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University of Pittsburgh, 2022

Traditional pathological diagnosis is considered as the gold standard by clinicians. How-

ever, this manual practice can be inefficient, error-prone, and highly subjective. To mitigate

these issues, digital pathology is gaining traction which has attracted researchers to build

black-box AI-based approaches intended to assist anatomic pathology workflows. The suc-

cess of such approaches is dependent on large-scale generation of pathologist annotated high

quality training data which is a serious bottleneck in computational pathology. Additionally,

the AI systems must be interpretable and minimize the time-to-decision to achieve clinical

adoption and possibly facilitate regulatory agency approvals.

We hypothesize that building computational models of already established anatomic

pathology knowledge will alleviate the training data generation bottleneck and develop clin-

ically interpretable models. In addition, implementing computational pathology workflows

on the emerging customizable computing AI-based architectures will satisfy high-throughput

and minimal time-to-decision requirements.

In this thesis, we tested our hypothesis on differential diagnoses of breast biopsies. We

invoke analytical models to provide a quantitative assessment of the structural changes in the

breast tissue along a diagnostic continuum triggered by atypia and other malignancies. We

further combine the analytical models with a prototype-driven learning strategy to provide

interpretability and achieve a superior classification performance in diagnosing breast biop-

sies over the state-of-the-art methods. To showcase the potential for seamless integration

of our computational pathology framework into clinical workflows, we use a next generation

high performance AI-based computing architecture to detect histological structures in breast

tissue and classify them as high-risk vs low-risk. A key contribution of our framework is in

building a communication platform for pathologists and computational scientists to interact

and develop AI-based applications and to enhance patient care in a clinical setting.
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1.0 List of abbreviations

DP Digital pathology

WSI Whole slide image

FDA Food and drug administration

WHO World health organization

AI Artificial intelligence

ML Machine learning

TAT Turnaround time
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pCAD Pathologist’s computer-assisted diagnosis

CNN Convolution neural networks
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TP True positive

FP False positive

TN True negative

FN False negative

R Recall

wF weighted F-score
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ALCF Argonne Leadership Computing Facility

GMS Glass microscope slides

RDA Reconfigurable dataflow architecture

DDP Data distributed parallel training
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2.0 Introduction

In the United States 13% of the women develop breast cancer during their lifetime

and prognosis is poor for around 3% of them [2]. In diagnosing breast biopsies, patholo-

gists examine the tissue slides under a microscope for recommending an optimal treatment

plan for the patient which is considered as the gold standard by clinicians. However, this

manual practice is inefficient, error-prone, and highly-subjective. Negative consequences of

misdiagnosis can manifest as over-treatment with surgery and long-term drug therapies, or

under-treatment with subsequent cancer-related morbidity or mortality. To mitigate these

issues, digital pathology (DP) has been slowly gaining traction as whole slide image (WSI)

technology has matured and lowered in cost. In 2017, the US Food and Drug Administra-

tion (FDA) began approving WSI systems for primary diagnosis [3]. In addition, due to the

COVID-19 pandemic, more regulatory relaxation or clarification has resulted in laboratories

using WSI systems in new and unconventional ways that permit pathologists to render diag-

noses from home [4]. This revolution has attracted researchers to build black-box AI-based

approaches to assist anatomic pathology workflows. However, the success of such approaches

is dependent on large-scale generation of pathologist annotated high quality training data

which is a serious bottleneck in computational pathology. Additionally, the AI systems must

be interpretable and minimize the time-to-decision to achieve clinical adoption and possibly

facilitate regulatory agency approvals.

In this thesis, we build computational models of already established anatomic pathology

knowledge to alleviate the training data generation bottleneck and develop clinically inter-

pretable models. Further, we also implement our computational pathology workflows on the

emerging customizable AI-based compute architectures which satisfies high-throughput data

processing and achieves the desired turnaround time (TAT) requirements.

In this chapter, we discuss the challenges faced by traditional pathology practice, rise

of digital pathology, related work in the domain of digital and computational pathology,

contributions of this thesis, and list of publications.

3



2.1 Challenges faced by traditional pathology practice

In traditional pathology practice, tissue samples are procured, cut and dyed, and deliv-

ered to a pathologist or a team of pathologists for analysis. Once a diagnosis has been made,

there may be a review process where the slides are sent to additional pathologists for further

analysis. This process causes delays while the sample is being moved and analyzed, which

leads to suspended patient care [5]. A schematic of pathology workflow is shown in Figure 1,

where we sub-categorized the actions that are performed in a pathology practice under three

main categories; Pre-Diagnosis, Diagnosis, and Post-Diagnosis. We assert that ML tools

can improve the standards for these actions by assisting the pathologists or clinicians. For

example, an intelligent software tool can be used to sort new pathology cases by analyzing

the digitized slides prior to diagnosis; retrospectively, it can rank the cases according to their

severity or complexity. As a consequence, it will allow better case assignment among the

anatomical pathologists to improve diagnostic efficiency.

In addition to inefficiencies within current analog routines of pathology, external devel-

opments are also concerning. The cancer cases are expected to rise with an increase in the

aging population (increase from 1.7 million cases in 2012 to 2.3 million in 2025) [6]. As the

number of cancer cases grow, the forecasted shortage of pathologists is alarming (declining

from 5.7 to 3.7 per 100,000 people between 2010 and 2030) [7]. Today, major pathology

practices are having problems with understaffing and increased workloads. This is even

more problematic in areas that are traditionally underserved (e.g., rural areas, community

hospitals, etc.) [7].

2.2 Rise of digital pathology

Recent advances in digital imaging technology and computing power have paved the

way for a shift in the pathology workflow. Digital pathology (DP) field has been slowly

gaining traction as whole slide image (WSI) technology has matured and lowered in cost.

In 2017, the US Food and Drug Administration (FDA) began approving WSI systems for
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Figure 1: A generalized pathology workflow with detailed sub-categorized actions, in where

AI can help elevate the current standards of a pathology practice to be more efficient and

accurate.

primary diagnosis [3]. While dissection and specimen cutting still remain a manual process,

various types of staining and tissue processing can be automated to be more consistent and

less time-consuming [8, 9]. Additionally, the field of digital pathology (DP) seeks to solve

some of the issues plaguing analogue slide sharing by enabling the high-resolution scanning

and distribution of cases at rapid speeds, saving pathologists’ time [10] while not affecting

performance [11]. The need for DP solutions especially surfaced during the recent COVID-19

pandemic, which has posed significant challenges to the pathology profession where pathology

departments seek to offer remote functionality to their staff [4, 12].

The increase in the pathologists’ workload coupled with the growth of the digital pathol-

ogy market, encourage significant opportunities for computational tools for anatomical pathol-

ogists and cancer pathologists in particular. DP enables the digitization of histological im-

ages, opening up many possible benefits. Having access to computing tools can provide

pathologists with more quantifiable data relevant to risk assessment [13]. DP has proven

to be successful for use in teleconferencing [14], allowing for simultaneous viewing of whole

case files by multiple pathologists. This allows doctors the ability to virtually discuss a case
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with a pathologist who may be specialized in a field relative to the patient, such as breast

pathology [13]. Additionally, DP makes the process of getting a second opinion much easier

and faster. The digitization of case data also makes cross-site patient data synchronization

much easier [13]. Further, digitization allows for easy saving of cases for use in future studies,

as well as for educational purposes. Overall, this push towards DP will lead to a greater

level of pathologist involvement in patient care [8, 15].

While providing all of the aforementioned benefits, digitization further allows for the

usage of intelligent computer systems to aid in the diagnostic process. This paves the way

for computational pathology; using computers to process high-dimensional data, such as

images or medical records, to improve health care [16]. While this field is still young and

growing, we are already seeing a surge of successful applications of various computational

methods to pathological data to aid in the diagnostic process. One specific framework that

modern computing power allows us to use is machine learning, wherein a computer system

learns to optimize for a specific task, such as region-of-interest (ROI) detection, classification,

etc.

2.2.1 Traditional image processing approaches in digital pathology

There are a couple of high-quality open-source tools available online that have been used

for basic image processing on WSIs or snapshots of tissue regions. Since these applica-

tions are defined as open-source, they can be freely accessed, used, and shared by anyone.

The first application pathologists can easily access and use is the popular ImageJ soft-

ware. It is a Java-based image processing program developed as a collaboration between

the National Institutes of Health (NIH) and Laboratory for Optical and Computational

Instrumentation at the University of Wisconsin [17]. It can be downloaded through their

website (https://imagej.net/), where additional tutorials, use cases, and documentation is

also provided. Alternatively, the “Fiji” distribution of ImageJ has the most comprehensive

set of capabilities for histopathological image processing and is also available open-source

(https://fiji.sc/).

The second open-source application for analyzing pathology images is QuPath [18].
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Figure 2: A typical machine learning pipeline for digital histopathological image analysis.

QuPath was developed at the Queen’s University Belfast and it provides more capable

tools embedded for tissue microarray analysis and for common pathology problems (such

as automatic cell detection) (https://qupath.github.io/). A third well-known software is the

Cell Profiler (https://cellprofiler.org/). It was developed by Broad Institute of MIT and

Harvard and it enables pathologists and scientists to analyze cells in digital histopathology

images [19].

2.2.2 Artificial intelligence in digital pathology

Enthusiasm for DP has attracted researchers in building computational pathology (CP)

tools that aim to assist pathologists in diagnoses. An innovative framework called patholo-

gists’ computer-assisted diagnosis (pCAD) was projected as a result of the emerging trends in

DP which motivated the application of AI towards visual assessment of the tissue slides [20].

We envision that ML tools can improve the standards for these actions by assisting the

pathologists or clinicians. For example, an intelligent software tool can be used to sort new

pathology cases by analyzing the digitized slides prior to diagnosis, it can rank the cases

according to their severity or complexity, in result it will allow better distribution of cases

among the pathologists in a practice to improve efficiency. Most of the ML tools in DP space

is related to image analysis as visual assessment of tissue slides is the key for diagnosis.
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Fig. 2 illustrates an ML-based generalized workflow for histopathological image analysis

on a sample set of WSIs belonging to the breast organ (Fig. 2A). The tissue regions of

WSIs are further segmented into one or more categories suitable for subsequent analysis

(Fig. 2B-E). Few researchers have built algorithms for diagnostic inference from localized

regions of interests (ROIs) (Fig. 2C) and some have worked with analyzing morphological

properties of duct and nuclei (Fig. 2D-E). Several studies have also been published which uses

pixels or patch based information from WSIs as illustrated in Fig. 2B. The pre-processing of

WSIs is followed by feature extraction which widely varies across different studies (Fig. 2F).

Several attempts have been made to automate the extraction of qualitative features which

are frequently used by pathologists for clinical diagnosis. Some of these features include cell

size, shape, and spatial distribution. Additionally, efforts have been undertaken in extracting

morphological and pixel intensity features such as gray level co-occurrence matrix (GLCM).

In contrast to extracting hand-crafted features, popular deep learning algorithms powered

by convolutional neural networks (CNNs) works on the images (ROIs or WSIs) directly to

extract features with the help of different filters.

Feature extraction is followed by data training which is shown in Fig. 2G. Depending

upon the availability of labels, training stage falls under three broad categories: unsuper-

vised, semi-supervised, and supervised. In order to choose the optimal hyperparameters for

obtaining the best classification model, cross-validation is carried out on the training set.

Next, this model is deployed on the testing set to obtain class predictions. The classifi-

cation performance is quantitatively assessed through evaluation metrics (Fig. 2H). Some

of the commonly used evaluation metrics are: accuracy, precision, recall, weighted F-score,

area-under-the-curve, ROC score, etc.

2.3 Related work

Breast cancer: Some of the popular methods previously explored for classifying breast

lesions are based on deep-learning (DL) architectures such as fully-convolutional networks [21],

aggregating patch-level information to label breast lesion images using traditional CNNs [22],
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and multi-purpose networks such as Y-Net [23], a modified U-Net architecture capable of per-

forming segmentation and classification. An alternate approach to diagnosing breast lesion

images is characterizing the “appearance” or texture using descriptors such as Local Binary

Pattern (LBP), Grey Level Co-Occurences Matrices (GLCM), and Gabor filters [24–27].

In [25], the authors used GLCM, Graph Run Length Matrix (GRLM), and Euler number

features to detect invasive breast cancer. In [24], authors analyzed the texture features such

as GLCM, LBP, Histogram of Oriented Gradients (HOG), and several others on Breast Can-

cer Histopathological Image Classification data (BreakHis) [28]. Araújo, Teresa, et al. used

a CNN architecture to perform a 4-class (benign, atypia, DCIS and invasive) and 2-class

classifications achieving accuracies of 77.8% and 83.3% respectively using a Support Vector

Machine classifier on the features extracted from a deep-learning framework [29]. They con-

ducted their study on the the dataset containing a total of 269 high-resolution images with a

pixel size of 0.42 µm × 0.42 µm [30]. Later in 2018, Nazeri, K. et.al., used a two-stage CNN

on the same dataset which was class balanced achieving an overall accuracy of 95% on the

four-way classification task [31]. The authors used the first network to extract salient fea-

tures of image patches and a second network to perform classification on the entire image.

More recently, Lu, Ming Y., et al. and others designed a DL framework using a weakly-

supervised strategy to address multi-class classification problem and tested their methods

on 3-class TGCA Kidney dataset, 2-class Non-small Cell Lung Carcinoma (Adenocarcinoma

and Squamous Cell Carcinoma subtypes) and Breast cancer metastasis detection on CAME-

LYON16 and CAMELYON17 dataset [32]. They adopted a clustering-constrained attention

based multiple instance learning (CLAM) to analyze WSIs while offering high-throughput

and interpretability using attention maps. A slide-level classification AUC of around 0.95

was achieved on the combined datasets used for breast cancer detection. All these methods

perform pixel-level analysis and fail to account for the spatial organization and interactions

between biological entities emphasized by the pathologists during diagnosis.

More recently, graph-based convolutional neural networks (GNNs) have addressed this

limitation of pixel-level analysis by constructing multi-scale graph topologies to model spatial

interactions among histological structures for characterizing breast tissue images [1, 33–35]

and colorectal cancer images [36, 37]. In contrast to applying sophisticated DL techniques,

9



there have been several studies which focused on extracting histologically relevant morpho-

logical features [38, 39]. The authors in [39] performed diagnostic classification by building

feature representations from the structural alterations of the breast ducts. In [38], authors

computed cytological and architectural features of ductal cells to perform diagnostic classifi-

cation. However, the principal advantage of our method is the ease of visual interpretability

to the classification outcome which is not provided by a majority of black-box deep learning

models [1,35]. Further, this form of interpretability is crucial in applications such as clinical

diagnosis, wherein the pathologists are required to trust the AI system prior to launching it

in a clinical setting.

Prostate Cancer: Prostate pathology follows a classification system based on Gleason

grading whose scores are decided upon the severity of tissue under inspection. In 2019, Garcia

G. et. al. and team focused on gland classification by capturing patterns associated with

Gleason grades (2 and 3) that suffers from maximum inter-pathologist variability [40]. For the

first time, a classification workflow was built using hand-crafted features from morphological,

textural, fractal dimension, and contextual information present in the glands to come in

unison [41]. They do a comparative study based on using classical ML algorithms on hand-

crafted features and deep-learning approach by implementing a modified VGG19 architecture

on 35 WSIs. In the 3-class classification task of identifying false glands (artefacts), benign

glands, and Gleason grade 3 glands, a non-linear Support Vector Machine implemented on

carefully designed and selected hand-crafted features marginally outperformed the deep-

learning approach to achieve an accuracy of 0.876 ± 0.026.

Lung Cancer: Another field that has attracted the attention of latest technological ad-

vancements of ML in DP is lung cancer pathology. Non-small cell lung cancer consists of two

most common subtypes: Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC).

In 2018, Coudray, Nicolas, et al. extended the usability of deep learning in histopathology

when they successfully predicted 6 commonly mutated genes in LUAD in addition to per-

forming usual classification of an image as cancer vs no-cancer [42]. First, a deep-learning

model based on Inception V3 was deployed to perform tumor classification of lung on 1,634

WSIs obtained from Genomic Commons database [43]. The classification task of cancer vs

no-cancer achieved a state-of-the-art AUC of ∼ 0.99 and binary classification of tumor type
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(LUAD vs LUSC) achieved an AUC of 0.97. Interestingly, ∼ 83% of the 54 TCGA images

incorrectly classified by at least one pathologist was corrctly classified by the deep-learning

model. Second, a novel approach was undertaken to predict gene mutations in LUAD slides

by modifying the network architecture which scientifically proved that gene mutations would

affect the tumor cells pattern on a lung cancer WSI. Among the six mutated genes that were

predicted using image data (EGFR, STK11, FAT1, SETBP1, KRAS, and TP53), STK11

prediction achived the best performance of ∼ 0.85 AUC.

Later in 2019, Wei, Jason W., et al. used ResNet architecture to classify histologic

patterns observed in LUAD which is sometimes challenging making differential diagnosis

subjective [44,45]. Following the guidelines published by the WHO in 2015, the authors built

a CNN model to identify lepidic, acinar, papillary, micropapillary, and solid patterns. Three

pathologists on team annotated 4161 ROI crops for training, 1068 patches for development,

and 422 WSIs for testing to have at least one of the five histologic patterns or belong to benign

case. This was the first study which conceptualized an automated classification of LUAD

patterns which is beneficial to assist the pathologists for decision-making. Further, among the

spectrum of discordances across all predominant patterns, 39.5% disagreement was observed

between lepidic and acinar patterns which are assigned as low-grade and intermediate-grade

respectively. In the classification task of identifying histologic patterns, the deep-learning

model achieved an average kappa score of 0.525 which was greater than 3 pathologist’s

individual performances of 0.454, 0.515, and 0.514 respectively.

2.4 Thesis contributions

Pathological diagnosis is considered as the gold standard by clinicians. However, this

manual pathology practice can be inefficient, error-prone and highly subjective. To mitigate

these issues, digital pathology is gaining traction which has attracted researchers to build

black-box AI-based approaches intended to assist anatomic pathology workflows. The suc-

cess of such approaches is dependent on large-scale generation of pathologist annotated high

quality training data which is a serious bottleneck in computational pathology. My doctoral
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work is motivated by the fact that the success of AI-based computational pathology applica-

tions must be interpretable, minimize the time-to-decision and can integrate into anatomic

pathology workflows to achieve clinical adoption and possibly facilitate regulatory agency

approvals. The overarching goal of this thesis is to build computational models of already es-

tablished anatomic pathology knowledge to alleviate the training data generation bottleneck

and develop clinically interpretable models. Additionally, we demonstrate a proof-of-concept

study of integrating AI-based applications in anatomic pathology workflows on the emerging

customizable AI-based architectures which satisfies high-throughput and achieves required

turnaround time.

2.4.1 Outline

Chapter 2: This chapter presents an approach to build analytical models to capture

tissue features that aid in the differential diagnosis of breast biopsies and evaluates the

inferential power of these hand-crafted features. These features are assembled following

guidelines in the WHO classification of the tumors of the breast (an essential reference for

pathologists, clinicians, and researchers) and in consultation with pathologists on team.

Chapter 3: This chapter presents a prototype-driven machine learning framework for

the differential diagnosis of breast biopsies which is amenable to clinical interpretability.

Chapter 4: This chapter extends the strategies outlined in chapter 3 on a broad spec-

trum of breast biopsies. It also presents a new approach for the automatic selection of

class-specific prototypes, analytical modeling of additional tissue features, and an improved

prototype-driven ML framework to further enhance the diagnostic classification performance.

Chapter 5: This chapter presents a proof-of-concept study to integrate AI-based anatomic

pathology applications in clinical settings by training our computational pathology pipelines

on remote customizable high-performance AI-enabled compute architectures provided by

state-of-the-art data centers and applying the pipelines on edge devices for real-time clinical

applications. For demonstration, our pipeline detects histological structures in breast tissue

and classifies them into two diagnostic categories, high-risk and low-risk.
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Chapter 6: This chapter summarizes the key contributions and findings of my thesis

and discusses the clinical impact.
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3.0 Modeling tissue features for differential diagnosis of breast biopsies

3.1 Chapter summary

The goal of this thesis chapter is to build analytical models for a dictionary of tissue

features that aid in the differential diagnosis of atypical breast biopsies and evaluate the in-

ferential power of these hand-crafted features. Diagnosis of high-risk atypical breast biopsies

is challenging and remains a critical component of breast cancer screening, presenting even

for experienced pathologists a more difficult classification problem than the binary detection

task of cancer vs not-cancer. Following guidelines in the WHO classification of the tumors

of the breast (an essential reference for pathologists, clinicians and researchers) and in con-

sultation with our team of breast sub-specialists (N = 3), we assembled a visual dictionary

of sixteen tissue features (e.g., cribriform, picket-fence - confined within a duct), a subset

that pathologists frequently use in making complex diagnostic decisions of atypical breast

biopsies. We invoke parametric models for each feature using a mix of unary, binary and

ternary features that account for morphological and architectural tissue properties. We use

1441 ductal regions of interest (ROIs) extracted automatically from 93 whole slide images

(WSIs) with a computational pathology pipeline. We collected diagnostic labels for all of the

ROIs: normal and columnar cell changes (CCC) as low-risk benign lesions (=1124), and flat

epithelial atypia (FEA) and atypical ductal hyperplasia (ADH) as high-risk benign lesions

(=317). An example ROI for each of the diagnostic category is shown in Fig 3. We generate

likelihood maps for each tissue feature across a given ROI and integrate this information to

determine a diagnostic label of high- or low-risk. This method has comparable classification

accuracies to the pool of breast pathology sub-specialists. Further, this approach enables a

deeper understanding of the discordance among pathologists in diagnosing atypical breast

biopsies.
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3.2 Introduction

3.2.1 Background

Benign breast biopsy diagnoses account for approximately a million cases annually [46].

The patients are subjected to additional screening procedures depending upon the relative

risk associated with the diagnostic subtypes of the benign biopsies (e.g., high-risk is associ-

ated with atypical hyperplasia) [47, 48]. Over half of the patients diagnosed with atypical

hyperplasia, which is histologically further classified into atypical ductal hyperplasia (ADH)

and atypical lobular hyperplasia (ALH), contract breast cancer within 10 years of screening,

thereby demanding an accurate diagnosis of these precursor lesions.

On the contrary, a recent clinical study showed significant levels of disagreement in dif-

ferential diagnosis of cases with atypia (48 - 56%) resulting in overinterpretation (subjecting

patients to unnecessary medical procedures) and underinterpretation (subjecting patients to

no treatment) [49]. The underlying difficulty in classifying atypia from benign lesions stems

from the fact that diagnostically relevant histopathological patterns overlap in the spectrum

of low- to high-risk lesions, complicating the decision-making process (Fig. 4). In the interest

of patient management, it is convenient to stratify patients into “low- / high-risk” categories

based on their histological evidence and associated risk-factor [48].

3.2.2 Previous work

Previously, we have approached this problem in an unsupervised manner by simply en-

coding cytological properties of nuclear atypia and integrating them with the spatial distri-

bution of the nuclei in relationship to stroma and lumen components of breast tissue (i.e.,

architectural patterns) [38]. Measured in terms of recall of high-risk lesions, the classification

performance reported here (0.76) is a significant improvement over our previous approach

(0.69). Although there are studies in the machine classification of breast tumors [50–53],

many of these do not include diagnostically challenging ADH cases nor provide directions

for a computational understanding of the structural changes in the breast tissue triggered

by atypia and other malignancies. To the best of our knowledge, our work in analytically
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Figure 3: Examples of benign breast lesions.

modeling a visual pattern dictionary that traditionally defines the standards on tumor clas-

sification/ nomenclature for pathologists worldwide is the first of its kind.

3.2.3 Contributions

Following guidelines in the WHO classification of the tumors of the breast [54] (an es-

sential reference for pathologists, clinicians and researchers) and in consultation with our

team of breast pathology sub-specialists (N = 3), we assembled a visual dictionary of a sub-

set of histological patterns/ tissue features that aid pathologists in undertaking differential

diagnoses of atypical breast biopsies (Fig. 1). Further, we built analytical models for each

tissue feature using a mix of unary, binary and ternary features that account for cytological

(nuclear shape and orientation, lumen shape), architectural (intraductal), and spatial-extent

details of low- and high-risk lesions.
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Figure 4: An organization of tissue features frequently used by the pathologists for

diagnosis of atypical breast biopsies on the basis of nuclei shape, orientation of the nuclei,

shape of the lumen, intra-ductal architecture, and spatial spread of the nuclei and lumen.

The frequency of occurrence of these tissue features is different for low- and high-risk

categories. Hence, the diagnosis starts becoming subjective leading to discordance among

pathologists.

3.3 Methods

3.3.1 Segmenting ducts, lumen and nuclei

We designed a new algorithm for segmenting ducts, lumen and nuclei on large scale

WSIs. To start with, WSI images stored in RGB format are color deconvolved into their

respective stain intensities namely, hematoxylin and eosin by using the color deconvolution

plugin in ImageJ [55]. The stain colors are further normalized with a reference dataset to

standardize color variations for downstream processing. To ease the computational burden
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Figure 5: An overview of the duct segmentation strategy: (left) Color deconvolved and

stain normalized hematoxylin stain image from a H&E sample. (middle) We segment this

image into superpixels. Using machine learning (SVM), we predict the stain-labels of the

superpixels and the superpixel-pairs that lie inside a duct. In our model, a duct is defined

by superpixel-pairs that are moderate to heavy stained, and are predicted to lie inside a

duct. The predicted superpixels are shown in green and are overlaid on the original image.

(right) A region-based active contour segmentation is run to separate foreground (ducts)

from the background (rest of the image) based on the means of the hematoxylin stain in

the two regions. This segmentation is based on Chan-Vese segmentation algorithm.

of detecting ducts in a WSI, we built a Gaussian pyramid of the hematoxylin intensity of

the WSI. The hematoxylin intensity image at the coarsest level of the pyramid is broken

into non-overlapping superpixels (area = 300 pixels), which are sets of connected pixels

with similar intensity values, using simple linear iterative clustering (SLIC) algorithm [56].

The innovative steps of our algorithm are in assigning probabilities for the presence of a

duct given a pair of nearby superpixels (“context-ML”) and further identifying all those

superpixels that are “moderate-to-heavily” stained as the ones inside a duct (“stain-ML”).

Using the superpixels identified as initial guesses, we perform a region-based active contour

segmentation [57] that separates foreground (ducts/lumen) from the background (rest of the

image). For hematoxylin and eosin stained images, the cost-function for the active contour

is driven by the difference in the mean of the hematoxylin stain in the foreground and

background regions. For example, two superpixels that have a high probability of being

inside a duct have roughly the same stain (“moderate to heavy stain”) and their boundaries
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are merged iteratively by the active contour optimization. Often ducts appear as “clusters”

and to segment these we run the region-based active contour on the probability map returned

by the context and stain-ML models. The probability maps impute non-zero probabilities

to ducts and regions bridging them, and a region-based active contour model run on the

probability map is more successful in delineating a cluster of ducts.

To identify lumen, we use context- and stain-based ML models to select image regions

that are not part of the ducts – non-tissue areas on the WSI, connective tissue areas and

lumen. We perform connected-component analysis to select and exclude large components,

likely to correspond to non-tissue and connective tissue areas. The remaining components

highlight lumen regions that lie inside ducts and are verified visually in our training images.

To identify and segment nuclei inside a duct, we first select parts of image lying inside a

duct, then use ImageJ to threshold intensities and finally run watershed to delineate the

nuclear boundaries.

3.3.2 Building analytical models of tissue features

We invoke parametric models for tissue features using a mix of unary, binary and ternary

features as shown in Fig. 6. The colorbars over each feature in Fig. 6 indicate the lesion

where the feature is most likely to be found, e.g., large and round nuclei are often found

in high-risk lesions, small and elliptical nuclei in low-risk lesions, and cribriform feature is

exclusive to ADH lesion.

A schematic representation of a subset of the local visual dictionary comprising of 16

tissue features is shown in Fig. 7. This dictionary is formed upon consulting the expert

pathologists and studying pathologist’s guiding references such as the WHO classification of

tumors of the breast [54]. The elements of this dictionary are organized based on the nu-

clei size and shape (small, large, round, elliptical, large-round, small-elliptical), and spatial

spread of the nuclei (crowded, spaced). These morphometric patterns are used to identify ad-

ditional tissue features such as spaced-large, crowded-small, spaced-small, crowded-elliptical,

spaced-round, and large-round-spaced. Further, the orientation of the nuclei and shape of

the lumen is useful to identify higher-order patterns such as picket-fence and cribriform.
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Figure 6: Analytical models of tissue features in the form of (A) unary, (B) binary and (C)

ternary features. (D) Computing likelihood scores to reveal (E) dominant features in

representative images of low- and high-risk biopsies.
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Figure 7: Schematic representation of 16 tissue features useful to diagnose atypical breast

biopsies.

The frequency of occurrence of these features is different for each diagnostic category which

is a major contribution to discordance among pathologists [49]. Since the measurements of

tissue features are amorphous, we take the approach of building a quantitative model and

tune the parameters of this model to match with the consensus diagnosis of tissue features

(templates).

Unary Features: In consultation with the breast pathologists on our team, we selected
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a spectrum of morphological features on the basis of size, shape, and spatial spread around

each nucleus. Nuclear size (quantified using area) is known to provide diagnostic cues in

pathological grading [58–61], with groups of small and large nuclei having a propensity to

belong to low-risk and high-risk lesions respectively [62]. To build analytical models of small

and large, we first construct a histogram of nuclear areas obtained from an ensemble of ROIs

showing prototypical example regions within a duct containing small and large nuclei ( Fig.

6A) and model this histogram with a Gamma distribution.

Next, nuclear shape has been identified as diagnostically meaningful, e.g., CCC lesion

shows dominant elliptical nuclei [63]. We quantitate this feature with roundness measured

as (4π × area)/perimeter2 and ellipticity given by the ratio of length of minor-axis to the

length of major-axis. Roundness ranges from 0 (irregular star-like appearance) to 1 (perfect

circle), while ellipticity characterizes the “flatness” of an object with lower values denoting

highly elliptical nuclei ( Fig. 6A). In each case, because of the intrinsic heterogeneity of

these measurements, we consider a spatial neighborhood around each nucleus, and model

the distributions of roundness with a Gamma distribution and ellipticity with a 2-component

mixture of Gaussians (MoG) model ( Fig. 6A).

Finally, several studies have shown that studying the spatial organization of nuclei pro-

vides insights into the abnormalities of cells which might eventually lead to malignancy.

For instance, the nuclei arrangement in a CCC lesion frequently exhibits crowding and/or

overlapping [64,65].

However, for cases belonging to high-risk atypical lesions (FEA and ADH) the nuclei

tends to be uniform and evenly-spaced [64, 66]. To quantify “crowding” around each nu-

cleus, its average distance to 10 nearest nuclei is computed. An analytical model of crowd-

edness is constructed by considering local ROIs within a duct where clusters of nuclei show

significant crowding behavior and then computing its spatial density. To capture evenly

spaced/ uniform dispersion pattern around a nucleus, we start by placing a regular grid of

size 3 × 3 centered at a reference nucleus and measure the density of 20 neighboring nuclei

by counting the population of nuclei in each grid cell as described in [67]. We then compare

this observed population against expected number of nuclei under the complete spatial ran-

domness hypothesis which asserts the occurrence of points (here nuclei) within grids in a
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random fashion analogous to a Poisson point process using a χ2-test statistic and acquiring

the corresponding p-value using the χ2 distribution table. Larger the p-value, greater is the

likelihood of observing a uniform/ evenly spaced dispersion of nuclei around the reference

nucleus.

Binary Features: Although, the unary features show some inferential strength (indi-

cated by the color bars on top of each feature in Fig. 6), a pathologist typically makes

an informed decision by paying attention to the pairwise combinations of such features.

For instance, a CCC lesion (low-risk) exhibits crowded and elliptical nuclei arrangement. A

high-risk lesion tends to display a greater likelihood of large-round, spaced-large, and spaced-

round nuclei. A lesion showing majority regions of small nuclei coupled with crowded and/

or spaced behavior is representative of a normal duct. In our study, we considered 7 such

binary features obtained from pairwise combinations of unary features which is shown in

panel Fig. 6B. We take z-scores for each unary feature, and model the joint distribution of

z-scores from the feature pair with a two-component, two-dimensional mixture of Gaussian

distribution.

Ternary Features: Some of the diagnostically relevant tissue features are best rep-

resented by a combination of more than two unary features. I. Large-Round-Spaced : We

take z-scores from each feature, i.e., large, round and spaced, and build a three-component,

three-dimensional mixture of Gaussian model using ground-truth examples. II. Cribriform:

This feature is characterized by polarization of epithelial cells within spaces formed by “al-

most” circular multiple lumen (> 2) which are 5-6 cells wide and whose appearance closely

resembles to “holes in Swiss cheese”. This complex architectural feature can be identified

by analytically modeling three sub-features: clustering coefficient, distance of the nucleus

from two nearest lumen, and circularity of the lumen (computed using ImageJ) adjacent to

the nucleus. The polarization of epithelial cells around lumen is characterized by clustering-

coefficient and is computed by following the method described in [68] and is illustrated in

the second row of Fig. 6C. A group of nuclei occupying the spacing between two lumen has

a tendency to show cribriform pattern around them. Thus, we measure the average distance

between each nucleus to the nearest two lumen and model its distribution using gamma

function (see middle row of Fig. 6C). The final likelihood for cribriform feature is obtained
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from the weighted sum of the likelihood scores of sub-features. We performed grid search on

the mixing coefficients to learn that the likelihood scores from the three sub-features should

be mixed in the proportion of 0.2, 0.5, and 0.3 respectively. III. Picket-Fence: This spatial

arrangement is recognized from a group of crowded elliptical nuclei oriented perpendicular

to the basement membrane (lumen). The analytical model of this higher-order visual feature

can be obtained by constructing parametric models of four simple sub-features: distance of a

nucleus to nearest lumen, nuclear ellipticity, a spread in the angle of major-axis of 10 nearby

nuclei, and its local angle with respect to the basement membrane as shown in the last row

of Fig. 1C. Since, each sub-feature contributes equally to observing this ternary feature, we

chose to assign a mixing coefficient of 0.25 in combining the likelihood scores from the four

sub-features to determine the presence of a picket-fence pattern.

3.3.3 Computing likelihood scores of tissue features

As discussed in the previous section, the analytical models of the tissue features are

probability distributions. For example, a cytological feature like nuclear ellipticity for a given

nucleus inside an ROI can be assigned a probability value under the mixture of Gaussian

model for the template (Gt) image derived in Fig. 6A. However, accurate measurements

of ellipticity values are greatly influenced by the precision with which nuclei boundaries are

segmented. This naturally leads to heterogeneity in the estimates of ellipticity. To account

for this heterogeneity, we chose to compare the neighborhood around the reference nucleus

to the neighborhood in the template image. In particular, we model the ellipticity values in

the neighborhood of the reference nucleus with a new mixture of Gaussian model (Gn) and

then compare model parameters of Gn with Gt. We used two different distance measures for

comparing the model parameters: Kullback-Leibler divergence for mixture of Gaussians and

two-sample Kolmogorov Smirnov test for unimodal Gamma distributions. Small distances

imply greater evidence for the presence of the tissue feature. We turn the distances into a

likelihood score by an inverted S-function as shown in Fig. 6D. This process is carried out

in a similar fashion for every feature present in the visual dictionary.
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3.3.4 Preliminary strategy for differential diagnosis

We adopt a non-linear strategy here, similar to what expert pathologists do, in that we

find sub-regions within ROI by non-maxima suppression (threshold value of 0.85 on the like-

lihood scores) where the evidence for one or more of the unary, binary or ternary feature is

dominating. Fig. 6E provides a visual illustration of the likelihood maps of dominant tissue

features in representative images of low- and high-risk biopsies. Low-risk breast biopsies

show dominant islands of round, small, spaced, and spaced-small in a normal ROI and ellip-

tical, round, spaced-small, crowded-small, and picket-fence neighborhoods in a CCC ROI. In

comparison, high-risk biopsies show dominant regions of spaced-large, and spaced-round in

a FEA labeled ROI and compelling strengths for large and cribriform features along with

traces of crowded and spaced in ADH labeled ROI. These features validate the canonical

forms shown in Fig. 6A-C.

Having identified dominant unary, binary and ternary feature regions, we use 3 descrip-

tive statistics: median value of the likelihood scores of all the nuclei found in each sub-region,

median number of nuclei found in each sub-region and the number of sub-regions.

This is calculated for each one of the unary, binary and ternary features (total = 16),

thereby obtaining a 48 column feature vector for a single image. We computed feature

vectors for all 1441 labeled duct ROIs which resulted in 834 × 48 size feature map used to

train the classifier and 607× 48 data matrix for testing. To analyze the benefit of including

binary and ternary features we further slice the 48 column feature vector to be suitable for

three scenarios: unary (U) only, unary and binary (U-B), and unary, binary, and ternary

features (U-B-T). Due to inherent training and testing class imbalance, which reflects the

real-world prevalence statistics of atypical lesions, we upsampled high-risk examples using

SMOTE technique [69].

Prior to classifying the lesions, we pay close attention to the presence of cribriform fea-

ture, a symbolic visual primitive of ADH (a high-risk) category [66, 70, 71]. ROIs predicted

to show cribriform feature are classified as high-risk, if the number of nuclei forming the

cribriform sub-region is greater than 8 (hyperparameter optimized over the training data).

The reduced dataset, devoid of cribriform, is tested for each of the scenarios (U, U-B, and

25



Table 1: Performance measures with U, U-B and U-B-T feature sets and comparison with

other baseline strategies (including majority classification and average single expert

pathologist assessment) and deep-learning models.

Baseline Comparisons U U-B U-B-T

Models Majority Expert Lenet Overfeat Alexnet LR

Recall 0 0.77 0.23 0.31 0.4 0.56 0.59 0.76

Specificity 0.88 0.84 0.86 0.64 0.69 0.63

TN 475 451 462 345 373 336

FN 54 48 42 31 29 17

U-B-T) with logistic regression (LR), support vector machine (SVM), random forest (RF),

and gradient boosted classifier algorithms. The best model was chosen by optimizing the

parameters using GridSearchCV based on precision, recall, and F-scores and then performed

a 10-fold stratified cross-validation to check for overfitting. In optimizing the hyperparam-

eters, the operating point was selected to value recall over precision reflecting the clinical

decision objective where a false negative outcome is penalized higher than a false positive.

3.4 Results

3.4.1 Dataset

We used 1441 ductal ROIs extracted automatically from a computational pathology

pipeline (see Section 3.3.1) from 93 WSIs which were scanned at 0.5µm/pixel resolution

at 20× magnification captured using Aperio ScanScope XT microscope. Among these, the

training set constituting 834 ROIs were diagnostically labeled by a single sub-specialist

pathologist (SP1), while a consensus diagnosis was achieved for the remaining 607 testing set

ROIs with a pool of 3 breast pathology sub-specialists (SP1, SP2, and SP3). The diagnostic

labels include: “Normal”, “CCC”, “FEA”, or “ADH”, which were further regrouped into
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two classes: low-risk (Normal and CCC) and high-risk (FEA and ADH). While the training

set comprised of 587 low-risk and 247 high-risk examples, the test set included 537 low-risk

and only 70 high-risk cases, leading to the issue of class-imbalance and the choice of recall

of high-risk lesions as a performance metric for the classification strategy. We are reporting

recall to emphasize correct detection of high-risk lesions, as the consequence of misdiagnoses

(false negative) implies increased chance of developing cancer for lack of providing early

treatment. The concordance among the 3 pathologists in labeling the test set was moderate

(Fleiss’ kappa score of ≈ 0.55 [38]).

3.4.2 Classification performance

Table 1 shows the outcome of the differential diagnosis strategy that we implemented

using the three feature sets: U, U-B, and U-B-T. The average performance of the three

pathologists informs the baseline with single expert pathologist [38]. We tested with Logis-

tic Regression (LR), Random Forest, and SVM with SMOTE and cross-validation parameter

scanning. LR performed the best. SVM and Random Forest misclassified high-risk images

containing large/round/spaced nuclei (a high-risk feature, see Fig. 6) as low-risk. This

resulted in lower recall compared to LR, which was successful in capturing these features.

Additionally, we tested approaches with deep learning: Lenet [72], Alexnet [73], and Over-

feat [74]. For training deep learning networks the ROIs obtained from duct segmentation

were downscaled to 512 × 512 and the class imbalance was handled by performing data

augmentation through rotations and reflections. Further, these class-balanced batches were

trained using 3 networks for 3,000 epochs.

3.5 Discussion

We find progressive improvement in the performance from U to U-B to U-B-T feature

sets, achieving highest recall of 0.76 which outperforms the majority classification (obtained

by assigning all cases to the majority label of low-risk, thereby having a recall of 0) and has
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Figure 8: (A) False positives: The nuclei segmentation procedure sometimes fails to

perfectly segment overlapping and/or heavily crowded nuclei leading to over-segmentation

and thus classifying the above images as high-risk. (B) False negatives: The

non-inclusion of additional distinguishing characteristic of ADH (micropapillae and rigid

cellular bars) which is shown above led to wrongly classifying above images as low-risk.

a comparable performance to the assessment made by single breast pathology sub-specialist

(SP1). Our approach with ∼150 parameters is readily amenable to explainability which

cannot be delivered by current deep learning (DL) methods (∼10-50 million parameters and

large training data). To the best of our knowledge, there are no widely reported DL methods

for borderline of atypical breast biopsies, but an abundance of these algorithms for cancer

vs no-cancer datasets. To further promote research in the use of DL for borderline cases, we

chose to continue working with the same set of networks as used in our previous work [38],

with one exception of incorporating improved duct segmentation component. The average

computation time to obtain likelihood scores and return a diagnostic label is 1 minute for

an image with 1000 nuclei on a single 2.4 GHz processor. Further, we analyzed ML model

misclassifications generated from our method which is illustrated in Fig. 8. In some low-risk
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examples, the accurate identification of class-specific tissue feature (e.g. small, crowded-

small) is missed due to the under-segmentation of overlapping nuclei resulting in a wrong

classification (false positive). However, we observed that U-B-T features (best recall) mis-

classified 24% of the high-risk images as low-risk (false negative). Upon investigation, we

found that majority of the wrongly classified images had rigid cellular bars and micropapillae

(club-shaped lumina) architecture, two additional distinguishing characteristics of ADH [54]

not included in the dictionary for the present study. We anticipate that successful inclusion

and analytical modeling of additional tissue features will improve the classification perfor-

mance. Further, this approach lacked a good learning strategy to infer the diagnostic label

from the clusters of strong histologically relevant features from the ductal ROIs which is the

major focus of the next chapter.
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4.0 Prototypical models for classifying high-risk atypical breast biopsies

4.1 Chapter summary

As described in the previous chapter, high-risk atypical breast biopsies are a notoriously

difficult dilemma for pathologists who diagnose breast biopsies in breast cancer screening

programs. To address the limitations of the learning strategy presented in chapter 3, here

we reframe the computational diagnosis of atypical breast biopsies as a problem of prototype

recognition on the basis that pathologists mentally relate current tissue features to previously

encountered features during their routine diagnostic work. In an unsupervised manner, we

investigate the relative importance of ductal (global) and intraductal features (local) in a

set of pre-selected prototypical ducts in classifying atypical breast biopsies. We conducted

experiments to test this strategy on subgroups of breast biopsies that are a major source

of inter-observer variability; these are benign, columnar cell changes, epithelial atypia, and

atypical ductal hyperplasia in order of increasing cancer risk. Our model provides clinically

relevant explanations to its recommendations, thus it is intrinsically interpretable, which is

a major contribution of this work. Our experiments also show state-of-the-art performance

in recall compared to the latest deep-learning based graph neural networks (GNNs).

4.2 Introduction

4.2.1 Background

As elaborated in 5.2, breast cancer screening and early detection can help reduce the in-

cidence and mortality rates [2]. Although effective, screening relies on accurate pathological

diagnoses of breast biopsies for more than one million women per year in the US [49, 75].

Most benign and malignant biopsy diagnoses are straightforward, but a subset are a sig-

nificant source of disagreement between pathologists and are particularly troublesome for
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clinicians. Pathologists are expected to triage their patients’ biopsies rapidly and accu-

rately, and they have routines for difficult or ambiguous cases (e.g., second-opinion consults,

additional stains). Still, disagreement remains an issue; while the literature suggests that

diagnosis should be straightforward if diagnostic rules are followed [76], concordance remains

elusive in real world diagnosis, reported in one study as low as 48% [49].

4.2.2 Previous work

Although there have been numerous efforts in using prototypes for scene recognition [77–

79], to date, this idea has not been explored to classify breast biopsies. One of the first stud-

ies to detect high-risk breast biopsies was proposed in [38] which was based on encoding

cytological and architectural properties of cells within the ducts. The work in [39] used

structural alterations of the ducts as features to classify breast lesions into benign, atypia,

ductal carcinoma in-situ (DCIS), and invasive. A different approach was proposed in [80],

where the authors used analytical models to find clusters within ROIs with strong histologi-

cally relevant features. However, their approach lacked a good learning strategy to infer the

diagnostic label from these clusters. Further, two recent studies approached this problem us-

ing attention-based networks to generate global representation of breast biopsy images [81]

and biological entity-based graph neural networks (GNNs) [33] (also tested as a baseline

method). Both methods were tested on an unbalanced dataset like ours and both reported

low performance measures in detecting high-risk breast biopsies.

4.2.3 Contributions

In this study, we focus on modeling and differentiating difficult breast biopsy subtypes:

atypical ductal hyperplasia (ADH), flat epithelial atypia (FEA), columnar cell changes

(CCC), and Normal (including usual ductal hyperplasia (UDH) and very simple non-columnar

ducts). Our approach originates from the method that pathologists practice, which is to care-

fully assess alterations in breast ducts before making diagnostic decisions [2,54,82]. Pathol-

ogists continually observe tissue features and make decisions supported by the morphology.

In doing so, they look at an entire duct (global) and features within portions of the duct (lo-
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cal) striving to generate mental associations with prototypical ducts and/or their parts they

previously encountered in training or clinical practice. We propose an end-to-end compu-

tational pathology model that can imitate this diagnostic process and provide explanations

for inferred labels.

We hypothesize that ductal regions-of-interest (ROIs) having similar global and local

features will have similar diagnostic labels and some features are more important than others

when making diagnostic decisions. Our approach is related to other prototype-driven image

recognition systems that favor visual interpretability [77–79].

To the best of our knowledge, our work is the first one to: (1) use a diverse set of

concordant prototype images (diagnostic class agreed by all 3 pathologists) for learning, (2)

characterize clinically relevant global and local properties in breast histopathology images,

and (3) provide explanations by measuring the relative importance of prototype features,

global and local, for the differential diagnosis of breast biopsies. We also show that our

approach facilitates diagnostic explanations with accuracies comparable to the state-of-the-

art methods.

4.3 Methods

4.3.1 Machine learning framework

3.1 Machine learning framework: In this chapter, we develop an end-to-end com-

putational pathology system that models the entire duct (global) and the tissue features

occurring within selective portions of the duct (local) with the goal of generating associa-

tions with similar ducts and/or parts (prototypical). We hypothesize that images with one

or more ducts having similar global and local features will have similar diagnostic labels and

some features are more important than others when making diagnostic decisions. We will

first introduce a composite mapping function to learn the relative importance of global and

local features in a prototype set P for differential diagnoses:

h(x;P) =

p∑
k=1

βk

[
exp−λG

k ck(x) ×
mk∏
j=1

exp−λL
kjfkj(x)

]
. (1)
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Here h(x;P) captures the association of a previously unseen image x with a set of prototype

images in P . The index k varies over the images in the prototype set P (size = p), while

j indexes over a local feature set (size = mk) in a given prototype image indexed by k.

βk determines if the resemblance of a previously unseen image x to the prototype k has

a positive (β+) or negative influence (β−). λG
k and λL

kj indicate the relative importance of

global (ductal) and local (intra-ductal) features in the prototype k respectively. The relative

importance can be imagined as a distance measure, so we enforce non-negativity constraints

on λG
k and λL

kj values. The functions ck(x) and fkj(x) compute the global and local differences

respectively between x and the prototype set P (more details below). Finally, in formulating

h(x;P) we assume that the prototype images are independent and that the global and local

information in each prototype can be functionally disentangled into a product form.

Since our goal is to learn the relative importance of global and local features in a proto-

type set, we solve the following optimization problem:

argmin
β,λ

L(β, λ) = argmin
n∑

i=1

CrsEnt(σ(h(xi)), yi) + Cβ||β||2 + Cλ|λ| (2)

using gradient descent. We use cross-entropy loss function (CrsEnt) to penalize misclassifi-

cations on the training set X = {xi} and to obtain βoptimal = {βk} and λoptimal = {λG
k , λ

L
kj}.

We use a tanh(σ) activation function on h(x) from Eq. 1. To avoid overfitting, we invoke ℓ22

and ℓ1 regularization with coefficients Cβ and Cλ respectively. Following the intuition that a

pathologist might pay no attention to some features, e.g., small-round nuclei do not feature

typically in the diagnosis of ADH, we choose ℓ1 regularization for λ to sparsify the weights.

4.3.2 Encoding global and local descriptions of a duct

The functions ck(x) and fkj(x) in Eq. 1 compute the global and local differences between

input image x and prototype set P , as outlined in the steps below.

Step 1: For a proof-of-concept, we adopt the approach from [80] to build analytical

models of 16 diagnostically relevant tissue features (see chapter 3 for more details) following

the guidelines presented in the WHO classification of tumors of the breast [54].
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Recap of the analytical model of a cribriform feature: Fig. 9 illustrates how to model a

histological feature, cribriform, that is critical to diagnosing ADH. By considering a spatial

neighborhood of 100µm around each cell in ground-truth annotations of cribriform features

in ROIs, the model incorporates three different components: (1) polarization of epithelial

cells around lumen inside the ROI; (2) distance of any given nucleus in the ROI to two nearest

lumen; and (3) circularity of lumen structure adjacent to a nucleus inside the ROI. For the

ROI in Fig. 9A, the analytical models driving these three components are: (1) mixture of

Gaussians (MoG) (µ1 = 0.87, µ2 = 0.94, µ3 = 0.72, σ1 = 0.002, σ2 = 0.002, σ3 = 0.003,

π1 = 0.44, π2 = 0.35, π3 = 0.21) for modeling the distribution of clustering coefficients [68];

(2) Gamma distribution (α = 3.11, β = 34.37) for modeling distance values to lumen and

(3) a uniform distribution (a = 0.2, b = 0.92) to model the circularity values of nuclei inside

the ROI. We further combine these three components with a mixture model, performing

grid-search to optimize the mixing coefficients (Fig. 9B), to form the histological feature of

cribriform (P crib
gt ).

We pursue a similar approach to modeling other tissue features using ground-truth ROI

annotations: 1. small, 2. large, 3. round, 4. crowded, and 5. spaced, each modeled as a

Gamma distribution; 6. elliptical, 7. large-round, 8. small-elliptical, 9. spaced-large, 10.

crowded-small, 11. spaced-small, 12. crowded-elliptical, and 13. spaced-round each modeled

Figure 9: Modeling cribriform pattern in a sample ROI (A) using parametric models for

three component patterns in (B) and generating cell-level likelihood scores (C). Ductal

region and intra-ductal lumen are outlined in red in (A).
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as two-component MoG; and more complex patterns 14. large-round-spaced, 15. picket-

fence, and 16. cribriform using a combination of Gamma, MoG, and Uniform distributions.

Details on parameter estimation are discussed in 3 [80].

Generating likelihood scores: Next, to compare ground-truth model of any tissue feature

Pgt with a new model generated from the reference nucleus of an input image (Pnew), we

use two distance measures, 2-sample Kolmogorov-Smirnov test and Kullback-Leibler diver-

gence to compare Gamma and MoG distributions respectively. To map smaller distances

that indicate stronger presence of the feature, we compute likelihood scores by applying an

inverted S-function on the distances. In Fig. 9C the final likelihood score from evaluating

the cribriform feature is a weighted sum of the likelihood scores of the component features.

A similar operation is carried out for generating cell-level likelihood scores for the remaining

15 features. The principal advantage of these analytical models is in their ability to handle

heterogeneity that emerges from running imprecise low-level image processing routines, such

as methods for segmenting nuclei or identifying boundaries of ductal ROIs. The heatmap

visualization in Fig. 9C is a mechanism for explaining the model to pathologists, informing

where these features are and how strongly they influence the overall diagnosis of a ROI.

Step 2: To encode the global description of a duct, we represent it by a matrix of size

n× l populated with likelihood scores, where n and l refer to the total number of cells and

the number of histomorphological patterns respectively (l = 16). Additionally, we include

the size of the largest duct if the ROI has a cluster of ducts. However, considering only the

global information may lead to diagnostic inconsistencies. For example, a duct resembling

FEA is better diagnosed as ADH if it contains a local cribriform feature or as a CCC duct if

it contains some hyperplasia (further meriting a comparison of local hyperplastic area with

models of FEA/ADH).

Step 3: To encode the local description of a duct, we adopt a strategy followed by most

expert pathologists. To this extent, for every histomorphological feature, we identify islands

within the duct where that particular feature is dominant and consider the largest island

for further analysis. We detect feature islands by performing non-maxima suppression on

cell-level likelihood scores using a threshold (= 0.8) based on cross-validation.

Step 4: Finally, we have the machinery to compute the functions ck(x) and fkj(x) from
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Eq. 1. We define ck(x) = ∥d(pk, x)∥, where a small value of ck(x) implies high similarity

of image x to prototype pk. We combine two measures to generate d: Kolmogorov-Smirnov

test comparing 16-dim probability distributions of cell-level likelihood scores individually

between x and pk and an inverted S-function on the ratio of the duct sizes between x and

pk. This leads to a 17-dim vector d, which is further compressed by its ℓ2 norm to obtain a

single scalar value ck(x) for every pair of x and pk. We further simplify the computation of

fkj(x) by applying an inverted S-function on the ratio of the largest feature island sizes from

the same histological feature between x and pk, suitably modified to account for islands that

are missing in either x or pk.

4.4 Results

4.4.1 Dataset

We worked on the same dataset described in 3 which consisted of 93 WSIs which were

labeled by an expert pathologist on the team to contain at least one ADH ROI. The breast

biopsy slides were scanned at 0.5µm/pixel resolution at 20× magnification using the Aperio

ScanScope XT (Leica Biosystems) microscope from which 1295 ductal ROI images of size

≈ 1K × 1K pixels were extracted using a duct segmentation algorithm described in [80].

Briefly, the algorithm first breaks down the image into non-overlapping superpixels and then

evaluates each superpixel’s stain level together with its neighboring superpixels and assigns

probabilities of them belonging to a duct. These guesses are then used to perform Chan-Vese

region-based active contour segmentation algorithm [57] that separates the foreground (i.e.,

ducts) from the background.

We collected ground truth annotations of extracted ROIs from 3 breast pathology sub-

specialists (P1, P2, and P3), who labeled the ROIs with one of the four diagnostic categories:

Normal, CCC, FEA, and ADH. The diagnostic concordance for the four categories among

P1, P2, and P3 were moderate with a Fleiss’ kappa score of ≈ 0.55 [38]. The entire dataset

was split into two sets.
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i. Prototype set : We formed three prototype sets (PS-1, PS-2, and PS-3) containing ROIs

with consensus diagnostic labels from the 3 pathologists having a balanced distribution over

the four diagnostic categories. The final set of prototype ROIs were verified by P1 to confirm

adequate variability is obtained. The number of aforementioned islands are also listed in

Table 2.

ii. Train and test set : The training set consists of 754 ROIs labeled by P1 and the test

set contains 541 ROIs consensus labeled by P1-P3. The training and test set were separated

at WSI level to avoid over-fitting, since ROIs belonging to the same WSI can be correlated

histologically. Due to limited number of ROIs belonging to the non-Normal category as seen

in Table 2, the ROIs which do not participate in the prototype set were also included in the

dataset.

Table 2: Statistics of the atypical breast biopsy ROI dataset

Prototype Set PS-1 PS-2 PS-3

No. of ROIs 20 20 30

No. of feature islands 84 86 145

Class NORMAL CCC FEA ADH Total

Train 420 99 116 119 754

Test 371 105 33 32 541

4.4.2 Model training and evaluation

Our ML model (Eq. 1) is trained to minimize the objective function (Eq. 2) using

gradient descent (learning rate = 1× 10−4 and convergence tolerance = 1× 10−3). Regular-

ization coefficients Cβ and Cλ were initialized to 2. To speed up convergence, we shuffle the

training data after each iteration so that successive training examples rarely belong to the

same class. Prior to training, the model parameters β and λ were initialized with weights

randomly drawn from LeCun normal [83]. After each iteration, the parametric values of the

objective function (L), error-rate (ϵ), β, and λ are stored. After model convergence, we use

βoptimal and λoptimal parameters in the mapping function (3) to obtain htest. Fig. 10 illustrates

the optimization of our ML framework for a sample classifier. To obtain a diagnostic label

from the optimal parameters, we generate prediction probabilities p by first applying a tanh
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Figure 10: Learning parameters of an ADH-vs-rest classifier with gradient descent. The

panel of figures (left to right) shows the values of model parameters: absolute change in the

objective function, training error-rate, β, and λ after each iteration for the classifier built

using GL3 (global+local) model using the prototype set PS3.

(σ) activation to htest and then projecting it to the positive octant. If p ≥ 0.5, the diagnostic

label is 1 and 0 otherwise.

4.4.3 Baseline models

Following the method laid out in [33], we define two baseline models, B1 and B2, by re-

implementing their cell-graph GNNs. We chose GNNs, a recently emerged state-of-the-art

technique for encoding spatial organizations, over pixel-based convolutional neural networks

(CNNs) as our experiments with CNNs showed poor performances in capturing the spatial

context [80]. B1 is obtained by generating a cell-graph topology and cells within each graph

are embedded with cytological features as in [33]. To assess the effect of histological features

in cell embeddings, we generate B2 by replacing the duct-level cytological features with

likelihood scores generated by our method. Finally, B3 is obtained by implementing a

logistic regression classifier using the duct-level likelihood scores, following a similar strategy

as in [80].

4.4.4 Classification results

For the sake of differential diagnosis of atypical breast biopsies, we implemented several

models using global (G), local (L), and both global and local information (GL) from three
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prototype sets (PS1-PS3) and compared it with the baseline models (B1-B3) (see Table 3).

During the training step of each model, we created a balanced training set by randomly

subsampling ROIs from each category so that we have equal number of ROIs for each clas-

sification category. To check for statistical significance, for each classification task, we run

our ML algorithm on 10 training sets wherein the images are randomly selected and we

report the classification scores as the mean and standard deviation over 10 runs (Table 3).

The top panel of Table 3 (HR row) compares the classification performance of low-risk

(Normal+CCC, −ve class) vs high-risk (FEA+ADH, +ve class) cases. For each diagnostic

category (+ve class), we further implemented a different binary classifier for each modeling

strategy proposed. The bottom panel of Table 3 (ADH and FEA row) shows the comparative

performances of ADH- and FEA-vs-rest diagnostic classification.

Table 3: Diagnostic results from the binary classification task expressed in %

Baseline PS-1 PS-2 PS-3

Model B1 B2 B3 G1 L1 GL1 G2 L2 GL2 G3 L3 GL3

HR R 56±6 68±6 62±3 66±4 71±1 73±4 68±4 72±2 68±3 66±7 74±2 69±3

wF 77±2 82±3 76±1 65±2 61±1 65±1 67±4 61±1 63±2 63±1 64±1 64±1

ADH R 38±8 45±7 56±3 70±7 61±8 78±8 59±13 80±4 71±4 72±6 70±11 68±5

wF 78±4 86±2 79±1 70±3 64±2 67±5 64±3 62±1 60±6 64±2 67±1 64±1

FEA R 48±12 40±6 35±4 54±6 64±5 68±7 58±6 60±3 63±5 63±6 67±2 62±5

wF 81±5 82±3 78±1 71±2 65±2 69±3 66±4 66±3 69±3 66±2 69±2 66±3

CCC R 51±7 63±8 60±2 55±8 46±5 53±6 60±5 57±3 68±3 52±6 53±3 54±5

wF 52±5 63±3 54±1 55±3 50±5 53±5 55±3 55±5 54±3 53±4 51±5 54±3

Normal R 84±4 85±3 78±1 52±29 61±1 66±2 50±14 65±1 60±3 70±26 63±2 61±1

wF 71±1 78±1 72±1 53±10 64±1 63±2 52±10 68±1 62±1 61±11 66±1 66±2

Performance metrics: For each classification scenario, we use recall (R) as the perfor-

mance metric to focus on the correct detection of positive class, since there is a significant

class imbalance (see Table 2) and the consequence of misdiagnosis (false negative) implies
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increased chance of developing cancer with lack of providing early treatment. We include

weighted F-measure (wF) as an additional metric which gives importance to the correct

detection of both positive and negative classes [84]. The class specific weights in wF are

proportional to the number of positive and negative examples present in the test set.

Classification performance: We highlight the best recall performances in Table 3, that

are achieved using state-of-the-art baseline models against our method in black and gray

boxes, respectively. Our method shows significant improvement (p < 0.01) in detecting

diagnostically critical high-risk ADH and FEA ROIs compared to the baseline methods (the

best average recall achieved is 80% for ADH classifier and 68% for FEA). We also observe that

baseline models are performing better on detecting Normal ROIs. This behaviour explains

higher weighted F-measure of baseline models in low- vs. high-risk classification, since in

the testing set low-risk ROIs are 7-fold more than high-risk ROIs (i.e., baseline models are

biased to detect low-risk lesions even when the training set was balanced). It is critical

to note that real-life clinical observance of high-risk lesions is also around 15% [54], which

is naturally reflected in our testing set, and it is crucial to catch these less-seen high-risk

lesions for pre-cancer interventions while being able to provide diagnostic explanations to

given recommendations.

4.5 Discussion

The interpretability of our model is depicted in Fig. 11, which shows that our model

leverages both global (λG) and local (λL) information of the ductal ROIs of two prototypical

images, I and II, in detecting ADH from one of the experiments using GL3 classifier built

using prototype set PS3. Fig. 11-I positively guides in detecting ADH category (β = 0.15)

whereas Fig. 11-II is counterintuitive in detecting ADH lesions (β = −0.47). Although two of

the histological feature islands, large and large-round present within these ROIs overlap, we

assert that the absence of complex architectural pattern such as cribriform within Fig. 11-II

might have led to a negative influence of this prototype’s influence to detect ADH. Although

it is possible that a FEA type lesion could be upgraded to ADH pathologically without
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Figure 11: Highlighting the relative importance of the global and local features from

different prototypes (I and II) in ADH-vs-rest classifier.

cribriform architecture, this would require thickening of the duct lining to more than 5 cell

layers which is uncommon in clinical practice.

Computational Cost : The entire pipeline is implemented in native Python 3.8. Total

time required to obtain a diagnostic label with computation of all features for a previously

unseen ROI is less than 30s on a 64-bit single 3.4GHz Intel Xeon processor.

Limitations : (1) Tissue features like duct and lumen morphology, texture properties, etc.

are missing; (2) Selection of prototypes was made on the basis of expert visual inspection.

There is a need for more sophisticated statistical approaches [85] for prototype selection

and (3) for a more detailed ablation study to test the robustness and reliability of our

ML framework; (4) To offset the issue of unbalanced datasets, we are collecting expert

annotations on additional high-risk lesion biopsies. Most of these limitations are addressed

in the next chapter.
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5.0 Enhancing the computational pathology framework for the differential

diagnoses of a broad spectrum of breast biopsies

5.1 Chapter summary

In chapters 3 and 4, we evaluated our methods on the 1K × 1K breast biopsy ROIs

containing one or more ducts. It is well-established that, 90% of all the breast cancer cases

originate in the epithelial ducts. Thus, to better understand the morphological abnormalities

of the terminal duct lobular units (TDLUs), in this chapter, first, we evaluate our frame-

work on each duct separately and assign duct-level diagnostic labels. Second, we introduce

additional tissue features to enrich the breadth of diagnostically relevant feature dictionary.

Third, we enhance the prototype-driven computational pathology framework conceptualized

in chapter 4 for the challenging task of differentially diagnosing a broad spectrum of breast

biopsies. The key components of this framework are: (i) analytical models for additional

diagnostically relevant tissue features, along with texture-based models; (ii) automatic class-

specific prototype selection using analytically modeled tissue features; and (iii) improved

prototype-driven machine learning for differential diagnoses. Fourth, we show significant im-

provement in the classification performance (≈ 20%) over state-of-the-art methods on two

different datasets: high- and low-risk benign breast lesions (HLRBB) (1237 ROIs at 20×)

and publicly available breast carcinoma subtyping (BRACS) data (4539 ROIs at 40×). Fi-

nally, our framework provides pathologist-friendly explanations paving the way for better,

transparent, and trustworthy diagnostic tools.
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5.2 Introduction

5.2.1 Background

Pathologists typically diagnose the breast tissue slides under a microscope by examining:

i. lumen and ductal morphology, ii. nuclei size, shape, and spatial arrangement and their

combinations, iii. intraductal architecture, and iv. textural properties. We assembled a sub-

set of these tissue features that pathologists frequently use and documented in the standard

reference book from WHO on the classification of tumors [54]) in making complex diagnostic

decisions as shown in Fig. 12 (textural properties are not depicted). Our goal is to test the

inferential power of a prototype-driven computational pathology pipeline based on analytical

modeling of these tissue features in differential diagnoses of breast biopsies.

In this chapter, we will consider a broad spectrum of breast biopsies including: (i)

invasive breast cancer (IC), (ii) three high-risk benign lesions: ductal carcinoma in-situ

(DCIS), atypical ductal hyperplasia (ADH), flat epithelial atypia (FEA), and (iii) three

low-risk benign lesions: usual ductal hyperplasia, columnar cell change (CCC) and Normal;

where the risk is indicated by the relative chance of developing breast cancer. Infiltrating

mammary carcinoma or IC is carcinoma cells infiltrating into the breast stroma and not

confined to breast ducts.

DCIS is a carcinoma that is confined to the breast ducts and is not invasive into the

stroma. DCIS represents a spectrum of disease ranging from low-grade to high-grade where

the cytologic atypia appears malignant. ADH lesion features both hyperplasia (too many

cells in a milk duct) and atypia (e.g., cribriform architecture shown in 12); hence considered

as pre-cancer lesions. FEA is a lesion that combines the nuclear atypia seen in ADH, but

lacks hyperplasia and has simple architecture (no cribriform) sitting between ADH and low-

risk benign lesions [86].

CCC is considered to be low-risk, but it shows morphological overlap with FEA ducts.

UDH is a benign proliferative breast lesion where there are too many cells within the duct

(as can be seen in ADH or DCIS), but the cells are benign appearing and lack atypia.

Finally, we have Normal ducts, which are simple non-columnar ducts. Diagnoses of these
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transitional benign lesions are problematic and concordance remains elusive in real world

diagnosis, reported by one study to be as low as 48% [49]. Negative consequences of this can

manifest as over-treatment with surgery and long-term drug therapies, or under-treatment

with subsequent cancer-related morbidity or mortality. Even if correctly diagnosed with

high-risk lesion, majority of women will retrospectively be considered to have been over-

treated; surgical excision to address a 4% current cancer risk means that 96% of patients

who undergo these surgeries do not turn out to have cancer after all.

5.2.2 Related Work

Prototype-driven recognition: There have been numerous studies that have discussed the

merits of using prototype-driven approaches for image classification tasks [71,77,79,85,87,88].

In [88], the authors used human face image prototypes and built feature representations from

comparing the input faces to the prototype sets. Similarly, in [77], the authors discussed

the benefits of using prototype-based methods on indoor-scene categorization (67 indoor

scenes) which suffers from large intra-class variability, a relatable issue in the domain of

histopathology. More recently, a deep learning architecture called ProtoPNet was developed

which identifies similar looking parts within an input image to the prototype set for bird

species classification and car model identification [78, 79]. ProtoPNet has achieved compa-

rable results to the previous state-of-the-art methods such as MA-CNN [89], B-CNN [90],

and RA-CNN [91] on the same dataset. A comprehensive study has been conducted in [85]

which discusses the importance of choosing “good” prototype set and its effect on classifica-

tion performance. The principal advantage of using prototype-driven methods is the ease of

visual interpretability to the classification outcome which is not provided by a majority of

black-box deep learning models. Further, this form of interpretability is crucial in applica-

tions such as clinical diagnosis, wherein the pathologists are required to trust the AI system

prior to launching them in a clinical setting. To the best of our knowledge, the application

of prototype-driven visual recognition method for histology image classification is the first of

its kind and in this paper, we show that it holds merit for other medical image classification

tasks which demand diagnostic explanations.
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5.2.3 Contributions

We demonstrate the inferential power of our prototype-driven computational pathology

pipeline based on analytical modeling of tissue features for differential diagnoses of breast

biopsies. The key components of this framework are: (i) analytical models for a subset of

diagnostically relevant tissue features, along with texture-based models (Fig. 12), that the

pathologists frequently use and documented in the standard reference book fromWHO on the

classification of tumors [54]; (ii) automatic class-specific prototype selection using analytically

modeled tissue features; and (iii) prototype-driven ML for differential diagnoses. We show

significant improvement (∼ 20%) over the state-of-the-art methods [1] in the classification

performance on two different datasets: high- and low-risk benign breast lesions (HLRBB)

(1237 ROIs at 20×) and publicly available breast carcinoma subtyping (BRACS) data (4539

ROIs at 40×). Our framework provides pathologist-friendly explanations paving the way for

better, transparent, and trustworthy diagnostic tools.

5.3 Methods

5.3.1 Enhanced machine learning framework

To aid pathologists’ routine diagnostic workflow, we present a computational pathology-

based diagnostic framework which reflects a pathologist’s cognitive process and provides

explanations to the classifier outcome. A key element of our framework is to learn the

relative importance of lumen/ductal morphology (LD), intraductal tissue features (ID) and

textural features (T) (see Fig. 12) from a set of prototypical images to obtain a diagnostic

label. In doing so, we assert that the assignment of relative importances to LD, ID, and T

features is driven by similar looking ducts (prototypes) which were previously encountered

during pathology training or clinical practice. To achieve this in the context of differential

diagnosis, we introduce a mathematical formulation to learn the contributing power of LD,

ID, and T features within a prototype set P in association with an input image x using a

mapping function m : x → R defined as,
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Figure 12: (A) Tissue features outlined: duct (red), lumen (green), epithelial cells (yellow),

and intraductal regions (blue). (B) A schematic representation of the tissue features

analytically modeled in this study. In the absence of duct and lumen structures (e.g.,

invasive carcinoma), we invoke texture-based models.
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m(x;P) =

p∑
k=1

βk exp
−

h∑
l=1

λl
kf

l
k(x)

. (3)

The mapping function m is a result of combining the associations of x to all prototype

images P (with k = 1 . . . p) by analytically comparing the LD, ID, and T information for

a total of h features in each of the k prototypes to obtain information differences f l
k(x). β

(size p×1) and λ (size p×h) are the tuning parameters of our ML model. βk indicates if the

feature similarity of prototype p to x positively guides (β+) in predicting a diagnostic label

or otherwise (β−). λl
k highlights the importance of lth feature present within kth prototype

image. During the process of estimating the model parameters, we enforce non-negativity

constraints on λ to reflect the distance measurements of function f l
k(x) between input x and

prototype k for feature l (see 5.3.5 for more details). Further, if a particular feature is absent

within the prototype image, we assign λ = 0 and remove it from the optimization step.

To learn βoptimal and λoptimal, we use the association function m to define our diagnostic

classification objective as,

argmin
β,λ

L(β, λ) = argmin
n∑

i=1

CE(σ(m(xi)), yi)

+ Cβ||β||2 + Cλ|λ| (4)

and solve it using gradient descent based optimization strategy. To penalize training

misclassifications, we use cross-entropy loss function (CE) and ||β||2, |λ| as model regularizers

to account for overfitting with regularization constants Cβ and Cλ. Further, we use tanh(σ)

activation function on m. The ℓ1 regularization used for λ parameter sparsifies the feature

importances resonating with the pathologist’s judgement of paying minimal attention to

some patterns over others.
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The gradient of objective function L with respect to β, λ are computed as:

∂L

∂βk

=
1

n

n∑
i=1

σ (m(xi))− yi
σ (m(xi)) (1− σ (m(xi)))

×

[1− tanh2(m(xi))]× exp
−

h∑
l=1

λl
kf

l
k(xi)

+2Cββk, (5)

∂L

∂λl
k

= − 1

n

n∑
i=1

σ (m(xi))− yi
σ (m(xi)) (1− σ (m(xi)))

×

[1− tanh2(m(xi))]× βkf
l
k(xi) exp

−
h∑

l=1
λl
kf

l
k(xi)

+Cλ
λ

|λ|
. (6)

5.3.2 Encoding lumen and ductal morphology (LD)

To capture the lumen and ductal morphology, we estimate i) LD-MORPH based on

ductal morphological properties such as area, roundness, and solidity computed using ImageJ

software from binary duct masks and ii) LD-MAT by characterizing the shape of the ductal

cellular region or DCR (the region between duct boundary and lumen) (see Fig. 12A) based

on the derived scores from the medial axis transform (MAT) (see Fig. 12B).

The MAT-based skeletonization along with its derived scores have been shown to have

strong ties to the human visual system and how it processes and categorizes shapes [92–94].

This is likely due to the low-dimensionality of the skeleton, as well as its stability across small

perturbations [95]. The MAT scores also facilitate scene classification in contour images

(when only the boundaries of shapes in the image are present) [96]. We hypothesize that

this property will allow the MAT algorithm to closely mimic the process of a pathologist

analyzing the shapes of the histological structures found in the TDLU. To describe LD-

MAT, first, we construct skeletons of the binary masks of DCR using the skeletonize plugin

in ImageJ software [55]. Next, following the methods presented in [96], to make the binary

skeletons amenable for characterizing structures, we derive three scores for each pixel on the

skeleton: ribbon, taper, and separation, where each score is useful in recognizing different

local symmetry patterns [97].

To describe each score, consider s to be a point on the skeleton and R(s) to be the

radius function which maps s to a value which is the radius of the maximally inscribed
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disk centered at s. Thus, R(s) is the distance from skeleton point s to its corresponding,

equidistant points on the shape boundary. All scores are computed over a window of size

k = 16 skeleton points, centered at the point s for which we want to compute the scores.

1. Ribbon score: Captures the degree of parallelism of the surrounding contours using the

gradient of R(s). Ribbon score is high when the gradient is low, that is, when the surrounding

contours are close to parallel. Thus, we can expect a high ribbon score for DCRs of elongated

ducts with no hyperplasia, as the DCR is smooth and mostly parallel (see Fig. 12B). The

ribbon score is modeled using the equation, R′(s)/maxsi∈[1,k]R
′(si).

2. Taper score: Captures the rate of change of the gradient of R(s). Taper score is high when

R(s) changes at a constant rate, such as in the shape of a funnel or railroad tracks stretching

towards the horizon. Taper score will be moderate in examples with parallel contours, and

high in regions where contours approach each other to a tip (see Fig. 12B). We can expect a

high taper score for structures which are more circular or oblong, such as in normal ducts.

The equation used to quantify taper score is R′′(s)/maxsi∈[1,k]R
′′(si).

3. Separation score: Captures the degree of separation between the contours, and increases

with distance. Separation score will be high for ducts which are large (typically observed in

ADH and DCIS ducts where cells crowd the lumen), and low for smaller ducts (Normal).

To quantify separation score, we use the equation 1− ((2 ∗ k− 1))/trapz(S)), where trapz()

is the trapezoidal numerical integral with unit spacing and S is the set of radius values for

the window centered at s.

For each duct, we obtain a matrix LD-MORPH (size 1×3) populated with three morphol-

ogy properties and LD-MAT (size sdcr×3) populated with MAT scores (∈ [0, 1]) for the DCR

skeletons containing sdcr skeleton pixels respectively. Note, all three MAT derived scores are

rotation and scale invariant. Thus, we capture the complete lumen and ductal information

using 6 features: area, roundness, solidity, MAT-ribbon, MAT-taper, and MAT-separation

scores (Fig. 12B).
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5.3.3 Encoding intraductal tissue features (ID)

To model the intraductal information based on nuclei size, shape, spatial arrangement

and architecture, we build analytical models for sixteen tissue features (Fig. 12B) upon

consulting the expert pathologists on our team and studying standard pathologist guiding

references such as the WHO classification of tumors of the breast [54]. The idea of modeling

the features was first conceptualized in [80]. A detailed description of the strategy used to

model the tissue features is provided in chapter 3. The tissue features are organized based

on the nuclei size and shape (small, large, round, elliptical, large-round, small-elliptical), and

spatial arrangement of the cells (crowded, spaced). These are used to identify additional

features such as spaced-large, crowded-small, spaced-small, crowded-elliptical, spaced-round,

and large-round-spaced. Further, the orientation of the cells and shape of the lumen is com-

puted to identify higher-order features such as picket-fence and cribriform. The frequency

of occurrence of these tissue features is different for each diagnostic category which is a

major contribution to discordance among pathologists [49]. We build a quantitative model

and tune the parameters of this model to match with the consensus diagnosis of template

features.

Quantifying ID : The measurement of univariate features such as small and large is done

using cell areas, while round and elliptical are quantified using shape statistics such as round-

ness = 4π × area/perimeter2 and ellipticity = lengthminor−axis/lengthmajor−axis. To quantitate

spatial spread based on crowding, we modeled the distance of each cell to 20 nearby cells.

To capture uniform dispersion of cells or spaced feature, we evaluated the population density

of cells within a 5× 5 grid under complete spatial randomness hypothesis [67]. The bivariate

features are modeled using the joint distribution of z-scores from two-component mixture of

Gaussians (MoGs) of the two univariate features and similarly the trivariate feature (large-

round-spaced) uses three-component MoG distribution. Further, higher-order features such

as picket-fence and cribriform are identified from a group of simple univariate features. The

picket-fence feature is characterized by the organization of i) crowded, ii) elliptical cells which

are iii) oriented at 90◦ to the lumen. Finally, the cribriform feature is recognized from the i)

polarization of cells around ii) multiple lumen which are iii) mostly circular.
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Templates for feature-matching : For each of the 16 tissue features, we acquired a template

stack from 5 to 10 image regions (gold-standard) strongly indicating the histological feature

under consideration from an expert pathologist on our team.

Recap of building analytical models to obtain likelihood scores : We constructed probabil-

ity distributions upon evaluating each feature present within its associated template. For

example, to identify large feature within a duct, an analytical model is obtained from the

statistical distributions of the size of cells within “large template” Lt. To identify large

feature in a new input image, the model parameters of Lt is compared (using Kolmogorov-

Smirnov (K–S) test for unimodal distributions and Kullback-Leibler divergence for MoGs)

with the parameters of a new distribution generated from a training image (Ln) to predict

the strength of the feature being present/absent. To account for the amorphous nature of

these features, Lt is compared with distributions arising from each cell and looking at its

neighborhood spanning 100µm to obtain Ln−cell. Finally, we transform the distance measure-

ment into likelihood score by feeding the distances through an inverted S-function, thereby

capturing the intuition that small distances reflect higher similarity to template model and

hence a stronger presence of the feature. We follow the steps for all 16 intraductal features

(ID).

To capture the complete intraductal information, for each duct with n cells we obtain a

cell-level likelihood matrix (size n× 16).

5.3.4 Encoding textural features (T)

On the original 3-channel ductal ROI (RGB image), we measure the following popu-

lar textural properties (T-Pop) including mean, variance, skewness, kurtosis, 5th to 11th

central moments [98, 99], local binary pattern (LBP) [100], gray-level co-occurrence matrix

(GLCM) [99,101] and Gabor filters [102] and also complex wavelet-derived properties (T-Wv)

auto-cor-real, auto-cor-mag, color-cor, cousin-mag-cor, cousin-real-cor, mag-means, parent-

mag-cor, parent-real-cor, pixel-stats, pixel-lp-stats, variance-hpr [103, 104]. T-Wv features

comprise of coefficients from complex wavelet transform basis functions at adjacent spatial

locations, orientations and scales. The organization of textural properties is shown in Ta-
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ble 4. For representing invasive carcinoma, we extract the hematoxylin channel and process

the entire image to measure textural properties.

Figure 13: Visualization of the textural information differences across four diagnostic

classes from HLRBB dataset. We can observe that some textural features (e.g.,

variance-HPR, parent-mag-cor, etc.) show less inter-class similarities and hence we analyze

the performance of our ML framework on a subset of such features through manual

selection

5.3.5 Computing information differences fk(x)

The difference function fk(x) between input image x and a prototype image pk (with

k = 1 . . . p) is computed by comparing the lumen/ductal morphology, tissue features and

textural properties. We perform K-S test to compare LD-MAT and the intraductal tissue

features. LD-MORPH features (area, roundness, and solidity of duct) and the textural
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properties are compared by measuring the Euclidean distance between each property in the

image x to pk and is transformed by an inverted S-function such that 0 ≤ fk(x) ≤ 1. Lower

distances indicate a stronger resemblance of the feature f .

Figure 14: Visualization of the textural information differences across seven diagnostic

classes from BRACS dataset. Panel A. shows the heatmap-based visualization for the

invasive and non-invasive classes. Panel B. is a visualization of the textural feature

differences among the non-invasive or benign breast lesion diagnoses. We can observe that

some textural features (e.g., variance-HPR, parent-mag-cor, mag-means, etc.) show less

inter-class similarities which is used in selecting the feature subset for assessing the ML

framework’s performance.

5.3.6 Implementation details

Extraction step of LD, ID, and T features is fully automated. The training

examples are randomly shuffled after each iteration [83]. For training, the objective function

L described in section 5.3.1 is minimized using gradient-descent and the function typically

converges within 104 epochs (convergence tolerance = 1e−3) to obtain βoptimal and λoptimal.

These optimal parametric values are used in mapping function m (3) to obtain mtest and

further generate prediction probability p⃗ through tanh activation (∈ [−1, 1]) and scale the

values to fall between 0 − 1, to obtain predicted label l = 0 if p < 0.5 and l = 1 if p ≥ 0.5.

A learning rate of α = 1e−4 is selected. The β and λ parameters are initialized with weights

53



drawn from LeCun normal with zero mean and standard deviation = 1/ps, where ps refers

to the size of the prototype set [83]. For choosing regularization co-efficients Cβ = 2 and

Cλ = 2, we monitored the model parameters such as change in the objective function (∆L)

and error-rate (ϵ) with co-efficient values ranging from 10−2 − 102. The entire pipeline was

implemented in native Python 3.8 on a 64-bit single 3.4 GHz CPU. Computing fk(x) along

with training the model with ∼ 1000 images for 104 epochs takes ≈ 4 hours. It takes < 1

min. to obtain a diagnostic label for a new image.

Table 4: The sixteen textural features are made up of different number of textural

properties which is listed above.

a. lower-order-histogram 5 b. higher-order-histogram 10 c. lbp-histogram 10

d. glcm 20 e. gabor 6 f. pixel-stats 6

g. pixel-lp-stats 24 h. auto-cor-real 736 i. auto-cor-mag 1764

j. mag-means 42 k. cousin-mag-cor 432 l. parent-mag-cor 288

m. cousin-real-cor 2304 n. parent-real-cor 864 o. variance-hpr 3

p. color-cor 9

5.4 Experiments and results

5.4.1 Dataset and evaluation metrics

HLRBB dataset (20×): We evaluated our proposed method on the high- and low-risk

benign breast biopsy dataset. It consists of 93 biopsy whole slide images (WSIs) scanned

at 20× resolution using an Aperio ScanScope XT scanner (Leica Biosystems). To generate

regions of interest (ROI) from WSIs, we applied the breast duct segmentation algorithm

proposed in [80] which breaks the WSI into non-overlapping superpixels, assigns each super-

pixel a probability of belonging to a duct structure to create a probability map, extracts an

estimate of a boundary for the ducts by applying a contour algorithm to the probability map,

and finally uses the estimate of the boundary to generate a refined boundary for the duct.

54



Using this method on our dataset, we segmented a total of 1237 breast ducts from the WSIs,

and further divided them into two sets: 1) 199 duct images, for which consensus annotation

is collected from 3 expert pathologists and used for determining the ductal prototypes, 2)

1038 duct images, for which annotation is collected from 1 expert pathologist and used for

training, validation, and testing of the proposed ML algorithm and baseline methods for

comparison. Duct annotations belonged to either of the 4 diagnostic categories: Normal,

CCC, FEA, or ADH. Details of the dataset proportions among classes are given in Table 5.

Table 5: Statistics of i) prototype set (HLRBB-PS-T30) for different diagnoses and feature

configurations; ii) high- and low-risk benign breast lesion (HLRBB) dataset for five-fold

cross validation.

T-CRC T-Wv T-All LD-MOR LD-MAT ID LD-ID T-LD-ID Tr+Val+Te

Normal 5 5 5 5 4 5 5 5 275

CCC 5 5 5 5 5 4 6 5 275

FEA 5 5 5 2 2 2 5 5 213

ADH 5 5 5 5 5 5 5 5 275

Total 20 20 20 17 16 16 21 20 1038

To obtain lumen contours, the RGB duct image is first transformed to the HSV color

space and then hierarchically clustered to find groupings of pixels representing the intraductal

lumen [105]. Several morphological post-processing operations such as dilation and erosion

were applied to obtain the final lumen mask. For nuclear segmentation, we used hematoxylin

intensity thresholding followed by watershed and morphological operations as proposed in

[38].

Selection of prototype set: To reflect the large intra-class heterogeneity present within

the breast biopsies, we formulated the prototype selection as a four-step process. In step 1,

we selected C (= 199) ducts with concordant diagnostic labels from three breast pathology

experts. In step 2, we generated prototype similarity matrix S by comparing the feature set

F (LD-MORPH, LD-MAT, ID, T, LD+ID, or LD+ID+T) using two-sample KS-test statistic

and Euclidean distance where appropriate. In step 3, we performed t-distributed stochastic
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neighbor embedding (t-SNE) on matrix S followed by k-means clustering and derived the

optimal number of clusters using elbow method. Finally, in step 4, we obtained prototypical

ducts closest to the cluster centers and were visually verified to display large heterogeneity.

The ducts C and features F were selected based on the classification task (e.g. Normal-

vs Rest, CCC-vs-Rest, etc.) and ML configuration (e.g. LD-MORPH, ID, LD+ID, etc.).

For example, to select prototypes for evaluating Normal-vs-rest classifier using texture (T)

features, we chose C ducts belonging to Normal class and F representing the 16 T features.

To understand the effect of choice of prototypes on the classification performance, we tested

our ML strategy on two prototype sets: HLRBB-PS-T30 and HLRBB-PS-T3 obtained by

changing t-SNE perplexity hyperparameter from 30 to 3 respectively [84].

Train, validation, and test set: We implemented our models on 1038 breast ducts

split in the ratio 3:1:1 for train (Tr), validation (Val), and test (Te) to run the baseline models.

Data is separated at biopsy level to overcome the effect of correlated ducts. We combined Tr

and Val to form the training set to run our ML framework. To generate confidence scores for

evaluation, we considered five equally sized sets of Tr, Val, and Te splits selected randomly

from the original HLRBB dataset.

BRACS dataset (40×): We additionally evaluated our method on the breast carcinoma

subtyping (BRACS) dataset [106,107] consisting of 4539 ROIs extracted from 387 WSIs from

a broad spectrum of breast biopsies including: Normal, Pathological Benign (equivalent to

CCC in HLRBB dataset and denoted as P-Benign in 7), UDH, FEA, ADH, DCIS, and Inva-

sive (5.2) scanned at 40× resolution using an Aperio AT2 scanner at 0.25 µm/pixel. BRACS

dataset consists of 3163 training, 602 validation and 626 test images [1]. Nuclei segmenta-

tion was performed using HoVer-Net [108, 109]. Ducts were manually segmented. For the

selection of prototype set, we operated on the validation dataset (C= 602) and followed a

similar strategy as described in the previous section to obtain prototypical ducts (BRACS-

PS-T30). To compute intraductal feature ID likelihood scores on the 40× BRACS data, we

downsampled the measurements to be appropriate for our analytical models developed at

20×.

Evaluation metrics: We evaluated the performance of all models using recall (R) to

focus on correct detection of positive class and weighted F-scores (wF) to indicate the correct
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detection of both positive and negative classes. The class weights in wF are proportional to

number of images present within each class. The final scores reported in 6 are calculated as

the mean and standard deviation of the classification performance over five runs. For BRACS

dataset (see 7), we trained the model three times with random parameter initializations as

followed in [1].

5.4.2 Classification performances

We evaluated and compared all classification methods by implementing a one-vs-rest clas-

sifier for four models: ADH-, FEA-, CCC-, and Normal-vs-rest using 5-fold cross validation

on prototype sets PS-T30 and PS-T3. The results from HLRBB-PS-T30 and HLRBB-PS-T3

are highlighted in 6. To understand the contributions of LD-MORPH, LD-MAT, ID, and T

information separately and collectively (LD-ID and T-LD-ID) in diagnosing breast lesions,

we modify the mapping function in 3 accordingly.

Table 6: Mean and standard deviation of recall (R) and weighted F-scores (wF) (in %)

from diagnostic classification of benign breast lesions (20× images) in one-vs-rest binary

classification tasks of the test dataset from 5-fold cross-validation using HLRBB-PS-T30

prototype set. Best results from baseline methods and our prototype-based methods (top

two) are highlighted in bold.

Model Metric BG1 BL BG2 T-Pop T-Wv T-All LD-MORPH LD-MAT ID LD-ID T-LD-ID

ADH R 25±4 19±1 49±9 50±7 65±8 69±5 71±8 51±9 70±4 78±3 71±5

wF 69±2 70±1 75±1 64±4 67±3 66±2 56±2 61±1 68±4 68±3 68±4

FEA R 19±7 13±6 55±7 52±5 63±5 66±5 48±9 51±5 73±9 71±6 73±2

wF 73±2 75±2 79±3 67±2 69±2 70±3 71±3 62±5 69±2 73±3 73±3

CCC R 35±4 28±4 52±14 66±3 66±3 70±3 71±4 67±7 78±2 77±5 77±4

wF 71±2 74±1 77±3 59±4 66±4 67±3 58±3 62±3 75±2 74±3 72±1

Normal R 56±6 44±7 63±10 83±2 80±6 83±1 71±5 64±6 76±7 80±8 80±6

wF 74±1 79±2 82±3 69±5 76±2 79±2 60±5 58±2 76±3 79±2 81±2
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Results on baseline methods: To benchmark our analytically modeled, prototype-

driven approach, we compare and analyze our results with two recently proposed state-of-

the-art methods on breast histopathology classification.

1. Baseline with cell-graph GNNs (BG1-BG2) [33]: We implemented cell-graph GNNs which

was recently explored for tissue analysis [33–35, 37]. BG1 is obtained by generating a cell-

graph topology by interlinking cells within a spatial neighborhood of 12.5µm for generating

the graphs similar to the work presented in [33]. Each cell within the graph is embedded with

morphological features such as area, perimeter, lengths ofmajor - andminor-axis, orientation,

circularity, aspect-ratio, and solidity.

2. Baseline with likelihood scores (BL) [80]:

To generate BL, we used mean of cell-level likelihood scores of the 16 ID features to rep-

resent each duct and implemented a logistic regression (LR) classifier with a 5-fold stratified

cross-validation (hyperparameter optimized using GridSearchCV based on recall (R), and

wF scores).

3. To combine the sophisticated classifier approach of BG1 with more meaningful features

from BL, we additionally test the performance of GNN by replacing the cellular embeddings

with diagnostically meaningful likelihood scores extracted in 5.3.3 to obtain BG2. As shown

in 6, replacing the morphological features with our analytical models, there is a significant

improvement in both recall and wF across all four classification scenarios.

Results on HLRBB dataset: 6 shows that our prototype-based method outperforms

all the baseline methods by a significant margin (p <0.001) in recognizing the individual

diagnostic categories (ADH, FEA, CCC, and normal) (greater R and wF scores). It should

be noted that, for each one-vs-rest classification trial, the test set is class-imbalanced by a

ratio of 1:3 (+:-ve class) (see 5.4.1). A higher wF and low R scores of baseline methods

shown in 6 indicates that compared to our method, it is more successful in classifying ducts

based on the majority class instead of correctly recognizing each diagnostic category. We

observe that the classification performance improves with the successive inclusion of texture,

ductal/lumen morphology, intraductal information, LD+ID, and finally T+LD+ID which is

discussed in ablation studies (5.5.2).

Results on BRACS dataset: The classification performance on the seven diagnostic
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categories from BRACS dataset is highlighted in 7. For comparison, we have included results

from the seven-way classification performances of HACT-Net and aggregated statistics from

three pathologists as reported in [1]. Interestingly, a variant of the textural feature (T-

Wv) shows comparable performance to the baseline method (HACT-Net). For detecting

diagnostically difficult benign cases, we exclude IC images. Comparatively, our method

outperforms the baseline methods. Further, we also outperform domain experts on BRACS

(see Path column in 7) by a significant margin.

Table 7: Mean and standard deviation of recall (R) and weighted F-scores (wF) (in %)

from diagnostic classification of breast lesions from the BRACS dataset (40× images) using

BRACS-PS-T30 prototype set. The classification performance of the pathologists (Path

column) and seven-way HACT-Net results are reported in [1]. Best results from baseline

methods and our prototype-based methods (top two) are highlighted in bold. The invasive

classification task using our method is based on texture features only (see 14). ∗An

additional result for detecting invasive cases using a binary-classification setting as stated

in [1] is shown.

Model Metric Path HACT-Net BG1 BG2 T-Pop T-Wv T-All LD-MORPH LD-MAT ID LD-ID T-LD-ID

Invasive R - 82 77±5 - 60±1 82±1 71±1 - - - - -

(I) wF 93±2 88|96∗ 83±1 - 79±1 86±1 85±1 - - - - -

DCIS R - 65 61±3 65±3 71±2 51±2 64±2 76±2 61±4 71±5 74±1 66±2

(D) wF 68±3 66±3 80±2 77±2 75±1 75±0 80±1 79±1 56±2 71±1 81±1 84±1

ADH R - 38 53±2 55±6 72±2 71±3 58±2 62±5 66±1 66±2 63±2 75±1

(A) wF 46±20 40±3 75±2 74±2 61±1 64±1 65±1 65±2 62±2 71±1 74±1 71±1

FEA R - 82 71±2 82±1 76±1 67±2 66±1 57±1 77±8 62±1 72±1 79±3

(F) wF 38±3 74±1 65±3 64±1 75±1 75±1 75±2 63±1 64±1 67±1 71±2 76±1

UDH R - 44 61±4 37±13 80±3 86±1 75±2 69±2 64±1 57±4 56±3 73±3

(U) wF 39±10 44±2 65±5 71±2 59±1 57±1 63±1 48±2 65±0 68±1 68±1 68±3

P-Benign R - 48 80±3 42±8 80±1 74±1 69±3 54±2 75±3 61±4 57±2 73±2

(PB) wF 52±2 48±3 75±3 69±7 78±0 75±1 74±1 56±2 51±1 56±2 57±2 75±1

Normal R - 62 77±5 73±4 65±3 64±1 62±1 77±3 29±6 36±6 37±1 64±2

(N) wF 52±12 62±2 78±1 74±2 78±0 77±1 79±1 76±1 73±1 74±2 82±1 83±1
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5.5 Discussion

5.5.1 Diagnostic explainability

For illustration, consider ADH-vs-rest classification scenario using LD and ID features on

HLRBB dataset. Texture features are excluded here since they do not increase the classifica-

tion performance (6). The prototype selection step results in five prototypical ducts P1-P5,

and the ML framework assigns optimal β values: -1.2, 1.1, 1.5, -1.5, and 1.2 respectively

(15).

Test duct D1 (true label: ADH) consists of monomorphically round and spaced nuclei (15)

which partially resembles prototype P2 that positively guides in diagnosing ADH (β = 1.1).

Further, D1 shows presence of multiple imperfectly circular lumen indicating a cribriform

feature which is detected to resemble P3 and further contributes towards detecting ADH (β =

1.5). Interestingly, D1 shows similarity to P5 by paying attention to the ductal morphology

(solidity) and indeed uniformly large-round (high solidity) structure describes some of the

high-risk breast ducts. Overall, our ML achieves a high ADH prediction probability of

σ(m(x)) = 0.89 (true positive) for D1.

Test duct D2 (true label: non-ADH) consists of simple picket-fence architecture with

sparsely distributed spaced cells (15). The minor contributions of ductal similarity to pro-

totypes P2 and P5 with respect to spaced and solidity is not sufficient in diagnosing ADH,

thereby obtaining a low prediction probability σ(m(x)) = 0.14 (true negative) for D2.

Impact of lumen/ductal morphology (LD), and intraductal tissue features (ID):

We observe from Table 6, the successful inclusion of both LD and ID features shows

an improvement in the classification performance. To further investigate this, we analyzed

the prediction probability distributions from each of our ML configurations on one testing

set in HLRBB dataset from the 5-fold cross-validation setting. Interestingly, the prediction

probabilities from LD features are ∼ 60% for true positives (TPs) and ∼ 30% for true

negatives (TNs). Combining this with ID features (LD+ID), the classification performance

is vastly improved (Fig. 16) and is further shown to diagnose with higher confidence (TPs

and TNs are pushed farther away from the mean value of 0.50).
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Figure 15: Diagnostic explanations (see 5.5.1 for more details): P1-P5 are prototypes

selected for ADH-vs-rest classification. D1 and D2 are two test ducts. Each cell in the

heatmap signifies the feature importance λl
k and feature difference f l

k(x) between prototype

k and test duct x for lth histological feature to obtain m (3) and generate prediction

probability (5.3.6).
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5.5.2 Model ablations

Impact of textural features : We investigated the inter-class heterogeneity and intra-class

similarity of textural features across all classes from HLRBB and BRACS datasets to generate

heatmaps (see Fig. 14).

Figure 16: Distributions of prediction probabilities from each of our ML configurations on

one testing set from the 5-fold cross-validation setting on the HLRBB dataset. Note the

tight distribution along the decision boundary while using lumen/ductal morphology

(LD-MORPH and LD-MAT). The inclusion of intraductal histological structural (ID)

information improves the classification performance with higher confidence. Additionally,

this decision boundary can be further deployed to explanation interface as the confidence

level, where decisions within the boundary would have low confidence scores hence needs

pathologist’s intervention for this critical recommendation.

We performed additional experiments to analyze the impact of textural feature subset

based on visualizing these heatmaps. Table 9 shows the mean of the recall and wF scores
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obtained by performing the classification on a subset of textural features. For invasive,

the textural features: pixel LP stats, auto-cor-real, parent-mag-cor, and variance hpr show

less inter-class similarities and hence we used this feature subset to run the ML framework.

However, this manual feature subset selection did not enhance the overall classification per-

formance.

Table 8: Mean of the recall (R) and weighted F-scores (wF) (in %) from diagnostic

classification of four classes (HLRBB dataset) and seven classes (BRACS dataset).

Dataset I D A F U B N

HLRBB R - - 64 65 - 62 77

wF - - 65 68 - 66 75

BRACS R 77 66 56 76 68 75 63

wF 87 78 66 74 55 77 79
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5.5.3 Conclusion

We presented a prototype-driven computational pathology pipeline based on analytical

modeling of tissue features for the challenging task of diagnosing a broad spectrum of breast

biopsies. We validated our approach on multiple classification scenarios across two datasets

(HLRBB and BRACS) scanned at different resolutions and showed a significant improvement

(≈ 20%) over the state-of-the-art methods. A key highlight of our method is in its ability

to provide pathologist friendly diagnostic explanations without largely compromising on

the classification performance. We posit, the strategy outlined in this paper generalizes

to tissue histologies from other organs as defined in the WHO Classification of Tumors

book. Further, our approach can facilitate a communication platform between pathologists

and computational scientists to interact and develop AI-driven algorithmic tools that can

enhance patient care in a clinical setting.

Table 9: Mean and standard deviation of the recall (R) and weighted F-scores (wF) (in %)

from diagnostic classification of four classes (HLRBB dataset) and seven classes (BRACS

dataset) using manually selected subset of textural features (T-Subset).

Dataset I D A F U B N

T-Subset - - c,f,h,l,m,o c,h,k,l,n,o - h,k,l,n,o b,h,l,m,n,o

HLRBB R - - 64 65 - 62 77

± - - 9 3 - 4 3

wF - - 65 68 - 66 75

± - - 2 3 - 3 1

T-Subset c,g,h,l,n,o c,f,l,n,o f,l,m,n,o b,g,j,k,l,n c,f,l,n,o b,c,f,j,l,o b,c,f,j,l,o

BRACS R 77 66 56 76 68 75 63

± 2 1 6 2 4 2 1

wF 87 78 66 74 55 77 79

± 1 1 1 1 1 1 1
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6.0 Towards showcasing the potential for seamless integration of our

computational pathology framework into clinical workflows

6.1 Chapter summary

A major bottleneck in developing and deploying AI-based anatomic pathology applica-

tions in clinical settings is the lack of access to high-performance computing required for

training and testing computational pathology pipelines. On the contrary, easy access to low-

compute devices (‘edge devices’) in a clinical setting permits deployment of already trained

computational pathology pipelines. To integrate AI-based anatomic pathology applications

in clinical settings, we propose training our computational pathology pipelines on remote

customizable high-performance AI-enabled compute architectures provided by state-of-the-

art data centers and applying the pipelines on edge devices for real-time clinical applications.

For demonstration, our pipeline detects histological structures in breast tissue and classi-

fies them into two diagnostic categories, high-risk and low-risk. The pipeline was trained on

SambaNova SN108-R, an emerging customizable AI-based compute architecture provided by

Argonne Leadership Computing Facility (ALCF). For performance comparison, we trained

the same pipeline on CPU- and GPU-based architectures. We deployed the trained pipeline

on an edge device to showcase the ability to generate diagnostic inferences in real-time.

6.2 Introduction

6.2.1 Background

Manual pathology practice is inefficient : Currently, manual review of glass microscope

slides (GMS) is the standard for surgical pathology diagnosis. The manual workflow consists

of pathologists first accessing and reviewing the Anatomic Pathology Laboratory Information

(APLIS) to manually read the specimen information [110]. The slides are viewed sequentially
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and one at a time to identify diagnostically salient regions such as calcifications, microor-

ganisms, atypia, or cancer in a raster scan fashion. As a part of the diagnostic workflow,

pathologists manually construct a report by transcription, typing or speech recognition [110].

Although, there exists few time saving strategies for report generation, however, it still re-

quires final review and manual data entry. This manual pathology practice is inefficient,

error-prone, and highly subjective [110,111].

Additional issues affecting optimal patient care: In addition to inefficiencies within cur-

rent analog routines of pathology, external developments are also concerning. The cancer

cases are expected to rise with an increase in the aging population (increase from 1.7 mil-

lion cases in 2012 to 2.3 million in 2025) [6]. As the number of cancer cases grow, the

forecasted shortage of pathologists is alarming (declining from 5.7 to 3.7 per 100,000 people

between 2010 and 2030) [7]. Today, major pathology practices are having problems with

understaffing and increasing workloads. This is even more problematic in areas that are

traditionally underserved (e.g., rural areas, community hospitals, etc.) [7]. The increase in

the pathologists’ workload coupled with the growth of the digital pathology market, has led

to emerging black-box AI-based anatomic pathology applications.

Growth of digital pathology to improve anatomic pathology efficiency : DP enables the

digitization of histological images, opening up many possible benefits. Having access to

computing tools can provide pathologists with more quantifiable data relevant to risk as-

sessment [13]. DP has proven to be successful for use in teleconferencing [14], allowing for

simultaneous viewing of whole case files by multiple pathologists. This allows doctors the

ability to virtually discuss a case with a pathologist who may be specialized in a field relative

to the patient, such as lung pathology [13]. Additionally, DP makes the process of getting

a second opinion much easier and faster. The digitization of case data also makes cross-site

patient data synchronization much easier [13]. Further, the digitization also allows for the

development of intelligent AI systems to aid in the diagnostic process. However, to realize

the seamless integration of AI-based applications into the traditional diagnostic workflows,

the system must achieve reasonable turnaround time and minimize the time-to-decision to

achieve clinical adoption and possibly facilitate regulatory agency approvals.

Computational challenges to achieve required turnaround time in anatomic pathology
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workflow : Turnaround time is defined as the time required by a system to execute an appli-

cation which includes loading the data, running the application, and displaying the output

on a screen [112]. In anatomic pathology, this turnaround time is critical for an AI system

to achieve, especially when rapid and repetitive panning/zooming operations are performed

during a search task. Further, the turnaround time might vary depending upon the appli-

cation, image size, compute workload, etc.

However, the integration of AI-based applications in clinical workflows is not straight-

forward. A major bottleneck in developing and deploying AI-based anatomic pathology

applications in clinical settings is the lack of access to high-performance computing required

for training and testing computational pathology pipelines. On the contrary, easy access

to low-compute devices (‘edge devices’) in a clinical setting permits deployment of already

trained computational pathology pipelines. Additionally, to train these pipelines, we need to

tackle computational barriers due to the massive data volume generated from high-resolution

pathology WSIs. For example, a single core of breast biopsy tissue occupies between 1-20

gigabytes of storage space depending on the sample and resolution [112]. Although, the

entire WSI is usually broken down into tiles, still the usage of a single GPU to train the

ML models results in “out-of-memory” issues. Alternately, clustering multiple GPUs is not

an optimal solution, since we need to deal with the problems caused by disaggregation of

the computational workflows. Further, it is impossible to load the high-resolution images

without sufficient tiling or downsampling which could lead to loss of contextual information

and deliver less accurate results.

Our approach: To integrate AI-based anatomic pathology applications in clinical set-

tings, we propose training our computational pathology pipelines on remote customizable

high-performance AI-enabled compute architectures provided by state-of-the-art data centers

and applying the pipelines on edge devices for real-time clinical applications. For demon-

stration, our pipeline detects histological structures in breast tissue and classifies them into

two diagnostic categories, high-risk and low-risk. The pipeline was trained on SambaNova

SN108-R [113, 114], an emerging customizable AI-based compute architecture provided by

Argonne Leadership Computing Facility (ALCF). For performance comparison, we trained

the same pipeline on CPU- and GPU-based architectures. We deployed the trained pipeline
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on an edge device to showcase the ability to generate diagnostic inferences in real-time.

6.2.2 Related Work

Turnaround time in digital pathology : An innovative framework called pathologists’ computer-

assisted diagnosis (pCAD) was projected as a result of the emerging trends in DP which

motivated the application of AI towards visual assessment of the tissue slides [20]. This

framework was used to carry out an experiment to evaluate time spent by the pathologists

in diagnosing breast core biopsies on each field of view under the microscope. The average

time required to manually review a biopsy was 221.6 seconds and the average simulated

time to review using the pCAD framework was 98 seconds, amounting to a 56% reduction in

time-to-decision. The experimental setup described in [115] is significant to support the hy-

pothesis that computational pathology workflows can improve anatomic pathology efficiency

and minimize time-to-decision. This hypothesis is further supported by the work in [116],

where the author demonstrated a 10% shorter time-to-decision from the digital pathology

workflow when compared to traditional pathology for diagnosing 400 biopsy cases.

Application of AI systems : The authors in [113] evaluated the relevance of using cus-

tomizable AI-based computing architecture (SambaNova system) on a diverse range of appli-

cations such as, BERT (Bidirectional encoder representations from transformers) for natural

language processing, CosmicTagger to detect neutrino interactions from high-resolution im-

ages obtained from the neutrino detectors, Gravwaves to observe astrophysical phenomena

using gravitational waves, etc. Brace et al. explored the suitability of Cerebras for running

molecular dynamics simulations for guiding the conformational search and demonstrated

significant performance gains over traditional CPU/ GPU hardware. The authors in [117]

demonstrated an automated workflow for rapid (re)training of deep-learning networks on

AI accelerators (Cerebras and Sambanova) and facilitating model deployment in real-time

at the edge. This workflow showed the feasibility of using high-powered remote AI accel-

erators (e.g., Sambanova) to promote fast training/ retraining for low-cost data processing

on edge devices. However, no substantial studies have been performed to demonstrate a

proof-of-concept blueprint to bring such technologies to anatomic pathology workflows.

68



6.3 Methods

We built a workflow to train computational pathology pipelines on remote customiz-

able AI-based compute architecture (SambaNova SN108-R) provided by Argonne Leader-

ship Computing Facility. In this section, we first provide an overview of the SambaNova

architecture. Second, we describe the experimental setup of our computational pathology

training pipeline. Third, we evaluate the limitations of running the training pipeline on

traditional CPU- and GPU-based architectures. Finally, we demonstrate the deployment of

trained pipeline on an edge device to showcase the ability to generate diagnostic inferences

in real-time.

6.3.1 SambaNova reconfigurable dataflow architecture

The SambaNova Reconfigurable Dataflow Architecture (RDA) is a high-performance

computing architecture catered to the next generation of AI applications. The reconfig-

urable dataflow architecture enables high-throughput processing of the high-resolution tis-

sue biopsy images. Further, the SambaFlow software framework allows seamless operation

by providing an automated support for convolution overlap handling, intermediate tensors,

and tiled images. Additionally, it is capable of processing images of very high-resolution

(≈ 4K − 50K) on a single DataScale system which favors its usage for deploying AI-based

anatomic pathology applications. For this study, we used the SambaNova DataScale system,

SN108-R deployed at the Argonne Leadership Computing Facility (ALCF). Each system

consists of a host module and 8 Reconfigurable Dataflow Units (RDUs) which are intercon-

nected via the RDU-Connect, while the systems are connected using an InfiniBand-based

interconnect. This allows for a seamless model and data parallelism across the RDUs in

the SN108-R SambaNova system required for integrating AI-based applications in a clinical

setting.
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6.3.2 Experimental setup

A visual illustration of the the experimental setup is shown in Fig. 17. As shown in

Fig. 17A, we implement a computational pathology framework designed for rapid training

of two deep-learning (DL) networks on the SambaNova system to detect the diagnostically

important histological structure, duct(s) in the breast tissues and classify them into two di-

agnostic categories, high-risk and low-risk. In addition, we demonstrate the clinical anatomic

pathology application pipeline to deploy the trained models on an edge device and show-

case the ability to generate diagnostic inferences in real-time (see Fig. 17B). The methods

outlined here can be easily adapted to different datasets or different DL networks. We quan-

titate the performance based on end-to-end training time, model throughput, and latency.

We further compare the end-to-end training time of the proposed workflow of the AI sys-

tem (SambaNova) with the following CPU- and GPU-based architectures: Intel Xeon Gold

6234 CPU, TitanX GPU, NVIDIA V100 GPU, and NVIDIA A100 Tensor core GPU. To

implement, we developed a workflow orchestrator on the open-source PyTorch framework

to enable data loading, model configuration, and deployment on the machines. Further,

to enable data parallelism, we packaged our workflow using DataDistributedParallel (DDP)

training module from the PyTorch framework.

6.3.3 Training computational pathology pipelines

To demonstrate the proposed workflow of training our computational pathology pipelines,

we implemented two DNNs, U-Net [118] and ResNet18 [119]. For training, we used the

breast carcinoma subtyping (BRACS) dataset [107] scanned at 40X resolution. A detailed

description of the dataset is provided in Section 4.4.1. For the sake of classification, the

diagnostic labels Normal, Pathological benign, and UDH were regrouped as low-risk and

FEA, ADH, and DCIS were regrouped as high-risk. The details of model implementation is

described below.

1. U-Net: For duct segmentation, we deployed a fully convolutional neural network-

based U-Net architecture [118]. U-Net has shown promising results for semantic segmentation

in medical images. The convolution and pooling operations in U-Net allow the model to
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Figure 17: (A) Computational pathology training pipeline on a remote customizable

high-performance AI-enabled compute architecture (SambaNova) to detect duct(s) in

breast tissue and classify them into two diagnostic categories, high-risk and low-risk using

U-Net and ResNet-18 DL networks respectively. (B) Clinical anatomic pathology

application pipeline to deploy the trained model from (A) on an edge device and

demonstrate real-time diagnostic inferences to detect ducts in a breast tissue and predict

its diagnostic label.

learn important structural relationships that will aid in the segmentation. In the case of

duct segmentation, we want the model to learn the spatial relationships between the duct

and stroma.
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Data preprocessing : To organize the dataset for duct segmentation, we first normalized

the ROI images from BRACS dataset to 1K×1K and extracted the hematoxylin channel by

performing color deconvolution. Next, we obtained ground-truth duct masks upon applying

the duct segmentation algorithm described in section 3.3.1. To summarize, the algorithm

breaks the WSI into non-overlapping superpixels, assigns each superpixel a probability of

belonging to a duct structure to create a probability map, and finally uses the estimate of

the boundary to generate a refined boundary for the duct. Since the original method [80]

was trained on 20X images, the images from BRACS dataset were downsampled from 40X

to 20X prior to applying this method. The 500× 500 downsampled images along with their

ground-truth masks were used to train the U-Net architecture on the Sambanova system.

However, to overcome memory issues on CPU and single node GPU machines, the images

and binary masks were resized to (112,112) prior to training.

Model implementation: To train the U-Net architecture, we used the Dice loss function

and monitored the Intersection over Union (IoU) scores with a decision threshold of 0.5. The

U-Net model has 23 convolutional layers generating ≈ 36.9 million trainable parameters as

indicated in Table 10. We used an Adam optimizer with a learning rate of 1 × 10−4 and

trained the network for 200 epochs.

2. ResNet - We deployed a ResNet-18 CNN model to diagnose the breast biopsy

images as low-risk or high-risk. The ResNet architecture introduced skip connections to

handle information loss during training. Several studies have explored the performance of

ResNet on histopathology images [119]. The training and validation dataset consisted of

2358 and 474 ductal ROIs respectively of size 1K × 1K. To overcome memory issues on

CPU and single node GPU machines, the RGB images were resized to (256,256).

Model implementation: We used transfer learning with a pretrained ResNet-18 model

from the PyTorch vision models. The ResNet-18 model has 18 convolutional layers generating

≈ 11.2 million trainable parameters as indicated in Table 10. Adam optimizer with a weight

decay of 5×10−4, learning rate of 1×10−4 was used to optimize the categorical cross-entropy

loss function for 200 epochs with a batch size of 32.

To show the feasibility of training high-resolution images on the AI-based system on larger

batch sizes, we performed additional experiments on the SambaNova system by scaling the

72



batch-size from 32 to 64 on the training images without further downsampling or tiling.

6.3.4 Deploying trained pipeline on an edge device

We deployed the trained pipeline on an edge device to showcase the ability to generate

diagnostic inferences in real-time. For demonstration purpose, we used the low-computing

Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz machine as the edge device. To simulate a

typical anatomic pathology workflow, we designed our inference pipeline to load a WSI,

segment it into multiple tiles, load the trained pipelines from U-Net and ResNet-18 models

and obtain segmented duct(s) and diagnostic label for each tile (see Fig. 17B).

6.4 Results and discussion

6.4.1 Computational performance of CPU- and GPU-based architectures

Table 10: Computational performance

Model UNet ResNet

Xeon CPU 1100.18 270.93

TitanX GPU 151.22 55.62

V100 GPU 276.87 97.37

A100 ThetaGPU 583.97 82.39

(a) Training time on different hardware devices
(in minutes) to run UNet and ResNet18

networks for 200 epochs.

Model UNet ResNet

Input (112,112) (256,256,3)

Loss fcn Dice BCE

# parameters 36.9 M 11.2 M

(b) Model description

For performance comparison, we trained the computational pathology pipeline described

in the previous section on CPU- and GPU-based architectures. We recorded the training

time, training loss and validation accuracies generated per epoch. Fig. 18 illustrates the
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Figure 18: Comparison of (i) training time per epoch, (ii) BCE training loss, and (iii)

validation accuracy generated by implementing a Res-Net18 architecture for diagnostic

classification on different hardware devices.

computational performance measurement for 200 epochs. The end-to-end training time from

the traditional architectures is reported in Table 10a. For all the experiments, we resized

the images to (112,112) for U-Net and to (256,256) for Res-Net to avoid “out-of-memory”

issues that were initially encountered.

We analyze the computational performance of all the four traditional hardware archi-

tectures to train the U-Net network. TitanX GPU provides an approximate speed up of

7x, 1.8x, and 3.8x compared to Xeon CPU, V100 GPU (deployed on Summit at Oak Ridge

National Laboratory), and NVIDIA A100 GPU. Additionally, to train the Res-Net, TitanX

GPU exceeds the performance speed when compared to CPU, V100, and A100 GPUs by

4.9x, 1.7x, and 1.5x respectively. However, neither of the devices could support the original

image size of 500 × 500 and larger batch sizes which is a major bottleneck in deploying

AI-based applications on the high-resolution pathology images.

6.4.2 Computational performance of customizable AI-based compute architec-

ture

To measure and compare the computational performance on the customizable high-

performance AI-enabled compute architecture, SambaNova SN108-R, we capture several
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Figure 19: Comparison of (i) training time per epoch, (ii) BCE training loss, and (iii)

validation accuracy generated by implementing a Res-Net18 DL network on the

SambaNova system for three training configurations. (1) Config-1: image size of (256,256)

and batch-size of 32. (2) Config-2: image size of (500,500) and batch-size of 32, and (3)

Config-3: image size of (500,500) and batch-size of 64.

performance metrics during training and evaluate the feasibility of using high-performance

AI systems on high-resolution images and larger batch sizes by performing the following

three experiments:

1. Training on downsampled images (256,256) with batch-size 32 : The performance of

training the UNet architecture on (256,256)-sized images resulted in an end-to-end through-

put of 65.90 samples/second and average latency of 0.48 seconds. Further, training the

RescaleNet18 (a variant of ResNet suitable for the SambaNova software framework) on the

downsampled image with batch-size of 32 resulted in an end-to-end throughput of 241.15

samples/second and an average latency of 0.13 seconds.

2. Training on original images (500,500) with batch-size 32 : The performance of train-

ing the UNet architecture on (500,500)-sized images resulted in an end-to-end through-

put of 16.68 samples/second and average latency of 1.92 seconds. Further, training the

RescaleNet18 on the original image without resizing with batch-size of 32 resulted in an

end-to-end throughput of 41.45 samples/second and an average latency of 0.77 seconds.

3. Training on original images (500,500) with batch-size 64 : Scaling the batch-size to

64 to run RescaleNet resulted in an end-to-end throughput of 42.04 samples/second and an
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average latency of 1.52 seconds.

The training time, training loss and validation accuracies generated per epoch from

running the experiments on the SambaNova system is illustrated in Fig. 19. We observe

that training the pipeline on downsampled images is faster even on the SambaNova system,

however it was possible to run the full-sized images on the high-performance computing

architecture. Interestingly, increasing the batch-size by 2x did not significantly reduce the

end-to-end throughput (41.45 samples/ second vs 42.04 samples/second). However, the

end-to-end training time on the traditional CPU- and GPU-based architectures was lower

than the SambaNova system. Upon further investigation, we could justify the suboptimal

performances based on the fact that more hands-on-work needs to be done by the SambaNova

engineers in order to optimize the compilation to take full advantage of the AI-hardware

accelerators. Currently, the system is under active development stage and not all layers of

the SambaNova software stack (SambaFlow) is fully optimized. It should be noted that,

the purpose of this study was to demonstrate the feasibility of using powerful AI-enabled

systems for deploying on the edge devices. The proposed computational pathology pipeline

is highly flexible and can be readily adapted on future versions of the SambaNova system.

6.4.3 Deployment of trained pipeline on the edge device

We successfully implemented the workflow described in section 6.3.4 for detecting duct(s)

and predicting the diagnostic category on the edge device. We were able to achieve an average

diagnostic inference time of 38.28 milliseconds and thereby showcasing the ability to deploy

real-time clinical applications.

6.5 Conclusions and future work

In this chapter, we discussed some issues to integrate AI-based anatomic pathology appli-

cations into clinical workflows and presented an approach to address them. In particular, we

trained our computational pathology pipelines on remote customizable high-performance AI-
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enabled compute architectures provided by state-of-the-art data centers such as, ALCF and

applied the trained models on edge devices for real-time clinical applications. For demonstra-

tion, we tested our framework on two anatomic pathology applications of detecting duct(s)

in the breast tissue and classifying them into two diagnostic categories of high- or low-risk.

We successfully showed the feasibility of using the emerging customizable AI-based compute

architecture, SambaNova SN108-R for training and deploying the trained models in real-time

on low-compute edge devices which is easily accessible in a clinical setting.

Future work: This work can be developed further in several directions. First, more

hands-on work needs to be done by the Sambanova engineers in order to optimize the com-

pilation to take advantage of the AI-hardware accelerators. The system is currently under

active development stage and all the layers in the software stack are not fully optimized.

Second, the current workflow demonstrates the feasibility of using powerful AI systems,

however, a systematical benchmarking study needs to be conducted to compare the compu-

tational performance. Third, similar to the study conducted on the pCAD framework [20],

a visual psychophysics experiment can be conducted to provide qualitative and quantitative

assessment of integrating AI-based solutions into the clinical workflow to aid the pathologists

in decision-making. Fourth, the existing computational pathology training pipeline can be

modified to enable re-training or on-the-fly training as and when new pathologist annotated

training data becomes available.
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7.0 Conclusions

In this thesis, we built an interpretable computational pathology framework based on

analytical modeling of already established anatomic pathology knowledge. Additionally, we

demonstrated the feasibility of integrating AI-based applications into the clinical workflows

by training on the emerging remote high-performance AI-based compute architecture and

deploying the trained model on low-compute edge devices which are easily accessible within

a clinical setting. The major advantage of invoking analytical models of the diagnostically

meaningful hand-crafted features for prototype-driven ML classification is that they are flex-

ible to adapt as the clinical practice changes. Also, our proposed computational pathology

framework can easily incorporate new morphology tissue features. Further, the methods

developed in this thesis generalizes to tissue histologies from other organs since a majority

(80-90%) of cancer cases originate from epithelial tissue malignancies. The key contribution

of our framework is that we have built a communication platform for pathologists and com-

putational scientists to interact and develop AI-based applications and enhance patient care

in a clinical setting.

In Chapter 2, we developed analytical models for a dictionary of tissue features that

aid in the differential diagnosis of atypical breast biopsies. Following guidelines in the WHO

classification of tumors of the breast and in consultation with our team of breast pathology

sub-specialists, we assembled a visual dictionary of 16 tissue features that the pathologists

frequently use in making complex diagnostic decisions for atypical breast biopsies. This

strategy has the potential to extend to other organ systems and act as a surrogate in the case

review and quality assurance discussions for reducing discordance between pathologists. Our

approach of analytically modeling the tissue features that traditionally define the standard

on tumor classification/ nomenclature for pathologists worldwide is the first of its kind.

In Chapter 3, we reframed the computational diagnosis of breast biopsies as a problem

of prototype recognition following a hypothesis that pathologists mentally relate current

tissue features to previously encountered features during their routine diagnostic work. We

developed an unsupervised method to obtain the relative importance of the tissue features in
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a set of pre-selected prototypical ductal ROIs in classifying the breast biopsies. This model

provided clinically relevant explanations to its recommendations which is easily interpretable.

In Chapter 4, we significantly enhanced the entire computational pathology framework

for differential diagnoses of a broad spectrum of breast biopsies. We validated our approach

on multiple classification scenarios across two datasets scanned at different resolutions and

showed a significant improvement over the state-of-the-art methods. The key highlight of

this chapter was in showing the ability of our ML method to provide pathologist friendly

explanations without largely compromising on the classification performance.

In Chapter 5, we demonstrated the feasibility of integrating AI-based anatomic pathol-

ogy applications in clinical settings by training our computational pathology pipelines on

remote customizable high-performance AI-based compute architectures and deployed the

trained models in real-time on low-compute edge device.

As the next target for development, there are some addressable limitations which include:

a. DCIS dominant patterns such as solid, comedo necrosis, and micropapillary have not

been included. b. For invasive carcinoma, cell specific features such as the mitotic count

can be beneficial. We anticipate that the inclusion of analytical models of missing features

will further enhance the classification performance. c. imperfect duct, lumen, and nuclei

segmentation can negatively impact the analytical models. d. Need for rigorous feature

perturbations analysis on the diagnostic classification performance, such as increasing size

of prototype dataset.

The digital and computational pathology is revolutionizing the anatomic pathology work-

flows as a result of which several AI-based applications are being developed. However, for

clinical adoption and FDA approvals, the AI system must be transparent and trustworthy.

Keeping this in mind, in this thesis we collaborated with a pathology expert to help us

understand what tissue features are they paying attention to while diagnosing breast lesions

and then we built analytical models to capture them. For easy visual interpretability, we

used these analytical models to drive a prototype-driven ML framework. Finally, we also

demonstrated a proof-of-concept study to integrate our computational pathology framework

into clinical workflows. The principal advantage of our computational pathology framework

is that it is flexible to adapt as the clinical practice changes and we can incorporate addi-
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tional tissue features to make the system more robust. As an additional future direction,

we can conduct visual psychophysics experiments of our framework with the pathologists to

evaluate if our AI system can improve the workflow efficiency.
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[83] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[85] Jacob Bien and Robert Tibshirani. Prototype selection for interpretable classification.
The Annals of Applied Statistics, pages 2403–2424, 2011.

[86] Sarah B Hugar, Rohit Bhargava, David J Dabbs, Katie M Davis, Margarita Zuley, and
Beth Z Clark. Isolated flat epithelial atypia on core biopsy specimens is associated with
a low risk of upgrade at excision. American journal of clinical pathology, 151(5):511–
515, 2019.

[87] Ronen Basri. Recognition by prototypes. International Journal of Computer Vision,
19(2):147–167, 1996.

[88] Mingbo Ma, Ming Shao, Xu Zhao, and Yun Fu. Prototype based feature learning
for face image set classification. In 2013 10th IEEE International Conference and
Workshops on Automatic Face and Gesture Recognition (FG), pages 1–6. IEEE, 2013.

[89] Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learning multi-attention con-
volutional neural network for fine-grained image recognition. In Proceedings of the
IEEE international conference on computer vision, pages 5209–5217, 2017.

[90] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for
fine-grained visual recognition. In Proceedings of the IEEE international conference
on computer vision, pages 1449–1457, 2015.

89



[91] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see better: Recurrent atten-
tion convolutional neural network for fine-grained image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 4438–4446,
2017.

[92] John Wilder, Morteza Rezanejad, Kaleem Siddiqi, Allan Jepson, Sven Dickinson, and
Dirk Walther. Local contour symmetry facilitates the neural representation of scene
categories in the ppa. 01 2019.

[93] John Wilder, Morteza Rezanejad, Sven Dickinson, Kaleem Siddiqi, Allan Jepson, and
Dirk Walther. The perceptual advantage of symmetry for scene perception. Journal
of Vision, 17:1091, 08 2017.

[94] John Wilder, Morteza Rezanejad, Sven Dickinson, Kaleem Siddiqi, Allan Jepson, and
Dirk B. Walther. Local contour symmetry facilitates scene categorization. Cognition,
182:307–317, 2019.

[95] Vladislav Ayzenberg, Yunxiao Chen, Sami R. Yousif, and Stella F. Lourenco. Skeletal
representations of shape in human vision: Evidence for a pruned medial axis model.
Journal of Vision, 19(6):6, June 2019.

[96] Morteza Rezanejad, Gabriel Downs, John Wilder, Dirk B. Walther, Allan Jepson,
Sven Dickinson, and Kaleem Siddiqi. Scene categorization from contours: Medial axis
based salience measures, 2018.

[97] Brian Falkenstein, Adriana Kovashka, Seong Jae Hwang, and S. Chakra Chennub-
hotla. Classifying nuclei shape heterogeneity in breast tumors with skeletons. In
Adrien Bartoli and Andrea Fusiello, editors, Computer Vision – ECCV 2020 Work-
shops, pages 310–323, Cham, 2020. Springer International Publishing.

[98] Bela Julesz. Textons, the elements of texture perception, and their interactions.
Nature, 290(5802):91–97, 1981.

[99] Jürgen Beyerer, Fernando Puente León, and Christian Frese. Machine vision: Auto-
mated visual inspection: Theory, practice and applications. Springer, 2015.
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namiglio, Guillaume Jaume, Giuseppe De Pietro, Maurizio Di Bonito, Antonio Fon-
cubierta, Gerardo Botti, et al. Bracs: A dataset for breast carcinoma subtyping in
h&e histology images. arXiv preprint arXiv:2111.04740, 2021.

[107] Bracs: Breast carcinoma subtyping.

[108] Simon Graham, Quoc Dang Vu, Shan E Ahmed Raza, Ayesha Azam, Yee Wah Tsang,
Jin Tae Kwak, and Nasir Rajpoot. Hover-net: Simultaneous segmentation and classi-
fication of nuclei in multi-tissue histology images. Medical Image Analysis, 58:101563,
2019.

[109] Guillaume Jaume, Pushpak Pati, Valentin Anklin, Antonio Foncubierta, and Maria
Gabrani. Histocartography: A toolkit for graph analytics in digital pathology. In
MICCAI Workshop on Computational Pathology, pages 117–128. PMLR, 2021.

[110] Jeffrey L Fine. 21st century workflow: a proposal. Journal of pathology informatics,
5, 2014.
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