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Abstract 

Novel Approaches for Healthcare Outbreak Detection and Investigation 

 

Alexander John Sundermann, DrPH 

 

University of Pittsburgh, 2022 

 

 

 

 

Methods for detecting outbreaks in healthcare settings have remained unchanged for many 

years. Often this involves the use of geo-temporal clustering which looks for an increase in the 

number of expected infections within a small timeframe in a confined location. This approach 

often misses transmission where it did occur and mis-identifies transmission where it did not occur. 

Additionally, other routes of potential transmission, such as shared providers or procedures, are 

often not considered. These data are readily available within the electronic health record (EHR). 

Traditional infection prevention methods often use whole genome sequencing (WGS) at the end 

of an outbreak to confirm or refute its presence, referred to as reactive sequencing.  

The objective of this dissertation is to create and evaluate the Enhanced Detection System 

for Healthcare-Associated Transmission (EDS-HAT), which better detects and investigates 

outbreaks compared to traditional infection prevention methods. EDS-HAT combines WGS 

surveillance with machine learning (ML) of the EHR. The creation of EDS-HAT was performed 

in three steps. First, we performed a systematic review of institutions performing WGS 

surveillance and/or machine learning of EHR data to obtain a better understanding of EDS-HAT’s 

use and implications. We found that very few institutions were performing WGS surveillance or 

machine learning of EHR, yet both had profound impact on outbreak detection and investigation. 

Second, we developed and trained a proof-of-concept ML algorithm on past, well-described 

outbreaks that occurred at our institution. We found that the algorithm could accurately identify 

the correct transmission route on the second patient in all but one outbreak. Lastly, we performed 
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two years of WGS surveillance to directly compare to traditional infection prevention practice. 

Based on those results, EDS-HAT, if run in real time, could potentially identity otherwise 

undetected outbreaks, prevent many infections, save money, and be substantially more effective 

than traditional infection prevention practice. Overall, our findings support the use of WGS and 

machine learning of the EHR to detect and investigate outbreaks. If implemented in real-time, 

EDS-HAT represents a potential paradigm shift in infection prevention to increase patient safety. 
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1.0 INTRODUCTION 

1.1 HEALTHCARE-ASSOCIATED INFECTIONS 

Healthcare-associated infections (HAIs) are an unfortunately common occurrence within 

hospitals. The Centers for Disease Control and Prevention (CDC) estimates that one in 31 patients 

in any day has at least one HAI.1 Moreover, HAIs are a source of significant morbidity and 

mortality that are preventable.2 HAIs in the United States are tracked through the National 

Healthcare Safety Network (NHSN) which has created surveillance definitions of what defines a 

healthcare-associated infection for the purposes of standardization across healthcare facilities.3 

Reporting of HAIs are a requirement of Centers for Medicare and Medicaid Services for facility 

reimbursement that are benchmarked by performance.4 

In recent years, the CDC and NHSN have shown that there have been significant advances 

in infection prevention for reduction in HAIs. However, the COVID-19 pandemic has stopped or 

even reversed some of that progress according to recent CDC data.5 The increase may be attributed 

to the demand on hospital staffing, strict isolate requirements from COVID-19, and cohorting of 

critically ill patients. 

Sources of HAIs may result from the patient’s flora, environment, contaminated equipment 

or medication, or other healthcare providers.6 The CDC has created prevention and intervention 

recommendations based upon types of infections, the organisms, and mode of transmission.7 For 

example, central line blood stream infections may be caused by skin flora on the patient which can 

enter the body and cause infection during the insertion of a central line. The CDC provides 

evidence-based recommendations on the prevention of this by creating a sterile environment, 
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cleaning the site of insertion, and protecting the dressing for any contamination.8 However, some 

HAIs may result from outbreaks of contaminated medication or transmission within hospital units 

which requires a detailed process of investigation elucidate the cause and intervention to prevent 

further spread.9 

1.2 HEALTHCARE-ASSOCIATED OUTBREAKS 

1.2.1 Detecting and Investigating Outbreaks 

An outbreak within a healthcare setting may refer to a sudden increase of infections 

compared to what is normally seen in a certain time period.10 However, there is no clear guidance 

on defining endemic levels of infections and over what time frame. To detect outbreaks, 

institutions often rely on using geo-temporal clustering of infections, which utilizes both space and 

time aspects. This method looks to see what patients with the same infections have shared unit 

location commonalities, often on the same unit. Similarly, the temporal aspect will examine if the 

patients are on that unit at the same time. Geo-temporal clustering has strong evidence of 

transmission given the potential for the pathogen to be transmitted is high if both the source patient 

and susceptible patient are present on the same unit at the same time. 

Often, clinicians will see an increase of infections on their hospital unit within a relatively 

short time frame. It is then that the clinician may inform infection prevention leadership of a 

suspected outbreak or transmission. Similarly, the infection prevention department may utilize 

NHSN surveillance definitions as a benchmark and tool for detecting outbreaks of infections. 
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These surveillance methods give infection prevention departments a relatively loose threshold for 

detecting an outbreak.11 

Once an outbreak is suspected, the infection prevention department can initiate an outbreak 

investigation. This often entails creating a line list of patients, manually reviewing patient charts 

for shared commonalities, performing staff interviews, performing audits of clinical practice, and 

taking environmental cultures. Once a hypothesis is formed, the infection prevention department 

can initiate an intervention, monitor for additional infections, and tailor interventions based on 

subsequent cases. 

1.2.2 Whole Genome Sequencing  

An infection prevention department may choose to perform whole genome sequencing on 

bacterial isolates from suspected outbreak patients. This is referred to as reactive whole genome 

sequencing, given that the investigation and interventions are often concluded as the sequencing 

is being performed. Whole genome sequencing can provide ‘genetic fingerprinting’ by discerning 

which isolates are potentially transmitted by looking at genome mutations, or single nucleotide 

polymorphisms (SNPs). If two patients have the same organism with a low SNP difference, this 

likely indicates that one patient transmitted to the other or there is a common source. Whereas 

patients with a high SNP difference may indicate their infections are unrelated, or not transmitted 

to each other. Reactive WGS can assist in confirming the initial hypothesis or even by refuting the 

presence of a clonal outbreak. 
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1.2.3 Limitations with Current Approaches 

There are many limitations to this current approach of outbreak detection and investigation. 

First, the use of geo-temporal clustering can both miss transmission and misidentify 

transmission.12 Geo-temporal clustering does not consider alternative transmission pathways such 

as shared equipment, procedures, medication, or providers moving throughout the hospital. 

Second, relying on the use of NHSN definitions may also miss transmission. These definitions are 

meant for surveillance purposes and may miss clinically-defined infections or colonization that do 

not meet the full surveillance definition. Lastly, the use of reactive sequencing is limited in its use 

given it occurred well after the outbreak started and restricted to only the isolates selected often by 

geo-temporal clustering. 

1.2.4 Opportunities for Advancement 

Decrease costs for the use of WGS has provided an opportunity to proactively use WGS as 

a surveillance tool. What was once nearly thousands of dollars for sequencing a single bacterial 

isolate can now be done for under $100. The cost lowers the threshold needed to achieve a cost 

benefit in preventing infections by whole genome sequencing. 

Additionally, of electronic health records and machine learning algorithms have become 

more available and broadly used. Historically, patient charts had been kept on paper as a barrier to 

large-scale data analysis. Large troves of data are waiting to be analyzed now with the development 

and implementation of electronic health records. 

Together, these tools could help infection prevention departments overcome the limitations 

of current outbreak detection methods. Leveraging the implementation of such a tool would require 
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a detailed cost-benefit analysis in which the utility would be studied. The purpose of this 

dissertation is to analyze that tool. 
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2.0 MANUSCRIPT 1: WHOLE GENOME SEQUENCING SURVEILLANCE AND 

MACHINE LEARNING FOR HEALTHCARE OUTBREAK DETECTION AND 

INVESTIGATION: A SYSTEMATIC REVIEW AND SUMMARY 

Alexander J. Sundermann,1-3 Jieshi Chen,4 James K. Miller,4 Elise M Martin,2,5 Graham 

M. Snyder,2,5 Daria Van Tyne,2 Jane W. Marsh,1,2 Artur Dubrawski,4 and Lee H. Harrison1-3 

 

1. Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, 

University of Pittsburgh, Pittsburgh, Pennsylvania, USA. 

2. Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, 

Pennsylvania, USA. 

3. Department of Epidemiology, Graduate School of Public Health, University of 

Pittsburgh, Pittsburgh, Pennsylvania, USA 

4. Auton Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 

5. Department of Infection Prevention and Hospital Epidemiology, UPMC Presbyterian, 

Pittsburgh, Pennsylvania, USA 

2.1 ABSTRACT 

Background: Whole genome sequencing (WGS) has traditionally been used in infection 

prevention to confirm or refute the presence of an outbreak after it has occurred. Due to decreasing 

costs of WGS, an increasing number of institutions have been utilizing WGS-based surveillance. 
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Additionally, machine learning (ML) or statistical modeling to supplement infection prevention 

practice have also been used. We systematically reviewed the use of WGS surveillance and 

machine learning to detect and investigate outbreaks in healthcare settings. 

Methods: We performed a PubMed search using separate terms for WGS surveillance 

and/or machine learning technologies for infection prevention through March 15, 2021. 

Results: Of 767 studies returned using the WGS search terms, 42 articles were included 

for review. Only 2 (4.8%) studies were performed in real-time, and 39 (92.9%) only studied one 

pathogen. Nearly all (41, 97.6%) studies found genetic relatedness between some isolates 

collected. Across all studies, there were 525 outbreaks detected among 2,837 related isolates 

(average 5.4 isolates/outbreak). 35 (83.3%) studies only utilized geo-temporal clustering to 

identify outbreak transmission routes. Of 21 studies returned using the ML search terms, 4 were 

included for review. In each study, ML aided outbreak investigations by complementing methods 

to gather epidemiologic data and automating identification of transmission pathways. 

Conclusions: WGS surveillance is an emerging method that can enhance outbreak 

detection. ML has the potential to identify novel routes of pathogen transmission. Broader 

incorporation of WGS surveillance into infection prevention practice has the potential to transform 

the detection and control of healthcare outbreaks. 

2.2 INTRODUCTION 

Whole genome sequencing (WGS) for infection prevention has traditionally been used in 

reaction to a suspected outbreak, usually at the end of an investigation to confirm or refute the 

outbreak’s presence. In contrast, WGS surveillance of selected healthcare-associated pathogens 
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regardless of whether an outbreak is suspected can be used to identify outbreaks that are not 

detected by traditional hospital epidemiologic methods. High costs and needed infrastructure for 

implementation have been historic barriers to widespread use of WGS surveillance. However, the 

cost of WGS has fallen, and the expansion of genomic surveillance due to COVID-19 may enable 

healthcare institutions to establish WGS surveillance programs for other pathogens. Additionally, 

our work and studies from Australia have found cost-benefits to implementing a WGS surveillance 

program with effective intervention.13 

Although WGS surveillance is effective in identifying transmission, it does not provide 

information on the responsible transmission route, which is crucial for interrupting an outbreak.  

Traditional epidemiologic methods for identifying where transmission occurs have relied on 

geotemporal clustering within the hospital, which is inadequate for identifying more complex 

patterns of transmission.14,15 Automated analysis of electronic health records (EHRs) creates an 

opportunity to use machine learning or statistical modeling approaches for determining the 

outbreak transmission routes identified by WGS surveillance.16–20 These automated approaches 

would assist hospital infection prevention departments by providing systematic methods to 

investigate outbreaks and identify transmission routes.  

In this systematic review, we provide a summary of prior studies utilizing WGS 

surveillance in healthcare settings for outbreak detection, as well as the use of machine learning 

and statistical modeling technologies for identifying transmission routes. The purpose of this 

review is to summarize the current literature in this field, identify barriers to widespread 

implementation, and synthesize current knowledge on this topic to help guide decision-making 

about implementation of WGS surveillance. 
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2.3 METHODS 

Two search terms were utilized in PubMed with no beginning date up until March 15, 2021 

[Figures 1 & 2]. The WGS surveillance terms “(whole genome sequenc*) AND (surveillance OR 

routine) AND (healthcare OR hospital) AND transmission” returned 767 results. Article abstracts 

were screened to exclude studies that were solely community-based, non-infection related, utilized 

non-WGS methods (e.g., older molecular subtyping methods such as pulsed-field gel 

electrophoresis), or only utilized reactive WGS in response to suspected outbreaks. Genomic and 

epidemiologic data on organisms, number of isolates sequenced, percent of isolates that were 

related, number of outbreaks, and epidemiological links were extracted and summarized. Articles 

were excluded if the data were not sufficiently detailed for extraction. 

The machine learning search terms utilized were “("electronic health record" OR 

"electronic medical record" OR "artificial intelligence" OR "AI" OR "ML" OR "model") AND 

(outbreak OR transmission) AND ("data mining" OR "machine learning") AND (infection OR 

infectious) AND ("healthcare-associated" OR "hospital-associated" OR "healthcare-acquired" OR 

"hospital-acquired")” and returned 21 results. Article abstracts were screened to exclude infection 

prediction and outcome studies. Data on the methodology and findings of outbreak and 

transmission detection models were extracted and summarized. 

2.4 RESULTS 

There were 42 articles on WGS surveillance included in the final review.15–17,21–59 Of these 

studies, only 2 employed machine learning or statistical modeling to investigate transmission, 
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which were also captured in the ML search. From 2013-2016, there was only one article per year, 

with a substantial increase thereafter [Figure 3]. Most studies were from the United States (12), 

United Kingdom (10), Australia (5), Germany (4), Japan (2); China, Denmark, Finland, France, 

India, Italy, Netherlands, Spain, Sweden, and Thailand had one study each.  

The duration of WGS surveillance varied substantially by study, with a median of 12 

months and a range of 1-73 months [Table S1]. Only 2 (4.8%) studies were performed in real-

time; all other studies were performed retrospectively. Thirty-nine and three studies included 

single or multiple pathogens, respectively [Table 1]. Staphylococcus aureus was the most 

commonly studied organism (12, 28.6%) with four additional organisms present in >2 studies (nine 

Klebsiella pneumoniae, seven Clostridioides difficile, six Enterococcus faecium, three 

Pseudomonas aeruginosa). Organisms selected for sequencing (e.g., by anatomic site of infection, 

multi-locus sequence type, antibiotic resistance phenotype) were diverse across studies.  

Criteria for defining genetic relatedness were also highly variable between studies, and 

were generally based on the number of single nucleotide polymorphism (SNP) differences between 

genomes [Table S1]. Among organisms present in >2 studies, C. difficile had the most consistent 

SNP cutoff at 2 SNPs, with one study that used 10 SNPs to identify related isolates [Figure 4]. S. 

aureus had the widest distribution of SNP cut-offs, ranging from 7 to 50 SNPs. 

An analysis of the proportion of sequenced isolates that were determined to be genetically 

related to one another in each study revealed an average of 23.8% of isolates (range 0%-61%). 

There were 525 outbreaks detected among 2,837 related isolates (average 5.4 isolates/outbreak). 

41 (97.6%) studies found some level of genetic relatedness between the sequenced isolates. 

We examined the methods employed to identify the responsible transmission routes for 

outbreaks that were detected by WGS. The majority of studies (35, 83.3%) restricted attempts to 
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identify transmission routes to the same hospital unit during a defined time period.21,23–39,41–50,52–

54,56–59 Only 7 (16.7%) studies examined other possible routes such as medical procedures or 

healthcare workers.15–17,22,40,51,55  

Several studies were notable for uncovering otherwise unidentified transmissions, which 

is the main goal of WGS surveillance. Sullivan et al55 were prompted by an outbreak in a neonatal 

intensive care unit (NICU) to retrospectively investigate all MRSA bloodstream infections for 16 

months. Their investigation uncovered isolates related to the NICU outbreak from adult patients 

in a separate tower. Further investigation revealed shared ventilators between the adult unit and 

the NICU, which was believed to have caused transmission. Separately, Roy et al.52 performed 

sequencing of influenza A H1N1for 6 months and found that traditional infection prevention 

practice falsely identified outbreaks, while WGS surveillance data were able to connect cases that 

were previously not believed to be epidemiologically related. Lastly, Berbel Caban et al.22 utilized 

WGS surveillance of MRSA over two years and found multiple undetected outbreaks within two 

New York City hospitals. One cluster of 24 isolates from 16 patients spanned 21 months and nine 

different hospital wards with patterns of shared healthcare workers. In this study, the authors 

emphasized the limitations of investigating only geo-temporal clustering in outbreak detection and 

investigation. 

There were 4 articles within the ML search terms included in the final synthesis, 2 of which 

overlapped in the WGS surveillance search terms.17,40,60,61 Table 2 summarizes the methods and 

limitations of each study. One study utilized imputation of cultures to model transmission 

dynamics from environmental sink contamination, 2 studies used Bayesian methods to model 

transmission, and one study combined WHONET and SaTScan tools to detect outbreaks. All of 

these studies implemented tools to supplement outbreak detection or investigation, yet each study 
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also noted the importance of manual or expert input to further investigate the transmissions or 

outbreaks detected. An example of this is the study by Satchel et al61 in which they found 45 

outbreaks of which only six were confirmed by IP investigation. Yet the authors state that the tool 

helped to streamline investigation efforts which reduced time spent by IP. 

2.5 DISCUSSION 

In this systematic review, we synthesized studies that demonstrate the utility of WGS 

surveillance in finding cryptic outbreaks in healthcare settings. Nearly all studies (97.6%) found 

outbreaks, but few (4.8%) utilized machine learning or statistical modeling methods to investigate 

transmission routes. WGS surveillance, while uncommon but increasingly utilized, aided infection 

prevention practice in these studies by uncovering outbreaks and enabling intervention. 

Studies utilizing WGS surveillance have primarily relied on geo-temporal linkage to 

identify transmission routes. Restricting investigations to geo-temporal linkage fails to identify 

potential transmission by procedures that are performed in areas of the hospital other than patient 

nursing units or healthcare workers, as shown in some of the studies in this review. Some studies 

stated the limitations of relying solely on geo-temporal parameters for identifying the transmission 

route for related isolates. Regardless, WGS surveillance enabled many of these studies to uncover 

substantial and significant previously undetected outbreaks that likely impacted patient outcomes 

and associated healthcare costs. 

The vast majority of studies were retrospective in nature, which limits the potential impact 

of WGS surveillance on healthcare epidemiology and infection prevention. If performed in real-

time, IP teams have an opportunity to perform an investigation, such as audit practices, collect 
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environmental cultures, and interview staff, which is not possible in retrospective studies. Further, 

we found that many studies focused on one pathogen, which is less sensitive for detecting 

outbreaks than WGS surveillance of multiple pathogens. It is possible, for example, for a single 

transmission route to lead to spread of multiple pathogens. 

Substantial investment and infrastructure are needed to establish real-time WGS 

surveillance. Healthcare institutions must have appropriate laboratory capacity, bioinformaticians, 

and genomic epidemiologists to interpret the data. A recent paper by Parcell et al62 discussed 

barriers to instituting a WGS surveillance program for outbreak detection from an economic and 

system-wide perspective. Indeed, it is often difficult to prove estimates of cost-effectiveness when 

considering prevention interventions, but two studies have demonstrated the cost-effectiveness of 

WGS surveillance programs.13,19  

We identified very few studies on the utility of ML or statistical modeling methods for 

identification of outbreak transmission routes by WGS surveillance. In our experience, ML adds 

value in detecting transmission routes that do not involve geotemporal clustering such as invasive 

procedures, healthcare workers, and outbreaks separated by units and prolonged in time.17,18,20 The 

use of ML in combination with WGS surveillance is clearly an understudied area of healthcare 

epidemiology and infection prevention. Barriers such as interoperability of electronic health 

records and adoption of WGS surveillance prevent the implementation of such programs. 

However, adoption of public health WGS surveillance for COVID-19 may expedite the use of this 

technology by healthcare institutions. 

 The combination of prospective WGS surveillance, EHR data, and ML has the potential 

to dramatically transform the paradigm of outbreak detection and investigation for infection 

prevention and control by identifying outbreaks quicker and enabling early intervention to halt 
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transmission. This approach will both improve patient safety and reduce healthcare costs. 

However, healthcare institutional investment into establishing WGS surveillance programs will be 

key to expansion and implementation of this approach. 

2.6 TABLES AND FIGURES 

Table 1. Studies by date, organism and outbreaks detected utilizing WGS surveillance 

Year First Author Organism(s) Type 
Unique 

Isolates 

Related 

(%) 

Outbreaks 

Detected 

No Epi 

Link 

(%) 

2021 Meredith46 SARS-CoV-2 . 299 159 (53.2) 35 35 (22) 

2021 Miles-Jay47 E. coli ST131, H30 126 17 (13.5) 8 9 (52.9) 

2021 Rose51 S. aureus Methicillin-resistant 56 15 (26.8) 7 7 (46.7) 

2020 
Berbel 

Caban22 
S. aureus Methicillin-resistant 224 33 (14.7) 8 . 

2020 Cremers24 S. aureus Methicillin-sensitive 84 40 (47.6) 14 0 (0) 

2020 Gona32 K. pneumoniae . 80 39 (48.8) 10 14 (35.9) 

2020 Hammerum35 K. pneumoniae . 103 36 (35) 13 11 (30.6) 

2020 Marmor43 
E. cloacae . 

63 
7 (11.1) 1 0 (0) 

C. freundii . 10 (15.9) 1 0 (0) 

2020 Neumann48 E. faecium 
Vancomycin-

resistant 
111 . . . 

2020 Sundermann17 P. aeruginosa ST27 882 31 (3.5) 10 1 (3.2) 

2020 Sundermann16 E. faecium 
Vancomycin-

resistant, ST1471 
439 10 (2.3) . 1 (10) 

2020 Tsujiwaki56 S. aureus Methicillin-resistant 57 19 (33.3) 5 0 (0) 

2019 Eigenbrod26 A. baumannii . 39 15 (38.5) 4 5 (33.3) 

2019 Eyre30 C. difficile . 299 43 (14.4) 6 20 (46.5) 

2019 
García-

Fernández31 
C. difficile . 367 41 (11.2) 6 34 (82.9) 

2019 Hall34 S. aureus Methicillin-resistant 55 27 (49.1) 12 8 (29.6) 

2019 Harada36 K. pneumoniae 
Bloodstream 

infections 
140 2 (1.4) 1 2 (100) 

2019 Jakharia38 C. difficile . 45 4 (8.9) 2 4 (100) 

2019 Kossow39 S. aureus Methicillin-resistant . 8 1 0 (0) 

2019 Mathur45 K. pneumoniae Colistin-resistant 21 8 (38.1) 4 0 (0) 
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Year First Author Organism(s) Type 
Unique 

Isolates 

Related 

(%) 

Outbreaks 

Detected 

No Epi 

Link 

(%) 

2019 Roy52 Influenza A H1N1 36 5 (13.9) 2 2 (40) 

2019 Sherry53 Enterobacteriaceae 
Carbapenemase-

producing 
291 53 (18.2) 12 8 (15.1) 

2019 Stenmark54 S. capitis 
Bloodstream 

infections 
46 12 (26.1) 6 12 (100) 

2019 Sullivan55 S. aureus Methicillin-resistant 141 28 (19.9) 4 2 (7.1) 

2019 van Beek57 K. pneumoniae 
Carbapenemase-

producing, ST512 
. 20 2 4 (20) 

2019 Wang58 C. striatum . 91 18 (19.8) 6 3 (16.7) 

2019 Ward15 

S. aureus . 953 85 (8.9) 28 65 (76.5) 

E. faecium . 86 13 (15.1) 5 9 (69.2) 

P. aeruginosa . 118 2 (1.7) 1 2 (100) 

K. pneumoniae . 100 0 (0) 0 0 (0) 

2018 Auguet21 S. aureus Methicillin-resistant 610 261 (42.8) 90 13 (5) 

2018 Donskey25 C. difficile . 66 12 (18.2) 4 4 (33.3) 

2018 Houldcroft37 Adenovirus . 43 6 (14) 2 0 (0) 

2018 Kwong40 K. pneumoniae 
Carbapenemase-

producing 
86 53 (61.6) 4 10 (18.9) 

2018 Leong41 E. faecium 
Vancomycin-

resistant 
80 10 (12.5) 2 3 (30) 

2018 Martin44 C. difficile . 640 227 (35.5) . 69 (30.4) 

2018 Wendel59 A. baumannii . 36 20 (55.6) 2 2 (10) 

2017 Coll23 S. aureus Methicillin-resistant 1465 785 (53.6) 173 
187 

(23.8) 

2017 Eyre29 C. difficile . 652 128 (19.6) . . 

2017 Gorrie33 K. pneumoniae . 106 17 (16) 5 0 (0) 

2017 Raven49 E. faecium 
Bloodstream 

infections 
293 93 (31.7) 6 . 

2016 Elbadawi27 K. pneumoniae 
Carbapenemase-

producing 
46 4 (8.7) 1 0 (0) 

2015 Roach50 

S. epidermidis . 178 56 (31.5) 10 . 

P. aeruginosa . 44 7 (15.9) 3 . 

E. faecium . 36 13 (36.1) 3 . 

S. aureus . 118 4 (3.4) 2 . 

E. faecalis . 72 6 (8.3) 3 . 

S. maltophilia . 58 2 (3.4) 1 . 

2014 Long42 S. aureus . 305 0 (0) 0 . 

2013 Eyre28 C. difficile . 957 333 (34.8) . 
152 

(45.6) 
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Table 2. Studies utilizing machine learning or modeling to detect outbreaks or transmission 

Year First Author 
Machine Learning or 

Model Method 
Utility & Findings Limitations 

2018 Lensing60 

Imputation of clinical 

and environmental 

cultures to model 

transmission dynamics 

Aided in targeted environmental 

cleaning to decolonize plumbing 

systems and reduce the risk of 

transmission of carbapenem-

resistant Enterobacteriaceae 

based upon learned positivity.  

Requires expert 

knowledge of plumbing 

system and prior data on 

colonization 

2018 Kwong40 

Bayesian transmission 

modeling using 

Markov chain Monte 

Carlo 

Assisted in transmission 

modeling of KPC-producing K. 

pneumoniae to determine if 

spread resulted from inter-facility 

or intra-facility transmission. 

Does not provide 

specific details in 

sequence of transmission 

within a complex 

outbreak 

2020 Sundermann17 

Bayesian inference 

with case-control 

methodology to 

describe transmission 

sources 

Scanned electronic health record 

and provided statistical output for 

possible transmission routes 

beyond but including geo-

temporal clustering. 

Requires robust mapping 

of electronic health 

record charge codes 

2017 Stachel61 WHONET-SaTScan  

Utilizes space-time permutation 

scan statistics to identify potential 

outbreaks. 

Low positive predictive 

value creating a high 

number of “false alarms” 
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3.1 ABSTRACT 

Background: Identifying routes of transmission among hospitalized patients during a 

healthcare-associated outbreak can be tedious and difficult, particularly for patients with complex 
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hospital stays. Data mining (DM) of the electronic medical record (EMR) has the potential to 

rapidly identify common exposures among patients suspected of being part of an outbreak. 

Methods: We retrospectively analyzed 9 hospital outbreaks that occurred during 2012-

2016 and that had previously been characterized both according to transmission route and by 

molecular characterization of the bacterial isolates. We determined 1) the ability of DM of the 

EMR to identify the correct route of transmission, 2) when the correct route was identified during 

the timeline of the outbreak, and 3) how many cases in the outbreaks could have been prevented 

had the system been running in real time.    

Results: Correct routes were identified on the eighth patient in one outbreak, and the 

second patient in all other outbreaks. Up to 40 or 34 infections (71% or 60% of infections, 

respectively) could have been prevented if EMR DM had been implemented in real-time, assuming 

initiation of effective intervention within 7 or 14 days of outbreak onset, respectively. 

Conclusions: Data mining of the EMR was sensitive for identifying routes of transmission 

among patients who are part of the same outbreak. Prospective validation of this approach using 

routine whole genome sequencing and data mining of the EMR for both outbreak detection and 

route attribution is ongoing. 

3.2 INTRODUCTION 

Healthcare-associated outbreaks caused by serious bacterial pathogens cause substantial 

morbidity and mortality and add to healthcare costs.63,64 Detection of outbreaks can be difficult in 

large hospitals where bacterial transmission may go unnoticed for prolonged periods of time.65 

Investigation and control of a hospital outbreak requires identifying the route of transmission 
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among patients suspected of being part of the outbreak. This task can be burdensome and labor-

intensive for outbreaks that involve complex patients who have long stays, multiple transfers 

within the hospital, and multiple procedures. Multiple transmission routes responsible for hospital 

outbreaks have been described and include transmission from environmental contamination; 

colonized healthcare personnel; during medical procedures using contaminated devices; and 

through contaminated medications, solutions or other medical therapies.66,67 

The wide-spread availability of the electronic medical record (EMR) offers the potential to 

use automated data mining tools to find common exposures among hospitalized patients during 

outbreak investigations. Many relevant epidemiologically-important variables are readily 

available in the EMR, including patient location in the hospital, procedures performed, therapies 

received, and contact with individual healthcare personnel. Data mining, the process of identifying 

patterns in large data sets, has the potential to be useful for identifying common exposures in the 

EMR during hospital outbreak investigations. Furthermore, whole genome sequencing (WGS) has 

become an increasingly available method that discriminates pathogens at the genetic level.68–70 

Genomic data from patient bacterial isolates has the potential to aid in the data mining and outbreak 

investigation process.71 We are developing a system that, in combination with WGS surveillance 

of clinical isolates of key hospital-associated bacterial pathogens, prospectively monitors the EMR 

to identify potential outbreaks and their routes of transmission. The purpose of this study was to 

develop and validate data mining tools to accomplish this goal using well-characterized outbreaks 

from 2011-2016 at our institution. 
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3.3 METHODS 

3.3.1 Study Setting 

This study was conducted at the University of Pittsburgh Medical Center-Presbyterian 

Hospital (UPMC), an adult medical/surgical tertiary care hospital with 762 total beds, 150 critical 

care unit beds, more than 32,000 yearly inpatient admissions, and over 400 solid organ transplants 

per year. The UPMC eRecord EMR system has more than 29,000 active users, including more 

than 5,000 physicians affiliated with UPMC, and comprises more than 3.6 million unique 

electronic patient records. UPMC uses Cerner PowerChart and EpicCare as the backbone of its 

inpatient and outpatient EMR systems, respectively. 

3.3.2 Characterization of retrospective outbreaks from 2011 to 2016 

During the period of 2011-2016, routine infection prevention practice was to notify the 

Microbial Genomic Epidemiology Laboratory (MiGEL) of suspected outbreaks caused by 

bacterial pathogens so that molecular subtyping could be performed. For each patient suspected of 

being included in the outbreak, the bacterial isolate was obtained from the clinical microbiology 

laboratory. For Clostridium difficile, which is diagnosed at our institution by culture-independent 

diagnostic testing, the nucleic acid amplification test-positive stool specimen was cultured for C. 

difficile.  

During the study period, our primary method for molecular characterization of bacterial 

isolates other than C. difficile was pulsed-field gel electrophoresis (PFGE). To be considered part 

of the outbreak, patient isolates had to have 85% band similarity by PFGE. In 2016, whole genome 



21 

sequencing replaced PFGE and a cut-off of ≤ 20 single nucleotide polymorphisms (SNPs) was 

used to define genetically related patient isolates.  

For identification of the common exposure responsible for individual outbreaks, our 

infection prevention team analyzed the medical records of patients included in the outbreak to 

identify the responsible routes of transmission (e.g., shared locations/staff, shared 

procedures/operations, or shared medications). Some outbreak investigations utilized 

environmental cultures to confirm routes of transmission. The transmission route defined by 

infection prevention was used as the gold standard for comparison with transmission routes 

identified by the data mining algorithm. 

3.3.3 Extraction and processing of EHR data for data missing 

All inpatient, emergency room, and same day surgery encounters between January 1, 2011 

and December 31, 2016 were identified through an electronic medical record data repository that 

contains full-text medical records and integrates information from central transcription, laboratory, 

pharmacy, finance, administrative, and other departmental databases.72 For each encounter, we 

obtained microbiology reports and charge transactions from the data repository.  To maintain 

patient confidentiality, each patient was assigned a studyid using De-ID software (De-ID Data 

Corp, Philadelphia, PA).  Criteria were met for exemption from informed consent by the 

university’s Institutional Review Board. 

Charge transaction data are in the EMR as charge codes. Multiple charge codes can 

represent exposure to a single instrument; therefore, charge codes for key procedures (e.g., 

endoscopic retrograde cholangiopancreatography [ERCP] and bronchoscopy) were collapsed into 

a single variable group that represented that exposure. For example, ERCP has 8 CPT codes (e.g., 
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43260: ERCP; diagnostic, including collection of specimens. . .; 43261: ERCP with biopsy; 43278: 

ERCP; with ablation of tumors. . .) and were all combined into a single variable called “ERCP”, 

although each charge code was also analyzed individually. 

3.3.4 Data missing of the electronic health record (EHR) 

The data-mining program was designed using a case-control approach based upon the 

genotyping results using patient EMR data that are non-related to the outbreaks as controls. Case 

patients were defined as those who had clinical isolates with the same strain by PFGE or WGS, as 

defined above. Controls were patients who were hospitalized during the same time period who did 

not test positive for the genetically related bacterial species. Hospital exposures were then 

compared for cases and controls.  

The data-mining program was run on all 9 previously-identified outbreaks that were 

identified by infection prevention at our institution during 2011 - 2016 to determine the sensitivity 

of the algorithm for identifying the correct transmission route. The transmission route was deemed 

to be ‘correct’ if the route was ranked in the top three possible routes of transmission and/or had 

odds ratios >1 with significant p-values. Preventable infections were calculated based upon a 

hypothetical 7- or 14-day intervention from the date of the positive culture assuming the data-

mining program had been running in real-time and appropriate interventions were enacted 

(removal of contaminated equipment, disinfection of environment, and/or enhanced precautions). 

Outbreaks were deemed non-preventable if there were only two isolates in the WGS grouping. 

We scored possible common routes of transmission within an outbreak according to the 

formula S=aln(a/r)+(r-a)ln(1-a/r)-aln(γ), where a is the number of case patients exposed, r is the 

number of patients exposed overall (case patients who are part of the outbreak and control patients 
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who are not) and γ is a parameter that balances the positive and negative evidence.20 We take γ=1e-

4. For a given set of case patients, each patient can be said to have been infected through the 

hypothesized common route or by intermediate transmission (i.e. via transmission from another 

case patient). If we take θ to be the unknown probability a patient becomes infected upon exposure 

to the hypothetical route and γ to be the probability a patient is infected by intermediate 

transmission (i.e. by some other means such as patient-to-patient transmission), then the likelihood 

of observing a particular set of case patients is proportional to θb(1-θ)r-bγ-b, where b is the number 

of case patients infected by the route. We arrive at the formula S by maximizing this expression in 

θ, which occurs at θ=b/r, and b, which occurs at either 0 or a. Since b=0 is a degenerate solution, 

it is disregarded. The final score is the log of this maximum likelihood. 

The score above represents an unnormalized log-likelihood. Since it is not normalized, it 

is suitable for ranking routes but not comparable across time as the number of case patient changes. 

We therefore estimate an extreme value statistic as the probability a route would score at least as 

highly as its observed score under the assumption that the case patients were uniformly randomly 

sampled (the null hypothesis). This p-value, is estimated numerically using importance sampling 

from the observed data. 

Researchers were initially blinded to the true routes of transmission in this analysis. 

However, during development of the approach it became clear that this significantly reduced our 

ability to identify and correct data-processing and modeling problems.  For example, the charge 

codes for gastroscope procedures initially were not properly extracted and grouped from the EMR 

and therefore could not possibly be identified in the analysis. On review, the correct charge codes 

for procedures using gastroscopes were grouped together as described above. The analysis was 

rerun and the correct exposure route was identified. 
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3.4 RESULTS 

The characteristics of the 9 outbreak investigations during the study period are shown in 

Table 1. For some investigations, the molecular typing revealed several separate clusters. For 

example, for investigation No. 2, there were 2 clusters involving 2 isolates each. For two (22%) 

C. difficile outbreaks (Nos. 8 and 9), epidemiologic investigation revealed that transmission 

occurred in the nursing units where the patients resided. Three (33%) investigations involved 

Klebsiella pneumoniae, one of which represented a polyclonal ERCP-related outbreak (No. 2),3 

and one each involved bronchoscopy (No. 3) and gastroscopy (No. 7). Two Acinetobacter 

baumanni investigations were determined to have been transmitted in intensive care units (Nos. 1 

and 5). One outbreak each of Pseudomonas aeruginosa (No. 4), P. putida (No. 6) were also 

considered to involve bronchoscopy as the source. 

The data-mining program detected the correct routes of transmission on the eighth patient 

of the ERCP outbreaks and all other previous outbreaks on the second positive isolate of each 

outbreaks’ respective timeline. For example, for investigation No. 4, Pseudomonas aeruginosa 

transmission related to a bronchoscope, the bronchoscopy procedure was detected in 100% of 

cases from case two to six (OR=28.7, p=0.02) on the second case (Figure 1). Figure 2 shows 

investigation No. 3, Klebsiella pneumoniae transmission related to a bronchoscope. The 

bronchoscope is persistently ranked the highest plausible transmission route starting at the second 

patient (OR=29.1 p=0.021). Table 1 displays the transmission routes which were both determined 

independently by infection prevention and the data-mining program. 

Potential infections prevented are shown in Table 1 based upon a 7- or 14-day intervention 

period given the delay in plausible intervention with real-time WGS and data-mining analysis. In 

total, for the 2011-2016 outbreak requests, potentially 40 or 34 infections (71% or 60% of possible 
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preventable infections, respectively) could have been prevented based upon the 7- or 14-day 

intervention. 

3.5 DISCUSSION 

In this study, data mining of the EMR correctly identified transmission routes by the eighth 

patient of one outbreak and the second patient in all other eight outbreaks. If run in conjunction 

with routine molecular typing, up to 40 infections (71% of possible preventable infections) could 

have been prevented, assuming that proper intervention had occurred. Our results provide proof of 

concept that automated data mining can correctly identify routes of exposure in hospital outbreak 

investigations.  

To our knowledge, this is the first reported study that combines molecular typing results 

and automated data mining of the EMR in hospital outbreak settings to identify routes of bacterial 

transmission. Current infection prevention methods rely on the infection preventionists or other 

clinicians to recognize an increased number of infections or geographic clustering of cases. 

Outbreaks that involve common hospital pathogens and/or less obvious transmission routes can be 

more difficult to detect. This is exemplified by our ERCP outbreak (No. 2), which was only 

identified 10 months after it began because it involved a common organism (K. pneumoniae) and 

patients admitted to multiple inpatient units after outpatient ERCP.3 Substantial time and labor 

must be spent on attempting to identify possible routes of transmission which may include sending 

isolates for WGS after the outbreak has already expanded.  

There are several potential advantages of automated data mining over traditional 

approaches to hospital outbreak investigations. First, the EMR can be rapidly scanned for common 



26 

exposures among patients with complex hospitalizations. Second, automated data mining allows 

rapid assessment of the strength of association of suspected exposures. In this study, we 

incorporated a case-control study design to identify outbreak transmission routes, which is similar 

to the approach that is used in traditional outbreak investigations. We are currently refining this 

approach to allow the infection preventionist to easily select and explore the most appropriate 

control population within the hospital. For example, to identify the route of transmission during 

an outbreak that occurs on a single nursing unit, the most appropriate control population may be 

non-outbreak patients on the same unit.  Both approaches have the potential to substantially 

decrease the number of hours required for outbreak investigations and to allow infection 

prevention personnel with limited outbreak investigation expertise to conduct relatively 

sophisticated investigations.  

Our study and approach have limitations.  First, only outbreaks that had been detected by 

traditional epidemiologic approaches were included. This limitation could have resulted in missing 

other patients with genetically-related isolates who should have been included as cases, thus 

leading to both an underestimate of the magnitude of the outbreak and having the patients 

incorrectly included in our control population. Despite this limitation, data mining still identified 

the correct transmission routes. Second, the intervention delay of 7 or 14 days is based on 

hypothetical timelines that considered the time required to perform WGS, analyze data and enact 

appropriate interventions (e.g. removing a device from use, targeted environmental cleaning, staff 

education). Regardless, a conservative delay of 14 days for effective interventions still 

demonstrated 34 potential infections prevented across a relatively small number of outbreaks. 

Third, we included a limited number of EMR variables in our analysis. However, in subsequent 

iterations we plan to expand the variables that are studied. Finally, automated data mining of the 
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EMR does not obviate the need for traditional “shoe leather” epidemiology for outbreak 

investigations. Additional efforts will often be required such as culturing of an implicated device 

or direct observations of suspected procedures based on the results of this automated approach. 

We have recently instituted WGS surveillance of key hospital bacterial pathogens to 

enhance outbreak detection in our hospital. If run in real time, routine WGS in combination with 

data mining has the potential to identify outbreaks earlier than traditional methods thus preventing 

a larger outbreak or, importantly, identify outbreaks that might not otherwise be detected. 

Prospective validation of this approach is underway. 
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3.6 TABLES AND FIGURES 

Table 3. Characteristics of outbreaks. The correct transmission route was identified by the data mining program for all outbreaks 

No. Date Organism 

Cluster: 

No. related 

isolates 

Molecular 

typing method 

Duration of 

transmission 

(days) 

Transmission 

Route 

Infections 

prevented: 7 day 

intervention 

Infections 

prevented: 14 

day intervention 

1 Feb-12 A. baumannii 3 PFGE 19 Trauma ICU 1 1 

2 Mar-13 K. pneumoniae  

A: 28 

PFGE 

865 ERCP 20 20 

B: 2 3 ERCP 0* 0* 

C: 2 13 ERCP 0* 0* 

TOTAL: 36           

3 Jun-15 K. pneumoniae 10 PFGE 29 Bronchoscope 5 3 

4 Jul-15 P. aeruginosa 10 PFGE 42 Bronchoscope 5 4 

5 Aug-15 A. baumannii 5 PFGE 80 Medical ICU 3 2 

6 Dec-15 P. putida 3 PFGE 1 Bronchoscope 0 0 

7 Apr-16 K. pneumoniae 9 PFGE & WGS 39 Gastroscope 5 3 

8 16-Jun C. difficile 

A: 2 

WGS 

4 Trauma Floor 0* 0* 

B: 2 15 
Post Anesthesia 

Unit 
0* 0* 

C: 2 35 Pulmonology Floor 0* 0* 

TOTAL: 6           

9 16-Sep C. difficile 4 WGS 67 Medical ICU 1 1 

*only 2 isolates; cannot prevent any infections TOTAL: 40 TOTAL: 34 

PFGE, pulsed field gel electrophoresis; WGS, whole genome sequencing; ICU, intensive care unit;  
  

ERCP, endoscopic retrograde cholangiopancreatography     
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Figure 1. Transmission route ranking for outbreak No. 4: Pseudomonas aeruginosa from a contaminated 

bronchoscope 
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Figure 2. Transmission route ranking for outbreak no. 3: Klebsiella pneumoniae from a contaminated 

bronchoscope 
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4.1 ABSTRACT 

Background: Most hospitals use traditional infection prevention (IP) methods for outbreak 

detection. We developed the Enhanced Detection System for Healthcare-Associated Transmission 

(EDS-HAT), which combines whole genome sequencing (WGS) surveillance and machine 

learning (ML) of the electronic health record (EHR) to identify undetected outbreaks and the 

responsible transmission routes, respectively.  

Methods: We performed WGS surveillance of healthcare-associated bacterial pathogens 

from November 2016 to November 2018. EHR ML was used to identify the transmission routes 

for WGS-detected outbreaks, which were investigated by an IP expert. Potential infections 

prevented were estimated and compared to traditional IP practice during the same period. 

Results: Of 3,165 isolates, there were 2,752 unique patient isolates in 99 clusters involving 

297 (10.8%) patient isolates were identified by WGS; clusters ranged from 2-14 patients. At least 

one transmission route was detected for 65.7% of clusters. During the same time, traditional IP 

investigation prompted WGS for 15 suspected outbreaks involving 133 patients, for which 

transmission events were identified for 5 (3.8%). If EDS-HAT had been running in real-time, 25-

63 transmissions could have been prevented. EDS-HAT was found to be cost-saving and more 

effective than traditional IP practice, with overall savings of $192,408 - $692,532. 
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Conclusion: EDS-HAT detected multiple outbreaks not identified using traditional IP 

methods, correctly identified the transmission routes for most outbreaks, and would save the 

hospital substantial costs. Traditional IP practice misidentified outbreaks for which transmission 

did not occur. WGS surveillance combined with EHR ML has the potential to save costs and 

enhance patient safety. 

4.2 INTRODUCTION 

Approaches for healthcare outbreak detection have remained essentially unchanged for 

decades.68 When an outbreak is suspected, a method to establish genetic relatedness such as whole 

genome sequencing (WGS) may be performed. This approach can miss outbreaks and falsely 

identify suspected outbreaks that are refuted by WGS.  

Although WGS surveillance has been useful for identifying otherwise undetected 

transmission events, identifying the responsible transmission route has had limited success. This 

is because investigations have focused primarily on geotemporal clustering which can miss 

complex transmission routes.73,74  

In late 2016 we began development of the Enhanced Detection System for Healthcare-

Associated Transmission (EDS-HAT), which combines WGS surveillance with machine learning 

(ML) of the electronic health record (EHR) to detect outbreaks and identify their routes of 

transmission.75–79 We have found EHR ML useful for transmission routes that cannot be identified 

by traditional means.75,76,78  
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EDS-HAT was run with an at least six-month lag between infection and WGS so that its 

performance could be compared to our practice of using WGS in reaction to suspected outbreaks. 

We conducted a detailed analysis of EDS-HAT compared to traditional IP practice. 

4.3 METHODS 

4.3.1 Study Setting  

This study was performed at the University of Pittsburgh Medical Center-Presbyterian 

Hospital (UPMC), an adult tertiary care hospital with 758 total beds, 134 critical care beds, and 

over 400 annual solid organ transplants. An independent chronic care facility with 32 beds is 

physically imbedded within UPMC. Transfer of patients between this facility and UPMC is 

common. Ethics approval was obtained from the University of Pittsburgh Institutional Review 

Board.  

4.3.2 Isolate Collection 

A description of the outbreak detection process is shown in Figure 1. For WGS 

surveillance, we collected select bacterial pathogens isolated from clinical specimens between 

November 2016 and November 2018: Acinetobacter species, Pseudomonas species, extended-

spectrum beta-lactamase-producing [ESBL] Escherichia coli, Klebsiella species, Clostridioides 

difficile, ESBL Enterobacter species, vancomycin-resistant Enterococcus [VRE], methicillin-

resistant Staphylococcus aureus [MRSA], Stenotrophomonas species, Serratia species, 
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Burkholderia species, Legionella species, Providencia species, Proteus species, and Citrobacter 

species. These pathogens were selected because they cause serious infections and healthcare-

associated outbreaks. For Clostridioides difficile, we performed culture of stool specimens that 

were culture-independent diagnostic test-positive for C. difficile. Inclusion criteria were hospital 

admission or observation ≥3 days before the culture date and/or a recent inpatient or outpatient 

encounter in the 30-days before the culture date. 

4.3.3 Whole-Genome Sequencing 

WGS was performed on the NextSeq 500 platform (Illumina, San Diego, CA). Reads were 

assembled with SPAdes v3.13,80 annotated with Prokka v1.14,81 and multi-locus sequence types 

(STs) were assigned using PubMLST typing schemes (https://github.com/tseemann/mlst).82  

Pairwise core genome single nucleotide polymorphisms (cgSNP) differences were 

calculated using snippy v4.3.0 (https://github.com/tseemann/snippy) within species STs having ≥2 

isolates. Genetically related clusters were assigned using initial SNP cutoffs using hierarchical 

clustering with single linkage.76,77 Based on our experience and the literature,74,76,77,83–90 clusters 

were defined as isolates from >1 patient having ≤15 pairwise cgSNPs for all species except for C. 

difficile, for which ≤5 pairwise cgSNPs were used to identify clusters. For this organism, we 

defined clusters as all isolates that were within 0-2 cgSNPs regardless of whether a transmission 

route was identified and included cases that were within 3-5 cgSNPs of one another only if we 

could identify a statistically significant transmission route detected at 0-2 cgSNPs.  

https://github.com/tseemann/snippy
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4.3.4 Extraction and Processing of Electronic Health Record Data 

All patient encounters including inpatient, emergency room, and same day surgery were 

mined for charge transaction codes, clinical microbiologic data, admission data, discharge data, 

and length of stay.75  Charge transaction codes were included because they reflect many types of 

exposures associated with transmission, such as medical procedures, medical services, and 

medications. Data were assigned a unique identification number using De-ID software (De-ID 

Data, Philadelphia, PA). The names of healthcare workers who signed clinical notes were also 

extracted and de-identified. Procedures with multiple charge codes were aggregated into groups 

for transmission route analysis. 

4.3.5 Machine Learning Algorithm  

A ML algorithm based on point estimates for model parameters and incorporating case-

control methodology was used.75,78 Case patients were defined as those with clinical isolates that 

clustered by WGS as defined above and control patients where all patients who were hospitalized 

in the 30-days prior to a case patients’ culture date and did not have a positive result for the 

genetically related strain. Only route exposures on or prior to a case patient’s culture date were 

considered.  

The ML algorithm scores each outbreak by the maximum log-likelihood ratio of observing 

the case infections given that exposure to the principal transmission route probabilistically causes 

infection over the likelihood of a non-transmission explanation. A constant patient-to-patient 

transmission likelihood is added for each case infection not exposed to the principal transmission 

route. Empirical p-values are computed by estimating the likelihood of a higher outbreak score 
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given that no relationship exists between the case patients. This is done by sampling random sets 

of patients of equal size and computing their outbreak score maximized over routes. Importance 

sampling is used to improve efficiency of this process. Model parameters were fit using nine 

historical outbreaks between 2012-2016, which are separate from the analysis presented in this 

manuscript (Table S1). Parameter estimation was accomplished by transforming the outbreak 

detection problem into logistic regression as previously described.75,78  

Transmission routes for clustered isolates with statistically significant odds ratios (OR) 

(p<0.05) from the algorithm for category types (e.g., procedures, locations, and providers) 

underwent manual EHR review for accuracy and biological plausibility. The manual EHR review 

was performed by an experienced infection preventionist (AJS), who subsequently reviewed the 

findings with two senior investigators (LHH and GMS), all who have experience in hospital 

epidemiology and outbreak investigation. The purpose of the manual EHR review was to 

determine the most likely transmission route predicted by the ML algorithm or investigate routes 

of transmission that that were not identified by the algorithm. For some clusters, more than one 

transmission route was considered plausible (e.g., transmission from a medical device with 

subsequent hospital unit-based transmission). 

4.3.6 Clinical and Economic Modeling 

Clinical and economic impact analysis was conducted from a hospital’s perspective. The 

analysis utilized the transmission network of outbreaks, effectiveness of IP interventions by 

transmission route and time needed to implement IP interventions to estimate the expected number 

of transmissions under EDS-HAT, based on the method we previously described.79 Since the 

effectiveness of IP interventions can decrease with time, we estimated lower and upper impact 
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boundaries, with the true value likely between these estimates. For the lower boundary, we 

assumed that effectiveness would decline linearly and measured effectiveness from the time when 

the IP team first intervened. The effect of subsequent IP interventions that would have been 

implemented whenever an additional patient was infected through same route was ignored. For the 

upper boundary, intervention effectiveness was assumed to remain constant. For outbreaks with 

more than one plausible transmission route, we weighted routes by the OR generated by the ML 

algorithm. If any route was missed by ML but detected by manual EHR review, we conservatively 

assigned the lowest OR score. Additionally, we performed a downstream cluster analysis to 

calculate the number of preventable infections if an intervention based on one outbreak could 

potentially prevent another outbreak using the same IP effectiveness parameters. For example, if 

EDS-HAT detected an outbreak in a hospital unit and an intervention was implemented, 

theoretically that intervention could prevent a subsequent outbreak. 

Outcomes were incremental costs per transmission averted, number of readmissions 

averted, and lives saved. Probabilistic sensitivity analysis was conducted to assess the impact of 

uncertainty in parameter values of EDS-HAT. Data sources are described in Table S2. All costs 

were adjusted to 2020 using the medical component of the Consumer Price Index.91 Costs and 

benefits were discounted at 3%. Readmissions at 7- and 30-days post-discharge were recorded. 

EHR review was performed to ascertain if readmissions were attributable to the infection; 

attributable readmissions were incorporated into the economic impact analysis. 
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4.3.7 Traditional Infection Prevention Practice 

WGS was performed in reaction to IP requests (reactive WGS) for suspected outbreaks. 

For the two-year study period, the number of outbreaks detected by EDS-HAT versus traditional 

IP practice was determined. 

4.4 RESULTS 

Of 3,165 clinical isolates that underwent WGS, 2,752 unique patient isolates were clustered 

by ST. A total of 297 (10.8%) isolates representing 99 distinct, genetically related clusters ranging 

in size between 2-14 isolates were identified (Figure 2, Table 1). 269 (90.6%) of isolates were 

from inpatient cultures, 27 (9.1%) were from the emergency room, and 1 (0.3%) was from an 

outpatient visit. EDS-HAT detected potential transmission routes for 65 (65.7%) clusters 

containing 221 (74.4%) of the related isolates (Table S3). No significant transmission routes were 

detected by the EDS-HAT ML algorithm or manual review in the remaining 34 clusters, which 

ranged in size from 2-5 patients and contained 76 isolates. A brief description of high-impact or 

notable outbreaks and transmission routes detected by EDS-HAT ML is described in Table 2 while 

Table S3 describes all outbreaks. 

4.4.1 Outbreaks detected by traditional IP practice 

During the study period, our IP department requested reactive WGS for 15 suspected and 

potentially actionable outbreaks while EDS-HAT was running in parallel (2 A. baumannii, 1 
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Burkholderia cepacia, 6 C. difficile, 1 K. pneumoniae 3 S. marcescens, 2 S. maltophilia) involving 

133 patients. Of these 15 suspected clusters, 5 (3.8%) patient isolates from 2 clusters (A. baumannii 

and S. maltophilia) were found to be genetically related. Of these 5 patients with related isolates, 

2 of the transmissions involving A. baumannii were also detected by EDS-HAT. 

4.4.2 Clinical and economic impact analysis 

EDS-HAT could have prevented 25 (lower bound) to 63 (upper bound) transmissions. 

Moreover, 3.1-8.0 fewer 30-day attributable readmissions and 1.6-3.3 fewer deaths would have 

occurred had EDS-HAT been running in real time. Under EDS-HAT, the increase in cost of 

sequencing would be offset by cost savings in costs of treating infections, resulting in overall cost 

savings of $192,408 to $692,532 over the study period. EDS-HAT was found to be a more-

effective and cost-saving program than traditional IP practice by providing savings of $7,745 - 

$10,939 for each transmission averted. Based on the lower bound estimates, EDS-HAT remained 

cost-saving and more effective in various independent scenarios: when the time needed for 

effective intervention was increased to 21 days, proportion of time spent towards outbreak 

detection under EDS-HAT was doubled (20%), effectiveness against procedures and healthcare 

workers was reduced to 30% (relative risk = 0.7), duration after which IP intervention’s 

effectiveness would become zero was reduced to 13 weeks for all transmission routes except 

instruments, or the proportion of untreated cases was increased to 70% for respiratory, 50% for 

urine, 25% for wound or 10 % for stool. In probabilistic sensitivity analysis, EDS-HAT was cost-

saving and more effective than traditional IP practice alone in more than 88% of simulations in 

lower and 99% in upper bound scenarios (Figure 3, Table S4). 
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4.5 DISCUSSION 

In this study, we demonstrate the value of combining WGS surveillance with ML of the 

EHR for enhanced hospital outbreak detection. EDS-HAT detected consequential outbreaks and 

transmission routes that were undetected by traditional IP practice, whereas the latter mostly 

identified suspected outbreaks that were not confirmed by reactive WGS. Both components of 

EDS-HAT are essential: WGS surveillance is used to “connect the dots” between seemingly 

unrelated patients to signal an outbreak and ML, in combination with review by an IP expert, then 

identifies the responsible transmission route. In our study, we found that 10.8% of sequenced 

isolates were related which is in line with other studies of WGS surveillance.30,31,41,47,83,87 

The results of our clinical and economic impact analysis suggest that, had it been running 

in real time, EDS-HAT would be highly cost-saving. The cost of sequencing one bacterial isolate 

is low ($70) relative to the high costs of treating a single, potentially-preventable infection (e.g., 

over $24,000 for Pseudomonas pneumonia). Recent budget and clinical impact analyses of WGS 

surveillance of multidrug-resistant pathogens in Australia also demonstrated that this approach is 

cost-saving.92,93 Our analysis showed costs savings despite our conservative modeling assumptions 

which included the effectiveness of various types of interventions and the fact that we did not 

consider the cost of personal protective equipment and other costs associated with isolation 

precautions of patients. By using this conservative approach, we likely underestimated the true 

impact and cost savings of EDS-HAT. 

The inability to demonstrate transmission routes that do not involve geotemporal clustering 

is a serious limitation of previous studies of WGS surveillance for outbreak detection in 

hospitals.73,74 EDS-HAT overcomes this limitation by incorporating EHR ML.94–96 Outbreaks that 

were detected exclusively by EDS-HAT tended to involve common hospital pathogens that lacked 
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geographic clustering and had transmission routes that were not readily apparent on manual EHR 

review. For example, the interventional radiology VRE outbreak identified a newly discovered 

procedural vulnerability, the outbreak of Pseudomonas aeruginosa affirmed known risks of 

endoscopy, outbreaks in the chronic care facility highlighted the problem of high risk transmission 

in this vulnerable patient population, the outbreak associated with wound care highlighted 

operational susceptibilities in the nature of care provided, and the cluster of MRSA associated with 

EEG and specific providers shows how EDS-HAT can detect unusual and specific routes. 

Implementation of real-time WGS surveillance and ML of the EHR will require investment 

in healthcare infrastructure; the results of our economic analysis provide evidence that 

implementation can be cost-saving for hospitals that perform reactive WGS. Parcell et al highlight 

barriers to implementation and methods for integration into infection prevention practice.62 We 

view EDS-HAT as complementary to infection prevention practice because it alerts of possible 

outbreaks, which prompts additional investigating and intervention. EDS-HAT requires input from 

infection preventionists to evaluate the transmission routes that are generated and determine what 

interventions are needed. 

There are several limitations to our study. First, it is unlikely that all outbreaks and outbreak 

patients were captured in this study, because, for example, some infected patients may not have 

cultures taken or cultures may have been negative because of recent antibiotic administration. In 

addition, our exclusion of cultures during the first three days of hospitalization likely led us to miss 

transmission events. Second, we did not include surveillance swabs, meaning that we likely missed 

transmission events for, for example, VRE. Third, the retrospective nature of the study did not 

allow us to investigate and confirm potential transmission routes for some of our outbreaks; this 

limitation can be alleviated and the potential impact will likely increase when EDS-HAT is run in 
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real-time. Fourth, during this two-year evaluation, we had fewer transmissions identified by 

traditional IP practice at our institution than usual.75,97,98 However, EDS-HAT would likely have 

detected any IP-identified outbreak more quickly. Fifth, our economic modeling of real-time 

interventions may not reflect true intervention effectiveness and timeliness. However, we adjusted 

for both conservative and loose parameters to estimate the true effectiveness in between those 

bounds. Sixth, we did not account for potential asymptomatic carriage of urinary and wound 

cultures in our model. However, IP would intervene regardless of clinical presentation given it 

would aid in interrupting future transmission. In addition, many of these positive cultures are 

treated and, therefore, incur costs, whether the treatment is appropriate or not. Finally, we included 

only a limited number of pathogens in WGS surveillance because of feasibility and cost and 

therefore likely missed outbreaks caused by other pathogens.  

Advances in microbial genomics and bioinformatics, digitalization of healthcare data, and 

machine learning technology have made enhanced outbreak detection in hospitals feasible. Taken 

together, our results suggest that EDS-HAT represents a potential paradigm shift in how outbreaks 

are detected in hospitals. If instituted in real time, this approach can reduce healthcare-related costs 

and significantly improve patient safety. 
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4.6 FIGURES AND TABLES 

 

Table 4. EDS-HAT isolates sequenced and attributable readmissions 

  Sequenced Attributable Readmissions 

Species Collected 

Unique Patient 

Isolates  

No. Related 

(%) 

Clusters 7-day 30-day 

Acinetobacter species 83 72 12 (16.7) 3 1 1 

Burkholderia species 12 12 0 (0) 0 0 0 

Citrobacter species 126 118 2 (1.7) 1 0 0 

Clostridioides difficile 558 524 80 (15.3) 21 2 10 

Escherichia coli (ESBL) 170 149 10 (6.7) 4 0 1 

Klebsiella species (ESBL, not 

pneumoniae) 

25 20 0 (0) 0 0 0 

Klebsiella pneumoniae (ESBL) 111 102 27 (26.5) 8 0 1 

Legionella species 1 1 0 (0) 0 0 0 

Methicillin-resistant Staphylococcus 

aureus 

425 365 39 (10.7) 18 1 5 
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  Sequenced Attributable Readmissions 

Species Collected 

Unique Patient 

Isolates  

No. Related 

(%) 

Clusters 7-day 30-day 

Proteus species 151 140 2 (1.4) 1 0 0 

Providencia species 14 13 0 (0) 0 0 0 

Pseudomonas aeruginosa 881 693 31 (4.5) 10 2 3 

Pseudomonas species (not aeruginosa) 28 27 0 (0) 0 0 0 

Serratia species 181 173 14 (8.1) 7 1 3 

Stenotrophomonas species 127 114 4 (3.5) 2 0 0 

Vancomycin-resistant Enterococcus 

faecalis 

17 17 0 (0) 0 0 0 

Vancomycin-resistant Enterococcus 

faecium 

247 212 76 (35.8) 24 5 16 

Total 3165 2752 297 (10.8) 99 12 40 
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Table 5. High-impact or notable outbreaks detected by EDS-HAT 

Outbreak Details 

Vancomycin-resistant Enterococcus faecium 

outbreak associated with interventional 

radiology (IR) and injection of sterile contrast6 

This outbreak involved ten initial patients and was ongoing when it was 

discovered. The EDS-HAT ML algorithm identified IR as a significant 

transmission route (OR 43.8; p-value <0.01; 95% confidence interval [CI], 5.6 to 

346). Nine patients, including three with bacteremia, were identified as having IR 

procedures involving unsterile practices in the preparation of contrast. Safe 

practices and enhanced environmental cleaning were implemented and no 

additional IR-associated infections occurred. Subsequently, transmission of the 

outbreak strain occurred among four patients on shared hospital units. 

Pseudomonas aeruginosa outbreak associated 

with gastroscopy5 

This outbreak comprised six patients housed on different units over seven months. 

Two patients had bacteremia, three had pneumonia, and one had a urinary tract 

infection. The EDS-HAT ML algorithm detected gastroscopy as a significant 

route for four patients (OR 300.6; p-value <0.01; 95% CI, 15.8 to 5690.5) with a 

fifth patient who did not have a charge code that reflected the gastroscopy 

procedure but who had a clinical note reflecting the procedure that was identified 

on manual EHR review. A post-disinfection gastroscope culture performed as part 

of routine IP practice was positive for P. aeruginosa; the isolate was sequenced 

and belonged to the outbreak, confirming gastroscopy as the responsible 

transmission route. 

Outbreaks of multiple pathogens at the 

imbedded chronic care facility 

EDS-HAT ML identified 11 clusters involving 38 patients over 22 months, with a 

range 2-9 total patients per cluster; 25 (65.8%) patients had this facility as a 

plausible transmission route. Pathogens included C. difficile (6 clusters), K. 

pneumoniae (1 cluster), MRSA (1 cluster), P. aeruginosa (2 clusters), and VRE (1 

cluster). Three C. difficile patients in three clusters were subsequently transferred 

to our institution and had unit-based commonalities with three additional patients 

who later developed C. difficile infection suggesting continuing transmission. 

Outbreaks of multiple pathogens on an 

intensive care unit (ICU) 

There were 12 clusters with 57 patients (range 2-14), of whom 28 (49.1%) had a 

single ICU stay identified by EDS-HAT ML as the potential transmission route. 

Organisms included C. difficile (3 clusters involving 10 patients), K. pneumoniae 

(3 clusters involving 16 patients), P. aeruginosa (1 cluster involving 3 patients), 



47 

Outbreak Details 

Serratia marcescens (1 cluster involving 2 patients), and VRE (4 clusters 

involving 26 patients). 

C. difficile outbreaks associated with wound 

care 

There were 9 C. difficile clusters, ranging in size from 2-12 patients. Of 52 

patients, 29 (55.8%) had wound care service identified as a potential transmission 

route, with exposures occurring 1-92 days (mean 16 days, median 9 days) before 

the positive test for C. difficile. This consult service involved nurses providing 

management of sacral pressure ulcer wounds. 

MRSA infections associated with 

electroencephalography (EEG) 

This cluster consisted of two patients with culture dates separated by 8 days. The 

EDS-HAT ML algorithm identified EEG as a transmission route. Manual EHR 

review determined that both patients had a bedside EEG performed on the same 

day on separate units by the same physician and technician, two and ten days 

before positive culture dates.  

 



48 

 

Figure 3. Flow diagram of the EDS-HAT outbreak detection process, from clinical culture through 

adjudication of transmission route(s) 
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Figure 4. Cluster network of EDS-HAT isolates sequenced, grouped by bacterial species. The outer circle 

shows patient isolates that are not genetically related. The inner circle shows outbreaks of genetically related 

isolates as defined by cgSNP cut-offs describe 
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Figure 5. EDS-HAT cost-savings and effectiveness plot for estimated lower and upper bound boundaries (see 

Methods). Cost-savings of EDS-HAT was examined by estimated costs associated with number of 

transmissions averted, using 1,000 simulations in probabilistic s  
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5.0 CONCLUSION 

5.1 MAJOR FINDINGS 

Whole genome sequencing surveillance and machine learning of the electronic health 

record has the potential to significantly enhance healthcare outbreak detection and investigation. 

The decrease costs of WGS and availability of EHR data has provided an opportunity for 

healthcare systems to leverage these data to improve patient safety. The evidence presented in this 

dissertation supports its use through multiple analysis: a systematic literature review of the 

potential impact of WGS surveillance, a proof of concept design of EDS-HAT, and application of 

the tool in our hospital over two years. 

The first chapter provides a systematic review of institutions that published on utilizing 

WGS surveillance and/or machine learning to investigate and detect outbreaks. The results of the 

review conclude that institutions who have implemented WGS surveillance have been able to find 

previously undetected outbreaks, better understand transmission dynamics within their facility, 

and better estimate the true rates of pathogen transmission. Yet the latter part of the review shows 

that not many institutions have significantly leveraged the availability of EHR data to complement 

investigations. The combination of these technologies may be superior to using one single 

technology alone. The use of WGS surveillance is emerging with more publications each year. 

Institutions should look to prepare to or adopt this technology. 

The next chapter provided a proof of concept for EDS-HAT by showing WGS and a data 

mining algorithm can early detect previously well-described outbreaks at our institution. 

Additionally, using past outbreaks that went undetected often for months was vital in the teaching 
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the machine learning model. This enabled us to set model parameters for an algorithm that was 

based upon well-defined outbreaks for application in a larger analysis.  

Lastly, the final chapter evaluated a full-scale implementation of EDS-HAT over a 2-year 

period in comparison with traditional infection prevention methods. We found, if implemented in 

real-time, EDS-HAT would be highly cost-savings and prevent transmissions and deaths in 

patients from HAIs. Moreover, we compared these results to the traditional infection prevention 

results which showed superiority in EDS-HAT. 

Taken together, the evidence presented in this dissertation strong supports the further 

research and possible implementation of WGS surveillance and machine learning of the EHR. This 

research is able to depict the clear limitations of traditional infection prevention methods while 

showing the utility in new, emerging technologies that can significantly enhance healthcare 

institutions’ ability to detect and stop transmission. 

5.2 FUTURE DIRECTIONS 

A real-time application of EDS-HAT is necessary to fully evaluate its effectiveness in 

detecting and stopping the spread of outbreaks. As of the submission of this dissertation, our 

institution has started WGS surveillance and is in the process of building a real-time process for 

machine learning of EHR data. Our initial findings on the use of WGS surveillance support that of 

our two-year analysis findings in that it is able to detect outbreaks at two patients and often when 

traditional infection prevention practices has not detected anything. However, a formal analysis of 

this approach will entail measuring subsequent cases of the same route in an outbreak after an 
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intervention by the infection prevention department. A successful tool will show that outbreaks 

can be terminated through interventions on the implicated transmission route. 

Large datasets for a real-time application of EDS-HAT will require a graphical user 

interface to better interact and explore the data compared to more manual evaluation methods 

within this dissertation. The development of such interface will be key to expansion in other 

hospitals within a system given the nature of patient movement as well. Other institutions that are 

seeking to implement a program like EDS-HAT should consider an interface for evaluation. 

This dissertation was performed at one large, academic, tertiary care hospital which results 

may not be generalizable to all healthcare settings given the acuity of patients and nature of 

invasive procedures. Other institutions should carry out additional studies to independently 

conclude their findings of a WGS surveillance tool and/or use of EHR data for outbreak detection. 

We will seek to expand EDS-HAT as a real-time tool at our hospital and subsequently to other 

hospitals if proven effective in real-time. We aim to evaluate its impact at each hospital, with the 

goal of improving patient safety. 

EDS-HAT enables institutions to better and more accurately detect outbreaks. However, 

often the implemented interventions remain unchanged. For example, when a unit-based 

transmission route is suspected, an infection preventionist performs education, hand hygiene 

audits, and interview staff. This does not change with detection of highly suspected transmission 

via EDS-HAT. Additional studies are being planned to explore the application of targeted 

environmental cultures into the workflow of a real-time EDS-HAT program. This approach has 

the potential to better detect the exact mechanism of unit-based transmission. For example, if a 

unit-based transmission were suspected, and targeted environmental cultures supported 
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transmission via a reusable medical equipment, resources could be focused on enhancing cleaning 

of that equipment and thus increasing intervention effectiveness. 

Additionally, this dissertation has discussed the role and limitations of geo-temporal 

clustering as a primary approach for outbreak detection.  Often, institutions assume that patients 

are only infected and contagious with bacterial pathogens for a short duration (<30 days) after the 

initial clinical infection. Therefore, a patient will not be assumed to be a potential source of 

infection months after the initial infection. Preliminary EDS-HAT data show that patients can have 

repeated infections with the same bacterial strain hundreds of days after the initial infection. This 

evidence would refute traditional infection prevention practice and may change approaches for 

managing chronically-infected patients to prevent transmission to others. Additional studies in this 

topic are being planned as well. 

Further, surveillance definitions of infections have been created by the CDC National 

Healthcare Safety Network to streamline workflows, standardize across institutions, and track the 

overall burden of healthcare-associated infections. Preliminary data from EDS-HAT show that the 

National Healthcare Safety Network’s definitions do not capture >50% of transmissions within 

our institution. These findings are concerning given healthcare institutions often rely off of these 

definitions to track issues as well as for the use of national statistics on the burden of HAIs. 

Additional studies are being conducted to fully understand the limitations of these definitions at 

our institution that are likely relevant to other healthcare facilities. 
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6.0 PUBLIC HEALTH SIGNIFICANCE  

Healthcare-associated infections are a global issue that cause high morbidity and mortality. 

Many of these HAIs are becoming more resistant to antimicrobials which heightens the need to 

detect outbreaks and prevent HAIs. HAIs also contribute to transmission and outbreaks within 

healthcare settings. Healthcare institutions often rely on using busy bedside clinicians to detect 

suspected outbreaks. After initiation of a suspected outbreak, infection preventionists are then 

tasked with a full investigation and the occasional use of reactive WGS. This process is time 

consuming and requires a significant allocation of resources. Moreover, oftentimes the conclusion 

of these investigations provide no actionable evidence to intervene or even confirmation of 

transmission. 

Often stated in quality improvement investigations is “it’s how we’ve always done it.” 

Healthcare institutions may be significantly underestimating the amount of infection transmission 

by continuing to use antiquated approaches for outbreak detection and investigation. Public health 

requires institutions to constantly adapt to a changing landscape and new approaches. EDS-HAT 

aims provide the knowledge base on the use of emerging, new technologies so that healthcare 

institutions can incorporate new approaches for solving problems.  

When applying this work to a national or global landscape, it is important to think about a 

feasible expansion and rollout to other healthcare institutions. How will underserved areas without 

sequencing capabilities apply this program? How do you incentivize healthcare institutions to 

actually uncover cryptic transmission and issues in their facilities? How do you create a data 

system across multiple centers that could communicate the genomic findings quickly? These are 

all questions of public health significance that should be considered. Clearly communication of 
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the benefits and providing incentives for healthcare facilities via health policy will be key factors. 

Policy makers should highlight the persistent burden that HAIs have set on healthcare facilities 

and use this research and others to show a need to shift health policy to preventative measures 

rather than reactive. Additionally, further research is needed on the ethical use and implications of 

WGS surveillance. Questions should address how to properly counsel patients and healthcare 

workers involved in transmission. 

In conclusion, the results of this dissertation show the traditional method of outbreak 

detection often misidentifies suspected transmission and misses a significant amount of 

transmission where it did occur. Adoption of WGS surveillance and EHR machine learning may 

be able to help healthcare institutions to alleviate the detection burden from clinicians, provide 

more accurate outbreak investigations, reduce the incidence of healthcare associated infections, 

and thus improve patient safety. 
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Appendix A Tables Whole Genome Sequencing Surveillance and Machine Learning for Healthcare Outbreak 1 Detection and 

Investigation: A Systematic Review and Summary 

Appendix Table 1. Details of studies utilizing whole genome sequencing surveillance 

Year 
First 

Author 
ML/DM/

Model 

Re

al-

Ti

me 

Durati

on 

(Month

s) 

Sequence 

Method 

SNP 

Cutoff 

Methods 

Used for 

Epi 

Connecti

ons 

Organism(s) Type 

# 

Uniq

ue 

Isolat

es 

# 

Relat

ed 

% 

Relat

ed 

# 

Clust

ers 

Avg. 

# / 

Clust

er 

# No 

Epi 

Link 

% 

No 

Epi 

Lin

k 

Transmis

sion 

Route 

2020 
Sunderm

ann 
Yes No 24 WGS 15 

Machine 

learning, 

procedure
s, geo-

temporal, 

providers 

P. 
aeruginosa 

Sequence 
type 27 

882 31 3.5 10 3.1 1 3.2 
Gastrosco

pes 

2020 
Sunderm

ann 
No No 12 WGS 15 

Geo-
temporal, 

procedure

s 

E. faecium 

Vancomyci
n-resistant, 

sequence 

type 1471 

439 10 2.3 

Not 

Provi

ded 

NA 1 10.0 

Interventi

onal 

radiology 

2021 Meredith No Yes 1 WGS 0 
Geo-

temporal 

SARS-CoV-

2 
. 299 159 53.2 35 4.5 35 22.0 

Ward-

based 

transmissi
on 

2021 Rose No No 6 WGS 40 

Geo-

temporal, 

procedure
s 

S. aureus 
Methicillin-

resistant 
56 15 26.8 7 2.1 7 46.7 

Ward-

based 

transmissi
on 

2020 
Tsujiwa

ki 
No No 12 WGS 10 

Geo-
temporal 

S. aureus 
Methicillin-

resistant 
57 19 33.3 5 3.8 0 0.0 

Ward-

based 
transmissi

on 

2021 
Miles-

Jay 
No No 48 WGS 14 

Geo-

temporal 
E. coli 

Sequence 
Type 131 

H30 

126 17 13.5 8 2.1 9 52.9 

Hospital-

based 
transmissi

on 
Potential 

procedure 

2020 Gona No No 12 WGS 20 
Geo-

temporal 

K. 

pneumoniae 
. 80 39 48.8 10 3.9 14 35.9 

Ward-

based 
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Year 
First 

Author 
ML/DM/

Model 

Re

al-

Ti

me 

Durati

on 

(Month

s) 

Sequence 

Method 

SNP 

Cutoff 

Methods 

Used for 

Epi 

Connecti

ons 

Organism(s) Type 

# 

Uniq

ue 

Isolat

es 

# 

Relat

ed 

% 

Relat

ed 

# 

Clust

ers 

Avg. 

# / 

Clust

er 

# No 

Epi 

Link 

% 

No 

Epi 

Lin

k 

Transmis

sion 

Route 

transmissi

on 

2020 
Hammer

um 
No No 54 MLST NA 

Geo-

temporal 

K. 

pneumoniae 
. 103 36 35.0 13 2.8 11 30.6 

Ward-
based 

transmissi

on 

2020 Cremers No No 24 WGS 3 
Geo-

temporal 
S. aureus 

Methicillin-

sensitive 
84 40 47.6 14 2.9 0 0.0 

Ward-

based 

transmissi
on 

2019 Mathur No No 22 WGS 10 
Geo-

temporal 

K. 

pneumoniae 

Colistin-

resistant 
21 8 38.1 4 2.0 0 0.0 

Ward-

based 

transmissi
on 

2020 Marmor No No 60 WGS 49 
Geo-

temporal 

E. cloacae . 

63 

7 11.1 1 7.0 0 0.0 

Ward-

based 
transmissi

on 

C. freundii . 10 15.9 1 10.0 0 0.0 

Ward-

based 
transmissi

on 

2019 Hall No No 3 WGS 39 
Geo-

temporal 
S. aureus 

Methicillin-

resistant 
55 27 49.1 12 2.3 8 29.6 

Ward-
based 

transmissi

on 

2019 Sullivan No No 16 WGS 7 

Geo-

temporal, 
equipmen

t 

S. aureus 
Methicillin-

resistant 
141 28 19.9 4 7.0 2 7.1 

Ward-

based 

transmissi
on and 

ventilator

s 

2019 
Eigenbro

d 
No No 38 WGS 14 

Geo-

temporal 
A. baumannii . 39 15 38.5 4 3.8 5 33.3 

Ward-
based 

transmissi

on 

2019 
Stenmar

k 
No No 360 WGS 2 

Geo-
temporal 

S. capitis 

Bloodstrea

m 

infections 

46 12 26.1 6 2.0 12 
100.

0 
Unknown 

2019 Sherry No No 60 WGS 23 
Geo-

temporal 

Enterobacteri

aceae 

Carbapene

mase-
producing 

291 53 18.2 12 4.4 8 15.1 

Ward-
based 

transmissi

on 

2019 Wang No No 7 WGS 2 
Geo-

temporal 
C. striatum . 91 18 19.8 6 3.0 3 16.7 

Ward-

based 
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Year 
First 

Author 
ML/DM/

Model 

Re

al-

Ti

me 

Durati

on 

(Month

s) 

Sequence 

Method 

SNP 

Cutoff 

Methods 

Used for 

Epi 

Connecti

ons 

Organism(s) Type 

# 

Uniq

ue 

Isolat

es 

# 

Relat

ed 

% 

Relat

ed 

# 

Clust

ers 

Avg. 

# / 

Clust

er 

# No 

Epi 

Link 

% 

No 

Epi 

Lin

k 

Transmis

sion 

Route 

transmissi

on 

2017 Coll No No 12 WGS 50 
Geo-

temporal 
S. aureus 

Methicillin-

resistant 
1465 785 53.6 173 4.5 187 23.8 

Hospital-
based or 

communit

y-based 
transmissi

on 

2019 Jakharia No No 12 WGS 10 
Geo-

temporal 
C. difficile . 45 4 8.9 2 2 4 100 NA 

2019 
García-
Fernánd

ez 

No No 36 WGS 2 
Geo-

temporal 
C. difficile . 367 41 11.2 6 6.8 34 82.9 

Ward-

based 

transmissi
on 

2019 Ward No No 12 WGS 

12 

Geo-
temporal, 

procedure

s, 
providers 

S. aureus . 953 85 8.9 28 3.0 65 
76.4

7 

Ward-

based 

10 E. faecium . 86 13 15.1 5 2.6 9 
69.2

3 

Ward-
based, 

providers 

30 
P. 

aeruginosa 
. 118 2 1.7 1 2.0 2 

100.
00 

NA 

15 
K. 

pneumoniae 
. 100 0 0.0 0 0.0 0 0 NA 

2019 Roy No No 3 WGS 3 
Geo-

temporal 
Influenza A H1N1 36 5 13.9 2 2.5 2 40.0 

Ward-
based 

transmissi

on 

2019 Eyre No No 6 WGS 2 
Geo-

temporal 
C. difficile . 299 43 14.4 6 7.2 20 46.5 

Ward-

based 

transmissi
on 

2018 Wendel No No 12 MLST NA 
Geo-

temporal 
A. baumannii . 36 20 55.6 2 10.0 2 10.0 

Ward-

based 

transmissi
on 

2018 
Houldcr

oft 
No No 66 WGS 

Not 

Provi

ded 

Geo-
temporal 

Adenovirus . 43 6 14.0 2 3 0 0.0 

Ward-

based 
transmissi

on 

2018 Donskey No No 6 WGS 2 
Geo-

temporal 
C. difficile . 66 12 18.2 4 3 4 33.3 

Ward-

based 
transmissi

on 

2018 Leong No No 36 WGS 10 
Geo-

temporal 
E. faecium 

Vancomyci
n-resistant 

80 10 12.5 2 5 3 30.0 
Ward-
based 
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Year 
First 

Author 
ML/DM/

Model 

Re

al-

Ti

me 

Durati

on 

(Month

s) 

Sequence 

Method 

SNP 

Cutoff 

Methods 

Used for 

Epi 

Connecti

ons 

Organism(s) Type 

# 

Uniq

ue 

Isolat

es 

# 

Relat

ed 

% 

Relat

ed 

# 

Clust

ers 

Avg. 

# / 

Clust

er 

# No 

Epi 

Link 

% 

No 

Epi 

Lin

k 

Transmis

sion 

Route 

transmissi

on 

2018 Kwong Yes Yes 48 WGS 30 

Geo-
temporal, 

procedure

s 

K. 

pneumoniae 

Carbapene

mase-
producing 

86 53 61.6 4 13.3 10 18.9 

Ward-
based 

transmissi

on 

2018 Auguet No No 4 WGS 10 
Geo-

temporal 
S. aureus 

Methicillin-

resistant 
610 261 42.8 90 2.9 13 5.0 

Ward-

based 

transmissi
on 

2017 Gorrie No No 12 WGS 25 
Geo-

temporal 

K. 

pneumoniae 
. 106 17 16.0 5 3.4 0 0.0 

Ward-

based 

transmissi
on 

2016 
Elbadaw

i 
No No 4 

PFGE / 
WGS 

2 
Geo-

temporal 
K. 

pneumoniae 

Carbapene

mase-

producing 

46 4 8.7 1 4 0 0.0 

Ward-

based 
transmissi

on 

2019 Harada No No 4 WGS 

Not 

Provi
ded 

Geo-

temporal 

K. 

pneumoniae 

Bloodstrea

m 
infections 

140 2 1.4 1 2.0 2 
100.

0 
Unknown 

2019 Kossow No No 6 MLST 

Not 

Provi

ded 

Geo-
temporal 

S. aureus 
Methicillin-

resistant 

Not 

Provi

ded 

8 NA 1 8.0 0 0.0 

Ward-

based 
transmissi

on 

2019 
van 

Beek 
No No 57 cgMLST 

Not 

Provi

ded 

Geo-
temporal 

K. 
pneumoniae 

Carbapene
mase-

producing, 

sequence 
type 512 

Not 

Provi

ded 

20 NA 2 10.0 4 20.0 

Ward-

based 
transmissi

on 

2013 Eyre No No 42 WGS 2 
Geo-

temporal 
C. difficile . 957 333 34.8 

Not 
Provi

ded 

NA 152 45.6 

Ward-

based 

transmissi
on 

2018 Martin No No 20 WGS 2 
Geo-

temporal 
C. difficile . 640 227 35.5 

Not 

Provi

ded 

NA 69 30.4 

Ward-

based 

transmissi

on 

2015 Roach No No 12 WGS 40 
Geo-

temporal 

S. 

epidermidis 
. 178 56 31.5 10 5.6 

Not 

Provi
ded 

NA Ward-
based 

transmissi

on P. 

aeruginosa 
. 44 7 15.9 3 2.3 

Not 

Provi
ded 

NA 
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Year 
First 

Author 
ML/DM/

Model 

Re

al-

Ti

me 

Durati

on 

(Month

s) 

Sequence 

Method 

SNP 

Cutoff 

Methods 

Used for 

Epi 

Connecti

ons 

Organism(s) Type 

# 

Uniq

ue 

Isolat

es 

# 

Relat

ed 

% 

Relat

ed 

# 

Clust

ers 

Avg. 

# / 

Clust

er 

# No 

Epi 

Link 

% 

No 

Epi 

Lin

k 

Transmis

sion 

Route 

E. faecium . 36 13 36.1 3 4.3 

Not 

Provi

ded 

NA 

S. aureus . 118 4 3.4 2 2.0 

Not 

Provi

ded 

NA 

E. faecalis . 72 6 8.3 3 2.0 

Not 

Provi

ded 

NA 

S. 

maltophilia 
. 58 2 3.4 1 2.0 

Not 
Provi

ded 

NA 

2014 Long No No 6 WGS 40 
Geo-

temporal 
S. aureus . 305 0 0 0 0 

Not 

Provi
ded 

NA NA 

2017 Raven No No 73 WGS 23 
Geo-

temporal 
E. faecium 

Bloodstrea

m 

infections 

293 93 31.7 6 15.5 

Not 

Provi

ded 

NA 

Ward-

based 
transmissi

on 

2020 
Berbel 
Caban 

No No 24 WGS 15 

Geo-

temporal, 

procedure

s, 
providers 

S. aureus 
Methicillin-

resistant 
224 33 14.7 8 4.1 

Not 

Provi

ded 

NA 

Unit-

based 

transmissi

on 

Vascular 
access 

device 

2017 Eyre No No 12 WGS 2 
Geo-

temporal 
C. difficile . 652 128 19.6 

Not 

Provi
ded 

NA 

Not 

Provi
ded 

NA 

Hospital-
level 

transmissi

on 

2020 
Neuman

n 
No No 12 WGS 

Not 

Provi
ded 

Geo-

temporal 
E. faecium 

Vancomyci

n-resistant 
111 

Not 

Provi
ded 

NA 

Not 

Provi
ded 

NA 

Not 

Provi
ded 

NA 

Ward-
based 

transmissi

on 
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Appendix B Tables & Figures: Whole-Genome Sequencing Surveillance and Machine Learning of the Electronic Health 

Record for Enhanced Healthcare Outbreak Detection 

Appendix Table 2. List of model parameters 

Model Parameters 

1. Log probability of non-HAT infection: 1e-4 

2. Log probability of within-outbreak transmission by means other than the "route" e.g. secondary transmission pathways patient to 
patient: 1e-2 

3. Single nucleotide polymorphism distance: range from 0 to 15 

4. Analysis window length: Given an outbreak of isolates, start from 30 days before the first culture date, and end on the last culture date. 

 

 

Appendix Table 3. Data inputs for clinical and economic modeling 

Variable Mean 95% CIa Distribution Source 

Effectiveness related parameters     

Time between culture date and implementation of IP 
intervention under EDS-HAT 

9 days 3-17 days Gamma Assumption 

Effectiveness (Relative risk) of intervening against transmission routes 

   Healthcare worker 0.50 0.27 – 0.85 Lognormal Assumption 

   Instrument 0.00  Not varied Assumption 

   Inpatient unit 0.70 0.50 – 0.98 Lognormal [1] 
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Variable Mean 95% CIa Distribution Source 

   Procedure  0.10 0.02 – 0.34 Lognormal Assumption 

   Unknown 1.00  Not varied Assumption 

Duration of IP intervention b     

   Healthcare worker 26 weeks 7 – 57 Gamma Assumption 

   Instrument Always  Not varied Assumption 

   Inpatient unit 26 weeks 7 – 57 Gamma Assumption 

   Procedure  52 weeks 14 – 114 Gamma Assumption 

% colonized respiratory cultures c 49% 38% - 60% Beta [2] 

     

Attributable mortality risk due to infection 

   Pneumonia   0.143 0.142-0.145 Beta [3] 

   Wound 0.028 0.028-0.029 Beta [3] 

   Urinary tract 0.023 0.023-0.024 Beta [3] 

   Bacteremia 0.123 0.122-0.125 Beta [3] 

   Clostridioides difficile 0.030 0.029-0.031 Beta [4] 

     

Risk of 30-day readmission due to infection     

   Pneumonia   0.100 0.038-0.187 Beta Unpublished data 

   Wound 0.219 0.127-0.327 Beta Unpublished data 

   Urinary tract 0.098 0.033-0.192 Beta Unpublished data 
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Variable Mean 95% CIa Distribution Source 

   Bacteremia 0.119 0.041-0.231 Beta Unpublished data 

   Clostridioides difficile 0.125 0.062-0.205 Beta Unpublished data 

     

Cost related parameters d 

Annual salary of an IP professional $95,700 $92,315 - $99,086 Normal [5] 

Number of IP professionals in IP team     

   Traditional IP practice 8  Not varied Unpublished data 

   EDS-HAT 8  Not varied Assumption 

% time spent on outbreak investigations    

   Traditional IP practice 10% 3% - 22% Beta Unpublished data 

   EDS-HAT 10% 3% - 22% Beta Assumption 

Cost of performing WGS per isolate     

   Traditional IP practice $70 $57 - $84 Gamma Unpublished data 

   EDS-HAT $70 $57 - $84 Gamma Unpublished data 

Number of isolates sequenced per year 

   Traditional IP practice 129 105 – 155 Gamma Unpublished data 

   EDS-HAT 1,300 1,058-1,567 Gamma Unpublished data 

Cost of treating infection e, f     

   Klebsiella Pneumonia (J15.0) $21,096 $18,292 - $24,096 Gamma [6] 

   Pseudomonas Pneumonia (J15.1) $24,301 $22,512 - $26,157 Gamma [6] 
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Variable Mean 95% CIa Distribution Source 

   MRSA Pneumonia (J15.212) $22,700 $21,220 - $24,229 Gamma [6] 

   Escherichia coli Pneumonia (J15.5) $22,058 $18,027 - $26,490 Gamma [6] 

   Pneumonia due to VRE (J15.8) $19,021 $16,121 - $22,156 Gamma [6] 

   Other Pneumonia (J15.6) $13,277 $12,657 - $13,912 Gamma [6] 

   Wound (T81.4XXA) $16,970 $16,587 - $17,357 Gamma [6] 

   Urinary tract (N39.0) $7,815 $7,700 - $7,932 Gamma [6] 

   Bacteremia (R78.81) $13,172 $12,419 - $13,946 Gamma [6] 

   C. difficile infection (A04.7) $10,457 $10,148 - $10,771 Gamma [6] 

a The 95% CI column represents confidence interval for parameters whose estimates are sourced from published studies, while it represents uncertainty range for parameters (e.g. response time, cost of 

sequencing) whose estimates are either assumption-based or sourced from internal data (labelled as unpublished). 

b The duration refers to the time at which effectiveness of IP intervention would reduce to zero assuming a linear decline. The effectiveness of interventions on instruments would never decline because 

the contaminated instrument would be discontinued from service.  
c It was assumed that all positive cultures from wound, urine and blood represented infections, while 51% of positive respiratory cultures were assumed infections and remaining 49% were considered 
colonized. 
d All costs were adjusted to 2020 using medical component of Consumer Price Index (CPI) obtained from Bureau of Labor Statistics. 
e ICD 10 codes are provided in parenthesis 

f Costs for treating infection on index hospitalization and subsequent HAI-related readmission, when applicable, were assumed same. 

Certain variables such as effectiveness against instrument, number of IP professionals in IP team were considered fixed and hence not varied in probabilistic sensitivity analysis. 

Abbreviations: EDS-HAT, Enhanced Detection System for Healthcare-Associated Transmission; ICD, International Classification of Diseases; IP, Infection Prevention; MRSA, Methicillin-resistant 
Staphylococcus aureus; WGS, Whole genome sequencing 
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Appendix Table 4. List of clusters detected by EDS-HAT 

Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

Vancomycin-

resistant E. 

faecium 

1471 E 14 640 10.6 Yes Yes No 

Interventional 
Radiology 

Locations Routes 

IV Team 
Wound Care 

Floor Unit Q 

9 of the 10 initial 

patients all had 

interventional 
radiology exposure less 

than 21 days prior to 

their positive culture. 
The subsequent patient 

isolates all have 

exposures through unit-
based routes, wound 

care visits, and IV team 

consult visits. 

C. difficile 1 A 12 729 3.1 Yes Yes No 
Floor Unit D 

Wound Care 

Floor Unit Q 

Floor Unit J 

ICU F 
ICU I 

Floor Unit C 

There are multiple 1-
unit commonalities 

between 2 patient 

isolates, but no 
trending units among 

all patients. Wound 

care consult visits (8 
patients) was a 

common transmission 

route. 

C. difficile 8 A 11 570 6.7 Yes Yes No 

Floor Unit D 

Wound Care 
IV Team 

ICU A 

There were unit 

commonalities on Floor 

Unit D and one 
occasion on ICU A. 

Wound care (5 

patients) and IV Team 
consults (8 patients) 

were common. 

C. difficile 1 C2 9 553 0.0 Yes Yes No 

Wound Care 

IV Team 

Speech Therapy 

Chronic Care Facility 
Floor Unit B 

Three patients had 
exposure to the Chronic 

Care Facility prior to 

their positive culture 
dates. Wound care (5 

patients), speech 

therapy (3 patients), 
and IV team consults (6 

patients) were also 

potential routes of 
transmission. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

A. baumaunii 2 A 8 498 9.2 Yes No Yes 
ICU A 

Providers 
Floor Unit E 

Patient 1 has no clear 

epidemiological links. 

Patients 2, 3, 4, and 8 
all have stays on the 

same ICU A prior to 

their positive culture 
with Patient 2 and 3 

having overlap on the 

unit. There was overlap 
for Patient 4, post-

positive culture, on a 

general ward unit with 
Patient 5. Patients 4, 5, 

and 6 all saw one 
physician provider 

prior to their positive. 

Patient 6 saw this 
provider at the same 

time as another 

physician provider 
which subsequently 

saw Patient 7. 

K. pneumoniae 258 A 7 613 17.9 Yes Yes No 

Gastroscopy 

EEG 

Bronchoscopy 

ICU G 

Patients 1 and 2 had 

shared ICU G stays and 
the same gastroscope 

used in procedures. The 

next 3 patients were on 
ICU F housed near 

each other. The last 3 

patients all had 
gastroscopy with the 

same gastroscopes. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

K. pneumoniae 307 D 7 223 6.4 Yes Yes Yes 

Floor Unit O 

ICU G 

Bronchoscopy 
Providers 

Floor Unit O 

All but Patient 4 had 

ICU G exposure and all 

but Patients 2-4 had 
Floor Unit O exposure, 

some with overlap of 

positive patients. 
Patients 1 and 3 had the 

same bronchoscope 

prior to their culture 
date. Patients 1, 5-7 

had ICU G BALs. All 

patients had visits by at 
least 1 of 4 ICU G 

service line providers 
prior to their culture 

date. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

P. aeruginosa 241 A 7 474 2.7 Yes Yes Yes 

Floor Unit J 

Gastroscopy 

IV Team 

Provider 

Floor Unit J 

There are no known 

commonalities for 

patient 1. Patient 2 was 
on a separate ICU from 

Patient 3, however 

these ICUs share 
respiratory therapy 

staff and had the same 

provider after Patient 
2’s positive culture 

date. Patient 2 was on 

Floor Unit J after their 
positive culture date. 

Prior to their positive 
culture date, Patient 4 

was on Floor Unit J 

with Patient 2 as well 
as Patient 6 with then 

Patient 4. Patients 2, 4, 

and 5 all saw the same 
physician consult 

provider prior to their 

positive date 
overlapping with 

Patients 2 and 4 in the 

same time period. 
Patients 3 and 5 were 

on unit Floor Unit J 

prior to their positive 
culture. The IV Team 

all visited Patients 3, 5, 

and 6 prior to their 
positive date. Lastly, 

Patient 2, after their 

positive culture date, 

underwent gastroscopy 

by a gastroscope which 

was then used on 
Patient 4 after 

reprocessing. Patients 6 

and 7 both underwent 
gastroscopy with 

another gastroscope 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

prior to their positive 

culture dates. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

C. difficile 1 C 6 222 1.7 Yes Yes No 

Chronic Care Facility 

Wound Care 

IV Team 
Speech Therapy 

ICU D 

5 out of 6 patients had 

the Chronic Care 

Facility as an exposure 
with overlapping stays. 

Patient 1 also had an 

ICU D commonality 
with patient 5. Wound 

care (4 patients), 

speech therapy (4 
patients), and IV team 

(6 patients) consults 

were common among 
patients as well. 

P. aeruginosa 27 A 6 190 6.0 Yes Yes No 

Gastroscopy 

Floor Unit J 
ICU H 

Bronchoscopy 

Floor Unit E 

Patients 1-4 all 

underwent gastroscopy 
with the same 

gastroscope A and on 

ICU H or Floor Unit J 
prior to testing positive. 

Patients 2 and 4 were 

roommates on Floor 

Unit E prior to Patient 

4 testing positive. 

Patient 4 subsequently 
underwent a 

gastroscopy with a 

different scope B which 
was then used on 

Patient 5. There were 

no detected 
epidemiological links 

to Patient 6. Scope A 

was subsequently 
cultured and positive 

for the same strain. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

Vancomycin-

resistant E. 

faecium 

18 B 6 565 5.5 Yes No No 

Floor Unit H 

ICU F 

Floor Unit A 
Floor Unit B 

ICU I 

ICU G 

  

Five patients have unit 
stays on ICU F. There 

are multiple other unit 

commonalities ranging 

2 to 3 patients. 

Vancomycin-

resistant E. 

faecium 

736 B 5 321 7.4 No No No       

C. difficile 1 B3 4 6 0.0 Yes Yes No 
Chronic Care Facility 

Wound Care 
  

All patients were on the 
Chronic Care Facility 

prior to their positive 

culture dates. Wound 
care visits were also 

common among 2 of 

the patients. 

C. difficile 10 A 4 531 5.0 Yes Yes No 
Floor Unit D 

IV Team 
ICU G 

Patient 1 and 3 share a 

common bed exposure 

in ICU G. Patients 1 
and 4 were both on 

Floor Unit D 

simultaneously many 
times over the cluster 

period (post-positive 

culture patient 1, pre-
positive culture patient 

4) including one 

occasion of patient 1 
leaving a room and 

patient 4 immediately 

moving into that room. 

IV team visits were 

common among 

patients 2 and 3 within 
20 days to their 

positive dates. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

C. difficile 110 A 4 131 0.5 Yes Yes No 

Floor Unit D 
Floor Unit J 

ICU G 

Peripheral Vascular 
Lab 

IV Team 

Chronic Care Facility 

There are multiple unit 

commonalities among 

these patients. Visits by 
the IV team and the 

visits to the peripheral 

vascular lab was 

detected for 2 patients. 

Methicillin-

resistant S. 
aureus 

105 A 4 120 7.0 Yes Yes Yes 

ICU F 

IV Team 
Provider 

  

3 of 4 patients had 

stays on a shared unit. 

Patients 3 and 4 had 
shared exposures to IV 

team consults. 

Vancomycin-
resistant E. 

faecium 

736 A 4 572 13.2 Yes Yes No 
ICU A 
Floor Unit Q 

IV Team 

Floor Unit H 

Patients 1-3 all share 

visits by the IV team. 
There are unit 

commonalities for 

Floor Unit Q, ICU A, 
and Floor Unit H prior 

to positive culture 
dates. 

C. difficile 1 I 3 194 0.7 Yes Yes No 

Floor Unit M 

Wound Care 
Interventional 

Radiology 

  

The first 2 patients 

shared Floor Unit M as 

a potential source. The 
last 2 patients shared 

both wound care and 

interventional 
radiology suite visits as 

a potential transmission 

route. 

C. difficile 54 A 3 41 4.0 Yes Yes Yes 
ICU A 

IV Team 
Providers 

Patients 2 and 3 have 

concurrent stays on 

ICU A in adjacent 
rooms. Patient 1 only 

has stays Chronic Care 

Facility. Notably, 
Chronic Care Facility 

and ICU A share some 

providers. Additionally, 
patients 2 and 3 had 

visits from the IV team 

consults prior to their 
positive. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

E. coli 131 A 3 261 1.3 Yes Yes Yes 

Floor Unit J 

ICU H 

Gastroscopy 
Bronchoscopy 

Providers 

  

Patient 1 was on the 

ICU H/Floor Unit J 

service line prior to 
their positive culture. 

Patient 2 was 

subsequently also on 
ICU H/Floor Unit J 

service line prior to 

their positive culture. 
There was unit overlap 

with Patient 3. Patient 2 

and 3 both underwent 
gastroscopy with the 

same scope prior to 
their positive culture 

(3, 28 days). All 

patients had ICU H 
bronchoscopy prior to 

their positives. Patients 

2 and 3 were both seen 
by the same physician 

<30 days prior to their 

positive date. 

E. coli 131 B 3 316 8.7 No No No       

K. pneumoniae 258 D 3 406 6.7 Yes No No   
ICU A 
Floor Unit G 

Patient 2 was on Floor 
Unit G with patient 3 

prior to patient 3's 

positive culture date. 
All patients were on 

ICU A Patient 1 was 

positive on admit on 
ICU A Patient 2 moved 

into patient 1’s room as 

soon as discharged 
from it. 

Methicillin-

resistant S. 

aureus 

105 C 3 143 3.3 No No No       
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

P. aeruginosa 186 A 3 59 3.3 Yes Yes No 

Gastroscopy 

Interventional 
Radiology 

ICU G 

Floor Unit J 
ICU H 

Patient 1, post-positive 

culture date, undergoes 

gastroscopy. This same 
gastroscope is 

subsequently used on 

patients 2 and 3 prior to 
their positive culture 

dates. All patients 

undergo an 
interventional 

radiology procedure 

prior to their positive. 
Patients 2 and 3 have 

overlapping stays on 
ICU H/Floor Unit J 

with bronchoscopies 

performed bedside and 
in the operating room 

with the same 

bronchoscopes. 

P. aeruginosa 253 A 3 126 14.0 Yes Yes No 

Gastroscopy 

Bronchoscopy 

Floor Unit J 
ICU H 

ICU G 

  

The first 2 patients 

share stays on ICU 

H/Floor Unit J while 

the third patient shares 
a stay on ICU G with 

shared staff. There are 

multiple gastroscope 
and bronchoscopy 

procedures performed 

on all patients. 

Vancomycin-

resistant E. 
faecium 

17 Z 3 157 6.7 Yes Yes No 

Interventional 
Radiology 

ICU G 

Floor Unit O 

  

Patients 2 and 3 share 

stays on Floor Unit O 

and ICU G together. 
Patients 1 & 2 both 

have interventional 

radiology procedures 
20 days or less to their 

positive culture date. 

Vancomycin-
resistant E. 

faecium 

17 O 3 274 10.0 No No No       
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

Vancomycin-

resistant E. 

faecium 

18 C 3 609 15.3 No No No       

Vancomycin-

resistant E. 

faecium 

172 . 3 278 12.7 No Yes No IV Team   
Patients 2 and 3 share 
visits by the IV team. 

Vancomycin-
resistant E. 

faecium 

203 A 3 415 9.3 No No No       

Vancomycin-

resistant E. 

faecium 

736 F 3 144 8.7 Yes Yes No 

ICU G 
Interventional 

Radiology 

Operating Room 
Artificial Heart 

ICU H 

All patients had stays 
on ICU G or ICU H 

which share equipment 

and staff. 2 patients had 
exposure to the same 

operating room the 

same staff. Artificial 
heart staff visits were 

common among these 

patients. Lastly, 
patients 1 and 3 had 

exposure to the 

interventional 
radiology suite less 

than 21 days prior to 

their positive culture 
date. 

Vancomycin-
resistant E. 

faecium 

1471 G 3 57 6.0 Yes No No Floor Unit D   

Patients 2, post-

positive, was in an 
adjacent room next to 

patient 3 prior to their 

positive culture date. 

A. baumaunii 2 E 2 197 13.0 Yes Yes No 

Floor Unit C 

ICU G 

IV Team 

ICU A 

Both patients were on 
ICU A a room apart 

with visits from the IV 

Team. Both patients 
also had Floor Unit C 

and ICU G stays prior 

to their positive 
cultures. 

A. baumaunii 2 D 2 110 0.0 No No No       
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

C. difficile 1 L 2 122 3.0 No Yes Yes 
Provider 

IV Team 
  

Both patients had visits 

by the IV team and by 

one physician 
performing a nerve 

block prior to these 

patients’ positive test 
dates. 

C. difficile 1 B4 2 190 4.0 Yes Yes No 
Floor Unit H 
Wound Care 

  

Both patients have 

Floor Unit H and 
wound care as common 

exposures. 

C. difficile 1 B2 2 218 1.0 Yes No No Floor Unit A ICU A 

Both patients have ICU 

A and Floor Unit A 
overlap. 

C. difficile 1 B 2 709 4.0 Yes No No   Floor Unit O 

Both patients have 

overlapping stays on 
Floor Unit O. 

C. difficile 1 E 2 403 3.0 Yes No No   Outside Hospital Floor A 

Patient 1, post-positive 

culture, had a stay on 
an outside hospital unit 

floor that patient 2 was 

housed on pre-positive 
culture. 

C. difficile 1 F 2 15 0.0 No No No       

C. difficile 2 A 2 191 3.0 No Yes No IV Team   

Patients have IV Team 

visits 4- and 14-days 

prior to patient 
positives, respectively, 

as a commonality. 

C. difficile 8 B 2 24 1.0 Yes Yes No 
Floor Unit O 
Dialysis 

Floor Unit A 

Both patients had 

exposure on 2 units 
prior to their positive. 

These patients were in 

adjacent rooms in one 

unit. Further, patient 1 

was on the dialysis unit 

after the patient's 
positive culture date 

shortly before patient 2 

was on the renal unit 
pre-positive culture 

date. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

C. difficile 13 A 2 272 1.0 No No No       

C. difficile 17 A 2 36 3.0 Yes No No   
Chronic Care Facility 

ICU A 

Both patients were 

housed on ICU A and 

the Chronic Care 
Facility together. 

C. difficile 43 B 2 200 1.0 No No No       

C. difficile 55 A 2 47 0.0 Yes No No Chronic Care Facility   

Both patients were on 

the Chronic Care 

Facility with the second 
patient just 2 days after 

the first patient (post-

positive culture) left. 

C. freundii 91 B 2 337 4.0 Yes No No 
ICU E 
Floor Unit L 

  

There are 2 common 
units among both 

patients, however there 

is a 9-month gap in 
between these stays. 

E. coli 131 C 2 114 3.0 No No No       

E. coli 131 D 2 71 15.0 No No No       

K. pneumoniae 45 B 2 569 12.0 No No No       

K. pneumoniae 258 B 2 3 9.0 Yes Yes No 

Floor Unit O 

ICU G 
IV Team 

  

Both patients had 
concurrent stays 

together on Floor Unit 
O and ICU G. Both 

patients had an IV team 

visit 9- and 4-days 
prior to their positive 

date, respectively. 

K. pneumoniae 258 E 2 31 15.0 Yes No No Chronic Care Facility   

Both patients were on 

the Chronic Care 
Facility together 

leading up to their 

positive culture dates.  

K. pneumoniae 405 A 2 2 2.0 Yes No No Floor Unit H   

Both patients had 

concurrent exposure on 

Floor Unit H. 

K. pneumoniae 2943 A 2 36 0.0 No No No       
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

Methicillin-

resistant S. 

aureus 

5 A 2 1 2.0 No No No       

Methicillin-

resistant S. 

aureus 

5 B 2 323 11.0 No No No       

Methicillin-
resistant S. 

aureus 

5 C 2 242 12.0 No No No       

Methicillin-
resistant S. 

aureus 

5 D 2 5 11.0 No No No       

Methicillin-

resistant S. 
aureus 

5 E 2 108 11.0 No No No       

Methicillin-

resistant S. 
aureus 

8 E 2 0 0.0 Yes No No Floor Unit P Operating Room 

Both patients had 

overlapping stays on 
Floor Unit P together. 

Both patients also 

underwent procedures 
within the same 

operating room. These 

procedures had shared 
staff. 

Methicillin-

resistant S. 
aureus 

8 A 2 4 6.0 Yes No No Operating Room   

Both patients have an 

operation in 2 operating 

rooms that share a 
common preparation 

space. 

Methicillin-

resistant S. 
aureus 

8 F 2 58 1.0 Yes Yes No Bronchoscopy 
Chronic Care Facility 

ICU F 

Both patients have 
shared unit exposure 

together on ICU F. 

Patient 1, post-positive 
culture date, was 

housed on the Chronic 

Care Facility with 
patient 2. Both patients 

also had bronchoscopy 

on ICU F. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

Methicillin-

resistant S. 

aureus 

8 B 2 8 3.0 No Yes No EEG   

Both patients have 

stays on separate units. 

Both patients 
underwent EEG on the 

same day which was 2- 

and 10- days prior to 
the patients’ positive 

culture dates. 

Additionally, these 
EEGs were performed 

by the same technician 

and the same physician. 

Methicillin-

resistant S. 

aureus 

8 C 2 53 0.0 Yes No No Floor Unit O   

Patient 1 was on unit 

Floor Unit O 1 month 

prior to patient 2. 

Methicillin-
resistant S. 

aureus 

8 D 2 163 6.0 No No No       

Methicillin-
resistant S. 

aureus 

8 G 2 186 14.0 No No No       

Methicillin-

resistant S. 
aureus 

8 H 2 53 15.0 No No No       

Methicillin-

resistant S. 
aureus 

8 I 2 310 3.0 No No No       

Methicillin-

resistant S. 

aureus 

105 B 2 91 2.0 Yes No No Floor Unit G 
Floor Unit C 

ICU I 

Both patients have 

exposure to Floor Unit 
G prior to positives. 

Post-positive, patient 1 

is on ICU I and Floor 
Unit C prior to patient 

1 being housed on 

these units. 
Additionally, patient 1 

post-positive is in ICU 

I bed 6 which patient 2 
later moves into. 

Methicillin-

resistant S. 

aureus 

105 D 2 333 14.0 No No No       
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

P. aeruginosa 116 A 2 201 3.0 Yes No No   Operating Room 

Patient 1, post-positive, 

has a procedure in an 

operating room. Patient 
2, 1-month prior to 

their positive culture 

date, undergoes a 
procedure in the same 

operating room with 

the same staff. 

P. aeruginosa 179 E 2 13 9.0 Yes No No ICU F   

Both patients were 

concurrently on ICU F 

in adjacent rooms prior 
to their positive culture 

date. 

P. aeruginosa 253 B 2 30 7.0 Yes Yes No 
ICU I 
Interventional 

Radiology 

Chronic Care Facility 

Both patients unit stays 
on ICU I. Post-positive, 

patient 1 moves to the 

Chronic Care Facility 
with patient 2, pre-

positive. There was 

shared exposure to 

interventional 

radiology procedures 

for both patients prior 
to their positive culture 

dates. 

P. aeruginosa 260 A 2 109 7.0 Yes No No ICU D Floor Unit I 

Both patients were 

housed on ICU D and 
concurrently Floor Unit 

I. 

P. aeruginosa 274 A 2 55 5.0 Yes No No   
ICU D 

Operating Room 

Both patients were 
admitted to the hospital 

for urology and trauma 

issues. Both patients 
underwent multiple 

irrigation and 

debridement 
procedures in the 

operating room 

utilizing the same staff. 
The patients had shared 

staff through ICU D. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

P. aeruginosa 1978 A 2 134 1.0 Yes No No Chronic Care Facility   

Both patients have 

concurrent stays on the 

Chronic Care Facility. 

P. mirabilis 19 A 2 23 0.0 Yes No No   Floor Unit Q 

Patient 1, post-positive, 

is roommates for 9-

days with patient 2 on 

Floor Unit Q who is 

then positive within 2-

weeks. 

S. maltophilia 162 A 2 46 5.0 No No No       

S. maltophilia 172 A 2 19 12.0 Yes No No ICU C   

Both patients are on 
ICU C prior to their 

positive culture date in 

adjacent rooms. 

S. marcescens 4 E 2 36 2.0 Yes No No   Floor Unit O 

Patient 1, post-positive, 
is roommates for 4-

days on Floor Unit O 
with patient 2 28-days 

prior to patient 2's 

positive culture date. 

S. marcescens 6 E 2 35 11.0 No No No       

S. marcescens 13 B 2 61 4.0 Yes No No   ICU H 

Patient 1 is has a stay 
on ICU H prior to 

positive. Patient 1 

leaves this ICU H bed, 
and Patient 2 moves 

into this bed 2-days 

later. 

S. marcescens 17 B 2 13 2.0 Yes Yes No   
ICU G 

Bronchoscopy 

Patients are housed in 
adjacent rooms on ICU 

G. 

S. marcescens 19 A 2 144 14.0 Yes No No   Floor Unit I 

Post-positive, patient 1 
on unit Floor Unit I. 2-

months later, patient 2 

is on this unit 27 days 
prior to their positive 

culture date. 
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Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

S. marcescens 20 A 2 65 3.0 Yes Yes No   
Floor Unit J 

Gastroscopy 

Both patients had 

gastroscopy with same 

gastroscope prior to 
their positive date. 

Patient 1 is on unit 

Floor Unit J and 6-days 
later patient 2 is on 

Floor Unit J. 

S. marcescens 21 A 2 19 1.0 No No No       

Vancomycin-

resistant E. 
faecium 

17 U 2 469 9.0 Yes No No ICU A   

Both patients are on 

ICU A together in 
adjacent rooms. 

Vancomycin-

resistant E. 
faecium 

17 Q 2 6 15.0 No No No       

Vancomycin-

resistant E. 

faecium 

17 S 2 46 12.0 No No No       

Vancomycin-

resistant E. 

faecium 

17 T 2 24 11.0 No No No       

Vancomycin-

resistant E. 

faecium 

18 H 2 178 2.0 No Yes No US-guided drain   

Both patients were on 
separate units. Both 

patients underwent 

ultrasound-guided 
drainage procedures of 

fluid collections for 
these isolates 

sequenced. Patient 1 

had 1 colony of VRE 
while patient 2 had 

“rare” VRE in the 

culture result. 

Vancomycin-
resistant E. 

faecium 

18 D 2 47 6.0 No No No       

Vancomycin-
resistant E. 

faecium 

412 D 2 24 4.0 No No No       



84 

Organism 
Sequence 

Type 
Cluster Size 

Days 

between 

first and 

last case 

Mean 

Pairwise 

SNPs 

Unit-

associated 

Route 

Procedure-

associated 

Route 

Provider-

associated 

Route 

Machine Learning 

Routes 
Manual Review Routes Comment 

Vancomycin-

resistant E. 
faecium 

736 J 2 103 6.0 Yes No No Floor Unit D   

Both patients were on 

Floor Unit D leading 

up to their positive 
culture date in adjacent 

rooms. 

Vancomycin-

resistant E. 

faecium 

736 N 2 71 3.0 No Yes No IV Team   

Both patients were seen 
by the same IV team 

provider 1-day apart, 

both prior to their 
positive culture dates. 

Vancomycin-

resistant E. 

faecium 

736 K 2 58 12.0 No No No       

Vancomycin-

resistant E. 
faecium 

1471 O 2 30 3.0 Yes No No 

Floor Unit D 

ICU I 
Operating Room 

  

Both patients have unit 

stays on Floor Unit D 

and ICU I. 
Additionally, both 

patients had an 

operating room 
procedure the same 

operating room. 

Vancomycin-
resistant E. 

faecium 

1717 . 2 250 12.0 No No No       

Vancomycin-
resistant E. 

faecium 

1723 . 2 3 1.0 Yes No No   Chronic Care Facility 

Both patients are on the 

Chronic Care Facility 
together for over 30-

days prior to their 

positive culture dates. 
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Appendix Table 5. Clinical and economic modeling results 

 Traditional IP practice EDS-HAT Change 

Lower bound 

Number of transmissions  289.0 264.2 24.8 averted 

Number of deaths 14.7 13.1 1.6 saved 

Number of readmissions 36.8 33.7 3.1 averted 

Total costs $4,074,022 $3,881,614 ($192,408) 

IP program $152,420 $152,420 $0 

WGS costs $17,764 $179,174 $161,410 

Treating infections $3,903,838 $3,550,020 ($353,818) 

Incremental cost per transmission averted for EDS-HAT = $7,745 saved for each transmission averted i.e. less costly and more effective 

 

 

 

Upper bound 

Number of transmissions  289.0 225.7 63.3 averted 

Number of deaths 14.7 11.4 3.3 saved 

Number of readmissions 36.8 28.8 8.0 averted 

Total costs $4,074,022 $3,381,490 ($692,532) 

IP program $152,420 $152,420 $0 

WGS costs $17,764 $179,174 $161,410 

Treating infections $3,903,838 $3,049,896 ($853,942) 
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 Traditional IP practice EDS-HAT Change 

Incremental cost per transmission averted for EDS-HAT = $10,939 saved for each transmission averted i.e. less costly and more effective 

 

 



87 

Appendix B.1 References 

1. Anderson, D. J., et al., Enhanced terminal room disinfection and acquisition and infection 

caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of 

Enhanced Terminal Room Disinfection study): a cluster-randomised, multicentre, 

crossover study. Lancet, 2017. 389(10071): p. 805-814. 

 

2. Martin, R. M., et al., Molecular Epidemiology of Colonizing and Infecting Isolates of 

Klebsiella pneumoniae. mSphere, 2016. 1(5). 

 

3. Klevens, R. M., et al., Estimating health care-associated infections and deaths in U.S. 

hospitals, 2002. Public Health Rep, 2007. 122(2): p. 160-6. 

 

4. CDC, Nearly half a million Americans suffered from Clostridium difficile infections in a 

single year. 2015, U.S. Department of Health and Human Services. 

 

5. Landers, T., et al., APIC MegaSurvey: Methodology and overview. Am J Infect Control, 

2017. 45(6): p. 584-588. 

 

6. AHRQ, HCUPnet, Healthcare Cost and Utilization Project. 2016: Rockville, MD. 

 

 



88 

Bibliography 

1.  HAI Data | CDC. Published October 20, 2021. Accessed March 14, 2022. 

https://www.cdc.gov/hai/data/index.html 

2.  Barrasa-Villar JI, Aibar-Remón C, Prieto-Andrés P, Mareca-Doñate R, Moliner-Lahoz J. 

Impact on Morbidity, Mortality, and Length of Stay of Hospital-Acquired Infections by 

Resistant Microorganisms. Clin Infect Dis. 2017;65(4):644-652. doi:10.1093/cid/cix411 

3.  About | NHSN | CDC. Published January 25, 2021. Accessed March 15, 2022. 

https://www.cdc.gov/nhsn/about-nhsn/index.html 

4.  CMS Requirements | NHSN | CDC. Published June 9, 2021. Accessed March 15, 2022. 

https://www.cdc.gov/nhsn/cms/index.html 

5.  Weiner-Lastinger LM, Pattabiraman V, Konnor RY, et al. The impact of coronavirus 

disease 2019 (COVID-19) on healthcare-associated infections in 2020: A summary of data 

reported to the National Healthcare Safety Network. Infect Control Hosp Epidemiol. 

2022;43(1):12-25. doi:10.1017/ice.2021.362 

6.  Healthcare-Associated Infections | Healthy People 2020. Accessed March 15, 2022. 

https://www.healthypeople.gov/2020/topics-objectives/topic/healthcare-associated-

infections 

7.  Preventing Healthcare-associated Infections | HAI | CDC. Published April 19, 2019. 

Accessed March 15, 2022. https://www.cdc.gov/hai/prevent/prevention.html 

8.  BSI | Guidelines Library | Infection Control | CDC. Published January 3, 2020. Accessed 

March 15, 2022. https://www.cdc.gov/infectioncontrol/guidelines/bsi/index.html 

9.  Outbreak Investigations in Healthcare Settings | HAI | CDC. Published August 9, 2021. 

Accessed March 15, 2022. https://www.cdc.gov/hai/outbreaks/index.html 

10.  Principles of Epidemiology | Lesson 1 - Section 11. Published December 20, 2021. 

Accessed March 15, 2022. https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section11.html 

11.  Webinar Recording: Local Health Department Access to the National Healthcare Safety 

Network - NACCHO. Accessed March 15, 2022. 

https://www.naccho.org/blog/articles/webinar-recording-local-health-department-access-to-

the-national-healthcare-safety-network 

12.  Houlihan CF, Frampton D, Ferns RB, et al. Use of Whole-Genome Sequencing in the 

Investigation of a Nosocomial Influenza Virus Outbreak. J Infect Dis. 2018;218(9):1485-

1489. doi:10.1093/infdis/jiy335 



89 

13.  Gordon LG, Elliott TM, Forde B, et al. Budget impact analysis of routinely using whole-

genomic sequencing of six multidrug-resistant bacterial pathogens in Queensland, 

Australia. BMJ Open. 2021;11(2):e041968. doi:10.1136/bmjopen-2020-041968 

14.  Sherry NL, Lee RS, Gorrie CL, et al. Pilot study of a combined genomic and epidemiologic 

surveillance program for hospital-acquired multidrug-resistant pathogens across multiple 

hospital networks in Australia. Infect Control Hosp Epidemiol. 2021;42(5):573-581. 

doi:10.1017/ice.2020.1253 

15.  Ward DV, Hoss AG, Kolde R, et al. Integration of genomic and clinical data augments 

surveillance of healthcare-acquired infections. Infect Control Hosp Epidemiol. 

2019;40(6):649-655. doi:10.1017/ice.2019.75 

16.  Sundermann AJ, Babiker A, Marsh JW, et al. Outbreak of Vancomycin-resistant 

Enterococcus faecium in Interventional Radiology: Detection Through Whole-genome 

Sequencing-based Surveillance. Clin Infect Dis. 2020;70(11):2336-2343. 

doi:10.1093/cid/ciz666 

17.  Sundermann AJ, Chen J, Miller JK, et al. Outbreak of Pseudomonas aeruginosa Infections 

from a Contaminated Gastroscope Detected by Whole Genome Sequencing Surveillance. 

Clin Infect Dis. 2021;73(3):e638-e642. doi:10.1093/cid/ciaa1887 

18.  Sundermann AJ, Miller JK, Marsh JW, et al. Automated data mining of the electronic 

health record for investigation of healthcare-associated outbreaks. Infect Control Hosp 

Epidemiol. 2019;40(3):314-319. doi:10.1017/ice.2018.343 

19.  Kumar P, Sundermann AJ, Martin EM, et al. Method for Economic Evaluation of Bacterial 

Whole Genome Sequencing Surveillance Compared to Standard of Care in Detecting 

Hospital Outbreaks. Clin Infect Dis. 2021;73(1):e9-e18. doi:10.1093/cid/ciaa512 

20.  Miller JK, Chen J, Sundermann A, et al. Statistical outbreak detection by joining medical 

records and pathogen similarity. J Biomed Inform. 2019;91:103126. 

doi:10.1016/j.jbi.2019.103126 

21.  Tosas Auguet O, Stabler RA, Betley J, et al. Frequent Undetected Ward-Based Methicillin-

Resistant Staphylococcus aureus Transmission Linked to Patient Sharing Between 

Hospitals. Clin Infect Dis. 2018;66(6):840-848. doi:10.1093/cid/cix901 

22.  Berbel Caban A, Pak TR, Obla A, et al. PathoSPOT genomic epidemiology reveals under-

the-radar nosocomial outbreaks. Genome Med. 2020;12(1):96. doi:10.1186/s13073-020-

00798-3 

23.  Coll F, Harrison EM, Toleman MS, et al. Longitudinal genomic surveillance of MRSA in 

the UK reveals transmission patterns in hospitals and the community. Sci Transl Med. 

2017;9(413):eaak9745. doi:10.1126/scitranslmed.aak9745 



90 

24.  Cremers AJH, Coolen JPM, Bleeker-Rovers CP, et al. Surveillance-embedded genomic 

outbreak resolution of methicillin-susceptible Staphylococcus aureus in a neonatal intensive 

care unit. Sci Rep. 2020;10(1):2619. doi:10.1038/s41598-020-59015-1 

25.  Donskey CJ, Sunkesula VCK, Stone ND, et al. Transmission of Clostridium difficile from 

asymptomatically colonized or infected long-term care facility residents. Infect Control 

Hosp Epidemiol. 2018;39(8):909-916. doi:10.1017/ice.2018.106 

26.  Eigenbrod T, Reuter S, Gross A, et al. Molecular characterization of carbapenem-resistant 

Acinetobacter baumannii using WGS revealed missed transmission events in Germany 

from 2012-15. J Antimicrob Chemother. 2019;74(12):3473-3480. doi:10.1093/jac/dkz360 

27.  Elbadawi LI, Borlaug G, Gundlach KM, et al. Carbapenem-Resistant Enterobacteriaceae 

Transmission in Health Care Facilities - Wisconsin, February-May 2015. MMWR Morb 

Mortal Wkly Rep. 2016;65(34):906-909. doi:10.15585/mmwr.mm6534a5 

28.  Eyre DW, Cule ML, Wilson DJ, et al. Diverse sources of C. difficile infection identified on 

whole-genome sequencing. N Engl J Med. 2013;369(13):1195-1205. 

doi:10.1056/NEJMoa1216064 

29.  Eyre DW, Fawley WN, Rajgopal A, et al. Comparison of Control of Clostridium difficile 

Infection in Six English Hospitals Using Whole-Genome Sequencing. Clin Infect Dis. 

2017;65(3):433-441. doi:10.1093/cid/cix338 

30.  Eyre DW, Shaw R, Adams H, et al. WGS to determine the extent of Clostridioides difficile 

transmission in a high incidence setting in North Wales in 2015. J Antimicrob Chemother. 

2019;74(4):1092-1100. doi:10.1093/jac/dky523 

31.  García-Fernández S, Frentrup M, Steglich M, et al. Whole-genome sequencing reveals 

nosocomial Clostridioides difficile transmission and a previously unsuspected epidemic 

scenario. Sci Rep. 2019;9(1):6959. doi:10.1038/s41598-019-43464-4 

32.  Gona F, Comandatore F, Battaglia S, et al. Comparison of core-genome MLST, coreSNP 

and PFGE methods for Klebsiella pneumoniae cluster analysis. Microb Genom. 2020;6(4). 

doi:10.1099/mgen.0.000347 

33.  Gorrie CL, Mirceta M, Wick RR, et al. Gastrointestinal Carriage Is a Major Reservoir of 

Klebsiella pneumoniae Infection in Intensive Care Patients. Clin Infect Dis. 

2017;65(2):208-215. doi:10.1093/cid/cix270 

34.  Hall MD, Holden MT, Srisomang P, et al. Improved characterisation of MRSA 

transmission using within-host bacterial sequence diversity. Elife. 2019;8:e46402. 

doi:10.7554/eLife.46402 

35.  Hammerum AM, Lauridsen CAS, Blem SL, et al. Investigation of possible clonal 

transmission of carbapenemase-producing Klebsiella pneumoniae complex member isolates 

in Denmark using core genome MLST and National Patient Registry Data. Int J Antimicrob 

Agents. 2020;55(5):105931. doi:10.1016/j.ijantimicag.2020.105931 



91 

36.  Harada S, Aoki K, Yamamoto S, et al. Clinical and Molecular Characteristics of Klebsiella 

pneumoniae Isolates Causing Bloodstream Infections in Japan: Occurrence of 

Hypervirulent Infections in Health Care. J Clin Microbiol. 2019;57(11):e01206-19. 

doi:10.1128/JCM.01206-19 

37.  Houldcroft CJ, Roy S, Morfopoulou S, et al. Use of Whole-Genome Sequencing of 

Adenovirus in Immunocompromised Pediatric Patients to Identify Nosocomial 

Transmission and Mixed-Genotype Infection. J Infect Dis. 2018;218(8):1261-1271. 

doi:10.1093/infdis/jiy323 

38.  Jakharia KK, Ilaiwy G, Moose SS, et al. Use of whole-genome sequencing to guide a 

Clostridioides difficile diagnostic stewardship program. Infect Control Hosp Epidemiol. 

2019;40(7):804-806. doi:10.1017/ice.2019.124 

39.  Kossow A, Kampmeier S, Schaumburg F, Knaack D, Moellers M, Mellmann A. Whole 

genome sequencing reveals a prolonged and spatially spread nosocomial outbreak of 

Panton-Valentine leucocidin-positive meticillin-resistant Staphylococcus aureus (USA300). 

J Hosp Infect. 2019;101(3):327-332. doi:10.1016/j.jhin.2018.09.007 

40.  Kwong JC, Lane CR, Romanes F, et al. Translating genomics into practice for real-time 

surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from 

a complex multi-institutional KPC outbreak. PeerJ. 2018;6:e4210. doi:10.7717/peerj.4210 

41.  Leong KWC, Cooley LA, Anderson TL, et al. Emergence of Vancomycin-Resistant 

Enterococcus faecium at an Australian Hospital: A Whole Genome Sequencing Analysis. 

Sci Rep. 2018;8(1):6274. doi:10.1038/s41598-018-24614-6 

42.  Long SW, Beres SB, Olsen RJ, Musser JM. Absence of patient-to-patient intrahospital 

transmission of Staphylococcus aureus as determined by whole-genome sequencing. mBio. 

2014;5(5):e01692-01614. doi:10.1128/mBio.01692-14 

43.  Marmor A, Daveson K, Harley D, Coatsworth N, Kennedy K. Two carbapenemase-

producing Enterobacteriaceae outbreaks detected retrospectively by whole-genome 

sequencing at an Australian tertiary hospital. Infect Dis Health. 2020;25(1):30-33. 

doi:10.1016/j.idh.2019.08.005 

44.  Martin JSH, Eyre DW, Fawley WN, et al. Patient and Strain Characteristics Associated 

With Clostridium difficile Transmission and Adverse Outcomes. Clin Infect Dis. 

2018;67(9):1379-1387. doi:10.1093/cid/ciy302 

45.  Mathur P, Khurana S, de Man TJB, et al. Multiple importations and transmission of 

colistin-resistant Klebsiella pneumoniae in a hospital in northern India. Infect Control Hosp 

Epidemiol. 2019;40(12):1387-1393. doi:10.1017/ice.2019.252 

46.  Meredith LW, Hamilton WL, Warne B, et al. Rapid implementation of SARS-CoV-2 

sequencing to investigate cases of health-care associated COVID-19: a prospective genomic 

surveillance study. Lancet Infect Dis. 2020;20(11):1263-1271. doi:10.1016/S1473-

3099(20)30562-4 



92 

47.  Miles-Jay A, Weissman SJ, Adler AL, Baseman JG, Zerr DM. Whole Genome Sequencing 

Detects Minimal Clustering Among Escherichia coli Sequence Type 131-H30 Isolates 

Collected From United States Children’s Hospitals. J Pediatric Infect Dis Soc. 

2021;10(2):183-187. doi:10.1093/jpids/piaa023 

48.  Neumann B, Bender JK, Maier BF, et al. Comprehensive integrated NGS-based 

surveillance and contact-network modeling unravels transmission dynamics of vancomycin-

resistant enterococci in a high-risk population within a tertiary care hospital. PLoS One. 

2020;15(6):e0235160. doi:10.1371/journal.pone.0235160 

49.  Raven KE, Gouliouris T, Brodrick H, et al. Complex Routes of Nosocomial Vancomycin-

Resistant Enterococcus faecium Transmission Revealed by Genome Sequencing. Clin 

Infect Dis. 2017;64(7):886-893. doi:10.1093/cid/ciw872 

50.  Roach DJ, Burton JN, Lee C, et al. A Year of Infection in the Intensive Care Unit: 

Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic 

Transmissions and Novel Microbiota. PLoS Genet. 2015;11(7):e1005413. 

doi:10.1371/journal.pgen.1005413 

51.  Rose R, Nolan DJ, Moot S, et al. Molecular surveillance of methicillin-resistant 

Staphylococcus aureus genomes in hospital unexpectedly reveals discordance between 

temporal and genetic clustering. Am J Infect Control. 2021;49(1):59-64. 

doi:10.1016/j.ajic.2020.06.180 

52.  Roy S, Hartley J, Dunn H, Williams R, Williams CA, Breuer J. Whole-genome Sequencing 

Provides Data for Stratifying Infection Prevention and Control Management of Nosocomial 

Influenza A. Clin Infect Dis. 2019;69(10):1649-1656. doi:10.1093/cid/ciz020 

53.  Sherry NL, Lane CR, Kwong JC, et al. Genomics for Molecular Epidemiology and 

Detecting Transmission of Carbapenemase-Producing Enterobacterales in Victoria, 

Australia, 2012 to 2016. J Clin Microbiol. 2019;57(9):e00573-19. doi:10.1128/JCM.00573-

19 

54.  Stenmark B, Hellmark B, Söderquist B. Genomic analysis of Staphylococcus capitis 

isolated from blood cultures in neonates at a neonatal intensive care unit in Sweden. Eur J 

Clin Microbiol Infect Dis. 2019;38(11):2069-2075. doi:10.1007/s10096-019-03647-3 

55.  Sullivan MJ, Altman DR, Chacko KI, et al. A Complete Genome Screening Program of 

Clinical Methicillin-Resistant Staphylococcus aureus Isolates Identifies the Origin and 

Progression of a Neonatal Intensive Care Unit Outbreak. J Clin Microbiol. 

2019;57(12):e01261-19. doi:10.1128/JCM.01261-19 

56.  Tsujiwaki A, Hisata K, Tohyama Y, et al. Epidemiology of methicillin-resistant 

Staphylococcus aureus in a Japanese neonatal intensive care unit. Pediatr Int. 

2020;62(8):911-919. doi:10.1111/ped.14241 

57.  van Beek J, Räisänen K, Broas M, et al. Tracing local and regional clusters of 

carbapenemase-producing Klebsiella pneumoniae ST512 with whole genome sequencing, 



93 

Finland, 2013 to 2018. Euro Surveill. 2019;24(38). doi:10.2807/1560-

7917.ES.2019.24.38.1800522 

58.  Wang X, Zhou H, Chen D, et al. Whole-Genome Sequencing Reveals a Prolonged and 

Persistent Intrahospital Transmission of Corynebacterium striatum, an Emerging 

Multidrug-Resistant Pathogen. J Clin Microbiol. 2019;57(9):e00683-19. 

doi:10.1128/JCM.00683-19 

59.  Wendel AF, Malecki M, Otchwemah R, Tellez-Castillo CJ, Sakka SG, Mattner F. One-year 

molecular surveillance of carbapenem-susceptible A. baumannii on a German intensive care 

unit: diversity or clonality. Antimicrob Resist Infect Control. 2018;7:145. 

doi:10.1186/s13756-018-0436-8 

60.  Julia L, Vilankar K, Kang H, Brown DE, Mathers A, Barnes LE. Environmental Reservoirs 

of Nosocomial Infection: Imputation Methods for Linking Clinical and Environmental 

Microbiological Data to Understand Infection Transmission. AMIA Annu Symp Proc. 

2017;2017:1120-1129. 

61.  Stachel A, Pinto G, Stelling J, et al. Implementation and evaluation of an automated 

surveillance system to detect hospital outbreak. Am J Infect Control. 2017;45(12):1372-

1377. doi:10.1016/j.ajic.2017.06.031 

62.  Parcell BJ, Gillespie SH, Pettigrew KA, Holden MTG. Clinical perspectives in integrating 

whole-genome sequencing into the investigation of healthcare and public health outbreaks - 

hype or help? J Hosp Infect. 2021;109:1-9. doi:10.1016/j.jhin.2020.11.001 

63.  Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health 

care-associated infections. N Engl J Med. 2014;370(13):1198-1208. 

doi:10.1056/NEJMoa1306801 

64.  Scott R. The Direct Medical Costs of Healthcare-Associated Infections in U.S. Hospitals 

and the Benefits of Prevention. Centers for Disease Control and Prevention website. 

Published online 2009:16. 

65.  Marsh JW, Krauland MG, Nelson JS, et al. Genomic Epidemiology of an Endoscope-

Associated Outbreak of Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. 

pneumoniae. PLoS One. 2015;10(12):e0144310. doi:10.1371/journal.pone.0144310 

66.  Sood G, Perl TM. Outbreaks in Health Care Settings. Infect Dis Clin North Am. 

2016;30(3):661-687. doi:10.1016/j.idc.2016.04.003 

67.  Vonberg RP, Weitzel-Kage D, Behnke M, Gastmeier P. Worldwide Outbreak Database: the 

largest collection of nosocomial outbreaks. Infection. 2011;39(1):29-34. 

doi:10.1007/s15010-010-0064-6 

68.  Peacock SJ, Parkhill J, Brown NM. Changing the paradigm for hospital outbreak detection 

by leading with genomic surveillance of nosocomial pathogens. Microbiology,. 

2018;164(10):1213-1219. doi:10.1099/mic.0.000700 



94 

69.  Heinrichs A, Argudín MA, De Mendonça R, et al. An Outpatient Clinic as a Potential Site 

of Transmission for an Outbreak of New Delhi Metallo-β-Lactamase-producing Klebsiella 

pneumoniae Sequence Type 716: A Study Using Whole-genome Sequencing. Clin Infect 

Dis. 2019;68(6):993-1000. doi:10.1093/cid/ciy581 

70.  Domman D, Chowdhury F, Khan AI, et al. Defining endemic cholera at three levels of 

spatiotemporal resolution within Bangladesh. Nat Genet. 2018;50(7):951-955. 

doi:10.1038/s41588-018-0150-8 

71.  Pak TR, Kasarskis A. How next-generation sequencing and multiscale data analysis will 

transform infectious disease management. Clin Infect Dis. 2015;61(11):1695-1702. 

doi:10.1093/cid/civ670 

72.  Yount RJ, Vries JK, Councill CD. The medical archival system: An information retrieval 

system based on distributed parallel processing. Inf Process Manag. Published online 1991. 

doi:10.1016/0306-4573(91)90091-Y 

73.  Sherry NL, Lee RS, Gorrie CL, et al. Pilot study of a combined genomic and epidemiologic 

surveillance program for hospital-acquired multidrug-resistant pathogens across multiple 

hospital networks in Australia. Infection Control & Hospital Epidemiology. Published 

online undefined/ed:1-9. doi:10.1017/ice.2020.1253 

74.  Ward DV, Hoss AG, Kolde R, et al. Integration of genomic and clinical data augments 

surveillance of healthcare-acquired infections. Infect Control Hosp Epidemiol. 

2019;40(6):649-655. doi:10.1017/ice.2019.75 

75.  Sundermann AJ, Miller JK, Marsh JW, et al. Automated data mining of the electronic 

health record for investigation of healthcare-associated outbreaks. Infect Control Hosp 

Epidemiol. 2019;40(3):314-319. doi:10.1017/ice.2018.343 

76.  Sundermann AJ, Chen J, Miller JK, et al. Outbreak of Pseudomonas aeruginosa Infections 

from a Contaminated Gastroscope Detected by Whole Genome Sequencing Surveillance. 

Clin Infect Dis. Published online December 25, 2020. doi:10.1093/cid/ciaa1887 

77.  Sundermann AJ, Babiker A, Marsh JW, et al. Outbreak of Vancomycin-resistant 

Enterococcus faecium in Interventional Radiology: Detection Through Whole-genome 

Sequencing-based Surveillance. Clin Infect Dis. 2020;70(11):2336-2343. 

doi:10.1093/cid/ciz666 

78.  Miller JK, Chen J, Sundermann A, et al. Statistical outbreak detection by joining medical 

records and pathogen similarity. J Biomed Inform. 2019;91:103126. 

doi:10.1016/j.jbi.2019.103126 

79.  Kumar P, Sundermann AJ, Martin EM, et al. Method for economic evaluation of bacterial 

whole genome sequencing surveillance compared to standard of care in detecting hospital 

outbreaks. Clin Infect Dis. Published online May 5, 2020. doi:10.1093/cid/ciaa512 



95 

80.  Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its 

applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-477. 

doi:10.1089/cmb.2012.0021 

81.  Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 

2014;30(14):2068-2069. doi:10.1093/bioinformatics/btu153 

82.  Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the 

population level. BMC Bioinformatics. 2010;11:595. doi:10.1186/1471-2105-11-595 

83.  Berbel Caban A, Pak TR, Obla A, et al. PathoSPOT genomic epidemiology reveals under-

the-radar nosocomial outbreaks. Genome Med. 2020;12(1):96. doi:10.1186/s13073-020-

00798-3 

84.  Jakharia KK, Ilaiwy G, Moose SS, et al. Use of whole-genome sequencing to guide a 

Clostridioides difficile diagnostic stewardship program. Infect Control Hosp Epidemiol. 

2019;40(7):804-806. doi:10.1017/ice.2019.124 

85.  Gona F, Comandatore F, Battaglia S, et al. Comparison of core-genome MLST, coreSNP 

and PFGE methods for Klebsiella pneumoniae cluster analysis. Microb Genom. 2020;6(4). 

doi:10.1099/mgen.0.000347 

86.  Rose R, Nolan DJ, Moot S, et al. Molecular surveillance of methicillin-resistant 

Staphylococcus aureus genomes in hospital unexpectedly reveals discordance between 

temporal and genetic clustering. Am J Infect Control. 2021;49(1):59-64. 

doi:10.1016/j.ajic.2020.06.180 

87.  Marmor A, Daveson K, Harley D, Coatsworth N, Kennedy K. Two carbapenemase-

producing Enterobacteriaceae outbreaks detected retrospectively by whole-genome 

sequencing at an Australian tertiary hospital. Infect Dis Health. 2020;25(1):30-33. 

doi:10.1016/j.idh.2019.08.005 

88.  Sherry NL, Lane CR, Kwong JC, et al. Genomics for Molecular Epidemiology and 

Detecting Transmission of Carbapenemase-Producing Enterobacterales in Victoria, 

Australia, 2012 to 2016. J Clin Microbiol. 2019;57(9):e00573-19. doi:10.1128/JCM.00573-

19 

89.  Kwong JC, Lane CR, Romanes F, et al. Translating genomics into practice for real-time 

surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from 

a complex multi-institutional KPC outbreak. PeerJ. 2018;6:e4210. doi:10.7717/peerj.4210 

90.  Raven KE, Gouliouris T, Brodrick H, et al. Complex Routes of Nosocomial Vancomycin-

Resistant Enterococcus faecium Transmission Revealed by Genome Sequencing. Clin 

Infect Dis. 2017;64(7):886-893. doi:10.1093/cid/ciw872 

91.  Medical care in US city average, all urban consumers, not seasonally adjusted. Bureau of 

Labor Statistics. 



96 

92.  Gordon LG, Elliott TM, Forde B, et al. Budget impact analysis of routinely using whole-

genomic sequencing of six multidrug-resistant bacterial pathogens in Queensland, 

Australia. BMJ Open. 2021;11(2):e041968. doi:10.1136/bmjopen-2020-041968 

93.  Genomic surveillance, characterization and intervention of a polymicrobial multidrug-

resistant outbreak in critical care - PubMed. Accessed February 20, 2021. 

https://pubmed.ncbi.nlm.nih.gov/33599607/ 

94.  Bartels MD, Larner-Svensson H, Meiniche H, et al. Monitoring meticillin resistant 

Staphylococcus aureus and its spread in Copenhagen, Denmark, 2013, through routine 

whole genome sequencing. Euro Surveill. 2015;20(17). doi:10.2807/1560-

7917.es2015.20.17.21112 

95.  Mellmann A, Bletz S, Böking T, et al. Real-Time Genome Sequencing of Resistant 

Bacteria Provides Precision Infection Control in an Institutional Setting. J Clin Microbiol. 

2016;54(12):2874-2881. doi:10.1128/JCM.00790-16 

96.  Price JR, Cole K, Bexley A, et al. Transmission of Staphylococcus aureus between health-

care workers, the environment, and patients in an intensive care unit: a longitudinal cohort 

study based on whole-genome sequencing. Lancet Infect Dis. 2017;17(2):207-214. 

doi:10.1016/S1473-3099(16)30413-3 

97.  Marsh JW, Mustapha MM, Griffith MP, et al. Evolution of Outbreak-Causing Carbapenem-

Resistant Klebsiella pneumoniae ST258 at a Tertiary Care Hospital over 8 Years. mBio. 

2019;10(5). doi:10.1128/mBio.01945-19 

98.  Galdys AL, Marsh JW, Delgado E, et al. Bronchoscope-associated clusters of multidrug-

resistant Pseudomonas aeruginosa and carbapenem-resistant Klebsiella pneumoniae. Infect 

Control Hosp Epidemiol. 2019;40(1):40-46. doi:10.1017/ice.2018.263 

 

 


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Preface
	1.0 INTRODUCTION
	1.1 HEALTHCARE-ASSOCIATED INFECTIONS
	1.2 HEALTHCARE-ASSOCIATED OUTBREAKS
	1.2.1 Detecting and Investigating Outbreaks
	1.2.2 Whole Genome Sequencing
	1.2.3 Limitations with Current Approaches
	1.2.4 Opportunities for Advancement


	2.0 MANUSCRIPT 1: WHOLE GENOME SEQUENCING SURVEILLANCE AND MACHINE LEARNING FOR HEALTHCARE OUTBREAK DETECTION AND INVESTIGATION: A SYSTEMATIC REVIEW AND SUMMARY
	2.1 ABSTRACT
	2.2 INTRODUCTION
	2.3 METHODS
	2.4 RESULTS
	2.5 DISCUSSION
	2.6 TABLES AND FIGURES
	Table 1. Studies by date, organism and outbreaks detected utilizing WGS surveillance
	Table 2. Studies utilizing machine learning or modeling to detect outbreaks or transmission


	3.0 MANUSCRIPT 2: AUTOMATED DATA MINING OF THE ELECTRONIC HEALTH RECORD FOR INVESTIGATION OF HEALTHCARE-ASSOCIATED OUTBREAKS
	3.1 ABSTRACT
	3.2 INTRODUCTION
	3.3 METHODS
	3.3.1 Study Setting
	3.3.2 Characterization of retrospective outbreaks from 2011 to 2016
	3.3.3 Extraction and processing of EHR data for data missing
	3.3.4 Data missing of the electronic health record (EHR)

	3.4 RESULTS
	3.5 DISCUSSION
	3.6 TABLES AND FIGURES
	Table 3. Characteristics of outbreaks. The correct transmission route was identified by the data mining program for all outbreaks
	Figure 1. Transmission route ranking for outbreak No. 4: Pseudomonas aeruginosa from a contaminated bronchoscope
	Figure 2. Transmission route ranking for outbreak no. 3: Klebsiella pneumoniae from a contaminated bronchoscope


	4.0 MANUSCRIPT 3: WHOLE-GENOME SEQUENCING SURVEILLANCE AND MACHINE LEARNING OF THE ELECTRONIC HEALTH RECORD FOR ENHANCED HEALTHCARE OUTBREAK DETECTION
	4.1 ABSTRACT
	4.2 INTRODUCTION
	4.3 METHODS
	4.3.1 Study Setting
	4.3.2 Isolate Collection
	4.3.3 Whole-Genome Sequencing
	4.3.4 Extraction and Processing of Electronic Health Record Data
	4.3.5 Machine Learning Algorithm
	4.3.6 Clinical and Economic Modeling
	4.3.7 Traditional Infection Prevention Practice

	4.4 RESULTS
	4.4.1 Outbreaks detected by traditional IP practice
	4.4.2 Clinical and economic impact analysis

	4.5 DISCUSSION
	4.6 FIGURES AND TABLES
	Table 4. EDS-HAT isolates sequenced and attributable readmissions
	Table 5. High-impact or notable outbreaks detected by EDS-HAT
	Figure 3. Flow diagram of the EDS-HAT outbreak detection process, from clinical culture through adjudication of transmission route(s)
	Figure 4. Cluster network of EDS-HAT isolates sequenced, grouped by bacterial species. The outer circle shows patient isolates that are not genetically related. The inner circle shows outbreaks of genetically related isolates as defined by cgSNP cut-o...
	Figure 5. EDS-HAT cost-savings and effectiveness plot for estimated lower and upper bound boundaries (see Methods). Cost-savings of EDS-HAT was examined by estimated costs associated with number of transmissions averted, using 1,000 simulations in pro...


	5.0 CONCLUSION
	5.1 MAJOR FINDINGS
	5.2 FUTURE DIRECTIONS

	6.0 PUBLIC HEALTH SIGNIFICANCE
	Appendix A Tables Whole Genome Sequencing Surveillance and Machine Learning for Healthcare Outbreak 1 Detection and Investigation: A Systematic Review and Summary
	Appendix Table 1. Details of studies utilizing whole genome sequencing surveillance

	Appendix B Tables & Figures: Whole-Genome Sequencing Surveillance and Machine Learning of the Electronic Health Record for Enhanced Healthcare Outbreak Detection
	Appendix Table 2. List of model parameters
	Appendix Table 3. Data inputs for clinical and economic modeling
	Appendix Table 4. List of clusters detected by EDS-HAT
	Appendix Table 5. Clinical and economic modeling results
	Appendix B.1 References

	Bibliography



