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Evaluating and Improving the Viability of
Machine Learning to Solve Chemical Problems

Dakota Lee Folmsbee, PhD

University of Pittsburgh, 2022

While improvements in computer processing have allowed for increasingly faster quantum

mechanical (QM) calculations, the need for alternative techniques to accelerate computer-

accelerated material design continues to grow. Screening methods have tackled this through

methods that search chemical space more efficiently but often use faster, albeit less accurate

methods for evaluation due to the large number of calculations conducted. Machine learning

(ML) has shown promise as a potential surrogate for time-consuming quantum mechanical

calculations, such as density functional and first-principles method, that would lend these

screening methods a fast and accurate approach to evaluation.

This work sets out to determine the viability of ML methods through multiple tests. The

ranking of thermally accessible conformations was conducted to establish ML’s capacity to

differentiate small energy differences compared to other established methods. The performance

of ML methods was found to be equivalent to that of semi-empirical methods in both accuracy

and evaluation time, demonstrating promise for future improvements of ML models. Next,

ML’s understanding of chemical physics was tested by analyzing the short and long-range

interactions that occur with bond compressing and stretching as well as the effect of steric

hindrance of dihedral angles. The work demonstrated the extent the training set has on the
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model as short and long-range interactions not present in the set became apparent in the

testing of the models. Additionally, the inclusion of torsion sampling in the ANI-2 training

exemplifies why more robust training sets are needed for more accurate ML methods.

Current work on ML indicates a strong need for additional diversity in training data. Initial

work done on comparing experimental crystallographic geometry and gas-phase computed

conformer torsional preferences examine the possible use of a quantum-based ETKDG, QTDG,

for future conformer training set generation for expanding existing training sets. Future work

on expanding data sets is crucial for ML performance as ML methods are very reliant on

the scope of the training set. Incomplete training sets that do not appropriately represent

chemical space diminish the applicability of ML to solve chemical problems.
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1.0 Introduction

Interest in computer-accelerated material design continues to grow as recent improvements

in computer processing have allowed for increasingly faster quantum mechanical (QM)

calculations. Although major advancements in computational power have been made, accurate

methods such as Density Functional Theory (DFT) and Coupled Cluster (CC) can take several

hours to days for calculations, often making brute force methods prohibitively expensive.

This has highlighted the need for alternative techniques to accelerate the search through

chemical space.

Searching chemical space for molecules with optimal properties is a considerable challenge.

Chemical space is enormous, estimated to contain approximately 1060 possible drug-like

molecules1. This vast size makes exhaustive search methods extremely time-consuming even

when using faster, albeit less accurate methods like Force Fields (FF) or semi-empirical

methods. The inefficiency of brute force searches has stimulated the exploration of screening

methods as an alternative, more efficient approach.

Screening methods aim to efficiently search chemical space by reducing the number of

time-consuming calculations required to find an optimal or near-optimal subset of candidates.

A common technique used in drug discovery is high-throughput virtual screening in which a

large database of known chemical space is explored for potential candidates2. This lowers the

overall computational cost required to find optimal candidates as time-consuming calculations

can be limited to a small set of candidates in the final evaluation step. High-throughput

virtual screening typically makes use of a previously constructed database for screening,

limiting the search area to a predefined subset of chemical space. Chemical space limitations

of a database can be overcome through the augmentation of the database using methods like

genetic algorithms (GA).
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1.1 Genetic Algorithms

The GA uses concepts from evolutionary biology (genotypes, fitness, and natural selection)

to optimize populations through generations for increasingly desirable features. In successive

generations, the “better” candidates are retained with mutation and crossover events occurring

to allow for the exchange and introduction of genes. Over time, top candidates survive

successive generations while less ideal candidates are eliminated. The process of generational

optimization allows for the exploitation of desirable chemical space as the GA will explore

promising areas while avoiding known unfavorable areas. This results in an evolutionary

method that learns important characteristics to pass down to successive generations producing

promising candidates in a fraction of the time of exhaustive search methods3.

While the GA provides a significant speedup when compared to brute force methods, the

speed and accuracy of the fitness evaluation step during the selection of candidates after each

generation can often determine the speed of chemical space exploration. Time-consuming

conventional quantum mechanical methods such as DFT and CC can provide accurate results

for each generation but slow down the screening process. Semi-empirical and FF methods

can provide a significant speedup, but at the cost of accuracy. Fast evaluation methods such

as machine learning (ML) can aid in the acceleration of the discovery process by providing a

rapid, yet accurate evaluation method.

1.2 Machine Learning

ML is increasingly being used to tackle today’s problems in numerous different fields from

financial trading to autonomous driving. The power of ML methods stems from a model’s

ability to learn from patterns within the data without explicit instruction. This makes

2



ML ideal for analysis and predictions from large amounts of data computationally more

efficient. The use of ML in chemistry has been proposed as a surrogate for time-consuming

quantum mechanical calculations with the idea that once trained ML models will provide rapid

predictions with the potential of density functional or first-principles methods accuracy4–14.

For the application of ML in chemistry, molecules need to be translated from the standard

depictions used in the classroom and laboratory into a representation that an ML model

can interpret and from which patterns can be inferred. Representations of molecules need to

capture the underlying physics such that models can infer patterns and provide physics-based

predictions.

Early representations looked to accomplish this through the use of existing cheminformatics

representations like SMILES15–17 (Simplified Molecular Input Line Entry System) and InChi18.

Variational Auto Encoders (VAE) have been used to map SMILES strings to a latent space

that can be searched for optimal candidates19,20. When the optimal candidates are found,

they can be decoded back into SMILES format. The decoding back into SMILES can cause

significant issues with methods like these as there is no guarantee that the decoded SMILES

will be syntactically valid or properly represent a molecular structure. This has spurred the

creation of DeepSmiles21, which aims to avoid this issue of invalid decoded molecules by

changing the syntax rules to avoid common errors which can occur when modifying SMILES,

allowing ML methods to more consistently generate syntactically valid SMILES strings.

Other representations consider the inclusion of local and global connectivity information

with representations like coulomb matrix22 (CM), which uses molecular information in the

Hamiltonian, such as coordinates and nuclear charges, for the modeling of atomization

energies. The CM representation is seen below:

MIJ =

⎧⎪⎪⎨⎪⎪⎩
0.5Z2.4

I for I = J,

ZIZJ

|RI−RJ |
for I ̸= J.

(1.1)

3



consists of a square matrix (MIJ) where the off-diagonal elements (ZI , ZJ , RIJ , and RJ)

are the Coulomb nuclear repulsion between the atom pairs. A further modification of the

CM representation is the Bag of Bonds23 (BoB) representation. The BoB representation

reorganizes the CM representation so that the atoms and pair-wise interactions are sorted

into bags (e.g., C, C-C, and C-N). This is done in a bag-of-words text mining descriptor style

and each bag is filled with ZIZJ/|RI −RJ | to represent the connectivity of the molecule.

Further adaptation was done to make the Bond Angle-ML24 (BAML) representation. This

many-body expansion of BoB sought to include further connectivity information through the

inclusion of supplementary bags containing angles and torsions.

Another approach to representations is the use of graph-based representations derived from

cheminformatics. These are built upon the 2D representations of the molecular graph in which

the atoms are represented by vertices and bonds by edges in the graph. Extended-connectivity

fingerprints25 (ECFP) are a molecular graph model that expands out along the bonds from

each heavy atom for 2-3 steps to observe the local connectivity of each heavy atom. The

extensions for each heavy atom are stored as a fragment that is hashed as a fingerprint. After

iterating over the molecule, these fragment fingerprints are combined to describe the molecule.

Kearnes et al.26 proposed expanding upon the base molecular graph by including atom and

pairwise properties in the representation. This additional information provides distances as

well as atom and bond type to make a simple molecular graph convolution model. This graph

convolution model can be further expanded to include more atom features such as formal or

partial charges, hybridization, as well as additional pair features such as whether the atom

pair is in the same ring.

An additional representation becoming increasingly common is the atom-centered sym-

metry function4 (ACSF). The ACSF representation takes into account the connectivity

information through a description of local atomic environments with radial functions seen in

Eqn. 1.2 and angular symmetry functions seen in Eqn. 1.3. In recent years modifications

of ACSFs for deep neural networks (DNN) have been increasingly more common with the
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adoption of the representation in the ANI family of DNNs6–8,27. ACSFs have also been used

for non-DNNs with FCHL28,29 showing promising results for ML methods like kernel ridge

regression.

G1
i =

all∑︂
j ̸=i

e−η(Rij−Rs)2fc(Rij) (1.2)

G2
i =

all∑︂
j,k ̸=i

(1 + λcosθijk)ζ × e−η(R2
ij+R2

ik+R2
jk)fc(Rij)fc(Rik)fc(Rjk) (1.3)

OrbNet11,30 is another graph-based approach, which uses nodes and edges to relay the

atomic orbital information of the molecular system instead of representing the molecule

atomwise. The nodes correspond to diagonal symmetry-adapted atomic orbitals (SAAOs)

while edges correspond to off-diagonal SAAOs. OrbNet differs from the representations and

models previously discussed as it uses the idea of delta-learning.

Methods like OrbNet utilize delta-learning in the form of a ∆-ML to improve the perfor-

mance of lower-cost methods. Conventionally, ∆-ML models utilize the ML component to

augment a rapid but less accurate method, often semi-empirical, such that the performance

becomes on par with more accurate time-consuming methods. This is done through the use of

the faster calculation method performing a baseline calculation. This baseline calculation is

passed on to the ML model which has been trained on the more accurate method’s calculation.

Instead of learning directly from the molecule like previous methods, the ML learns the

difference between the two models and acts as a correction. Once trained, the ∆-ML model

ideally provides a more accurate prediction at the cost of only the inaccurate method and

the ML model which are faster than the time-consuming method30.

An increasingly important aspect of ML models is the training sets used. Various

training sets have been used to train models for chemistry, many of which are subsets

and augmentations of the GDB-1731 data set, a large data set of organic small molecules

constructed through enumeration. Two commonly used subsets are the QM722,32 and QM933
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data sets consisting of optimized molecules containing H, C, N, O, and F with up to 7 or 9

heavy atoms respectively. These are relatively small training sets, with QM9 being the larger

at 134k molecules, and have been used to demonstrate early performance for various property

predictions5,34. Another popular batch of data sets based on the GDB-17 set are the ANI-135

and ANI-28 data sets. These sets contain both equilibrium and non-equilibrium structures

generated from normal-mode sampling for molecules up to eight heavy atoms containing H,

C, N, and O. The ANI-2 set augments the previous information by adding the elements of F,

Cl, and S as well as additional torsion sampling.

The increased interest in molecular ML as a surrogate for time-consuming conventional

quantum mechanical methods has spurred an evaluation of the viability of the various

ML methods. Early work centered around testing of ML representations and methods

for calculating different thermochemical properties22–24 with benchmark studies failing to

find a one size fits all solution5,34, but showing early promise of representations based on

molecular graph information. More recent deep neural networks (DNN) have sought to

provide methods capable of evaluating potential energy surfaces for dynamics and performing

geometry optimizations6–8,27,36. While these have been promising studies showing adequate

performance for non-equilibrium geometries close to the equilibrium geometry, more work

needs to be done to determine their effectiveness at handling short and long-range interactions.

1.3 Dissertation Overview

The viability of ML stems not just from the ability of the method to perform adequately for

optimized geometries but to also appropriately handle thermally accessible conformations.

ML methods need to properly perform well for both short and long-range interactions before

they can be considered suitable replacements for conventional methods. This work looks to

examine the extent to which ML can be considered a surrogate for time-consuming quantum
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calculations and how to make improvements such that ML can aid in the materials discovery

process.

When testing the viability of ML, evaluating the method’s ability to accurately distinguish

between thermally accessible conformations is an important test. Most molecules have

multiple geometrically distinct conformers and ML methods need to be able to provide energy

predictions that appropriately differentiate between them. This work looks to determine

what ML methods if any, can sufficiently differentiate among conformations and how they

compare to conventional methods.

With the knowledge of the ML method’s physical understanding of conformational

geometries, we set out to learn the extent of physics common ML models comprehend. An

evaluation of potential energy curves was performed to determine if ML methods could

predict whether a bond was at equilibrium, as well as whether the ML methods understand

both short and long-range interactions that occur with bond compressing and stretching. In

addition to the physics of bond interactions, further analysis was done to determine whether

ML methods could find preferred dihedral angles and the effect of steric hindrance.

After analyzing the pitfalls of current state-of-the-art ML methods, an important next

step is analyzing the shortcomings of training data and determining how to make adequate

improvements. Increasing training set diversity is a key issue in the quest to create ML methods

that can act as a surrogate for conventional methods. The most commonly used training

sets lack the diversity of atom species, making applications like protein binding and DNA

sequencing impossible for ML methods trained on just these sets. Modifications to training

sets can also be made to include more conformations and non-equilibrium geometries to

improve the performance of ML methods in differentiating between conformational geometries.

While training set generation can be performed with conformational search methods like

experimental-torsion distance geometry with basic knowledge37 (ETKDG), it is important to

consider whether a quantum-based alternative may be the desired direction for ML methods

that will be expected to predict properties at the level of accuracy of quantum mechanical
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calculations.

Our group has demonstrated the proficiency of GAs in chemistry for screening chemical

space for inverse material design3. These GAs have incorporated faster, but less accurate semi-

empirical evaluation methods for the fitness function in place of more accurate methods in

an attempt to efficiently traverse chemical space. The addition of ML methods for evaluation

looks promising as a way to improve the accuracy of the evaluation in the fitness function

while maintaining a relatively short evaluation time. The combination of methods like GA and

ML aims to provide an efficient search of chemical space with the accuracy of time-consuming

quantum calculations, but more work needs to examine the full capabilities of ML in the field

of chemistry.
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2.0 Assessing Conformer Energies using Electronic

Structure and Machine Learning Methods

This chapter is adapted from:

Folmsbee, D., Hutchison, G. Assessing conformer energies using electronic struc-

ture and machine learning methods. ChemRxiv:13151069.v1 2020.

DOI: 10.26434/chemrxiv.11920914.v2

which is also published as:

Folmsbee, D., Hutchison, G. Assessing conformer energies using electronic struc-

ture and machine learning methods. Int. J. Quantum Chem. 2020, 2007486.

DOI: 10.1002/qua.26381.

It is a collaborative effort in which G. H. and I carried out calculations and data analysis,

generated figures, and wrote the manuscript; G. H. conceived and directed the project.

2.1 Summary

We have performed a large-scale evaluation of current computational methods, including

conventional small-molecule force fields, semiempirical, density functional, ab initio electronic

structure methods, and current machine learning (ML) techniques to evaluate relative single-

point energies. Using up to 10 local minima geometries across ~700 molecules, each optimized

by B3LYP-D3BJ with single-point DLPNO-CCSD(T) triple-zeta energies, we consider over

6,500 single points to compare the correlation between different methods for both relative

energies and ordered rankings of minima. We find promise from current ML methods and
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recommend methods at each tier of the accuracy-time tradeoff, particularly the recent GFN2

semiempirical method, the B97-3c density functional approximation, and RI-MP2 for accurate

conformer energies. The ANI family of ML methods shows promise, particularly the ANI-1ccx

variant trained in part on coupled-cluster energies. Multiple methods suggest continued

improvements should be expected in both performance and accuracy.

2.2 Introduction

For almost all molecules, multiple geometrically-distinct conformers exist. Understanding

and predicting thermodynamically accessible ensembles of molecular conformers is a key task

underlying much of computational chemistry.38–40 In principle, for each rotatable bond, the

number of possible minima increases exponentially. Consequently, most conformer sampling

methods41 use classical small-molecule force fields to evaluate energies because of their fast

performance, despite potentially poor correlation with quantum mechanical methods.42

Multiple efforts have evaluated the success of wavefunction and density functional first-

principles methods to compare the energetics of different conformers.43–49 While experimental

crystal structures and bioactive docked conformers are not always the lowest energy conformer,

recent efforts have demonstrated only small energy differences when using quantum chemical

methods instead of force fields.50,51

Even for simple molecules such as 1,1’-biphenyl, use of large basis set coupled cluster

methods are needed to accurately place the dihedral angle and barrier.52 Other works have

documented the need for accurate treatment of non-covalent interactions to model conformers

in π-conjugated oligomers.53

One common assumption is the presumed balance between increasing desired thermochem-

ical accuracy and increased computational time. That is, more computationally intensive

methods produce more accurate geometries and thermochemical properties. For example,
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the rise of composite ab initio thermochemical recipes such as G3,54 G4,55 and W156,57 to

W458 seeks to provide highly accurate thermochemical predictions by separate estimates

of basis set extrapolation and electron correlation. Still, such methods are largely limited

to small molecules due to the high computational cost.59 As mentioned above, efforts for

conformer sampling have often focused on classical force fields or multi-level approaches using

semiempirical methods.41,60,61

In our previous paper,42 we considered both the single-point energies and geometry

optimizations of a range of common computational chemistry methods, including classical

force fields, semiempirical quantum chemistry, and dispersion-corrected density functional

methods. In general, due to the large differences in the potential energy surfaces predicted

by force fields and quantum methods, we found poor correlation between both single point

energies at the same geometry and optimized geometries using different methods.

In this work, in order to expand our range of computational methods, we only consider the

relative single point energies from the same set of density-functional optimized geometries,

comparing multiple current methods to a high-quality coupled cluster baseline. We consider

the mean absolute relative errors in energies (MARE), as well as the correlation of relative

energies, reflected in the R2 coefficient of determination, and the ranking of single-point

energies reflected in the Spearman ρ correlation. The use of correlation coefficients and the

Spearman correlation intend to consider whether methods exhibit systematic errors that may

not affect linear correlation or ranking of energetic stabilities.

While we find increased accuracy typically still requires exponential increases in compu-

tational time, several methods stand out as widely useful methods for ranking conformer

energies. Future improvements in standard computational methods and machine learning

surrogates suggest that both increased accuracy and efficiency are expected from further

method development.
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2.3 Computational Methods

Calculations were performed using Open Babel version 3.062 for all force field calculations

(MMFF9463–67 and UFF68,69), OpenMOPAC for PM7,70 xtb version 6.271 for GFN072 GFN173

and GFN2 calculations,74 and Orca 4.0.175 for all density functional and ab initio calculations,

unless otherwise indicated. For density functional methods, the D3(BJ)76–79 dispersion

correction scheme was used as indicated, except for ωB97X-D380 which uses a similar approach.

For ab initio methods, Orca 4.0.1 was used for MP281 and DLPNO-CCSD(T)82,83 with

“TightPNO” using the cc-pVTZ basis set.84,85 Energies are read from all output files using

the cclib86 version 1.6.2, and pybel version 3.0.87

Machine learning methods included “bag-of-features” representations and ANI-1x7, ANI-

1ccx? , and ANI-2x8 models. The Bag-of-Features representations chosen were Bag of

Bonds23(BOB), Bond Angle Torsion24(BAT), and Bond Angle Torsion Typed (BATTY).

BOB represents atoms and pair-wise interactions into sorted bags with BAT being a many-

body expansion to include angles and torsions. Both of these representations were im-

plemented using chemreps.88 The BATTY representation takes inspiration from BAT in

order to include minimal atom typing in all bond, angle, and torsion bags while excluding

nonbonding interaction and nuclear charge bags in the final representation, as discussed

below. scikit-learn89 was used for kernel ridge regression of Bag-of-Features representations.

For this work, all timings are single-core CPU times using a 2.60 GHz Intel Skylake CPU

(Intel Xeon Gold 6126) with 192GB RAM per node, through the University Pittsburgh Center

for Research Computing.

Python scripts and Jupyter notebooks were used to compile all data into pandas90 data

frames, using numpy91 and scipy92 functions for analysis. 3DMol.js was used for interactive

molecular visualization of conformers.93 Plotly was used for interactive plots.94

All scripts and data, including molecular geometries, are provided through GitHub

(https://github.com/ghutchis/conformer-benchmark) with the intent that additional
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computational methods can be added to these benchmark comparisons.

2.4 Test Set Selection

As in our previous work,42 a dataset consisting of experimental crystal structures of 700

small molecules capable of multiple conformer geometries was provided to us by Ebejer95

and were derived from the work of Hawkins et al.60 along with ligands from the Astex

Diverse Set.96 These compounds have been repeatedly used to evaluate the quality of

conformer generation.60,95 Approximately half (320 molecules) consist solely of carbon,

hydrogen, nitrogen, and oxygen (CHON) atoms, while the remainder are more complex

drug-like compounds and ligands from the Protein Data Bank (PDB).60 A list of Simplified

Molecular Input Line Entry Specification (SMILES)97 for all 700 molecules can be found in

the Supporting Information.

For ab initio calculations using the cc-pVTZ basis sets, relativistic effective core potentials

were not available for molecules containing iodine. Thus, for comparisons with DLPNO-

CCSD(T) and RI-MP2 methods, such species were omitted. Similarly, the ANI-1x and

ANI-1cxx methods only support molecules containing CHON atoms and evaluations were only

performed on the subset of molecules supported. The ANI-2x method supports additional

elements, but not bromine or iodine and thus evaluations were similarly only performed on

the supported subset for that method.

For bag of feature ML testing, the training set was five conformers of each molecule, with

the remaining conformers as test/validation. Any molecule with fewer than five conformers

had the conformers added to the training set and was omitted from the test set.
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2.5 Results

In this work, we focus on the evaluation of single point atomization energy calculations on a

subset of ~700 organic molecules. Conformers were initially created from a set of 250 diverse

poses with maximal heavy-atom root mean squared deviation (RMSD) using Open Babel,

and at most 10 poses were selected based on the lowest heat of formation calculated by PM7,

followed by full geometry optimization using B3LYP-D3BJ with the def2-SVP basis set.42

Using this set of DFT-optimized minima, in this work, single point atomization energies

were computed using the DLPNO-CCSD(T)82,83 method using the cc-pVTZ basis set.84,85

This approach has been found to be a highly accurate method for calculating thermochemical

properties and with a significantly lower computational cost for medium to large organic

molecules, compared to canonical CCSD(T) methods.82,98,99 Using only the set of molecules in

which all standard (i.e., not machine-learning based) methods completed leaves 6511 entries.

Of those, 9 molecules (out of 690) had 2 or fewer poses and were also removed, leaving 681

unique molecules and ~6500 entries for comparison.

To our knowledge, this is the most extensive computational validation set, both in terms

of the number of compounds, geometries, and computational methods for studying low energy

molecular conformers. We provide all data and analysis scripts as open data and open source

to allow future reuse via a GitHub repository.

As illustrated in Figure 2.1, each method is correlated with DLPNO-CCSD(T) / cc-pVTZ

energies for each molecule (e.g., astex_1hwi in Figure 2.1). Since each molecule has several

conformers, three metrics are compiled, the mean absolute relative energy (MARE) compared

to the DLPNO-CCSD(T) atomization energies, the Pearson R2 correlation, and the Spearman

correlation ρ. The MARE metric gives an absolute measure of the energetic errors, but since

different methods use different energy scales (e.g., heats of formation for PM7 and force

fields), the statistical correlations use linear regression (R2) and relative ordering (Spearman

ρ ) to remove sources of systematic energy differences. For each metric across each method,
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Figure 2.1: Example analysis of ωB97X-D3 and GFN2 methods, starting with (A) correlation

between ωB97X-D3 and DLPNO-CCSD(T) energies for a single molecule, (B) histogram of R2

correlations across all molecules, (C) correlation between GFN2 and DLPNO-CCSD(T) energies,

and (D) corresponding histogram of R2 correlations across all molecules.

the median value was compiled as illustrated in Figure 2.1, to represent the overall quality of

a given method.

Since the metrics are unlikely to reflect normal distributions (e.g., Figure 2.1 shows highly

non-Gaussian distributions), determining confidence intervals cannot be established from

analytical formulas. Consequently, we used bootstrap sampling to establish 95% confidence

values for the medians, as reported below. For ease of discussion, we have given the confidence

ranges in all tables and figures, but indicate ± errors using the average of the upper and

lower bounds. In general, the asymmetry between upper and lower bounds are smalll.

By considering a large number of diverse organic molecules with many poses per molecule,
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we seek to sample a wide variety of conformer energy preferences (e.g., intramolecular 

hydrogen and halogen bonding, π-π stacking, electrostatic interactions, etc.). While using 

optimized low-energy conformers may under-estimate the accuracy of methods for high-energy 

structures,44 we believe the current work is a challenging but useful comparison. In general, 

such high-energy geometries reflect steric repulsion more than the diverse types of interactions 

driving low-energy geometries.

Moreover, many computational predictions rely on Boltzmann-weighted averages of 

multiple thermally accessible conformers, including NMR prediction,38,39 reactions, and even 

understanding the effects of dipole moments on solvent v iscosity.100 Consequently, deriving 

accurate relative energies of molecular conformers is a crucial task, as discussed below.

2.5.1 Comparison of Single Points vs. DLPNO-CCSD(T)

For comparison, we considered a wide variety of currently available computational methods:

• Common classical organic force fields: MMFF94,63–67 UFF,68 GAFF101

• Semiempirical wave function: PM770

• Density functional tight binding: GFN0,72 GFN1,73 GFN274

• Low-cost density functional approximations: PBEh-3c,102 B97-3c103

• Dispersion-corrected density functionals: B3LYP,104–107 PBE108,109, ωB97X-D80

with dispersion correction (using def2-TZVP basis set110,111)

• Møller-Plesset RI-MP281 with the cc-pVTZ basis set84,85

In the case of B3LYP and PBE dispersion-corrected functionals, we also considered both

the commonly-used double-zeta def2-SVP and triple-zeta def2-TZVP basis sets to understand

the effects of basis set size. For B3LYP, PBE, and ωB97X, we also considered the accuracy

with and without dispersion correction.
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Table 2.1: Overall statistics across all molecules studied and all methods. Columns indicate

median mean absolute relative error (MARE in kcal/mol), median R2 correlation, median Spearman

correlation, and median single-core CPU time in seconds. MARE, R2, and Spearman correlation are

relative to the DLPNO-CCSD(T)/cc-pVTZ baseline. Ranges indicate 95% confidence intervals for

the median metrics established by bootstrap sampling.

Method MARE R2 Spearman ρ CPU Time
DLPNO-CCSD(T) 0 1 1 21901.38 276.95

RI-MP2 0.11 [0.11-0.13] 0.96 [0.96-0.97] 0.95 [0.95-0.96] 2118.83 42.26
ωB97X-D3 0.16 [0.15-0.17] 0.93 [0.91-0.94] 0.92 [0.9-0.93] 2524.83 35.67

B3LYP (TZ) 0.17 [0.15-0.19] 0.92 [0.91-0.93] 0.92 [0.9-0.93] 1672.79 20.67
B97-3c 0.2 [0.18-0.22] 0.9 [0.89-0.92] 0.9 [0.88-0.92] 137.45 2.16

PBE (TZ) 0.21 [0.19-0.23] 0.88 [0.87-0.9] 0.89 [0.88-0.9] 358.65 6.94
PBEh-3c 0.21 [0.18-0.23] 0.88 [0.86-0.9] 0.88 [0.87-0.9] 453.04 9.46

B3LYP (SVP) 0.23 [0.21-0.26] 0.87 [0.84-0.89] 0.88 [0.87-0.89] 330.94 4.35
PBE (SVP) 0.26 [0.24-0.3] 0.83 [0.81-0.86] 0.85 [0.84-0.88] 149.03 2.24
ANI-1ccx 0.44 [0.36-0.52] 0.64 [0.57-0.71] 0.71 [0.64-0.77] 1.45 0.0

GFN2 0.39 [0.33-0.43] 0.64 [0.59-0.68] 0.72 [0.68-0.75] 2.6 0.07
GFN1 0.35 [0.31-0.41] 0.62 [0.58-0.66] 0.7 [0.66-0.73] 2.66 0.05
ANI-2x 0.41 [0.36-0.48] 0.62 [0.56-0.69] 0.68 [0.65-0.72] 3.45 0.01
ANI-1x 0.45 [0.38-0.54] 0.59 [0.52-0.66] 0.65 [0.57-0.72] 1.46 0.0

BATTY/n 0.42 [0.38-0.48] 0.47 [0.41-0.54] 0.5 [0.4-0.6] 0.14 2.16e-05
GFN0 0.44 [0.39-0.49] 0.4 [0.35-0.48] 0.53 [0.46-0.56] 0.07 0.0
GAFF 1.64 [1.42-1.83] 0.35 [0.29-0.41] 0.48 [0.44-0.54] 0.01 5.73e-05

MMFF94 0.7 [0.58-0.85] 0.33 [0.29-0.38] 0.47 [0.43-0.52] 0.0 4.4e-05
BOB 1.92 [1.72-2.16] 0.32 [0.28-0.39] 0.1 [0.0-0.2] 0.14 3.92e-05
PM7 0.62 [0.56-0.71] 0.32 [0.27-0.36] 0.33 [0.27-0.41] 0.06 0.0
BAT 1.18 [1.03-1.3] 0.31 [0.28-0.38] 0.2 [0.1-0.3] 0.18 1.32e-05
UFF 5.03 [4.4-5.61] 0.29 [0.24-0.34] 0.32 [0.24-0.41] 0.0 8.61e-06

2.5.2 Basis Set Effects

For the frequently-used B3LYP-D3BJ and PBE-D3BJ density functional methods, we consid-

ered both the def2-SVP and def2-TZVP basis sets. In both cases, the triple zeta basis set

significantly improved correlation with the DLPNO-CCSD(T)/cc-pVTZ baseline, for example,

the median R2 scores improved from 0.868 ±0.064 to 0.920±0.025 for B3LYP-D3BJ and

from 0.835±0.025 to 0.885±0.018 for PBE-D3BJ. There were comparable improvements in

median Spearman rank correlation and reduced mean absolute relative errors, all statistically

significant (i.e. p-values far below 0.001). The increased basis sets also roughly doubled the

CPU time required.
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While the PBE method is still significantly faster than B3LYP, the newer B97-3c proves to

be faster than either with comparable accuracy (i.e., roughly intermediate to the TZ results for

B3LYP-D3BJ and PBE-D3BJ). Additionally, the time required for B3LYP-D3BJ/def2-TZVP

calculations is only slightly less than RI-MP2/cc-pVTZ results, which exhibit significantly

improved accuracy relative to DLPNO-CCSD(T)/cc-pVTZ (i.e., median R2 = 0.964±0.006

and median MARE of 0.115 ±0.011 kcal/mol for RI-MP2).

Thus increasing basis set size for these density functional methods, at least from double

zeta to triple zeta, does improve accuracy, albeit at a significant computational cost. In

general, the B97-3c method provides accuracy comparable to popular dispersion-corrected

DFT methods such as B3LYP-D3BJ with faster performance, and RI-MP2 provides greater

accuracy at a very similar speed.

2.5.3 Dispersion Corrections

Since the bonding is consistent across multiple conformers, the ranking of small energy

differences is known to be dominated by non-bonding interactions.112,113 Density functional

methods are known to incorrectly account for dispersion interactions, which has led to a

variety of empirical corrections.76–79,114–117 Comparing un-corrected PBE, B3LYP, and ωB97X

single-point energies to DLPNO-CCSD(T) illustrate a significant effect. The uncorrected

median R2 values drop by ~0.12, and the median Spearman correlations drop by ~0.08. For

example, the median R2 of B3LYP / TZ drops from 0.920 ±0.012 to 0.706±0.050 without

the D3BJ dispersion correction.

On the time-scale of a density functional calculation, these empirical dispersion corrections

require only a minuscule time, yet significantly improve the accuracy of the relative energies.

Thus, even though this work is concerned with intramolecular interactions in conformers,

dispersion-corrected density functional calculations should always be used. Continued efforts,

such as the improved D3 methods118 or the new D4 method114,115 will hopefully improve
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Table 2.2: Effect of dispersion correction for DFT methods. Values in brackets indicate 95%

confidence intervals from bootstrap sampling.

Method Median R2 Median Spearman ρ
Dispersion No Dispersion Dispersion No Dispersion

DLPNO-CCSD(T) 1 — 1 —
ωB97X 0.93 [0.91-0.94] 0.88 [0.86-0.9] 0.92 [0.9-0.93] 0.89 [0.87-0.9]

B3LYP (TZ) 0.92 [0.91-0.93] 0.71 [0.66-0.76] 0.92 [0.9-0.93] 0.78 [0.75-0.81]
PBE (TZ) 0.89 [0.87-0.9] 0.75 [0.71-0.79] 0.89 [0.88-0.9] 0.81 [0.77-0.83]

B3LYP (SVP) 0.87 [0.84-0.89] 0.73 [0.67-0.76] 0.88 [0.87-0.89] 0.78 [0.76-0.81]
PBE (SVP) 0.84 [0.81-0.86] 0.75 [0.7-0.79] 0.86 [0.84-0.88] 0.81 [0.77-0.83]

their accuracy further.

2.5.4 Comparison of Timing

As discussed above, a frequent concern for conformer screening is the relative computational

performance. In general, classical molecular force field methods have been preferred since they

allow the generation of hundreds of conformers per compound in seconds. While traditional

high-level ab initio methods are considered a “gold standard” for thermochemical energies,

the time required for a single point energy evaluation may be high. For this work, all timings

are single-core CPU times using a 2.60 GHz Intel Skylake CPU (Intel Xeon Gold 6126) with

192GB RAM per node.

As indicated in Figure 2.2, hybrid density functional methods such as B3LYP-D3BJ

require significant single-core computational time for single-point energies of medium-sized

organic molecules (median 26 ±0.3 minutes) compared to GGA methods such as PBE

or approximate density functional tight binding methods such as GFN1 / GFN2 (median

2.6±0.06 s yields ~600x speedup). Conventional density functional methods nevertheless

represent a meaningful mid-point relative to DLPNO-CCSD(T) method, which may be faster

than traditional coupled cluster methods but are still five to ten times slower than B3LYP

(i.e., hours per single point energy).

Consequently, an important consideration is also the typical trade-off in computational

chemistry between thermochemical accuracy and computational time. Since traditional
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Figure 2.2: Histograms of relative timings for key methods considered, normalized to B3LYP-D3BJ

single points on the same molecule, using ORCA 4.0.1. Median relative times and median wall clock

times for single-core runs are included for reference.

MP2 and coupled-cluster methods exhibit high computational complexity, much research

ignored them for medium to large organic molecules due to the time required. Particularly

in computational screening and conformer generation, fast molecular force fields such as

MMFF94 and UFF, as well as semiempirical quantum chemical methods such as AM1,119

PM3,120 PM6,121 and PM770 were considered “good enough” to generate structures for further

refinement with density functional and other methods. More recent methods, particularly
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the ANI machine learning methods and the GFN family of density functional tight binding

appear to significantly improve on accuracy with only modest increases in the time required.

Figure 2.3: Comparison of single-core computational time required for energy evaluation (in log

scale) to median R2 found when compared to DLPNO-CCSD(T) energies. Error bars indicate

95% confidence intervals of time and medain R2 from bootstrap sampling. Dashed line indicates

approximate “best current method” threshold defined from force fields through RI-MP2 methods.

We find that consistent with common assumptions, even recent methods roughly adhere

to the requirement of significant increases in computational (time) cost to gain increased

thermochemical accuracy, as illustrated in Figure 2.3 with R2. Similar trends are found for

MARE and Spearman ρ metrics. Since multiple studies have demonstrated the need for

accurate treatment of noncovalent interactions including intramolecular electrostatic and

dispersion effects for understanding conformer relative energies, it is not surprising that

this benchmark illustrates the significant accuracy advantage of modern dispersion-corrected

density functional and wavefunction methods.
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2.5.5 Use of Machine Learning Methods as Surrogates: ANI and Bag-of-Features

One possible solution to the trade-off between accuracy and computational cost would be the

growing use of machine learning (ML) methods in chemistry, particularly as a surrogate for

thermochemical parameters such as atomization energies.5,22,122 Typically, these ML methods

use deep neural networks (DNN) and have been trained to density functional calculations,

particularly hybrid B3LYP or ωB97X atomization energies123 6 although recent efforts have

included training on coupled-cluster quality data as well.?

In principle, since the evaluation of the DNN is fast, the time required for the prediction

of an ML method is dominated by the time to generate the input descriptors – still only

a small fraction of that required for a quantum calculation. Therefore, if an ML method

could reproduce density functional or coupled-cluster energies at semiempirical or force field

computational cost, it would dramatically change the conventional accuracy/time tradeoff.

While evaluation of DNN methods would be significantly faster on processing units (GPUs),

and may not be optimized for CPU evaluation, we note that many quantum chemistry methods

are also accelerated on GPUs. Thus we retain the single-core CPU timings in Table 2.1 and

Figure 2.3 but note that the actual speed of ML methods such as ANI would be faster when

evaluated on a modern GPU.

ANI methods Table 2.1 and Figure 2.3 show the ANI family ML methods, ANI-1x,

ANI-1ccx, and ANI-2x, performing similarly to GFN tight binding semiempirical methods in

both accuracy and speed. ANI-1cxx outperforms the ANI-1x model that does not contain

dispersion corrections while performing slightly better than the ANI-2 model. The inclusion

of dispersion correction for DFT methods is clearly beneficial as they improve upon their

non-dispersion corrected counterparts, as seen in Table 2.2.

In principal, it is possible to perform post hoc addition of a D3 dispersion correction

to both ANI-1x and ANI-2x. Table 2.3 shows potentially improved performance over their
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non-dispersion corrected counterparts, although the differences are not statistically significant.

Moreover, since the D3 dispersion correction for ωB97X-D3 cannot be calculated by standard

tools, applying such a post hoc correction is challenging. For our set, one could calculate

the dispersion correction from the ωB97X-D3 calculations performed on the same molecule,

but without such density functional calculations, applying dispersion correction would be

impossible.

While the newer D4 correction114,115 can be calculated using the DFTD4 program,124 we

find adding D4 corrections worsen the median R2 and Spearman metrics, although again the

differences are not statistically significant. The variance of applying D3 and D4 corrections

to the ANI models illustrates the challenge in current machine learning methods. Since they

inherently add some error on top of the underlying data used for training the model, use of

coupled-cluster or other highly accurate dispersion-corrected training is needed.

Table 2.3: Comparison of post hoc dispersion correction for ANI machine learning methods. Values

in brackets indicate 95% confidence intervals from bootstrap sampling.

Method Median R2 Median Spearman ρ
No Dispersion D3 D4 No Dispersion D3 D4

ANI-1ccx 0.64 [0.57-0.7] – – 0.71 [0.64-0.77] – –
ANI-1x 0.59 [0.52-0.66] 0.63 [0.57-0.71] 0.57 [0.48-0.67] 0.65 [0.57-0.72] 0.71 [0.65-0.75] 0.62 [0.56-0.71]
ANI-2x 0.62 [0.56-0.68] 0.66 [0.61-0.7] 0.6 [0.54-0.66] 0.69 [0.64-0.72] 0.71 [0.67-0.73] 0.66 [0.62-0.7]

Bag of Feature methods The performance of the bag-of-features models, while faster

than the ANI symmetry function models, were more comparable to the accuracy of force

field methods. The inclusion of additional information to the descriptor such as three and

four-body interactions and atom typing were beneficial to the bag-of-features models, the

accuracy pales in comparison to the ANI symmetry function models.

Standard bag-of-features have at minimum a bag of nuclear charges and a bag of two-body

interactions as seen in BOB and further bags are added that contain additional information

such as angles and torsions with BAT. This approach was taken for the BATTY representation

with the modification of using minimal atom typing (i.e., sp, sp2, sp3 hybridization) to sort

bags. Unlike other bag-of-features representations, the performance of BATTY was increased
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by removing the bags of nuclear charges and excluding the nonbonding interactions from the

two-body interactions bag to create a bag of simple bonds. Since relative conformer energies

are strongly dominated by non-bonded interactions, this finding is surprising, although

perhaps separating bonding and two-body non-bonded interactions facilitate ML training. A

recent example, BAND-NN, took the approach of separating the bonding and nonbonding

information similarly to classical force fields and finds an improvement in performance.125

ML commonly employs techniques to normalize the data, improving the model’s train-

ing.126,127 In this work, we used physically-motivated normalization techniques for the bag-of-

features representations. Four molecular properties, the number of atoms, bonds, electrons,

and the molecular mass, were chosen for normalizing the atomization energy. BATTY saw

improvements in performance when normalizing by the number of atoms (i.e., BATTY/n) and

the number of bonds (BATTY/b) across Spearman, R2, and MARE. The other bag-of-feature

representations experienced a slight improvement in R2 when normalizing by the number

of atoms but not an improvement in the MARE. Normalizing the atomization energy for

bag-of-features methods does provide minor improvements, but not enough to compete with

the ANI-1 and ANI-2 methods.

ML methods, despite training on density functional and coupled-cluster energies, are still

not as accurate as conventional quantum methods for predicting conformer energies. At

present, the ANI family is comparable to the semiempirical GFN methods for accuracy on

this task.
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Table 2.4: Effects of normalization descriptors on machine learning methods (e.g. BATTY/n refers

to BATTY with number of atom normalization). Numbers in brackets indicate 95% confidence

intervals for the median MARE, R2, and Spearman ρ metrics.

Method Normalization MARE R2 Spearman ρ
BOB — 1.92 [1.73-2.16] 0.32 [0.27-0.39] 0.1 [0.0-0.2]
BOB Atoms 1.94 [1.76-2.17] 0.36 [0.32-0.42] 0.1 [0.0-0.2]
BOB Mass 2.2 [1.93-2.41] 0.32 [0.27-0.37] 0.1 [-0.1-1.0]
BOB Electrons 2.06 [1.75-2.28] 0.32 [0.28-0.37] 0 [-0.1-1.0]
BOB Bonds 5.09 [4.46-5.78] 0.27 [0.24-0.32] 0 [-0.1-1.0]
BAT — 1.18 [1.05-1.3] 0.31 [0.28-0.37] 0.2 [0.1-0.3]
BAT Atoms 1.36 [1.19-1.49] 0.34 [0.28-0.4] 0.1 [0.1-0.3]
BAT Mass 1.4 [1.27-1.55] 0.31 [0.27-0.37] 0.2 [0.1-0.3]
BAT Electrons 1.28 [1.16-1.45] 0.32 [0.28-0.38] 0.15 [0.1-0.3]
BAT Bonds 1.62 [1.45-1.81] 0.35 [0.3-0.4] 0.1 [0.0-0.2]

BATTY — 0.51 [0.47-0.6] 0.4 [0.34-0.44] 0.4 [0.3-0.5]
BATTY Atoms 0.42 [0.38-0.48] 0.47 [0.4-0.54] 0.5 [0.4-0.6]
BATTY Mass 0.69 [0.61-0.75] 0.41 [0.35-0.48] 0.4 [0.3-0.5]
BATTY Electrons 0.63 [0.55-0.71] 0.42 [0.35-0.48] 0.4 [0.3-0.5]
BATTY Bonds 0.42 [0.37-0.5] 0.48 [0.41-0.54] 0.5 [0.4-0.6]

2.6 Discussion

2.6.1 Effects of Conformer Energy Ranges on Accuracy Metrics

Previous work has suggested that the poor correlations found between force field and

semiempirical methods are derived from the small number of low-energy conformers considered

in this benchmark.44 Certainly, one might imagine that when considering multiple geometries

with only small differences in energies, random errors are magnified. Figure 2.4 illustrates

a histogram of the ranges in DLPNO-CCSD(T) energies across the molecules considered.

Despite the small ranges in energies, there is little correlation between the energy range of a

molecule and the accuracy metrics of a particular method. This suggests no bias from the

small energy windows used in this benchmark set.

Figure 2.5 indicates there is no correlation between R2 and the energy window of
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the conformers. The ML methods have a relatively even distribution of R2 across the

energy window indicating that random errors in the model may have more of an impact on

performance than the size of the energy window.

Figure 2.4: Histogram of relative DLPNO-CCSD(T) energy ranges across multiple conformers.

2.6.2 Connection Between Accuracy Metrics: MARE, R2, Spearman

In principle, the mean absolute relative errors in energies (MARE) consider both random

and systematic errors of a method, while the R2 and Spearman correlation metrics remove

systematic errors through linear correlation (R2) or ranking (Spearman ρ ). However, for

the comparisons here, there is a strong connection between all three metrics, as illustrated

in Figure 2.6. Methods with smaller MARE have almost a linear correlation with increased

median R2. The three classical force field methods have essentially the same median R2

metric despite differences in MARE, likely due to systematic errors in the methods. Similarly,

while increasing the data in the bag-of-features descriptors from BOB to BAT decreases the
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Figure 2.5: Examples of the relation of energy windows to R2 for the ML methods (A) ANI-1x, (B)

ANI-1ccx, (C) BOB, and (D) BATTY/# atoms.

median MARE from 1.92 kcal/mol to 1.18 kcal/mol, the accuracy as judged by the median

R2 remains essentially constant (0.31 and 0.32, respectively).

2.6.3 Dipole Moment Ranges

Since we generally find very small energy differences between the conformers considered in

this work, one might wonder whether such differences have meaningful consequences. Due to

Boltzmann statistics, many properties are dominated by the lowest energy geometry, even with
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Figure 2.6: Correlation between mean absolute relative energies (MARE) and median R2 correlation.

Since the R2 metric minimizes systematic errors, the high degree of correlation between the two

metrics indicate most methods exhibit relatively random / non-systematic errors. Error bars indicate

95% confidence intervals from bootstrap sampling.

small energy windows to other geometries. One recent example comes from understanding the

effects of dipole moments on solvent viscosity.100 Finding all conformers with proper weighting

is thus crucial to predicting the dipole moment of an ensemble of different conformers.

We find over the set of molecules considered, over 140 molecules have a range of 3 D or

more, and 75 molecules have a range of 4 Debye or above across multiple conformers in the

study. Figure 2.8 illustrates the example of omegacsd_CNBPCT, with two conformers that

are close in energy yet span dramatically different dipole moments. Using B3LYP-D3BJ

(TZ), the computed dipole moments range from 1.41D to 9.78D. The molecule contains two

carbonyl bonds, either parallel (high dipole moment) or anti-parallel (low dipole moment)

depending on the rotation of several bonds and the more polar conformer is predicted to

be more stable by B3LYP-D3BJ, possibly due to an intramolecular hydrogen bond. On the
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Figure 2.7: Histogram of the range of B3LYP-computed dipole moments in Debye across the

conformers considered in this work. While most molecules show only small differences in polarity

across conformers, many have over 3-4 Debye ranges.

other hand, using DLPNO-CCSD(T) cc-pVTZ, the conformers differ by only 0.3 kcal/mol,

with the anti-parallel, less polar conformer more stable than the other.

Such polarity differences are examples in which small differences in conformer energies

can have significant effects on molecular properties. Since experimental properties reflect a

Boltzmann-weighted average of multiple thermally accessible conformers, even small differences

in conformer energies have large effects on populations involved in property prediction, as

recently discussed with conformer and polarity effects on solvent viscosity.100

Machine Learning Batch Evaluation An advantage for ML and force field predictions

is the ability to batch evaluate by loading all conformers of a molecule at once and evaluating

them as a batch opposed to evaluating one at a time, as with conventional quantum chemistry

methods. Table 2.5 indicates the median sequential times from Table 2.1 and median time
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Figure 2.8: Example of conformational diversity in dipole moment in the molecule

omegacsd_CNBPCT reflecting anti-parallel carbonyl (left - rmsd45) or parallel carbonyl groups

(right - rmsd92), with B3LYP-D3BJ def2-TZVP computed dipole moments ranging from 1.41D to

9.78D, respectively. The two geometries differ by only 1.3 kcal/mol at the B3LYP-D3BJ def2-TZVP

level, with the more polar conformer (right) stabilized by an intramolecular hydrogen bond. Using

DLPNO-CCSD(T) cc-pVTZ, the less polar conformer (left) is more stable by 0.3 kcal/mol.

per single point in batch evaluation. Speedups range ~70-170 times faster for both force

field and ANI methods. We note that while the ANI methods improve performance in batch

evaluation, traditional force field methods do as well, with similar speedups.

Table 2.5: Comparison of single-core median sequential time to median batch time (in seconds), and

relative speedups for batch evaluation.

Method Median Time Median Batch Time Speedup
MMFF94 0.0 4.4e-05 5.05e-05 6.02e-07 70.89
GAFF 0.01 5.73e-05 3.29e-05 4.49e-07 160.64
UFF 0.0 8.61e-06 4.32e-05 4.46e-07 21.88

ANI-1x 1.46 0.0 0.01 0.0 113.15
ANI-1ccx 1.45 0.0 0.01 0.0 111.5
ANI-2x 3.45 0.01 0.02 9.7e-05 172.44
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2.7 Conclusions

The current work extends previous efforts to consider the accuracy of modern computational

chemistry methods to rank the energies of drug-like conformers. Since such energy differences

are small, this poses a challenging benchmark even for density functional methods. Use of

dispersion-corrections for density functionals are required – the slim time required is offset

with dramatically increased accuracy. While triple-zeta and larger basis sets also provide

higher accuracy, likely because of better treatment of non-covalent interactions, the large

number of possible conformers forces trade-offs in accuracy and computational time required.

Current ML methods show great promise, particularly the ANI-1ccx method trained in part

on coupled-cluster energies,? since they provide accuracy comparable to the semiempirical

GFN2 method and can be performed in batch and accelerated on GPUs. Despite claims of

reaching and exceeding DFT accuracy, we do not find these methods yet meet the accuracy

of modern dispersion-corrected methods. Nevertheless, we expect these methods will provide

increased accuracy in the future. An important caveat is the need to train on accurate data,

such as dispersion-corrected density functional, MP2, or coupled-cluster calculations.

We expect continued improvement from other methods, particularly multiple efforts to

improve classical force fields,128–131 inclusion of polarizable atomic charges,132–139 novel force

fields from experimental data, density functional and other quantum methods,140–145 and

continued development of approximate semiempirical quantum methods.74

At present, we can highly recommend methods at each tier of the accuracy-time tradeoff,

particularly the recent GFN2 semiempirical method, the B97-3c density functional approxi-

mation, and RI-MP2 for accurate conformer energies. Previous efforts to use a hierarchy of

methods are still useful, for example, the use of GFN2 methods to refine initial conformer

ensembles, followed by refinement of a smaller set of low-energy geometries with more accurate

methods. Batch evaluation with ANI methods are also efficient, although they do not yet

span the range of elements supported by semiempirical methods such as GFN2 or density
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functional methods.

The current benchmark reflects conformational preferences in a vacuum as judged by

enthalpy differences alone. Since free energy differences drive experimental conformers,

introducing entropic considerations will be needed for further work.52 Moreover, much

chemistry is performed in solution, thus work on understanding conformer energies in

solvation is also critical.146,147
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3.0 Evaluation of Thermochemical Machine Learning for

Potential Energy Curves and Geometry Optimization

This chapter is adapted from:

Folmsbee, D., Koes, D., Hutchison, G. Evaluation of Thermochemical Machine

Learning for Potential Energy Curves and Geometry Optimization. Chem-

Rxiv:13151069.v1 2020. DOI: 10.26434/chemrxiv.13029437.v1

which is also published as:

Folmsbee, D., Koes, D., Hutchison, G. Evaluation of Thermochemical Machine

Learning for Potential Energy Curves and Geometry Optimization. J. Phys.

Chem. A. 2021, 2007486. DOI: 10.1021/acs.jpca.0c10147.

It is a collaborative effort in which I tested the machine learning models and carried out

the data analysis, generated the figures, and wrote the bulk of the manuscript; D. K. provided

the libmolgrid-based convolutional neural net method and helped with manuscript edits; G.

H. conceived and directed the project.

3.1 Summary

While many machine learning methods, particularly deep neural networks, have been trained

for density functional and quantum chemical energies and properties, the vast majority of

these methods focus on single-point energies. In principle, such ML methods, once trained,

offer thermochemical accuracy on par with density functional and wave function methods but

at speeds comparable to traditional force fields or approximate semiempirical methods. So far,
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most efforts have focused on optimized equilibrium single-point energies and properties. In this

work, we evaluate the accuracy of several leading ML methods across a range of bond potential

energy curves and torsional potentials. Methods were trained on the existing ANI-1 training

set, calculated using the ωB97X / 6-31G(d) single points at non-equilibrium geometries. We

find that across a range of small molecules, several methods offer both qualitative accuracy

(e.g., correct minima, both repulsive and attractive bond regions, anharmonic shape, and

single minima) and quantitative accuracy in terms of the mean absolute percent error near

the minima. At the moment, ANI-2x, FCHL, and a new libmolgrid-based convolutional

neural net show good performance.

3.2 Introduction

Machine learning (ML) methods have been proposed as surrogates for time-consuming

quantum mechanical calculations, such as density functional and first-principles methods, for

their rapid prediction potential once trained4–14. For ML to be a successful surrogate, the

methods need to be able to perform property predictions adequately for optimized geometries,

capture not just the well of the potential energy curve but also the anharmonicity that force

field methods fail to capture, and appropriately handle multiple conformations of the same

molecule.

Numerous studies have shown the proficiency of ML methods to predict thermochemical

parameters at already optimized geometries utilizing various types of representations and

neural network structures5,34. Early representations, such as Coulomb Matrix22 and bag-

of-features23,24, demonstrated success in property predictions with further iterations of

representations such as FCHL28,29 continuing to improve the property prediction at optimized

geometries. These ML methods are typically trained on the QM722,32 or QM933,148 data sets

consisting of optimized molecules with up to 7 or 9 heavy atoms respectively and help to
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demonstrate ML’s potential as a surrogate.

Additional deep neural network (DNN) methods, like ANI6–8,27 and BAND NN36, used

training data beyond optimized single points to better evaluate the potential surface for

dynamics and geometry optimizations. These methods utilize the ANI-1 data set35, or

ANI-2 data set in the case of ANI-2x, for training as they contain both equilibrium and

non-equilibrium structures of up to eight heavy atoms containing H, C, N, and O with

the non-equilibrium structures being generated from normal-mode sampling. The training

set for ANI-2x adds the additional elements of F, Cl, and S while providing additional

torsion sampling data.8 The BAND NN model uses a subset of the ANI-1 data set with

only non-equilibrium geometries with energies within 30 kcal/mol of the equilibrium energy.

Although these methods have been shown to perform adequately in their respective papers,

the range for bond stretch applications has been limited to the harmonic portion of the

potential energy curve, rarely examining the potential energy curves further from equilibrium.

Recent work has expanded the knowledge on ML performance for predicting and ranking

thermally accessible conformations149. Though ML was not tasked with large bond stretches

as in this work, the ability of ML methods to rank conformational energy was only comparable

to that of semiempirical methods. While this is not equivalent to the accuracy of density

functional (DFT) or ab initio electronic structure methods, for ML methods to be an accurate

surrogate for quantum chemical methods, continued advancements in ML models and training

sets are needed to provide further performance improvements.

For ML to become a viable replacement for current methods, ML needs to achieve

optimized geometries and predict properties without relying on force field (FF) methods.

Most FFs have been refined for small molecules and biomolecules and can struggle with

non-covalent and steric interactions for applications such as conjugated polymers. While these

issues can be lessened with specific parameterization150,151, geometries of FFs generally can be

less than ideal152. ML trained on higher levels of theory ideally captures these non-covalent

interactions and provides better initial optimized geometries.
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With the rapid adoption of ML, there has been a growing desire to use ML in molecular

dynamics (MD) applications to provide more accurate simulations than FFs at a much lower

cost than time-consuming quantum mechanical calculations149. For ML to be reliable, it needs

to properly predict geometric changes that occur in MD simulations from non-equilibrium

bond stretching to torsional barriers. This work seeks to examine how well the current state

of ML performs at these tasks, as well as to display the methods’ understanding of chemical

physics to help decide key needs for ML to improve as a surrogate for computationally

expensive quantum calculations.

3.3 Methods

3.3.1 Molecules

A mixture of small and large molecules was chosen to evaluate ML performance on potential

energy surfaces for a total of 17 bond stretches and 5 dihedral scans. The molecules examined

were benzene (C-C and C-H stretching), methanol, methane, CO, H2, ethylene, water,

acetylene, hydrogen cyanide, N2, ammonia, biphenyl, aspartame, sucrose, dialanine, and

diglycine. Bond stretches were evaluated every 0.1Å while dihedrals were evaluated every 20°

with the exception of biphenyl which was every 15°.

3.3.2 Computational Methods

The reference method, ωB97X153, was performed using Orca 4.0.1154 while the force field

calculations, MMFF94? ? ? ? ? and GAFF155, were performed using Open Babel version

3.0156.

Machine learning methods and representations included the pre-trained models ANI-
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1x6,7, ANI-2x8, BAND-NN36, as well as FCHL157, Bag of Bonds (BOB)88, and Extended

Connectivity Fingerprints (ECFP)158,159. Scikit-learn89 was used for kernel ridge regression

(KRR) and bayesian ridge regression (BRR) for BOB and random forest regression (RFR)

with BOB and ECFP representations while FCHL used the custom KRR in QML.

We also trained a deep convolutional neural network (Colorful CNN), an approach that

has been successfully used in protein-ligand binding affinity prediction160,161. The input

molecule is represented as a voxelized grid of atomic densities as generated by the libmolgrid

library162. Our network has six modules separated by pooling operations each with seven

convolutional layers and was trained on the ANI-1x data set163. The trained Colorful CNN

model can be found at https://github.com/hutchisonlab/ml-benchmark.

Due to method scaling efficiency for memory usage, a subset of the ANI-1 data set

was taken for training representations using BOB/KRR and BOB/BRR. For consistency,

ECFP/RFR and BOB/RFR were additionally trained on this subset. The subset consists

of 5 non-equilibrium geometries for every molecule with up to 7 heavy atoms, as well as 5

non-equilibrium geometries for half of the molecules with 8 heavy atoms, to create a training

set consisting of 33,496 molecules and 167,480 non-equilibrium geometries. All molecules

from the test set were removed from the training set. This training set was additionally

used for BOB/RFR and ECFP/RFR. An additional subset of the first 5000 non-equilibrium

geometries was used for FCHL/KRR. Increasing the training set for FCHL/KRR had a

negative impact on prediction performance so our results are with the model trained on 1000

different molecules for a total of 5000 non-equilibrium geometries.

3.4 Results and Discussion

To illustrate the qualitative performance of potential energy surface predictions, we analyzed

both small and larger molecules outside of the ANI-1 data set used for training for each ML
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Methods Median MAPE1 r0
2 Repulsive Wall3 Attractive Forces4 Minima after 2Å5

ωB97X 6-31G(d) 0 17 17 17 0
ANI-2x 0.002 17 13 17 12
BOB/BRR 0.227 0 5 5 9
FCHL/KRR 0.255 10 16 15 13
Colorful CNN 0.2555 16 17 17 13
ANI-1x 0.265 16 11 17 5
BOB/KRR 0.313 1 9 11 13
BOB/RFR 43.881 2 3 0 8
BAND-NN 99.310 11 9 5 5
MMFF94 100.050 14 17 0 0
GAFF 100.133 13 17 0 0
ECFP/RFR 193.370 0 0 0 0

1 Median mean absolute percent error over all 17 molecules from r0 ± 0.25Å.
2 The number of molecules in which the lowest predicted energy point matches DFT.
3 The number of times the method predicted a repulsive wall as the bond was compressed.
4 The number of times the method predicted anharmonic attractive forces after r0.
5 The number of molecules predicted to have a local or global minima after 2Å.
6 BAND-NN regularly would not predict energies for geometries with a bond stretch of 2Å or greater.

Each ML method was evaluated on the criteria demonstrated in Table 3.1 for bond

stretches. The median mean absolute percent error (MAPE) was calculated from the energy

values ranging from r0 ± 0.25Å for the molecules to determine how accurate and precise the

ML predicted energies are. Since the ANI-1 training set samples harmonic displacements

around the r0 (e.g., Figure B.1) this range corresponds mostly to interpolation. Comparisons

for repulsive short-range and attractive long-range interactions – extrapolations outside the

training range are compiled in Table B.1. The r0 evaluation criteria considered whether the

method correctly predicted the DFT equilibrium bond length to be the lowest energy bond

length. Additional evaluation criteria included the qualitative prediction of a repulsive wall,

anharmonic long range interactions, and if there were incidences of additional minima past
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method. We wish to focus on how the methods perform not only around the bond length 

at the energy minima, r0, but also in the attractive and repulsive regimes to gain a better 

understanding of how ML methods would behave if given less ideal starting geometries for a 

task such as geometry optimization.

Table 3.1: Overview of machine learning performance sorted by median mean absolute percent error 

(MAPE).



2Å.

While methods like BOB/BRR and BOB/KRR had the second and fifth-lowest median

MAPE, their ability to predict the geometry with the lowest energy, a repulsive wall, and

attractive forces was quite poor compared to the other top methods based on MAPE. Other

methods utilizing RFR also performed poorly, often predicting stepwise energy surfaces seen

in Figure 3.1, thus being incapable of consistently predicting r0, attractive, or repulsive forces.

This is seen in Figure 3.1b when the bond breaking causes the only change in the ECFP

representation and leads to the higher energy. Other ML methods such as ANI-1x, ANI-2x,

FCHL, and Colorful CNN were able to accurately predict energies while also predicting the

repulsive and attractive forces of the molecule. In short, while random forest methods may

have accuracy at single-point properties, they prove inherently inaccurate for potential energy

and should be avoided.
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Figure 3.1: N2 potential energy curves for ML methods utilizing random forest regression for

predictions using (a) BOB and (b) ECFP for the ML descriptors.

A possible advantage for the ANI-1x and ANI-2x models is that some molecules in our

test evaluation are found in the ANI-1x training set. In the training of the other methods,

molecules in our test set were purposefully left out of the training set but may be present in

the ANI-1x and ANI-2x model. For that reason, we will focus the remainder of our discussion

on molecules outside of the ANI-1 training set, examining the best overall performers, ANI-1x,

ANI-2x, FCHL, and Colorful CNN from Table 3.1. The performance of all methods is included
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in the supplemental information.

Figure 3.2a displays the performance of ANI-1x, ANI-2x, Colorful CNN, and FCHL on

the N-N bond stretch of N2. While each of these ML methods predicts the correct r0, there

are issues in the prediction of the potential energy curve. ANI1-x, ANI-2x, and Colorful CNN

fail to accurately depict the repulsive region with ANI-2x lowering in energy as the bond was

compressed to 0.6Å. FCHL depicts the repulsive wall but inaccurately predicts the energy

as the bond is compressed. All four methods accurately determined the attractive forces to

about 2Å with ANI-2x matching ωB97X to 2.25Å.

The H-H stretch of H2 in Figure 3.2b indicates one possible issue for ML. All four

methods performed poorly with ANI-2x being the only method to obtain the correct r0. This

performance is likely due to the absence of H-H bonding data within the training set. H2,

while a unique bond, demonstrates the need to be careful when applying ML to molecules or

chemistry completely outside the scope of the training set.

Figure 3.2c and 3.2d demonstrate the prediction capability of these ML methods on

bond stretches for molecules larger than the training set. FCHL was only able to accurately

capture the shape of the potential energy curve for dialanine, failing to capture the well of the

potential energy curve for aspartame, perhaps from the difficulties training the entire ANI-1

set. ANI-1x, ANI-2x, and Colorful CNN retain both repulsive and attractive information

while having accurate energies to that of ωB97X for both aspartame and dialanine. These

methods do continue to exhibit difficulty in accurately predicting bond compression under

1Å as well as bond stretching after 2Å.
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Figure 3.2: Bond stretch potential energy curves for (a) N2, (b) H2, (c) aspartame, (d) dialanine

using total SCF energies in kcal/mol.

For bond stretches, ANI-1x, ANI-2x, Colorful CNN, and FCHL models show promise with

initial training indicating these methods can accurately predict the bottom of the potential

energy well. While force fields such as MMFF94 or GAFF can be used to obtain optimized

geometries near this regime, ultimately ML methods should exhibit accuracy not only at

single-point energy evaluation tasks, but at qualitatively and quantitatively accurate potential

energy curves. Further training on long-range attractive forces might enable ML models to

evaluate non-covalent interactions.

As an example, further evaluations were carried out on energy predictions from frozen-

rotor dihedral angle scans performed with ωB97X 6-31G(d) for biphenyl and sucrose. Table

3.2 compiles the predicted lowest energy angle for these molecules as well as the barrier

energies from −45° to 0° for biphenyl and 0° to −60° for sucrose.

ANI-1x and ANI-2x properly predict the lowest energy angle for biphenyl while Colorful
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CNN predicts −45° to be a local, but not global, minima. FCHL improperly predicts rotation

energies as seen in Figure 3.3a, predicting 0°, 180°, and −180° to be the lowest energy

dihedrals. All of the methods over-predicted the height of the energy barrier for biphenyl.

For sucrose, all four methods correctly predicted the lowest energy angle. ANI-1x best

captures the energy of the dihedral angles, seen in Figure 3.3b, with ANI-2x and Colorful

CNN under-predicting the energy for most angles. Unlike with biphenyl, FCHL captures the

shape of the torsion scan for sucrose but vastly over predicts the energies at each angle.

Table 3.2: The ML prediction of θ0 and the barrier energy between the lowest and highest energy

dihedrals for biphenyl and sucrose compared to the reference ωB97X 6-31G(d) method.

Methods Biphenyl Sucrose
θ0 (◦) Barrier Energy (kcal/mol) θ0 (◦) Barrier Energy (kcal/mol)

ωB97X 6-31G(d) -45 3.54 0 2.45× 103

ANI-1x -45 3.95 0 2.50× 103

ANI-2x -45 4.16 0 1.93× 103

Colorful CNN -135 5.49 0 9.46× 102

FCHL/KRR 180 5.52 0 9.73× 104
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Figure 3.3: Dihedral energy predictions for (a) biphenyl and (b) sucrose in kcal/mol.

Dihedral scans demonstrate how small conformational changes in the molecule can affect

the potential energy surface. The 2D torsion scans in Figures 3.4 and 3.5 compare ML

performance to that of ωB97X and FFs, MMFF94 and GAFF. ANI-1x, ANI-2x, and Colorful

CNN retain the resolution of some of the higher energy ϕ and ψ between −100° to 100°
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while FCHL predicts these to be lower energy conformations similar to both FF methods. In

lower energy conformations both BAND and BOB/KRR methods over-estimate these energy

differences.
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Figure 3.4: 2D torsion scans of dialanine in kcal/mol unless otherwise stated. Methods were tested

at the geometries obtained with ωB97X 6-31G(d) from the torsion scan. Note that color schemes

differ, due to large differences in energy scales.
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Figure 3.5: 2D torsion scans of diglycine in kcal/mol unless otherwise stated. Methods were tested

at the geometries obtained with ωB97X 6-31G(d) from the torsion scan. Note that color schemes

differ, due to large differences in energy scales.

The additional torsion training in ANI-2x provided a beneficial reduction in the MAE for

both dialanine and diglycine, seen in Table 3.3, by roughly 35% from ANI-1x. Additional

torsion sampling for methods Colorful CNN and FCHL should also provide a decrease in

MAE for predicting dihedral angle energies. This could improve accuracy for the Colorful

CNN method that is already qualitatively adequate.

A prevailing pitfall of ML methods stems from the training set. At the end of the day,
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Table 3.3: Mean absolute error (MAE) in kcal/mol of 2D torsion scans for the top performing

methods.

Methods Dialanine MAE ∆Energy (kcal/mol) Diglycine MAE ∆Energy (kcal/mol)
ANI-2x 1.89 1.71
ANI-1x 3.01 2.52
Colorful CNN 7.10 6.07
FCHL/KRR 252.17 200.86

the machine learning method is only as good as the training set. As seen with H2, models

struggle with chemical motifs outside of the training set. Current ML training sets largely

consist of a subset of the molecules generated in the GDB-17148 set, typically containing

at least H, C, O, and N. While these training sets are a noble starting point for covering

small organic molecules, they lack a diversity of atom species needed for applications such as

protein binding and DNA sequencing. Additional data sets such as PubChemQC164 could

help to further expand the snapshot of chemical space ML methods are trained on.

3.5 Conclusions

Much work has focused on the use of machine learning methods as surrogates for computa-

tionally intensive density functional and quantum chemical methods. Often such efforts train

and test on single-point energies of optimized structures. An important step is to evaluate ML

methods across potential energy curves and surfaces for tasks such as geometry optimization.

ML methods such as ANI-2x, Colorful CNN, and FCHL perform decently near the well

of the potential energy curve while struggling to properly predict repulsive regions and

particularly long-range attractive forces. While this poor performance outside the domain of

the training set is expected, these methods show promise with further improvements through

the addition of stretched bonds in training data helping to improve model performance in

this area. Increased torsion sampling for training ANI-2x improved the model’s performance
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over ANI-1x and should provide improvements for models like Colorful CNN and FCHL.

In general, there is still the issue of applying ML to the prediction of molecules too far

outside the scope of the training set. The inclusion of additional elements and an increase in

diversity of molecules in the training set from diverse data sets such as PubchemQC should

alleviate some of these challenges.

We acknowledge the National Science Foundation (CHE-1800435) for support and the

University of Pittsburgh Center for Research Computing through the computational resources

provided.
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4.0 Systematic Comparison of Experimental

Crystallographic Geometries and Gas-Phase Computed

Conformers

This chapter is adapted from a manuscript in preparation for submission; it is a work in

progress. It is a collaborative effort with G. H. in which I performed data analysis on the

torsions, generated the figures, and wrote large portions of the manuscript; G. H. performed

GFN2 calculations, wrote part of the manuscript, and conceived and directed the project.

4.1 Summary

We have performed exhaustive torsion sampling on over 3 million compounds using the GFN2

method to compare potential bias between the crystallographic and gas-phase geometries.

Many conformer sampling methods obtain torsional angle distributions from experimental

crystallographic data, limiting the torsion preferences to molecules that must be stable,

synthetically accessible, and able to be crystallized. In this work, we evaluate the differences

in torsional preferences of experimental crystallographic geometries and gas-phase computed

conformers to determine whether torsional angle distributions obtained from semi-empirical

methods are suitable for conformer sampling. We find that differences in torsion preferences

can be mostly attributed to crystallographic and gas-phase geometry differences or lack of

available experimental crystallographic data. GFN2 demonstrated the ability to provide

accurate and reliable torsional preferences that could provide a basis for a quantum-based

ETKDG alternative method, QTDG, that does not rely on data from experimental crystal
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structure elucidation.

4.2 Introduction

Most molecules exhibit some level of conformational flexibility – the existence of multiple

low-energy geometries that differ mostly by changes in the torsional angles of both acyclic

and ring bonds. Many methods have been developed to sample conformations, although

benchmarks frequently focus on finding one geometry close to an experimental crystal structure.

Consequently, most conformer sampling methods derive torsional angle distributions from

experimental crystallographic data — not only to provide geometries close to such benchmarks

but also as large diverse repositories of “ground truth” geometric properties such as bond

lengths, angles, and dihedrals.

The challenge is that experimental crystallographic data is limited by the size of the

data source and reflects some inherent biases. In order to be collected, the molecules must

be stable, synthetically accessible, and were actually made and crystallized. While new

cryo-electron microscopy (cryo-EM) techniques are improving dramatically and have less

stringent requirements on crystals, generally growing a high quality crystal for small molecule

crystallography is a time-consuming process. Moreover, it’s known that compounds with

crystal structures are generally smaller and exhibit fewer conformers than other compounds.

Similarly, compounds containing elements outside the common organic subset (e.g., B, As, Se)

or less common chemical motifs may be poorly represented in experimental crystallographic

databases. Also, even for compounds found in an existing database, much chemistry is

performed in solution and gas phases, where solid-state preferences may not directly apply.

Finally, several works have noted challenges when deriving data from some crystallographic

databases.

Consequently, finding unbiased alternative sources of accurate and reliable torsional
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angle preferences could significantly expand the use of conformational sampling to new

compounds. Typically, conformational sampling has been performed using small-molecule

force fields, which have shown limited fidelity when compared to density functional and

other first principals quantum chemical methods. The development of efficient semiempirical

methods such as GFN2165, as well as new machine learning methods such as ANI6–8,27 and

OrbNet11,30, offer improved accuracy of torsional angles and non-bonded interactions with

moderate computational cost. Moreover, several large-scale computational efforts including

PubChemQC166 and the QCArchive torsion scans have provided large amounts of high-quality

density functional optimized geometries.

In this work, we outline an extensive effort to analyze conformers and torsional angle prefer-

ences of over 3 million compounds, using exhaustive sampling using the GFN2 method across

both the experimental Crystallographic Open Database167 (COD) and multiple sets of small

molecules, including PubChemQC. We compare potential bias between the crystallographic

and gas-phase geometries, including analysis with ωB97X-D3.

4.3 Methods

Molecules for this work were compiled from several sources, including the Crystallographic

Open Database, PubChemQC, the Pitt Quantum Repository, and previous work on con-

formational flexibility, which used molecules from a subset of ZINC168 and the Platinum

ligand database169. For all sources, the largest substructure was retained (i.e., removing

solvent or salts from the crystallographic unit cells). For compounds without an initial 3D

coordinate set, Open Babel 3.1 was used to generate coordinates. As noted above, the total

set of compounds included over 3 million unique molecules.

For each molecule, conformers were generated using the CREST program to exhaustively

sample the potential energy surface, using the GFN2 method for energies and optimized
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geometries. In some cases, CREST will produce fragments or chemical rearrangements (e.g.,

producing more stable compounds than the input) — these systems were excluded from

analysis.

In this work, the lowest energy conformer by GFN2 energy was analyzed. Using previously-

published torsional angle SMARTS patterns used in the ETKDG37,170 methods for both

acyclic and ring dihedrals, histograms of matching torsions were generated using RDKit171

Python scripts (see supporting information).

4.4 Results and Discussion

To understand the differences in torsional preferences, we compared the experimental torsions

from COD to the CREST generated conformers from COD and the CREST generated

conformers of the combined sets of PubChemQC, Pitt Quantum Repository, and the subset

of ZINC. While the compilation of torsions from COD is an excellent tool for understanding

crystal structure preferences, the small data set limits the number of torsions for some

structural motifs. Expanding our analysis to include a large number of structures can improve

the understanding of uncommon motifs and determine if they are rightly infrequent motifs

or just not abundantly present in the COD. While torsional information based on crystal

structure is effective for poses of docked molecules, we expect to find differences in torsional

preference compared to the gas-phase data. This work will examine the comparison of crystal

structure and calculated gas-phase torsional preferences for both ring and acyclic containing

torsions.

While there are expected differences in torsional preferences due to crystal structure and

gas-phase geometry differences, there should still be some correlation between these two

phases. To determine the degree of correlation, the r2 of the kernel density estimation (KDE)

for each acyclic torsion pattern was compiled in figure 4.1. The r2 of the KDE plot was used
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as a way to smooth the histogram and avoid issues when correlating areas with no torsions

in the COD with the regions where some but few torsions were present in the combined set.

The median r2 was found to be 0.61 indicating while the geometry of the structures between

phases differs, overall the torsional preferences are comparable. This was further shown when

analyzing the patterns with an r2 less than 0.2. The patterns in this regime had a median of

175 instances of the COD torsions in the patterns, too small of a number of data points to

draw any significant conclusion from.
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Figure 4.1: Correlation between experimental and gas-phase torsions for acyclic patterns.

Acyclic torsional preferences were analyzed to determine the qualitative correlation

between the crystal structures and conformers. Torsion pattern 229 shown in figure 4.2

demonstrates the degree of correlation between the crystal structures and conformers while

demonstrating the advantage of the additional data from all of the data sets provides. Pattern

229 has 179 torsions from the COD while the expanded data set boasts over 25k instances.

This increase in data clarifies torsional preferences 90◦to 180◦as the conformers demonstrate

clearer trends in this regime.

Qualitative analysis of these correlations also illustrates differences between the crystal
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Figure 4.2: Increasing data clarifies existing torsional preferences.

structure and gas-phase that need to be explored. There are a few possibilities to consider

when analyzing these differences. A difference can arise from either a torsional divergence

between the two phases, inaccuracy of the GFN2 method, or a lack of data as discussed

prior. While there are some geometry differences between the crystal structure and the

gas-phase geometries, most of these are small expected differences. An example of these small

differences is shown in figure 4.3. The experimental torsions show a mix of torsions in the

range of 70◦to 110◦while the calculated torsions exhibit a dominant peak at 90◦. Though

both can have torsions in this range gas-phase geometries preferred a 90◦angle.

To ensure the differences in figure 4.3 were due to phases, ωB97X-D3 calculations were

performed to verify the GFN2 results. Molecules containing torsion pattern 270 and an angle

of 90◦were randomly selected from the combined set. The DFT calculations were found to be

in agreement (within 1◦) of the GFN2 torsions, indicating that such differences are indeed

due to disparities between the crystal structure and the gas-phase geometries.
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Figure 4.3: The differences in torsional preferences for experimental and gas-phase geometries.

Figure 4.4 demonstrates how the lack of data can impact qualitative assessments of

torsional preferences. The experimental torsions show a mild preference around 60◦and

120◦with a lot of noise between, while the calculated torsions have more defined peaks at 50◦,

90◦, and 70◦. The 10x increase in the number of torsions for the calculated set was able to

provide enough to discern preferential angles.

In addition to acyclic preferences, we analyzed the preferences of torsional patterns that

are part of ring structures. Ideally, torsional patterns in ring structures should correlate

well between experimental and calculated gas-phase geometries due to the imposition of

steric hindrances that impose constraints on the geometry. The correlation was analyzed in

the same manner as the patterns that were acyclics by taking the r2 of the kernel density

estimation (KDE) for each ring torsion pattern and compiling them into figure 4.5. Compared

to the median r2 of 0.61 for the acyclic patterns, the ring patterns boasted a median r2 of

0.83, indicating a decent correlation between the two sets.
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Figure 4.4: The increasing of data set size has on discerning effect on the preferences in torsion

patterns.

Similar to the acyclic patterns, the increase in available data bolsters the angular pref-

erences of the ring torsion patterns. Figure 4.6 exemplifies this by demonstrating how the

increase in the number of torsions for that pattern affects the torsional preference. Though

the experimental data suggests 60◦and 180◦are prominent angles, the additional data from the

calculated sets firmly demonstrates that these are prominent angles for the torsion pattern.

The addition of more data exhibits a more complete picture of torsional preferences that

better represent chemical space as data is added.

These expected similarities for the ring patterns are due to the intermolecular constraints

the ring structure imposes on the geometry. There is less of a chance of free rotation in these

patterns, leaving fewer possible minimas. The correlation of rings demonstrates the accuracy

of the quantum torsional preferences and indicates the ability to use this information as an

additional method for determining torsional preferences of structural motifs not yet examined
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Figure 4.5: Correlation between experimental and gas-phase torsions for ring patterns.

through experimental means.

The outlined work demonstrates the desire for additional methods based on quantum

calculations where crystal structure constraints may not be suitable or data may not be

prevalent due to experimental limitations. Using the example of ETKDG37, a quantum-based

alternative, quantum torsion distance geometry (QTDG), could be useful for gas-phase

applications. The QTDG method would no longer be constrained to structural preferences

derived from what can be crystallized. This allows for an increase in the capability of the

method as a larger amount of data would be available for a more diverse representation of

chemical space.

4.5 Conclusions

The torsions of 3 million compounds were analyzed using exhaustive sampling with the

GFN2 method across multiple small molecule sets to compare experimental crystallographic
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Figure 4.6: The additional data obtained from quantum calculations provides a more thorough

understanding of torsional preferences.

geometries and gas-phase computed conformers. Though differences in torsional preferences

were found, findings indicate differences are due to expected crystal structure and gas-phase

differences along with a lack of available experimental crystallographic data. The use of

quantum-based methods allows for the generation of torsional preferences in addition to the

patterns currently based solely on experimental crystallographic geometries, allowing for a

further understanding of chemical space that is not restricted to the ability of molecules

to crystallize. This work has demonstrated the ability of GFN2 to provide accurate and

reliable torsional preferences that could provide a basis for a quantum-based ETKDG method,

QTDG. QTDG could provide an alternative to ETKDG for conformer generation of gas-phase

applications with the ability to operate in a space that does not rely on experimental crystal

structure elucidation.

56



5.0 Chemical Applications of Genetic Algorithms and

Future Implications of Machine Learning

This chapter is adapted from a manuscript in preparation for submission; it is a work in

progress. It is a collaborative effort with Danielle C. Hiener, Omri D. Abarbanel, Brianna L.

Greenstein, and Geoffrey R. Hutchison. O. D. A and I wrote the machine learning sections of

the manuscript; D. C. H. and B. L. G wrote the genetic algorithm sections of the manuscript;

G. R. H. conceived the project.

5.1 Summary

Materials discovery and design has been given a large acceleration boost in recent years due

to the increase in computational resources and algorithms available to researchers. This

enables researchers to find potential chemical candidates with targeted properties for different

applications and uses in the fraction of the time it took previously. In this review we discuss

the strengths and weaknesses of two such tools: Genetic Algorithms (GA) and Machine

Learning (ML), and how the combination of those two can overcome each other’s shortcomings.

We suggest a future where GA is used to improve ML models by expending the chemical

space they are trained on, and where ML models are used in conjunction with GA as the

algorithm’s fitness evaluation step. While big strides have been made in both GA’s and ML’s

use in chemistry we scarcely see them being used together, and we aspire that this review

can open new and interesting research avenues.
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5.2 Introduction

Computer-accelerated materials design is a fast growing field due to continuing improvements

in computer processing units. These advancements have allowed for faster and more accurate

quantum mechanical (QM) calculations to predict various molecular properties and behaviors.

There is a direct relationship between accuracy and calculation time, where the more accurate

methods, such as Density Functional Theory (DFT) and Coupled Cluster (CC), are orders

of magnitude slower than simpler approaches such as Force Field (FF) or semi-empirical

methods172. Even with considerable advancements in computation power, some calculations

can take days or even weeks per calculation. This has motivated researchers to seek alternative

techniques to expedite the search for new materials, taking advantage of recent discoveries

and applications within computer science, data science, and statistics.

A promising method for accelerating material discovery is the utilization of a Genetic

Algorithm (GA), which incorporates Darwinian evolution’s notion of "survival of the fittest"

into computational techniques. GAs are a type of evolutionary algorithm that are designed

to optimize a specific property by narrowing the search space and allowing research to focus

on only feasible candidates. A population of possible molecules is generated and the "fittest"

molecules are selected to act as parents for a new generation of possible candidates, with

each generation providing better performing molecules. By the end of this process, only the

molecules with the best performance for optimizing a given property survives.

Another technique for materials discovery advancement is Machine Learning (ML), which

has already been widely used in many applications such as speech recognition and product

recommendations, due to its inherent ability to learn from past experiences in order to predict

future instances. Its use within the realm of chemistry has already proved promising, with

excellent results in applications such as drug discovery, solar cells, and polymers. Utilization

of ML can accelerate the exploration within a search space for a given property and perform

much faster than QM calculations.
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GAs and ML can work towards the same goal — discover new materials faster by efficiently

exploring the molecular search space. GAs do not require any previous knowledge, however

they can be slow due to the evaluation of fitness, especially if QM calculations are required.

ML can drastically improve the fitness evaluation speed, however requires training on known

data which on itself can be computationally cumbersome. By working in tandem, GAs and

ML can provide numerous ways of improving material discovery performance.

5.2.1 Search Space

A common challenge in chemical research is finding molecules with properties well optimized

for a particular application. Chemical space is vast, with the subsection containing small

organic molecules useful to drug discovery alone estimated to be comprised of more than 1060

possible structures.1 This means that exhaustive searches of even this subsection would have a

lower time bound of millions of hours when the necessary electronic property calculations are

considered, each taking minutes to hours to complete. Strategies that efficiently find desirable

molecular candidates without such searches are therefore necessary to allow researchers to

find useful structures within reasonable time and resource limits.

5.2.2 Search Techniques

In contrast to the time and resource inefficiency of an exhaustive search of chemical space,

alternative approaches that can reduce the number of calculations exist. High-throughput

virtual screening typically makes use of a previously constructed database for screening,

limiting the search area to a predefined subset of chemical space. It has been used to find

molecular candidates for diverse applications, from organic materials and drug discovery

to solar materials and topological insulators2,173,174. While this is a viable strategy, inverse

design presents an alternative approach in which target features are determined first, then
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molecular structures which optimize these features are found. Inverse design has proven useful

through many implementations which use optimization, sampling, and search procedures

to efficiently traverse chemical space to find ideal molecular targets. A more recent inverse

design strategy is generative machine learning (ML), often implemented as a deep neural

network via either a variational autoencoder or a generative adversarial model. Generative

ML models determine the joint probability distribution of a data set and use this knowledge

to predict new data that fits this distribution. In the field of chemistry, this allows generative

ML models to find novel molecular candidates whose structure and properties align with this

distribution.175,176 Another inverse design strategy commonly used in chemistry is the genetic

algorithm (GA), which applies key concepts from evolutionary biology (genotypes, fitness,

and natural selection) to iteratively find solutions to an optimization problem by evolving

generations of solutions with increasingly more desirable features.

Exploration vs. Exploitation In the realm of non-exhaustive-search optimization strate-

gies, a key challenge is determining how a strategy will balance exploration of the total search

space with exploitation of local areas of interest. This balance must be struck carefully, so as

to give the strategy the best possible chance of discovering the desired global extremum of

the search space in the least possible time. An optimization strategy too focused on explo-

ration risks converging on an underdeveloped solution, while a strategy overly dominated by

exploitation risks converging on a solution found in a local, rather than the global, extremum.

There are several common approaches to striking the exploration vs. exploitation balance.

In simulated annealing, this balance is controlled by a temperature variable that gradually

decreases over time, simulating the physical annealing process in which molten metals are

slowly cooled from a molten state into a crystalline state. The algorithm works by moving

from one candidate solution to another nearby, based on the probability of it being a better

solution. Early on when the temperature variable is high, the algorithm accepts more

candidate solutions which are evaluated to be worse than the present solution, allowing for
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broader exploration of the search space. As the temperature falls, fewer worse solutions are

accepted, allowing the algorithm to ultimately focus on a narrower search space of proven

solutions.177 The drawback of this approach is that because it first focuses on primarily on

exploration and then focuses primarily on exploitation, it increases the likelihood that on

a highly variable optimization surface, it is easier for the algorithm to become focused on

a local rather than global extremum too early in the optimization process, resulting in an

incompletely-optimized solution. In Bayesian optimization, an acquisition function is used to

maintain the exploration vs. exploitation balance. This function selects the location of data

points evaluated to update the prior into the posterior function and can take many forms.

Generically, it uses predicted mean and variance values to guide selecting a data point by

having one term that directs data point selection toward less well-known search space and

another term that directs data point selection toward well-explored areas.178,179 The quality

of a Bayesian optimization method is determined by its specific acquisition function and its

suitability for a given application, making it a more challenging optimization method to use

efficiently. The computing time it takes to determine and calculate the next data point is

also relatively high, scaling at n3, meaning that if the acquisition function is not efficient in

choosing the most meaningful points to explore, Bayesian optimization can quickly become

an expensive method. In contrast to these two optimization methods, genetic algorithms

maintain the balance between exploration and exploitation by two operators modelled on

evolutionary theory, crossover and mutation. The crossover operator focuses on exploitation

by combining the best known candidate solutions, while the mutation operator focuses

on exploration by introducing random changes into the candidate solution pool to ensure

broader search space examination.180 Because they treat explorative and exploitative drives

as separate, parallel processes, genetic algorithms are highly unlikely to become trapped

in local extrema. These processes are also simple and time efficient, meaning that genetic

algorithms are limited in their time complexity by the step of actually evaluating candidate

solutions rather than in directing the path through search space.
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5.3 Genetic Algorithms
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Figure 5.1: Schematic demonstrating the basic steps in the GA workflow, using simplified hexamers

as an example of candidate molecules.

In a GA’s evolutionary scheme, a population of possible solutions to an optimization

problem are generated and then run through selection, crossover, and mutation operators

to produce a new population of offspring (see Figure 5.1)181. Each successive population is

known as a generation and can contain increasingly better solutions; generations are generated

until some level of convergence is reached among the top solutions.

A key component to the success and exploration of a GA is the representation of each

solution. Each solution must be encoded in a way that contains all necessary information

and allows for crossover and mutation operations. GAs that efficiently sample chemical space

frequently use string-based (SMILES, SMARTS, SELFIES) or graph-based representations
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to encode molecular structure. SMILES is the most basic and intuitive chemical string

representation that describes the molecule using atoms and bonds. Similarly, SMARTS is a

language that can specify substructures within SMILES and is useful for finding particular

patterns. To address the possibility of invalidity of some SMILES, SELFIES was developed

to be more robust and handle entirely random strings182. To develop the two- or three-

dimensional structure, the string representations are transformed into a molecular graph,

where the nodes are atoms and edges are bonds. Recent work by Jan Jensen183 showed that

using a molecular graph directly as the representation for candidates in a GA can cross a

large distance in chemical space with few generations. In another work by Jensen, graph,

SMILES, DeepSMILES, and SELFIES representations were compared to traverse chemical

space to rediscover target molecules with a GA184. Graph-based representation had the

highest success rate and found the targets in fewer generations than other representations.

To evaluate the quality of each candidate solution, a fitness function is required that

can score each solution in a ranking system by its ability to solve an optimization problem.

Fitness functions that use time-consuming quantum mechanical calculations, such as density

functional (DFT) and first-principles methods, can dramatically slow the search through

chemical space due to their large resource requirements. Semiempirical methods such as

GFN1-xTB185 and GFN2-xTB165 have exhibited acceptable accuracy when compared to

DFT methods186 while maintaining low computational cost, ideal for a GA fitness evaluation

technique. Our group has employed these semiempirical methods to help accelerate the

discovery process of the GA and allow for the scaling to massive search spaces152,187. For

example, the evaluation of the power conversion efficiency for organic solar cells requires

information about the electronic structure and optical properties, which is obtained through

DFT and time-dependent DFT (TD-DFT) methods. Using these ab initio methods results

in the fitness function taking days to evaluate, meaning a GA employing these techniques

may need to run for months to complete a meaningful number of generations. While parallel

processing can improve the speed, lower cost methods like the semi-empirical GFN2-xTB
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and simplified TD-DFT (sTD-DFT) that takes minutes are vital to have a large impact on

the efficiency.

Once each candidate in the population is evaluated, a selection operation is performed to

choose candidates to act as parents to repopulate the next generation. There are various types

of selection operators, most notably fitness proportionate, rank, and tournament selection. In

fitness proportionate selection, such as roulette wheel selection, every individual has a chance

of being selected as a parent, with a probability proportional to its fitness. This method

applies a pressure for selection of more fit solutions. When the fitness scores are too similar

like towards the end of the GA run, they will have the same probability. To overcome this,

rank selection is a similar method that selects parents with a probability proportional to

its rank among the population, not its fitness. An alternative method is k-way tournament

selection, where k individuals are chosen at random and the best is selected as the parent.

In the re-population of the next generation, elitism is frequently used. This guarantees

that a small number of the most fit solutions are in the next generation without undergoing

mutation. This approach guarantees that the best solutions remain and will exist in the final

generation.

To build the children for the next generation, the parents selected undergo crossover

operation, which can vary depending on the optimization problem. In work by Hiener et al.,

child co-polymers are designed with the monomeric units from one parent and the sequence of

units from another? . To dissuade premature convergence, a mutation operator is introduced

to ensure diversity within each population. Without the process of mutation, the solutions

are limited to traits selected in the initial population, prohibiting the successful exploration

through the search space. The percentage of solutions in each population allowed to undergo

mutation is an important parameter for a successful genetic algorithm. In Greenstein et

al., non-fullerene acceptors underwent crossover by replacing the core or terminal units, or

rearranging the electron-withdrawing/donating groups into a new sequence, with a mutation

rate of 40%.
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5.3.1 Recent Work

Recent work reveals the breadth of applications in which GA-based searches prove efficient

tools for the exploration of chemical space. GAs have been used to aid drug discovery efforts,

exploring areas of chemical space around known bioactive peptides with similarly active

structures1 as well as designing ligand candidates with good docking scores for binding to given

protein targets188. They are also capable of discovering novel protein structures with enhanced

functionalities like thermostable and solvent-tolerant metalloproteins189 peptide scaffolds with

tailored catalytic capabilities190, and high antifreeze activity proteins191. GAs have proven

capable of efficiently exploring conformational space, to find low energy structures on complex

potential energy surfaces192 as well as to generate geometrically diverse structures152. In

nanomaterial research, GAs have been adapted to predict and optimize the atomic structures

of bi- and trimetallic nanoparticles193–195 as well as chemically diverse nanoclusters196. On

the other end of the materials spectrum, GAs have successfully been implemented to explore

large molecular systems such as predicting crystal structures197 and designing MOF arrays

for targeted applications.198,199 In the realm of energetic materials, GAs have been used for a

diverse set of chemical applications, including thermal energy storage systems200, thermal

heat batteries201, organic photovoltaics3,202, and high dielectric oligomers187.

5.4 Machine Learning

ML has been extensively used in recent years in many applications as a surrogate to more

computationally expensive quantum-mechanical (QM) methods such as DFT. ML has shown

potential as a fast and accurate prediction method that could combine with a GA to provide

more accurate rapid evaluations over semi-empirical methods. In the past, in order to train a

ML model, a training set of molecules, specific to the model’s objective, would have to be
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created based on previous research and chemical intuition. Combining GA with ML opens the

door to a more diverse and complex data sets that can improve a ML model’s performance

by increasing the search space.

5.4.1 Molecular Representations in Machine Learning

To apply ML methods to chemistry, molecules typically need to be translated from the

familiar laboratory representation into a representation that the model can interpret. These

representations need to convey the underlying physics of the molecule for models to infer

patterns and learn. There are multiple ways of representing molecules in machine learning

from character encoding with representations like SMILES15–17 and InChi18, to fragment-

based encodings seen with Extended-Connectivity Fingerprints (ECFP)25 and MinHash

Fingerprints (MHFP)203, to the inclusion of local and global information with representations

like the Coulomb Matrix22 and atom-centered symmetry functions (ACSF)4.

Extended-connectivity fingerprints25 (ECFP) are a molecular graph model that expands

out along bonds from each heavy atom for 2-3 steps to observe the local connectivity of each

heavy atom. The extensions from each heavy atom are stored as a fragment that is hashed as

a fingerprint. After iterating over the molecule, these fragment fingerprints are combined to

describe the molecule. MinHash fingerprints (NHFP) are similar to ECFP, in that they they

both encode the local environments in a molecule. However, MHFP uses a different hashing

algorithm, employing methods usually used in natural language processing and text mining,

which can outperform ECFP in many cases203.

Rupp et al.22 proposed using molecular information in the Hamiltonian, such as coordinates

and nuclear charges, for the modeling of atomization energies, leading to the creation of the
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Coulomb matrix (CM) representation. The CM representation seen below:

MIJ =

⎧⎪⎪⎨⎪⎪⎩
0.5Z2.4

I for I = J,

ZIZJ

|RI−RJ |
for I ̸= J.

(5.1)

consists of a square matrix (MIJ) in which the off-diagonal elements are the Coulomb nuclear

repulsion between the atom pairs. This representation was further expanded upon to generate

the Bag of Bonds23 (BOB) representation. BOB is a reorganization of the CM representation

in which the atoms and pair-wise interactions are sorted into bags (e.g. C, C-C, and C-N) in

a bag-of-words text mining descriptor style and filled with ZIZJ/|RI −RJ |. Further work

was done to make the Bond Angle-ML24 (BAML) representation, a many-body expansion of

BOB through the inclusion of extra bags containing angles and torsions.

Another way of incorporating connectivity information of local chemical environments

is through the use of molecular graphs, where each atom is a node and the bonds are the

edges connecting the nodes. This representation emphasizes the bonding structure, giving

a 2D topological map of the molecule26,204. A more advanced graph-based representation,

ChemProp, is using a molecular graph as an import for a message-passing neural network to

give a learned fingerprint representation for property prediction205,206.

ACSFs are an additional way of including local chemical environments by describing

local atomic environments with radial and angular symmetry functions. This approach for

representing molecules has been adopted for use in multiple ML architectures as seen with

ANI-1x6,7, ANI-1ccx27, and ANI-2x8, and FCHL28,29.

While a lot of work has gone into improving upon current representations through

the creation of DeepSMILES21 and BigSMILES207, many state-of–of-the–the-art methods

have moved to adaptions of ACSFs as seen in FCHL, ANI-1x, ANI-1ccx, and ANI-2x.

Although results have shown that there is not a "one size fits all" descriptor or method5,34,

representations based on local environment connectivity have consistently demonstrated
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improved accuracy over other representations172,208.

5.4.2 Machine Learning Performance
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Figure 5.2: Performance of various computational chemistry methods is shown, plotting their median

R2 against timescale of calculations. Current ML methods fall near the middle, most comparable to

semi-empirical methods

Much work has gone into the production of various ML representations and models for

thermochemical applications with the goal to rival conventional quantum mechanical methods.

Studies by Faber et al.5 and MoleculeNet34 compared representations and methods for various

thermochemical properties. The consensus of these findings demonstrated the promise of ML

models but exposed the lack of a one size fits all solution, with the best representation and

method for one property evaluation being different than another.

Further testing done by our group tasked ML models with the ranking of conformers172.

The work set out to determine the ability of ML models to distinguish between thermally

accessible conformations and compared the results to conventional methods. ML models were

found to not only perform roughly on par with but also take as long as semiempirical methods,

see Figure 5.2. While performance is not yet a surrogate for the more computationally
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expensive quantum-mechanical methods, these early ML models show promise with the

possibility of future improvements.

Our group evaluated the capability of ML models for potential energy curves and geometry

optimizations208. ANI-2x8, Colorful CNN161,162, and FCHL29 were found to be among the best

performers by consistently predicting the equilibrium bond length correctly and demonstrating

an understanding of repulsive and attractive forces. While the methods performed remarkably

around the equilibrium bond length, performance degraded at long-range interactions, a side

effect of the limited displacement regime around the equilibrium bond length for most of the

training sets.

One area where ML has been intensely used and researched is in molecular and material

property prediction. For example, ML has been used to predict acid dissociation constants

(pKa)209–211, ground state and excited state energies212–217, and solubility in different solvents

(LogS)218,219, just to name a very selected few. Furthermore, in our group we implemented

a ML model to predict the Marcus reorganization energies (λ) of polythiophene based

oligomers220. This model showed a heteroscedastic behavior, where lower values of λ had

higher prediction accuracy than higher λ. This is a fast developing research field, and many

different models are continuously being published for different molecular properties at a

seemingly accelerating rate.

Traditionally, more accurate computationally heavy methods, such as DFT or Coupled

Cluster, have been used to calculate molecular properties, a process that can sometimes take

several days or weeks for a single compound. This can hinder research and be wasteful due

to the large resource requirements needed to run those calculations. And while processors

have been gradually improving and getting faster and more efficient, predicting molecular

properties using a trained ML model can give results in a fraction of the time it would take

to do so using DFT, for example. While the accuracy of ML models, as of now, is closer to

those of semi-empirical methods, we expect it to improve as better training sets are being

made and better models are being trained. The so-called "Holy Grail" of ML is to have the
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accuracy of DFT on a timescale of Force Field (FF) methods172.

5.4.3 Issues with Machine Learning

Folmsbee et al.208 recently demonstrated a key issue that can arise with ML. When testing ML

models’ performance on H2, a common model in quantum chemistry, the models expectedly

performed poorly due to the training not containing information on hydrogen-hydrogen bonds.

This expected inadequacy demonstrates a key issue for ML performance, the dependence of

the training set space. The work also demonstrated other issues with training set constraints

when examining both short and long-range interactions at distances outside of the training

set finding similar issues. This concern can be easily addressed through the expansion of the

training set to cover a more diverse representation of chemical space. There are larger datasets

like that of PubchemQC166 that could build upon the diversity of existing training sets by

introducing additional atomic species and motifs while providing synthetically accessible

training data.

5.5 Combining Genetic Algorithms and Machine Learning

GAs and ML have allowed for considerable advancements in materials discovery, yet on their

own, both methods have drawbacks. GAs perform well screening large swaths of chemical

space, yet can be time consuming during the property evaluation step. ML can quickly

evaluate these properties, but are frequently limited to molecules within or similar to the

training set. The full impact of these methods can be amplified using a hybrid approach of

combining GA and ML.
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5.5.1 Improving GAs with ML

One method is to utilize an ML model as the fitness function in a GA. Once the ML model

is trained, dramatic speedups in evaluation time are possible. For example, researchers saw a

12,600-fold speedup in computation time by using an ML model to predict the stiffness and

critical resolved shear stress for CoNiCrFeMn alloys as opposed to MD simulations221. This

hybrid approach has already been applied to numerous classes of materials, such as aptamers

for specific biomarkers222, peptides for antimicrobial properties223, organic molecules for

maximum absorption wavelengths224, and inorganic complexes for spin-state splitting225.

Another approach to reduce evaluation time is with an ensemble-based ML-GA model. The

combined method can use quantum chemical methods such as DFT or semi-empirical methods

for evaluation within the GA over the first set of generations, while simultaneously training

ML models. During each training run, multiple ML models will be saved as "snapshots" of

the training up to a certain generation. This allows for the training of a smaller NN at the

time of the snapshot instead of creating one NN from all previous data, decreasing training

time of the NNs during the GA and potentially improving accuracy. The ensemble of these

models will eventually take over evaluation once the variance between snapshots is below a set

error threshold compared to the original calculation method. This greatly improves efficiency

in the long run, as ML evaluation takes a fraction of the time of quantum-mechanical based

methods, and the diversity among snapshot models reduces ML error.

5.5.2 Enhancing ML training sets with a GA

The advantages of combining these methods are not limited to enhancing GAs. Incorporating

GAs in ML training can greatly enhance and diversify training datasets. Many existing works

in quantum chemical ML use the QM9 dataset31,33, a set containing ∼134k molecules with

up to 9 heavy atoms consisting of C, O, N, and F, or a subset of the QM95,22–24,34. There are
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currently larger and more diverse quantum chemistry datasets like PubChemQC166, a set

containing 3.5 million molecules, that could expand training of ML models. The challenge

when trying to use these datasets is the resources needed for training. This is especially

apparent with methods like the bag of features descriptors, which require every bag to be the

same as the largest bag for a given molecule in the dataset. With every descriptor vector of

equal size to that of the largest molecule in the entire dataset, training on the entirety of a

dataset the size of PubChemQC can require terabytes of memory usage for regression tasks.

Methods from previous work have utilized a GA to optimize a training set from the

QM9 dataset for machine learning226. This optimization method can be performed for

larger datasets reducing training time by decreasing the number of molecules required to be

trained on while selecting a diverse representation of the chemical space of that large dataset.

Methods such as clustering can likewise aid in the creation of a smaller subset of diverse

molecules as candidates can be selected from the clusters to represent the chemical space

of that cluster. Implementation of these optimization methods will allow for more efficient

training on larger datasets.

Another major issue with ML that can be mitigated with GA is the diversity of training

sets. The accuracy of ML predictions is limited to the quality of the dataset, and usually

performs poorly on molecules too different than what it was trained on. One solution is to use

a GA to design a diverse training set for ML by ensuring better representation of chemical

space in order to increase accuracy of an ML predictor. A GA can exploit information such

as atomic environments (eg. aromatics, bond types, chirality), number of atoms, and dipole

moments by maximizing the dissimilarity from other compounds within a descriptor space to

generate a diverse set of molecules.
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5.6 Conclusions

As many subdisciplines in the field of chemistry continue to increase their use of computational

modeling, efficient methods are needed for predicting and evaluating new molecules. GAs

provide an established and promising solution because of their ability to quickly and thoroughly

explore chemical space. By balancing the impulses of exploration and exploitation through

separate, parallel operators they are able to avoid the expense of exhaustive searches. ML

models have also become vital tools in computational chemistry to quickly calculate molecular

properties. Although they currently rank closer to semi-empirical models in terms of accuracy,

continuing improvements in model development and training set diversity continue to push

ML models closer to DFT-level accuracy. By combining the strengths of both GAs and ML

models, future work promises to further improve the efficiency and accuracy of computational

chemistry calculations. Through ML fitness evaluation, ensemble models, and GA-generated

and enhanced training sets, these two effective computational tools can draw from each

other’s strengths while mitigating each other’s weaknesses.
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6.0 Conclusions and Future Directions

6.1 Conclusions

Intrigue for computer-accelerated material design continues as improvements in computer

processing and molecular screening techniques increase. Screening methods have opted for

semi-empirical and FF methods over time-consuming conventional quantum mechanical

methods as they can provide a significant speedup at the cost of accuracy, increasing the

pace at which chemical space can be explored. Machine learning (ML) aims to remove this

accuracy versus time trade-off and provide a method capable of being both fast and accurate.

This dissertation has presented several evaluations of the viability of ML to solve these

problems in chemistry while outlining necessary improvements for the method. This began by

evaluating the ability of ML methods to accurately distinguish between thermally accessible

conformations and how this performance compared to conventional methods tasked with

this function. With the understanding of the degree to which ML was able to distinguish

conformations, the extent of chemical physics understood by ML models was tested to

determine if the methods could understand both short and long-range interactions that occur

with bond compressing and stretching as well as the effect of steric hindrance of dihedral

angles. Subsequent work was completed with the intent to generate a larger diversity of

conformations to bolster ML training with a proposed alternative method for conformer

generation. Lastly, the combination of genetic algorithms (GA) and ML was proposed with

the aim to provide an efficient search of chemical space with the accuracy of time-consuming

quantum calculations.

Most molecules have multiple geometrically distinct conformations, requiring evaluation

methods to appropriately differentiate between them. Promising early ML methods, discussed
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in Chapter 2, were tested in comparison with force field (FF), semi-empirical, density

functional (DFT), and wavefunction methods to determine where ML methods performed

relative to for both conformer ranking accuracy and evaluation time. The test set for this

consisted of 700 small organic compounds, complex drug-like compounds, and ligands with

multiple conformer geometries for a total of around 6500 entries. This set of DFT-optimized

minima was evaluated using DLPNO-CCSD(T) for single-point atomization energies that

would be used as the comparison for the other tested methods.

Despite the claims of ML methods reaching DFT accuracy, our findings indicate state-

of-the-art methods perform on par for both accuracy and time with GFN2 semi-empirical

methods. Batch evaluation of ML methods can allow for improved evaluation times compared

to semi-empirical or DFT methods, though they lack the range of supported elements these

methods have. While these may not be desired findings, we expect these ML methods will

provide increased accuracy in the future as methods are improved as larger and more diverse

training data becomes available.

With an understanding of ML performance for ranking thermally accessible conformations,

a focus on the physical understanding of ML models was explored. Multiple studies had

already focused on the performance of ML models around the equilibrium bond length,

finding ML to perform adequately in the harmonic portion of the potential energy curve but

neglected examination further from equilibrium6–8,27,36. Chapter 3 set out to examine whether

ML could interpret both short and long-range interactions that occur with bond compressing

and stretching as well as the effect of steric hindrances has on dihedral angles. This work

analyzed the performance of nine common ML models on a total of 17 bond stretches and 5

dihedral scans and compared the results to the DFT method ωB97X.

The consistently top methods ANI-1x, ANI-2x, FCHL, and CNN best demonstrated the

ability to accurately predict energies while also predicting the repulsive and attractive forces

of the potential energy curves. While these ML methods performed adequately around the

equilibrium bond length, ML methods struggled in the extremes of short and long-range
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interactions, indicating the need for training data in this domain. Further need for more

robust training sets was made clear during the evaluation of dihedral scans with ANI-2x

outperforming the other ML methods with the help of the additional torsion sampling in the

training set.

In general, applying ML to molecules outside the scope of the training set is still a present

issue that affects the viability of ML to be a surrogate for DFT and other time-consuming

methods. There is a further need for the inclusion of additional elements and an increase in

the diversity of molecules in the training set for this goal to be achieved.

Taking into consideration the previous work of determining the improvements that need

to be made to ML, Chapter 4 provides a basis for pursuing the creation of a better conformer

training set. The focus of the work was to compare experimental crystallographic geometries

and gas-phase computed conformers to determine similarity and if computed conformer

torsional angle preferences could be used for the basis of an ETKDG alternative. This

quantum information based ETKDG, coined QTDG, would need the computed torsions

to demonstrate correlation with experimental results. To determine this, the torsions of 3

million compounds were analyzed using exhaustive sampling with the GFN2 method across

multiple small molecule sets and compared to data from the COD.

Though the correlation for acyclic torsions was not perfect, this can be attributed to two

main causes, expected differences between crystal structures and gas-phase, and the lack

of data present in the COD for some torsion patterns. In the case of expected differences,

ωB97X-D3 calculations were performed to verify the GFN2 results and were found to agree,

indicating the differences were from disparities between the crystal structure and the gas-

phase geometries. Differences in cyclic torsions exemplified instances in which the COD

was incomplete in torsion data. While COD displayed torsional preferences, the additional

data obtained from quantum calculations provided a more thorough understanding of the

torsional preferences. In analyzing the data, GFN2 provided accurate and reliable torsional

preferences that could provide a basis for quantum information based ETKDG, QTDG, for
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further generation of conformational data sets.

6.2 Future Directions

The work outlined in Chapter 2 and Chapter 3 has helped demonstrate the need for larger and

more diverse training sets. The augmentation of current training sets can be done through

the use of existing data sets along with expansion through the means of proposed methods

QTDG and genetic algorithms (GA). These additions are needed as ML has been shown to

struggle with the prediction of molecules too far outside the scope of the training set.

Training sets for ML models are still rather limited in their diversity with common sets

only containing H, C, N, O, and F with some limited to only optimized geometries32,33.

The advantage of including both equilibrium and non-equilibrium structures35 and torsion

sampling8 information in the training set was described in Chapter 3. While these inclusions

improve the performance of ML, there were still important interactions and atom species

missing from these sets. These training set shortcomings can be addressed by expanding

the diversity of training data through the inclusion of already available data sets. Existing

data sets like the Non-Covalent Interactions Atlas (NCIA) data sets can provide high-quality

calculations on non-covalent systems while a data set like PubChemQC can provide 3 million

electronic structure calculations of a diverse array of synthetically accessible organic molecules

from PubChem.

Further expansion of training set data can be performed using both the QTDG method

proposed in Chapter 4 along with a GA as discussed in Chapter 5. The QTDG method

has the possibility of providing a quantum-based alternative to ETKDG for fast conformer

searches that ideally have better agreement with quantum-based calculations like DFT, thus

providing a training set with torsions that better represent ML’s desired accuracy. The issue

of data set diversity is a task that can be approached with a GA. A GA can design a diverse
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training set for ML by maximizing the dissimilarity of compounds in the training set, ensuring

areas of diverse chemical space are present in the training set. These different steps should

be effective in the creation of a larger and more diverse training set that better represents

the vastness of chemical space.

In addition to GAs being useful in the betterment of ML training sets, ML appears

poised to aid the accuracy of GAs. GAs have already demonstrated the benefit of using

lower-cost semi-empirical methods for fitness function evaluation for speeding up the GA

discovery process, but this comes with an accuracy trade-off. ML could overcome this

accuracy trade-off by providing DFT level accuracy predictions, allowing for a fast and

accurate evaluation method. While current ML accuracy is on par with semi-empirical

methods, further improvements could have the potential to provide GAs with a fast and

accurate evaluation method for the fitness function, allowing them to accurately search

chemical space for promising materials.
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Appendix A: Supplementary Information for

Assessing Conformer Energies using Electronic Structure

and Machine Learning Methods

A.1 Supplementary Figures

Additional supporting information may be found at the GitHub repository for this arti-

cle: https://github.com/ghutchis/conformer-benchmark
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Appendix B: Supplementary Information for

Evaluation of Thermochemical Machine Learning for

Potential Energy Curves and Geometry Optimization

B.1 Supplementary Figures

Figures of all bond stretch potential energy curves, dihedral potential energy scans for all

molecules and methods considered. All raw data, Python notebooks, and the trained Colorful

CNN model can be found at https://github.com/hutchisonlab/ml-benchmark.
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Figure B.1: Histogram of O-H bond lengths in ANI-1 data set for the normal-mode sampling of

water.
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Table B.1: Machine learning performance in median mean absolute percent error (MAPE) for

multiple regions of the potential energy curves where r0 is the equilibrium bond length.

Method MAPE
r0-0.75Å–r0-0.25Å

MAPE
r0+/-0.25Å

MAPE
r0+0.25Å–r0+1.25Å

MAPE
r0+1.25Å–r0+2.25Å

ANI-2x 0.294 0.002 0.039 0.127
BOB/BRR 1.395 0.223 0.638 0.933
FCHL/KRR 4.994 0.255 0.266 0.469
Colorful CNN 0.708 0.256 0.288 0.433
ANI-1x 0.740 0.265 0.308 0.677
BOB/KRR 1.787 0.343 0.657 0.833
BOB/RFR 45.558 43.881 36.496 37.168
BAND-NN 99.361 99.310 99.375 99.380
ECFP/RFR 197.747 193.370 103.809 104.613
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Figure B.2: Bond stretch potential energy curves for (a) N2, (b) H2, (c) aspartame, (d) dialanine

using total SCF energies in kcal/mol.
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Figure B.3: Examples of steric clashes in sucrose dihedral angle scan. Yellow dashed circles highlight

atoms with overlapping Van der Waalls radii.
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Figure B.4: Dihedral energy predictions for (a) biphenyl and (b) sucrose in kcal/mol.
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Figure B.5: Dialanine bond stretch for all methods
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Figure B.6: Aspartame bond stretch for all methods
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Figure B.7: Biphenyl bond stretch for all methods
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Figure B.8: Benzene C-C bond stretch for all methods
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Figure B.9: Benzene C-H bond stretch for all methods
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Figure B.10: Methanol bond stretch for all methods
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Figure B.11: Methane bond stretch for all methods
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Figure B.12: Carbon monoxide bond stretch for all methods
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Figure B.13: Diglycine bond stretch for all methods
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Figure B.14: H2 bond stretch for all methods
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Figure B.15: Ethylene bond stretch for all methods
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Figure B.16: Water bond stretch for all methods
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Figure B.17: Acetylene bond stretch for all methods
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Figure B.18: Hydrogen cyanide bond stretch for all methods
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Figure B.19: N2 bond stretch for all methods
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Figure B.20: Ammonia bond stretch for all methods
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Figure B.21: Sucrose bond stretch for all methods
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Figure B.22: Biphenyl torsion for all methods
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Figure B.23: Sucrose torsion for all methods
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Appendix C: Supplementary Information for

Systematic Comparison of Experimental Crystallographic

Geometries and Gas-Phase Computed Conformers

C.1 Supplementary Figures

All raw data, Python notebooks, and torsion pattern figures can be found at https://https:

//github.com/dlf57/quantum-torsions.
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