR. The suppliers
that manufacture the main components are represented by their respective nodes in the network
and are identified by their own index, i, as listed in Table 5.7, and the main component they are
responsible for manufacturing. The conditional probability tables (CPTs) for the PWR network
are a result of the mapping from the fault-tree analysis performed in [74]. Figure 5.25 illustrates
the Bayesian network for the PWR bill of materials.

Each supplier can take on two probabilistic states: (1) Reliability and (2) Unreliability. The
Reliability state defines the likelihood that the supplier will have no impeding risks occur in delivering
the main component on-time. Conversely, the Unreliability state define the likelihood that the
supplier will encounter at least one risk that disrupts the delivery of the main component on-time.
For example, the likelihood that the supplier that manufactures the steam generator encounters a
risk that increases lead-time is 95% as indicated by the Steam Generator node in Figure 5.25.

The PWR network also includes a submodel in the steam turbine component through the Thrust
Bearing node, where a submodel node is a special type of node in GeNle that hosts larger networks

and facilitates their own Bayesian network. From the perspective of the supply chain manage-
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ment, this submodel contains upstream suppliers within the supply chain network of the PWR
construction. In this research, the Bayesian network is only concerned with the upstream suppliers
manufacturing the steam turbine thrust bearing. The conditional probability tables (CPTs) for
the thrust bearing network are a result of the mapping from the fault-tree analysis performed in
[74]. Inside the Thrust Bearing submodel illustrates the supply chain for the PWR steam turbine,
which is depicted in Figure 5.26.

Similar to the PWR bill of materials Bayesian network, the thrust bearing submodel depicts the
bill of materials for the constituents of the thrust bearing: leveling links, thrust shoe, bracelet, and
the support ring. These constituents are further broken down into the manufacturing processes that
for which each supplier is responsible. Each node in the network is labeled by its manufacturing
process following by its supplier service index, ¢. The likelihood for the suppliers in the submodel
are defined in the same fashion as the PWR network where each supplier can take either Reliability
or Unreliability. The manufacturing processes, supplier indices, and unreliability data is listed in
Table A1.

For this research, the network illustrates the supplier selection process within the leveling links
subcomponent of the thrust bearing, which is depicted by the Leveling Links Criteria. In the leveling
links portion of the Bayesian network, the available resource model is integrated into additional
suppliers to depict the benefits of having resource transparency of upstream suppliers in the decision
making process. The leveling links portion is also equipped with mitigation strategies where several
scenarios are shown to illustrate the benefits of executing evidence-based nodes to reduce risk in the
supply chain. The goal of the network is to study how the supplier selection process impacts the
reliability of the Thrust Bearing Criteria. Figure 5.27 shows the leveling links portion of the thrust
bearing submodel, where the thrust shoe, bracelet, and support ring suppliers are added to their

own submodels for convenience.

5.5.1 Mitigation Strategies for Upstream Leveling Links Suppliers

This section describes several case studies involving mitigation strategies and demonstrates how
the Bayesian network supports decision making by enabling supply chain professionals the ability
to plan, monitor, and control events that may impact the financial goals of the company. For this
research, the risk mitigation decisions are performed prior to ordering the component with the goal

of reducing the uncertainty in the supplier selection process in the casting manufacturing process
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for the leveling links. The end goal is to observe how the Thrust Bearing Criteria node changes when
the mitigation strategies are added to the supplier selection portfolio.

Scenario 1: In this scenario, an improved supplier Casting 1-30 is added to the supplier port-
folio as a mitigation strategy. This improved supplier has an unreliability likelihood of 9.47%, as
compared to the original Casting 1-13 unreliability of 12.64%. The introduction of an improved
supplier requires the company to engage in a new contract that costs $12,837. When the mitiga-
tion strategy is performed, the Improved Replacement Supplier node is updated with the evidence
to the appropriate state. When improving the existing supplier the overall Thrust Bearing Criteria
improves to 63%. Figure 5.28 highlights the portion of the Bayesian network for this scenario. The
full Bayesian network is illustrated in Figure A10, which can be found in Appendix A.

Scenario 2: In this scenario, two casting suppliers are introduced that enabled inventory data
sharing with the end customer in the supply chain. The two Bayesian networks created from the
sets of synthetic data in Section 5.4 are integrated into the new casting suppliers. The new supplier
Casting 1-31 has a conditional dependence on the Backorder Rate whose data favored a healthy
inventory system. On the other hand, the new supplier Casting 1-32 has a conditional dependence
on the Backorder Rate whose data indicated an inventory system impacted by the bullwhip effect.
The CPT for both new suppliers are populated to reflect the reliability of the suppliers given their
inventory health.

The supplier evaluation process is performed by enabling evidence in the Resources Supplier for
each new supplier, which acts as a switch in propagating the reliability evidence to the Supplier
Criteria node. This node is evaluating the likelihood that the casting supplier is reliable for the
Casting 1-13 supplier, Casting 1-31 supplier, and the Casting 1-32 supplier. When enabling evidence
into the Resources Supplier, the mitigation cost is tabulated in the Resource Data Mitigation Cost
node for each of the additional suppliers.

Without any options enabled, the reliability of the Supplier Criteria takes on the likelihood on
the Casting 1-13 resulting in the Thrust Bearing Criteria observing a 65% of being late. Figure 5.29a
shows supplier Casting 1-13 with the evidence node to enable the use of the supplier and Fig-
ure 5.29b shows the resulting Thrust Bearing Criteria. The full Bayesian network is illustrated in
Figure A11, which can be found in Appendix A.

When introducing Casting 1-31 supplier, at the cost of $9,500, the Thrust Bearing Criteria is
improved to 61%. Figure 5.30a shows supplier Casting 1-31 being deployed by enabling the mitiga-

tion strategy node and Figure 5.30b shows the resulting Thrust Bearing Criteria. The full Bayesian
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network is illustrated in Figure A12, which can be found in Appendix A.

When supplier Casting 1-32 is enabled, whose data is known to have poor production-inventory
management, there is no improvement on the Thrust Bearing Criteria since the supply chain will
favor the original casting supplier. This indicates that the transparency in production-inventory
data and estimation of upstream inventory environments can improve the reliability of the supply
chain. Figure 5.31a shows supplier Casting 1-32 being deployed by enabling the mitigation strategy
node and Figure 5.31b shows the resulting Thrust Bearing Criteria. The full Bayesian network is
illustrated in Figure A12, which can be found in Appendix A.

Scenario 3: In this scenario, the company introduces supplier Casting 1-33 to its portfolio.
This supplier provides historical productivity data that is dependent on the four seasons: summer,
fall, winter, and spring. It should also be noted that the supplier’s geographical location is in a
region that experiences heavy snow fall. The data indicates that unreliability in the winter for
the supplier increases from 12.63% to 16% due to low productivity during the holiday season.
Additionally, the winter months account for risks that may impede the flow of resources due to
poor weather conditions such as heavy snow fall. For the remaining months, the data indicates
that the unreliability for the supplier is 9.47%.

The mitigation strategy involves updating the evidence to the ordering season in the Seasonal
Data node to avoid any productivity risks. The introduction of the new supplier costs the company
$12,500 — which is tabulated in the Seasonal Data Supplier Mitigation Cost. In the event that
the casting is performed in the summer months, then the evidence is updated in the Seasonal
Data node. This improves the Thrust Bearing Criteria unreliability to 63%. In the event that the
casting is performed in the winter months, then the evidence is updated in the Seasonal Data node.
Then the unreliability becomes 67% as shown in the Thrust Bearing Criteria. Figure 5.32 highlights
the portion of the Bayesian network for this scenario. The full Bayesian network is illustrated in
Figure A14 and Figure A15, which can be found in Appendix A.

Scenario 4: In this scenario, the company introduces supplier Casting 1-34 to its portfolio. This
supplier has enabled data sharing of its production-inventory process. By recognizing the condi-
tional dependence between Casting 1-34 and the inventory of its upstream supplier, the posterior
distributions from the particle filter performed in Section 5.4 is applied to the data. This enables a
reasoning strategy for the supply chain professional to determine when may be the most opportune
time to order the desired part.

The supply chain professional is attempting to determine if the leveling links order should take
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place in the first quarter or second quarter of the upcoming year. The mitigation strategy is enabled
by updating the evidence in the Downstream Supplier - Casting 1-34 node. The introduction of the
new supplier costs the company $15,000 — which is tabulated in the Resource Data Casting 1-34
Mitigation Cost node. Thereafter, the appropriate quarter in the Quarterly Data Decision node is
chosen. When the Q1 state is enabled, the Casting 1-34 supplier unreliability is updated to 75%.
This decision infers that the Thrust Bearing Criteria unreliability is 66%. When the Q2 state is
enabled, the Casting 1-34 supplier unreliability is updated to 61%. This decision infers that the
Thrust Bearing Criteria unreliability is 62%. With the distributions of estimated inventories of the
upstream supplier, the supply chain professional can determine that the most opportune time to
avoids risks for the leveling links casting is during Q2. The Bayesian network for this scenario is
depicted in Figure 5.33.

The outcomes for the scenarios listed above, including other mitigation strategies from the
Bayesian network, are arranged in Figure 5.34. The ability to select the mitigation options en-
ables the decision makers with reasoning strategies by observing how the addition of new evidence
propagates throughout the Bayesian network. There are a number of combinations and strategies
that the network can be used for to aid in decision making. For example, suppose supply chain
management does not wish to pay for the cost of a contract that would enable resource data shar-
ing to improve the reliability of the thrust bearing. Instead, the decision maker chooses a strategy
that fits their budget by replacing the supplier at a lower cost, but is not as effective in reducing
the unreliability of the thrust bearing criteria. This and more can be readily implemented into
a Bayesian network to help reduce the uncertainty supply chain management faces when dealing

with supply chain risks.
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Figure 5.28: Adding an improved supplier mitigation strategy and its impact on the thrust bearing
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Figure 5.29: Thrust bearing criteria when with no mitigation strategies deployed.
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Figure 5.30: Thrust bearing criteria when supplier 1-31 is added to the supplier portfolio.
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Figure 5.31: Thrust bearing criteria when supplier 1-32 is added to the supplier portfolio.
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Figure 5.32: Thrust bearing criteria when a new supplier mitigation strategy is deployed that has

historical seasonal data on productivity.
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6.0 Summary and Conclusions

6.1 Summary

This research presented a method to reduce the uncertainty decision makers encounter in the
supply chain through the use of Bayesian networks. The Bayesian networks illustrated two graphical
assessments of supply chain models: (1) series supply chain model for make-to-stock goods and
(2) supply chain model for low-volume, high-value nuclear power industry components. Both
Bayesian networks were equipped with models of risks, which showed the likelihood of a risk event
occurring in the form of directed acyclical graphs. Resource availability was depicted in the network
through synthetic data generation from studying the dynamics of inventory-production schemes
that are employed in the supply chain. Through the use of state-estimating techniques, resources
of upstream suppliers were estimated and the likelihood of a bullwhip effect risk was implemented
into the network. In order to counter risks that impeded the goals of the supply chain, mitigation
options were illustrated in the networks as evidence-based nodes where strategies could be employed
in an attempt to reduce risks.

Risk events were identified in the four areas of the supply chain and implemented into the
constructed Bayesian networks. In the production, quality risks were identified as likelihood of the
production process not meeting the standards of the company. In the inventory area, the bullwhip
effect was identified as a phenomena that is caused by a sudden increase in demand, which then
causes severe fluctuations in the inventory space of supply chain agents. For the locations, supply
chain disruptions were identified through a supplier’s historical data that was dependent on the
seasons. It was discovered that during the winter months that the supplier was more prone to risk
events due to poor weather conditions as determined by their geographical location. Finally, in the
transportation, risk events were identified as poor quality in roads, the proximity of the supplier
to ports, and weather conditions

The graphical assessment provided by the Bayesian networks enables decision makers in the
supply chain the ability to actively monitor their supply chains. This was achieved by identifying
what type of risks may occur and their probability of occurring. The planning aspect comes in
the form of the mitigation strategies that the decision maker may implement. For both Bayesian

networks, scenarios were demonstrated to show how mitigation strategies could be used to employ

130



contingency plans. The scenarios for both Bayesian networks demonstrated how planning a supplier
visit can reduce risk events at the cost of sending an employee to ensure quality standards are met.
To this end, planning a supplier visit simultaneously satisfied the controlling of risk events by
reducing the likelihood of occurrence, 20% for the make-to-stock network and 8% for the low-
volume, high-value network. In the low-volume, high-value Bayesian network, a scenario showed
when inventory data is shared risk events regarding resource availability can be monitored, planned,
and controlled. The scenario with synthetic bullwhip data showed how risk events in resource
availability can be avoided through evaluation of the supplier portfolio

The Bayesian networks depicting the supply chains had integrating risk penalties to illustrate
the financial consequences if a risk event were to occur. Adding the penalties and accomplishing the
previous goals of this research reduces the uncertainty encountered in the decision making process.
In particular, by identifying where risks may occur with their associated financial consequence,
decision makers had the ability to monitor, plan, and control the events through mitigation strate-
gies. When these strategies were implemented, the likelihood of events decreases thus reducing the
likelihood that the financial impact on the supply chain would occur. This was shown for quality
assurance strategies through a supplier visit, seasonal strategies for when to order, and through the
supplier selection process where the decision maker was able to select from their supplier portfolio

the most financially beneficial choice.

6.2 Conclusions

The ability to monitor, plan, and control the uncertainties in the supply chain is an arduous task
due to the vast number of events that can lead to disruptions. Decision making under uncertainty
is reduced by modeling the supply chain with Bayesian networks. The advantages of Bayesian
networks is that they provide an inference on the cause and effect nature that models how events
between the interdependent agents in the supply chain propagate throughout the entire network.
Through this approach, the Bayesian networks contained probabilistic assessments of disrupting
events with integrated resource availability models and mitigation strategies. This enables decision
makers the ability to monitor events, update their probability of occurrence given new information,
and plan mitigation decisions as a preventative measure to control or reduce the consequences.

The use of Bayesian networks ultimately transforms decision making under uncertainty from a
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Figure 6.1: Summary of thrust bearing criteria unreliability that is dependent on mitigation strate-

gies and their deployment cost.

reactive approach to a preventative approach by being able to identify strategies that fit within the
company’s finances.

The outcomes for the scenarios in Section 5.5.1 demonstrated the ability to select mitigation
options for decision makers. These mitigation options are scenarios reflecting reasoning strategies
by observing how the addition of new evidence propagates throughout the Bayesian network. There
are a number of combinations and strategies that the network can be used for to aid in decision
making. For example, suppose supply chain management does not wish to pay for the cost of a
contract that would enable resource data sharing to improve the reliability of the thrust bearing.
Instead, the decision maker chooses a strategy that fits their budget by replacing the supplier at
a lower cost, but is not as effective in reducing the unreliability of the thrust bearing criteria.
The conclusions to those scenarios are arranged in Figure 6.1. This and more can be readily
implemented into a Bayesian network to help reduce the uncertainty supply chain management

faces when dealing with supply chain risks.
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6.3 Research Contributions

The contributions as a result of the accomplishments presented in this research are identified
in the following areas: (1) decision making in the supply chain under uncertainty, (2) resource
estimation of upstream suppliers, and (3) nuclear power plant construction.

The contributions made in decision making in the supply chain under uncertainty is accom-
plished by Bayesian network risk assessment. This research provided the steps necessary to iden-
tify the required dynamics to model any supply chain under investigation. By modeling the supply
chain with Bayesian networks, risk is assessed through probabilistic occurrences of disrupting events.
Understanding how these events impact the supply chain under investigation reduces the uncer-
tainty for decision makers when attempting to satisfy the goals of the company. Therefore, the
contribution of reducing uncertainty is accomplished.

This research contributes a method to estimate the inventory of upstream suppliers. By mod-
elling the supply chain through state-space representation, state estimation techniques can provide
a probabilistic assessment of upstream inventory count. In the event that resources are available
in upstream suppliers, then the likelihood of a delay occurring decreases. This information has the
ability to reduce the uncertainty regarding lead-time and aids in decision making for when is the
most opportune time to order a component given the estimated likelihood of inventory count.

Advanced nuclear reactor construction can now to be cost effective. This is achieved by modeling
the unique characteristics of the industry as a low-volume, high-value supply chain. By modeling
the supply chain using the bill of materials and integrating estimated available resources into a
Bayesian network, events that can financially harm the construction of nuclear power plants can
be avoided through mitigation strategies. When these strategies were implemented, the likelihood
of events decreases thus reducing the likelihood that the financial impact on the construction of
the nuclear power plant. This was shown for quality assurance strategies through a supplier visit,
seasonal strategies for when to order, and through the supplier selection process where the decision

maker was able to select from their supplier portfolio the most financially beneficial choice.
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6.4 Future Research

The research presented here are the first steps for a data-driven decision model for supply chain

analysis. There are several ways to build upon this research:

1. Bayesian network learning through real supply chain data.
2. Implement additional control theory applications to replicate risks in the production-inventory
models.

3. Design a decision path with real-time supply chain data to optimize financial goals.

6.4.1 Real Supply Chain Data Set

This research constructed several models to generate synthetic data for inventory-production
based systems. Although it was successful, real supply chain data is preferred. The value of
real data cannot be replicated and future research could benefit from analyzing all that it has
to offer. Real supply chain data could reveal risks not only in the production-inventory system
but throughout the entire supply chain network. From the real data, hidden parameters could be
estimated to reveal the behavior of the supply chain system, which could then be added to the
Bayesian network to determine the likelihood of desired scenarios. Additionally, the use of real
data could extend the Bayesian network to include time steps since the data would be dependent
on some time series. This would transform the current Bayesian network approach into a dynamic

Bayesian network, which would better suit the data and overall analysis of the supply chain.

6.4.2 Modified Models for Synthetic Data Generation

In the event that the future work of this research fails to obtain supply chain data, then the
models created to generate synthetic production-inventory data can be updated to reflect real-world
scenarios. The models can be updated in two ways: (1) include supply chain agents in parallel of
those upstream from the end-customer and (2) include additional delays to account for risks in the
production-inventory system. Adding additional supply chain agents in parallel to those upstream
from the end-customer would reflect real-world supply chains rather than a simplified series model.
This approach would require additional computation efforts to derive the dynamics of the system
and ultimately the state-space equations. Including additional delays and control theory techniques

to the models can replicate risks in the production-inventory system. For example, a delay function
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between agents can be implemented to depict a transportation delay. The parameters within this
function can be adjusted to reflect risks where transporting resources to downstream suppliers is
impacted by any amount of days. This data can then train the Bayesian networks to determine

the likelihood of a transportation delay.

6.4.3 Artificial Intelligence for Decision Making

This research successfully aids decision makers in the supply chain, however, human decision
making is still flawed by failing to digest all the necessary variables. To overcome this, the future of
this research would entail integrating the current model with an artificial intelligence decision model.
Reinforcement learning paired with neural networks have been proven successful in environments
that are flooded with decisions and an optimal path is required to satisfy a goal. Applying this
approach would require decision model inputs and an acute understanding of supply chain goals as
operational constraints. Ideally, these inputs and constraints would be identified from supply chain
managers through a customer discovery phase. Thereafter, the reinforcement learning coupled with

a neural network model could be trained to optimize the supply chain decision making.
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Appendix A Supply Chain Bayesian Networks, Fault-Trees, Supply Chain Data, and

Difference Equations
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Figure A5: Fault-tree for a pressurized water reactor using its bill of materials.
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Figure A6: Fault-tree for a pressurized water reactor using its bill of materials.
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Table A1l: Suppliers and their unreliability to provide a thrust bearing.

Supplier (i) | Good and/or Service | Unreliability (u;)
1 Plating 0.0195
2 Lab & Test 0.0424
3 Machining 0.0379
4 Machining 0.0419
5 Casting 0.0203
6 Forging 0.0450
7 Lab & Test 0.0323
8 Heat Treatment 0.0081
9 Melt Stock 0.0092
10 Lab & Test 0.0433
11 Plating 0.0459
12 Lab & Test 0.0316
13 Machining 0.0009
14 Casting 0.0472
15 Casting 0.0062
16 Lab & Test 0.0454
17 Heat Treatment 0.0332
18 Melt Stock 0.0016
19 Lab & Test 0.0475
20 Forging 0.0362
21 Machining 0.0189
22 Casting 0.0114
23 Lab & Test 0.0199
24 Melt Stock 0.0178
25 Lab & Test 0.0322
26 Heat Treatment, 0.0492
27 Heat Treatment 0.0157
28 Machining 0.0422
29 Casting 0.0062
30 Casting 0.0062
31 Lab & Test 0.0276
32 Heat Treatment 0.0097
33 Heat Treatment 0.0129
34 Melt Stock 0.0147
35 Lab & Test 0.0190
36 Machining 0.0343
37 Machining 0.0328
38 Casting 0.0049
39 Forging 0.0107
40 Forging 0.0010
41 Heat Treatment 0.0425
42 Heat Treatment 0.0358
43 Melt Stock 0.0484
44 Lab & Test 0.0095
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Table A2: Difference equations for Make-to-Order/Make-to-Stock hybrid supply chain.

Make-to-Order Difference Equations

REQRATE[t] = DRATEnT0 + (1-D) x BLapg[t — 1]

CAP[t] = C x REQRATE[t] 4+ (1-C) x x CAP[t —1]
CAPRATE[t] = MIN[CAP[t], CAPRATE[t], REQRATE]t]

BL[t] = BL[t — 1] + REQRATE[t] - CAPRATE[t] - BLapj[t — 1]
BLapy[t — 1] = BL[t]/Tso

BORATEyrs[t] = (ABO[t]-ABO[t — 1))/(T[t]-T[t — 1])
ORATEwnT0[t] = CAPRATE[{] + D X BLapj[t] - BORATENTs|t]
COMRATEro(t] = ORATENT0[t — Tpep)

AOBJt] = AOB[t — 1] + ORATEnT0][t]

Make-to-Stock Difference Equations

DRATEwTs[t] = CAPRATE[t] + D x BLapj[t]

AVCON]Jt] = A x DRATEyrs[t] + (1-A) x AVCON[t — 1]

AINV]t] = AINV[t — 1] + COMRATE\1s[t] - DRATE st

ABO.4[t] = — MIN(0, AINVT]t])

AINV, [t] = AINV + B x ABO,[t]

DINV[t] = Kinv x AVCON(t]

EWIP[t] = DWIP[t] - AWIP|¢]

ORATEwTs[t] = AVCON[t] + EINV[t — 1] + EWIP[t — 1]
COMRATE\s[t] = B x ORATEMTs[t] + (1-B) x COMRATE\Ts[t — 1]

152



Appendix B BayesFusion

BayesFusion, LLC provides artificial intelligence modeling and machine learning software based
on Bayesian networks. Their software runs on desktops, mobile devices, and in the cloud. They
also offer training, scientific consulting, and custom software development. The most popular
application areas of their software are diagnosis and prognosis, data science, decision modeling,
and strategic planning. More information and software documentation can be found on their

website (https://www.bayesfusion.com/) .

B.1 GeNle

GeNle Modeler (Graphical Network Interface) is a development environment for building graph-
ical decision-theoretic models. It was created and developed at the Decision Systems Laboratory,
University of Pittsburgh between 1995 and 2015. GeNIe Modeler provides a graphical user inter-
face to the SMILE Engine for interactive model building and learning. Primary features include a
graphical editor to create, learn, and refine network models, flexible data handling, and dynamic

Bayesian networks of any order [8].

B.2 SMILE

SMILE (Structural Modeling, Inference, and Learning Engine) is a reasoning and learning/causal
discovery engine for graphical models, such as Bayesian networks, influence diagrams, and structural
equation models. SMILE also offers an array of programming libraries for probabilistic graphical
models. SMILE is also available as wrappers to provide functionality to programs written in Java,

Python, R, .NET, and COM (Excel).

153


https://www.bayesfusion.com/

Bibliography

Per J. Agrell and Joakim Wikner. An MCDM framework for dynamic systems. International
Journal of Production Economics, 45(1-3):279-292, 1996.

Elisa Alonso, Jeremy Gregory, Frank Field, and Randolph Kirchain. Material availability
and the supply chain: risks, effects, and responses, 2007.

O. Alsac, N. Vempati, B. Stott, and A. Monticelli. Generalized state estimation. IFEFE
Transactions On Power Systems, 13(3):1069-1075, 1998.

Martin Aruldoss, T. Miranda Lakshmi, and V. Prasanna Venkatesan. A survey on multi
criteria decision making methods and its applications. American Journal of Information
Systems, 1(1):31-43, 2013.

K.J. Astrom and R.M. Murray. Feedback systems-an introduction for scientists and engi-
neers, version v 2.10 ¢, 2010.

Amir Azaron, K.N. Brown, S. Armagan Tarim, and Mohammed Modarres. A multi-objective
stochastic programming approach for supply chain design considering risk. International
Journal of Production Economics, 116(1):129-138, 2008.

Reza Babazadeh and Ali Sabbaghnia. Optimisation of supply chain networks under un-
certainty: conditional value at risk approach. International Journal of Management and
Decision Making, 17(4):488-508, 2018.

BayesFusion. GeNle Modeler. https://support.bayesfusion.com/docs/, 2017. [Online;
accessed October, 2020].

Andrea Bobbio, Luigi Portinale, Michele Minichino, and Ester Ciancamerla. Improving the
analysis of dependable systems by mapping fault trees into Bayesian networks. Reliability
Engineering € System Safety, 71(3):249-260, 2001.

John Burkardt. The truncated normal distribution. Department of Scientific Computing
Website, Florida State University, pages 1-35, 2014.

James V. Candy. Bayesian Signal Processing: Classical, Modern, and Particle Filtering
Methods, volume 54. John Wiley & Sons, 2016.

154


https://support.bayesfusion.com/docs/

[22]

Lai-Kow Chan and Ming-Lu Wu. Quality Function Deployment: a literature review. Euro-
pean Journal of Operational Research, 143(3):463-497, 2002.

Andrew Cox. Power, value and supply chain management. Supply Chain Management: An
International Journal, 1999.

Robert G. Coyle. Management system dynamics. Technical report, MIT Press, 1977.

Hongyan Dai, Jianbin Li, Nina Yan, and Weihua Zhou. Bullwhip effect and supply chain
costs with low-and high-quality information on inventory shrinkage. Furopean Journal of
Operational Research, 250(2):457-469, 2016.

Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge University
Press, 2009.

Fred Daum. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic
Systems Magazine, 20(8):57-69, 2005.

Andrew M. Davis, Elena Katok, and Natalia Santamaria. Push, pull, or both? a behavioral
study of how the allocation of inventory risk affects channel efficiency. Management Science,
60(11):2666-2683, 2014.

Jeroen Dejonckheere, Stephen M. Disney, Marc R. Lambrecht, and Denis R. Towill. The im-
pact of information enrichment on the bullwhip effect in supply chains: a control engineering
perspective. European Journal of Operational Research, 153(3):727-750, 2004.

Stephen Denning. What went wrong at boeing. Strateqy & Leadership, 2013.

Stephen Michael Disney and Denis Royston Towill. A discrete transfer function model to
determine the dynamic stability of a vendor managed inventory supply chain. International
Journal of Production Research, 40(1):179-204, 2002.

Chao Fang, Xiangxiang Liao, and Min Xie. A hybrid risks-informed approach for the selec-
tion of supplier portfolio. International Journal of Production Research, 54(7):2019-2034,
2016.

Norman Fenton and Martin Neil. Risk assessment and decision analysis with Bayesian
networks. CRC Press, 2018.

Randal Ferman. Pump lead times — what to expect. https://empoweringpumps.com/
pump-lead-times-what-to-expect/, 2018. [Online; accessed June, 2021].

155


https://empoweringpumps.com/pump-lead-times-what-to-expect/
https://empoweringpumps.com/pump-lead-times-what-to-expect/

[31]

32]

[33]

[34]

[35]

[36]

Marshall L. Fisher, Janice H. Hammond, Walter R. Obermeyer, and Ananth Raman. Making
supply meet demand in an uncertain world. Harvard Business Review, 72:83-83, 1994.

Torkel Glad and Lennart Ljung. Control Theory. CRC press, 2018.

Jon Gosling and Bill Hewlett. A typology for the management of engineering activities based
on the decoupling point concept. InImpact: The Journal of Innovation Impact, 7(2):1025,
2016.

Tonci Grubic and Ip-Shing Fan. Supply chain ontology: review, analysis and synthesis.
Computers in Industry, 61(8):776-786, 2010.

David F. Haasl. Advanced concepts in fault tree analysis. In System Safety Symposium,
volume 8. The Boeing Company Seattle, 1965.

Iris Heckmann, Tina Comes, and Stefan Nickel. A critical review on supply chain risk—
definition, measure and modeling. Omega, 52:119-132, 2015.

Houssein Hellani, Layth Sliman, Abed Ellatif Samhat, and Ernesto Exposito. On blockchain
integration with supply chain: overview on data transparency. Logistics, 5(3):46, 2021.

Ray  Henry. Promises  of easier nuclear construction fall  short.
https://www.post-gazette.com/business/powersource/2014/07/26/
Promises-of-easier-nuclear-construction-fall-short/stories/201407260135,
2014. [Online; accessed February, 2020].

Christian Hicks, Tom McGovern, and Chris F. Earl. Supply chain management: a strategic
issue in engineer to order manufacturing. International Journal of Production Economics,
65(2):179-190, 2000.

Seyedmohsen Hosseini and Kash Barker. A Bayesian network model for resilience-based
supplier selection. International Journal of Production Economics, 180:68-87, 2016.

Michael H. Hugos. Essentials of supply chain management. John Wiley & Sons, 2018.

Dmitry Ivanov. Supply chain risk management: bullwhip effect and ripple effect. In Struc-
tural Dynamics and Resilience in Supply Chain Risk Management, pages 19-44. Springer,
2018.

Jaclyn Jaeger. Top 10 supply chain risks for 2019. https://www.complianceweek.com/
risk-management/top-10-supply-chain-risks-for-2019/27024.article, 2019. [Oun-
line; accessed June, 2021].

156


https://www.post-gazette.com/business/powersource/2014/07/26/Promises-of-easier-nuclear-construction-fall-short/stories/201407260135
https://www.post-gazette.com/business/powersource/2014/07/26/Promises-of-easier-nuclear-construction-fall-short/stories/201407260135
https://www.complianceweek.com/risk-management/top-10-supply-chain-risks-for-2019/27024.article
https://www.complianceweek.com/risk-management/top-10-supply-chain-risks-for-2019/27024.article

[40]

[41]

[42]

[47]

[48]

Kailash C. Kapur and Michael Pecht. Reliability Engineering, volume 86. John Wiley &
Sons, 2014.

E. Ertugrul Karsak. Fuzzy multiple objective decision making approach to prioritize design
requirements in quality function deployment. International Journal of Production Research,
42(18):3957-3974, 2004.

E. Ertugrul Karsak and Mehtap Dursun. An integrated fuzzy mcdm approach for supplier
evaluation and selection. Computers & Industrial Engineering, 82:82-93, 2015.

Naeem Khan, M. Irfan Khattak, and Dawei Gu. Robust state estimation and its application
to spacecraft control. Automatica, 48(12):3142-3150, 2012.

Seung-Hwan Kim, John W. Fowler, Dan L. Shunk, and Michele E. Pfund. Improving the
push—pull strategy in a serial supply chain by a hybrid push—pull control with multiple
pulling points. International Journal of Production Research, 50(19):5651-5668, 2012.

Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. CRC press, 2010.

R. Sendhil Kumar and S. Pugazhendhi. Information sharing in supply chains: an overview.
Procedia Engineering, 38:2147-2154, 2012.

Chandra S. Lalwani, Stephen M. Disney, and Denis R. Towill. Controllable, observable and
stable state space representations of a generalized order-up-to policy. International Journal
of Production Economics, 101(1):172-184, 2006.

Hon Loong Lam, Wendy P.Q. Ng, Rex T.L. Ng, Ern Huay Ng, Mustafa K. Abdul Aziz,
and Denny K.S. Ng. Green strategy for sustainable waste-to-energy supply chain. Energy,
57:4-16, 2013.

Hau L. Lee and Corey Billington. The evolution of supply chain management models and
practice at Hewlett-Packard. Interfaces, 25(5):42-63, 1995.

Hau L. Lee, Venkata Padmanabhan, and Seungjin Whang. The bullwhip effect in supply
chains. Sloan management review, 38:93-102, 1997.

Wen-Shing Lee, Doris L. Grosh, Frank A. Tillman, and Chang H. Lie. Fault tree analysis,
methods, and applications a review. IEEE Transactions On Reliability, 34(3):194-203, 1985.

Junyi Lin. System dynamics modelling, analysis and design of assemble-to-order supply
chains. PhD thesis, Cardiff University, 2018.

157



[51]

[52]

[53]

[54]

[56]

[57]

[60]

[61]

Junyi Lin, Mohamed Mohamed Naim, Laura Purvis, and Jonathan Gosling. The extension
and exploitation of the inventory and order based production control system archetype from
1982 to 2015. International Journal of Production Economics, 194:135-152, 2017.

Thomas J Linsmeier and Neil D Pearson. Value at Risk. Financial Analysts Journal,
56(2):47-67, 2000.

Baoding Liu. Foundation of Uncertainty Theory. Department of Mathematical Sciences,
Tsinghua University, 2005.

Baoding Liu. Uncertainty Theory: a branch of mathematics for modeling human uncertainty,
2010. Springer, 85(13.4), 2010.

Medkour Malika, L. Khochmane, A. Bouzaouit, and O. Bennis. Transformation of fault tree
into Bayesian network methodology for fault diagnosis. Mechanics, 23(6):891-899, 2017.

Tanaka Mandy Mbavarira and Christine Grimm. A systemic view on circular economy in the
water industry: learnings from a belgian and dutch case. Sustainability, 13(6):3313, 2021.

Mario H. Mello and Jan Ola Strandhagen. Supply chain management in the shipbuilding in-
dustry: challenges and perspectives. Proceedings of the Institution of Mechanical Engineers,
Part M: Journal of Engineering for the Maritime Environment, 225(3):261-270, 2011.

Jen A. Miller. Why lumber prices are spiking. https://www.supplychaindive.com/news/
lumber-demand-shortage-price-saw-mill-board-housing-pandemic-labor/600876/,
2021. [Online; accessed April, 2021].

Andrew Moore. How the Coronavirus Created a Toilet Paper Shortage. https://cnr.
ncsu.edu/news/2020/05/coronavirus-toilet-paper-shortage/, 2021. [Online; accessed
April, 2021].

Max Muller. Essentials of Inventory Management. HarperCollins Leadership, 2019.

Wan Lung Ng. An efficient and simple model for multiple criteria supplier selection problem.
European Journal of Operational Research, 186(3):1059-1067, 2008.

Jan Olhager. The role of the customer order decoupling point in production and supply
chain management. Computers in Industry, 61(9):863-868, 2010.

Muhammad Osman, Aaron S. Karat, Munira Khan, Sue-Ann Meehan, Arne von Delft, Za-
meer Brey, Salome Charalambous, Anneke C. Hesseling, Pren Naidoo, and Marian Loveday.

158


https://www.supplychaindive.com/news/lumber-demand-shortage-price-saw-mill-board-housing-pandemic-labor/600876/
https://www.supplychaindive.com/news/lumber-demand-shortage-price-saw-mill-board-housing-pandemic-labor/600876/
https://cnr.ncsu.edu/news/2020/05/coronavirus-toilet-paper-shortage/
https://cnr.ncsu.edu/news/2020/05/coronavirus-toilet-paper-shortage/

[69]

Health system determinants of tuberculosis mortality in South Africa: a causal loop model.
BMC Health Services Research, 21(1):1-11, 2021.

Christos Papanagnou and G.D. Halikias. A state-space approach for analysing the bullwhip
effect in supply chains. Proceedings of ICTA, 5:79-84, 2005.

Christos 1. Papanagnou and G.D. Halikias. Supply-chain modelling and control under
proportional inventory-replenishment policies. International Journal of Systems Science,
39(7):699-711, 2008.

Shane Parr, Ishan Khatri, Justin Svegliato, and Shlomo Zilberstein. Agent-aware state
estimation: effective traffic light classification for autonomous vehicles. In Workshop on
Sensing, Estimating and Understanding the Dynamic World, International Conference on
Robotics and Automation (ICRA), pages 1-6, 2020.

Alexander S. Poznyak, Edgar N. Sanchez, and Wen Yu. Differential neural networks for
robust nonlinear control: identification, state estimation and trajectory tracking. World
Scientific, 2001.

Motoko Rich. Clearing the Suez Canal Took Days. Figuring Out the Costs May Take Years.
https://www.nytimes.com/2021/03/31/business/suez-canal-ship-costs.html, 2021.
[Online; accessed January, 2021].

Mark Rodgers and Dashi Singham. A framework for assessing disruptions in a clinical supply
chain using Bayesian belief networks. Journal of Pharmaceutical Innovation, 15(3):467-481,
2020.

Haralambos Sarimveis, Panagiotis Patrinos, Chris D. Tarantilis, and Chris T. Kiranoudis.
Dynamic modeling and control of supply chain systems: a review. Computers € Operations
Research, 35(11):3530-3561, 2008.

Michael J. Shaw. Information-based manufacturing with the web. International Journal of
Flexible Manufacturing Systems, 12(2):115-129, 2000.

Michael D. Sherwin. An optimized resource allocation approach to identify and mitigate
supply chain risks using fault tree analysis. PhD thesis, Mississippi State University, 2018.

Michael D. Sherwin, Hugh Medal, and Steven A. Lapp. Proactive cost-effective identification
and mitigation of supply delay risks in a low volume high value supply chain using fault-tree
analysis. International Journal of Production Economics, 175:153-163, 2016.

159


https://www.nytimes.com/2021/03/31/business/suez-canal-ship-costs.html

[74]

[75]

(78]

[79]

[82]

[83]

[84]

Michael D. Sherwin, Hugh R. Medal, Cameron A. MacKenzie, and Kennedy J. Brown. Iden-
tifying and mitigating supply chain risks using fault tree optimization. IISE Transactions,
52(2):236-254, 2020.

Eliot Simangunsong, Linda C. Hendry, and Mark Stevenson. Supply-chain uncertainty: a
review and theoretical foundation for future research. International Journal of Production
Research, 50(16):4493-4523, 2012.

Amrik S. Sohal, Simon Moss, and Lionel Ng. Comparing it success in manufacturing and
service industries. International Journal of Operations & Production Management, 2001.

Bonoukpoe Mawuko Sokame, Henri E.Z. Tonnang, Sevgan Subramanian, Anani Y. Bruce,
Thomas Dubois, Sunday Ekesi, and Paul-André Calatayud. A system dynamics model for
pests and natural enemies interactions. Scientific Reports, 11(1):1-14, 2021.

Devin  Soni. What is Bayes Rule? https://towardsdatascience.com/
what-is-bayes-rule-bb6598d8a2fd, 2018. [Online; accessed June, 2021].

Moh Muklis Sulaeman and Mugi Harsono. Supply chain ontology: model overview and
synthesis. Jurnal Mantik, 5(2):790-799, 2021.

Hamed Taherdoost and Aurélie Brard. Analyzing the process of supplier selection criteria
and methods. Procedia Manufacturing, 32:1024-1034, 2019.

Katsuhiko Takahashi and Nobuto Nakamura. Push, pull, or hybrid control in supply chain
management. International Journal of Computer Integrated Manufacturing, 17(2):126-140,
2004.

Team Tip. Guidelines for drawing causal loop diagrams. Systems Thinker, page 22, 2011.

Denis R. Towill. Dynamic analysis of an inventory and order based production control
system. The International Journal of Production Research, 20(6):671-687, 1982.

Denis R. Towill. The impact of business policy on bullwhip induced risk in supply chain
management. International Journal of Physical Distribution & Logistics Management, 2005.

Mike Uschold and Michael Gruninger. Ontologies: principles, methods and applications.
The Knowledge Engineering Review, 11(2):93-136, 1996.

Matthew A. Waller and Stanley E Fawcett. Data science, predictive analytics, and big data:
a revolution that will transform supply chain design and management, 2013.

160


https://towardsdatascience.com/what-is-bayes-rule-bb6598d8a2fd
https://towardsdatascience.com/what-is-bayes-rule-bb6598d8a2fd

[97]

Andrew Welfle, Paul Gilbert, and Patricia Thornley. Increasing biomass resource availability
through supply chain analysis. Biomass and Bioenergy, 70:249-266, 2014.

A.S. White and M. Censlive. An alternative state-space representation for APVIOBPCS
inventory systems. Journal of Manufacturing Technology Management, 2013.

Joakim Wikner. Continuous-time dynamic modelling of variable lead times. International
Journal of Production Research, 41(12):2787-2798, 2003.

Joakim Wikner, Mohamed M. Naim, Virginia L.M. Spiegler, and Junyi Lin. IOBPCS based
models and decoupling thinking. International Journal of Production Economics, 194:153—
166, 2017.

Joakim Wikner and Martin Rudberg. Integrating production and engineering perspectives
on the customer order decoupling point. International Journal of Operations € Production
Management, 2005.

Liudong Xing and Suprasad V. Amari. Fault tree analysis. In Handbook of Performability
Engineering, pages 595-620. Springer, 2008.

Sen Yan and Xiaoyu Ji. Supply chain network design under the risk of uncertain disruptions.
International Journal of Production Research, 58(6):1724-1740, 2020.

Lei Yang, Gangshu Cai, and Jian Chen. Push, pull, and supply chain risk-averse attitude.
Production and Operations Management, 27(8):1534-1552, 2018.

Xin-She Yang. Introduction to algorithms for data mining and machine learning. Academic
Press, 2019.

Milan Zdravkovié, Hervé Panetto, Miroslav Trajanovié, and Alexis Aubry. An approach
for formalising the supply chain operations. Enterprise Information Systems, 5(4):401-421,
2011.

H.J. Zimmermann. Fuzzy Set Theory. Wiley Interdisciplinary Reviews: Computational
Statistics, 2(3):317-332, 2010.

161



	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	2.1. Configuration of APVIOBPCS policies to simulated typical and bullwhip impacted processes.
	3.1. Series supply chain parameters chosen for healthy and bullwhip impacted inventory positions.
	3.2. MTS and MTO parameters chosen for nonlinear LVHV system to generate healthy and bullwhip data.
	5.1. General list of the set of variables and their values that are used to construct a Bayesian network.
	5.2. List of goals that supply chain management attempts to satisfy.
	5.3. List of mitigation options that supply chain management can employ to positively impact the supply chain.
	5.4. Conditional probability table (CPT) for the likelihood of risks occurring conditioned on mitigation options.
	5.5. If-statements coded in the equation nodes to propagate the impact of risk events onto the lead-time for Supplier 1 and Supplier 2.
	5.6. Updated Bayesian network results for scenarios when evaluating the risk associated with on-time delivery.
	5.7. Suppliers and their unreliability to provide the goods and/or services for the main components of a pressurized water reactor.
	A1. Suppliers and their unreliability to provide a thrust bearing.
	A2. Difference equations for Make-to-Order/Make-to-Stock hybrid supply chain.

	List of Figures
	2.1. Simple multi-stage block diagram for a supply chain with n stages.
	2.2. A block diagram for manufacturing processes.
	2.3. The bullwhip effect and its impact on the supply chain as shown by lee1997bullwhip.
	2.4. Typical inventory position behavior when the inventory-replenishment policy is appropriately set.
	2.5. The bullwhip effect observed as amplified inventory positions.
	2.6. The block diagram for a generic IOBPCS and nomenclature.
	2.7. Typical behavior for APVIOBPCS showing a stable output of inventory and work-in-progress.
	2.8. Bullwhip impacted behavior for APVIOBPCS showing an unstable output of inventory and work-in-progress.
	3.1. Supply chain strategies indicated by push or pull type demands.
	3.2. Different supply chain structures based on the location of the CODP.
	3.3. Simple multi-stage causal diagram for a three-tier supply chain.
	3.4. Synthetic Data for a Healthy Inventory Position in Response to Customer Demand.
	3.5. Synthetic Data for a Bullwhip Impacted Inventory Position in Response to Customer Demand.
	3.6. Make-to-Stock Diagram.
	3.7. Make-to-Order Customer Driven System.
	3.8. Integrated MTS and MTO system with limited demand transparency logic.
	3.9. Integrated MTS and MTO system with full demand transparency logic.
	3.10. Synthetic data for a healthy LVHV system in response to customer demand.
	3.11. Synthetic Data for a Bullwhip impacted LVHV system in response to customer demand.
	4.1. Kalman filter results on healthy configuration of the supply chain for estimation of upstream supplier inventory position.
	4.2. Kalman filter results on a bullwhip configuration of the supply chain for estimation of upstream supplier inventory position.
	4.3. Histogram of states generated by propagating particles through the system for several time steps of the MTO/MTS hybrid model.
	4.4. Probability densities of states generated by propagating particles through the system for several time steps of the MTO/MTS hybrid model.
	4.5. Estimated states from the particle filter applied to the healthy configuration of the MTO/MTS hybrid model.
	4.6. Estimated states from the particle filter applied to the healthy configuration of the MTO/MTS hybrid model.
	5.1. Simple Bayesian network.
	5.2. A general supply chain network.
	5.3. An example of a supply chain goals, risks, and mitigation strategies as a directed acyclical graph.
	5.4. Probabilistic elicitation scale.
	5.5. High level depiction of the ship-to-stock Bayesian network.
	5.6. Process of integrating the synthetic data, Kalman filter, and Bayesian network model.
	5.7. Bayesian network constructed for the three-tier inventory supply chain that was trained on the two sets of synthetic data.
	5.8. Updated Bayesian network constructed for the three-tier inventory supply chain that was trained on the two sets of synthetic data.
	5.9. The TNorm function implemented in GeNIe for a lead-time distribution.
	5.10. Updated Primary Criteria nodes for Scenario 1.
	(a). a
	(b). b
	5.11. Updated Primary Criteria nodes for Scenario 2.
	(a). a
	(b). b
	5.12. Updated Primary Criteria nodes for Scenario 2.
	(a). a
	(b). b
	5.13. The main components in the bill of materials for a Pressurized Water Reactor.
	5.14. Bill of materials for a thrust bearing that is used in the construction of a PWR steam turbine.
	5.15. A simple fault-tree where the top event is dependent on an OR-gate of Event A or Event B.
	5.16. Fault-tree to Bayesian network mapping for a top event, C, that is dependent on events A and B.
	(a). a
	(b). b
	5.17. Updated Pressurized Water Reactor node from mapped Bayesian network.
	5.18. Updated Thrust Bearing Criteria node from mapped Bayesian network.
	5.19. Thrust bearing criteria when an improve supplier mitigation strategy is deployed.
	(a). a
	(b). b
	5.20. Thrust bearing criteria when replacing an existing supplier mitigation strategy is deployed.
	(a). a
	(b). b
	5.21. Process of integrating the synthetic data, particle filter, and Bayesian network model.
	5.22. Bayesian network constructed for the MTS/MTO hybrid supply chain that was trained on the two sets of synthetic data.
	5.23. Updated Bayesian network constructed for the MTS/MTO hybrid supply chain that was trained on the two sets of synthetic data.
	5.24. Bayesian network constructed for the MTS/MTO hybrid supply chain that was trained on the posterior distributions generated from a particle filter.
	5.25. Final Bayesian Network supply chain model depicting the bill of materials for a Pressurized Water Reactor.
	5.26. Final Bayesian Network submodel of the upstream supply chain depicting the bill of materials for a thrust bearing.
	5.27. Bayesian network portion for leveling links subcomponent.
	5.28. Adding an improved supplier mitigation strategy and its impact on the thrust bearing criteria.
	(a). a
	(b). b
	5.29. Thrust bearing criteria when with no mitigation strategies deployed.
	(a). a
	(b). b
	5.30. Thrust bearing criteria when supplier 1-31 is added to the supplier portfolio.
	(a). a
	(b). b
	5.31. Thrust bearing criteria when supplier 1-32 is added to the supplier portfolio.
	(a). a
	(b). b
	5.32. Thrust bearing criteria when a new supplier mitigation strategy is deployed that has historical seasonal data on productivity.
	(a). a
	(b). b
	(c). c
	(d). d
	5.33. Thrust bearing criteria when a new supplier is deployed as a reasoning strategy to estimate resources of upstream supplier.
	(a). a
	(b). b
	(c). c
	(d). d
	(e). e
	5.34. Thrust bearing criteria unreliability dependent on mitigation strategies and their deployment cost.
	6.1. Summary of thrust bearing criteria unreliability that is dependent on mitigation strategies and their deployment cost.
	A1. Bayesian network depicting a ship-to-stock component with no mitigation decisions selected.
	A2. Scenario 1: Updated Bayesian network for the ship-to-stock supply chain with no mitigation options selected.
	A3. Scenario 2: Updated Bayesian network for the ship-to-stock supply chain with Quality Mitigation 1 selected.
	A4. Scenario 3: Updated Bayesian network for the ship-to-stock supply chain with all mitigation options selected.
	A5. Fault-tree for a pressurized water reactor using its bill of materials.
	A6. Fault-tree for a pressurized water reactor using its bill of materials.
	A7. Updated Bayesian network that was mapped from a pressurized water reactor fault-tree.
	A8. Updated Bayesian network that was mapped from a thrust bearing fault-tree.
	A9. Bayesian network that was mapped from a thrust bearing fault-tree bill of materials with mitigation strategies that were used in sherwin2016proactive.
	A10. Bayesian network with deployed mitigation strategy of adding a new improved supplier 1-30 that has enabled inventory-production data sharing.
	A11. Bayesian network with no deployed mitigation strategies.
	A12. Bayesian network with deployed mitigation strategy of adding supplier 1-31 that has enabled inventory-production data sharing.
	A13. Bayesian network with deployed mitigation strategy of adding supplier 1-32 that has enabled inventory-production data sharing.
	A14. Bayesian network with deployed mitigation strategy of adding supplier 1-33 that has enabled seasonal data sharing with summer seasonal evidence.
	A15. Bayesian network with deployed mitigation strategy of adding supplier 1-33 that has enabled seasonal data sharing with winter seasonal evidence.

	1.0 Introduction
	1.1 Goals and Outcomes
	1.2 State of the Art and Limits of Current Practice
	1.2.1 Supply Chain Modelling and Disrupting Events
	1.2.2 Supplier Selection
	1.2.3 Resource Availability

	1.3 Research Approach
	1.3.1 Supply Chain Network Development through Supply Chain Ontology and Data Mining
	1.3.2 Dynamic Supply Chain Model Development and State Estimation
	1.3.3 Bayesian Network Model Development

	1.4 Impact to the Nuclear Power Generating Industry

	2.0 Supply Chain Modeling and System Dynamics
	2.1 Block Diagrams for Supply Chain Dynamics
	2.2 Control Theory and State-Space Representation
	2.3 Multi-Stage Supply Chain State-Space Representation
	2.3.1 Bullwhip Effect Modeled as a Step Response for Multi-Stage Supply Chain

	2.4 Inventory Order-Based Production Control Systems
	2.4.1 IOBPCS Dynamics
	2.4.2 Bullwhip Effect Modeled as a Step Response for Standard IOBPCS Model

	2.5 Comparing Supply Chain Models

	3.0 Supply Chain Strategies using Simple Inventory Models and the IOBPCS Model Family
	3.1 Demand Strategies and Customer Decoupling Point Thinking
	3.2 Scenario 1: Inventory Position Model with Process and Measurement Noise
	3.2.1 Synthetic Data for Typical and Bullwhip Inventory Position

	3.3 Scenario 2: Low-Volume, High-Value Products
	3.3.1 Make-to-Stock Supply Chain Model
	3.3.2 Make-to-Order Supply Chain Model
	3.3.3 Modeling the MTS/MTO Hybrid System for LVHV Products
	3.3.4 State-space Representation of the Nonlinear LVHV System
	3.3.5 Synthetic Data for Typical and Bullwhip MTO/MTS Hybrid Models


	4.0 State Estimation and Resource Availability of Supply Chain Control System
	4.1 Bayesian Signal Processing and State-Space Models for Bayesian Processing
	4.2 Linear Inventory Position Model with Kalman Filter
	4.3 Non-linear Capacity Constraint Back-Order Model with Particle Filter

	5.0 Supply Chain Uncertainties and Bayesian Networks
	5.1 Data-driven Decision Making for Supply Chain Management — A Bayesian Network Approach
	5.1.1 Ontological Approach to Supply Chain Network Development with Risks
	5.1.2 Directed Acyclical Graph Generation from Supply Chain Network
	5.1.3 Conditional Probability Tables for Bayesian Network Construction
	5.1.4 Update Beliefs and Reasoning with Bayesian Networks

	5.2 Bayesian Network Construction for Ship-to-Stock Supply Chains
	5.2.1 Bayesian Network Learning from Synthetic Inventory Data
	5.2.2 Building the Bayesian Network to Aid Supply Chain Managers in the Supplier Selection Process
	5.2.3 Updating Beliefs and Reasoning with the Ship-to-Stock Supplier Selection Bayesian Network

	5.3 Bayesian Network Construction for Low-Volume, High-Value Supply Chains
	5.3.1 Low-Volume, High-Value Supply Chain Example —- Nuclear Power Plant
	5.3.2 Nuclear Power Plant Supply Chain through Bill of Materials — Fault-tree Analysis Approach
	5.3.3 Mapping and Verifying Supply Chain Fault-Trees to Bayesian Networks

	5.4 Particle Filter Inventory Data Integration for Estimated Resource Availability
	5.5 Bayesian Network to Aid Supply Chain Managers in the Supplier Selection Process
	5.5.1 Mitigation Strategies for Upstream Leveling Links Suppliers


	6.0 Summary and Conclusions
	6.1 Summary
	6.2 Conclusions
	6.3 Research Contributions
	6.4 Future Research
	6.4.1 Real Supply Chain Data Set
	6.4.2 Modified Models for Synthetic Data Generation
	6.4.3 Artificial Intelligence for Decision Making


	Appendix A. Supply Chain Bayesian Networks, Fault-Trees, Supply Chain Data, and Difference Equations
	Appendix B. BayesFusion
	 B.1 GeNIe
	 B.2 SMILE

	Bibliography

