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With the explosion of information, massive amounts of data are being generated daily from

different sources. Due to the limited infrastructure and human capacity for data integration and

the requirement of efficient processing, some data, especially historical data, are stored in an ag-

gregated form at different levels of aggregation (e.g., aggregated by different time intervals). For

example, epidemiological data preserves monthly counts of infected people. Meanwhile, data anal-

ysis and machine learning models often require elaborate knowledge of data for accurate analysis

and prediction. This information should be obtained either from original or from aggregated data.

Motivated by the above challenge, this thesis aims to facilitate the generation and utilization

of aggregated data from three aspects: 1) reconstructing higher-resolution time series from aggre-

gated data with acceptable performance; 2) selecting aggregated data for analysis with minimal

hurt for performance, e.g., detecting outbreaks of measles using monthly counts may have com-

parable performance with the raw data; 3) generating aggregated data for future studies with less

information loss, e.g., aggregating data with different resolutions on different parts based on the

importance.

Most data reconstruction methods utilize domain knowledge, e.g., smoothness, periodicity, or

sparsity, to improve reconstruction accuracy. Meanwhile, domain knowledge is limited and may

be inaccurate in many applications, which leads to a worse reconstruction. In order to tackle this, I

present two advanced methods: 1) ARES (Automatic REStoration) that performs data reconstruc-

tion by automatically discovering patterns in the time series using annihilating filter technique, 2)

TURBOLIFT that aims to improve the quality of any existing disaggregation methods by refining

the initial reconstruction.

Despite that reconstruction provides an elaborate view of data, its performance may vary de-

pending on the data aggregation level, and it requires extra computational cost. Moreover, in some

cases, analyzing coarse data may be sufficient to achieve acceptable accuracy. Therefore, I propose

a framework, SMARTPROGNOSIS, to automatically suggest aggregation levels, which maximizes

iv



the performance under specific machine learning models.

It is noteworthy that most aggregation methods face information loss when aggregation levels

increase. That results in lossy aggregated data, e.g., with annual counts, it is hard to capture the

detailed trade during the year. In order to tackle this drawback, I propose a novel summarization

algorithm, I-AGG, to aggregate data by emphasizing the critical information of original data.
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1.0 INTRODUCTION

There are numerous amounts of historical datasets collected and made available to the public

by different groups worldwide, such as the Institute for Quantitative Social Science (IQSS) at

Harvard University, Great Britain Historical GIS at the University of Portsmouth, the International

Institute of Social History in Amsterdam, and the World-Historical Database at the University of

Pittsburgh. Interpreting and mining these historical data involve consolidating and fusing large

amounts of data from different sources. In health science, for instance, the Vaccine Modeling

Initiative at the University of Pittsburgh aims to gather and analyze information from thousands of

reports on epidemiological data in the United States, spanning more than 100 years [131, 132].

Historical data commonly include reports on time series that have a low temporal resolution,

e.g., the monthly counts of people infected with measles. Such reports are seen as aggregates of

multiple data atoms in a higher resolution series. Usually, aggregation can be performed in dif-

ferent ways, such as 1) temporally, e.g., the monthly counts of people infected with measles, 2)

spatially, e.g., the population of New York, and 3) others, e.g., counts of students in computer

science department (i.e., same affiliation). In this thesis, we mainly focus on the temporal one,

which is the most common scenario in practice, especially historical data. Clearly, data aggre-

gation could bring benefits from different aspects, such as mitigating the requirement of storage

resources, communication cost [100], and enhancing privacy [124]. Additionally, we also found

frequent situations where finer resolution data is not available. For example, the energy aggrega-

tion data contains the energy consumption for a whole building where the appliance-specific data

is inaccessible [76].

Although data aggregation has many favorable properties and is inevitable in some cases, it

comes with a severe drawback – blurring the details of data. As we know, many state-of-the-art

machine learning models require a considerable amount of data with detailed information for high

accuracy, which makes aggregated data undesirable. For example, detecting unusual traffic using

the New York taxi flows prefers hourly log data. The aggregated data, in this case, is unable

to reflect the timely information. Moreover, several researchers demonstrate the ineffectiveness

of data aggregation in data mining and data analysis. For example, in the economic field, they
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present that aggregated data would result in information loss and thus misleads the conclusions of

individual economic behavior [29, 47].

However, aggregated data is not unworthy in all situations. It is noteworthy that for some spe-

cific problems, elaborate information is not necessary for decision making, making the aggregated

data preferable by considering the computational cost. For example, the clinic providers are able to

accurately prognosis patients based on five minutes summarization of brain activity data recorded

by every 0.2 seconds [95]. Moreover, Kourentzes et al. [78] mentioned that analyzing through

multiple aggregated data with different levels (i.e., time interval) could facilitate the performance

of data study.

1.1 RESEARCH QUESTIONS

In this thesis, we aim to tackle this trade-off problem – how to efficiently process and utilize the

aggregated data while preserving the performance of analysis, by answering the following research

questions:

Question 1 [Data disaggregation]: How to reconstruct higher-resolution time series from ag-

gregated data with acceptable accuracy, e.g., estimating the number of weekly measles infected

people from monthly counts?

Question 2 [Data navigation]: How to select appropriate aggregated data for analysis with min-

imal decrease in performance, e.g., detecting outbreaks of measles using monthly counts have

comparable accuracy with daily counts?

Question 3 [Data summarization]: How to generate aggregated data utilizing a more intelligent

method with less information loss, e.g., storing the weekly count on summer season (i.e., peak

time) while monthly for the rest?

Figure 1 visually illustrates how these three questions help with the processing of aggregated

data. Arrows in different colors indicate the direction of influence for each research question.

Firstly, reconstructing the aggregated data before machine learning analysis would provide an

elaborate understanding of the data and thus improve model accuracy. Meanwhile, considering
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that data reconstruction requires extra computational resources and, in some cases, aggregated data

has the ability to reveal essential findings, carefully navigating to an appropriate aggregation level

(i.e., time interval to aggregate) for a machine learning task could achieve comparable accuracy as

the original data with a less computational cost. Last but not least, generating aggregation reports

in an intelligent way could mitigate information loss and result in a higher performed analysis.

Next, we describe the motivation and proposed algorithms for each research question in detail.

Figure 1: Illustration of research objectives.

1.1.1 Data Disaggregation

The goal of data disaggregation techniques is to reconstruct the desired high-resolution time

series from available aggregated reports before analyzing. In this thesis, we use the term aggre-

gate to refer to the sum. Practically, the disaggregation models could face several well-known

challenges that emerge in real-life databases, e.g., 1) overlap: we may have multiple monthly and

one annual reports from different authorities about cases of measles in Los Angeles covering one
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year; 2) conflict: the sum of the monthly reports for a particular year is not the same as the value

of the annual report for that year; 3) missing: the reports of patient counts do not cover the pe-

riod of 1940-1944 because of World War II. Moreover, data disaggregation is an under-determined

problem where the number of aggregated reports is far less than the number of target time-ticks.

Therefore, classic methods exploit additional information or utilize domain knowledge about the

data, e.g., smoothness [87], periodicity [87], or sparsity [5], to improve reconstruction accuracy.

However, we frequently find situations where there is no available domain knowledge or extra

information about the data to be exploited. Imposing a random or inaccurate constraint would

certainly degrade the quality of reconstructed series resulting in misleading the following analysis.

In this thesis, we present a novel and efficient approach, called ARES (Automatic REStoration),

which reconstructs historical data by automatically discover a dominant pattern of the target se-

ries. ARES is composed of two phases: (1) first, it estimates the sequential data utilizing domain

knowledge, such as smoothness and periodicity of historical events; (2) then, it uses the estimated

sequence to derive notable patterns in the target sequence to refine the reconstructed time series.

ARES applies an annihilating filter technique that is reminiscent of ideas encountered in spectral

estimation and compressed sensing [63, 129]. The idea of annihilating filtering is to learn a linear

shift-invariant operator with length L whose response to the desired sequence is (approximately)

zero (i.e., any L successive time-ticks multiplied by the operator should sum up to zero). This

operator is traded as the dominant pattern shared by any continued L time-ticks. ARES further

improves the reconstruction accuracy by applying the annihilating filtering at the second phase

iteratively.

Although ARES bypasses the limitation of lacking domain knowledge, the dominant pattern

discovered by it is not guaranteed. For example, spiky time-ticks could disturb the pattern recog-

nition, since they are identified as abnormal, which differ significantly from the majority of data.

Motivated by this, we present a novel approach, called TURBOLIFT, that refines the solutions pro-

vided by existing disaggregation methods and significantly lifts the accuracy of the reconstructed

high-resolution time series. Starting from an initial solution produced by a specific disaggregation

method, TURBOLIFT iteratively finds a new solution that minimizes the disaggregation error and

is close to the current solution. A notable advantage of TURBOLIFT is that it can reap the benefits

inherited from the initial solution and release the initial solution from any inexact constraint im-
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posed by the starting method. Moreover, we derive a closed-form solution that enables us to obtain

the solution to the formulation of TURBOLIFT analytically, without the need to perform resource

and time-consuming iterations.

1.1.2 Data Navigation

Despite the above methods providing an elaborate view of data resulting in high-performance

analysis, they apparently demand extra computational time and resources. Moreover, the perfor-

mance of data disaggregation varies depending on the quality of available aggregated reports (see

detail in Section 3.4). Therefore, several researchers are attracted to explore the analytical ability

of aggregated data [13, 70, 135]. Borgatta and Jackson [15] claim that the aggregated data, in some

cases, has the capability to suggest finding at an individual level.

In order to advise (i.e., navigate) the selection of aggregated data as well as the machine learn-

ing model, which reveals more insights for target analysis, we propose an automatic machine

learning framework. We illustrate one application of analyzing aggregated data in the field of

medication – prognosis after cardiac arrest, where we show how our technique can be effectively

used to navigate the selection of appropriate aggregation reports with high performance. We name

the framework as SMARTPROGNOSIS based on its application. Intuitively, SMARTPROGNOSIS

adopts automatic machine learning techniques and ensemble learning to automatically generate

and assemble candidate machine learning pipelines (i.e., a sequential combination of data prepro-

cessing and machine learning algorithms.). The candidate pipelines are selected by maximizing

the sensitivity of predicting the poor neurological outcome with a fixed, extremely low error rate

in misclassifying patients with good outcomes.

1.1.3 Data Summarization

Data summarization is a process of creating a concise yet informative version of data [2]. In

general, summarization can be produced by 1) data aggregate approximation (e.g., sum, mean,

etc.), which summarizes statistic information of a group data, 2) data sampling, which selects a

subset of representative data, or 3) machine learning methods (e.g., clustering), which find the

natural or intrinsic of similar data.
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A common approach for historical time series data, as we mentioned above, is aggregation. It

tends to compute a statistical value over a range of data, where the range is evenly distributed. In

this case, the summarized result may eliminate the crucial details and result in information loss.

For example, the annual aggregation of infected people counts is unable to capture the seasonal

tread of disease. Therefore, we propose a novel data summarization method for time series data

by intelligently deciding an appropriate aggregation level for each time interval (i.e., aggregating

data with different time intervals on different segments.). The aggregation levels are decided based

on the information contained in the segments – the more crucial information, the finer resolution

we use. We learn the importance of each data point by a generative adversarial model [92], which

identifies the relatively important time ticks that can be used to recover the original data. In detail,

we first generate important scores for each time-ticks through a Bi-LSTM layer and then recon-

struct the weighted sequence (i.e., weighted by important scores) back to the original sequence and

distinguish it from the real data using a generative adversarial model. We maximize the ability of

weighted sequence to capture the sequence information.

1.2 THESIS ORGANIZATION

The rest of this thesis is organized as follows. I go through the background information and

literature review regarding each research objectives in Chapter 2. In Chapter 3, I explain the detail

of a historical data reconstruction algorithm (ARES) and a lifting method to improve the recovered

result (TURBOLIFT) further. Chapter 4 presents a new time series data warehouse where multi-

resolution data are stored and an intelligent data navigation method for aggregations selection

(SMARTPROGNOSIS) built on top of the warehouse. Chapter 5 illustrates an algorithm (I-AGG)

to summarize time series data, which aims to preserve the most crucial information of the original

data. Chapter 6 concludes the thesis and provides a discussion on future work.
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2.0 BACKGROUND

In this chapter, we provide a background and related work review for each research question,

respectively.

Notation: bold capital letters (e.g., X) denote matrices; small letters with upper arrow (e.g., ~x)

denote vectors; X† is the Moore-Penrose pseudo-inverse of a matrix X; XT denotes the transpose

of X. ~xn is the nth element in vector ~x.

2.1 DATA DISAGGREGATION

2.1.1 Data Disaggregation Problem

The problem of data disaggregation, also known as information disaggregation, considered in

this thesis is a special case of information fusion. The concept of information fusion has been used

in a wide range of areas, including multi-sensor data fusion [57], human-centered information

fusion [24, 56], and information fusion for data integration [14]. Multi-sensor data fusion uti-

lizes multiple sensors to improve the signal-to-noise ratio and the robustness and reliability of the

sensor network in the presence of sensor failures. Human-centered information fusion enhances

fusion techniques by including human observations as well as web-based information about inter-

actions between humans (e.g., social networks). In this direction, researchers developed automatic

information fusion methods that exploit the collective intelligence of mobile robots and human

operators/observers, and efficiently crowd-source the victim detection task [147]. The problem

of information fusion also appears in image and signal processing applications, such as motion

estimation [149], edge detection [120], and super-resolution image reconstruction [98].

The emergence of the Internet and communication networks facilitates access to different data

sources with varying reliability. These sources might be mutually inconsistent due to conflicting

data [36]. The challenge of resolving data conflicts and data inconsistencies has been addressed in

the task of data integration [14, 35, 111, 146].
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Figure 2: Examples of aggregated historical reports and corresponding linear system.

Data disaggregation is a key component of information fusion and has been studied in various

domains, e.g., economics [102], supply chains [69], and epidemiology [87, 5]. The most common

type of disaggregation is the temporal disaggregation [121, 44, 101]. Given low-resolution obser-

vations about a time series (e.g., a mix of monthly and quarterly sales, or weekly stock market

index), the temporal disaggregation models aim to fuse the available observations to reconstruct a

high-resolution series (e.g., weekly sales, or daily stock market index) that satisfies the aggregation

constraints.

Specifically, in the disaggregation task, the goal is to fuse the given aggregated observations

to reconstruct the target high-resolution time series. Figure 2 shows an example of two historical

reports on the number of measles infections in NY. Each report covers a time interval of 4 weeks,

with one week overlap between them. The number of time-ticks in the interval covered by a given

report is referred to as Report Duration (RD). In this particular example, the task of the information

disaggregation is to reconstruct the weekly counts of measles cases from the monthly counts.

The lower part of Figure 2 shows an example of the linear system formed from the aggregation

constraints using the two reports about measles infections in NY. Each report is represented as

a binary row vector in the observation/aggregation matrix O ∈ RM×N , with ones at the indices

that correspond to the time-ticks covered by this report. This information disaggregation prob-
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lem can be stated as finding the solution to the linear system in Figure 2. Formally, information

disaggregation methods aim to minimize the following deviation:

F(~x) =
M∑
m=1

(~vm −
N∑
n=1

Om,n~xn)
2 (1)

or, in the matrix form:

F(~x) = ||~v −O~x||22 (2)

where N is the total number of time-ticks in ~x, M is the total number of reports, ~v is the vector

containing the values of aggregated reports, and O is the observation/aggregation matrix that maps

the available aggregated reports with the high-resolution target series.

Ideally, the deviation between O~x and the reports ~v should be zero. However, in practice,

the above linear system in Figure 2 is super under-determined, as the number of reports is much

smaller than the number of time-ticks, i.e., M � N . As a result, it has an infinite number of

solutions if the system is consistent, i.e., the reports are not conflicting. The Least Squares (LSQ)

chooses the solution that minimizes F(.) and has the minimum-norm (min ||~x||22). However, in

most real data, the true solution is not necessarily the one that has (or is close to) the minimum

norm.

The previous discussion reveals that the time series disaggregation problem is ill-posed in gen-

eral, making it a challenging task. An ill-posed problem is one that does not meet the three criteria

to be well-posed [68]. These criteria are: 1) A solution exists. 2) The solution is unique. 3) The so-

lution’s behavior changes continuously with the initial conditions. There are different approaches

proposed to handle the time series disaggregation problem in the literature; we summarize them in

the next section.

2.1.2 Related Work

Time series disaggregation is a popular problem, especially in the statistical and economics

literature [25, 117]. A class of the existing disaggregation approaches leverage extra information

and priors in the disaggregation task, such as integrating multiple views of the same data, each is

aggregated in a different dimension [4, 25, 33, 101, 102, 117]. For instance, we are interested in es-

timating the quarterly Gross Regional Product (GRP) values for regions of a country, given: 1) the
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annual GRP per region (temporal aggregates), and 2) the quarterly Gross Domestic Product (GDP)

national accounts (aggregated over regions). In addition, some algorithms assume a linear regres-

sion model between the target high-resolution series and some related series that are available in

high-resolution [25, 101, 102]. For instance, the daily stock market of an oil company is estimated

as a linear combination of the stock market of other oil and relevant companies. The advantage

of exploiting multiple views or assuming a linear regression relation is to reduce the number of

variables versus equations; however, the extra information is not available in our context.

In cases where no extra information is available, classic techniques exploit domain knowledge

to tackle the time series disaggregation problem [44, 87]. For instance, Liu et al. [87] introduced a

method, called H-FUSE, that imposes smoothness and/or periodicity constraints on the solution to

the disaggregated series, in their attempt to make the problem over-determined. The smoothness

(H-FUSE-S) is imposed on the solution by penalizing the large differences between adjacent time-

ticks in ~x. With a trivial example of a series of length N = 4, H-FUSE-S imposes the following

soft constraint to the least-squares criterion in (2).

∥∥∥∥∥∥∥∥
1 −1 0 0
0 1 −1 0
0 0 1 −1



x1
x2
x3
x4


∥∥∥∥∥∥∥∥
2

2

(3)

In some applications, periodicity is expected, e.g., yearly periodicity in weather data. H-FUSE

also imposes periodicity constraint (called H-FUSE-P). With the same concept, large differences

between each time-tick and its equivalents in a predetermined period are penalized [87]. With some

time series, constraining the solution with both smoothness and periodicity (named H-FUSE) leads

to higher accuracy.

Although the domain knowledge assumptions described above are reasonable and effective

in many applications, they can be restrictive when the time series does not exactly follow the

imposed constraints. Recently, the work in [5] proposed to circumvent the under-determinacy of

the problem by solving for the disaggregated series in the frequency domain. Specifically, this

method searches for the coefficients of the Discrete Cosine Transform (DCT) that represent the

time series of interest. A small number of coefficients is sufficient to approximate the series, i.e.,
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the series is sparse in the DCT domain. Basis Pursuit (BP) [23], and its variations, are employed to

find such representation. BP is an optimization technique that finds a sparse solution to an under-

determined system by choosing the l1 norm of the solution as a criterion. In this context, DCT

is used as a sparsifying dictionary. One advantage of the approach in [5] is that it automatically

detects the prominent periodicities in the data, as opposed to assuming a known periodicity in H-

FUSE. However, the estimation accuracy of this method hinges upon the periodicity degree of the

time series. If the data is known to have a few dominant periodicities, i.e., quasi-periodic, then this

method is expected to achieve a good reconstruction.

2.2 DATA NAVIGATION

2.2.1 Data Navigation Problem

In order to efficiently process and analyze data, storing data in the aggregation format with

different aggregation levels is favorable in many domains, such as economics and health care.

However, it is undeniable that data in different aggregation levels could reveal or conceal different

features of the original data. For example, data aggregation could smooth the high-frequency fea-

tures and provide a better estimation of long-term dynamics, especially for fast-move data. While,

for slow-move data, aggregation may bring the opposite effect by reducing (or even removing) the

intermittence of the data [106]. Therefore, it is a challenging task for users to decide the suitable

aggregation records for a specific problem when considering the trade-off between performance

and efficiency. Data navigation is one of the techniques that assist this process. It takes the users’

requests and automatically redirects them to suitable aggregation records. Our informal problem

definition is given as follows:

Informal Problem 1 (Navigation).

1. Given: 1) the multiple aggregations of dataset D with different aggregation levels (A =

{A1, A2, ..., An}) and 2) a user query Q.

2. Redirect: the query Q to one or multiple appropriate aggregation records that could answer the

query efficiently and properly.
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Figure 3: Illustration of aggregation navigator [1].

2.2.2 Related Work

The idea of data navigation was first presented in the data warehouse application known as the

aggregation navigator. Data warehouse [65] is a central repository of information, which contains

data gathered and integrated from different sources, and it is usually used for reporting and an-

alyzing data. Unlike the operational database, a data warehouse aims to store large quantities of

historical data and enable fast, complex queries across all the data. Therefore, one fundamental part

of the data warehouse is aggregation, which summarizes multi-dimensional data into a new level of

granularity and could provide better comprehensibility in data analysis and data visualization [52].

To avoid low responses due to the system summing data up to higher levels, aggregation in differ-

ent granularity can be pre-computed and stored in a separate table. However, in this case, users

are required to generate queries that consume the appropriate aggregation table by themselves.

For example, computing the annual average salary of all employees using the seasonally average

salary data is more favorable than the monthly average wage. However, it is undeniable that this

will increase the workload for end-users and may cause inaccurate analyzing results, especially

when the number of aggregation tables increases or the aggregation tables are not in sync with

the base tables. Therefore, an essential component, named aggregation navigator, is designed to

guide the utilization of aggregation data. Figure 3 shows a flowchart of the aggregation navigator.

Aggregation navigator rewrites users’ queries by redirecting them to the most efficient aggregation

schema [1, 74]. The principle of aggregation navigator is to avoid the unsynchronized aggregation

tables and select an appropriate granularity to answer the query.

In addition to boosting the data query speed, another group of researchers has explored the

12



capability of aggregated data for analysis. They propose to utilize multiple aggregated data with

different resolutions to facilitate the analysis, called multi-resolution learning. The main idea

is to integrate results from different models focusing on different resolutions. This method has

been successfully applied for different applications, such as forcasting [106], image analysis [105],

and knowledge transfer [39]. However, for most of these algorithms, the multi-resolution data is

selected based on available or generated by increasing aggregation levels.

2.3 DATA SUMMARIZATION

2.3.1 Data Summarization Problem

In the era of data explosion, a vast number of data has been created daily from different sources,

such as Sensor Networks, Cloud Storages, Social Networks, etc. In order to manage and analyze

these data, many researchers have investigated the techniques of data summarization. The objective

of data summarization is to find a synoptic representation of the original data.

In general, a good summarization should satisfy several properties, including compressed, in-

formative, and be able to infer the approximate over the original data [60]. Therefore, data sum-

marization plays a vital role in big data processing (e.g., storing, retrieving, and computing) by

significantly reducing resource consumption. It has been widely used in many domains, such

as public health [108], social medial [9], economic [25], etc.. For example, the clinicians could

access massive data of a patient collected from different sources, such as patient demographics,

medications, lab, and test results, etc.. However, it takes effort to extract useful information from

background noise for diagnosis [133]. Moreover, communicating enormous clinical data between

hospitals or clinicians faces a risk of delay and inaccurate and thus results in inaccurate diagno-

sis [80]. Therefore, a clinical summarization, which can describe crucial medical information, is

favorable.
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2.3.2 Related Work

Since the mass of data comes from different sources, they could be collected in different for-

mats, such as numeric, category, and text. Correspondingly, various types of data summarization

techniques have been developed to tackle these different types of data. Technically, these summa-

rization methods could be divided into two categories according to the data types: structured data

summarization and unstructured data summarization. Unstructured data refers to the information

that either does not have a predefined data model or is not organized in a predefined manner [16].

In most scenarios, unstructured data is text-heavy and thus can be covered by text summarization

techniques, such as extractive summarization, topic representation, and knowledge-base summa-

rization [3].

Conversely, structured data represents the data with a fixed format (row and columns) and

usually can be stored in a database. The time-series data we focus on in this thesis is an example

of structured data as it only contains numerical values at each time-ticks (i.e., each feature is a

column, and each time-tick is a row.). Therefore, we focus on the structured data summarization in

this thesis. Due to the standard format of structured data, this type of summarization method can

be classified into several categories, e.g., data sampling, data aggregate approximation, machine

learning, etc.. We describe the details of each category as follows.

2.3.2.1 Data Sampling

Data sampling is a process to systematically select a relatively smaller number of representative

data points from the original data. Importantly, any query or analysis applied to the sampled data

should be able to generalize to the whole dataset. In practice, there are different types of techniques

for generating sample data and usually can be classified into two main categories: probability

sampling and non-probability sampling.

Probability sampling is, obviously, any method that the sample data are selected using a method

based on the theory of probability. The simplest example is simple random sampling [96], which

randomly selects data points based on a predefined distribution, e.g., uniform distribution or Gaus-

sian distribution. Considering that the data may contain a bias towards one particular group of data,

e.g., given a skew distributed data, data points around the tail are hard to be selected. Stratified
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Random Sampling [127] has been proposed to bypass this drawback, which divides the dataset

into non-overlapping subsets (i.e., strata.) and applies the simple random sampling on each stra-

tum. Moreover, some methods suggest applying simple random sampling in clustered data to

guarantee the represented data is evenly distributed in each group. This method refers to cluster

random sampling [130]. Besides the random sampling, systematic sampling [54] provides another

strategy to generate the data subset, which selects the data points from a specified starting point to

the end with equal intervals. In particular, given the position of the start point (2nd) and the interval

3, the sampled data is 2nd, 5nd, 8nd, etc..

Contrariwise, non-probability sampling techniques do not follow any methodological decision

based on probability, and thus the sampled data is hard to be used to infer the general population

in statistical terms. For example, the sample data could be extracted by predefined criteria. Any

data that satisfies the criteria would be included until the sample size is achieved. Therefore, this

type of sampling technique is not appropriate for data summarization in our cases as it could not

provide sufficient information.

2.3.2.2 Data Aggregate Approximation

Data aggregation approximation is a reverse process of the above data disaggregation, which

gathers statistical measurements of data points located in the same segment, such as mean, sum,

variance, etc. These segments are usually divided depending on the value of attributes with equal

probability. For example, the weekly counts of measles infection could be clustered by different

months and then aggregated to monthly counts data. In general, this technique refers to Piecewise

Aggregate Approximation (PAA) when it applies to time series data, which we are interested most

in this thesis. Figure 4 (a) shows an example of the PAA for a time series data with half-length

reduced. In each segment, the average values (red dash line) of every three consecutive time-ticks

are recorded to represent the entire data (blue line).

Considering that a simple statistic value is not sufficient to represent the data in each segment,

some researchers proposed to include multiple measurements from different aspects to provide a

comprehensive understanding. For example, Ren et al. [112] suggest dividing each segment verti-

cally into several regions further based on the value of data in that segment to capture the structure
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(a) Piecewise Aggregate Approximation with aver-
age measurement for each segment.

(b) Symbolic Aggregate approXimation with letter rep-
resentation.

Figure 4: Examples of PAA and SAX

in the space of amplitudes. Another work in [148] propose to divide each segment into two part

and use the numerical average, respectively, to represent the trend of data. However, it is note-

worthy that a trade-off exists between the informativeness and the compactness of the aggregation.

In other words, with more types of information recorded in segments, the benefits of aggregation,

such as reducing the computational resources, are decreasing. In addition to representing the seg-

ments by numerical data, another community proposes to convert the statistic value into a string

(e.g., letters) [86, 71], known as Symbolic Aggregate approXimation (SAX). We show an example

of SAX using the same time series in Figure 4 (b). The time series is converted to a string vector

[B,D,E,D,C,B,B] by representing each average value with a letter. The distribution of these

letters is decided by the range of the time series data. In practice, this symbolic representation al-

lows researchers to understand the data better and brings benefits for future analysis. For instance,

researchers are able to apply text mining techniques to numerical data.

2.3.2.3 Frequency Domain Transformation Approximation

Frequency domain transformation approximation is a kind of summarization method that works

on the frequency domain. The benefit of transforming to the frequency domain is discovering the

information that cannot be readily seen in the time domain. This kind of method aims to ana-
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Figure 5: The different between Fourier Transform and Wavelet Transform [10].

lyze the frequency components of the signal where the low frequency represents low variant parts,

while the high frequency shows more fine details with a high variant. One basic method in this

category is the Fourier Transform, representing the time series data with the frequency spectrum.

However, the spectrum contains no time information that cannot tell what instant a particular fre-

quency rises [27]. One solution to tackle this drawback is to analyze the spectrum within every

short time window, called Short-time Fourier transform (STFT). But it raises another problem – the

selection of window size. A small window size will yield a poor frequency resolution, while a wide

window cannot provide useful localization. Therefore, a further solution, Wavelet Transforms, is

proposed to deal with this problem. Wavelet Transforms is a time-frequency representation that

can provide the time intervals information where particular spectral components occur. Different

than the sine-wave in Fourier transforms, Wavelet transforms learn the representation with a se-

ries of functions called wavelets, which can be used to divide a given signal into different scales

components. Figure 5 shows an example of the Fourier transform, and Wavelet transform on the

same time-series signal. The left part is the time series in the time domain, and the right part shows

transform representations. Clearly, the Fourier transform breaks the signal into several sine waves

with various frequencies, while the Wavelet transform consists of shifted and scaled versions of

the mother wavelet.

Generally, the frequency representations mentioned above have the same length as the original
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signal. To approximate it with a shorter length (i.e., summarization), a predefined hyper-parameter,

amplitude threshold, frequency band, or level of decomposition (in wavelet transform) is needed.

For example, we represent a signal with frequencies lower than a cut-off frequency (i.e., low pass

filter) and neglect the other frequencies.

2.3.2.4 Machine Learning based Method

Machine learning-based summarization is a kind of technique that summarizes data by mining

the natural or intrinsic information of the data. In general, this type of method provides more

flexibility in controlling the quality of the summarization. Chandola et al. [21], for example, use

the evaluation criteria, such as conciseness and information loss, as the objective function to train

the frequent itemsets selection threshold.

Clustering is another commonly used machine learning method for data summarization, whose

aim is to find groups of data points that the points within one group are highly similar while across

groups are dissimilar. With the group information, two types of summarization methods have been

proposed: 1) centroid based summarization and 2) feature-wise intersection based summarization.

In particular, centroid-based summarization represents the groups by the centroids, which is usu-

ally the arithmetic mean of all the data points that belong to that group. The method proposed

by Ha-Thuc et al [55] is an example of centroid-based summarization. They propose a quality-

threshold data summarization based on the K-Means clustering method that splits the clusters until

the distortion hits a predefined threshold and sets the cluster centroid as the summarized data.

On the other hand, the feature-wise intersection-based summarization [21] suggests representing

a single group by intersecting the attributes of all the data points inside the groups. This type of

approach would benefit the situation when the whole group shares one identical attribute.

2.3.2.5 Methods for Dynamic data

Apparently, the above types of methods are only applicable for finite (i.e., static) structure

data. However, many data are generated rapidly (i.e., dynamic data), such as computer network

traffic, web searches, sensor data, etc. The summarization of these data requires special care in

terms of memory. Specifically, the memory requirement should be independent of the size of the

18



data. The common method to summarize dynamic data is data sketch, which represents the data

characteristics by a small data structure. For example, count-min sketch[31] counts the frequency

and Flajolet–Martin Sketch[46] tries to approximate the number of distinct elements. Considering

the slow generation speed of historical data, in this thesis, we only discuss data summarization for

static time series data.

2.3.2.6 Representation learning

Representation learning is a different kind of method that learns a concise and informative

representation of big data.
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3.0 DATA DISAGGREGATION: RECONSTRUCTING AGGREGATED HISTORICAL

DATA

As mentioned in Section 2.1.1, the data disaggregation problem can be nicely formatted into

linear equations (Eq.(1)) and then solved by imposing different domain knowledge, e.g., smooth-

ness, periodicity, and sparsity, etc. However, we frequently find situations where there is no avail-

able domain knowledge about the data to exploit. Thus, automatically recognizing and utilizing

sequential patterns can benefit reconstruction methods, especially when domain knowledge is not

available or trustworthy.

In this chapter, we present two disaggregation methods – ARES and TURBOLIFT, which aim

to recover the time series data by automatically discovering a pattern for reconstruction and refine

the existing reconstruction result by correcting the imposed patterns, respectively. ARES utilizes

Annihilating Filters (AF) [63, 129], to automatically discover patterns in the neighboring time-

ticks. Precisely, ARES constraints each L successive time-ticks to follow the pattern learned by the

AF (i.e., each L successive time-ticks multiplied by the AF coefficients should sum up to zero).

TURBOLIFT refines the existing reconstruction result by iteratively finding a new solution that

reduces the disaggregation error and is close to the initial one.

We evaluate ARES and TURBOLIFT on real datasets from different domains, including epi-

demiological data, retail sales data, and criminological data. Figure 6 shows a simple example of

reconstructing the weekly counts of measles infection using both methods and their competitors.

We observe that both proposed reconstructions are visibly better than the baseline methods. In

Section 3.4, we provide comprehensive experiments that showcase the effectiveness of ARES and

TURBOLIFT in improving the performance of different reconstruction methods, including LSQ

and the more advanced H-FUSE method. We also provide an elaborate analysis regarding the

complexity and demonstrate that both methods scale well.

In Table 1, we summarize the symbols used frequently throughout this chapter.

20



(a) Real weekly counts data (blue), LSQ (black), H-
FUSE (yellow), and ARES (red) reconstructions.

(b) Real weekly counts data (blue), H-FUSE (red),
refined H-FUSE by TURBOLIFT (green) reconstruc-
tions.

Figure 6: Examples for reconstructing weekly counts of people infected measles in NY.

3.1 AUTOMATIC RECONSTRUCTION WITH PATTERN DISCOVERY

3.1.1 ARES

In this section, we explain our ARES method in detail. As mentioned before, smoothness and

periodicity constraints are examples of domain knowledge about simple sequential patterns in a

time series. Whereas, in most cases, these constraints are not available. Therefore, ARES applies

Annihilating Filter (AF) to derive more dominant sequential patterns in a historical time series to

reconstruct/disaggregate it.

Next, we introduce the calculation of AF and the disaggregation problem with AF constraints

imposed.

3.1.1.1 Informal Explanation of Annihilating Filter (AF)

An AF is a linear shift-invariant operator of finite support, which completely suppresses a cer-

tain signal. That is, a filter with impulse response ~h ∈ RL×1, such that ~x~h :=
∑L

i=0 xt+ihi =

0,∀t. This concept has been introduced in spectral analysis, particularly line spectral estima-
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Table 1: Notations used in Chapter 3

Notation Description

~x ∈ RN The historical time series in high-resolution.

N The total number of time-ticks.

~v ∈ RM Vector containing the aggregated reports.

M The total number of reports.

O ∈ RM×N Observation/aggregation matrix.

~z0 The initial solution provided by a baseline.

RD Report duration: #time-ticks covered by a report.

RDmax The maximum #time-ticks in one report.

Shift
The difference between the starting time-ticks

of two successive reports

tion [63, 129], and has been subsequently used in other applications, notably in compressed sens-

ing by Vetterli et al. [134]. The basic idea is as follows. To recover the fine-scale data, we need

additional information – ideally, more measurements. Instead, if we know a linear shift-invariant

operator that annihilates the signal of interest, then we can use it to build additional equations that

the signal satisfies, without the need for additional data – simply because that data would be zero

anyway. In practice, the filter will only approximately annihilate the signal of interest when the

latter is not a sum of a few sinusoids, so these virtual equations are only approximate. However, we

can use a least-squares approach to account for errors in both actual and ‘virtual’ measurements.

This is the starting point of our approach.

3.1.1.2 Generating Annihilating Filter

Next, we describe the steps of generating AF for a time series data in detail.

Given a predefined AF length L, the AF tends to find a stable pattern within any L contiguous
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time-ticks. In other words, AF can be written as a column vector (
−→
h ) such that −→y = Xmat

−→
h ,

where
−→
h ∈ RL×1 holds the impulse response of the filter, and Xmat ∈ R(N−L+1)×L is constructed

by all L contiguous time-ticks from the input sequence (~x ∈ RN×1, see details in Figure 7).

Hence, ~h can be approximated by minimize the equation ||Xmat

−→
h ||2 (=

−→
h TXT

matXmat

−→
h ), which

is equivalent to find the eigenvector corresponding to the smallest eigenvalue of XT
matXmat. The

reason is explained as follows, any
−→
h can be written as U

−→
λ , where

−→
λ is a vector of coefficients,

whose norm must be 1, and U contains the eigenvectors of XT
matXmat, which are orthogonal [129].

We summarize the steps of generating AF in Algorithm 1. With determined ~h, AF can be rewritten

as −→y = Ha
−→x , where Ha is a Toeplitz matrix 1 constructed from

−→
h . Thus Ha is an annihilating

matrix that we use to define the annihilating constraint below.

Figure 7: Illustration of ARES AF generation algorithm

Figure 7 shows a general flow of the process starting from an input sequence ~x to the con-

structed annihilating matrix Ha with L = 3. The Ha matrix is then used as an additional constraint

to facilitate the reconstruction (bottom part of the figure).

1The Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant [59].
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Algorithm 1 Generate Annihilating filter
Input: ~x

Output: Ha (Annihilating filter constraint)

1: function AFILTER(~x)

2: Select an appropriate AF length. L

3: Build matrix Xmat by any successive L time-ticks of input sequence ~x. Xmat ∈ R(N−L+1)×L

4: Calculate Ymat Ymat = XT
matXmat

5: Perform Singular Value Decomposition and extract the last column. U← SV D(Ymat), ~h← U

6: Construct matrix Ha. Ha ∈ R(N−L+1)×L

3.1.1.3 ARES Model

It is noteworthy that, in the above example, AF coefficients are generated using the real se-

quence to capture the dominant patterns with more accuracy. However, the target sequence is

not available in the data disaggregation problem, which makes it hard to discover AFs patterns

accurately. In order to obtain some knowledge of the original sequence, we propose to apply a

two-phase reconstruction strategy in ARES. The intuitive idea is to reconstruct an approximated

sequence with a state-of-the-art method in the first phase and then build the AF based on it (i.e.,

second phase). Here we apply H-FUSE [87] with smoothness and periodicity constraints in the

first phase since it has been approved to be more efficient than imposing only one or other con-

straints. The expectation of this two-phase approach is that the first phase reconstruction sequence

can refine the information about the target series to the extent which makes it reusable to learn AFs

representing reasonably accurate sequential patterns for the target series. The AFs built on refined

series should have the ability to improve reconstruction accuracy.

The detail steps are list as below. In the first phase of ARES, we apply the combined smooth-

ness and periodicity constraint:

Csp(~x) =
1

2
Cs(~x) +

1

2
Cp(~x),

where Cs(~x) is the smoothness constraint to penalize big jumps between successive time-ticks (see

details in Eq.(3)), Cp(~x) is the periodicity constraint which enforces the event at time-tick t to be

close to the one at t+P (P is a predetermined period). More formally, ARES solves the following
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optimization problem at first phase:

min
~x
L(~x) = min

~x
(F(~x) + Csp(~x)), (4)

where F(~x) is defined as in Eq.(2).

We then extract the AF based on the reconstructed result (~xsp) from the first phase and applies

the new pattern constraint to the characteristic linear system (Eq.(2)) to improve the reconstruction

accuracy. Mathematically, in the second phase, ARES solves the following optimization problem:

min
~x
L(~x) = min

~x
(F(~x) + Ca(~x)), (5)

where Ca(~x) corresponds to the annihilating constraint that we define next:

• Annihilating constraint Ca: Based on the definition of Annihilating Filter that any successive

L time-ticks should follow the pattern discovered by the AF (i.e., consecutive L time-ticks

multiplied by corresponding AF coefficients should sum up to zero). Thus, the Annihilating

constraint Ca can be represented with formulation:

Ca(~x) =
N−L+1∑
t=1

(
L∑
l=1

(hlxl+t))
2 = ||Ha~x||22 (6)

where Ha ∈ R(N−L+1)×N is an annihilating matrix, whose tth row contains ~h starting from tth

column.

To summarize, ARES first applies reconstruction method with smoothness and periodicity con-

straints to obtain an approximate sequence ~xsp, then builds a corresponding annihilating constraint

Ca(~x) based on the information provided by ~xsp. We claim that ARES refines the reconstructed

sequence ~xsp to a finer sequence ~x using Eq.(5).

3.1.2 Automatic and Iterative update

3.1.2.1 Automatic Selection

As observed in experiments, the ability of AFs to reveal the insight of the time series data

(i.e., reconstruction accuracy) is associated with the predefined length L. For example, a pattern

with a shorter length is universal among most time series and hard to exhibit the essential informa-
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tion. While the longer pattern faces the challenge of finding an agreement within all L successive

sub-sequences. In addition, L has various impacts on different report configurations (i.e., report

durations and overlaps). In order to select the best AF length L for each data as well as config-

uration, we propose an automatic selection criteria inspired by the Minimum Description Length

(MDL) principle [114]. The philosophy of MDL is to pick the most parsimonious model that de-

scribes the data well enough. Hence, L could be determined by the following Selection Criteria

(SC):

Selection criteria : SC(L) = ‖~v −O~x‖22 + ‖Ha~x‖22 + L, (7)

where the first two items are the same as the optimization function (Eq.(5)), and the third term

penalizes model complexity (i.e., the length of AF). In other words, we penalize big L for avoiding

over-fitting because with longer L, we may zero out any signal, and this does not yield useful

information.

3.1.2.2 ITERATIVE ARES

At last, we propose ITERATIVE ARES to improve the reconstruction accuracy further. The

intuitive idea is to refine the reconstructed sequence by repeating the second-phase (AF-based re-

construction) to optimize the AF and reconstructed sequence alternatively. This process follows the

idea of Alternating Least Squares Optimization (ALS), which updates two variables, reconstructed

series (~x) and AF (~h), alternatively by minimizing the cost function. Specifically, we revise~h using

the reconstructed result ~x from Eq.(5) and refine ~x by imposing the updated ~h.

In order to decide the number of iterations, we use Eq.(5) as the cost function P(~x) of ITERA-

TIVE ARES, whose value decreases at each iteration until convergence.

P(~x) = ‖F(~x)‖2 + ‖Ca(~x)‖2 (8)

We show the cost function P(~x) of a problem – reconstructing the weekly counts of Measles

infected patients in New York, at each iteration in Figure 8. The cost function decreases negligibly

after the 3rd iteration. Therefore, we set the iteration time as three empirically.
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Figure 8: Illustration of the trend of cost function for New York measles data

3.1.3 Complexity of ARES

In this section, we analyze the complexity of ARES. Although ARES contains two-phase steps,

both phases aim to solve a similar objective function – a sparse linear system with an additional

constraint (Eq.(4) and Eq.(5)). Thus, we discuss them following a same lemma (Lemma 3.1.1).

Lemma 3.1.1. For any report setting, let RDmax be the maximum number of time-ticks covered by

one aggregated report in ~v, H be the constraint matrix (e.g., Hs and Ha) with bandwidth b and N

be the total number of events to recover. Then the total computational time for solving the linear

system with an additional constraint

min
x
‖~v −O~x‖22 + ‖H~x‖22

is

O(Nlog(N) + 4×max(b, RDmax)
2)

Proof. The most time-consuming part is matrix inversion. Since O is a banded Toeplitz matrix

with bandwidth RDmax, OTO is also a banded Toeplitz matrix of bandwidth 2RDmax − 1; and

the same holds for H and HTH Then, the result follows from [67].

By summing up the computational time of two phases, the time complexity of ARES is

O(2Nlog(N) + 4max(bsp, ba, RDmax)
2),

where bsp and ba are the bandwidth of Hsp and Ha, respectively. As the fact that bsp and ba are
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� RDmax in practice, the computational time can be approximated to O(Nlog(N)). Thus, ARES

scales well. We also show the complexity analysis on real data in Section 3.4.4.

3.2 FAST ACCURACY LIFTING FOR RECONSTRUCTION

The above section has provided an effective data disaggregation solution, especially when lim-

ited domain knowledge is accessible. However, the reader may doubt the accuracy of AF pattern

as well as the domain knowledge provided by experts. As we noticed in the experiments, an un-

faithful pattern constraint may mislead the reconstruction method to a worse series resulting in an

inaccurate analysis. Therefore, in this section, we propose a novel approach, called TURBOLIFT,

to refine and improve upon the quality of the solution provided by existing time series disag-

gregation methods. TURBOLIFT aims to inherit the accurate constraints and filter out the others.

Remarkably, TURBOLIFT follows the “first, do no harm” principle [126] that it either improves the

disaggregation accuracy of the initial solution provided by the baselines or preserves its accuracy

in the worst case.

Intuitively, starting from an initial estimate of the target disaggregated series, at every iteration

k ∈ N, TURBOLIFT iteratively finds a solution ~x that: (i) minimizes the deviation from the aggre-

gation constraints (O~x = ~v, see detail in Eq.(2)), and (ii) is close to the current solutions. This

leads to the following problem formulation.

min
~x,~z

‖O~x− ~v‖22 + ‖~x− ~z‖22 (9)

where ~z is initialized with the solution provided by the baseline disaggregation method we wish to

improve.

3.2.1 TURBOLIFT: Iterative Solution

Evidently, the optimization problem in Eq.(9) is bilinear. As such, we utilize the Alternating

Least Squares (ALS) algorithm to iteratively update the two variables ~x and ~z in a cyclic fashion.

Starting from an initial solution ~z0 produced by a particular baseline method we seek to improve,
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at each iteration k ∈ N, we fix one variable and update the other.

First, the problem with respect to ~x can be equivalently expressed as

argmin
~x

‖

O

I


︸ ︷︷ ︸

A

~x−

~v
~z


︸︷︷︸
~y

‖22 (10)

where I is an N ×N identity matrix. Hence, ~x admits the following closed-form solution:

~x = O†~y = (OTO + I)−1 (OT~v + ~z)︸ ︷︷ ︸
~r

(11)

where O† = (OTO)−1OT is the Moore-Penrose pseudo-inverse of the matrix O. The update of ~z

is straightforward by setting it to the current value of ~x at every iteration.

The iterative procedure described above exhibits a monotonically non-increasing loss value;

therefore, we perform the updates until convergence. A flow diagram is shown in Figure 9 to

illustrate the iterative steps to solve Eq.(9). In Figure 10, we show an example of the iterative

solution provided by TURBOLIFT at iteration 1 and 10 using real data of the weekly counts of

measles infections in New York. We can see that the solution gets closer to the ground-truth series

with iterations.

3.2.2 TURBOLIFT: Analytical Solution

Regarding the complexity of the TURBOLIFT iterative solution, it may appear that updating ~x

using Eq.(11) can be computationally expensive owing to the fact that it requires computing the

inverse of a matrix, which can cost O(N3). However, by means of recognizing and exploiting the

structure of the matrices, we provide a closed-form analytical solution to TURBOLIFT that enables

us to bypass performing the inverse process and (hundreds of) iterations. We define the analytical

expression of the TURBOLIFT method through the limit of the iterative solution in the following

Lemma (the preliminaries and detailed proof are provided in Appendix A.1.2).
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Figure 9: Illustration of TURBOLIFT iterative steps.

Figure 10: TURBOLIFT reconstructed series at multiple iterations.
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Lemma 3.2.1. Consider the optimization function

min
~x,~z

‖O~x− ~v‖22 + ‖~x− ~z‖22

where O ∈ RM×N is a Toeplitz matrix, ~x ∈ RN×1, ~z ∈ RN and ~v ∈ RM . The optimization function

can be solved by the Alternating Optimization with the following iterative updates.

~xk+1 = (OTO + I)−1OT~v + (OTO + I)−1~zk

~zk+1 = ~xk+1

Furthermore, with k →∞ and the initial value ~z0, the solution converges to the following station-

ary point.

~x∞ = U1Σ1
−1U1

TOT~v + U2U2
T~z0 (12)

where
[
U1 U2

]
= U ∈ RN×N is the set of singular vectors of OTO, U1 is corresponding to

the non-zero singular values, while U2 is the remaining part. Σ1 contains all non-zero singular

values of O.

Figure 11 shows a simple example to illustrate the components of the analytical solution to

TURBOLIFT. Based on the above derivations, we implement the analytical solution following the

steps listed in Algorithm 2. A clear advantage of the analytical solution is that we get the tar-

get reconstructed sequence ~x through a closed-form expression (Eq.(12)), avoiding the time and

resource-consuming iterations.

Algorithm 2 Analytical TURBOLIFT

Input: O, ~v, ~z0
Output: ~x (reconstructed result)

1: function TURBOLIFT(O, ~v, ~z0)
2: Get the size of observation matrix. M,N ← Size(O)
3: Singular Value Decomposition. U,Σ← SV D(OTO)
4: Extract the first m columns of U as U1, last (N −M) columns as U2.
5: U1 ← U[:, 1 : M ],U2 ← U[:,M + 1 : N ]
6: Extract the non-zero singular values. Σ1 ← Σ[1 : M, 1 : M ]
7: Compute the reconstructed sequence. ~x∞ ← U1Σ

−1
1 UT

1 OT~v + U2U
T
2 ~z0

Figure 12 illustrates the relationship between the iterative and the analytical solutions to TUR-
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Figure 11: Illustration of TURBOLIFT analytical

solution.

Figure 12: Convergence. Iterative solution con-

verges to the analytical solution.

BOLIFT. In this example, both approaches are given the same initial solution ~z0 produced by the

baseline H-FUSE [87] to reconstruct the series of the weekly counts of measles infections in NY

from multiple aggregated reports. The x-axis is the iteration count, and the y-axis indicates the

improvement of each solution (iterative and analytical) over the initial solution ~z0 (Eq.(13)), the

higher value, the better. The blue dotted line shows the error improvement of the iterative solution

with iterations (each dot represents the quality of the solution at a given iteration), and the red

horizontal line shows the error improvement value of the analytical solution. Evidently, the iter-

ative TURBOLIFT steadily improves the reconstruction accuracy and converges to the analytical

solution after a certain number of iterations. In the experiment of Figure 12, the iterative solution

consumes more than 1000x the computational time of the analytical solution in order to reach the

same accuracy (55 seconds compares to 0.05 seconds).

3.2.2.1 Complexity of Analytical TURBOLIFT

By looking into Algorithm 2, we can see that the most time-consuming step of the analytical

solution is computing the Singular Vector Decomposition (SVD). For a matrix O ∈ RM×N , the
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complexity of traditional SVD is usually proportional to

O(aM2N + bN3),

where a and b are two parameters [49]. Therefore, the cost of SVD of OTO ∈ RN×N , in our

case, is nearly O(N3). However, several efficient SVD algorithms have been proposed recently

to handle the computational cost of SVD, especially for large-scale sparse matrices, such as Fast

Randomized SVD [113], QUIC-SVD [62], and Fast stochastic algorithm for SVD [123].

Table 2 shows the practical run-time of Fast Randomized SVD in terms of matrix size and spar-

sity. Since the matrix OTO is a banded matrix with a bandwidth b = (2RDmax − 1), the number

of non-zero elements in OTO is less than bN , where b � N in practical settings. Consequently,

the practical run-time of the analytical TURBOLIFT scales well as we will show in Section 3.4.4.

Table 2: Run-time of Fast Randomized SVD on large scale matrices [113]

Row Column Number of non-zeros Time

106 105 107 1 second

106 105 108 5 seconds

105 105 dense 120 seconds

3.2.3 TURBOLIFT: Impact of Initial Solution

Owing to the fact that Eq.(9) is non-convex, TURBOLIFT converges to different stationary

solutions when it starts from different initial vectors. To demonstrate the impact of the initial

solution, we generate a contour plot in Figure 13 to show the Root Mean Square Error (RMSE)

of TURBOLIFT reconstruction results starting from different initial points. In this plot, the initial

vectors fed to TURBOLIFT are built by adding noise to two randomly chosen time-ticks in the

original series (ground-truth). In other words, the distance between the initial vector to the ground

truth vector is √
(Noise 1)2 + (Noise 2)2.
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The x-axis and y-axis represent the deviation between the value of two noisy time-ticks and its

real value, respectively. The color corresponds to the value of the RMSE of TURBOLIFT solution

starting from different noisy initial vectors.

Figure 13: The impact of the initial solution on TURBOLIFT reconstruction.

Figure 13 shows that the solution provided by TURBOLIFT converges to different points with

different levels of RMSE, which demonstrates that the solution quality depends on the starting

point. As the initial vector gets closer to the real solution, the estimation of TURBOLIFT becomes

more accurate. As such, we conclude that TURBOLIFT reconstruction with an initial vector that

has higher accuracy leads to a better result. We recommend choosing the algorithm from the state-

of-the-art disaggregation methods to obtain ~z0 to initialize TURBOLIFT carefully based on the

structure of the series of interest. In order to help with the selection of the initial vector ~z0 under

different scenarios, we provide a practitioner’s guide in Section 3.4.3. However, as we will see

in the experimental results in Section 3.4, TURBOLIFT never reduces the accuracy of the initial

reconstruction, following the “first, do not harm” principle.
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3.3 EXPERIMENTAL SETUP

In this section, we provide a detailed description of the setup we use in our experiments. First,

we describe the datasets used in the experiments. Then, we explain the strategy applied to the data

to generate aggregated observations. Last, we present the baselines and evaluation metrics.

3.3.1 Data

In order to test the effectiveness and generality of ARES and TURBOLIFT, we use data from

different domains, which are readily available online:

– Epidemiological data: The data is from project Tycho [131], which contains real epidemio-

logical time series of weekly reported cases in the 50 US states spanning more than 100 years.

We choose the time series of Measles in New York and Smallpox in California), which visibly

exhibit different patterns—see Figure 14. In this repository, most time series does not cover all

the weeks within the covered period, i.e., has missing values. To assess the performance with

data exhibiting periodic and/or smooth structure, we choose 400 consecutive weeks without

missing values for each series. We refer to these two series as NY Measles and CA Smallpox.

– Retail sales data2: Historical weekly sales data made available online for 45 Walmart stores

in different locations. We present results using Department number 1 in Store number 1 in

this data, as it has some spikes due to the high demand in some weeks (i.e., spikes around

Christmas and New Year). This serves our purpose in analyzing the performance with data

with different patterns.

– Criminological data3: Reported incidents of crime that occurred in the city of Chicago from

2001 to the present. Each incident is marked with a code indicating the crime type. There are

388 crime types in total in this dataset. We chose the theft time series in our experiments as it is

the densest among all the other crime types. The series in our testing is in a weekly resolution

and covers 400 weeks.

2https://www.kaggle.com/bletchley/course-material-walmart-challenge
3https://www.kaggle.com/chicago/chicago-crime/activity
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Figure 14: Time series used in the experiments.

Figure 14 shows all the time series described above, x-axis represents the time-ticks (i.e.,

weeks), and the y-axis represents the value (i.e., the count of infected patients in the epidemiolog-

ical data, number of sold items in Walmart data, and number of crime incidents in the crime data).

As observed, each dataset has a notably different pattern, e.g., varying degrees of smoothness and

periodicity. This provides an abundant test set to evaluate the performance of both methods (ARES

and TURBOLIFT).

In order to demonstrate the benefit of TURBOLIFT that relieves the imposed inaccurate con-

straints, we test TURBOLIFT on two extreme cases, sparsity and spiky, besides the datasets de-

scribed above. The results are include in the Appendix A.2

3.3.2 Aggregation configuration

For all datasets, we use the weekly event counts as the finest granularity (ground-truth) and

refer to each week as a time-tick. We generate coarse aggregate observations from the ground

truth to be used as inputs to the disaggregation methods. In the experiments, we generate different
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Figure 15: Different aggregation configurations.

aggregated observations (reports) covering successive time-ticks. More specifically, we explore

different values of report duration, but we use the same report duration for all the reports in the

linear system. Recall that Report Duration(RD) is the number of time-ticks covered by one report.

The difference between the starting time-tick of consecutive reports is referred to as Shift (report

frequency), as explained in Figure 2. We generate different aggregated observations by varying the

RD and the Shift to test the sensitivity of ARES and TURBOLIFT. The reports start from the begin-

ning of ~x (x1) until the last report hits the last element of ~x (xN ). Varying the RD and Shift allows

our experiments to include different scenarios, including overlapping and non-overlapping cases.

Figure 15 shows different sampling configurations with short/long RDs and short/long Shifts. Each

orange line represents a report. As one can see, with short Shifts and short RDs, we have good re-

port coverage. On the other hand, long Shifts and short RDs result in gaps between the reports, i.e.,

some time-ticks are not covered by any report. With short Shifts and long RDs, the reports overlap

and introduce redundant information. In contrast, when the reports have long Shifts and long RDs,

the amount of information from the aggregated reports is not sufficient for accurate reconstruction.

We change the RD ranging from 2 to 52 and Shift ranging from 1 to 26 in our experiments.

Those ranges have been chosen with the awareness that the historical data have a prominent yearly

periodicity of 52 weeks. Specifically, RD = 52 means that each report covers a year, and Shift =

26 means that the difference between the starting time-tick of reports is half a year.
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3.3.3 Evaluation metrics and baselines

We compare our proposed methods with the state-of-the-art disaggregation methods explained

in Section 2.1.2, including 1) LSQ: which finds ~xwith minimum norm (min ‖~x‖22) and 2) H-FUSE:

where smoothness and periodicity constraints are imposed on the solution to the linear system with

equal weight. We select H-FUSE because Liu et al. [87] claim that it performs better than the other

constraints (i.e., only smoothness or periodicity).

We measure the improvement by comparing the RMSE of the baseline solution with the RMSE

of the solution provided by the proposed method. In addition, to compare the RMSE improvement

among various configurations, we design an error change rate equation, formulated as

Rate =
RMSEBaseline −RMSEProposed method

max(RMSEBaseline, RMSEProposed method)
(13)

where the RMSEProposed method is the RMSE of the reconstructed series using ARES or TURBO-

LIFT (with the initial vector ~z0 = ~xBaseline), and the RMSEBaseline is the RMSE of the baseline

reconstructed result ~xBaseline. The value of the rate represents the degree of improvement (positive)

or degradation (negative) of proposed method compared with the baseline method.

3.4 EXPERIMENTAL RESULT

In this section, we demonstrate the effectiveness of ARES and TURBOLIFT. We present and

analyze the experimental results in terms of the following aspects: 1) the performance of pro-

posed methods in terms of disaggregation accuracy, 2) discussion of the observations about the

performance, and 3) scalability in terms of run-time with data size and sparsity.

3.4.1 Effectiveness Evaluation

We investigate the disaggregation accuracy of ARES and TURBOLIFT with different aggrega-

tion configurations using real data from different domains.

In Figure 16 and 17, we plot the error change rate of ARES/TURBOLIFT in comparison with

LSQ and H-FUSE/H-FUSE and ARES for several report configurations using the normal NY
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Measles data, respectively. Since LSQ reconstruct the sequence by imposing no additional in-

formation as constraint, we do not include it as an initial solution for TURBOLIFT. In both figures,

the x-axis represents the Shift ranging from 1 to 26, and the y-axis shows the error change rate

following Eq. (13). Each line represents a specific RD, ranging from 2 to 52 with increments of

10. In this case, the results cover all the types of configurations described in Figure 15.

(a) ARES compared to LSQ on NY Measles (b) ARES compared to H-FUSE on NY Measles

Figure 16: Error change rate of ARES on NY Measles.

We observe that in most cases, ARES considerably outperforms the baseline methods (see

Figure 16), and the improvement can achieve up to 80%. However, it is also undeniable that in

a few cases, ARES fails in the competition with baseline methods. We explain each scenario as

follows. 1) LSQ works better around Shift = 1 is because each time-tick, xn, is covered by

two reports (i.e., shift = 1) except for the first and last weeks, resulting in an easy problem for

LSQ solution since O is “almost” square and full rank. 2) ARES loses H-FUSE with larger Shift

values (e.g., Shift ≥ 16). Obviously, a larger Shift causes fewer available reports and makes the

problem more difficult. Moreover, note that H-FUSE imposes smoothness and periodicity on the

solution. NY Measles data do not have an exact annual periodicity, but it is visually smooth. For

instance, although the peak values appear in every summer season, the difference between these

values is significant, e.g., 1048 patients in week 25 versus 3771 in week 225 because of the impact

of vaccination. Therefore, by taking the inappropriate reconstructed result of H-FUSE as basic in
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the first phases to generate a dominant pattern, ARES may get a worse result.

Except for the particular scenarios we explained above, there are few cases in plots where

ARES fails to over-perform the competitors. We claim that the failure of these cases is contributed

by inaccurate approximation in the first phase. The pattern discovered by AF may mislead the

final reconstruction when it cannot capture the critical information from the estimation from the

first phase. However, it is noteworthy that the scale of the loss is much lower compared to the error

improvement that ARES demonstrates in most cases.

(a) TURBOLIFT compared to H-FUSE on NY Measles (b) TURBOLIFT compared to ARES on NY Measles

Figure 17: The error change rate of TURBOLIFT on Tycho NY Measles data.

Next, we investigate the performance of TURBOLIFT. As Figure 17 shows, for both cases,

when Shift is less than 3, the improvement is larger for smaller RDs. For example, with RD =

2, Shift = 1, TURBOLIFT dramatically decreases the RMSE to reach almost 0, providing a very

accurate reconstructed series. As the Shift increases, the effect of the RD value on the error

change rate becomes less notable. We truncate the range of Shift, since for larger Shift (> 10),

the error change rate of TURBOLIFT is nearly at the zero line. We conclude that, in those cases,

the given aggregated samples are insufficient to provide more information for refining the initial

reconstruction. We explain this phenomenon in the following: note that increasing the RD and/or

Shift would decrease the number of reports (equations), and the number of equations in the linear

system O~x = ~y is essential in our method and the baseline methods used for initialization. For

the proposed method, having more reports/equations in the system would constrain the solution
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to be closer to the target sequence since the optimization problem is constrained by the linear

system O~x = ~y. This is also the case for the initial methods (H-FUSE and ARES), which are

based on the least-squares (‖~y−O~x‖22) of the linear system. As the number of equations increases,

the least-squares solution is constrained to be closer to the actual sequence. In all methods, as

the number of equations decreases (i.e., large Shift and/or RD), the degree of freedom of ~x in

‖~y −O~x‖22 increase. Thus, the quality of the solution relies more on the imposed constraints, e.g.,

smoothness, or periodicity. In other words, for our proposed method, the solution relies more on

the regularization term ‖~x − ~z‖22 in (Eq.(9)). In this case, the solution provided by TURBOLIFT

is closer to the initial solution obtained from the baseline. However, in all cases, the error change

rate is non-negative, which demonstrates the steady recovery and “first, do no harm” principle of

TURBOLIFT.

It is clear to observe that the improvement of TURBOLIFT initialized using H-FUSE is better

than ARES. The reason is NY Measles does not follow precisely the smoothness and periodicity

constraint (see explanation above), and one major advantage of TURBOLIFT is to “release” these

inaccurate constraints imposed on the existing reconstruction solution from inaccurate constraints.

Therefore, H-FUSE has more room to be improved.

In order to quantitatively measure the improvement of both methods, in Table 3 and 4, we

present the average RMSE of ARES, TURBOLIFT and the baseline methods for severalRDs (same

range as used in the figures). Specifically, we gather the full range of Shift for Table 3, while

consider the Shift values only in the range of 1 to 10 for Table 4, to avoid mitigating the impact

of TURBOLIFT. In most cases, except when RD = 52, we have a significant improvement, given

that the extra execution time added by ARES is 0.35 and by TURBOLIFT is only 0.05 seconds on

average. However, the aggregation whenRD = 52 is very aggressive (yearly samples), resulting in

a small number of reports that can not capture the detailed structure of the series. Figure 18 shows

three examples of the reconstructed series using H-FUSE with RD = 52 and Shift = 1, 5 and 10.

As we observe, even with more comprehensive reports coverage (Shift = 1), the reconstructed

series is very inaccurate. In these cases, neither of the proposed methods or the baseline methods

have enough constraints in the linear system (O~x = ~v) to generate an accurate result.

Next, we show the error change rate when compared to the baselines using datasets from dif-

ferent domains in Figure 19 and Figure 20. The error change rate with all the datasets shows a
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Table 3: The average RMSE of ARES compared to different baseline methods.

RD = 2 RD=12 RD = 22 RD = 32 RD = 42 RD = 52
LSQ 954.5815 319.9840 288.7527 274.5531 378.5227 930.2356

H-FUSE 367.9551 221.1754 222.3000 226.2674 308.8957 987.0710
ARES 181.5022 159.7902 181.6240 178.9682 237.5226 866.7910

Table 4: The average RMSE of TURBOLIFT compared to different baseline methods.

RD = 2 RD=12 RD = 22 RD = 32 RD = 42 RD = 52
H-FUSE 367.9551 221.1754 222.3000 226.2674 308.8957 987.0710

TURBOLIFT 333.0311 206.4655 209.1427 212.3931 299.9737 986.0033
ARES 181.5022 159.7902 181.6240 178.9682 237.5226 866.7910

TURBOLIFT 172.9991 151.9155 176.1008 173.8196 235.0734 866.3280

Figure 18: H-FUSE reconstruction results of NY Measles when RD = 52.

similar trend as with NY Measles in Figure 17. However, we notice a special phenomena on the
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(a) ARES compared to LSQ on California
Smallpox

(b) ARES compared to LSQ on Walmart (c) ARES compared to LSQ on Crime

(d) ARES compared to H-FUSE on Califor-
nia Smallpox

(e) ARES compared to H-FUSE on Wal-
mart

(f) ARES compared to H-FUSE on Crime

Figure 19: ARES error change rate on different datasets comparing to different baseline.
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(a) TURBOLIFT compared to H-FUSE on
California Smallpox

(b) TURBOLIFT compared to H-FUSE on
Walmart Sales

(c) TURBOLIFT compared to H-FUSE on
Chicago Crime

(d) TURBOLIFT compared to ARES on
California Smallpox

(e) TURBOLIFT compared to ARES on
Walmart Sales

(f) TURBOLIFT compared to ARES on
Chicago Crime

Figure 20: TURBOLIFT error change rate on different datasets with different initials.
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Walmart data, especially when the result is associated with ARES: 1) when ARES is compared with

H-FUSE (Figure 19 (e)), ARES performance even worse; and 2) when TURBOLIFT is compared

with ARES (Figure 20 (e)), TURBOLIFT only improves the performance of ARES reconstruction

at Shift = 1. This is because Walmart data has several spikes around weeks 50 and 100, mak-

ing it difficult for the Annihilating Filter to discover a clear and dominant pattern. In this case,

the constraint in ARES misleads the reconstruction process and thus affects the performance of

TURBOLIFT further.

As explained above in the experiments and Section 3.2.3, both the estimation in the first phase

of ARES and the initial vector of TURBOLIFT are associated with the final reconstruction perfor-

mance. In other words, a reconstruction solution, which cannot reflect the nature of the real data,

brings risks to the following step. Therefore, to understand and avoid this situation in practice, we

discuss the impact of the first phase approximation on the reconstruction accuracy of ARES and

selection of initial vector in TURBOLIFT in the following section.

3.4.2 Impact of the First Phase Approximation in ARES

In this section, we explore the impact of the first phase approximate sequence estimation on

ARES performance.

We compare ARES with an alternative approach, called ARES+, that uses a large part of the

original sequence to learn AFs at the first phase. Since the original sequence is commonly unavail-

able, ARES+ is not very practical, and we use it only to assess ARES.

The expectation is that ARES+ could learn more accurate AFs from the original sequence and

perform a better reconstruction than ARES primed with H-FUSE approximation of the sequence.

We also expect that the performance gain of ARES+ compared to ARES should not be very signif-

icant. This would prove that the first phase approximation recovers enough information about the

original signal to perform an efficient second phase reconstruction.

Indeed, Figure 21 shows that ARES+ slightly outperforms ARES in recovering New York

Measles data. However, the performance gain is much less compared to how ARES outperforms

the competitors (H-FUSE and LSQ). These results confirm that the knowledge of the original se-

quence would help to improve the reconstruction quality. However, this improvement is not very
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Figure 21: Performance of ARES and ARES+ is comparable.

significant compared to ARES. Meanwhile, in a realistic setting when the original data is not avail-

able, ARES is a robust and sustainable approach that ensures highly accurate data reconstruction.

3.4.3 Practitioner’s Guide for Disaggregation methods selection

Due to the different performance of each method under different datasets, we provide some

guidance based on the insights we gained from the previously discussed experiments to help the

readers select the appropriate disaggregation method for different types of datasets. This guide

could also be applied for selecting the initial vector of TURBOLIFT.

• Periodic data: If the time series has a clear periodical pattern, then H-FUSE is preferable, as

the periodicity constraint penalizes the differences between successive periods. By clear peri-

odicity pattern, we mean that there is a repeating pattern, for example, the weather observation

time series.

• No domain knowledge: If no domain knowledge is provided, ARES is recommended as it

discovers the hidden pattern automatically. However, note that in the case of the presence of

spikes, ARES should be avoided because it tries to discover the pattern within a few neighbor-

ing time-ticks, and spikes could disturb the pattern estimation.

• RD close to the intrinsic period: If the RD value for the majority of the reports is close to the

prominent period in the data, then all the methods may have large errors. The intuition is that it

is hard to recover the data structure within a period (e.g., peak in the summer in NY Measles),
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if only the periodical summations are given.

Last but not least, for any reconstruction method, TURBOLIFT is recommended to be used as

the last step to refine the solution and improve its accuracy. The amount of improvement varies

depending on multiple factors, as we analyzed above. Nevertheless, this step will not reduce the

quality of the initial solution, and the computational complexity of this extra refinement step is

very small.

3.4.4 Scalability

In this section, we examine the scalability for proposed reconstruction methods – ARES and

TURBOLIFT.

According to the complexity analysis in Section 3.1.3 and 3.2.2, the time complexity of ARES

is almostNlog(N) and the complexity of TURBOLIFT depends on the SVD step in Eq.(12), which

can be computed by Fast SVD [113] efficiently, especially with sparse matrices.

To better assess the scalability of each method, we show how the execution time varies with the

length of the time series in Figure 22. The x-axis is the length of the time series (N), and the y-axis

is the execution time in seconds. The execution time of both solutions shows a linear relation with

respect to the length of the time series, which proves that both methods scale well.

3.5 Conclusion

In this chapter, we introduce two data disaggregation methods and demonstrate that the aggre-

gated data could be reconstructed to finer resolution for further analysis. The contributions of our

work are summarized as follows.

• Proposed framework for reconstructing and refining the reconstruction accuracy: We

proposed two novel formulations to improve the accuracy of data disaggregation.

• Scalability for large data: We proved that both of these two methods scale well in terms of

the length of time series.

• Effective on real-world data: We conducted comprehensive experiments on real historical
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(a) Execution time of ARES. (b) Execution time of of TURBOLIFT.

Figure 22: Execution time. Both methods scale well with a linear relation.

data from different domains. Our experimental results demonstrate the outstanding perfor-

mance of the proposed approaches.

In addition to these two works, by collaborating with a group of people from the University of

Minnesota, Carnegie Mellon University, and the University of Virginia, I worked on another algo-

rithm for data disaggregation, named HOMERUN [5]. In this method, we formulate the problem as

so-called basis pursuit using the Discrete Cosine Transform (DCT) as a sparsifying dictionary and

impose non-negativity and smoothness constraints. This work has been published in Proceedings

of the VLDB 2019.
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4.0 DATA NAVIGATION: INTEGRATED DATA WAREHOUSE WITH INTELLIGENT

DECISION NAVIGATOR

Although, as we analyzed in the previous chapter, data disaggregation methods could recon-

struct time series with acceptable accuracy and provide an elaborate understanding of the original

data, they inevitably request extra computational cost, and this cost is unignorable, especially for

big data. Moreover, the performance of reconstructed data is not stable for all report configurations.

For example, the spikes cannot be captured by large RD and thus result in a worse estimation of

data. Therefore, a strategy for efficiently processing the aggregated big data for future analysis is

urgent. Fortunately, we notice that, in some tasks, analyzing using the aggregation data has the

ability to provide a compatible result as raw data, e.g., predicting the patients’ status with con-

tinuous monitoring records. Therefore, in this chapter, we first present a novel time-series data

warehouse to efficiently store the aggregated data and then propose a navigation method to by-

pass the reconstruction process and automatically suggest aggregation levels for specific tasks,

which maximizes the analysis accuracy under different machine learning models, on top of the

data warehouse. The main idea of navigation is to take advantage of the automatic machine learn-

ing (AutoML) techniques to select an appropriate sequential combination of an aggregation report

and a machine learning algorithm. In the end, we expect to discover that the aggregated data can

achieve competitive results as the raw data.

To better evaluate the performance of the proposed method, we introduce a well-defined and

challenging problem in the field of medication: prognostication comatose survivors of cardiac ar-

rest. The reasons for selecting this problem are: 1) it contains a vast amount of data (i.e., 4.5 ×108

data points for a single patient in one day). In this case, data aggregation is recommended to avoid

computation-cost and communication-cost. 2) the target of this problem is binary classification

and may not strongly associate with the detail of data, which makes the coarse data desirable.

In Table 5, we summarize the symbols used frequently throughout this chapter.
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Table 5: Notations used in Chapter 4

Notation Description

X ∈ Rm×n The medical records of patients.

~y ∈ Rm The real status of patients, i.e., awake or unconscious.

m The number of time-ticks covered by each medical record.

n The number of patients.

A The set of all machine learning pipelines

A The algorithms used in the machine learning pipeline.

4.1 BACKGROUND: PROGNOSIS AFTER CARDIAC ARREST

Cardiac arrest is the most common cause of death globally [89]. There are over 900,000

cases in the United States each year [12]. Thanks to improvements in care, increasing numbers

of cardiac arrest victims are successfully resuscitated and survive to hospital admission. Most are

initially comatose, and it is challenging to differentiate recoverable brain injury from irrecoverable

injury for many days after cardiac arrest. Specifically, there is no combination of clinical findings

and test results that preclude favorable recovery for at least 72 hours post-arrest, and the outcome

is often uncertain much longer [20]. Moreover, an international data study shows most providers

rely heavily on imprecise or debunked prognostic signs and thus influence the prognosis through

a self-fulfilling prophecy bias [91]. For these reasons, many patients receiving aggressive care are

then discovered to have never had a chance of recovery. This results in tremendous financial cost

and emotional burden to families with no benefit. Conversely, withdrawing life-sustaining therapy

from patients with the potential to recover results in avoidable deaths. Therefore, most healthcare

providers and families choose a trial of aggressive care and delay decision-making for days until

more data become available rather than make a hasty decision with limited information. Improving

the speed and accuracy of post-arrest prognostication could save lives, allow appropriate resources

to be directed to patients who are likely to benefit, avoid long and difficult care for patients who

cannot recover, and spare families prolonged uncertainty.
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4.1.1 Quantitative Electroencephalography (qEEG)

Electroencephalography (EEG) is a method to record the electrical activity of the brain. In

the ICU, EEG is typically acquired across 22 channels at 256 Hz per channel [73]. Because EEG

measures brain functions that are necessary for arousal and cognition, it is perhaps not surprising

that characteristics of the EEG signal are strongly associated with severity of brain injury and

potential for recovery [28, 42, 119, 138]. Past studies have explored quantitative EEG (qEEG)

features like amplitude, fast Fourier transformed power spectra or suppression [139]. Despite

growing research interest in qEEG, current standard clinical care is for an expert clinical provider

to provide a summary interpretation of a daily EEG recording. This approach is costly, experience-

dependent, and has limited between-expert reliability. To address these weaknesses, several recent

studies have used ML models of qEEG to predict outcome [48, 72, 116]. Because there are

infinite ways to generate quantitative features from EEG, strategies for these biological signals

selection are important. Nagaraj et al. [95] propose to apply the least absolute shrinkage and

selection operator (LASSO) method, which penalizes the small coefficients prior to a classifier (in

this case, random forest). Amorim et al. [6] propose a penalized logistic regression model that

penalizes features with a large regression coefficient to reduce the size of feature sets. However,

regularization may hurt the model performance by removing useful information, especially when

multiple features are correlated [141].

4.1.2 Major Challenges

Although several machine learning methods have been proposed as a potential tool to provide

clinicians with useful clinical predictions, however, according to a recent survey1 from the Society

of Actuaries (SOA), only 60% of hospitals use ML in practice. Key technical challenges have

limited the translation of ML in clinical medicine [90]. We summarize them as follows:

• Data storage: Vast amounts of clinical data are generated daily and mostly ignored or dis-

carded because of limited infrastructure and the human capacity for data integration. In most

cases, historical data are important for decision support. The ability to preserve and analyze

all available data would benefit ML models, but a single day’s clinical recording on one pa-

1https://www.soa.org/globalassets/assets/Files/programs/predictive-analytics/2019-health-care-trend.pdf

51



tient, which often includes multiple waveforms that are continuously recorded, results in many

billion data points. Although our focus is prognostication after cardiac arrest, this problem is

ubiquitous in modern medicine. Many patients undergo continuous cardiorespiratory monitor-

ing in the hospital. Temporal trends in these data can predict deterioration but are not routinely

preserved or available for retrospective review and analysis [107].

• Data aggregation & Clinical records selection: Heterogeneous clinical data are measured

continuously in acute care settings such as the intensive care unit (ICU), from which an infi-

nite variety of features can be summarized. Only some of these data and features predict the

outcome. Appropriately selecting and aggregating the clinical records can significantly reduce

the computational cost with minimal effect on the model performance.

• Model & Hyperparameters selection: According to the “no free lunch” theorem proposed by

Wolpert and Macready [140], it is impossible to find a universal model that fits all problems.

A large amount of time and effort is needed to find an acceptable good model and tune the

hyperparameters.

• Model transferability: A good model for one medical problem usually needs to be re-designed

and re-trained from scratch for different patients, practice patterns, and collected attributes,

which may affect model selection. Being able to leverage the existing models with fine-tuning

saves the effort of machine learning experts.

Next, we present the proposed method in the following order: 1) to address the challenge of

data storage, we first present a dynamic health data warehouse, named BrainFlux [40], which

efficiently stores and summarizes huge time series at different aggregation levels, 2) then by lever-

aging this scalable infrastructure as the data provider, we propose SMARTPROGNOSIS to tackle the

other challenges.

4.2 BRAINFLUX: INTEGRATED DATA WAREHOUSING INFRASTRUCTURE FOR

DYNAMIC HEALTH DATA

In this section, we present BrainFlux - a novel data warehousing technology that implements

a holistic paradigm for the preservation, aggregation, and discovery of trends in large amounts of
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data from continuously measured physiological processes. A unique feature of the BrainFlux is

its efficient and information-preserving summarization of huge time series at different aggregation

levels, which makes it highly scalable and applicable for a wide array of health monitoring tasks.

4.2.1 BrainFlux Architecture

A generalized BrainFlux architecture is shown in Figure 23. It has three major layers. At

the bottom is a data collection and storage layer, where multiple clinically derived data streams

are transferred for future aggregation and processing. Some data are EEG-based, while others are

patient-level metadata, timestamped medication administration data, etc.. Note that data are het-

erogeneous and distributed in multiple files for each patient.

Figure 23: General BrainFlux Architecture

The BrainFlux imports raw data from the bottom layer and organizes them based on record

timestamps. While imported data are theoretically suitable for data analytics, a considerable

amount of data makes any meaningful analysis of these raw data challenging. Instead, time-varying

summary measures of aggregated data are often of greater clinical and research interest. It is not
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uncommon for BrainFlux to handle hundreds of terabytes of raw data on a regular basis, which

risks creating a barrier between the data and end-user when the data are imported, organized, and

aggregated. With a data transfer rate of 12MB/sec, for example, a user would have to wait a full

day only for the import process on 1TB of data to be completed. To address this problem, Brain-

Flux takes advantage of system idle time to prepare aggregated data for future analyses based on

user-defined parameters. For example, BrainFlux may generate 10-second, 60-second, and 120-

second summaries (e.g., mean, median, variance, and between-electrode correlations) from the

original imported data. One set of such summary measures may require a full week of processing

time but is then added to the data warehouse as a new sub-layer. The top layer of BrainFlux is an

aggregation navigator that intelligently selects the most appropriate data aggregation sub-layer in

the warehouse to which to direct new user-defined queries.

The navigator is designed to maximize new query efficiency while preserving information

accuracy for data-driven decision-making. For user-defined problems, the aggregation navigator

directs queries to the most appropriate sub-layer to maximize efficiency while preserving infor-

mation. The performance boost is considerable. For example, if we wished to explore 1-hour

mean values of two qEEG trends averaged across all electrodes, the system would direct this ag-

gregation task to the lowest resolution data that support this query without information loss. Using

120-second means instead of 1Hz data provides a linear (120x) boost to data processing time.

4.3 SMARTPROGNOSIS: INTELLIGENT DECISION NAVIGATOR

In this section, we utilize the aggregated data in BrainFlux and propose an intelligent decision

navigator, which suggests sequential combinations of an appropriate data aggregation level with a

machine learning model for this prognosis comatose survivors problem. Similar to the aggregation

navigator mentioned above, this decision navigator can be embedded at the top layer of BrainFlux

as well. In general, most ML models in medicine share a common sequential process: select-

ing important biological signals, creating and summarizing features from these signals, then using

these features for prediction. We refer to this as an ML pipeline. Building on this approach, we

propose an end-to-end automatic ensemble classification framework, named SMARTPROGNOSIS,
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which automatically generates candidate pipelines tuned to maximize sensitivity for prediction of

poor outcomes (i.e., unrecoverable) at a user-defined near-zero false positive rate for misclassifi-

cation of patients with good outcomes (i.e., recoverable). This performance metric is informed

by surveys of clinical providers, who view the withdrawal of life-sustaining therapy from patients

incorrectly identified as likely to have a poor outcome as unacceptable [128]. We will explain this

in detail later. SMARTPROGNOSIS applies ensemble learning on candidate pipelines to enhance

performance. The intuitive idea is to optimize and select high-performing ML pipelines without

involving experts then further improve prognostic performance by ensembling the outputs, the

results of which are then provided to experts. Figure 24 illustrates the workflow of SMARTPROG-

NOSIS– the upper part shows the automatic candidate pipeline selection, and the lower part shows

the prognosis with ensemble learning. We demonstrate the effectiveness of SMARTPROGNOSIS

on real data by comparing it to commonly used alternative approaches that are manually tuned by

experts.

Figure 24: The framework of SMARTPROGNOSIS.
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4.3.1 Proposed Framework

In this section, we provide a detailed description of SMARTPROGNOSIS. We start by introduc-

ing the implementation of AutoML and then explaining the cost function that helps for machine

learning pipeline selection. In the end, we present how ensemble learning enhances accuracy.

4.3.1.1 Automated Machine Learning

Automated Machine Learning (AutoML) has recently emerged as a sub-field of ML, which

aims to make ML techniques easier to apply and reduce the demand for expertise [109]. AutoML

can automatically select pipelines that maximize a particular cost function that is relevant for a

given content domain. The definition of the ML pipeline is as follows.

Definition 4.3.1 (Machine Learning Pipeline). An ML pipeline is a combination of various algo-

rithms that takes an input vector ~x ∈ Rn×m and outputs a target value ~y ∈ Rn. The set of all

algorithm combinations can be represented as A = {AData ∪ ... ∪ AModel}, where AData and

AModel represent a set of pre-processing algorithms and ML models respectively. The pipeline

can include more kinds of algorithms than just these two. Each algorithm is defined by a hyper-

parameter vector ~λ ∈ Rk.

Specific to our clinical setting, the ML pipelines takes patients’ biological record (~x), such as

qEEG and demographics, as inputs to predict the patients’ outcome ~y. As mentioned above, the

pipeline includes three steps, biological signals selection (ASelect), data aggregation (AAggregation),

and classification (AModel).

AutoML algorithms have been successfully implemented using techniques such as Sequen-

tial Model-Based Optimization(SMBO) [45, 77], Genetic Programming [97], and Gradient De-

scent [104] etc. AutoML performs well compared to ML models manually tuned by experts.

4.3.1.2 Genetic Programming for Pipeline Selection

To automate pipeline selection, we use the Tree-Based Pipeline Optimization Tool (TPOT) [97].

We chose TPOT because 1) it over-performs other AutoML algorithms [150], and 2) it has a more

flexible structure and looser constraints [97], which makes it easier to customize for our needs. For
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example, in TPOT, the cost function does not have to be differentiable.

TPOT is based on Genetic Programming (GP) [79], an iterative, domain-agnostic optimiza-

tion method inspired by biological evolution. In the beginning, a list of candidate ML pipelines,

called a population, is randomly initialized, evaluated on the input data set via a cost function, and

ranked in order. The initialization is done by randomly selecting algorithms from a pool, then ran-

domly selecting hyperparameters for the chosen algorithms. For example, the logistic regression

is initialized with the L1 penalty by giving the selection of L1, L2, elastic-net, and none. Then a

predefined proportion of the ordered population is selected to transfer to the next generation while

poorly performing candidate pipelines are removed. Descendant pipelines are generated in one of

three ways: 1) crossover: a pair of parents randomly exchange a subset of the pipeline (e.g., parent

pipelines P1 = AData1∪AModel1 and P2 = AData2∪AModel2 exchange their data preprocessing al-

gorithm to generate two new child pipelines C1 = AData2 ∪AModel1 and C2 = AData1 ∪AModel2),

2) mutation: randomly mutate (add/remove/replace) a part of the pipeline, which can be either

hyperparameter or algorithm (e.g., mutating a logistic regression classifier with L1 penalty to L2

penalty.), 3) copy: a predefined proportion of pipelines, ordered by the performance, is carried

forward to the next generation without modification. This procedure is repeated for several itera-

tions while maintaining a fixed population size (i.e., number of pipelines) across generations, then

stops by either reaching the maximum iteration or until the pipeline with the highest performance

remains constant for several iterations. One advantage of GP is that all the candidate pipelines in a

generation are independent so that the process can be sped up by running in parallel.

Usually, the cost function used in GP is either accuracy, F1 score, or Area Under the Curve

(AUC). Specific to this clinical domain, these performance metrics are less useful. Instead, an

optimal model should be extremely conservative when it predicts a poor prognosis. The decision

to continue life-sustaining therapy while additional information is gathered is viewed by clinicians

as acceptable, even when additional data demonstrate no recovery potential. By contrast, the with-

drawal of life-sustaining therapy for perceived poor neurological prognosis (or based on model

output suggesting no recovery potential) invariably leads to the death of the patient. This type of

error is unacceptable. Thus, higher overall accuracy does not necessarily mean a better model.

Rather, a clinically useful model is identified as the greatest possible number of poor outcomes

with near-zero misclassification of patients who actually recover. Formally, we consider, False
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Negatives(FN, a patient has bad outcome but is not identified by the model) is much lower risk

than False Positives(FP, a patient has good outcome but is misidentified, which could lead to a

withdrawal of life-sustaining therapy based on the incorrectly predicted poor outcome, despite the

true potential for recovery, i.e., an avoidable death). That said, a model with zero False Positives

Rate (FPR) but low Sensitivity (True Positive Rate, TPR) is applicable in fewer cases than the one

with high Sensitivity and zero FPR. Thus, we design a cost function to reflect this requirement. The

intuitive idea is to fix the FPR at a conservative threshold (e.g., 0.01 or 0.05) and then maximize

the Sensitivity. The customized cost function is as follows:

C = Sensitivity(X, y | Pipeline, FPR), (14)

where X ∈ Rm×n, y ∈ Rm is the input clinical data and output target value respectively, Pipeline

is the candidate machine learning pipeline generated by GP, FPR is the conservative requirement

of FPR level, and the Sensitivity is defined as

Sensitivity =
TP

TP + FN
.

In this paper, we refer to this sensitivity as the pipeline performance.

The FPR and Sensitivity of a given pipeline are determined not only by that pipeline’s perfor-

mance (i.e., the model probability estimate) but also the threshold value used to dichotomize a con-

tinuous (0-1) patient-level outcome probability into a binary treatment recommendation (continue

life-sustaining therapies or withdraw life-sustaining therapies). The optimal threshold that maxi-

mizes Sensitivity while satisfying the target FPR is likely to vary for different pipelines. Therefore,

in GP training, we record the two relevant values (Sensitivity and threshold) computed based on

the training data set. Sensitivity is then used for pipeline selection, while the pipeline-specific

threshold is carried forward with the final selected models to evaluate performance in the test data

set.

The approach described so far addresses model and hyperparameter selection. Next, we con-

sider other challenges in these complex time series data. Specifically, we customize the ML

pipeline by adding two steps for data preparation that are jointly optimized with other model

parameters across subsequent generations: summarization of clinical records and data aggrega-

tion. For each patient, k clinical records are recorded, covering m timestamps. Often, individual
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records are closely related (for example, simultaneously sampled FFT frequency spectra of two

anatomically adjacent electrodes). Many ML classifiers (e.g., Logistic Regression) cannot handle

time-series data (∈ Rn×k×m, where n is the number of patients). One common way to solve this is

fusing clinical records into a single record (∈ Rn×m) with a user-defined operator (e.g., min, max)

and treating each timestamp as a single feature without preserving the temporal relationship. The

functionality of these two stages are as follows:

• Clinical records summarization: Select a subset of clinical records (i.e., related qEEG fea-

tures) and fuse by an operator, such as sum, mean, or max, etc.

Hyperparameter set = {λrecords set, λcombine method}

• Data aggregation: Generate the aggregation, such as sum, mean, or max, etc., of time series

data over sequential time interval of various lengths. We name the time interval as aggregation

level.

Hyperparameter set = {λaggregation level, λaggregation method}

Incorporating these steps in clinical record selection and data preparation, the set of all candidate

pipelines can be represented as A = {ASelection ∪AAggregation ∪AModel}. In plain words, we first

fuse a subset of qEEG clinical records as a single time series and then generate the aggregation

of this new time series as features for an ML classifier. The hyperparameters in these two stages

are tuned by GP automatically without expert engagement. We will show the detailed hyper-

parameters selection range in Table 7.

As discussed previously, SMARTPROGNOSIS is built on top of the BrainFlux data warehouse [43],

which preserves all clinical records at different aggregation levels. Thus, during the data aggre-

gation process, we can easily import the corresponding aggregated data from BrainFlux instead

of directly applying the data aggregation to reduce the computational cost. Although aggregation

dramatically reduces execution time, it has the potential to reduce classification performance due

to information loss. It is noteworthy that different methods have different susceptibility to informa-

tion loss from data aggregation. For example, for some classifiers, performance fluctuates slowly

with increasing aggregation levels but drops dramatically for others. Therefore, we apply GP to

select the appropriate combination of aggregation level and classifier.
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4.3.1.3 Ensemble Learning for Prediction

In this section, we introduce the method of generating predictions for new patients. In gen-

eral, model performance in test data is lower than that demonstrated in training. In other words,

even if we constrain FPR <= 0.01 in the GP training process, we cannot guarantee compa-

rable performance at a given classification threshold in the test set. Based on our experimen-

tal results, on average, the FPR is around 0.1 for the test data when the training requirement is

FPR <= 0.01, which makes the model non-usable. In order to reduce this misclassification er-

ror, previous works suggest to re-learning the threshold based on the test data. This approach is

obviously data-sensitive and cannot be used prospectively. Instead, we use ensemble learning [34]

to improve performance in the test set by combining output from multiple different pipelines that

were optimized using GP. The number of the combined pipelines is set empirically. In addition, to

ensure adequate performance in the test set, we train models at an excessively conservative FPR,

such as an extreme condition FPR <= 0. We report results from both these two approaches,

using SMARTPROGNOSISsimple when we adjust the threshold based on the test data with the best-

performed pipeline, and SMARTPROGNOSISensemble to represent the ensemble method.

As Buza et al. [18] mentioned, closely-related classification models often make similar errors

when trained on the same data set, which can limit the usefulness of ensemble learning. For

instance, two logistic regression models with slightly different hyperparameters tend to misclassify

the same patients in a given data set. Therefore, to support ensemble learning, we modify the

GP framework by recording the top l performance candidate pipelines among all generations,

including the structure, Sensitivity score, and threshold, instead of just outputting the top one.

Particularly, these l candidates share no common model structure (i.e., none of these candidates

have the same prediction model, aggregation level, and clinical recordsets) to ensure the diversity

of results. Recording multiple pipelines also facilitates model transferability. We can easily and

quickly fine-tune the GP process with new data by initializing the first generation with the recorded

pipelines.

In the testing process, the new patient is predicted by all l pipelines with their recorded thresh-

olds. Only if all pipelines agree that the patient is extremely likely to have a poor outcome would

the medical provider receive this prognostic estimate from the decision support system.
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We show the pseudo-code of SMARTPROGNOSIS in Algorithm 3.

Algorithm 3 SMARTPROGNOSIS

Input: X = {Xtrain, Xtest}, ~ytrain,A = {ASelection ∪AAggregation ∪AModel}

Output: ~̂ytest

1: function SMARTPROGNOSIStrain(Xtrain, ~ytrain,A)

2: Initialize . randomly select m pipelines from A

3: while i < n do

4: Evaluate pipelines on Xtrain. . cost function in Eq. 14

5: Rank pipelines by performance.

6: Generate a new list of pipelines using high performed pipelines. . crossover, mutation

and copy

7: Record the top l performance candidate pipelines Al.

8: function SMARTPROGNOSIStest(Xtest, Al)

9: for P ∈ Al do

10: ~̂ytestp = P (Xtest)

11: Ensemble ~̂ytestp where P ∈ Al

4.4 EXPERIMENTS

In this section, we present the experimental study of SMARTPROGNOSIS on real data and

provide a comprehensive analysis of the results.
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4.4.1 Experimental Setup

4.4.1.1 Dataset

We test SMARTPROGNOSIS on 1039 patients who underwent post-arrest EEG monitoring.

These patients were admitted to a single academic medical center from May 2010 to March 2018.

We excluded patients who awakened within 6 hours of arrival, patients with advanced directives

inconsistent with ICU care, patients with < 6 hours of EEG, and patients admitted > 12 hours

post-arrest. For each patient, we summarized ten qEEG characteristics at every 5 minutes for

total 48 hours, including the amplitude-integrated EEG (aEEG), peak-to-peak based measure of

EEG amplitude (Peak Envelope), FFT (Fast Fourier Transformation) Spectrogram, Rhythmicity

Spectrogram, and burst suppression ratio (SR) on both left and right hemisphere. Each hemisphere

record is an average of all 11 channels on that hemisphere. We normalized the data to range 0 to 1.

Besides the qEEG records, we also included clinical characteristics including age and Pittsburgh

Cardiac Arrest Category (PCAC), a four-level ordinal measure of early post-arrest illness severity

[30].

We show the clinical characteristics of these patients in Table 6. Only 261 patients (around 1/4)

awakened from a coma while in the hospital (our primary outcome of interest), which makes the

dataset imbalanced. Consequently, training the model on this data would create a bias toward the

majority class. Therefore, we applied the Synthetic Minority Over-sampling Technique (SMOTE)

[22] to create synthetic samples of the underrepresented class to balance the training set. SMOTE

generates synthetic cases for the minority class along the line segments joining any/all of the k

nearest neighbors in this class. In this paper, we empirically choose k = 5.

4.4.1.2 Training and Test setting

We outline the general setting for GP in Table 7. In the experiments, we evaluate the perfor-

mance of SMARTPROGNOSIS using 5-fold cross-validation to avoid over-fitting. All the following

results are computed by averaging over 5-folds. During the GP training, we further split the data

into training (80%) and validation set (20%). The ranking of pipelines is based on the performance

of the validation set. We report performance of prediction results via three criteria: Area Under the
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Table 6: Clinical characteristics of patients

Outcome

Characteristic
Count Age

Gender PCAC

Male Female II III IV Unknown

Did not recover 778 58± 16 470 303 112 80 516 65

Recovered 261 55 ± 16 170 90 152 43 33 32

Curve (AUC), Sensitivity at FPR ≤ 0.01 and Sensitivity at FPR ≤ 0.05.

4.4.2 Experimental Results

In this section, we evaluate the performance of SMARTPROGNOSIS and compare it with com-

mon alternative approaches. Specifically, we consider as alternatives logistic regression without

regularization, random forest, penalized logistic regression [6] and random forest with LASSO [95]

(see details in Section 4.1.1). We also consider general time-series classification methods, includ-

ing Fully Convolutional Networks (FCN) [137] and PROCESS [17], which classifies data based

on the dynamic time warping (DTW) distance. Results from the pooled test-set data are shown in

Table 8. SMARTPROGNOSIS outperforms the baseline methods on all evaluation metrics.

For all baseline methods and SMARTPROGNOSISsimple, the threshold that satisfies the FPR

requirement is selected based on the test set. SMARTPROGNOSISensemble bypasses this limitation

and achieves higher Sensitivity at a low FPR level.

4.4.3 Discussion

In this section, we provide analysis in terms of 1) the pipeline hyperparameter selection, in-

cluding data preparation via summarization of clinic records selection and data aggregation, 2)

the number of pipelines in ensemble learning, 3) false-positive cases, 4) limitations, and 5) future

works.
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Table 7: Parameterization

Parameter Value

Number of generations / individuals 50 / 50

Cost function C = Sensitivity(Pipeline,X, y, FPR) (Eq.14)

FPR training requirement 0

Clinical recording selection
Records set: all subsets of the 10 qEEG records

Combine method: min, max, avg, sum

Data aggregation

Aggregation level: 1, 3, 6, 12, 30, 60, 120, 300

(level 1 represents 5 mins aggregation)

Combine method: min, max, avg, sum

Classifier All available classifiers from Python Scikit-learn [103]

4.4.3.1 Pipeline hyperparameter

As mentioned before, appropriately summarizing and aggregating the clinical records could

significantly reduce the computational cost with minimal effect on performance. In this case, the

frequency with which a particular clinical record appears in candidate pipelines indirectly reflects

record importance and the extent to which the clinical record can be summarized across time

with less information loss. Thus, considering the frequency of occurrence for selected clinical

records, aggregation levels, and machine learning classifiers among all pipelines assembled for

FPR ≤ 0.01 is clinically interesting.

• Clinic records: SR is chosen by almost all pipelines, meaning it is highly correlated with the

outcome after cardiac arrest. This observation is consistent with current research [41, 122, 38],

which domesticates that the SR has high predictive power.

• Aggregation level: Among the aggregation levels, the top three are aggregated by 150 mins, 5

mins (finest level), and 15 mins. That means highly aggregated data can be used to improve

efficiency without sacrificing performance. For example, a single model requires 13.5s to
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Table 8: Experimental results

Model Feature AUC
Sensitivity

FPR ≤ 0.01

Sensitivity

FPR ≤ 0.05

Logistic Regression

(L2 penalty, λ = 1)
Age, PCAC, average of all qEEGs

84.71% 30.29% 52.31 %

Random Forest

(number of trees = 100, criterion = gini)

84.16% 8.12% 50.74 %

Penalized Logistic Regression [6]

(L1 penalty, λ = 1) Age, PCAC, average of selected qEEGs

88.11% 35.15% 59.96 %

Random Forest with LASSO [95] 88.96% 11.44% 60.95%

FCN [137]

(three FC layers with dimension 128-256-128) Age, PCAC, average of all qEEGs

78.73% 13.89% 33.79%

PROCESS [17] 70.09% 7.86% 24.67%

SMARTPROGNOSISsimple

(Aggregation level = 30min,

classifier = ExtraTreesClassifier)

Age, PCAC, average of selected qEEGs 89.68% 49.03% 68.18%

SMARTPROGNOSISensemble Age, PCAC, average of selected qEEGs 90.64% 59.74% 69.04%

converge using 5 min data v.s. 1.8s for 150 mins data.

• Classifier: Random Forest Classifier and Extra-trees Classifier are the top two selected classi-

fiers with even distribution. Essentially, these two models have a common structure, a bagged

decision tree, which can provide a better result with less likely over-fitting. However, that also

makes these models less interpretable. Our framework’s target is to identify patients with a

near-zero probability of recovery. Therefore, performance is most important in our case.

4.4.3.2 Ensemble Learning

In this part, we discuss the effect of the number of combined pipelines in ensemble learning.

As demonstrated in Figure 2, assembling more pipelines decreases to reduce not only FPR but

also Sensitivity. In Figure 25, we show the relationship between the number of assembled pipelines

and the FPR and Sensitivity on test samples. The x-axis represents the number of pipelines, and

the y-axis shows the corresponding FPR (left, red) and Sensitivity (right, blue). The pipelines
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Figure 25: The impact of number of pipelines in ensemble learning.

are added by performance order. In this plot, we train the GP process with FPR requirement

≤ 0 (Eq.14), which is much lower than the practical requirement. The actual target FPRs (0.01

and 0.05) are highlighted with red dash horizontal lines. Both FPR and Sensitivity have a negative

relationship with the number of assembled pipelines. Based on these results, we chose an ensemble

of 3 pipelines for FPR <= 0.05 and 11 for FPR <= 0.01.

4.4.3.3 Misclassification

Although we achieved better performance at a low FPR level compared to baseline methods,

we found two interesting cases that were misclassified as the poor outcome by all the pipelines

even when we pushed the FPR training requirement down to ≤ 0. We explored the clinical details

of these repeatedly misclassified patients in detail. In both cases, there were readily apparent con-

founders that affected the qEEG data. Specifically, extremely high doses of sedative medications or

general anesthetics were administered to these patients as part of clinical care. These medications

cause generalized EEG similar to that observed after severe or irrecoverable brain injury.

These cases highlight two important aspects of future modeling applications. 1) First, in most

of the current work, only qEEGs and simple clinical characteristics are included as predictors. A

strong but infrequently observed confounder may mislead the model. One way to deal with it is by

using the multi-view data analysis [99], which incorporates data from multiple sources. In our case,
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we could integrate other clinical data, such as vital signs, medications, etc. 2) Second, prognostic

estimates from any predictive algorithm must be interpreted by a clinical provider with access to

the full context of available measurable and immeasurable (e.g., patients’ values and preferences)

data.

4.4.3.4 Limitations

Besides the specific situations discussed above, we found SMARTPROGNOSIS has some limi-

tations which could restrict its performance. First, as currently implemented, inputs must be clean

and predictably structured prior to storage and aggregation. This limitation is conceptually easy

to overcome by integrating various pre-processing steps into our pipeline. Second, SMARTPROG-

NOSIS performs best when model performance can be improved by incorporating additional in-

cremental information gleaned from diverse modeling strategies. In the case of strong collinearity

between model predictions, it may be more computationally intensive without much improvement

in predictive performance. Finally, although our data are time series, we do not allow the best

model ensembling to vary over time as currently implemented. Recent work has demonstrated the

feasibility and potential benefits of this approach [84]. Despite these limitations, as noted above,

SMARTPROGNOSIS implements an efficient methodological approach that addresses several mod-

ern medicine problems, coupling data storage, data aggregation, feature selection, model selection,

and hyperparameter tuning.

4.4.4 Future works

In this part, we provide some potential ideas to enhance the performance of SMARTPROGNO-

SIS in the future.

• As we discussed above, aggregated data can be used to achieve a competitive result while

reducing the computational cost. In order to encourage the framework to pick up more efficient

pipelines in the future, we can involve the consumed time as a factor in the cost function (Eq.

14).

• Currently, SMARTPROGNOSIS only considers simple classification methods, such as logistic

regression and random forest, as they are the most frequently used methods in the medical
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domain. However, these methods do not consider the time dependency inside each feature,

which may contain crucial information. We plan to include more complex models, such as

LSTM and Attention to discover the time information in the data.

• The current ensemble learning assumes that all l candidate pipelines share equal weight, while

in practice, some pipelines should play more vital roles. Therefore, assigning different weights,

such as the normalized cost function value, to each pipeline may benefit the model perfor-

mance.

4.5 CONCLUSION

In conclusion, we propose an end-to-end automatic ensemble classification framework, SMART-

PROGNOSIS. In our specific test case, we used this tool to predict poor neurological outcomes

in comatose patients resuscitated from cardiac arrest. SMARTPROGNOSIS automatically gener-

ates and assembles candidate machine learning pipelines which are selected by maximizing the

Sensitivity at a very low FPR level. We evaluate SMARTPROGNOSIS on real patient data and

demonstrate that it over-performs conventional methods on all evaluation criteria. We also pro-

vide suggestions for future works based on our experimental results. Beyond our test case, this

approach has broad relevance to analyzing other complex large datasets amenable to ML analysis,

such as images, cardiorespiratory waveforms, or even more conventional electronic health record

data.
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5.0 DATA SUMMARIZATION: TARGET-SENSITIVE DATA SUMMARIZATION FOR

TIME SERIES DATA

In the previous chapter, the automatic selection framework experiments show that aggregated

data could provide enough information to get a comparable analytic result with less computational

resources and storage. However, it is noteworthy that most aggregation methods apply only simple

mathematics operators, such as sum, average, and min, etc., which would result in information

loss, especially when the aggregation level increases (i.e., lossy aggregated data). For example,

annual counts of Walmart data (see Figure 14) are hard to capture the detailed trade, such as the

spikes during the end year. Predicting the peak season with the yearly counts of data or even re-

constructed data may lead to an inaccurate result. Therefore, in this chapter, we propose a novel

summarization method to aggregate data, I-AGG, which emphasizes the critical information of

the original data by applying different aggregation frequencies over different segments. The idea

is that preserving more details in the essential parts while reducing the particulars at other parts

can improve the summarization quality and thus lead to better analysis results. For example, ag-

gregating the Walmart data weekly at the end of the year and monthly otherwise reveals the spike

at the Christmas week. In detail, I-AGG first learns an element-wised important score for the

entire input data, which indicates the importance of each time ticks, and then decides the aggrega-

tion granularity based on the score and segment length. The score is learned using a Variational

Autoencoder- Generative Adversarial Network (VAE-GAN) framework [82], which enforces the

weighted time series (i.e., multiplying the score with the time series element-wisely), preserving

enough information to reconstruct the original one.

We evaluate the effectiveness of the proposed method on different time-series datasets from

UEA multivariate time series classification archive [8] and access the performance via three aspects

– the ability of analysis, reconstruction, and imputation. Our summarization result overperforms

all the baseline methods. Detailed analysis and discussion are provided in Section 5.3.
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5.1 BACKGROUND

In this section, we provide a background of the techniques used in the proposed method, in-

cluding Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs).

5.1.1 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GANs) was first proposed by Goodfellow, et al. [51] and

has been applied successfully in different domains, such as image super-resolution [83], image

generation [32], image-to-image translation [66], and text-to-image translation [110]. GANs are

composed of two components: Generator (G) and Discriminator (D). The generator is used to

generate synthetic data from a random noise vector, which follows Gaussian distribution (in most

cases). The discriminator is designed to distinguish between synthetic data and real data. By

competing with each other, the generator finally produces synthetic data that follows a similar

distribution compared to the real data and can “deceive” the discriminator. The general architecture

of GANs is shown in Figure 26, and it has been illustrated under an application of face generation.

As shown in the figure, a synthetic image, which has never appeared in the original dataset, is

generated from random noise and is hard to distinguish by a human. Mathematically, given a

random input ~z with distribution ~z ∼ pz, the target of GANs is to train the probability distribution

(pg) of the generator’s output (G(~z)) to approximate the real data distribution pr. Optimization of

a GAN is performed with respect to a joint loss function for D and G [136]

min
G

max
D

E~x∼pr log[D(~x)] + E~z∼pz log[1−D(G(~x))] (15)

where D(~x) is a binary classification, the expected output of D(~x) is 1 for real data and D(G(~x))

is 0 for synthetic data.

5.1.2 Variational AutoEncoder (VAE)

Other than the GANs introduced above, another set of deep generative models, named Varia-

tional AutoEncoders (VAEs) [75] has also shown a strong ability to produce synthetic data. VAEs

are a member of AutoEncoders (AEs) [50], which aims to encode input data (~x) to a latent space
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Figure 26: Architecture of GANs [136]

(i.e., representation, ~z) and then decode the representation back to the original space. Considering

the limitation of AEs, such as over-fitting, VAEs include regularity in the latent space. That also

ensures that the latent space has good properties allowing us to generate new unseen data. For-

mally, encoder encodes input data (~x ∼ P (~x)) to a latent distribution P (~z|~x) and then decode a

sample from P (~z|~x) back to the input space, the new generated data follows a distribution P (~x|~z).

The loss function is as follows.

E(log(P (~x|~z))−DKL(Q(~z|~x)||P (~z)) (16)

whereQ(~z|~x) is a distribution that is inferred from P (~z|~x) using Variational Inference (VI) method [61].

DKL is the Kullback–Leibler divergence [81]. The first term is the reconstruction loss, which

forces the decode output close to the input data. The second term is the regularization loss to

mitigate the information loss when using the VI to represent P (~z|~x).

5.1.3 Hybrid of GANs and VAEs

Despite that GANs and VAEs both belong to the deep generative models, they are suitable for

different tasks. Technically, GANs perform better in term of new data generation, while VAEs

is more useful in compressing data. The reason is the strategy of VAEs is to generate new data
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from a hidden representation learned from the original data, and the representation has to follow a

predefined distribution (i.e., single Gaussian distribution, for most cases). However, given multi-

modal distributed input data, the hidden representation is hard to capture all the details and thus

results in low-quality generated data with blurry details [19].

In order to tackle this blurry issue, Larsen et al. [82] proposed to measure the similarity of

VAEs’ decoder output with the original data using a higher-level and sufficiently invariant rep-

resentation of the data instead of element-wise similarity (i.e., squared error). Specifically, they

combine the VAEs’ decoder and the GANs’ generator into one unit and train them jointly. Figure

27 shows the structure of the proposed model VAE/GAN. It first learns synthetic data via VAE

generator and then distinguishes it with the real data using GAN discriminator.

Figure 27: Structure of VAE/GAN [82]

Following this direction, more and more researchers have explored the hybridization of VAEs

with GANs and shown the effectiveness of this new structure [11, 93, 94]. They claim that the

hybrid of VAEs and GANs would improve the stability and diversity of GANs as well as the sam-

ple quality of VAEs [115]. Until now, these models have been applied in different domains. One

application is the video summarization, which represents a video by a few video frames [92, 145].

This is similar to the problem we tackle in this chapter – sequential data summarization. However,

unlike video, which is an image time series, individual time ticks or small segments of a historical

(numerical) time series data cannot convey enough information without context. Therefore we pro-

posed a new summarization method for historical time series, I-AGG, following the existing video
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summarization framework SUM-GAN [92]. Instead of representing the sequence with a subset of

video frames (i.e., time-ticks) with high important score, I-AGG aggregates time-ticks within dif-

ferent segments using different frequencies determined by the important score and segment length

(i.e., higher granularity on critical segments).

5.2 Time Series Data Summarization Framework

In this section, we introduce the architecture of I-AGG in detail. We begin by presenting the

score generation, which identifies the crucial data points in the input time series. Then we explain

how to integrate the score information for information-sensitive summarization generation.

The input time series for our problem is a multi-variable time series Xorg ∈ Rn×k×m, where

n, k,m are the number of instances, the number of features, and the length of timestamps, respec-

tively. We denote the ith time series as Xi ∈ Rk×m.

5.2.1 Score generation

As mentioned above, the SUM-GAN structure has been adopted to learn the critical score

for time ticks. It mainly consists of two parts: 1) a Bidirectional Long Short-Term Memory (Bi-

LSTM) [64] Selector which learns the importance score of each time-ticks and then generates

a summarized time series by emphasizing those critical time ticks (i.e., weighted time series by

scores), and 2) a VAE-GAN Evaluator [82] which is used to evaluate the effectiveness and com-

pactness of learned score by enforcing the reconstructed data from summarized data (Xsum) close

to the real data (Xorg). The overall objective of the proposed architecture is to maximize informa-

tion preserved in the summarized data. Figure 28 shows the proposed architecture for time series

data summarization in detail.

At the beginning, a Bi-LSTM network (selector) takes the input time series data Xorg and

learns a same length score vector (~s ∈ Rm). We choose the Bi-LSTM network in the selector

because it can take both the past and future data into account and provide a better understanding of

the data. The value of ~s is normalized between [0, 1] with a sigmoid layer after the Bi-LSTM,
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Figure 28: Architecture of proposed method for data aggregation.

and a higher score means more important. Then we multiply the score vector with the input

vector (Xorg � ~s, � is the element-wise multiplication) to get a summarized data (Xsum). Ideally,

the summarized data should emphasize more on the informative data points. However, another

extreme case may happen when the selector assigns equal weights to all the time ticks and results

in worthless summarized data. To avoid preserving redundant information in the summarized data,

we design a sparsity loss function to restrict the score vector with a regularization factor p.

LSparsity = ‖
1

m

m∑
t=1

~st − p‖2 (17)

where p is a predefined summarized ratio. This would penalize the score vector when a large

number of time-ticks has a higher score.

Next, we assess the quality of the summarized data (Xsum) through a VAE-GAN evaluator in

terms of the ability to restore the original data. It first maps the Xsum back to the original time

series data through a VAE and then differentiates it with the real original data. Specifically, Xsum

is encoded by an LTSM layer (VAEE) into a low dimensional hidden space and then decoded back

to the original space through another LSTM layer (VAED). The expectation is that the summarized

data carries enough information that can be captured by the latent vector to reconstruct the original

data. After generating the recovered time-series data (Xrec), an LSTM discriminator (D) tries to

distinguish it with the real input data (Xorg). In a word, the VAE-GAN evaluator aims to train
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a reconstruction generator to recover the original data from the summarized data and ensure the

reconstructed one follows the same distribution as the real data.

Similar to VAE-GAN, we learn this score generator by alternatively optimizing the generator

with the discriminator. The parameters are updated based on the following steps:

• θSelector, θV AEE
←− −5θSelector,θV AEE

(LSparsity + LPrior + LReconstruct)

• θV AED
←− −5θV AED

(LReconstruct + LGAN
sum

′ )

• θD ←− −5θD (LGANsum + LGANorg)

where θSelector, θV AEE
, θV AED

and θD are the parameters of Selector, VAE encoder, VAE decoder

and Discriminator, respectively. LSparsity and is defined in Eq.17, which penalizes big number

of important time ticks. LPrior is the general VAE loss which is the same as the definition in

Eq 16. LGANsum and LGANorg target to maximize the capability of the discriminator to differentiate

the reconstructed time series (Xrec) with the original time series (Xorg). In detail, it forces the

discriminator to classify the Xrec as synthetic data, which has probability zero, while optimizing

the classification probability of Xorg close to one. On the contrary, the LGANsum′ enhances the

VAE generator output (Xrec) to fool the discriminator (i.e., the probability is close to 1). We train

this loss by minimizing the Mean Square Error (MSE) of the discriminator output and the label

(i.e., 1 is real and 0 is synthetic). Mathematically, the equation is defined as follows.

LGAN
sum

′ = ‖D(V AE(Xsum))‖2

LGANsum = ‖1−D(V AE(Xsum))‖2

LGANorg = ‖1−D(Xorg)‖2

Here we define the loss function with MSE loss instead of Binary Cross Entropy (BCE) loss be-

cause the authors in [7] demonstrate that the MSE loss is more suitable for training the VAE to

reconstruct the input.

LReconstruct is to minimize the distance between the reconstructed time series (Xrec) and the

summarized time series (Xsum). The standard VEA method uses Euclidean distance to measure the

element-wise distance. However, Larsen, Anders Boesen Lindbo, et al. [82] claims that this error

is not adequate for image and other signals with invariance. They propose to replace the element-

wise error with a feature-wise metric expressed in the discriminator. The detailed LReconstruct is
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defined as

‖~hrec − ~horg‖2,

where is ~h is the output of the last hidden layer of discriminator.

5.2.2 Aggregation generation

Now for any new time series, we can obtain an important score vector through the selector

layer. However, as we mentioned above, unlike the video time series, a single time tick or a short

period of a numerical time series does not contain enough information to describe the whole data.

For example, a large number of sales of Apple Inc. stock in June doesn’t indicate it will keep the

same level in July. Therefore, instead of selecting a subset of time ticks or several segments using

the importance score as the summarized data, in I-AGG, we propose to aggregate the whole time

series under different resolutions, i.e., higher resolution in a more important part. We first break

the multivariate time series into several segments by the Greedy Gaussian Segmentation (GGS)

method [58]. The basic idea of GGS is to make sure the data in each segment can be well explained

as independent samples from a Gaussian distribution. Empirically, unless otherwise stated, the

number of segments is predefined to 15 for most of the datasets in the experiment. The segments’

important score is then computed by averaging the score over all time ticks within the segment.

Considering that the segments may have different lengths, we also take it into consideration for the

resolution determination. The basic rule is that the segments with more significant information or

longer interval need more data to represent. The detail aggregation level for each segment (ALk)

is calculated as follow:

• Step 1 (Information score of segment k):

~Ik =
~sk � ~nlk

~sk + ~nlk

Where ~sk, ~nlk, and~lk are the importance score, normalized length, and actual length of the kth

segment, respectively. The informative score (~Ik) is computed by averaging the segment’s im-

portant score and the normalized length (~nlk) to represent the amount of information contained

in each segment.
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• Step 2 (Summarization length of segment k):

~SLk = ~nIk ×m× r

Where m is the total length of the time series data, and r is a predefined ratio indicating the

portion of the data to be preserved in the summarized data. We assign a corresponding ratio of

summarization length ( ~SLk) to segments based on their normalized information score ( ~nIk).

• Step 3 (Aggregation level of segment k):

~ALk = ceil(
~lk
~SLk

)

The final aggregation level ( ~ALk) equals the actual length divided by the assigned summariza-

tion length.

Figure 29 shows an example of the different aggregation levels over segments. The red dashed

vertical lines split the segmentation, and the yellow vertical lines represent the aggregation resolu-

tion. Specifically, we generate the summarized data by aggregating time ticks between every two

yellow lines with an operator (i.e., sum, mean, etc., we use mean in the proposed algorithm.). As

observed, two parts with higher variation are aggregated with finer granularity to preserve more

detailed information, while the flat part at the end is summarized with coarser resolution. Con-

ceptually, it is similar to Discrete Wavelet Transform (DWT) which enforces the heterogeneous

signal in the time series. However, our method is more flexible in discovering and preserving these

signals. We will show more examples and comparisons in Section 5.3.

Figure 29: Example of the aggregation frequency over different segments.
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5.3 Experiments

In this section, we evaluate the performance of the proposed summarization method from dif-

ferent aspects. We first introduce the experimental setting, including datasets, evaluation metrics,

and baseline methods. Then we evaluate the effectiveness of the proposed method by comparing

the performance with the baseline methods on different metrics. After that, comprehensive analysis

in terms of the interpretability and a practitioners’ guide regarding the applicability are elaborated.

5.3.1 Experimental Setting

• Dataset: We evaluate our proposed method on datasets from UEA multivariate time series

classification archive [8], which include 30 datasets with a wide range of applications, dimen-

sions, and time-series length. Since the method aims to summarize the sequence data over the

time dimension, datasets with 3-dimensions and lengths larger or equal to 300 are selected. For

all datasets, we truncate the original time series to retain only 15% of the data (i.e., r = 0.15)

and assess the information preserved in the shorted sequence.

• Evaluation metrics Since the time series data summarization problem does not have ground

truth, we propose to assess the performance in terms of three aspects.

The first one is analysis (i.e., classification) capability, which can be evaluated by the clas-

sification accuracy. In the experiment, different classification approaches have been applied to

the original data, such as 1NN-DTW [125], FCN [137]. We choose the one with the best

performance to evaluate the summarized data.

The second one is summarization quality. Although most summarization methods are

lossy aggregation, a good summarization should have the ability to approximate the original

data by preserving enough information. We evaluate this quality by measuring the distance

between the original and the approximated time series (i.e., RMSE). The approximated time

series is reconstructed from the summarized data using H-FUSE-S [87], which assumes the

data is smooth. Other reconstruction methods, such as ARES [143], HOMERUN [5], and TUR-

BOLIFT [142], are also applicable.

The last one is Imputation capability. In practice, due to unexpected accidents, such as
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equipment damage or communication error, it is common that some values of the time se-

ries data are missing and thus result in worse performance in the downstream applications.

In general, aggregating or downsampling would ignore the missing parts in the time series

by considering only the existing part and providing an approximated summarization. That

may make the summarized data miss some critical information. Therefore, we consider the

imputation capability as one criterion to assess the summarization quality. We evaluate this

property by reconstructing the summarized data with missing values in the original data. The

RMSE is measured on both existing and missing time ticks. We create the missing data by

randomly removing 10%, 20%, 30%, and 40% of the data points in the dataset HeartBeat and

generate summarization based on these incompleted data. To specially handle the missing in-

formation, we slightly modify the proposed framework. In detail, we follow the strategy in

GAIN [144] to replace the missing value with random noise and change the reconstruction

loss to measure only the distance between existing values. The new reconstruction loss is

LReconstruction = ‖Xrec �M −Xorg �M‖2, where M is a binary mask matrix that represents

the position of existing values (i.e., ‘1’ means existing and ‘0’ means missing.). The intuitive

idea is that the VAE generator can synthesize the missing part using the noise data and deceive

the discriminator.

• We compare I-AGG method with two baseline methods, Piecewise Aggregate Approximation

(PAA) and Discrete Wavelet Transform (DWT), which are frequently used for the representa-

tion of time series data. A detailed description of these two baseline methods is provided in

section 2.3.2. In order to preserve a similar length summarization (i.e., 15% of data), we gener-

ate the PAA aggregation by averaging every seven time-ticks. In DWT, we decompose the time

series with ten levels Haar wavelet [26] and use the first eight levels of coefficients to represent

the original data. For the missing data experiments, since DWT cannot handle missing values,

we interpolate those time-ticks with linear regression and then do the aggregation.

5.3.2 Experimental result

The performance of I-AGG and baseline methods regarding the three criteria on different

datasets are shown in Table 10, 11, and 12. The best performance for each dataset is denoted with
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boldface. Overall I-AGG has higher performance in terms of analysis capability, summarization

quality, and imputation capability.

It is noteworthy that I-AGG has higher classification accuracy on most datasets except the

StandWalkJump and even achieves better performance than the original long data in some cases.

This is because the original data contains some undesired noise or outliers, impacting the per-

formance of classification. However, the summarization process, working as a low pass filter,

mitigates the impact of those parts by aggregating those time-ticks with surrounding data. Simi-

larly, the DWT approximation over-performs the original data, as it filters out these noisy parts and

keeps only the higher frequency signals. We show the processing time on both the original data and

the summarized data (averaged by all methods). Since we apply different classification methods

on different datasets, it is meaningless to compare cross rows. Apparently, the summarized data

can save up to 98% of computational time (712.48s v.s. 14.2s) without accuracy loss.

Dataset Length (m)
Time of

original data (s)

Length of

PAA

Length of

DWT

Length of

I-AGG

Time of

I-AGG (s)

AtrialFibrillation 640 6.18 92 84 93 0.11

Cricket 1197 712.48 171 154 172 14.20

HeartBeat 405 12.59 58 55 60 2.0

StandWalkJump 2500 2.5 358 317 352 0.59

Table 9: Analysis capability comparison on different datasets (Length and Time spend)

For the summarization quality, the proposed summarized data preserves more information and

provides a better-reconstructed result (lower RMSE) on most datasets. Based on the experimental

results, most of the significant parts detected by I-AGG have complex dynamic trends, such as

higher variation (e.g., the middle part in the time series in Figure.29). Therefore, compared to the

less complex parts (e.g., flat pattern), aggregating those parts with higher resolution would benefit

the reconstruction process.

Finally, we demonstrate the imputation capability of our proposed method. Even if a large

amount of time-ticks is missing (i.e., 40%), the selector can correctly locate the important infor-

mation using the data inferred by the VAE generator. Figure 30 shows a score output example of a
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Dataset
Accuracy of

original data

Accuracy of

PAA

Accuracy of

DWT

Accuracy of

I-AGG

AtrialFibrillation 0.2 0.2 0.2 0.267

Cricket 1.0 1.0 1.0 1.0

HeartBeat 0.722 0.702 0.6 0.712

StandWalkJump 0.4 0.333 0.6 0.467

Table 10: Analysis capability comparison on different datasets (Classification accuracy)

time series with 30% missing values. The top figure is the original sequence with different colors

means different dimensions. The middle one is the data with missing value, and the last one is

the output of the selector (i.e., score ~s). Clearly, the selector successfully detects these two bumpy

areas and assigns a higher score on these parts. In Table 12, we summarized the reconstruction

result of different methods on missing data and demonstrate that I-AGG has better performance.

5.3.3 Analysis

• Shapelet preserving: In this section, we take one dataset, Cricket, as an example to interpret

our summarized result. Generally, summarization is expected to preserve some important in-

formation for analysis while reducing computational cost and storage requirements. Then a

question is raised – what is the golden rule of the important information for this unsupervised

problem. Although the three evaluation metrics above implicitly indicate that the proposed

method can preserve important information, it is hard to understand how it takes advantage.

We propose to utilize the shapelet as one crucial piece of information to visualize the benefit

explicitly. Shapelet is a subsequence of the time series data which can be used to identify

the class membership. It is a powerful tool to measure the phase-independent similarity be-

tween time series. In order to keep the classification accuracy, the summarized results are

expected to preserve this information. Classic summarization methods, such as PAA, may flat-

ten the shapelet due to averaging within a wide range of neighborhoods. In contrast, under
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Dataset
RMSE of

PAA

RMSE of

DWT

RMSE of

I-AGG

AtrialFibrillation 0.532 0.773 0.516

Cricket 0.146 0.44 0.144

HeartBeat 0.293 0.525 0.290

StandWalkJump 0.124 0.507 0.134

Table 11: Summarization quality comparison on different datasets

the assumption that the shapelet subsequences contain critical information meaning they have

higher informative scores, our proposed method is able to preserve this information with a

higher aggregation resolution.

Figure 31 shows three examples to explain the preserved shapelet information by different sum-

marization methods visually. These examples are generated using the subsequence of Cricket

datasets1. The bold red line in the original time series highlights the shapelets discovered by

sktime [88], and the bold red line in the PAA and I-AGG summarized data are the correspond-

ing subsequence. In these experiments, PAA and I-AGG summarized data are truncated by

around 85%. Specifically, PAA is generated by averaging every seven time-ticks, and I-AGG

preserves 15% of the data. It is evident that the spikes in Figure 31 (row one and row two)

have been counteracted with surrounded regular value time ticks in PAA, while I-AGG can

capture it with higher resolution. Although I-AGG summarized data in (row one) does not

preserve all three spikes, it successfully shows a dramatic change at that part. In Figure 31

(row three), PAA summarization lowers the value of the bump at the beginning of the shapelet,

which should have a similar value as the highest point, while I-AGG preserves this property.

• Irregular sampled and unaligned time series: It is noteworthy that the I-AGG learns a spe-

cific aggregation resolution for each time-series data. Therefore, the summarized data within

the same dataset are irregular sampled and unable to align. This irregular-sampled data also

1http://www.timeseriesclassification.com/description.php?Dataset=CricketX
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Missing Ratio
RMSE of

PAA

RMSE of

DWT

RMSE of

I-AGG

10% 0.297 0.532 0.289

20% 0.302 0.532 0.296

30% 0.308 0.545 0.304

40% 0.319 0.558 0.309

Table 12: Imputation capability on Cricket dataset with different missing ratios.

frequently happens in the real world. For example, the clinic data are usually recorded at

irregular time intervals due to the patients’ available time. Although this brings challenges

for classical machine learning methods, such as Logistic Regression, many recent works have

been proposed to tackle this problem with high performance. For example, P-VAE and P-

BiGAN [85] infer the latent space distribution of the irregular-sample time series and then

use it for classification. ODE-RNN [118] proposes to model continuous dynamics by latent

ordinary differential equation (ODE) models with a neural network.

5.3.4 Practitioner’s Guide

Due to the different performance of I-AGG under different datasets, we provide some guidance

based on the applicability we gained from the previously discussed experiments to help the readers

select the appropriate summarization method for different types of datasets.

• Complex subsequences: If the time series data contains some complex subsequences, which

cannot be captured by coarser granularity, such as the examples in Figure 31 (row one)(row

two), I-AGG is preferable. However, it should be noticed that I-AGG may not work if the

data has several sparse spikes, which require the finest level of granularity.

• Unsmooth data: I-AGG is hard to take advantage of smooth time series data. If the data is
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smooth enough, such as the gunpoint dataset2 (Fig 32), our summarized data is expected to

return a similar result as PAA.

• Data with noise: If the data contains too much noise that shields the dominant information, I-

AGG cannot be used for denoising. It may consider the noisy part as an informative sequence

and assign it to a high informative score. In figure 33 we show the effectiveness of the noise on

the summarization quality (i.e., reconstruction accuracy). We randomly add noise following

normal distribution on simulated data and perform both I-AGG and PAA on it. Y-axis is the

RMSE difference between I-AGG and PAA, the x-axis is the level of noise added to the data.

Postive means I-AGG over-performs PAA. It is not surprising that I-AGG works better than

the PAA when the noise level is less then certain threshold. While the noise increases, it starts

to disturb the information discovery processing and results in bad summarization.

5.4 Conclusion

In conclusion, we propose a novel data summarization method, I-AGG, which aggregates

different segments using different resolutions. The resolutions are determinate by a VAE-GAN

framework which tends to preserve more information in the crucial part. We evaluate the proposed

summarization on several time-series data from UEA multivariate time series classification archive.

The results show that our aggregated data are able to remain a similar classification accuracy as

the original data, preserve enough information to reconstruct back to the original data, and impute

the missing value of data. We also provide analysis and practitioners’ guides for the use cases of

our proposed method.

2http://www.timeseriesclassification.com/description.php?Dataset=GunPoint
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Figure 30: Example of the score output for data with 30% of missing.
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Figure 31: Illustration of the effectiveness of I-AGG over PAA with three examples.
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Figure 32: Example of gunpoint dataset.

Figure 33: Reconstruction performance under different levels of noise.
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6.0 CONCLUSION AND FUTURE DIRECTION

6.1 Concluding

In the thesis, I discussed our works to efficiently process and utilize the aggregated data while

preserving the performance of analysis from three research areas, including:

• Data disaggregation: I present ARES which reconstructs historical data by automatically dis-

cover a dominant pattern of the target series. I present TURBOLIFT that refines the solutions

provided by existing disaggregation methods.

• Data navigation: I propose SMARTPROGNOSIS to automatically select appropriate aggrega-

tion records and machine learning methods for a medical task. the trade-off between time

complexity and performance.

• Data summarization: We propose I-AGG to summarize time series data with a different ag-

gregation frequency identified by a VAE-GAN framework.

For each area, we showcase a detailed application scenario to demonstrate the benefit of our works.

We also include comprehensive experiment results and practitioner’s guidelines to provide insight

and appropriate use-cases of our works.

6.2 Future Direction

In this part, we list some future directions that can be done in aggregated data.

• Disaggregate data without explicit domain knowledge or dominate patterns: In Chapter

3, we introduced two methods for disaggregation (ARES and TURBOLIFT). Both methods

utilize the dominant pattern of the time series to facilitate the disaggregation, e.g., smoothness,

Annihilating Filters based pattern. But sometimes, it is crucial to find an appropriate pattern

for historical data. Therefore, a more intelligent way to deal with this problem is necessary.
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• Navigating data with more complexity algorithm: in SMARTPROGNOSIS, we only consid-

ered some simple classification algorithms, such as Logistic Regression, KNN, etc. This is

limited by the capability of the Genetic Program. However, with more complicated and ac-

curate algorithms proposed for classification, it is crucial to discover a more efficient data

navigation method.

• Summarizing data with high variance: it is not uncommon that numerical time series data

contains undesired noise. But as mentioned in Chapter 5, I-AGG will trade the noise as domi-

nant information and assign higher resolution, which results in worse performance. Therefore,

it is important that future algorithms can consider decoupling the noise and the underlying

information.
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Appendix DATA DISAGGREGATION ADDITIONAL RESOURCES

A.1 Formal Justification of the TURBOLIFT Analytical Solution

In this part, we justify our analytical solution by proving the Lemma 3.2.1.

A.1.1 Preliminaries

First, we introduce some mathematics background. Given a real Toeplitz matrix A ∈ RM×N ,

we have the following properties [53]:

• ATA ∈ RN×N is a positive semi-definite matrix.

• The Singular Value Decomposition (SVD) of ATA is UΣUT , where U ∈ RN×N contains a

set of singular vectors of ATA and Σ ∈ RN×N is a diagonal matrix with non-negative singular

values λi >= 0 (i = 1, 2, ..., N) on the diagonal.

• The singular value matrix Σ can be written as a partitioned matrix

Σ1 0

0 0

 where Σ1 ∈

RM×M contains all non-zero singular values. Correspondingly the matrix U can split into two

parts [U1,U2], where U1 ∈ RN×M contains the singular vectors corresponding to the non-zero

singular values, while U2 ∈ RN×(N−M) contains the remaining part. Based on the property of

a singular vector, U1 ⊥ U2 (U
T
1 U2 = 0) and U2 ⊥ AT (UT

2 AT = 0)

90



• Suppose we have

Λ = Σ + In

=

Σ1 0

0 0

+

IM 0

0 IN−M



=



λ1 + 1 ... 0 . . 0

... . . . . ...

0 ... λM + 1 . . 0

0 ... 0 1 ... 0

... . . . . ...

0 ... 0 0 ... 1



where λi + 1 > 1 (i = 1, 2, ...,M) and In is the n-dimension identity matrix.

From the geometric series,

1

β
+ (

1

β
)2 + ...+ (

1

β
)n

=
1

β
(1 + ...+ (

1

β
)n−1)

=
1− β−n

β − 1

With n→∞, if β > 1, the equation converge to 1
β−1 , while if β = 1, the equation equal to n.

Then

lim
n→∞

n∑
k=1

Λ−k = n



1
λ1

... 0 . . 0

... . . . . ...

0 ... 1
λM

. . 0

0 ... 0 n ... 0

... . . . . ...

0 ... 0 0 ... n


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• Since limn→∞
1
βn = 0, for β > 1,

lim
n→∞

Λ−n =

lim
n→∞



1
(λ1+1)n

... 0 . . 0

... . . . . ...

0 ... 1
(λM+1)n

. . 0

0 ... 0 1 ... 0

... . . . . ...

0 ... 0 0 ... 1



=



0 ... 0 . . 0

... . . . . ...

0 ... 0 . . 0

0 ... 0 1 ... 0

... . . . . ...

0 ... 0 0 ... 1


=

0 0

0 IN−M



A.1.2 Proof of Lemma 3.2.1

Next we prove the Lemma 3.2.1 step by step.

Proof. First, we fix the ~z with any vector ~z0 as the initial vector

min
~x

‖O~x− ~v‖22 + ‖~x− ~z0‖22

or equivalently

min
~x

‖

O

I

 ~x−
~v
~z0

 ‖22 (18)
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We can get the unique solution of this problem by using the Moore-Penrose pseudo-inverse

~x1 = (
[
OT I

]O

I

)−1 [OT I
]~v

~z0


= (OTO + I)−1(OT~v + ~z0)

= (OTO + I)−1OT~v + (OTO + I)−1~z0

Now we update the ~z by making it equals to the ~x1. So the problem, in the second iteration, changes

to

min
~x

‖

O

I

 ~x−
 ~v
~x1

 ‖22
Then the ~x can be updated using the same method as above.

~x2 = (OTO + I)−1(OT~v + ~x1)

= (OTO + I)−1OT~v + (OTO + I)−1[(OTO + I)−1OT~v

+ (OTO + I)−1~z0]

= (OTO + I)−1OT~v + (OTO + I)−2OT~v + (OTO + I)−2z0

With the similar step, we have:

~x3 = (OTO + I)−1OT~v + (OTO + I)−2OT~v

+(OTO + I)−3OT~v + (OTO + I)−3~z0

Therefore, with the Mathematical Induction, we can infer the formula of ~x after n iterations:

~xn = (
n∑
k=1

(OTO + I)−kOT~v) + (OTO + I)−n~z0 (19)

Next we infer the convergent solution. Based on the preliminaries in the Section A.1.1, the Singular

Value Decomposition of OTO is UΣUT and all the singular values are non-negative. The Σ can be
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partitioned as

Σ1 0

0 0

 and the matrix U can be split into two parts [U1,U2], where U1 ∈ RN×M

contains the singular vectors corresponding to non-zero singular values, while U2 ∈ RN×(N−M)

contains the rest part. Then the OTO + I term in the derivation of ~xn (see Eq. (19)) can be

decomposed as

OTO + I =
[
U1 U2

]
︸ ︷︷ ︸

U

(

Σ1 0

0 0

+ I)

︸ ︷︷ ︸
Λ

[
U1 U2

]T
︸ ︷︷ ︸

UT

So, we have

(OTO + I)−1 = UΛ−1UT

(OTO + I)−2 = (OTO + I)−1(OTO + I)−1 = UΛ−2UT

...

(OTO + I)−n = UΛ−nUT

Then the derivation of ~xn can be rewritten as,

~xn = (
n∑
k=1

UΛ−kUT )OT~v + UΛ−nUT~z0

= U(
n∑
k=1

Λ−k)UTOT~v + UΛ−nUT~z0

Since U2 ⊥ OT ,

UTOT =
[
U1 U2

]T
OT =

UT
1

UT
2

OT

=

UT
1 OT

UT
2 OT

 =

UT
1 OT

0


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We have

~xn = U (
n∑
k=1

Λ−k)︸ ︷︷ ︸
D

UT
1 OT~v

0


︸ ︷︷ ︸

ϕ︸ ︷︷ ︸
Ψ

+UΛ−nUT~z0 (20)

As all the singular values of OTO are non-negative, the diagonal elements of Λ = Σ + I are

larger than 1, showing as 

λ1 + 1 ... 0 . . 0

... . . . . ...

0 ... λM + 1 . . 0

0 ... 0 1 ... 0

... . . . . ...

0 ... 0 0 ... 1


where λi > 0 (i = 1, 2, ...M). As n→∞, we have

D =



1
λ1

... 0 . . 0

... . . . . ...

0 ... 1
λM

. . 0

0 ... 0 n ... 0

... . . . . ...

0 ... 0 0 ... n


After multiplying with ϕ (especially the lower zero part), the lower right part of D vanishes. So,

as n→∞,

Ψ = U1


1
λ1

... 0

. ... .

0 ... 1
λM

UT
1 OT~v
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On the other hand, for the term UΛ−nUT~z0 in Eq. (20)

lim
n→∞

Λ−n = lim
n→∞



( 1
λ1+1

)n ... 0 . . 0

... . . . . ...

0 ... ( 1
λM+1

)n . . 0

0 ... 0 1 ... 0

... . . . . ...

0 ... 0 0 ... 1


=

0 0

0 I


Then we have:

lim
n→∞

UΛ−nUT~z0 =
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A.2 Additional Experiments of TURBOLIFT

A.2.1 Data

In addition to the data described in Section 3.3.1, we evaluate TURBOLIFT using scenarios,

spiky and sparse, that appear in practice. We simulate the data using the real time series data as
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follows:

• Spiky: We create spikes at 20% randomly chosen time-ticks in the data, the value of the spikes

is equal to the maximum value in the time series.

• Sparse: We set the values of 80% randomly chosen time-ticks in the original data to be zeros.

The reason for choosing the spiky and sparse types of data, in addition to the regular time series

(i.e., real data), is that they are ubiquitous in various applications. Using the accurate reconstruction

of spiky data, analysts can detect anomalous events. On the other hand, the accurate reconstruction

of sparse data is very appreciated in compressed sensing [37]. The spiky and sparse scenarios are

created using NY Measles data.

Figure 34: TURBOLIFT error change rate on spiky NY Measles data.

A.2.2 Spiky historical data

Next, we evaluate TURBOLIFT on the case when the series has some spikes, with values that

are much larger than their neighboring time-ticks. Figure 34 shows the error change rate using

the spiky NY Measles data when the solution of H-FUSE is used as the initial vector in TURBO-

LIFT. We can see that with Shift less than 3, the error improvement is larger than 10%, except

with RD = 52. Note that the error change rate measures the improvement in the RMSE. However,
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one of the main practical goals with spiky data is to evaluate the accuracy of detecting anomalous

events (i.e., spikes).

(a) TURBOLIFT compared to the baseline methods for non-spiky
time-ticks

(b) TURBOLIFT compared to the baseline methods for spiky
time-ticks

Figure 35: Comparison of the TURBOLIFT and the baseline methods.

We measure the improvement in the estimation accuracy at the time-ticks with spikes and the

rest of time-ticks separately. We show the RMSE of TURBOLIFT and the baselines measured at the

subset of “normal” time-ticks in Figure 35 (a), and the subset of time-ticks with spikes in Figure 35

(b). The RMSE is averaged over the scenarios when RD is changing from 2 to 52 with increments

of 10, and Shift is spanning from 1 to 10 with an increment of 1. There is a clear improvement

in estimating the values at the spiky time-ticks, which shows the advantage of TURBOLIFT in

anomaly detection from aggregated data. Moreover, TURBOLIFT preserves the accuracy of the

estimation at the remaining time-ticks. Overall, the RMSE of TURBOLIFT is smaller than the

baselines over the entire time-ticks (by combining the error in both Figure 35 (a) and Figure 35

(b)).

A.2.3 Sparse historical data

In this section, we show the error change rate of TURBOLIFT on sparse data with initial solu-

tions provided by H-FUSE and BP baselines. As mentioned in Section 2.1.2, BP method assumes

the data is sparse, which is favorable in this case. TURBOLIFT improves the reconstruction ac-

curacy, especially with Shift less than 7, when H-FUSE used for initialization as shown in Figure

36 (a). On the other hand, when TURBOLIFT is initialized using BP, the error is improved only

with Shift = 1 as shown in Figure 36 (b). H-FUSE penalizes the larger jumps between any two
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successive time-ticks; therefore, it is not well suited to find a sparse solution. Whereas, BP is

designed specifically to find the sparsest solution to an under-determined linear system.

(a) TURBOLIFT compared to H-FUSE-S (b) TURBOLIFT compared to BP

Figure 36: TURBOLIFT error change rate on sparse NY Measles data.

In some detection applications, e.g., outlier detection, a binary answer is more beneficial (i.e.,

whether or not an event is detected). In our ground-truth sparse data, there are 80 non-zero entries

(20% of the entire time-ticks). In the reconstructed series, we pick the time-ticks with the largest 80

values and consider them as the “non-empty” time-ticks. We count how many of the “non-empty”

time-ticks meet with the true non-zeros in the ground-truth series, i.e., number of hits. Figure 37

shows the histogram of the number of hits and its fitted normal distribution in the solutions given

by H-FUSE and TURBOLIFT initialized with H-FUSE. The y-axis in Figure 37 represents the

number of aggregation configurations where the disaggregation method achieved a specific number

of hits. We include 60 configurations: the report duration ranges from RD = 2 to RD = 52 with

increments of 10, and the shift varies from Shift = 1 to Shift = 10 with increment of 1. With

all the considered configurations, H-FUSE detects only half of the non-empty time-ticks or less,

and the mean of the normal distribution of its histogram is around 30. While TURBOLIFT shifts

the mean of the distribution to the right, and remarkably detects more than 60 non-zero time-ticks

in some cases.
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Figure 37: Histogram of number of hits (detected non-zero time-ticks).
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Franz J Király. sktime: A Unified Interface for Machine Learning with Time Series. In
Workshop on Systems for ML at NeurIPS 2019.

[89] Rafael Lozano, Mohsen Naghavi, Kyle Foreman, Stephen Lim, Kenji Shibuya, Victor
Aboyans, Jerry Abraham, Timothy Adair, Rakesh Aggarwal, Stephanie Y Ahn, et al.
Global and regional mortality from 235 causes of death for 20 age groups in 1990 and
2010: a systematic analysis for the global burden of disease study 2010. The lancet,
380(9859):2095–2128, 2012.

[90] Gang Luo, Bryan L Stone, Michael D Johnson, Peter Tarczy-Hornoch, Adam B Wilcox,
Sean D Mooney, Xiaoming Sheng, Peter J Haug, and Flory L Nkoy. Automating construc-
tion of machine learning models with clinical big data: proposal rationale and methods.
JMIR research protocols, 6(8):e175, 2017.

[91] Carolina B Maciel, Mary M Barden, Teddy S Youn, Monica B Dhakar, and David M Greer.
Neuroprognostication practices in postcardiac arrest patients: an international survey of
critical care providers. Critical care medicine, 48(2):e107–e114, 2020.

[92] Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised video summariza-
tion with adversarial lstm networks. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 202–211, 2017.

[93] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[94] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational bayes:
Unifying variational autoencoders and generative adversarial networks. In Proceedings

106



of the 34th International Conference on Machine Learning-Volume 70, pages 2391–2400.
JMLR. org, 2017.

[95] Sunil B Nagaraj, Marleen C Tjepkema-Cloostermans, Barry J Ruijter, Jeannette Hofmeijer,
and Michel JAM van Putten. The revised cerebral recovery index improves predictions of
neurological outcome after cardiac arrest. Clinical neurophysiology, 129(12):2557–2566,
2018.

[96] Frank Olken and Doron Rotem. Simple random sampling from relational databases. 1986.
[97] Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore. Evaluation of

a tree-based pipeline optimization tool for automating data science. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016, pages 485–492. ACM, 2016.

[98] Antigoni Panagiotopoulou and Vassilis Anastassopoulos. Super-resolution image recon-
struction techniques: Trade-offs between the data-fidelity and regularization terms. Infor-
mation Fusion, 13(3):185–195, 2012.

[99] Evangelos E Papalexakis. Mining large multi-aspect data: Algorithms and applications.
2016.

[100] Parth D Patel, Pranav B Lapsiwala, and Ravindra V Kshirsagar. Data aggregation in wire-
less sensor network. International Journal of Managment, IT and Engineering, 2(7):457–
472, 2012.

[101] Jose Manuel Pavı́a-Miralles. A survey of methods to interpolate, distribute and extra-polate
time series. Journal of Service Science and Management, 3(04):449, 2010.

[102] Jose Manuel Pavı́a-Miralles and Bernardı́ Cabrer-Borrás. On estimating contemporaneous
quarterly regional gdp. Journal of Forecasting, 26(3):155–170, 2007.

[103] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830, 2011.

[104] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. arXiv preprint
arXiv:1602.02355, 2016.
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