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Abstract 

A Simulation Study of Computer-Adaptive Testing for Measuring Treatment-

Related Change in Confrontation Naming 

 

Pauline Bayotas, BA 

 

University of Pittsburgh, 2022 

 

 

 

 

Abstract 

Computer adaptive testing (CAT) is an approach that can be used to shorten assessments 

without sacrificing their psychometric properties. Recent studies (Fergadiotis, Kellough, & Hula, 

2015; Hula, Kellough, & Fergadiotis, 2015; Fergadiotis, Hula, Swiderski, Lei, and Kellough, 2019; 

Hula, Fergadiotis, Swiderski, Silkes, & Kellough, 2020)  produced a CAT with an item bank 

consisting of the Philadelphia Naming Test (PNT; Roach et al., 1996). The main advantage of 

CAT is to maximize the precision of the test, requiring fewer testing items while having the same 

or better level of accuracy as traditional brief naming assessments. However, before a CAT can be 

used to measure change in anomia severity, it is important to understand how the algorithm 

interacts with commonly used aphasia interventions and whether it is as responsive to treatment-

related change as standard static assessments. This simulation study investigated the sensitivity of 

a computer adaptive version of the Philadelphia Naming Test (PNT-CAT) to treatment-related 

change in three different treatment conditions: item-general, item-specific and partially item-

specific. For each condition, we simulated responses using a one-parameter logistic item response 

theory model and computed pre- to post-treatment change scores for the PNT-CAT and the full 

PNT. For the item-general condition, both tests performed similarly well. However, the PNT-CAT 

overestimated the effects of item-specific and the partially item-specific treatment relative to the 

full test. These results provide useful information about the conditions in which CAT can be validly 
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used to measure treatment outcomes. Present results suggest that when treatment affects 

underlying naming ability the PNT-CAT30 is appropriately responsive to treatment and provides 

an efficient alternative to the administration to the full PNT. On the other hand, when treatment 

effects are item-specific, the PNT-CAT30 may overestimate or underestimate treatment effects 

depending on the baseline ability level and the number of treated items included in post-treatment 

CAT.  
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1.0 Introduction 

Aphasia is a language impairment commonly caused by stroke in the left hemisphere of 

the brain. This disorder is associated with a variety of impairments that relate to communication, 

such as speaking, reading, writing, and understanding language. Anomia, the cardinal deficit of 

aphasia, is the inability to access and retrieve words (Goodglass & Wingfield, 1997). Anomia 

typically manifests as a failure to produce the intended name of a person, object, or action. These 

failures can take the form of semantically-related words, phonologically-related words or 

nonwords, unrelated nonwords, descriptions, or a complete lack of response, among other forms. 

As a result, individuals with anomia are negatively affected by their reduced ability to convey what 

they want accurately and efficiently. In turn, this can be debilitating for people with aphasia in 

activities of daily living (Goodglass, 1993).  

One of the most commonly used methods to assess and diagnose the severity of word-

finding impairments is confrontation picture naming. Picture naming tests are used to assess 

anomia in people with aphasia (PWA) and correlate highly with overall aphasia severity (Walker 

& Schwartz, 2012). Picture naming tests are an effective choice for assessing anomia because they 

can be used to quantify a person’s overall ability to access and retrieve words (Fergadiotis, Hula, 

Swiderski, Lei, & Kellough, 2019) as well as provide consistent assessment results (Goodglass, 

1993).  

Currently, there are several different confrontation picture naming tests in common use.  

The most widely used naming test in the United States is most likely the Boston Naming Test 

(BNT; Kaplan et al., 2001), and most widely used aphasia batteries, such as the Western Aphasia 

Battery (WAB-R; Lippincott, Williams, & Wilkins, 2007) and the Comprehensive Aphasia Test 
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(CAT; Swinburn, Porter, & Howard, 2004) have confrontation naming subtests. One other test that 

is widely used, especially in clinical research contexts, is the Philadelphia Naming Test (PNT; 

Roach et al., 1996). The PNT is a 175-item test developed to assess naming ability in people with 

aphasia (PWA). The items of the PNT are one to four syllables in length, vary in lexical frequency, 

and age of acquisition (Roach et., al 1996). It has strong psychometric properties including high 

test-retest reliability, low correlation with premorbid educational level, and high correlation with 

aphasia severity (Walker & Schwartz, 2012).  

Despite the widespread use of the PNT, its utility for quantifying anomia has limitations. 

The PNT, like most other currently available tests, was developed under classical test theory, 

which relies on often unrealistic assumptions (Hula, Fergadiotis, Swiderski, Silkes, & Kellough, 

2020). For instance, score precision for naming tests is typically expressed as a single standard 

error of measurement that is constant regardless of the ability level of the client being tested. This 

assumption disregards the idea that standard error of measurement varies as it relates to the ability 

of the test-taker (de Ayala, 2013). In addition, the PNT is too long to give in many clinical settings 

due to time constraints on clinicians. Furthermore, the length of the test increases testing burden 

on PWA and may result in fatigue and frustration that can affect an individual’s performance, 

leading to inaccurate results and conclusions. To address this problem, Walker and Schwartz 

(2012), developed two 30-item short forms of the PNT. Based on their findings, both short forms 

correlate highly with the original long form PNT (Walker & Schwartz, 2012).  

Although the PNT short-forms (Walker & Schwartz, 2012) offer the advantage of shorter 

administration time, while also maintaining a strong correlation with the long form of the PNT, 

there are limitations with this method. Because these short forms are static, containing a fixed item 

set, they are more precise for people with average severity and less precise for those who are at 
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the extreme and low ends of the spectrum (Fergadiotis et al., 2019). To demonstrate this point, in 

a hypothetical scenario where a naming test contains only easy items, scores for individuals with 

severe aphasia would differ meaningfully from one another, permitting useful rank ordering of the 

individuals. By contrast, scores for individuals with mild aphasia would be uniformly high, making 

rank ordering of them less useful if not impossible (Fergadiotis et al., 2019). Additionally, the PNT 

short-forms assume the standard error of measurement is uniform regardless of ability level, which 

as discussed earlier, is unrealistic in most testing applications.  

An alternative approach to shortening the PNT is to employ item response theory (IRT) 

and computerized adaptive testing (CAT) methods. IRT (Lord, Novick, & Birnbaum, 1968) is a 

psychometric framework used for the development and analysis of tools for educational, 

psychological, and related kinds of measurement. A major advantage of IRT is that it can be used 

to support computer adaptive testing. An IRT-based computer adaptive test (CAT) uses an 

algorithm that selects and administers only items targeted to maximize statistical information at a 

certain ability level (Fergadiotis et.al., 2019).  The main advantage of CAT is that it maximizes 

the precision of the test, requiring fewer testing items while having the same or better level of 

accuracy as traditional naming assessments of similar length. However, IRT and CAT requires 

more data than what is required in classical test theory approaches in order to estimate item 

parameters and investigate validity. To address these issues, Fergadiotis, Hula, and colleagues 

(Fergadiotis, Kellough, & Hula, 2015; Hula, Kellough, & Fergadiotis, 2015; Fergadiotis et. al., 

2019; Hula et. al., 2020; Fergadiotis, Casilio, Hula, and Swiderski, 2021) have investigated the 

applicability of IRT models to the PNT and developed an  IRT-based computer adaptive test 

version of the Philadelphia Naming Test.  
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As mentioned previously, IRT is a psychometric framework used for the development of 

educational and clinical assessments. The essential characteristic being measured in IRT is an 

unobservable or, latent, trait, which is inferred from an individual’s observed performance on a set 

of calibrated test items (Baylor et. al., 2011).  Unlike classical test theory, which is focused on test-

level properties, IRT emphasizes item-level characteristics, such as item difficulty, and models the 

responses of a test-taker to the individual items.  

A commonly used IRT model is the one-parameter logistic model (1-PL), which uses only 

one parameter, item difficulty, to explain the relationship between the item, the individual’s latent 

trait or ability level, and the individual’s response to the item. Item difficulty refers to the location 

of the item on the trait or ability range (Baylor et. al., 2011). If an individual has a latent trait level 

higher than an item’s difficulty, it will increase the likelihood of answering the item correctly. On 

the other hand, as items become more difficult, participants would need to have a higher level of 

the latent trait to correctly respond to the item. Item difficulty and person ability are typically 

scaled such that when they are the same, the probability of a correct response is 50%.  

In the 1-PL model, all items are assumed to have the same discrimination. The 2-PL model 

adds another parameter to account for variability in item discrimination. Discrimination refers to 

how well an item distinguishes among individuals located at different points along the ability 

continuum (Baylor et., al 2011). In the 2-PL model, items that have higher discrimination values 

are more closely related to the trait level, give more information in estimating person ability levels, 

and are more likely to elicit different responses from individuals with different trait levels (Baylor 

et al., 2011). While the 2-PL model may better fit the data, it also requires larger sample sizes to 

ensure the parameter estimates are accurate and stable.  
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The last IRT model that will be discussed is the three-parameter logistic model (3-PL), 

which adds a parameter that takes into account the possibility of individuals answering items 

correctly by chance.  This third parameter, often called the guessing or ‘psuedo-guessing’ 

parameter, models the probability of a person with infinitely low ability getting an item correct 

(Baylor et. al., 2011).  For the current investigation, a 1-PL model will be used. The 2-PL model 

could be appropriate for naming assessment in aphasia, and this possibility will be considered in 

the Discussion. By contrast, because the probability of naming a picture correctly purely by chance 

is negligible, the 3-PL model is not appropriate for this application and will not be discussed 

further. 

Another important feature of IRT models that makes them useful for computer adaptive 

testing is the concept of statistical information. In an IRT model, each item in the test is associated 

with an item information function, which defines the degree to which the item increases the 

precision of an individual’s ability estimate (Hula et al., 2015). This function reaches its peak at 

the ability level where it corresponds to the item’s difficulty (Hula et al., 2015).  Item information 

is additive, indicating that as more items are distributed close to the individual’s ability level, the 

information for the overall test is maximized to its potential, producing more precise results (Hula 

et al., 2015). In this way, the item information function allows selection of items targeted to a 

person’s ability level during computer adaptive test administration.  

Recent studies (Hula et. al., 2015; Fergadiotis et al., 2015; Fergadiotis et al., 2019; Hula et. 

al., 2020) produced computer adaptive tests (CATs) with an item bank consisting of the PNT. An 

item bank is a set of items that measures a common underlying ability and uses a scale that is 

defined by person ability and item difficulty (Fergadiotis et.al., 2019). The CAT begins with the 

assumption that the person has an average score estimate. The first item is selected as the one best 
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targeted to this ability level. The item is presented, a response is collected, and the score estimate 

is updated based on that response. The next item is then selected as the one that provides the most 

information at this new ability level. As responses are collected, the score estimate is revised, and 

previous steps are repeated until the stopping rule is satisfied. The term stopping rule refers to a 

rule to stop the CAT, typically either when the standard error of the trait estimate falls below a 

threshold or when a predetermined number of items has been administered. Once the criterion is 

met, the final score estimate and standard error are presented.  

Fergadiotis and colleagues (2015) found that the 1-PL model was adequately fit PNT data 

collected from a large sample of persons with aphasia and provided reliable estimates of the PNT 

item difficulties. In a second study, Hula and colleagues (2015) conducted a simulation experiment 

to test whether the CAT could produce the same results as the full PNT. They investigated two 

CAT versions using different stopping rules: one thirty-item form (PNT-CAT 30) and one variable 

length form (PNT-CAT-VL). In both cases, they found that the CAT version correlated highly 

with the full test (0.95) and provided a valid and efficient measurement of anomia severity in 

aphasia. They concluded that these results have good implications for the use of an IRT based 

CAT version of the Philadelphia Naming Test.  

In order to confirm these simulation-based results, Fergadiotis, Hula, and colleagues 

(Fergadiotis et. al., 2019; Hula et. al., 2020) conducted two empirical studies. In their 2019 study, 

they investigated agreement between independent administration of the full PNT and the PNT-

CAT-30. They found a correlation of 0.95, in high agreement with prior simulation study. In the 

second study, they (2020) evaluated agreement between the PNT-CAT-30 and the PNT-CATVL, 

which excluded items that were administered in the PNT-CAT-30. They found that the two CAT 

versions correlated highly (0.90) and were stable in the absence of treatment.  
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Despite this positive evidence that the PNT-CAT versions agree well with the full test and 

with each other and are stable in the absence of treatment, there is currently no evidence about 

their responsiveness to treatment. One previous study of the responsiveness of CAT to treatment 

for low vision (Massof, 2013) suggested that adaptive testing may underestimate the effects of 

treatment in some conditions. Massof (2013) used simulation methods to study how well a 

computer adaptive test measured change in response to different kinds of treatment for low vision. 

He found that when the simulated treatment affected vision generally (e.g., cataract surgery), the 

CAT performed well and measured treatment effects accurately. However, when the simulated 

treatment did not affect vision generally, but only improved performance on some items included 

in the CAT (e.g., magnification glasses), the CAT underestimated the effects of the treatment. The 

results suggested that if the intervention produces a change in the properties of the items that were 

selected, CAT will experience difficulty making an accurate estimate of the person ability score. 

In these cases, the estimated person ability will depend on the responsiveness to the treatment of 

the particular items presented. It is important to note that the items in Massof’s study had more 

response categories than the PNT, and thus required a more complicated IRT model. This 

difference in IRT model structure may influence CAT performance and the effects of the items 

that were administered.  

Following Massof’s categorization of treatments for low vision as item-general or item-

specific, some treatments for aphasia can affect naming ability generally, while others are specific 

to the items that are directly trained. In general, behavioral treatments for anomia have larger 

effects on items that are directly treated and practiced than on items that are not treated directly 

(Wisenburn and Mahoney 2009; Schuchard and Middleton., 2018; Qique, Evans, and Dickey 

2019; Kendall, Moldestad, Allen, & Nadeau., 2019). In Wisenburn and Mahoney’s (2009) meta-
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analysis of word-finding treatments for aphasia, their findings showed evidence of strong gains for 

directly trained words and minor gains for untrained words regardless of the treatment approach 

(semantic, phonological, or mixed). These results parallel other more recent studies of naming 

treatment such as semantic feature analysis (SFA; Qique, Evans, and Dickey 2019) and 

phonomotor treatment (Kendall, Moldestad, Allen, & Nadeau., 2019).  In Quique, Evans, and 

Dickey’s (2019) meta-analysis of SFA results, they found that improvements were larger for 

treated words than untreated words. Theoretically, because SFA treatment activities target the 

semantic system, they cause activation and retrieval of similar concepts in the semantic system, 

leading to improvement for semantically related untreated items in addition to directly treated 

items. Results were similar for a study comparing SFA and phonomotor treatment (Kendall, 

Moldestad, Allen, & Nadeau., 2019), which showed that the directly trained words had the largest 

improvement. Kendall and colleagues also found that treatment effects generalized to untrained 

words that shared features (semantic features or phonological sequences, respectively), but to a 

lesser degree than directly trained words. In both studies, there was no significant generalization 

to untrained words that did not share semantic features or phonological sequences.   

While behavioral treatments for anomia show their strongest effects on the treated items, 

it is also important to consider non-behavioral interventions, such as pharmacological and non-

invasive brain stimulation treatments, which can be provided with or without concurrent 

behavioral treatment. For example, Hong, Zheng, Luo, Yin, Deng, and Hu (2021) conducted a 

meta-analysis of 14 studies in order to determine whether transcranial magnetic stimulation 

(TMS), a kind of non-invasive brain stimulation, had a positive effects on severity of impairment, 

expressive language, and receptive language in persons with aphasia. They found that TMS 

combined with behavioral treatment had favorable immediate and long-term effects on language 
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recovery in patients with post-stroke aphasia. Because some studies (e.g., Gravier et al., 2021; 

Barwood et al., 2013) have shown positive effects of TMS without concurrent behavioral 

treatment, the question of how well CAT measures the effects of treatments that affect general 

naming ability is also relevant. 

It is also important to examine treatments that are completely item specific and only affect 

directly trained items. Errorless learning is one example of a treatment approach that can affect 

directly trained items through repeated exposure of the stimuli and for which there is limited 

evidence of generalization to untreated stimuli (Fillingham, Hodgson, Sage, & Lambon 2003; 

Middleton & Schwartz 2012).  This treatment approach is motivated by evidence that some 

individuals who make errors may strengthen incorrect responses (Fillingham, Hodgson, Sage, & 

Lambon 2003; Middleton & Schwartz 2012;). In naming treatments, errorless learning reduces the 

occurrence of errors by removing spontaneous naming attempts. Instead, clinicians administer 

repeated exposure of the training stimuli to patients in order to activate semantic and phonological 

features between the target objects and their names (Fillingham, Hodgson, Sage, & Lambon 2003). 

While a minority of studies of error-reducing treatments showed positive generalization, there is 

no strong evidence that completely errorless techniques generalize well to untreated items 

(Fillingham, Hodgson, Sage, & Lambon 2003).  

The purpose of this study is to investigate how well the PNT-CAT measures change due to 

treatment by assessing the sensitivity of PNT-CAT in three different simulated treatment 

conditions. One condition is treatment that affects naming ability generally, without any item-

specific effects (e.g., like some applications of rTMS). The second condition is treatment where 

the effects are specific to particular items, and therefore only affect directly trained items (e.g., 

errorless learning). The final condition is treatment that is partially item specific, where the effects 
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are stronger for treated items and weaker, but present, for untreated items (e.g., SFA or 

phonomotor treatments). For each condition, we will test how well the PNT-CAT and the full PNT 

measure change due to treatment.  

In regard to the first condition in which treatment effects are completely item-general, we 

hypothesize that the PNT-CAT and the full PNT will perform similarly. For the second condition 

in which treatment effects are completely item-specific, we presume that the PNT-CAT will 

underestimate the effects of the treatment relative to the full PNT and the simulated effect.  This 

prediction is motivated by Massof’s (2013) study in which CAT underestimated the effects of 

item-specific treatment because it is dependent on the responsiveness of the particular items 

presented. Our hypothesis for the third condition is similar to our hypothesis for the second 

condition. In this case, we hypothesize that the PNT-CAT will underestimate treatment effects 

relative to the full PNT, but to a lesser degree than in condition two. This is because the third 

condition is only partially item specific and will also affect untreated items. As a result, the third 

condition may perform slightly better than the second condition. The results of these proposed 

study will provide needed validity evidence about the responsiveness of CAT to treatment related 

change. 

The proposed research examines how well the different conditions of the PNT-CAT 

compare with the full PNT. In doing this, we hope to determine how well the PNT-CAT measures 

change due to anomia treatment. By implementing treatments that target item-general, item-

specific, and partial item-specific through repeated structured simulations, we can draw stronger 

conclusions about the determinants of changes in overall naming performance and examine how 

different variables affect the likelihood of correct naming responses during CAT administration. 
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2.0 Methods 

The three conditions in this study were naming treatments that 1) affect all items equally, 

2) affect only the trained items, and 3) primarily affect trained items with smaller effects on 

untreated items. The R packages catR (Magis & Barrada, 2017)  and catIrt (Nydick, 2013) were 

used to simulate administration of the full PNT and computer adaptive PNT (PNT-CAT30) before 

and after two simulated treatment conditions (item-general, item-specific) under a 1-parameter 

logistic (1-PL) item response theory model.. The simulation parameters were based on studies 

conducted in Dr. Hula’s lab (Fergadiotis et al., 2015; Hula et al., 2015) and use the ability and item 

parameter estimates reported by Huston (2021). Huston (2021) refit IRT models originally 

reported by Fergadiotis and colleagues (2015) within a Bayesian framework and produced item 

parameter estimates based on a larger participant sample.  

We drew 1000 simulated pre-treatment naming ability values from a skew-normal distribution 

with mean 50 and SD 10 (and thus on a T-score scale) based on empirical data (Fergadiotis et al., 

2015; Fergadiotis et al., 2019). Using these ability values and the PNT 1-PL model item 

parameters, we simulated pre-treatment responses for all 175 items of the PNT for each of the 

1000 simulated participants (simulees).  

For the item-general condition, we simulated post-treatment responses based on naming ability 

values increased by a constant 0.4 logits,  approximately 2.2 T-score units on the current scale, 

corresponding to an approximate maximum seven percentage point increase depending on baseline 

score. This effect size was based on Gravier and colleagues’ (2021) study of rTMS as a treatment 

for anomia without concurrent behavioral treatment. 



 12 

For the item-specific condition, we simulated post-treatment responses by first selecting 20 

items to approximate 25% correct at baseline, within the limits of the item bank, for each simulee 

individually. We then subtracted 12.08 T-score units (~2.2 logits) from the difficulty of these 20 

treated items in order to simulate improvement from ~25% at baseline to ~75% at post-treatment, 

and then simulated a new set of post-treatment responses for all 175 items. These item-specific 

treatment effect sizes were based on Quique et al. (2018). We used the simulated responses at pre 

and post-treatment to estimate scores on both the full PNT and PNT-CAT30 using the original 

item parameters. 

For the partially item-specific condition, we combined the item-general condition effect and 

item-specific condition effect and implemented those conditions to simulate the post treatment 

responses. We used the same procedures as for condition 1 and condition 2 where we made a 

selection of 20 items to approximate 25% correct at baseline, subtracted 12.08 T-score units from 

the difficulty of these treated items to simulate improvement from ~25% at baseline to ~75% at 

post-treatment, and also added a constant amount to simulees’ ability levels (~0.4 logits/2.2 T-

score units) at post-treatment. We then used the simulated responses at pre and post-treatment to 

estimate scores on both the full PNT and PNT-CAT30 using the original item parameters. 

Following Fergadiotis et al. (2019), scores for both the full PNT and the PNT-CAT30 were 

estimated using Bayesian expected a posteriori (EAP) scoring with a normal prior with a mean of 

50, a standard deviation of 10, and possible scores ranging from 10 to 90. The CAT items were 

selected using the maximum of the Fisher information function at the current ability estimate and 

the CAT terminated after 30 items. 



 13 

3.0 Data and Results 

3.1 Research Question 1: Item-General Condition 

Results are presented in Table 1. For condition 1, paired sample t-tests indicated that the change 

scores for both the full PNT (M = 2.27, 95%CI: 2.16, 2.38, SD = 1.83, t(999) = 39.3, p = < 2e-16) 

and PNT-CAT30 (M = 2.11, 95%CI: 1.92, 2.30, SD = 3.06, t(999) = 21.7, p = < 2e-16) were 

significantly greater than 0 with confidence intervals that included the generating value of 2.2 T-

score units. The difference of change score between the full PNT and the PNT-CAT30 (M = 0.16, 

95%CI: -0.06, 0.39, SD = 3.65) showed that the two tests were not significantly different from one 

another, t(999) = 1.41, p = 0.16. Therefore, direct comparison of the full PNT and PNT-CAT30 

indicated that they performed similarly.  

3.2 Research Question 2: Item-Specific Condition 

Results are presented in Table 1.  For condition 2, paired sample t-tests indicated that the change 

scores for both the full PNT (M = 1.91, 95%CI: 1.79, 2.03, SD = 1.96, t(999) = 30.9, p = < 2e-16) 

and PNT-CAT30 (M = 5.12, 95%CI: 4.83, 5.40, SD = 4.54, t(999) = 35.6,  p = < 2e-16) showed 

that both PNT versions obtained significant positive change scores. However, the difference of 

change score between the full PNT and the PNT-CAT30 (M = -3.20, 95%CI: -3.51, -2.90, SD = 

4.09) indicated that the two tests were significantly different from one another, t(999) = -20.5, p = 

<2e-16, with the CAT obtaining a larger effect size. A histogram of the number of treated items 
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administered in the post-treatment PNT-CAT30 is shown in Figure 1. A scatterplot of the PNT-

CAT30 change scores over the number of treated items administered is shown in Figure 2. There 

was a strong correlation between the change score and the number of treated items administered 

(Pearson r(999) = .70, p < .001). A scatterplot of the number of treated items in the pre-treatment 

PNT-CAT30 over true baseline naming ability level is shown in Figure 5. A scatterplot of the 

number of treated items in the post-treatment PNT-CAT30 over true baseline naming ability level 

is shown in Figure 6. 

3.3 Research Question 3: Partially Item-Specific Condition 

Results are presented in Table 1. For condition 3, results showed that both PNT versions performed 

similarly to Condition 2 with both the full PNT (M = 4.22, 95%CI: 4.10, 4.33 , SD = 1.90, t(999) 

= 70.1, p = < 2e-16) and the PNT-CAT30 (M = 7.41, 95%CI: 7.14, 7.68, SD = 4.33, t(999) = 54.2, 

p = < 2e-16) obtaining significant positive change scores, but with the CAT obtaining a larger 

effect size. The difference of change score between the full PNT and the PNT-CAT30 was 

significant (M = -3.19, 95%CI -3.04, -3.35, SD = 3.88, t(999) = -21.4, p = < 2e-16) and similar in 

size to Condition 2. A histogram of the number of treated items administered in the post-treatment 

PNT-CAT30 is shown in Figure 3. A scatterplot of the PNT-CAT30 change scores over the number 

of treated items administered is also shown in Figure 4. Similar to Condition 2, there was a strong 

correlation between the change score and the number of treated items administered (r(999) = .63, 

p < .001). 
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Table 1. Summary of t-tests comparing simulated full PNT and PNT-CAT30 change scores 

in item-general and item-specific treatment conditions. 

  Full PNT                         4.22 (4.10, 4.33)                     1.90                    70.1          < 2e-16 

  PNT-CAT30                   7.41 (7.14, 7.68)                     4.33                    54.2          < 2e-16 

  Full PNT – PNT-           -3.19 (-3.04, -3.35)                  3.88                  -21.4           < 2e-16 

  CAT30 

 

 

 

 

 

Comparison Mean (95%CI) 

Change or 

Difference Score 

SD of Change 

or Difference 

Score 

  t-statistic p-value 

Condition 1: Item-General Treatment 

Full PNT 2.27 (2.16, 2.38) 1.83 39.3      <2e-16 

PNT-CAT30 2.11 (1.92, 2.30) 3.06 21.7      < 2e-16 

Full PNT – PNT-

CAT30 

0.16 (-0.06, 0.39) 3.65 1.41      0.16 

Condition 2: Item-Specific Treatment 

Full PNT 1.91 (1.79, 2.03) 1.96             30.9       < 2e-16 

PNT-CAT30 5.12 (4.83, 5.40) 4.54             35.6       < 2e-16 

Full PNT – PNT-

CAT30 

-3.20 (-3.51, -2.90) 4.09           -20.5       < 2e-16 

Condition 3: Partial Item-Specific Treatment 



 16 

 

Figure 1. Histogram of the number of treated items administered in the post-treatment 

PNT-CAT30 in condition 2, item-specific treatment. 
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Figure 2. Scatterplot of PNT-CAT30 change scores over the number of treated items 

administered in the post-treatment PNT-CAT30. 

 

  

r(999) = 0.70 
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Figure 3 Histogram of the number of treated items administered in the post-treatment 

PNT-CAT30 in condition 3, partially item-specific treatment. 
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Figure 4 Scatterplot of PNT-CAT30 change scores over the number of treated items 

administered in the post-treatment PNT-CAT30.  

r(999)  = 0.63 
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Figure 5 . Scatterplot of the number of treated items in pre-treatment PNT-CAT30 over 

true naming ability level. 
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Figure 6 Scatterplot of the number of treated items in post-treatment PNT-CAT30 over 

true naming ability level. 
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4.0 Discussion 

The overall purpose for this research was to investigate the validity of the PNT-CAT with 

respect to its responsiveness to treatment related change under three different conditions. The first 

condition was an item-general treatment, where the treatment affected naming ability generally, 

without the inclusion of any item-specific effects (e.g., like some applications of rTMS). The 

second condition was an item-specific treatment where the effects were only specific to a set of 

items, and therefore only affected the trained items (e.g., errorless learning). The final condition 

was partially item-specific, with effects that were stronger for directly trained items and weaker, 

but present, for untrained items (e.g., SFA or phonomotor treatments). For each condition, we 

compared the change scores estimated by the PNT-CAT and the full PNT to assess the sensitivity 

of PNT-CAT and determine the conditions under which it would be valid for measuring treatment-

related outcomes.  

We hypothesized that for the first condition, under which treatment effects were completely 

item-general, the PNT-CAT and the full PNT would perform similarly. For the second condition, 

in which treatment effects were completely item-specific, we predicted that the PNT-CAT would 

underestimate the effects of the treatment relative to the full PNT and the simulated effect. This 

prediction was motivated by Massof’s (2013) findings in which CAT underestimated the effects 

of the item-specific treatment because of the CAT algorithm’s dependence on the responsiveness 

of the set of items that were presented. Finally, we hypothesized that the third condition would 

perform similarly to the second condition, in which the PNT-CAT would underestimate the 

treatment effects relative to the full PNT, but to a lesser degree, because both item-general and 

item-specific effects were present.  
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In Condition 1, we found that our results were as predicted. Paired sample t-tests indicated 

that the change scores for both the full PNT and the PNT CAT were significantly greater than 0 

with confidence intervals that included the generating value of 2.2 T-score units. Also, direct 

comparison of the full PNT and the PNT-CAT30 suggested that both tests performed similarly. 

These results have implications for the use of the PNT-CAT in a clinical setting. If a treatment is 

expected to have a general effect on naming ability and none of the items in the PNT are 

specifically trained, then PNT-CAT30 change scores are valid, if somewhat less precise than full 

PNT scores. 

For Condition 2, results indicated that both PNT tests obtained significant positive change 

scores. However, a direct comparison of the two showed that our predictions were refuted because 

the PNT-CAT obtained a significantly larger average effect size. In addition to finding that CAT 

over-estimated item-specific treatment effects on average, we found a strong relationship between 

the number of treated items administered in the post-treatment CAT and the change score. As 

previously stated, the PNT-CAT would be a valid tool for measuring response to treatments with 

item-general effects. However, if the treatment is item-specific, the assessment should contain only 

the treated items in order to maximize its responsiveness (Massof 2013).   

While Massof’s (2013) study suggested that the PNT-CAT would underestimate item-

specific treatment effects, we found that the PNT-CAT overestimated them. Two possible reasons 

that our results differed from Massof’s were the differences in the specific IRT model used and 

the selection of treated items. For this study, we used a simpler IRT model for dichotomous items, 

which are items that are scored as simply correct versus incorrect. However, in Massof’s study, he 

used a more complicated IRT model for polytomous items that contained 5 categories of response 

for each item. It is possible that a naming test with more response categories, such as the object 
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naming subtest of the Comprehensive Aphasia Test (Swinburn, Porter, & Howard, 2004), would 

have produced different results.  

Another potential reason why our findings were different from Massof’s were the 

differences in how items were selected for treatment and how items were selected for inclusion in 

post-treatment CAT. For the present study, we selected treated items based on participants’ ability 

level specifically to choose treated items that were difficult at pre-treatment. However, we did not 

control how many of the treated items were selected for the post-treatment CAT as we simply 

allowed the CAT algorithm to generate the results. By contrast, Massof randomly selected items 

for treatment and administered the simulated treatments in such a way that 33% of the post-

treatment CAT was composed of treated items for each simulee. In our case, allowing the CAT 

algorithm to freely select items at post-treatment resulted in variable numbers of treated items 

across all simulees and on average a higher number of treated items at post-treatment CAT, which 

explained why our CAT was more responsive to the item-specific treatment.  

In addition, CAT performance, in terms of both item selection and change score estimation, 

was dependent on the particular properties of the PNT item-bank relative to the distribution of the 

simulees ability level. Figures 5 and 6 show that simulees who had extreme high or low naming 

ability at baseline administered more treated items at pre- and post-treatment, respectively. In turn, 

this suggests that if items in the PNT are selected to be difficult at baseline within the limits of the 

item bank and subjected to item-specific treatment, the PNT-CAT30 will overestimate the effects 

of the treatment relative to the full PNT for the people located at either extreme of the ability 

continuum. If the item bank had contained more items at the high and low extremes of difficulty, 

then the results of the present simulation study might have been different.  
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Given the difference between the present Condition 2 results and Massof’s findings, it is 

important to assess the impact of that difference on how we selected the treated items and how 

many treated items should be selected at post-treatment as a proportion of the number of items in 

the post-treatment CAT. It may be useful to conduct an experiment mirroring Massof’s framework 

where we would randomly select 1/3 of the item bank for treatment for each simulee and allow the 

CAT algorithm to generate the results with the predictions that the results should be similar to 

Massof’s (2013). Thus, further simulations would be needed to investigate this outcome.  

The implications of this study are also relevant to all IRT-based tests, regardless if they are 

adaptive or static. The present results indicate that the responsiveness of any test to an item-specific 

treatment will be dependent on the number of the treated items that are contained in the test. 

However, because the 1-PL IRT model assumes that there is an underlying cause (i.e., naming 

ability) for all the simulees’ responses, valid interpretations of the score estimates are different 

when modeling the effects of item-specific treatment. The PNT-CAT30 performs well in the item-

general condition because the intervention affects the simulees’ underlying naming ability, which 

affects how they respond to all of the items in a probabilistic manner. By contrast, the item-specific 

condition influences only the observed response to a subset of items. As a result, this causes the 

IRT model to not function properly, resulting in change score estimate that are less valid within 

the IRT framework. We are explicitly measuring the response to treatment of a specific set of 

items, negating the ability to generalize inferences about that person’s naming ability to other 

items. Therefore, a change score estimate following an item-specific treatment should be 

interpreted differently than one obtained  following an item-general treatment. In the item-specific 

case, inferences do not generalize beyond the trained items whereas in the item-general case, in 

theory, inferences apply to all items.  
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The results for Condition 3 were similar to the results for Condition 2 in that both tests had 

change scores that were significantly greater than 0 but the CAT had a larger effect size. It is 

important to consider that Condition 3 was the additive combination of Conditions 1 and 2. In 

Condition 1, we increased ability values by 2.2 T-score units whereas for Condition 2, we found a 

difference of 3.2 T-score units between the CAT and the full test. The results for Condition 3 

indicated we accurately recovered the item-general effects similarly to Condition 1 (i.e., the change 

estimate of PNT-CAT for Condition 3 is 7.4 which is approximately 2.2 higher than Condition 2’s 

change estimate of 5.1) and recovered the same between-test difference that occurred in Condition 

2 (i.e., the change estimate difference between the full PNT and the PNT-CAT for Condition 3 is 

-3.19, while the change estimate difference between the full PNT and the PNT-CAT for Condition 

2 is -3.20). As a result, in Condition 3 the PNT-CAT overestimated the treatment effect relative to 

the full PNT. Based on these results, if a treatment is expected to contain both effects, we would 

advise users to administer the PNT-CAT but exclude the treated items from the item bank and 

assess those trained items separately.  

 

 

Limitations 

While computer simulations have advantages, as they are quick, inexpensive, and offer a 

high degree of experimental control, their external validity may be limited by how much the results 

may transfer to realistic settings. Previous work on the PNT-CAT (Fergadiotis et al., 2015; Hula 

et al., 2015; Fergadiotis et al., 2019; Hula et al., 2020) found that the empirical studies produced 

results similar to those from the simulation studies. Therefore, evidence suggest the that current 

simulations results are useful. However, because this is a new area of research and there are various 

treatments that function differently from one another, it is crucial to replicate these results in an 
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empirical study with real people with aphasia. The present simulation study can provide useful 

guidance on how to accommodate different treatment conditions, therefore making future 

empirical studies more efficient and preserving resources. By implementing treatments that target 

both item-general, item-specific, and partially item-specific through repeated structured 

simulations, we can draw stronger conclusions about the determiners of the overall naming 

performance and examine how different variables affect the likelihood of correct naming responses 

during CAT administration.  Overall, the results of these studies will provide an essential 

framework for guiding clinicians and researchers in appropriate, evidence-based use of computer 

adaptive testing for measuring treatment-related change in aphasia rehabilitation.   

 

Future Directions 

Additional research that can be implemented based on this study would be to conduct a 

simulation that contains a range of different treatment effect sizes based on previous studies. This 

potential study could have multiple levels item-general effect sizes, ranging from null to large, as 

well as a range of item-specific treatment effect sizes that could be operationalized by applying 

the item-specific treatment to different number of items, ranging from 0 to 20 items. We could 

then study the agreement between the full PNT CAT and the CAT change scores as a function of 

underlying change in general in naming ability and of the number of directly treated items and 

examine whether these results parallel those of our present study.  

Another potential direction for future studies is to repeat this simulation with a different IRT 

model such as the two-parameter logistic (2-PL) model. As suggested earlier in the Discussion, 

using a specific IRT model may impact the selection of the treated items. The 1PL model only 

estimates one parameter, item difficulty, for each item and assumes that the discrimination 
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parameter is constant across all items. The main advantages of this model are its parsimony and 

the fact that it can be fitted with smaller sample sizes. However, these properties are useful only if 

the model fits the data adequately. In some situations, the assumptions of the 1PL model do not 

hold, and more complex models, like the 2PL, would be more appropriate. The 2PL model, which 

also models binary items, allows them to vary in both their difficulty and discrimination (Baylor 

et. al., 2011). Because of the additional flexibility of the discrimination parameter, the 2PL model 

shows that higher discriminating items perform better at differentiating between people of two 

different ability levels.  Given the same test and the same participants, the 2PL model may provide 

a more accurate and precise ability estimates. In addition, the 2PL model does a better job at fitting 

and reproducing the data, which can potentially increase the confidence in interpreting the item 

parameters and person score outputs. Because of this, if the 2PL model becomes an accepted 

measurement model for the PNT, it would be useful to repeat and verify that the present results 

hold given that the 2PL model could produce different results. 
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5.0 Conclusion 

In this study, we investigated the validity of PNT-CAT for measuring change in response to 

three different treatment conditions. The PNT-CAT is valid for measuring change if a treatment is 

item-general as it performed similarly to the full PNT in this condition. However, the PNT-CAT 

performed differently in both the item-specific and partially-item specific conditions, with its 

responsiveness depending on the number of treated items included in the post-treatment CAT. 

Therefore, if the PNT-CAT encounters a treatment that is item-specific, it is recommended that 

the assessment should only contain the treated items in order to maximize its responsiveness. 

Similarly, if the treatment contains both effects, it is advised to separate the treated items from the 

item bank and assess those items separately. This study demonstrates the usefulness of 

computerized adaptive testing in clinical aphasiology and provides results that can be used to 

improve aphasia assessment. 
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