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Using Dynamical Systems to make Micro- and Macroscopic Predictions in

Marine Biology

Joseph A. Landsittel, B.Phil

University of Pittsburgh,

Dynamical systems have successfully been shown to illustrate how components of a bio-

logical machine evolve together; this paper explores two examples of such. In one case, we

investigate the stereotyped escape reflex of the marine goby. This governing neural circuit of

this goby’s escape has been observed to exhibit distinct behaviors depending on the threat

level of predatory fish. We propose two ODE models to explore the feasibility of distinct

biological possibilities regarding the circuit at play. In a second case, we investigate the

mating strategies of wrasses and cephalopods. We simulate the life histories of the fishes

with a piece-wise, discrete time dynamical system. Our results provide a framework for un-

derstanding the dependence between the evolutionary stability of various mating strategies

with ecological factors and behavioral patterns being exhibited.
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Preface
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myself from 2019 through 2022. Though this project was a joint effort, their expertise in

the fields of mathematical modeling and marine biology was the cornerstone. I’d like to

recognize their phenomenal support and mentorship throughout my undergraduate career.

The work here includes two constituents parts that illustrate connections between dy-

namical and biological systems. Miles from the first and certainly not the last insights to

come from this field, these projects share two cases of how modeling can better inform our

understanding of neuroscience and ecology. The independent nature of the results for each

lead one to view this more as a collection of short stories from the same book than a unified

fable.

In 2021, the work of the first chapter was published by the Journal of Computational

Neuroscience [14].
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1.0 The Shrimp-goby Escape Communication System

1.1 Introduction

The ‘startle response’ of fishes after receiving an abrupt burst of stimulus is a well studied

phenomenon [7, 30]. Notably, this process is realized as a one-sided ‘tail whip’ resulting from

reciprocal inhibition between the left and right side of the CNS. Asymmetric activation of

command neurons will result in an asymmetric firing of fast motor neurons. The product is

a c-shaped, sudden movement that allows fish to escape approaching predation.

This underlying neurophysiology has been investigated in the context of hindbrain Mau-

thner (M-) cells present in zebrafish and goldfish [5, 30, 17]. Specifically, it has been exper-

imentally demonstrated that the M-cell action potentials in these species of fish correlate

with motor patterns in the escape reflex.

An alternate form of this escape reflex has been observed in the marine goby, which

lives in tandem with the alpheid shrimp through mutualist symbiosis [13, 16, 14]. This

relationship exists as follows: the shrimp, whose eyesight is poor, constructs a burrow to

be used as shelter by both species [12]. The goby, maintaining good eyesight but lacking a

burrowing ability, acts as an alarm providing the shrimp with tactile-based communication

regarding nearby predation. In a sense the goby stands watch as the crustacean regularly

clears the burrow of obstructions.

The exact behavior of the goby in the communication relationship is well documented

[27, 13, 14]. Three distinct patterns emerge depending on the parameter regime in effect. In

the absence of predatory fish, the goby remains still while its tail is in constant contact with

the shrimp. For an intermediate presence of visual or auditory predation stimulus, the goby’s

tail briefly oscillates in what has been described as a ‘tail flick.’ This is to act as a warning

for the shrimp. A sufficiently strong stimulus will trigger the c-shaped escape reflex, allowing

the goby to retreat into the burrow without fear of being harmed by incoming threats.

We contrived two mathematical models in an attempt to explore how the neurophysiology

of the goby’s escape reflex deviates from that of zebrafish and goldfish. In both cases, we
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modeled the M-cells as point neurons as opposed detailing dendrites as a series of attached

compartments [6]. In the first case, we model the ‘tail flick’ as an oscillation in firing between

the two M-cells. In the second case, oscillations are produced downstream by a system of

central pattern generating neurons (CPG).

Figure 1: The goby Amblyeleotris Rubrimarginatus stands by as the shrimp clears sand from

the burrow. Photography courtesy of Klaus M. Stiefel.

1.2 Model 1: M-Cell Oscillations

1.2.1 Overview

We begin with a simple firing rate model that attempts to reproduce the tail flick behavior

via oscillations between M-cells. It utilizes six differential equations to convey the behavior

of four neurons. Two correspond to M-cells (Mℓ and Mr), two to internal M-cell inhibition

2



Figure 2: Neural circuit reproduced by Model 1

(Zℓ and Zr), and two to external inhibitors (Yℓ and Yr). The difference in stimulus received

is governed by an asymmetry parameter q ∈ (0, 1].

The equations are as follows:

Mauthner Cells:

M ′
ℓ = −Mℓ + f

(
Input(Imax, t)− gYr − rYℓ − βZℓ

)
(1)

M ′
r = −Mr + f

(
Input(Imax, t)q − gYℓ − rYr − βZr

)
(2)

Inhibitory Neurons:

Y ′
ℓ =

(
− Yℓ +max{Mℓ + ζInput(Imax, t), 0}

)
/τy (3)

Y ′
r =

(
− Yr +max{Mr + ζInput(Imax, t)q, 0}

)
/τy (4)
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Mauthner Adaptation Proces:

Z ′
ℓ =

(
− Zℓ +Mℓ

)
/τz (5)

Z ′
r =

(
− Zr +Mℓ

)
/τz (6)

Functions:

f(x) =
1

1 + e−x
(7)

Input(x, t) = xu(t− ton)u(ton + dur − t) (8)

where

u(x) =

0 if x < 0

1 if x ≥ 0

The parameter values are g = 6, β = 1.5 r = 0.3, τy = 0.2, τz = 5, and ζ = 0.01.

1.2.2 Analysis

We can show analytically that the symmetric system (q = 1) undergoes a Hopf bifurcation

for increasing input strength (I). First notice that the external inhibitors Yℓ and Yr respond

to changes in M-cells with fast time, so they can be neglected for this purpose (then set

τz = τ). Also assume M-cells are the sole receivers of input sensory data (i.e. ζ = 0). The

new system is stated here.

M ′
ℓ = −Mℓ + f(I − gMr − rMℓ − βZℓ) (9)

M ′
r = −Mr + f(I − gMℓ − rMr − βZr) (10)

Z ′
ℓ = (Mℓ − Zℓ)/τ (11)
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Z ′
r = (Mr − Zr)/τ (12)

Observe that this system has a fixed point which solves the following transcendental equation:

ξ(I) = Mℓ = Mr = Zℓ = Zr = f(I − γξ(I)). (13)

Where γ = g + r + β. We can then state the jacobian matrix:

J =



−(1 + rf ′(I − γξ)) −βf ′(I − γξ) −gf ′(I − γξ) 0

τ−1 −τ−1 0 0

−gf ′(I − γξ) 0 −(1 + rf ′(I − γξ)) −βf ′(I − γξ)

0 0 τ−1 −τ−1

.


(14)

Which is in the form of:

J =

A B

B A

 .

Whose eigenvalues are the eigenvalues of A+B and A−B. The eigenvalues of A+B have

strictly negative real parts. A−B’s eigenvalues are:

Reλ = (g − r)f ′(I − γξ)− τ−1 − 1 (15)

Imλ = ±

√
−
[
(g − r)f ′(I − γξ)− τ−1 − 1

]2
+ 4τ−1

[
f ′(I − γξ(I))(β − g + r) + 1

]
. (16)

Let ν = (f ′)−1((τ−1 + 1)/(g − r)). The fixed point will loose stability at:

I = ν + γξ(I). (17)

For the previously stated parameter values, ν = 1.00 and γ = −7.80. We then see that a

pair of complex conjugate eigenvalues will cross the imaginary axis for I ≈ 1.10, ξ ≈ 0.27.

This is the initiation of the tail flick.
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a b c

Figure 3: Behavior of the simple model in three parameter regimes. Stimulus is applied at

t = 25ms, removed at t = 225ms. The parameter Imax is increased from 0.1 (a) to 1.8 (b)

to 3.5 (c).

Input Strength (Imax)

M
-c
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l
R
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p
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se
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ℓ)

Figure 4: Bifurcation diagram of Model 1 with respect to input strength (Imax). Here there

is no asymmetry in the input received by the M-cells. That is, q = 1. Red corresponds to a

stable fixed point, black unstable. Green corresponds to a stable limit cycle, blue unstable.
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Input Strength (Imax)
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Figure 5: Bifurcation diagram of Model 1 with respect to input strength (Imax). Here there

is asymmetry in the input received by the M-cells. That is, q = 0.99.

Input Strength (Imax)

A
sy
m
m
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(q
)

Figure 6: Two parameter bifurcation diagram following the location of the Hopf point (dark

blue) and the pitchfork bifurcation (light blue). Input strength (Imax) and asymmetry (q)

are varied. Notably this plot looks like a fish.
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1.2.3 Results

This model successfully reproduces the general behavior of the goby’s startle response as

sensory input is increased. In the high strength regime, there are two steady state firing rates

and one significantly greater than the other, each occupied by a distinct M-cell (see figures

3, 4). If there is asymmetry in the input strength between the two M-cells, then the favored

cell will be the one that fires (see figure 5). This will then be communicated downstream;

unbalanced firing of fast motor neurons will produce a c-shaped response in the tail of the

goby.

The sensitivity of this model to changes in asymmetry presents a weakness. As illustrated

by figure 6, the Hopf bifurcation will only occur if the difference in input across the M-cells is

less than 5% of the total. Though the extent of the limitation is subject to change with values

of other parameters, the fact that oscillations between the M-cells remain highly sensitive

to changes in asymmetry proves fishy. This result minimizes the possibility that oscillations

strictly at the level of M-cells can reproduce the escape response of the goby in a complete

sense, leading us to consider a more neuronal approach.
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1.3 Model 2: CPG Oscillations

1.3.1 Overview

For this case we consider the circuitry of the goby escape reflex to be a modified case

of that present in the zebrafish, as explored by Miller et. al. 2017 [18]. This is itself

an an adaptation of the Morris-lecar framework [19, 6] with the purpose of investigating

connections between the M-cell escape pathway and social dominance behavior.

The membrane potential of each cell abides by the following:

C
dV

dt
= −ICa − IK − IKCa − IL − Isyn + Iapp(t). (18)

Here calcium, potassium, calcium dependent potassium, and leak currents obey the following

dynamics:

ICa = gCam∞(V )(V − VCa) (19)

IK = gKn(V − VK) (20)

IKCa = gKCa

(
[Ca]

[Ca] + k

)
(V − VK) (21)

IL = gL(V − VL). (22)

The Calcium concentration evolves according to:

d[Ca]

dt
= ϵ

(
− µICa − kCa[Ca]

)
. (23)

Regarding the gating variables m and n, m responds instantaneously to changes in voltages

and n is dynamic.

Synaptic input governs inter-cellular connections, with this current following:

Isyn = gsyn(V − Vsyn)
∑
j

sj. (24)

9



In this case the synaptic variable s is controlled by the fraction of open channels.

ds

dt
= s∞(V )(1− s)− βs (25)

s∞(V ) is another gating variable.

A complete list of equations and parameter values can be found in the appendix.

These equations are used to model the behavior of five categories of interest: M-cells,

fast and slow motor neurons, CPG neurons, and inhibitory neurons. We expect silence in the

negligible stimulus case, CPG fueled oscillation of slow motor neurons in the intermediate

case, and Mauthner fueled activation of fast mostor neurons, inhibition of slow motor neurons

in the strong case. A primary distinction from the basal zebrafish model lies in the existence

of a rest state where the CPG neurons are inactive.

Figure 7: Neural circuit reproduced by Model 2 [14]. Zebrafish and Goby variations are

included. The zebrafish model is put forth by Miller et. al. 2017 [18]. Both M-cells may

recieve stimulus, thought not necessarily equal doses.

More accurately, there are a number of dissimilarities between the basal case and the

goby case [14, 18]. For one, the zebrafish model includes a series of adaptation variables to

10



accommodate for social interaction that have been excluded. Additionally, instead of hosting

a chain of stimuli (18 stimuli parameters are included in [18]), we consider only a single pulse

of stimulus. That is we activate the system at a time stimon for a duration dur.

Of the distinctions present, two are critical to the ‘tail flick’ mechanism. (1) We propose a

direct connection from sensory stimulus to the CPG neurons. At the time of stimulus being

received, the CPG will receive a pulse to activate the system and then decay (with time

constant τcpgx). Additionally, (2) in the absence of stimulus, the CPG system is silent. This

is achieved by lowering a parameter corresponding to background applied stimulus (CPGiapp)

from 45 to 44.7. This way, the boost of stimulus from CPGx is specifically required for the

CPG to engage. The following equations summarize this.

d

dt
CPGGoby =

d

dt
CPGZebrafish + CPGx − 0.3 (26)

Where
d

dt
CPGx = −CPGx/τcpgx + u(t− ton)u(dur − t− ton)(1− CPGx). (27)

1.3.2 Results

We see that these modifications successfully reproduce the observed behavior of the

goby’s startle response [13, 16]. In the absence of stimulus, the model is tranquil, unlike in

the zebrafish case where the CPG is constantly active. A weak stimulus will activate the

CPG (and subsequently the slow motor neurons) for enough time for a tail flick to occur.

A sufficiently capable sensory input will result in an M-cell firing, which will activate the

corresponding fast motor neuron downstream. Notably in this case the inhibition of the slow

motor neurons does not prevent the CPG from continuing to fire, as it does not interfere with

the escape reflex. A summary of the results in the measure zebrafish case are summarized

in table 1; the adapted results for the goby case are in table 2.

11



Table 1: Startle response of Zebrafish as sensory stimulus is increased. M-cells, fast motor

neurons, central pattern genrating neurons, and slow motor neurons are considered.
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Table 2: Startle response of Gobies as sensory stimulus is increased. M-cells, fast motor neurons,

central pattern genrating neurons, and slow motor neurons are considered.
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1.4 Conclusions

Our simulations promote the belief that a series of deviations from the M-cell mechanism

present in zebrafish can accurately describe that of the marine goby. We require the CPG

to exist in a tranquil state when the environment is void of visual or auditory sensory data.

This corresponds to observations of the goby remaining still at the aperture of the shrimp’s

burrow [16, 13]. Additionally it appears highly likely that some explicit or implicit pathway

exists connecting this sensory data to the CPG, hence bypassing the M-cells. We do not

make claims about the anatomical nature of this pathway, only about its existence.

We are amenable to the possibility of another mechanism existing to explain this be-

havior, as it cannot be readily disproven. Simultaneously, we have confidence that these

modifications are an immediately likely candidate given their simplicity and effectiveness.

Additionally, we do consider a second potential circuit (previously dubbed Model 1).

However, this more elementary proposal has left itself open to criticism by requiring a nar-

row parameter regime in order to reproduce observed behavior. In other words, if the tail

flick is the result of oscillations between the two M-cells, then the system will only activate if

sensory input is received nearly equally on both sides of the CNS. If it had been observed that

predatory fish approaching the goby from one side, hence leading to a lop-sided activation of

the CNS, resulted in the fish failing to respond appropriately, then M-cell oscillation hypoth-

esis presented by Model 1 would be more enticing. We are not aware of such observations

existing.
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2.0 Alternative Mating Strategies in Cephalopods and Fishes

2.1 Introduction

Evolutionary game theory (EGT) models use theoretical results of intra and inter species

competition to predict an Evolutionary Stable Strategy (ESS). The ESS, or distribution of

strategies that maximizes total fitness, should be the end behavior of natural selection. An

original framework for making ESS predictions, in the specific sense, revolves around ar-

ticulating the potential strategies, payoffs of each strategy, and stability criterion [11]. A

conventional setup for evaluating the fitness of short-term strategies was provided by the

Hawk-Dove game [31]; this involves the analysis of a payoff matrix to evaluate a surrogate

currency, which is assumed to be proportional to fitness. A range of methods have since de-

veloped in the context of EGT, including stochastic programming [4] and dynamic equations

[15, 1].

A distinction has been presented in EGT between specific and general models (though

in any practical sense the two lie on a continuum) [26]. A specific model will be designed

around a precise interaction in biology, giving a result that is more quantitative with the

general model’s solution being considered qualitative. It is seen in the former case that

parameters can often be readily measured, while this is not strictly true in the latter case.

It will be revealed that our results coincide with that of a general model.

The focus of this work is to evaluate the evolutionary stability of various inter-species,

alternative mating strategies as ecological parameters are varied. That is, we’re interested in

the phenotypic variation in mating behavior between male wrasses, cephalopods, and cichlids

[23].

Seeking out a mate requires dedication to a series of strategic choices. In one case, the

fish act as a sneaker by disregarding any underlying aspiration to settle down. They find

themselves quickly seeking out a mate under the aphoristic radar of those who control the

nests, waiting for them to be distracted. [4, 34, 24] . For the giant Australian cuttlefish,

Sepia Apama, this means steering clear of dominants by adopting female color patterns
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[21]. Nesting males by contrast gamble a trade off; they’re willing to invest more time and

energy in order to yield a higher rate of mating success. The winning strategy will almost

be consequence of environmental factors; this is what we wish to articulate.

2.2 Approach

Our proposed model involves dividing the total population of interest into discrete states

and then evolving the population distribution forward in time according to a piece-wise

dynamical system. Thus we assume the life histories of the fish can be viewed as movement

through a phase space, where at any fixed time a player can hold a certain energy level and

have adopted a certain strategy. We use the term ‘energy’ to refer to whether or not a fish

has grown sufficiently in order to seek out a mate.

If x[t] represents a state vector, a portrait of the of the population at time t, then x[t][i]

is the proportion of the population at time t holding state i. Hence for an N state system,

N∑
i=0

x[t][i] = 1. (28)

We’re interesting in proposing a mechanism to evolve the system:

x[t] = φt(x[0]). (29)

During each fixed season, the population will iterate according to a discrete time Markov

chain. The transition probabilities will alternate in time depending on the season. In other

words, there are clear differences in the behavior of the fish depending on whether or not

we are in a mating or growth season. During a mating season, those fish occupying a high

energy state will have some probability of transitioning to a mating state. During a growth

season, fish will have some probability of ‘leveling up’ from a low energy into a high energy

state. Other distinctions will be revealed.

Though in any fixed season we utilize a Markov chain, the system as a whole will not be

Markovian. More accurately it can be described as a time delay system [28, 2]. Why is this?

It will be revealed that fish playing a given strategy will birth fish inclined to perform the
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same strategy. (Whether not they switch strategies will depend on the case study.) Thus

the proportion of new births that occur that result in fish initially playing strategy x will

depend on the proportion of matings that occurred in the previous season as a result of a

male playing strategy x.

More specifically, we run simulations that alternate between a 60 day mating season and

a 300 day growth season. The transition probabilities during the growth season will have

dependence on the values taken on by taken on by the state vector during the previous

mating season. Let µ be an array of ecological parameters. Given t days have passed, let

ω(t) be the number of days the simulation ran for before the start of the previous mating

season; that is we have the integer part of the number of years that have passed, times the

number of days in a cycle. We can state the following:

ω(t) = 360

⌊
t

360

⌋

x → Px if t− ω(t) < 60 where P = P (µ) ∈ RNxN (30)

x → Qx if t− ω(t) ≥ 60 where Q = Q(µ,x[ω(t) + τ ] τ ∈ {0, · · · , 59}) ∈ RNxN . (31)

Here, P corresponds to the transition matrix of the mating season, Q the growth season.

We view a strategy (or mixed strategy) as being evolutionary stable if a uniformly dis-

tributed initial state will migrate towards that strategy in time. In any practical sense this

effective strategy will be revealed after a series of iterations corresponding to 50 mating

cycles. This framework for determining ESS is in contrast to previously discussed specific

models [32, 11]. In cases such as the Hawk-Dove game where the strategy is a choice of

a single action, it is reasonable to view the outcome of evolution as being carved into a

proverbial stone. Though in the evaluation of these alternative mating strategies, there is a

dependence on environment.
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2.3 Basal Wrasse Model

2.3.1 Overview

The two strategies will be referred to as “sneaker” and “dominant.” The wrasse model we

begin with involves transitions between seven states: a ‘dead’ state (X), low and high energy

states for both the sneaker and dominant (LS, HS, LD, HD) and mating states for each

strategy (MS and MD). During the mating season the dead state will be absorbing; during

the growth season movement away from this state corresponds to new births. Additionally

during the growth season wrasse can switch strategies for a trade off of loosing energy.

Figure 8: The Indo-pacific wrasse Thalassoma lutescens. Photography courtesy of Klaus M.

Stiefel.
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Figure 9: Wrasse transition diagrams for the mating season (blue) and growth season (red).

An arrow from one state to another indicates that such a transition has a nonzero probability

of occurring.

We move forward by initializing a state vector x ∈ R7 corresponding to the population

being uniformly distributed between the four low and high energy states. The vector will then

be iterated according to previously described transition matrices. Here the location (i, j)

corresponds to Pij, the probability in that in a single day a member of state j transitions to

state i. We will use the notation Pij and Qij to refer to the (i, j) location in the mating and

growth matrices, respectively.

The goal moving forward will be to identify parameter dependence for the transition

matrix elements. Relations between transition probabilities and key parameters will be

explained here; proportional constants and further explanation are included in Appendix

B. We define two parameters: α and β to correspond to food availability and predation,

respectively. We suggest the following relations:

PXZ , QXZ ∼ β/α (32)

PLZHZ , QLZHZ ∼ 1/α (33)
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QHZLZ ∼ α. (34)

Here, Z is an arbitrary strategy or state. Transition probabilities in the form PZZ are chosen

specifically such that the sum of the column elements is unity. Otherwise equation (28)

would flounder.

One aspiration of ours is to redistribute new births in the growth season according to

the relative success of each strategy in the previous mating season. Fix t days having passed

such that t ≥ ω(t)+ 60 (i.e. the time corresponds to some point in a growth season). Define

the following:

µ(t) =

ω(t)+59∑
k=ω(t)

MS[k] ν(t) =

ω(t)+59∑
k=ω(t)

MD[k].

Here µ(t) is proportional to the number of sneaker matings that occurred in the previous

mating season, ν(t) dominant matings. Let δ ≤ 1 correspond to a pseudo birth rate of the

population. Then we define,

QLSX(t) =
µ(t)δ

µ(t) + ν(t)
, QLDX(t) =

ν(t)δ

µ(t) + ν(t)
. (35)

2.3.2 Results

Our results come as predictions regarding where observed wrasse populations come in the

parameter space of food availability and predation. Alonzo et al., 2000 observe the wrasse

Symphodus ocellatus off the coast of Corisca, France, finding 67% playing the dominant

strategy [3]. Warner and Swearer 1991 observe the wrasse Thalassoma bifasciatum off the

coast of the US Virgin Islands, finding an equal presence of both strategies [38]. Warner and

Hoffman 1980 and Warner 1982 observe the wrasses Thalassoma bifasciatum and Thalassoma

bifasciatum off the coast of Panama, finding between 85% and 99% of the wrasses playing

the sneaker strategy [37, 36].

Figure 10 summarizes our predictions regarding ecological parameter differences between

these populations. We note that making any claims regarding absolute differences in calorie

or predator density is beyond the scope of our model; we instead are focused on comparing

these quantities in a relative sense.
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Figure 10: Stability of the sneaker and dominant mating strategies among wrasses as we

iterate across values of food availability and predation. Isoclines corresponding to observa-

tions are included; we can then make predictions of where cases lie relative to each other in

the parameter space [36, 37, 38, 3].

2.4 Cephalopod Model

2.4.1 Overview

Though evolutionary convergence has spurred numerous behavioral similarities between

cephalopods and fishes, the most recent common ancestor was pre-Cambrian, indicating

that the alternative mating tactics likely evolved independently [25]. As such, a variety of

distinctions have been well documented, and we are interested in four of these. Notably

the cephalopods (1) do not switch strategies, (2) mate only once per lifetime, (3) engage in

cannibalistic tendencies, and (4) grow at a much faster rate [21, 10, 20].
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Figure 11: Cephalopod transition diagrams for the mating season (blue) and growth season

(red).

The second of these behaviors is known as semelparity; it is characterized by each fish

participating in a single large spawning aggregation before its death [10]. The giant Aus-

tralian cuttlefish Sepia Apama typifies this behavior. We incorporate this into our model by

producing an instantaneous reset of our state vector x[t] towards the dead state after each

mating season and before the subsequent growth season. This does not correspond to the

model holistically resetting though, as information regarding the previous mating season is

still encoded in the values of QLXD and QLSX .

It has also been noted that dominant cephalopods exhibit cannibalistic tendencies to-

wards their smaller counterparts [22]. As such, the probability of a sneaker migrating to the

dead pool will be updated each day according to the following relation:

QXLS[t+ 1], QXHS[t+ 1] ∼ (β/α)(LD[t] +HD[t]) (36)

Notably those playing the sneaker strategy are more likely to migrate toward the dead

state; however, (36) demonstrates that these transition probabilities are updated according

to the same mechanism.

The diagonal transition probabilities QZZ are updated accordingly so that (19) holds.
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Finally, the growth probabilities QHSLS and QHDLD were increased by a factor of two and

the strategy change probability QLDHS was set to zero.

Figure 12: Two male cuttle fish (left) engaged in a conflict over a female (right). The nesting

male guarding the female is visibly larger than the intruder. Read the full story here: [LINK].

Photography courtesy of Klaus M. Stiefel.

2.4.2 Results

Our results come as predictions regarding where observed cephalopod populations come

in the parameter space of food availability and predation. Hanlon et al., 2002 observe the

squid Loligo vulgaris off the coast of South Africa, finding 86% playing the dominant strategy

[10]. Naud et al., 2004 observe the cuttlefish Sepia Apama off the coast of Southern Australia,

finding only 17% playing the dominant strategy [20]. The relevant environmental predictions

are summarized by figure 13.

Figure 15 summarizes the impact each of the four modifications has on the basal wrasse

model. Specifically we note that the cannibalistic mechanic and the increased growth speed
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sway the favor toward the dominant strategy, while the lack of an option for a fish to

transition strategies provides benefit to the sneakers.

Figure 13: Stability of the sneaker and dominant mating strategies among cephalopods

as we iterate across values of food availability and predation. Isoclines corresponding to

observations are included; we can then make predictions of where cases lie relative to each

other in the parameter space [10, 20].

2.5 Cichlids

2.5.1 Overview

We move our interest towards one final species Lamprologus Callipterus which is endemic

to the African lake Tanganyika [35, 29]. For the purpose of our model, certain males in this

population (sneakers and dominants) behave equivalently to previously discussed wrasses.

However, there exists a third genetically determined class which we will refer to as dwarf

males (LW , HW , and MW for the low energy, high energy, and mating dwarf states,
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Figure 14: Predicted sneaker proportion at ESS as a function of Food Availability and

Predation for wrasses (a) and cephalopods (b).

respectively). These are one fortieth the size of the dominant counterparts and have no

ability to switch strategies.

An additional behavioral complexity relevant to this cichlid lies in a visible presence of

altruism. That is, an individual will receive an evolutionary bonus if it aids in the reproduc-

tion of sufficiently related members of the population. The condition for an act of altruism

to make evolutionary sense has been articulated by Hamilton: [8, 9, 33]

b > cr. (37)

Here b is the benefit of an altruistic act, c is the cost, and r is the relatedness of the two

participants. In our case, the dominant males are presumed to receive an altruistic benefit

when dwarf males utilize their nests.

We assume a mean relatedness between any given dwarf and dominant male to be fixed

throughout the population. The explicit benefit from Hamilton’s rule is provided to the

dominant fish is then proportional to the total dwarf male population. Then we update the

dominant growth probability according to the following at each timestep:

QHDLD[t+ 1] ∼ α + LW [t] +HW [t]. (38)

In other words, we model the altruistic benefit as being materialized in the form of an

increased growth speed.
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Figure 15: The specific effect each individual wrasse-cephalopod distinction has on ESS,

across variation in predator presence. The normalized food availability is set to be 40.
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Figure 16: Cichlid transition diagrams for the mating season (blue) and growth season (red).

2.5.2 Results

We find that, as is the case for wrasses and cephalopods, the dominant strategy is most

preferred in a regime where food is readily available. As is the case for the wrasse, but not

the cephalopod, a very small predator presence can also incite fish to play the dominant

strategy. An altruistic bonus for dominants provides favor to that strategy at the expense

of both of the other two. Figure 17 summarizes these thoughts.

2.6 Stochastic Considerations

2.6.1 Overview

We additionally wish to see how the stability of various strategies depends on the vari-

ability of our ecological parameters. It is conceivable that for a sufficiently stochastic en-

vironment, a fish may be able to get away with a strategy that otherwise would not be an
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Figure 17: One dimensional parameter sweeps across food availability (α) and predator

presence (β). Cases with and without Hamilton’s rule are considered.

appropriate way of maximizing fitness. That is, the result of a simulation for any given α,

β ecological parameters can itself be viewed as a stochastic variable.

More accurately introduce a random variable, ξ, that we allow to fluctuate in time. Let

ξ > 1 correspond to a relatively high food availability and a relatively low predator presence,

ξ < 1 be the similar opposite. At the time of any seasonal transition, ξ = 1 is reset. Within

a season, ξ is updated according to a random normal distribution:

ξ[t+ 1] = N(ξ[t], σ). (39)

In a sense ξ takes a random walk during each season before being reset. During a mating
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season we preform the following updates for each day:

PLSHS =
1

ξ
PLSHS PLDHD =

1

ξ
PLDHD. (40)

And during the growth season:

QLSHS =
1

ξ
QLSHS QLDHD =

1

ξ
PLDHD (41)

QHSLS = ξQHSLS QHDLD = ξQHDLD. (42)

2.6.2 Results

We simulate the parameter space with the set up of the original wrasse model.

The parameter σ can be interpreted as the characteristic percentage an ecological pa-

rameter may change during a given day. For instance, figure 18 (d) shows the results of

a simulation where the environment takes a random walk changing typically 15% per day.

This is an extreme case used to illustrate the result of there existing more variability than

we would reasonably expect.

The extent to which stochasticity impacts an environment depends on that environment

itself. When running the simulation in the limit of low food availability, the ESS holds

relatively constant at 1 - 2 % as our variability increases. To contrast, the proportion of

sneakers in a realm corresponding to much greater food availability rises steadily with σ.
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Figure 18: Simulations including a stochastic variable ξ. The extent of variation is judged

by its variance, σ2. Specifically in (a) σ = 0.01, (b) σ = 0.04, (c) σ = 0.08, and (d) σ = 0.15

2.7 Conclusions

Our results are summarized as predictions regarding how the ESS of an alternative

mating strategy may change as we vary (1) food availability, (2) predation, (3) stochasticity,

and (4) behavioral patterns. This allows us to produce claims relative claims regarding

environments of different observed populations. For example, we believe the French wrasse

observed by Alonzo et al. in 2000 has a much more plentiful supply of food when compared

with the central American populations documented by Warner and Hoffman in the early

1980s [3, 37, 36].
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Figure 19: Presence of sneakers in the high food availability regime, dominants in the low

food availability regime, for increased stochasticity.

We suspect that the behavioral differences between the wrasses and the cephalopods

result in distinctions regarding parameter dependence. For instance, we believe that the

dominant strategy can reasonably be stable for the wrasse in a very low predation environ-

ment. We cannot say the same for the cuttlefish (assuming sufficiently low environmental

variability). In the case of the cichlid Lamprologus Callipterus, we suspect that the domi-

nant population may receive an altruistic benefit towards its genetic fitness since its nests

are utilized by a dwarf population.

With the inclusion of a stochastic environment, we recognize that a mixed strategy

output from our simulations for a given parameter set is itself a random variable, whose

mean depends on the position in the parameter space that the setting is categorized as. In

particular, there is asymmetry in this effect in that the sneaker strategy is more likely to

prevail in a stochastic, high food availability environment than the dominant strategy in a

comparably variable but scarce case.
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Appendix A List of Equations for 1.3

Mauthner Cell Functions:

minf (v) = 0.5(1 + tanh((v − vf1)/vf2)) (43)

winf (v) = 0.5(1 + tanh((v − vf3)/vf4)) (44)

τw(v) =
1

cosh((v − vf3)/(2vf4))
(45)

mwinf (v) = 0.5(1 + tanh((v − vf3)/mvf4)) (46)

mτw(v) =
1

cosh((v − vf3)/(2mvf4))
(47)

msinf (v) =
1

1 + exp(−(v + θs)/mss)
(48)

msyn1 = mgsynms2(mv1 −mvsyn) (49)

msyn2 = mgsynms1(mv2 −mvsyn) (50)

pul(t) = u(t)u(dur − t) (51)

Mauthner Cell Differential Equations:

mv[1, 2]
′ = (mbiapp +mstim[j]pul(t− stimon[j])− gcaminf (mv[j])

(mv[j]− vca)− gkmw[j](mv[j]− vk)− gl(mv[j]− vl)

−msyn[j]− gkca(mca[j]/(mca[j]/(mca[j] + ca0))(mv[j]− vk))/cm

(52)

mw[1, 2]
′ = mϕ(mwinfmv[j]−mw[j])/(mτwmv[j]) (53)
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ms[1, 2]
′ = mα(1−ms[j])msinfmv[j]−mβms[j] (54)

mca[1, 2]
′ = mϵ(−µgcaminfmv[j](mv[j]− vca)−mca[j]kca) (55)

Fast Motor Neuron Functions:

fmnsyn1 = fmngsynms1(fmnv1 − fmnvsyn) (56)

fmnsyn2 = fmngsynms2(fmnv2 − fmnvsyn) (57)

Fast Motor Neuron Differential Equations:

fmnv[1, 2]
′ = (fmniapp − gcaminffmnv[j](fmnv[j]− vca)−

gkfmnw[j](fmnv[j]− vk)− gl(fmnv[j]− vl)−

fmnsyn[j]− gkca(fmnca[j]/(fmnca[j] + ca0))(fmnv[j]− vk)/cm

(58)

fmnw[1, 2]
′ = fmϕ(winffmnv[j]− fmnw[j])/(τwfmnv[j]) (59)

fmnca[1, 2]
′ = fmϵ(−µgcaminffmnv[j]

(fmnv[j]− vca)− fmnca[j]kca)
(60)

Inhibitory Interneuron Functions:

mtisyn = mtigsyn(ms1 +ms2)(inv − ivsyn (61)

mtisinf (v) =
1

(1 + exp(−(v + θs)/mtis))
(62)

itssyn1 = i2mngsynins(smnvv1 − i2mnvsyn) (63)

itssyn2 = i2mngsynins(smnvv2 − i2mnvsyn) (64)

Inhibitory Interneuron Differential Equations:
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in′
v = (iiapp+ gcaminf inv(inv − vca)− gkinw

(inv − vk)− gl(inv − vl)−mtisyn−

gkca(inca(inca + ca0))(inv − vk))/cm

(65)

in′
w = iϕ(winf inv − inw)/(τwinv) (66)

in′
s = ialpha(1− ins)(mtisinf inv − iβins) (67)

in′
ca = iϵ(−µgcaminf inv(inv − vca)− incakca) (68)

CPG Functions:

cpgsyn1 = cpggsyncpgs2(cpgv1 − cpgvsyn) (69)

cpgsyn2 = cpggsyncpgs1(cpgv2 − cpgvsyn) (70)

i2cpgsyn1 = i2cpggsynins(cpgv1 − i2cpgvsyn) (71)

i2cpgsyn2 = i2cpggsynins(cpgv2 − i2cpgvsyn) (72)

CPG Differential Equations:

cpg′x = −cpgx/τcpgx + (stimon)pul(t− stimon)(1− cpgx) (73)

cpgv[1, 2]
′ = (cpgiapp + cpgx − gcaminfcpgv[j]

(cpgv[j]− vca)− gkcpgw[j](cpgv[j]− vk)−

gl(cpgv[j]− vl)− cpgsyn[j]− i2cpgsyn[j]− gkca

(cpgca[j]/(cpgca[j] + ca0))(cpgv[j]− vk))/cm

(74)
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cpgw[1, 2]
′ = cpgϕ(winfcpgv[j]− cpgw[j])/(τwcpgv[j]) (75)

cpgw[1, 2]
′ = cpgα(1− cpgs[j])sinf (cpgv[j])− cpgβcpgs[j] (76)

cpgca[1, 2]
′ = cpgϵ(−µgcaminfcpgv[j](cpgv[j]− vca)− cpgca[j]kca) (77)

Slow Motor Neuron Functions:

smnsyn1 = smngsyncpgs1(smnv1 − smnvsyn) (78)

smnsyn2 = smngsyncpgs2(smnv2 − smnvsyn) (79)

Slow Motor Neuron Differential Equations:

smnv[1, 2]
′ = (smniapp − gcaminfsmnv[j](smnv[j]− vca)−

gksmnw[j](smnv[j]− vk)− smnsyn[j]− itssyn[j]−

(gkca)smnca(smnca[j]/(smnca[j] + ca0))(smnv[j]− vk))/cm

(80)

smnw[1, 2]
′ = smϕ(winfsmnv[j]− smnw[j])/(τwsmnv[j]) (81)

smnca[1, 2]
′ = smϵ(−µgcaminfsmnv[j]

(smnv[j]− vca)− smnca[j]kca)
(82)

Parameter Values: vf1 = −1.2, vf2 = 18, vf3 = 12, vf4 = 17.4, gca = 4, vca = 120, gl =

2, gk = 8, vl = −60, vK = −84, iapp = 45, ϕ = 0.23, ss = 0.2, θs = 0, vsyn = 30, gsyn =

0.1, cm = 20, kca = 1, gkca = 0.25, µ = 0.2, ca0 = 10,mvsyn = −50,mgsyn = 0.5,mβ =

0.08,mα = 10,miapp1 = 3,miapp2 = 0,mbiapp = 40.5,mss = 4,mvf4 = 17,mϵ =

0.005,mϕ = .23, fmngsyn = 0.4, fmnvsyn = 30, fmniapp = 38, fmϵ = 0.005, fmϕ =

0.225, 2agfmn = 0, fmnw = 0.5,mtigsyn = 0.2, ivsyn = 30, iα = 10, iβ = 0.00035, iiapp =

40.4,mtis = 1, i = 0.005, i = 0.225, 2agin = 0, i2mngsyn = 0.6, i2mnvsyn = −50, iinw =

1, cpgvsyn = −30, cpggsyn = 0.3, cpgβ = 0.2, cpg = 10, cpgiapp = 44.7, cpgϵ = 0.005, cpgϕ =
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0.23, i2cpggsyn = 0, i2cpgvsyn = −50, smngsyn = 0.37, smnvsyn = 25, smniapp = 40.4, smϵ =

0.005, sm]phi = 0.23, τcpgx = 300, dur = 50, stimon = 2000, cpgx = 300
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Appendix B Parameter Exposé for 2.0

For the mating and growth seasons, respectively, we define transition matrices:

P = {Pij}, Q = {Qij}. (83)

Chapter 2 outlined a series of statutes for choosing reasonable values to act as entries of

these matrices, some of which are worthy to be restated. No-change probabilities (Pii) will

be balanced by equation (28). Equations (32) - (34) demonstrate the influence of food avail-

ability and predation on transition elements, while equation (35) summarizes the occurrence

of new births in the growth season (with δ = 0.2 chosen). The probability of leaving the

mating state on any given day is set to be one. Any transition probability gone unmentioned

can be presumed to be zero; the astute reader will observe such omissions to be consistent

with the transition diagrams (figures 9, 11, and 16).

The articulation of proportionality constants remains to be specified. These choices are

made with the following guiding principles in mind:

• The sneaker male is more likely to increase its energy level in a given day than the

dominant male.

• Though the dominant male is slower to evolve, it is less likely to subsequently loose

energy.

• The sneaker male is more likely to die than the dominant.

• The sneaker male is less likely to transition from the high energy state to the mating

state than the dominant male.

Baseline Parameters (Wrasse):

Initialize keystone parameters α, β. For the two dimensional parameter sweeps, α was

swept from 1.20 to 2.00, β from 10−5 to 0.02. This choice magnifies the curve of change in

ESS. These have been re-scaled to a 1 to 100 scale for the purpose of figures.
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Low Energy Sneaker Transitions:

PXLS = QXLS = 4β/α

QHSLS = 0.0625α

High Energy Sneaker Transitions:

PXHS = QXHS = 1.6β/α

PLSHS = QLSHS = 0.008/α

PMSHS = 0.1

QHSLD = 0.001

Low Energy Dominant Transitions:

PXLD = QXLD = 2.6β/α

QHDLD = 0.0125α

High Energy Dominant Transitions:

PXHD = QXHD = 0.8β/α

PLDHD = QLDHD = 0.06α

PMDHD = 0.4

Modified Behavior:

Unless otherwise stated, the transition probabilities in the cephalopod and cichlid cases

will be the same as those listed for the wrasses.

In the case of cephalopods, QXLS and QXHS need to be be updated each day of the

growth season to account for cannibalism; equation (36) summarizes this mechanism. The
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proportionality constants here are 4 and 1.6 for the low and high energy cases, respectively,

as in the wrasse case. To incorporate an increased growth speed, the probabilities QHSLS

and QHDLD were multiplied by two relative to the wrasse case. The probability QLDHS was

set to zero.

In the case of cichlids, altruism is accounted for by updating QHDLD each day according

to the following specification:

QHDLD = 0.0124α + 0.03(LW [t] +HW [t]).

Here the 0.03 proportionality constant can be interpreted as a mean relatedness from Hamil-

ton’s rule [8, 9]. The food availability sweeps shown in figure 17 fixed β = 0.001, while

the predation sweeps fixed α = 1. The remaining transition probabilities for the dwarfs are

listed below.

High Energy Dwarf Transitions:

PXHW = QXHW = β/α

PLWHW = QLWHW = 0.008/α

PMWHW = 0.25

Low Energy Dwarf Transitions:

PXLW = QXLW = β/α

QHWLW = 0.5α

Given these values, one could fill in the transition matrices P andQ, and then apply equations

(30) and (31) to simulate a population.
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[29] D. Schütz and M. Taborsky. Giant males or dwarf females: what determines the
extreme sexual size dimorphism in lamprologus callipterus?. Journal of Fish Biology,
57(5):1254–1265, 2000.

[30] T. Shimazaki, M. Tanimoto, Y. Oda, and S. Higashijama. Behavioral role of the
reciprocal inhibition between a pair of mauthner cells during fast escapes in zebrafish.
Journal of Neuroscience, 39(7):1182–1194, 2019.

[31] J. M. Smith. The theory of games and the evolution of animal conflicts. Journal of
Theoretical Biology, 47:209–221, 1974.

[32] J. M. Smith. Evolutionary game theory. Physica D: Nonlinear Phenomena, 22:43–49,
1986.

[33] K. M. Stiefel. Why are there no eusocial fishes? Biological Theory, 7:204–210, 2013.

42



[34] M. Taborsky. Sneakers, satellites, and helpers: parasitic and cooperative behavior in
fish reproduction. Advances in the Study of Animal Behavior, 23(1):e100, 1994.

[35] M. Taborsky. The evolution of bourgeois, parasitic, and cooperative reproductive
behaviors in fishes. Journal of Heredity, 92(2):100–110, 2001.

[36] R. R. Warner. Mating systems, sex change and sexual demography in the rainbow
wrasse, thalassoma lucasanum. Copeia, pages 653–661, 1982.

[37] R. R. Warner and S. G. Hoffman. Population density and the economics of territorial
defense in a coral reef fish. Ecology, 61(4):772–780, 1980.

[38] R. R. Warner and S. E. Swearer. Social control of sex change in the bluehead wrasse,
thalassoma bifasciatum (pisces: Labridae). The Biological Bulletin, 181(2):199–204,
1991.

43


	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Startle response of Zebrafish as sensory stimulus is increased. M-cells, fast motor neurons, central pattern genrating neurons, and slow motor neurons are considered.
	2. Startle response of Gobies as sensory stimulus is increased. M-cells, fast motor neurons, central pattern genrating neurons, and slow motor neurons are considered.

	List of Figures
	1. The goby Amblyeleotris Rubrimarginatus stands by as the shrimp clears sand from the burrow. Photography courtesy of Klaus M. Stiefel.
	2. Neural circuit reproduced by Model 1
	3. Behavior of the simple model in three parameter regimes. Stimulus is applied at t = 25ms, removed at t = 225ms. The parameter Imax is increased from 0.1 (a) to 1.8 (b) to 3.5 (c).
	4. Bifurcation diagram of Model 1 with respect to input strength (Imax). Here there is no asymmetry in the input received by the M-cells. That is, q = 1. Red corresponds to a stable fixed point, black unstable. Green corresponds to a stable limit cycle, blue unstable.
	5. Bifurcation diagram of Model 1 with respect to input strength (Imax). Here there is asymmetry in the input received by the M-cells. That is, q = 0.99.
	6. Two parameter bifurcation diagram following the location of the Hopf point (dark blue) and the pitchfork bifurcation (light blue). Input strength (Imax) and asymmetry (q) are varied. Notably this plot looks like a fish.
	7. Neural circuit reproduced by Model 2 landsittel21. Zebrafish and Goby variations are included. The zebrafish model is put forth by Miller et. al. 2017 miller17. Both M-cells may recieve stimulus, thought not necessarily equal doses. 
	8. The Indo-pacific wrasse Thalassoma lutescens. Photography courtesy of Klaus M. Stiefel.
	9. Wrasse transition diagrams for the mating season (blue) and growth season (red). An arrow from one state to another indicates that such a transition has a nonzero probability of occurring.
	10. Stability of the sneaker and dominant mating strategies among wrasses as we iterate across values of food availability and predation. Isoclines corresponding to observations are included; we can then make predictions of where cases lie relative to each other in the parameter space warner82, warner80, warner91, alonzo00.
	11. Cephalopod transition diagrams for the mating season (blue) and growth season (red). 
	12. Two male cuttle fish (left) engaged in a conflict over a female (right). The nesting male guarding the female is visibly larger than the intruder. Read the full story here: [LINK]. Photography courtesy of Klaus M. Stiefel.
	13. Stability of the sneaker and dominant mating strategies among cephalopods as we iterate across values of food availability and predation. Isoclines corresponding to observations are included; we can then make predictions of where cases lie relative to each other in the parameter space hanlon02, naud04.
	14. Predicted sneaker proportion at ESS as a function of Food Availability and Predation for wrasses (a) and cephalopods (b). 
	15. The specific effect each individual wrasse-cephalopod distinction has on ESS, across variation in predator presence. The normalized food availability is set to be 40. 
	16. Cichlid transition diagrams for the mating season (blue) and growth season (red).
	17. One dimensional parameter sweeps across food availability () and predator presence (). Cases with and without Hamilton's rule are considered. 
	18. Simulations including a stochastic variable . The extent of variation is judged by its variance, 2. Specifically in (a) = 0.01, (b) = 0.04, (c) = 0.08, and (d) = 0.15
	19. Presence of sneakers in the high food availability regime, dominants in the low food availability regime, for increased stochasticity. 

	Preface
	1.0 The Shrimp-goby Escape Communication System
	1.1 Introduction
	1.2 Model 1: M-Cell Oscillations
	1.2.1 Overview
	1.2.2 Analysis
	1.2.3 Results

	1.3 Model 2: CPG Oscillations
	1.3.1 Overview
	1.3.2 Results

	1.4 Conclusions

	2.0 Alternative Mating Strategies in Cephalopods and Fishes
	2.1 Introduction
	2.2 Approach
	2.3 Basal Wrasse Model
	2.3.1 Overview
	2.3.2 Results

	2.4 Cephalopod Model
	2.4.1 Overview
	2.4.2 Results

	2.5 Cichlids
	2.5.1 Overview
	2.5.2 Results

	2.6 Stochastic Considerations
	2.6.1 Overview
	2.6.2 Results

	2.7 Conclusions

	Appendix A. List of Equations for 1.3
	Appendix B. Parameter Exposé for 2.0
	Bibliography

