
Contextual decision making and action enforcing applications in wireless

networks and IoT using SDN as a platform

by

Maryam Karimi

Master, Shiraz University of Technology, 2015

Submitted to the Graduate Faculty of

the Computing and Information Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2022

UNIVERSITY OF PITTSBURGH

SCHOOL OF COMPUTING AND INFORMATION

This dissertation was presented

by

Maryam Karimi

It was defended on

April 1, 2022

and approved by

Dr. Prashant Krishnamurthy, School of Computing and Information

Dr. David Tipper, School of Computing and Information

Dr. Martin Weiss, School of Computing and Information

Dr. Mai Abdelhakim, Department of Electrical and Computing Engineering

Dissertation Director: Dr. Prashant Krishnamurthy, School of Computing and Information

ii

Copyright © by Maryam Karimi

2022

iii

Contextual decision making and action enforcing applications in wireless

networks and IoT using SDN as a platform

Maryam Karimi, PhD

University of Pittsburgh, 2022

With the rise of the Internet of Things (IoT), new challenges and opportunities have

emerged, providing the potential to improve living standards, higher efficiencies and lower

costs. A variety of wearable devices and sophisticated, yet not very expensive connected

devices are now able to gather different kinds of information (mostly) on their premises

and enable people to make decisions or control actions. The complexity of such decisions

need to be balanced with performance tradeoffs. Different applications may need different

levels of service that require different communication, storage, and service costs. A suitable

architecture that can employ data driven decisions for performance improvements comprises

of software defined networks (SDN) and software defined perimeter (SDP). SDN and SDP are

suitable platforms due to their ability to have a view of the network traffic for implementing

the services that require gathering information from the context and performing contextual

decision making while balancing performance tradeoffs, managing specific parameters, and

enforcing actions based on them. This dissertation examines three case studies that look at

such performance tradeoffs.

In the first case study, we explore the use of historical data in WiFi networks to create

a classification QoS decision tree that predicts the maximum delay due to specific traffic

situations with specific context parameters and makes rapid decisions possible to manage

wireless network resources considering quality requirements. We use OpenFlow network

access and gathering necessary context in wireless networks. The tradeoffs here involve

balancing traffic flows from WiFi access points to meet latency constraints of end devices.

In the second case study, we investigate contextual integrity verification in IoT where we

look at “levels” of integrity verification. A variety of IoT devices may be required to out-

source sensed or generated data to multiple heterogeneous cloud servers. We posit that it is

the Data Owner’s responsibility to verify whether the stored data remain unchanged. How-

iv

ever, the “level” of this verification may be different under different contexts. We propose

four typically disparate methods of integrity verification and consider the “toll” in terms of

time, storage and communication to decide on a suitable data integrity verification process.

We adapt the notion of contextual privacy to extract important parameters that determine

the right level of integrity to be applied to data blocks. Such contextual information can be

extracted in a SDN while security context information and a secure infrastructure for authen-

tication and communication is possible through a secure architecture with the integration of

SDP and SDN.

Finally, in the third study, we investigate “levels” of reliability of contextual data along

with the use of Bayesian Regression to enhance decision making and determine how critical

each context variable is and how it would affect choosing appropriate parameters for action to

perform. Again, SDN and SDP can provide the contextual information needed to maintain

the various reliability levels.

v

Table of Contents

Preface . xvi

1.0 Introduction . 1

1.1 SDN and SDP in Brief . 2

1.2 Overview of Dissertation . 5

1.2.1 Interference and Delay Tradeoffs . 5

1.2.2 Contextual Data Integrity . 5

1.2.3 Contextual Data Reliability . 7

1.3 Organization of the Dissertation . 8

2.0 Software Defined Secure Framework . 9

2.1 SDN security issues and solutions . 9

2.1.1 SDN security issues . 12

2.1.1.1 Element 1. Application . 12

2.1.1.2 Element 2. Main controller . 14

2.1.1.3 Element 3. Layer 2 controller 15

2.1.1.4 Element 4: The link between the controller and the switch . . 16

2.1.1.5 Element 5. Switch . 16

2.1.1.6 Element 6. Gateway . 17

2.1.1.7 Element 7. Access Point . 18

2.1.1.8 Element 8. Host and Servers 18

2.1.2 SDN security solutions . 19

2.1.2.1 Managing Applications: . 20

2.1.2.2 Slicing: . 20

2.1.2.3 TLS and Authentication: . 20

2.1.2.4 DoS against controller: . 21

2.1.2.5 DoS attack on data plane: . 22

2.1.2.6 Bandwidth attacks . 23

vi

2.1.2.7 DoS attack on Hosts: . 23

2.2 Software Defined Perimeter (SDP) integrated with SDN 24

2.2.1 Integrated SDN-SDP Framework and Protocol 26

2.2.2 Feasibility study . 29

3.0 Mining Historical Data towards Interference Management in Wireless

SDNs . 31

3.1 Introduction . 31

3.2 Background and Preliminaries . 34

3.2.1 Data Mining . 34

3.2.2 Managing interference by using machine learning algorithms 36

3.2.3 Software Defined Wireless Network 37

3.3 Experimental Design and Results . 38

3.3.1 Test Scenario . 39

3.3.2 Pre-processing . 41

3.4 Simple Decision Tree for one flow . 43

3.4.1 Creating the tree . 43

3.4.2 Measuring the effectiveness of the tree 44

3.4.3 Results . 46

3.5 Decision Trees for more flows . 47

3.5.1 Regression Tree for Delay . 47

3.5.2 Delay Classification tree . 49

3.5.3 Dynamic Tree . 50

3.6 Discussion and Limitations . 52

3.7 Conclusion . 53

4.0 Software Defined Ambit of Data Integrity for the Internet of Things . 54

4.1 Introduction . 54

4.2 Literature Review . 59

4.2.1 IoT and data Integrity: . 60

4.2.2 Contextual Integrity: . 65

4.3 ADI Layers . 66

vii

4.3.1 Threat Model . 67

4.3.2 The first layer: Nested Bloom Filter 67

4.3.2.1 Formal Preliminaries for Nested Bloom Filter 68

4.3.2.2 False Positive Probability for Simple Temporary Bloom Filter 71

4.3.2.3 False Positive and Negative Probability for a General Bloom

Filter . 72

4.3.2.4 Analysis . 75

4.3.2.5 Experiments . 76

4.3.3 The second layer: Hash Tree . 78

4.3.3.1 Formal Preliminary for Hash Tree 78

4.3.3.2 Analysis . 84

4.3.4 The third layer: Provable Data Possession 87

4.3.5 The fourth layer:Proof of Data Retrievability 88

4.3.6 Comparison . 90

4.4 ADI and Contextual Integrity . 92

4.5 SDN-SDP Architecture for ADI . 95

4.6 Evaluation . 99

4.7 Conclusion . 101

5.0 Software Defined Ambit of Data Reliability for the Internet of Things 102

5.1 Introduction . 102

5.2 Background . 106

5.2.1 RACE-Sketch . 106

5.2.2 Data Retrievability . 109

5.2.3 Network Coding . 111

5.3 Summarizing Data with RACE Sketch . 112

5.4 Data Reliability with Network coding . 113

5.5 Bayesian Regression . 117

5.5.1 Bayesian Regression for Data Summarizing 118

5.5.2 Bayesian Regression for for Network Coding Erasure code 121

5.6 Discussion . 124

viii

6.0 Conclusion . 125

6.1 Limitations . 125

6.2 Future Works . 126

6.3 Publications . 127

Bibliography . 128

ix

Acronyms

ADI Ambit of Data Integrity

ADR Ambit of Data Reliability

AH SDP Accepting Host

AP Access Point

BDD Binary Decision Diagram

BER Bit Error Rate

BF Bloom Filter

BW Bandwidth

CBF Concatenated Bloom Filter

CTRL Controller

CTRL SDP Controller

d-CFF d-Cover-Free Family

DDoS Distributed Denial of Service

DoS Denial of Service

DP Differential Privacy

DPDP Dynamic Provable Data Possession

ERM Empirical Risk Minimization

FEC Forward Error Correction

FN False Negative probability

FP False Positive probability

GBF Generalized Bloom Filter

GW Gateway

HAIL High Availability and Integrity Layer

HCI Human Computer Interaction

HBS Hash based sampling

HAIL High availability and integrity layer

IH SDP Initiating Host

IoT Internet of Things

x

IP Inetrnet Protocol

IP-ECC Integrity Protected Error Correcting Code

KDEs Kernel density estimate

L2 Layer 2

LSH Locally Sensitive Hash

LTE Long-Term Evolution

MBR Minimum bandwidth regenerating

MDS Maximum Distance Separable

ML Machine Learning

MSR Minimum storage regenerating

OG or OGW Owner’s Gateway

ONF Open Network Foundation

OVS Open Virtual Switch

PCA Principal Component Analysis

PDP Provable Data Possession

POR Proof of Data Retrievability

PPT Probabilistic Polynomial Time

QoS Quality of Service

RACE Repeated Array of Count Estimators

RS Reed-Solomon codes

RS Random sampling

SDN Software Defined Network

SDP Software Defined Perimeter

SG Service’s Gateway

SINR signal-to-interference ratio

SLA Service-Level Agreement

SMR State Machine Replication

SOM Self-Organizing Map

SPA Single Packet Authentication

SKA Sparse kernel approximation

xi

SVM Support Vector Machine

SW Switch

TBF Temporary Simple Bloom Filter

TLS Transport Layer Security

UGW User’s Gateway

VM Virtual Machine

VPN Virtual Private Network

xii

List of Tables

2 Fields and Description . 42

3 Access Points’ Attributes . 43

4 Evaluation of QoS trees . 44

5 Flow’s attributes . 48

6 Evaluation of All Data Delay Decision Tree . 48

7 Evaluation of Classification Delay Tree . 49

8 FP and FN probability for CBF size of 10700 bit 74

9 Error rate estimation data for Bayesian Regression model 119

xiii

List of Figures

1 SDN simple architecture [86] . 3

2 Attacks (red box) and Malfunctions (yellow boxes) 4

3 SDN-SDP architecture . 4

4 SDN general architecture . 11

5 Attacks and problems (dark and light blue), effects (red) and solutions (blue)

. 13

6 SDP architecture . 25

7 Protocol for Integrated SDN and SDP . 27

8 SDN issues resolved by SDP . 29

9 Feasibility study . 30

10 Steps in experiment . 38

11 Experiment’s topology . 40

12 The selected decision tree . 45

13 Results for single flow decision tree . 47

14 Results for delay decision tree . 49

15 Results for delay decision tree . 50

16 Dynamic tree . 51

17 Motivating Scenario . 56

18 Integrity Ambit . 57

19 Layer 1. Bloom filter verification . 69

20 Verification with Nested Bloom Filter . 71

21 FP & FN probability; left: n = 1 & k = 3, middle: n = 365, right: n = 36500 . . 74

22 Verification time with bloom filter . 77

23 Layer 2. Hashing tree verification . 81

24 Splitting nodes when the number of children exceeds d (here d = 4) 81

25 Verification with Hash Tree . 82

xiv

26 Subtree for retrieving block number 4 . 84

27 Updating time with Hash Tree . 86

28 Verification time with Hash Tree . 87

29 Layer 4. POR verification using HAIL[23] . 89

30 Cloud Storage(left), Client Storage(middle), and Communication(right) overhead 91

31 The decision tree selects required ADI layer based on context. 95

32 The designed IoT data integrity verification protocol using SDP-SDN 98

33 Time and storage using in ADI versus pure POR and PDP 99

34 Ambit of Data Reliability Framework . 105

35 How RACE Sketch works . 108

36 Network coding used to form an erasure code using randomly uniformly and inde-

pendently storage selections and linear combinations with random coefficients [52] 114

37 Network coding repair process . 116

38 Performance vs error rate with efficient storage 120

39 Performance vs error rate in efficient update computation 121

40 Different choices of n and k and their effects on U in 2D and 3D plots 122

41 Different choices of d and its effects on storageandbandwidth in different modes . 123

42 Comparison of HAIL and ADR storage . 123

xv

Preface

Throughout my childhood, I loved the night sky and I never liked sleeping and thought

of it as a waste of time while there is still much to be learned, enjoyed, and discovered far

far away from us. I spent many hours poring through books and watching documentaries.

I volunteered for all scientific opportunities and competitions in school and at university,

I worked on extracurricular projects and competitions with my teammates in the summer.

Now, I’m burning yet another candle at 6 am to finish the last part of my dissertation. This

isn’t the end of my journey. I just learned how to perform scientific research and now I have

to put it to work. It is my plan to continue learning, growing, and discovering.

It has been a pleasure working with, learning from, and receiving the support, time,

effort and guidance from people who have helped me get here. I can’t adequately express my

gratitude for meeting them and having the chance to work with them. First and foremost,

I would like to express my gratitude for the excellent support and guidance provided by

my advisor Prof. Prashant Krishnamurthy during this process. Prof. David Tipper, Prof.

Martin Weiss, and Dr. Mai Abdelhakim were excellent to work with and provided great

feedback, I would like to deeply appreciate their time and support. In addition, I would like

to thank Dr. James Joshi, Dr.Rosta Farzan, Dr. Paul Munro, Dr. Yuru Lin, Dr. Hassan

Karimi and all the other wonderful professors and instructors with whom I had the pleasure

of working and learning.

My friends and family have also been a significant help to me throughout these years.

I would like to thank my husband, Omid, for all the love and support that helped me get

through difficulties. I would like to thank my parents, without their support this entire

process would not be possible. Also, I would like to thank my colleagues Alekhya and

Stephenie for making school an enjoyable environment.

xvi

1.0 Introduction

There are many situations in wireless networks such as Wi-Fi and in the Internet of

Things (IoT) where decision making can be used to improve performance depending on the

context. A huge variety of smart applications can be classified as “decision making and action

enforcing applications”. Such a class of applications may utilize historical information and

(or small) data and employ machine learning, Bayesian inference, data mining, artificial

intelligence and other techniques to build a decision maker model. Then the applications

can use the context information as an input to this model to detect a situation or predict one,

and decide on an action to be enforced considering the requirements of the detected situation.

Such applications require an architecture that gathers (i.e., in a network of devices) context

information and provides the flexibility to enforce the proper action (again on devices in

the network). Software Defined Networks (SDN) and Software Defined Perimeter (SDP)

together form a suitable secure platform for implementing services that require gathering

information from the context and performing contextual decision making while managing

specific parameters and enforcing actions based on them. We chose SDN because it is able

to have a global view of a (local) network and the flexibility it affords. We chose SDP due to

its unique security features and its architecture compatibility with SDN (explained in details

in Chapter 2). We then use this architecture in three different scenarios to show examples

of its applicability with proofs of concept.

• In Chapter 3, we consider using historical data to reduce latency for certain flows. We

build a classification tree that can be used to make decisions toward handling packet

flows. Such a classification tree can be embedded into an SDN controller to manage

resources in a WiFi network.

• In Chapter 4, we consider the problem of efficient integrity verification (with healthcare

IoT devices as an example, although this approach may be used for other IoT applica-

tions). We develop mechanisms that tradeoff between latency and quality of integrity

verification and communication costs, storage, and computation. Again, such tradeoffs

can be implemented using an SDN/SDP architecture.

1

• In Chapter 5, we consider decision making for reliably storing data for IoT applica-

tions using appropriate combinations of coding and redundancy. Such decisions can be

implemented using an SDN/SDP architecture.

We discuss these in more detail below and in the respective chapters.

1.1 SDN and SDP in Brief

Software Defined Networking (SDN) is a promising solution for next generation net-

works (including 5G wireless) [156]. SDNs provide fine grained network management by

splitting the data plane from the control plane and push the control plane off of the switches

and routers to the controller software. The programmability of the control plane results in

enhancing flexibility by enabling rapid ability to applying new policies (for routing, man-

agement, security, etc.) or improving performance - an objective in this dissertation - or

adding features and services and improving system-wide intelligence [134, 118]. A generic

SDN’s architecture is shown in Figure 1. An SDN switch’s routing table is called the flow

table. When a switch receives a new flow, it compares the flow against its’ flow table. Each

entry in the flow table consists of two parts: header and action (forward, drop, modify, ...).

If the flow header matches the table, the switch applies the proper action based on the flow

table; otherwise, it sends the flow to the controller. The controller uses the global view of

the network and creates a new rule based on policies; then, it installs the new rule in the

appropriate switches [87]. IoT, cloud computing, and data centers are among applications

that are using SDNs [139].

The control center in the SDN gathers information about the network and device status

and stores a global view of the network. Some SDN controllers such as POX [6] also provide

messengers that can exchange information with the installed agent on switches to gather

further required information such as power, packet rate, packet size, etc. Such information

can be utilized to solve many challenges (e.g., interference management in wireless networks,

sensor resource management in sensor networks, etc.), improving performance and reducing

costs and overall leading to more efficient and in some cases innovative automatic decision

2

Figure 1: SDN simple architecture [86]

making solutions. SDN also provides flexibility both by providing programmability and by

installing sets of match and action – and in some cases statistical – rules in switches. These

rules enable enforcing the decided actions.

SDNs however, have many security issues. The SDN central controller is a single point

of failure and is vulnerable to attacks from malicious network elements. In addition to the

controller, applications, switches (including access points and gateways), host and servers and

other elements in an SDN network are vulnerable to attacks such as credential harvesting,

taking over the device, man-in-the middle, denial of service (DoS) and many other failures

and attacks, as shown in Figure 2, and examined in detail in Chapter 2. These attacks can

be mitigated by providing security services such as authentication, confidentiality, access

control, identification, availability and integrity. A Software Defined Perimeter (SDP) can

meet most of these requirements. It identifies and authenticates all network elements before

allowing them to connect to the network and secures their communications using protocols

such as Virtual Private Network (VPN) and Transport Layer Security (TLS). We suggest

integrating SDN and SDP controllers into a single controller, and to integrate SDN and SDP

switches for our purposes. The architecture is depicted in Figure 3. As can be seen, first

the SDN-SDP controller authenticates switches and then SDN-SDP switches (or gateways)

forward hosts and server authentication to the controller; any other request from host and

servers before authentication will be dropped which protects the controller and other elements

from malicious elements.

3

Figure 2: Attacks (red box) and Malfunctions (yellow boxes)

Figure 3: SDN-SDP architecture

4

1.2 Overview of Dissertation

Using the SDN-SDP framework as the underlying platform, the purpose of this disser-

tation is to provide examples of how the framework can support performance improvements

and tradeoffs in wireless and IoT applications. The examples are in-depth - and consider

resource management, data integrity verification and data reliability applications. We use

this architecture in three different scenarios to show possible applications with proofs of

concept. In each case, we evaluate example tradeoffs through analysis and modeling with

real or synthetic data.

1.2.1 Interference and Delay Tradeoffs

In the first case study, we investigate “Interference Management” in a multi-variable

environment and consider maintaining latency and throughput in wireless networks as the

application (Chapter 3). WiFi networks often seek to reduce interference through network

planning, macroscopic self-organization (e.g., channel switching), or network management.

We explore the use of historical data to create a classification QoS decision tree that predicts

the maximum delay due to specific traffic situations with specific context parameters. Such

a decision tree can be embedded in an SDN controller where the decision tree makes possible

rapid decisions to manage wireless network resources based on the predicted maximum delay

and the quality requirements based on a service level agreement or other criteria provided

by a network administrator. OpenFlow cannot directly provide the necessary contextual

information for managing wireless networks – so we use an agent on each AP for adjusting

the network access. We explore the possibility of updating the tree using feedback from

hosts. Our results show that such trees are effective in managing the network and decreasing

maximum packet delay.

1.2.2 Contextual Data Integrity

The second application that we investigate is contextual integrity verification in IoT

(Chapter 4). The Internet of Things (IoT), comprising of sensors and actuators, is increas-

5

ingly changing human life by helping to solve new challenges that can lead to a better quality

of life, higher efficiencies through less waste, and reduced costs. A variety of wearable de-

vices (”things” in the Internet of Things - IoT) and sophisticated, yet not very expensive

connected devices gather different kinds of data that is generated (mostly) on their premises

about the environment, the human body, social activities, etc., and enable people to make

decisions or control actions. The complexity of such decisions, especially where performance

tradeoffs are possible, needs a suitable architecture that can employ data driven decisions

for performance improvements.

On the Internet of Things (IoT), devices do not have the required computational power

and storage capacity; and as a result, a variety of IoT devices may be required to outsource

sensed or generated data to multiple heterogeneous cloud servers. We posit that it is a “Data

Owner’s” responsibility to verify whether the stored data remain unchanged when the owner

or some trusted third party further requires accessing this data. However, the “level” of

this verification may be different under different contexts based on the application need. We

propose four methods of integrity verification (which we call the ambit of data integrity –

ADI) that considers the “toll” in terms of time, storage and communication by enlisting

typically disparate integrity approaches under a single orbit. The four methods includes the

ones we designed, namely nested Bloom filter and hash tree, and we compare them with

two previous approaches: provable data possession (PDP) and proof of data retrievability

(POR) which are discussed in Chapter 4 in detail. The nested Bloom Filter and hash tree

are most efficient when there is a third party (it can be a service provider to a data owner

e.g., healthcare provider to a patient) retrieving the data and enabling the data owner to

verify the data without actually having to send the data to the owner. PDP is useful when

the data owner does not trust the cloud server and wants to check the integrity of data once

in a while without having to download it. POR stores parity data and redundancy along

with the message authentication code (MAC) of the data. POR is useful when the data is

super critical and important and losing the data has catastrophic consequences; therefore,

the owner not only wishes to check the integrity of data but also wants to be able to retrieve

the data if any part is lost.

We adapt the notion of contextual integrity, previously used for assessing privacy grants,

6

to extract important parameters required to decide on a suitable data integrity verification

process. In this scenario in addition to the contextual information that SDN provides, we

need both security context information for decision making and also a secure infrastructure

for authentication and communication; therefore, the proposed secure architecture using an

integration of software defined perimeter (SDP) and software defined network (SDN) to per-

form authentication can gather each partition’s context information for an SDN application

to decide the proper integrity verification method that addresses the context requirements.

Here is a summary of how this contextual integrity is used in SDP-SDN platform. In SDP-

SDN network, first all hosts, switches and servers are authenticated before communication,

then the owner gateway(SDP-SDN switch) sends the data storing request to the controller,

the controller sends the request along with the context information to the SDN-application

to perform the decision making about the verification method that should be used. The

application replies to the controller, the controller relays the response to the owner gateway

and installs the route from owner gateway to the server gateway on corresponding switch

and gateways. The agent installed on owner gateway uses the verification method decided

by the application to add the required metadata (bloom filter, hash tree, PDP tag, POR tag

and parity) and send the data and metadata to the cloud server to be stored.

To the best of our knowledge, this is the first time that the scope of integrity (or the data

context) is used to determine the required layer of integrity verification in IoT.

1.2.3 Contextual Data Reliability

Finally, In the third scenario we used the SDN/ SDP framework to improve data re-

liability. We use Bayesian inference with specific datasets to improve the performance of

decision making and automate the detection of how critical each context is and how the con-

text would affect the probability of choosing a specific action to be enforced. The reliability

method we suggest first summarizes the data using what is known as RACE sketch [39], then

it hashes the data using a hash tree that is used to detect data “unavailability” and then we

add an erasure code based on network coding to ensure data availability and retrievablity

and to build any lost data packets. Bayesian learning may help the application detect which

7

contextual parameter value belongs to critical tasks and increase the probability of choosing

a better specific level of summarizing and availability probability.

1.3 Organization of the Dissertation

In this proposal, in the following, Chapter 2 summarizes the literature in the Software

Defined Network (SDN), SDN issues, literature review on provided solutions and then inves-

tigate Software Defined Perimeter (SDP) and provide a framework for integration of SDN

and SDN which resolves SDN security problems, provide required information for contextual

decision making and provide flexibility for action enforcing. Chapter 3 explains how SDN

can help to gather contextual information required for managing wireless interference, use

a decision tree; which is created using historical data, to predict the interference and then

enforce action (reduce rate) if required. Chapter 4 explains the idea of using contextual

integrity to enable the owner to decide what layer of integrity and therefore what layer of

integrity validation is required based on the ambit and the decision tree and use that in-

tegrity verification method to store the data. Chapter 5 investigates data summarizing and

retrievability using Bayesian inference and decision making process using context features as

variables to estimate the error rate and availability probability and Chapter 6 concludes the

dissertation.

8

2.0 Software Defined Secure Framework

In this dissertation, we design a suitable platform for implementing the services that

requires gathering information from the context, performing contextual decision making,

managing the parameters and enforcing actions based on them. The examples of these ser-

vices we implement are interference management, integrity validation enforcing process, and

data reliability mechanisms. We use an integration of SDN and SDP based architecture that

accounts for the network requirements and gathers context information for a decision maker

component that uses this information to chooses a suitable integrity verification method or

manage interference or data reliability. In this chapter, SDN and SDP are comprehensively

examined. We first review security challenges in SDN and explain how SDP can resolve those

issues and how the combination of SDN and SDP provides a secure framework that meets the

requirements of contextual decision making and action enforcing through the global network

view and flexibility of SDN and security mechanisms of SDP.

In the following, we first review SDN and its security issues and solutions that resolve

that single issue and then we review some papers that suggest SDP to resolve the SDN

security issues. Later on in Section 2.2.1 we describe SDP and employ it to provide a

comprehensive SDN-SDP architecture that resolves SDN security issues as well as meeting

contextual decision making application requirements pertinent to this dissertation.

2.1 SDN security issues and solutions

In 2011, the “Open Network Foundation” (ONF) was formed to take the responsibility of

leading SDN transformation by improving standardization (e.g., providing OpenFlow [110]

interface for communication between data plane and control plane), improving availability,

performance and scalability of SDN (e.g., by providing ONOS [16], a physically distributed

and logically centralized SDN operating system) and providing an agile and scalable (requir-

9

ing few building blocks) service delivery platform for the network edge (e.g., CORD1 [121]

) [118]. ONF promotes SDN market for products, services, applications, users and con-

sumers [87]. SDN is standardized by ITU-T 2 on November 2012, by adapting ”Resolution

77 - Standardization work in ITU-T for SDN” and the road map for SDN standardization

is maintained and is keeping updated by this organization [76].

An SDN decouples the control plane from the data plane, pushes network management,

policy application, decision making, security, routing and other services to the programmable

controller software. Switches and routers are now simple forwarding devices that receive

instructions from the controller, which has the global view of the network status which is

required to get the contextual information required for contextual decision making, a focus of

this dissertation. When a switch receives a flow, it compares the flow header against the flow

table inside the switch – if there is a match, it forwards the flow based on the matched rule;

otherwise, it forwards the flow to the controller. The controller with a global view routes

the flow and installs the proper rule in the corresponding switches [87]. One advantage of

SDN, that we require in action enforcing, is the flexibility of the rules in the flow table.

The rules include fields such as match, action and in some cases statistics. The match part

is compared with the flow header. The action part in the typical SDN network includes

forward, drop, quarantine, etc. For interference management the action is specifying data

rate for each AP to avoid collision and for contextual integrity verification application to

store/retrieve data we have to specify the correct verification process. Therefore, SDN is

the environment that can addresses the distinct needs of contextual decision making and

action enforcing applications. As shown in Figure 4 layer 2 controllers gathers information

and are coordinated by main controller, applications make decisions based on the context

information controller gathered. This decisions are towards improving performance (e.g.,

delay, storage communication, · · ·).
Some architectures include middle boxes as an SDN architecture element [126, 155, 88,

28, 60]. In these architectures, some suggest to use middle boxes as applications that the

1CORD is a new design of a Telco Central Office (at the edge of operator network) which unifies SDN,
NFV (Network function virtualization) and Cloud technologies by re-architecturing a Central Office as a
data center [121].

2International Telecommunication Union sector of Standardization: The ITU, formed in 1865, produces
or revises standards which are necessary for network functionality.

10

Figure 4: SDN general architecture

controller can trigger and use for making a decision and some suggest to have middle boxes in

the lower level in the architecture and choose the action in the switches to forward the packet

to these middle boxes if the service it provides, e.g., deep packet inspections, is required.

SDN can perform perform load balancing between middle boxes which is a huge problem

for middle boxes [126] today, and also is able to update policies and algorithms inside these

middle boxes. We do not explicitly consider middle boxes in this dissertation although some

of the contextual enforcement of actions may be performed by middle boxes.

Network security is one of the key necessities that helps to mitigate malicious attacks

or even natural (benign) disasters [43]. Security issues in SDN have attracted attention

since its advent. Although SDN architecture provides the global view of the network that

helps traffic analysis and anomaly detection, SDN has many security vulnerabilities. In SDN,

open programmability of network elements increases the trust issues between them [139] and

against all the benefits that the central controller has, it is a single point of failure; therefore,

DoS (Denial of Service) against the SDN controller can cause a lot of trouble; furthermore,

when only flow headers are sent to the controller, to save bandwidth, it facilitates DoS attack

on the switch nodes (since the flow should be stored on the switch until the controller replies).

11

Therefore necessary precautions should be taken into consideration. SDN security issues and

corresponding solutions for them are depicted in Figure 5 and discussed in subsection 2.1.1

and 2.1.2

2.1.1 SDN security issues

Threat Model: An attacker in most cases is one/multiple malicious client host(s), which

tries to perform a man in the middle attack, masquerades as another element, performs denial

of service (DoS) on other elements, or interferes with legitimate behavior of the network.

Figure 5 shows network elements and elements’ connections in black boxes. These elements

include application,main controller, layer 2 controller, the link between the controller and the

switch, switch, gateway, access point, server and host. These elements and attacks against

them are discussed in the following:

2.1.1.1 Element 1. Application We may have malicious, compromised, or flawed

applications or conflicting policies. These problems may result in stopping the controller or

overriding the rules of each other.

Issue 1.1. Failure in application/ DoS from application (availability breach)

A lack of trust establishment between the application and the controller causes many

problems [93]. If an application crashes (e.g., because of software failure) or exits the program

suddenly, it can kill the controller as a result. Most errors (e.g., fail stop (null pointer,

division by zero, etc.), invariant violation (loop in the path, black hole, etc.)) occur when

event handlers are being used (event handlers are threads that are triggered when the event

happens, e.g., packet in, link up, etc.). A controller failure leads to stopping of the network

functionality. When a crash happens, due to unexpected timing or consistency issues, a

rollback is required to remove all of the affected actions. Performing a rollback requires

additional primitives that are not available in the switch (e.g., previous rule’s time out);

to keep this information, one needs to log all switch activities which is a time-consuming

process. A rollback may cause inconsistency in hosts as well, but there are mechanisms

implemented in hosts to resolve it (e.g., queuing messages for reordered messages in TCP).

12

Figure 5: Attacks and problems (dark and light blue), effects (red) and solutions (blue)

13

After rolling back, buffered events should be replayed (buffer is cleared when the transaction

is committed) which can cause the problem again. The controller should be able to decide

which application is trustworthy, has the priority, and should be restarted.

Unknown traffic sent to the controller can cause DoS. Applications that send too many

requests violate the resource utilization policy or the switch flow table specified limit. They

can gradually allocate the memory or change the data.

Issue 1.2. Taking over the application webserver/conflicting policies (integrity

breach) The infected or malicious application on the controller can change the flow (e.g.,

make the route longer) in a way that does not impact the forwarding function but decrease

the performance. To mitigate this issue, system calls should be secured, limited, and done

through interfaces.

Policy conflicts happen when there is a semantic gap between controller platform or

access control actions; e.g., when there is flow aggregation, sharing one controller with many

users, or using many controllers in one domain [3].

2.1.1.2 Element 2. Main controller Efficient resource consumption attacks (a form

of DoS) on the control plane are done by generating and sending crafted flows to the control

plane through the data plane [146].

Issue 2.1. Failure/DoS in the main controller (availability breach) Distributed DoS

(DDoS) attacks tend to drain the resources, for instance, deplete the bandwidth or exhaust

the resources. DDoS attacks are initiated by the attacker or malicious code in the affected

device (for instance, botnets). DDoS attacks are forged or fake traffic contains packets

with spoofed source addresses, which causes switches to forward them to the controller and

exhaust the resources. The main controller synchronizes and updates layer 2 controllers.

It is a single point of failure; in the case of facing too many requests, DoS attacks, or any

hardware or software issues, the controller will not be any longer available to process new

packets. If we deploy a backup controller, it encounters a similar problem. These issues

result in losing the global view of the network and stopping network functions and services;

therefore, it affects the network availability and can tear down the whole network. Having

layer 2 (distributed) controllers, mitigates this issue.

14

2.1.1.3 Element 3. Layer 2 controller When attackers masquerade themselves as

the controller by spoofing, getting access to credentials, taking over the controller locating

themselves between the layer-2 controller and the switch, and playing the role of the controller

for the switch and vice-versa (man in the middle attack) or even when the controller is flawed

or under DOS attack, the network management and control is lost.

Issue 3.1. Inconsistency in the main controller (identification and integrity

breach)

Inconsistency can happen, when an attacker takes control or spoofs any of the layer-2

controllers, performs credential harvesting, or plays the role of a man in the middle. This

attacker (that now can act as a layer 2 controller) can give a wrong view of the network to

the main controller; therefore, the main controller receives inconsistent views from different

controllers.

Issue 3.2. Installing malicious rules by element acting as L2 controller in front

of switch (confidentiality, availability, and non-repudiation breach)

Installing and modifying rules in switches’ flow tables can endanger many security ser-

vices; the following discusses some examples. The attacker in the power (that act as a layer 2

controller, or the bug) may give the private server access to the outsider hosts by installing a

rule that changes the flow header and sets a new destination for it. The attacker can perform

eavesdropping actively by installing rules that redirect all or specific flows to the intended

destination or passively by installing rules that send a copy of all or specific flows to the

intended destination. The controller has a view of the network and can break the network

apart by performing bandwidth (BW) attacks and installing rules that redirect traffic to a

critical link. It can make the network collapse by clearing all the rules, setting all the rules

to drop the packets, or installing nonsensical rules just to make everything messy. It can

change the switch’s configuration as well. Sometimes to increase scalability, developers can

split tasks between the switch and the controller; in this case, the controller can modify the

algorithm in the switch. The controller can also install too many flows on switches to fill

flow tables. It can also generate and send messages on behalf of hosts, install rules that send

messages to incorrect receivers, or install rules that change the message sender and destroys

the non-repudiation (identification) service in the network. It can send too many requests

15

to another L2 controller and perform a denial of service attack. The device in the middle

acts as a controller and can install or modify rules on the switch, change routes, or perform

any of DoS, eavesdropping, or bandwidth attacks.

Issue 3.3. DoS on l2 controller (availability breach)

DoS attack on a layer 2 controller affects this controller’s ability to route new flows

coming from switches.

2.1.1.4 Element 4: The link between the controller and the switch The link

between the controller and the switch is essential for south-bound communication in SDN.

Issue 4.1. Controller-switch link failure or bandwidth attack (availability breach)

If south-bound communication fails, the switch cannot route any new flows. The switch

should be able to find another route to the controller or should be able to temporarily route

flows independently, using an embedded algorithm.

Issue 4.2. Controller-switch link eavesdropping (confidentiality breach)

If the communication between a controller and a switch is not secure, eavesdropping

on control packets can give an attacker a huge amount of information (such as host’s IP

addresses and information, flow table status, installed flows and required flows, etc.) that

facilitates other attacks.

2.1.1.5 Element 5. Switch An attacker may logically locate itself between the con-

troller and the switch and play the “man in the middle”, spoof a switch, or take over the

switch control. The switch’s flow table overloads, if it is under DoS attack or simply receiving

too many valid requests for rule installation.

Issue 5.1. Element acting as a switch in front of the ontroller (integrity, avail-

ability, and confidentiality breach)

If any element masquerades itself as a switch (e.g., by spoofing, taking over the switch,

or man in the middle) or in the case of having a flawed switch, many security services

are jeopardized. The malicious switch can give a compromised view from itself and its

neighbors to the controller and make the view in the existing layer-2 controllers inconsistent

and misguides the controller. It can generate flows and send them to the controller to perform

16

a DoS attack. In addition to the controller, it can create some problems for other network

elements. It can intelligently generate and send flows to the controller to install specific rules

in other switches or perform bandwidth attacks by redirecting traffic to a link by sending

flows that pass that specific link (it needs to be intelligent and achieves the global view of

the network) or it can provide access to the private server for outsiders.

Issue 5.2. Element acting as a switch in front of host (confidentiality, availability

and identification breach)

Hosts are required to have some methods to authenticate the switch and the network;

otherwise, a malicious switch (by spoofing, taking over the switch, or man in the middle) can

eavesdrop on the receiving packets from the host, by forwarding (or duplicating) packets to

the switch’s malicious intended destination. Moreover, a malicious switch can drop packets

and block conversations. It can also cause problem for hosts by generating and sending

messages on behalf of hosts, sending messages to incorrect receivers, or sending messages to

the correct receiver but change the message sender in the header which is an attack against

non-repudiation service.

Issue 5.3. Too many rules to install in the flow table (availability breach)

The switch may receive too many requests. They can either be valid requests, from the

controller to install required rules or efficient resource consumption attacks (DoS), on data

plane by generating fake flows (e.g., by changing the receiver ID so that the new packet

header does not match the flow table) to enforce inserting useless rules into the flow table

[146]. Either way, the flow table overflows and the subsequent rules can not be installed.

To perform a DoS attack, an attacker can discover the proactive/reactive configuration of

a switch (the time it takes to process the packet, shows if the rule exists or is sent to the

controller or whether the network is SDN or not). Having discovered the network type and

flow table information, attackers can generate a high volume of fake requests leading to

DoS on both the switch and the controller. Aggregating rules, detecting overloading flows,

limiting rates, and considering priority for installing rules, can mitigate the issue.

2.1.1.6 Element 6. Gateway The gateway is a switch; therefore, it subsumes all the

problems that can happen to the switch (issues2.1.1.5,2.1.1.5 and 2.1.1.5); moreover, since it

17

has a critical task and position in the network, it is vulnerable to some additional problems.

Issue 6.1 Taking over the gateway (availability, access control and confidentiality

breach)

If the attacker takes over the gateway, they can provide private server access to outsiders

and publish information throughout the Internet. They can also block insiders from getting

access to the outside server or block outsiders from getting access to the public server.

2.1.1.7 Element 7. Access Point The access point acts as a switch; therefore, it

may also absorb any of the problems that can happen to the switch (issues2.1.1.5,2.1.1.5

and 2.1.1.5). In addition to a generic switch’s security issues, an AP may face some further

issues, attributed to using wireless interface and mobility. Complications of updating host

location, decreasing delay, and avoiding packet loss increase the security complexity.

Issue 7.1. Man in the middle in the access point (confidentiality breach)

Since wireless communications utilize air, water, etc. as media, it is easy for an attacker

to capture the traffic; therefore, the communication between every two wireless devices

must be encrypted (e.g., using TLS); otherwise, there would be no confidentiality in the

communication.

Issue 7.2. Interference in the access point (availability breach)

Wireless access points may interfere with each other’s communication. The existence of

a malicious, hijacked or flawed AP increases the interference. They can block each other’s

communication, jam the media and block all surrounding communications. As a consequence,

an honest AP may lose the location of hosts or the connection with the controller.

2.1.1.8 Element 8. Host and Servers The network exists to serve hosts and receive

services from servers; however, a flawed or taken over (hijacked) host/server can cause prob-

lems. A non-trustworthy host/server can masquerade itself as another host/server or perform

man in a middle attack between the host/server and the switch.

Issue 8.1 Wireless host (confidentiality and availability breach)

If the host communicates wirelessly, it may encounter all problems mentioned for APs

(Issues 2.1.1.7 and 2.1.1.7).

18

Issue 8.2. Masquerading as host (identification, authentication and confidential-

ity breach)

The attacker can masquerade as a legitimate host by performing spoofing, a man in

the middle attack, credential harvesting and, taking over the host. It can eavesdrop on the

receiving packets or send messages on behalf of the victim host. The attacker can surface

problems for other elements as well. As an example, it can intelligently generate and send

flows to the controller through switches to install specific rules in other switches to redirect

traffic. It can perform DoS attack by generating new and different flows and send them to

the controller (DoS on the controller) or have the controller create new rules for the switches

and fill the switch’s flow tables (DoS on the switch). Depending on the intelligence of the

attacker, if it gains the view of the network and knows both the switch configuration and

how they install flows, it can perform bandwidth attacks

Issue 8.3 Scanning attack on the host (confidentiality breach)

An attacker should discover its victims before attacks (e.g., DoS, eavesdropping, etc.),

using scanning attack. There are methods to detect attacks or protect hosts (e.g., IP muta-

tion).

Issue 8.4 DoS attack on host (availability breach)

Attacks and malfunctioning can stop the host from operating. There should exist some

methods to restart the host and retrieve the lost information.

2.1.2 SDN security solutions

In order to have a secure SDN controller, unauthorized access should be blocked, using

a secure controller platform. Required network privileges and resources, should be provided

to each application, meanwhile resources should be secured. Application isolation, authen-

tication and authorization have important roles in the controller security. Transport Layer

Security (TLS) is a necessary security protocol for SDN; however, when multiple controllers

are communicating with the main controller (or any other single node), authorization and

access control becomes more complicated and the risk of an unauthorized access increases

[141]. Overall, although SDN has many security vulnerabilities, it has a good capacity to

19

mitigate security problems since it supports analysis and response, including changing policy

or inserting security services [141]. The solutions to resolve the issues can be categorized

into managing applications, slicing the network, using TLS and secure authentication, and

detecting and mitigating DoS attacks on controller, controller-switch link, data plane, switch-

host link and hosts. We described in very brief statements below, several proposed solutions,

methods and approaches to show the variety of solutions that address SDN security issues.

2.1.2.1 Managing Applications: Checking for general correctness, performing sym-

bolic execution and reducing input space using domain knowledge may reveal bugs [31].

IPC (inter process communication) or RPC (remote procedure call), data abstraction and

microkernels should be used to isolate applications and having a secure access permission

for authenticating application’s system calls can protect the controller and setting different

threshold for detecting resource utilization policy violations can find abnormal behavior.

Messages and events should be logged, in case any serious problem happens, the controller

should restart and roll back and decide which application is necessary to be restarted and

which event should be rollback and run again in the same or different order([148, 35]. Traffic

monitoring by recording samples of traffic and storing it in data stores for later replay makes

it possible to add consistent records and coordinated replay ability for scalable software and

configuration debugging, using OpenFlow split forwarding architecture [11, 162].

2.1.2.2 Slicing: FlowVisor mediate controller and switch can securely manage and iso-

late slices using VLAN priority. FlowVisor uses virtualization to share the same network

hardware such as bandwidth, network view, traffic, CPU and flow table among logical net-

works [143, 144]. Netcore is a high-level language for tagging packages that uses VLAN tags

to slice switches’ links and ports and specify which packet may enter which slice [71].

2.1.2.3 TLS and Authentication: Secure authentication of switch and controller can

avoid many security issues such as DoS and Man in the Middle. As an example, STRIDE

analysis on sFlow and BigTap monitoring tools shows that in an SDN network they are

vulnerable to spoofing (only sFlow), information disclosure (both) and tampering (only Big-

20

Tap) that can be resolved by using TLS. Authenticating packets, while entering and exiting

the backbone network is important [70]. Ethane authenticate switches using certificates and

Ethane and Resonance authenticate hosts using webform [115, 32]. Ethane leads to creation

of OpenFlow. To identify malicious flows, anomaly detection can be used [156]. VAVE per-

forms traffic analysis and dynamic updates on rules to protect hosts against source IP spoof-

ing using source address authentication in the perimeter routers with filtering ability [164].

In wireless communications, [109] suggests having SDN controller, application controller and

security controller use light weight symmetric cryptography for integrity, authentication and

confidentiality.

2.1.2.4 DoS against controller: Authenticating controllers and having multiple repli-

cated/distributed controllers can address DoS against an SDN controller [139]. Minimum

required number of controllers that resist byzantine and guarantee maximum latency is an

NP problem that can be resolved using the heuristic of assigning the controller with smallest

capacity to the switch with highest demand [100, 99]. Replicating controllers on fault toler-

ant logically centralized data store can be done using state machine replication (SMR) and

Paxos/VR and coordinates their actions through it. In order to tolerate f crashes 2f + 1

replicas should exist and each switch reports to f + 1 of the controllers [22]. Mcad is a

multi-controller decision making architecture that deals with mitigating flow rule attacks

by assigning controllers dynamically and using votes to choose the correct flow rules [128].

Mcad-SA is a multiple controller and multiple back up controllers and different scheduling

and switching algorithms are used to choose the controller [127]. In [127] a game theory

model is used to describing when the attacker’s probe on a controller increases, the defended

switch moves to a backup controller. A method provided in [55] tolerates byzantine faults

in both controller and data plane. The primary receiver sends “prepare message” to all

replicas and waits for responses to form a message certificate with them. Then it calculates

the response and sends it to client which waits for f + 1 similar responses [55]. Anomaly

detection techniques using machine learning algorithms such as neural networks, Support

Vector Machine (SVM), genetic algorithms, fuzzy logic, Bayesian networks, decision tree,

etc. are used to detect intrusion [5]. As an example, Atlantic [44] uses a two phases method:

21

in Lightweight phase, it compares the entropy of flows features to quickly detect malicious

flows by detecting deviations from normal flows; in Heavyweight phase, it gathers data every

p seconds, selects features using Principal Component Analysis (PCA), summarizes the data

and then classifies them using the union of SVM and K-means (in 3s). In [26] Self-Organizing

Map (SOM) based model system is presented that has 3 detection loops: 1) flow collector

from table entries, 2) statistics and feature extractor, 3) classifying of flows to normal and

abnormal [26]. Traffic flows statistics can be gathered to acquire enough information for DoS

detection. iStamp [108] gathers flow statistics and finds larger and more frequent flows by

matrix indexing and sorting. NetFuse (detect overloading flows and improve performance

and scalability) [161] uses both passive listening of OpenFlow controlling messages and active

querying of flow tables and uses a list of reasonable aggregation dimensions to accurately

detect and change the rate of aggressive flows to be rerouted to NetFuse proxy box to be

delayed or dropped. DevoFlow (replacement for OpenFlow) [41] collects statistics using

“sampling”, “triggering and reports” and “approximate counters” (small memory and have

high accuracy) and uses multi-dimensional flow statistic aggregation to detect and reroute

elephant flows to the backup routes and perform load balancing.

2.1.2.5 DoS attack on data plane: FlowChecker is executed on top of NOX and per-

forms priority-based matching and model checking by encoding flow table configurations

into Binary Decision Diagrams (BDD). Checking policy conflicts, check flow aggregation of

access control, analysis application queries, path inconsistencies, reachability, configurations

and slicing isolation [3] is done. VeriFlow sits between a controller and data plane to ag-

gregate rules in a tree and check forwarding actions for loops, inconsistencies and drops and

sends an alarm and prioritizing rules to resolve it [122, 89]. Fresco authorizes applications

and checks for policy conflicts [147]. FortNox validates signed roles by authorization and

access control. It also changes the rules to alias, reduces rules and compares them pairwise

before installation with state table rules to make sure they do not override security rules.

If a conflict detected, the rules with higher priority are installed [122]. SE-floodlight has

5 components that mediate traffic between controller and data plane: 1-role base conflict

analysis by priority (admin, security app, regular app). 2- conducting a binary tree for ac-

22

tions and integrating rule changes 3-constraint commands sent to the switch by state table

manager. 4-using switch call back tracking to identify the application that issued the rule.

5-permission mediation to stop collapsing the network because of application errors. It anal-

yses conflicts in rules using a rule chain algorithm [123]. Aggregation and distribution of

flow table reduces its size. FFTA aggregates flow table rules in a binary tree and optimizes

it by collapsing parents label to children and expanding prefixes to omit one child and merge

one-bit differences by replacing that bit with a wildcard *. iFFTA updates the tree and

redoes bit merging [106]. Palette [83] distributes flow tables between switches using either

the notion of pivot bit value or draws tables as graphs and separates them into separate

subgraphs. Then it distributes routes among nodes using graph node (switches) coloring

(routes) algorithm heuristics.

2.1.2.6 Bandwidth attacks In WmSDN when the SDN controller is out of reach,

switches can route the packets temporarily using OLSRD and wait for connection up [49].

As another solution, AVANT-GUARD resolves two challenges: 1- table saturation and DoS

which are addressed by migrating timeout TCP sessions to limit the flows that are sent

to the controller. 2-detect and respond to flow dynamicity by gathering statistics and for

triggering the conditional flow rules [149]. FatTire [131] easily defines policies (e.g., multiple

back up routes for each link failure) by providing a fault tolerant programming language.

CORONET [90] suggests providing a backup link, detects failures using Link Layer Discov-

ery Protocol and maps traffic to VLANS using packet classification at edge switches. It has

4 modules: 1) topology discovery 2) using Dijkstra to create multiple paths with disjoint

link property minimizing the number of affected routes in link failure 3) assigning ports to

VLAN IDs and 4) assigning paths to host’s traffic randomly. Our work in [86] examines

the potential of using historical data to manage interference in wireless SDN by predicting

traffic bottlenecks and deciding rapidly to change the channel or limiting the rate of specific

senders.

2.1.2.7 DoS attack on Hosts: SDN hosts are vulnerable to information disclosure, DoS

and tampering [91]. OpenFlow Random Host Mutation (OF-RHM) assigns virtual IPs to

23

hosts frequently [80]. In paper [111] authors check home network hosts for traffic anomalies

such as: rate of failed connections, too many requests to one machine, traffic distribution

(packet type and dest port) and using NETAD in which more novels packets are consid-

ered safe [111]. Some solutions detect anomalies, block malicious flows and validate flows.

OpenSAFE replicates traffic to middleboxes for traffic monitoring and provides a scripting

language for network traffic monitoring [11]. CloudWatcher registers security services, al-

locate required services to flows that require them (match flow header and rule to forward

and route to the security service) and install flows to enforce routing [145]. In OpenSec the

flow table decides (based on the flow header and statistics) whether the action is forward to

the security unit and the security unit decides the corresponding action (alert, quarantine,

block) [96]. FRESCO provides a scripting language to incorporate in generating rules that

provides security services and extend security functions on the controller [147].

2.2 Software Defined Perimeter (SDP) integrated with SDN

In a secure network, devices, data owners, third party entities and all network elements

need authentication for access to the edge networks, services, and cloud servers. SDP verifies

user identity, assesses the device status, authenticates users and services and then provides

a secure connection between them [19, 114]. It performs application authentication, host

authentication and protects the controller, switches and hosts from DoS attacks and enables

secure communications. SDP creates an exclusive secure channel, using mutual TLS and a

Virtual Private Network (VPN), between the communicating parties. As shown in Figure 6,

in SDP, there are 3 main modules: SDP Initiating Host (IH), SDP Accepting Host (AH)

and SDP controller (CTRL). The IH is typically installed on a client (e.g., on hosts or hosts’

gateways). The AH is installed on an SDP gateway and manages the communication between

IH and CTRL, while CTRL is authenticating the user and creating a secure channel between

the user and the service. As one can see, this architecture resembles the SDN architecture.

There has been a few recent works that suggest integrating SDN and SDP to take advantage

of the SDN features while securing the whole network with SDP. The combination of SDN

24

Figure 6: SDP architecture

and SDP can address the security requirements for implementing contextual decision making

and action enforcing applications.

In [135] authors provide a secure and scalable framework using a combination of SDN and

SDP, which provides flexibility and secure communication. They suggest two architectures,

1-client-to-server in which the server has an AH module and acts as both server and gateway

which does not protect the server against any specific attacks but reduces the delay, 2-

client-to-gateway in which the service is behind an AH gateway which is more secure but

adds some delay. The authors also considers two scenarios in client to gateway architecture

for controller placements:1-IH have direct access to CTRL: in this case in authentication

first SDN controller should install the rule for route between IH (client) and CTRL, CTRL

authenticates client to access the service and add forwarding rule to in AH gateway. The

client is now authenticated and can send service request; therefore, first request is sent to

SDN controller to install the rule for rout between client and AH gateway. When AH receives

service request it will check its forwarding table and send the request to the server and send

back the response to the client. 2-The CTRL is behind AH gateway for more protection

25

which also reduce flow installation delay (installing IH and AH route is enough and there is

no need to install IH and CTRL route). The experiments showed that the combination of

SDP and SDN can effectively block DoS flooding attacks.

In another proposed architecture of integrated SDN and SDP, authors suggest SDSec in

which they use SDN controller to implement SDP CTRL. In this architecture SDSec Hosts

stores parameters such as Trust, trusted Zone ID, permission, resource consumption, and

scope of other host it is authorized to communicate with. SDSec Switch is a User switch

(among 3 type of Mininet switches- User, Kernel, OVS) that keeps a policies table that

stores authenticated hosts IPs and access policy for each. SDSec controller is an OpenFlow

POX controller with security checks and 9 security policies. Results show that it can reduce

accepted requests and victim hosts resource consumption in the time of DoS attack [45].

Security attacks such as DOS attacks, backdoor exploits, VM Hopping and remote con-

nection attacks in NVF, should be resolved [151]. To resolve these issues the gateway has

a “drop all” policy initially; it only relays SPA authentication requests to the controller.

The encrypted SPA includes Initiating Host ID (SDP ID), Accepting Host ID(Service ID),

Gateway IP address, a timestamp and a 16-byte randomized data. They used Waverley Labs

OpenSDP project as their SDP controller which is connected to a MySQL database to store

approved hosts, gateways and services. The controller validates the SPA and the gateway

updates its iptables to connect host to the requested service for a limited time.

2.2.1 Integrated SDN-SDP Framework and Protocol

We integrate all these ideas and resolve SDN security issues with SDP by providing

a secure protocol which can satisfy the needs of contextual decision making and action

enforcing application requirements. In our architecture we integrate the SDN controller with

the SDP controller to have a global view and comprehensive information of teh network.

At the same time, such a controller decides and is aware of security specifications. We

integrate the SDN switch with the SDP gateway (AH); therefore, integrating the flowtable

with the policy table. The SDN-SDP Controller communicates with switches to gather

further contextual information. The initial policy in the flowtable is “drop-all” packets except

26

Figure 7: Protocol for Integrated SDN and SDP

SPA. The switch forwards the SPA to the controller to authenticate a host, make a decision

about the packet forwarding, install routing rule in the tables, share updated authorized host

and services with switches, provide requested services (such as deciding about the required

integrity layer - see Chapter 4). This reduces the probability of illegitimate packets getting to

the controller and keeps the controller safe and secure behind the gateway. This architecture

authenticates all devices and secures their communications.

In SDP, Single Packet Authentication (SPA) is sent to request authentication and connec-

tion; it contains information such as host ID, requested service ID, gateway IP, timestamp,

and randomized data. In this protocol all SDN-SDP switches drop all packets (from all

devices, hosts, switches, services, etc.) except if they already have a rule for it or it is a

legitimate SPA packet that is requesting access to the network.

Figure 7, shows the process of how a network element joins the network. If there are

gateways connected to the controllers all SPA request should go to the controllers through

the gateways, otherwise gateways should send their request to the controller directly as

the “first” gateways that will handle future requests. When the network and devices are

27

initially setting up, the gateways transmit SPA packets and network access requests and

are being authenticated and registered in an SDP-SDN controller (steps 1, through 4). The

servers and services send SPA and network access requests through the gateways and are

authenticated and registered in an SDP-SDN controller (steps 5, through 8)3. Each device

generating data first communicates with the owner’s gateway (SDP-SDN switch -A gateway-

is called OG since this belongs to what we will call as a data owner in Chapters 4 and 5). 9)

SPA (single packet authorization used for identifying clients in SDP), data, and metadata

(update frequency, lifetime, tolerable latency and ID of the destination, etc.) reach the A

Gateway. 10) A gateway sends SPA, data, and metadata to the SDP-SDN controller. 11)

The SDN controller authenticates the owner and forwards the information to the application.

The application uses the context information and the decision tree to choose the suitable

action. 12) The application responds with the action. 13) The controller provides information

about authorized services and connections to the A Gateway. 14)The controller also installs

the proper rules (includes the action and route to B gateway) in the corresponding SDP-

SDN switches. 15) A gateway sends SPA to the B gateway and requests connection to the

destination. 16) B gateway opens the connection to the destination (cloud server, service

provider or another host) and responds to A gateway. A gateway (and therefore Host/Server

A) and destination can now exchange information for the session. Gateways exchange the

data or request and response (17,18) and gateway A will sends the conformation to the Host

A (19) and after every thing is done Server B closes the connection (20).

As shown in Figure 8, most SDN security issues and problems can be resolved using the

suggested protocol in Figure 7. SDP authenticates applications and drops all packets before

authentication therefore blocks DoS against controller, uses TLS for all communications,

blocks unauthorized packets and hosts; therefore, protects against bandwidth attacks, data

plane overflow and protects hosts from DoS attacks. Furthermore, providing a back-up and

integrity verification for data set and controller, slicing, managing interference and providing

path back-up can be done using contextual decision making and action enforcing applications.

Chapter 3 and 4 discuss interference management and integrity verification as examples.

3leaving the network would follow the same process, devices send SPA’s to accomplish this

28

Figure 8: SDN issues resolved by SDP

2.2.2 Feasibility study

We implement a simple simulation of this protocol on Mininet 2.2.0 [112], Ubuntu 14.04.6

operating system, and Intel® Core™ i5-560M Processor 2.66 GHz, using POX SDN con-

troller [6]. We use SDN firewall [47] to simulate the SDP controller on the SDN POX

controller. We install agents on SDN-SDP switches that use POX messenger to relay the

extra required information from user and switches to the controller [86] and develop a python

decision making application (python 3.4.3) to use the context information acquired from the

29

user, SDN-SDP switch and SDN-SDP controller and select the matching action based on

that context. As shown in Figure 9, the experiments show that the whole process of sending

gathered information from OG to the controller and then to the application (here contextual

integrity verification application ambit of data integrity (ADI) which is further discussed in

Chapter 4) to select the proper action using a decision tree, and sending back the chosen

ADI to OG, takes 37 ms on average. The code and details about the implementation are

available online [84].

Figure 9: Feasibility study

30

3.0 Mining Historical Data towards Interference Management in Wireless

SDNs

WiFi networks often seek to reduce interference through network planning, macroscopic

self-organization (e.g. channel switching), or network management. In this chapter, we

explore the use of historical data to automatically predict traffic bottlenecks and make rapid

decisions in a wireless (WiFi-like) network on a smaller scale. This is now possible with

software defined networks (SDN), whose controllers can have a global view of traffic flows in

a network. Models such as classification trees can be used to quickly make decisions on how

to manage network resources based on the quality needs, service level agreement, or other

criteria provided by a network administrator. The objective of this chapter is to use data

generated by simulation tools to see if such classification models can be developed and to

evaluate their efficacy. For this purpose, extensive simulation data were collected and data

mining techniques were then used to develop QoS prediction trees. Such trees can predict

the maximum delay that results due to specific traffic situations with specific parameters.

We evaluated these decision trees by placing them in an SDN controller. OpenFlow cannot

directly provide the necessary information for managing wireless networks so we used POX

messenger to set up an agent on each AP for adjusting the network. We explored the

possibility of updating the tree using feedback from hosts. Our results show that such trees

are effective in managing the network and decreasing maximum packet delay.

3.1 Introduction

Wireless infrastructures play an important role in a growing number of environments,

some of which, such as e-health care environments [14], are rather critical in their demand for

specific Quality of Service (QoS) for individual flows. In current WiFi networks, updating

procedures require introducing new generations or versions of network protocols which in

many cases forces the customer to exchange their device for a newer one; however if we

31

move the procedures to an SDN controller, not only can we change policies and procedures

without changing the hardware, but also the update procedure could be done seamlessly

without immediately affecting users. This can be accomplished by limiting the applied

changes to any subnet of the network for test and getting feedback before global application

of the changes. Most procedures and decisions in wireless networks are fixed, however with

the use of SDNs we can use the controller’s global view of the network information and

by monitoring the cause and effects of each action in each context, we can train machine

learning models to perform specific actions. These models can still be updated while running

by receiving feedback and context from the network. In this chapter the aim was not to find

the best set of parameters or algorithm for training the model or optimizing the network

performance, but to show that using SDN controllers and historical data we can use machine

learning models and use them for managing the network.

As an example, in hospitals, interference can impact the quality of a video which may be

critical for a physician to make the correct diagnosis 1. If the wireless network is controlled

using a software defined network (SDN) controller, it is possible to achieve a complete view

of the network in the controller which can monitor parameters. Through observation of

relevant parameters, the controller can manage changes to the characteristics of a flow (in

the extreme case by changing the communication channel or stopping some flows).

This begs the question as to whether a specific combination of factors such as number

of APs, location of APs, power level, packet rate, packet size, number of flows, and so on

(specific value ranges) can be used to develop a model that can assess the emergence of QoS

problems. In other words, is it possible to develop a model based on historical data that can

automatically and rapidly assess the possible QoS in various situations when multiple APs

are simultaneously sending data. Then, we may be able to use this model to decide whether

the QoS is unacceptable and react by lowering (for instance) the packet size and packet rate

of flows from other APs (based on the requirements and priority of specific flows). Since there

are numerous parameter combinations, we consider building classification trees that allow

quick decisions to be made by the controller. The purpose of this chapter is to determine

if this a viable approach. Our goal is not to develop new solutions to problems of flow

1Interference can increase delay and packet losses which mean a decrease in QoS.

32

control, scheduling, or congestion, but to evaluate the potential of data mining-based models

in wireless SDN controllers to automatically and rapidly impact QoS for specific flows. In

order to see if such classification guidelines can be developed, different situations that might

happen in the network were simulated under different configurations. After collecting various

types of information about specific parameters, we created a cleaned database of scenarios

and observed QoS. Using this historical data (in this chapter from simulations), we applied

data mining techniques using the Weka [72] data mining tool to create decision/prediction

trees that can inform the controller what may happen to a flow under specific parameter

ranges and network conditions.

We created a prediction tree that captures situations where there can be an observed

decrease in QoS for flows and situations that may block communications. This “QoS tree”

can be employed to predict delay based on QoS parameters (packet loss and delay) that

a communication flow needs. Using the QoS tree, an SDN controller in the network can

detect situations causing interference and may, for example, switch the channel of the flow

(or neighboring flows) or lower the specified bandwidth allocated to APs that do not require

high QoS. We then applied the tree in a POX [6] SDN controller. OpenFlow is sufficient

for programming flow table rules but it cannot in general provide required information for

wireless networks [137]. We used POX messenger and set up an agent on each AP. The

controller used the POX messenger channel to receive information from APs, make a decision

based on the QoS tree and to determine how it affected the QoS. As the historical data

changes, we stored the leaves in an update-able data structure, making the tree dynamic.

Agents were created on “Hosts” to communicate with the controller and send feedback to

update the tree.

Our evaluation shows that such classification trees may be used to perform necessary

management by the SDN controller. Using the dynamic data structure, we update the tree

using online traffic. The results show that the tree is stable in the same network. We use the

same approach when we have multiple flows and create decision trees for those configurations

as well. Further work, when extended, may enable us to also determine which parameters

are critical and need to be monitored more closely in the network to change (as needed)

potential network slices/configuration, rather than managing only flows in one network.

33

The chapter is organized as follows. In Section 2, we provide a brief background of data

mining, SDN, and some related work. In Section 3, we describe the experimental design and

present the QoS Tree. Section 4 presents the results of applying the QoS tree in the SDN

controller for simple situations with one flow. Section 5 provides similar experiments for

more complicated situations with more flows and flow sizes. Section 6 provides a discussion

of limitations and future work and Section 7 concludes the chapter.

3.2 Background and Preliminaries

In this section, we review some basic concepts of data mining and SDNs. We also discuss

some related work in this area.

3.2.1 Data Mining

Data mining includes four main steps to create knowledge from collected data: selec-

tion, pre-processing, data mining, and interpretation/evaluation. Selection is the process of

choosing tuples and attributes that are required for answering questions. Data pre-processing

includes the following actions: Cleaning: detecting and correcting or deleting inaccurate or

corrupts records; Normalization: reduction of data to any kind of canonical form; Transfor-

mation: conversion of a set of data values into the data format of a destination data system;

Feature extraction: deriving some attribute values from an initial set of measured data; and

Selection: selecting a subset of relevant features based on domain knowledge.

Data mining algorithms can be applied to the data to find patterns of interest. Classifi-

cation and regression are considered important tasks in data mining. In this chapter, based

on our continuous class variables (delay), we chose Random Tree, REP, and MP5 regression

decision tree learners in Weka [72]. We also try to make the class variable “delay” categorical

(> 100ms and < 100ms) and use the J-48 classification algorithm. We chose these algorithms

because they are popular with data mining researchers (e.g. [4, 130, 152, 125, 30]). These

methods (described next) help to extract information relationships and hidden patterns in

34

large data sets.

Random Tree: It is one tree from the set of possible trees, with k random features

at each node [167]. The random tree generates many individual “learners”. It constructs

a decision tree by employing a random set of data. Each node is split using the best split

compared to other variables. At each splitting step all attributes are selected randomly and

the tree is grown as much as possible [29].

REP: It is a fast decision/regression tree builder that uses the regression tree logic to

create multiple trees over different iterations. The algorithm uses a “gain” for splitting and

pruning the tree by reduced error pruning and sorts numeric attributes. It uses the C4.5

method 2 of using fractional instances to deal with missing values. [167, 67].

M5P: M5P generates “M5 Model” trees and rules. M5 constructs a tree that relates

the target value to other attributes using a divide-and-conquer method. First, it computes

the standard deviation of the target value in a node. Then it will consider all possible splits

and calculate their standard deviations and the reduction in error of the parent node with

that split. The maximum reduction in error will specify which split should happen. The

algorithm stops when the number of tuples in the node reaches a specific threshold. Then

it uses standard regression techniques to provide a linear model for tree nodes. It uses a

greedy search to minimize the number of effective parameters by removing the variable that

contributes only a little to the model. Finally, it will prune the tree comparing the estimated

error of each node with its parent node [129].

Following paths in random trees or REP trees will give us a result (by having specific

parameter values). For example, a random tree or a REP tree may tell us: “if the packet

size is smaller than N bits and the transmit power is smaller than P dBm, the delay will

be t ms”. In M5P trees, instead of getting a clear value as a flowchart result, we will have

models left in the leaves.

J-48: The algorithm J-48 is a Weka implementation of the C4.5 classification algorithm

with a categorical class variable. We use it with two categories of delay as described previ-

2C4.5 is an algorithm that splits data into smaller subsets by calculating “entropy” (the measure of
data disorderliness) and “gain” (decrease in information entropy) for possible attribute splits, and makes a
decision. For each split, it chooses the highest gain that is the lowest entropy to branch on. It stops when
it reaches a completely pure subset that all instances have the same class attribute in a tree leaf. Then the
tree will be pruned to eliminate outliers [29, 85]

35

ously [85].

We use 10-fold cross-validation to test the created decision trees. The data set was split

into ten equal size subsets. Nine subsets are used to train the model, and the model is tested

with the remaining tenth subset. The number of correct classifications over the number of

all instances is used to estimate the accuracy of the tree [85].

3.2.2 Managing interference by using machine learning algorithms

Machine learning algorithms have been used in wireless interference management, some

of which we briefly review next. In [46] authors process data from real-time reporting of

sessions for network optimization. In order to predict packet drops, before the end of the

session, machine learning was used on offline LTE data. In [105], the authors identify in-

terference modulation order by using source automatic modulation classification. They use

supervised learning techniques to achieve channel estimates in inter/intra cell interference,

with/ without accurate information. This method can be used in the cancellation of inter-

ference in cellular networks.

In [153], the authors optimize radio resources with poor performance by using a statistical

learning process which uses regression to extract relation between performances attributes.

The objective is to heal inter-cell interference coordination. In [98] a Kalman-Filter approach

is used to predict interference by deriving the correlation of co-channel interference. Based

on interference prediction and path gain, the transmit power can be adjusted to achieve

the required signal-to-interference ratio (SINR). None of these works have considered SDN

networks and their control as their objective.

In [46] and [105], authors use historical data and libSVM to create models which predict

interference but they did not apply their model to the network to see how it can improve

performance metrics. In [153] and [98] they apply their model in the network but they did

not use historical data. In these papers, authors consider signal-to-noise ratio and none of

them examine QoS. In this chapter we simulate parameters that affect QoS and based on

data from all APs across the network, we use models that decide how interference can affect

the QoS. We also apply the models in an SDN controller to react to network conditions by

36

lowering the packet size and packet rates of flows from APs with lower priority to improve

QoS.

3.2.3 Software Defined Wireless Network

SDNs push the control plane of the switches and routers to software. The data plane in

SDNs is separated from the control plane. The high-level architecture is shown in Figure 1.

The central controller in the SDN architecture provides the infrastructure for managing

the network. Routing algorithms are placed in the controller. The SDN controller receives

policies and instructions from the “application” via north-bound communications. [134].

Routing is performed for each flow by the controller and installed rules in the switch’s flow

tables. Switches forward the data according to these rules. When a flow enters a switch,

the switch compares flow fields with the flow table. If it matches an existing entry, the

corresponding action will be taken; otherwise, the switch uses the OpenFlow protocol to

send the first packet of the flow to the controller. The controller then calculates the route

for this flow and adds an entry with flow fields and suitable action to the flow table. SDN

provides an intelligent and controllable architecture, less dependency on hardware or specific

vendor, simple management, faster innovation, implementation, and testing [134, 1].

SDNs may be used in a variety of environments. As an example, consider a healthcare

application where it is required to stream approximately 360 Mbps uncompressed video from

two discrete endoscopic cameras [133]. Processing this data needs a high-performance real-

time computing (HPC) environment, to minimize the risk to a patient. In [133], authors

utilize an algorithm on OpenFlow SDN to use its capability of connecting multiple remote

HPC servers and medical devices. Similarly, the use of SDN in wireless networks is possible.

In particular, an SDN controller can set parameters in WiFi APs (which are the switches in

Figure 11) such as the channel and the transmit power in addition to the flow tables [12].

In [137], the authors claim that there is not any uniformity of feature set solution avail-

able for wireless networks management, and OpenFlow does not address WiFi complexities

such as interference management, mobility, and channel selection. They used Odin to pro-

pose Light Virtual Access Points (LVAP) which is per client AP with unique BSSID (mac

37

address of a wireless interface), it provides isolation in control logic. In the case of handoff,

these LVAPs migrate between APs without triggering re-association in clients. Some appli-

cations were developed over Odin, such as mobility manager, load balancer, trouble shooting

(Interference and jammer detection using channel snapshots using WiFiNet cards), channel

selection, and energy-efficient WiFi networks (by selecting one AP as master with a couple

of APs as slaves) and guest policy enforcement [137].

3.3 Experimental Design and Results

Figure 10: Steps in experiment

We simulate an SDN in which some hosts (2 to 6 in number) are communicating with

each other (1 to 3 flows) through an AP and neighboring APs cause interference. We then

examine different situations by changing the number of interfering APs, their power level,

packet sizes, packet rates, their locations, different numbers of hosts, and different flow sizes.

Then we use WEKA to apply data mining methods (specifically the random tree, REP, and

M5P) to create a decision/prediction tree that considers the current state and predicts the

38

QoS of the tagged flow for that state. Each state is composed of the above parameters -

number of APs, APs’ locations, packet size, packet rate, power, etc. QoS is defined as the

maximum delay that can happen in each state and it will be compared to the delay that

the flow can tolerate based on the SLA. Based on the QoS flow needs, the prediction tree

(described later) can be used to predict whether a situation can provide the necessary QoS

or not. Figure 10 shows the steps used in our experiments.

3.3.1 Test Scenario

We first run the controller and create the WiFi network with the topology in Figure 11.

Hosts (in this case h1 and h2) start to communicate while other WiFi APs continue to

broadcast packets. This process is explained in more detail next.

Experimental environment: Experiments are done with Ubuntu 14.04, Python 2.7.6,

Java 1.8.0 111. Tools that were used include but were not limited to OpenNet SDN simulator,

POX controller, Weka, eclipse 3.8.1, and pydev.

Network setup: For each experiment, we first ran the POX [6] SDN controller, then

OpenNet is started. OpenNet [34] is an open source simulator for wireless SDN formed by

two simulators: Mininet [116] for simulating the SDN, using OpenFlow 1.3.1 and NS3 [132]

for simulating wireless networks. We used OpenNet, without any change 3, to simulate 420

different configurations with a different number of APs (1 to 21) in different locations. In

this simulation ns3::YansWifiPhyHelper is used to set-up WiFi PHY in the emulation,

which uses ns3::LogDistancePropagationLossModel as the propagation loss model and

ns3::NistErrorRateModel as the error rate model. The received power after adding the

propagation loss is calculated as:

rx = 10 log(Pr0(tx))− n× 10 log(d/d0) [77] (3.1)

in which n is the path loss distance exponent, d0 is reference distance (m), L0 is path loss at

reference distance (dB), d is distance (m), Pr0 is the received power at d0 (W), and tx is the

3The simulated network models the IEEE 802.11g standard.

39

current transmission power(dB) [77]. Different modulation/coding schemes have different

error rate models 4.

Figure 11: Experiment’s topology

In Figure 11, the lighter/smaller APs are changed in numbers, locations, power, etc.

with each configuration. We vary the number of APs from 1 to 21. The number of hosts

varies between 2 and 6. APs and hosts are placed in a rectangular region between local

coordinates of –120 m (lower / left) to 120 m (upper / right). The other parameter ranges

are as the following: transmit power range between 0 and 40 dBm, packet size range from

0 to 100000 bytes, packet rate was between 10 and 1000 packets per second and packet size

ranges from 64 bytes to 4000 bytes. All APs use channel 11 and simply broadcast packets

to influence the QoS of the tagged flow(s). The APs were connected to a POX controller.

Each configuration was defined in a Python script. Each Python script defines the AP’s

position, links, host’s position, host’s mobility, the channel characteristics, and other details

about the simulation. Default parameters are used in most cases. As mentioned previously,

our objective was not to develop any new algorithms for solving specific network problems,

but to evaluate the feasibility of using data mining for network resource management in an

automated manner.

Running experiments: Hosts h1 and h2 send packets with variable sizes to each other

via the AP s1. The other APs and hosts may be there or not in different tests. In each

4Validation and description for OFDM modulation is presented in [120]. It calculates bit error rate (BER)
for different modulations such as QAM, BPSK, QPSK at giver SNR after and before applying Forward Error
Correction (FEC) [78].

40

experiment, the transmit power of each AP is specified. Hping3 [136] is used in each AP

to create and send TCP/IP packets. This provides us the possibility of specifying different

packet rates, packet sizes, packet counts, and other protocol details and varying them easily.

The interference from these transmissions influences the delay, packet loss, and thus the QoS

of the tagged flow. There are 1 to 3 tagged flows with different sizes that we monitor in the

experiments, which is between hosts h1 and h2 that passes through AP s1. For each flow,

we sent 50 packets to be able to see the changes.

Collecting the results: In each experiment, some outputs were gathered to form the

database used as historical data. This database was analyzed to drive the prediction/decision

trees (explained later). In each experiment, the following files were stored: (a) Python files

of the simulated network consisting of APs and hosts’ locations, (b) a script for setting the

transmit power and executing Hping3, containing power, packet size, packet rate, and the

number of packets, and TCP/UDP mode. Table 2 shows all of the extracted attributes.

In some cases, we decided to use the option “flood”, which sends as many packets as it

can with the maximum possible rate. The output response of every single packet delivery

(between hosts) was stored along with the packet size, overall max delay, min delay, average

delay, and packet loss. The results show that the delay range can be between 4.08 ms

and 50672 ms. This experiment was repeated 1480 times with different configurations with

different numbers of APs, packet size, packet rate, AP locations, transmit power, flows,

and other variables. The total amount of gathered data was about 50 Gigabytes and the

attributes in each file were surrounded by many unnecessary data fields. Thus the collected

data needed to be pre-processed.

3.3.2 Pre-processing

For data pre-processing, we wrote Java programs to apply some string processing to

extract features from the hosts’ files and compute flow size, meanDelay, maxDelay, minDelay,

and packet loss (see the tuple in Table 2). Next, we processed the APs’ files to determine the

power and Hping3 command parameters. Then we processed the network simulator Python

files to get the APs and hosts locations. The result is a summarization and integration of each

41

experiment into one file. Later, another Java program was developed to integrate all files

into one single Excel file. We further pre-processed the data by data cleaning (deleting some

records in which the APs stop working), transformation, and normalization (to bring data

into an acceptable range5), feature extraction (APs distances from hosts and s1 considering

their location) and selection6. The result was a table with more than 200,000 tuples.

Table 2: Fields and Description

Fields Description

Mean Delay Average delay between h1 and h2

Max Delay Maximum delay between h1 and h2

Min Delay Minimum delay between h1 and h2

Packet loss Number of the lost packet between h1 and h2

Num Of Ss Number of APs that are sending packets

MeanDist Ss sH Average distance between APs & Sender Host

MeanDist Ss rH Average distance between APs & Receiver Host

Mean Dist Ss&S The average distance between APs and AP1

TPacket Size Total size of the packets that APs sent

TPacket Rate Total rates at which APs sent packets

Mean Ss Power The average of the power of sender APs

Num of flows Number of Hosts that send packet

Packet size The size of packets sent by the considering host

Total flow size Summation of all flows in the network

5Some parameters like power level should be in an acceptable range. The maximum possible transmitter
output power in most devices is 30 dBm and there is no legal device that can support a transmit power of
more than 40 dbm [65, 37].

6Several data cleaning operations are not discussed here for lack of space. For example, floods were
replaced with the maximum possible rate and size. Some standard techniques were applied to create better
trees - the mean size and rate were multiplied by the number of Sender APs and the sum of the distance to
h1, h2 and AP s1 were divided by the number of sender APs. Where some records are important and they
should not get pruned, were duplicated. Also, since we have only one class variable, which is a delay when
packet loss occurs we assume the packet’s delay was more than a threshold, so we set the maximum delay
in that record to that threshold.

42

QoS Tree

numOfSenders

meanDistOfSendersToH1

meanDistOfSendersToH2

meanDistOfSendersToS

meanPacketSize

meanPacketRate

meanPowerOfSenders

Table 3: Access Points’ Attributes

3.4 Simple Decision Tree for one flow

We built a tree based on part of the data to see the effectiveness of our method. We

implemented this tree in the controller and created sufficient agents for APs to communicate

with the controller and change their bandwidth usage based on the prediction tree.

3.4.1 Creating the tree

We used Weka [72] to build decision trees to decide whether a configuration may affect

the QoS. First, we built the tree for tuples that contained only a single flow of 64 bytes

(between h1 and h2), and we aggregated all packets of one flow to one tuple by considering

the maximum delay as its class variable. If the tree predicted a block or very high delay

in the flow, the controller should react to it by lowering the data rates of other APs. The

attributes that were used are shown in Table 3.

The class attribute was “maxDelay” for the QoS tree. The attributes are used to split

the tree branches in each step and the class attribute is used in the leaf nodes as the result

for subsequently predicting the delay for packets in the tagged flow.

Since the class parameters were continuous, we needed regression classification algorithms

43

Table 4: Evaluation of QoS trees

QoS tree M5P REP Random

Correlation coefficient 0.9303 0.968 0.9709

and in Weka, we used “M5P”, “REP”, and “Random Tree”. The correctness of the trees

was checked with 10 fold cross-validation (see Section 2). The summary of QoS prediction

trees is shown in Table 4. For each tree in Weka, the correlation coefficient is calculated to

estimate the effectiveness and correctness of the tree. There is the exact value of variables

and the value that the model estimated for that variable; The correlation coefficient indicates

how much these two variables are related [18].

Considering the Table4, comparing correlation coefficients, it turns out that the random

tree has the highest correlation (0.9709). So we believe it can be chosen as the representative

tree to predict QoS.

In the QoS tree, by following the trees’ flowchart, the delay for the flow in a specific

configuration with specific parameters can be predicted. The tree is shown in Figure 12. As

an example, in the Random Tree for QoS, if the packet size is less than 12300 bytes and the

mean distance to h1 is less than 30 m, then the maximum delay that can result will be about

1180 ms. As shown in Figure 12, in each branch of the tree, just some of the parameters are

needed. This allows the controller to quickly make decisions when necessary.

3.4.2 Measuring the effectiveness of the tree

In order to see the effectiveness of the tree, it is embedded in the SDN controller to predict

network performance and make topology changes to see how this will impact the network

performance in practice. It is necessary to determine the importance of various parameters

in prediction to minimize the monitoring overhead. Weka created the decision tree for us.

We wrote a program to convert that tree into “if and else” conditions to aggregate it into the

POX controller. POX uses port 6633 to communicate with APs, but this communication is

44

Figure 12: The selected decision tree

45

used for OpenFlow information. This is not enough for wireless networks and management

and it cannot receive all required information. To provide a communication mechanism

between the controller and APs, we used POX messenger, which uses port 7790 to receive

information from APs. Then we created a Python agent on each AP which is responsible

for communicating with the POX messenger. Agents build a message consisting of location

information, packet rate, packet size, and power level and then send this message to the

controller. Agents repeat this action each 100rtt (round trip time). The controller receives

the information and uses the QoS tree to decide whether the required QoS is provided or

not. If the maximum delay was more than acceptable for the tagged flow, it sends APs

commands to reduce the rate by a factor of 10 the and size of packets by half. On the other

hand, if there was extra bandwidth, APs may increase their packet size by 100 kilobytes and

also increase the packet rate by a factor of 10. The agent on an AP will hear the commands

and apply changes.

3.4.3 Results

Considering the amount of information that should be exchanged among the controller

and APs, we repeated the experiment in 12 different situations, both before and after ap-

plying the QoS tree to see how it affects the QoS. The results are summarized in Figure 13.

The percentage of changes in mean delay, max delay, and packet loss are negative which

shows a reduction that concludes a higher QoS. There is a small increase in minimum delay

in some cases due to the additional control packet and processing time in the controller. We

calculated a 95% confidence interval for each parameter.

In Figure 13 the dots below the zero line shows a reduction in delay or loss. Considering

the confidence interval, there was no big change in the case of minimum delay (a little

increase due to extra communication between AP and controller), average delay, or packet

loss. But the amount of maximum delay is decreased considerably, which is very good and

beneficial especially in real-time applications or communications.

46

Figure 13: Results for single flow decision tree

3.5 Decision Trees for more flows

In this section, we used the entire database including the experiments with more than

two hosts which are sending packets (multiple flows). Then we built different trees based on

the whole database using REP, M5P, Random Tree, and J48 algorithms.

We first built a tree for the delay. In this tree, we can have more than one flow and the

size of the flow can also change. In spite of the previous decision trees in this section, each

packet of the flow formed a tuple, while in the previous one, each flow was summarized into

one tuple. For each tuple, some of the other flow sizes are also added. The attributes that

were used are as shown in Table 3.5.

As described in the following sections, we built 3 different trees using these attributes

and different class variables. We first built regression trees for the delay and later we built

classification trees.

3.5.1 Regression Tree for Delay

Here the class variable was the delay. The total number of instances in the data set was

206261. We do not show the tree due to space limitation (the size of the tree was large with

869 nodes). Table 6 shows the output of 10 fold cross validation on the tree. The important

47

QoS Tree

meanDistOfSendersToReceiver Host

meanDistOfSendersToSenderHost

totalPacketSize

totalPacketRate

meanPowerOfSenders

sumOfFlowSize

Table 5: Flow’s attributes

variables in the REP tree were the distance of senders to the receiver, power level, and packet

size. We also compare the decision tree methods with linear regression.

As we did in the previous section, we implemented this tree in the controller and created

agents on APs. We also need to create some agents on hosts to send their packet sizes.

We tested this tree in 12 different configurations and for 3 hosts which gives us 36 tuples

(36 experiments) and we summarized the results. The results are shown in Figure 14. Like

previous results, the maximum and mean delay and packet loss are all reduced while there

is an increase in min delay in some cases due to the additional control packet and processing

time in the controller. The dots below the zero line show a reduction in the delay or loss.

The amount of average delay and maximum delay is decreased but based on the confidence

interval, this tree was not as effective since the confidence range crossed zero.

Table 6: Evaluation of All Data Delay Decision Tree

QoS
Linear

regression

REP

Tree

M5P

Tree

Random

Tree

Correlation coefficient 0.39 0.804 0.795 0.80

48

Figure 14: Results for delay decision tree

3.5.2 Delay Classification tree

In order to apply classification trees, we changed the class variable by setting a threshold

of 100ms (the requirement for time-sensitive applications [166]) for the delay to label the

class variable, considering the delay is more (false) or less (true) than this value. Then we

built the tree using REP, Random Tree, and J48 algorithms in Weka.

The output of 10 fold cross validation on the tree is shown in Table 7. We also apply

libSVM [46, 105] on our data to create the model and compare it with classification trees.

The time it takes to build a tree for libSVM was two days, while it takes few minutes to

build a tree with decision tree algorithms.

We chose J48 prediction tree since it has higher overall performance; REP has the lowest

Table 7: Evaluation of Classification Delay Tree

QoS
REP

Tree

J48

Tree

Random

Tree
libSVM

Correctly Classified Instances 82.95% 83% 83% 83%

Tree size 1709 1159 6541 ---

49

Figure 15: Results for delay decision tree

correctly classified items, libSVM was so slow (it takes two days to build the model) while it

doesn’t have higher correctly classified items. Random Tree has a tree 6 times bigger than J48

with the same correctly classified items. So in this case we pick J48 decision tree as our delay

decision tree. The important variables in the J48 derived tree were packet size, the distance

of senders to the receiver, and transmit power. We placed this tree in the controller as well

and repeated the experiment as in previous sections. The results are shown in Figure 15.

Although there is a slight increase in minimum delay due to sending control packets, we can

see that the tree was much more effective and the average delay and maximum delay were

both decreased. It especially has a big effect on decreasing the maximum delay. Although

there is a slight increase in minimum delay due to sending control packets, you can see

that the tree was much more effective and the average delay and maximum delay were both

decreased. It especially has a big effect on decreasing the maximum delay.

3.5.3 Dynamic Tree

In order to update the tree by receiving feedback from hosts, each leaf is tagged with the

value of the class attribute, the number of instances, and the number of incorrectly classified

instances in that node. Then we store the conditions related to sequence number and leaves

values in an update-able data structure (e.g., array).

50

Figure 16: Dynamic tree

We put this tree in the controller and create agents on APs and Hosts to communicate

with the controller and update the tree as new training instances get available as feedback

from hosts. APs send their attributes such as location, packet rate, packet size, power

level, etc. The controller reads values related to the condition from that data structure and

replies with whether they should decrease their packet rate and packet size or not. Then the

controller also receives feedback from the hosts to see how it affects the delay then it updates

the tree using that feedback. The feedback is the number of instances and the delay values.

In the dataset, the controller adds up the number of instances in one group and decides

whether the class tag for that leaf should change. Based on the requirement the coefficient

for old data (instances that are already in tree leaves) and new data (feedback from hosts)

can be different.

We try this on the same network to see how it changes the tree, the results show that

19% of the times the statistics in tree leaves may change but the labels of the leaves do not

change. This provides us with reasonable confidence in the stability of the trees and their

ability to allow the SDN controller to manage the network.

51

3.6 Discussion and Limitations

Our objective in this work was to examine the potential of mining historical data towards

wireless SDN management. SDNs aim to provide compatibility among different networks.

In considering complex situations (e.g. in hospitals with different applications such as multi-

media streaming, internet of things, medical devices, and personal area networks) we believe

a good, yet simple, model based on historical data may be a great help in managing the

network configuration, monitoring, troubleshooting, modifying and optimizing the network.

SDNs can be applied in a large scale environment – management will be hard and it is

necessary to make it automatic to reduce the amount of effort for network management.

Providing a reasonably accurate yet simple approach for SDN management is not trivial.

Many different machine learning and artificial intelligence approaches have been applied in

many applications, such as supervised learning (e.g. classification), unsupervised learning,

and reinforcement learning (e.g. evolution and swarm algorithms and neural networks). In

this work, we examined the applicability of simple models using historical data for automat-

ing wireless SDN management. We applied the models in the network to see whether there is

an improvement in performance and also use feedback to update the decision trees. Previous

works use historical data to create models but do not test the models in experiments nor do

they get feedback from online data.

In this chapter, we focus on constructing a simple model with decision tree regression

and classification techniques. Our reasoning is that trees allow an SDN controller to quickly

check the important conditions for reconfiguration to see if the performance metrics (SLA)

can be satisfied. This is in contrast to computationally expensive approaches that try to

optimize the network performance. Our goal instead is to simply meet the performance

metrics. We were also interested to make the tree more dynamic and use the feedback from

hosts to optimize and update the tree and see the results over a longer duration of time.

Decision trees may change in different networks with different configurations and different

topologies. Also, multiple channels may need multiple trees.

A problem that is not covered in this chapter and planned for the future is to consider

mobility and other complexities, more diverse data sets, and determining how much histor-

52

ical data is required for it to be effective in dynamic wireless networks. Clearly, this work

is nascent and does not address several complex issues. In the simplest limitation, while

considering mobile nodes that need heterogeneous QoS metrics to be satisfied, the decision

trees may change substantially. This work also leads to hope for exploring automatic band-

width management, the potential of using such models in dynamically slicing the network

into partitions, and network reconfiguration. We can potentially use these kinds of mod-

els to automatically manage the network i.e., bandwidth allocation or slicing the network.

Using real-world data sets which are not available at this time can also help us to confirm

the results. Creating an optimal tree and evaluating the scalability and applying other dy-

namic tree approaches to update the model as new training samples are available are possible

solutions to improve the models.

3.7 Conclusion

In this chapter, we used historical data to predict the quality of service and decide what

flows to throttle (e.g. reducing packet size) towards managing an SDN wireless network

where interference from competing transmissions may impact the quality observed by critical

flows. In order to create a database consisting of different network configurations and traffic

situations, we first simulated many SDNs with different topologies. In each topology, some

hosts try to connect via an AP while other active APs cause interference, decrease the flow

QoS and may block the media by overusing the bandwidth or sending with a high transmit

power level. We collected the data and pre-processed them to achieve a clean set of data

that consists of the number of actively interfering APs, APs’ location, packet size, power,

delay, etc. The data mining tool Weka is used to apply data mining methods to create one

tree for the prediction of the QoS. Based on the QoS prediction tree, the SDN controller

can decide whether a situation can meet the demanded QoS or not. The results show that

such trees can be used by SDN controllers to rapidly managing the network to maintain QoS

for critical flows. The controller can also use feedback from hosts to update the tree on a

continual basis to improve the delay performance.

53

4.0 Software Defined Ambit of Data Integrity for the Internet of Things

On the Internet of Things (IoT), devices do not have the required computational power

and storage capacity; and as a result, a variety of IoT devices may be required to outsource

sensed or generated data to multiple heterogeneous cloud servers. We posit that it is the

Data Owner ’s responsibility to verify whether the stored data remain unchanged when the

owner or some trusted third party further requires accessing this data. However, the “level”

of this verification may be different under different contexts based on the application need.

We propose four methods of integrity verification (which we call the ambit of data integrity

– ADI) that considers the “toll” in terms of time, storage and communication by enlisting

typically disparate integrity approaches under a single orbit. We adapt the notion of contex-

tual integrity, previously used for assessing privacy grants, to extract important parameters

required to decide on a suitable data integrity verification process. We propose a secure

architecture using an integration of software defined perimeter (SDP) and software defined

network (SDN) to perform authentication and gather each partition’s context information

for an SDN application to decide the proper integrity verification method that addresses the

context requirements. To the best of our knowledge, this is the first time that the scope of

integrity (or the data context) is used to determine the required layer of integrity verification

in IoT.

4.1 Introduction

The Internet of Things (IoT), comprising of sensors and actuators, is increasingly chang-

ing human life by helping to solve new challenges. A multitude of IoT devices gather different

kinds of data about the environment, the human body, social activities, etc., and enable peo-

ple to make decisions or control actions [69].

In the near future, the environment around us is likely to see a profound transformation

that can lead to a better quality of life, higher efficiencies through less waste, and reduced

54

costs. This transformation (described in [154] and paraphrased here) will involve user own-

ership of data that is generated (mostly) on their premises by a variety of wearable devices

(”things” in the Internet of Things - IoT) and sophisticated, yet not very expensive con-

nected devices. In an example of a healthcare scenario, the connected health devices could

include blood pressure monitoring1, electrocardiogram sensors2, ultrasound probes3 and even

inexpensive DNA sequencing chips4 that can identify inherited genes and chromosomes that

may impact a patient’s well being through drugs that are effective or dangerous to particu-

lar classes of patients. Although ensuring the self-integrity5 of data being transmitted from

the health monitoring devices is not within the scope of this work, recent advances show

that there is no significant performance degradation between wearable devices and expen-

sive medical tracking devices [157]; therefore, the information coming from an IoT device

is equivalent in merit to the information generated by dedicated medical devices. Much of

these data, while they may eventually be owned by a patient in an unforgeable blockchain,

are today maintained in separate (perhaps multiple) cloud services that are owned by the

vendors of the smart devices. The vendors may themselves be leasing storage, computation,

and algorithms from various cloud services like Amazon’s AWS or Microsoft’s Azure or even

lesser-known companies6.

Increasingly, however, it is likely that the owner of the data may be freely able to move

the data and/or allow other trusted parties to use them on the owner’s behalf. These trusted

parties should be able to retrieve the data from the cloud services that may not be necessar-

ily reliable or trustworthy – in other words, the onus of assuring the integrity of data now

lies with the owner. The owner may need to verify the integrity of data regularly without

having to download all of it or keeping a local copy of data from every device. Besides, the

trusted party (e.g., a healthcare or maintenance service or car service provider, etc. based

1https://health.nokia.com/us/en/blood-pressure-monitor
2https://www.alivecor.com
3see https://www.lumify.philips.com/web/
4http://www.thermofisher.com
5The data is correct and there are no flaws in generating or measuring data at any time so that knowledge

that is gained from different parts of the data (measurements of different variables or different times of the
same variable) make sense.

6It has been reported that increasingly companies are relying on multiple cloud providers (on average 8)
for services [104].

55

https://health.nokia.com/us/en/blood-pressure-monitor
https://www.alivecor.com
https://www.lumify.philips.com/web/
http://www.thermofisher.com

Figure 17: Motivating Scenario

on the nature of gathered data) may intermittently need to retrieve/use parts of the data.

We capture this scenario in Fig. 17. The edge network, in our scenario, is a Software Defined

Network (SDN) along with a Software Defined Perimeter (SDP) to provide security services

for data storage, retrieval, and integrity verification. SDN and SDP allow network parti-

tioning/security, gathering required context information for integrity verification (e.g., by

exchanging information with installed agents on switches [86]), authenticating users/things,

and provide secure access to cloud servers. The “things” are connected to the owner’s gate-

way, which is an integrated SDP-SDN gateway and could even be a router/mobile phone

with Open Virtual Switch (OVS) [124] installed on it. The gateway communicates with

SDP-SDN controller which authenticates the owner and processes owners’ request and pro-

vide access for transmitting the data to the appropriate cloud servers. Later, the gateway

communicates with the cloud service and/or a trusted third party’s gateway (with similar

capabilities) to verify the integrity of the retrieved data.

The verification of the integrity of data may have different scopes or ambit7. Some data

may not need strict cryptographic assurance of integrity but may need fast verification of

7The Mac OS Dictionary defines ambit as the “scope, extent, or bounds of something”

56

Figure 18: Integrity Ambit

the most recent data blocks or units, appropriate if the application and corresponding cloud

service have higher obligations for reliability and security. An example of this is a health-

care provider (trusted party) who is looking at reports of a patient’s (data owner) activity

monitored by a wearable device. In this situation, the patient may be physically present

for additional diagnosis – so fast verification is sufficient. Others may need strong crypto-

graphic assurance to ensure that the decisions made are not based on falsified or modified

information. Yet others may need protection against accidental or deliberate deletion (high

availability). The “toll” on assuring data integrity and its verification needs to be commen-

surate with the scope/context of the situation. We develop a solution that considers what we

call the ambit of data integrity or ADI to verify the integrity of data from multiple sources,

stored in multiple clouds, under different conditions such as the time that the trusted party

retrieves the data (e.g., to serve the owner) or the owner decides to check data integrity

without having to download the data.

Security model of ADI relies on a trusted verifier (OGW) that belongs to the owner of

the data. The SDN-SDP controller is responsible for authenticating parties (OGW, Servers,

and UGW) and securing their communications. The OGW stores the data in (many) cloud

57

servers and generates and stores the key that can verify the integrity of data. A trusted third-

party (UGW) that wants to retrieve the data, checks with the owner of the data through

the gateway (OGW) to ensure that the data remain unchanged compared to what the data

owner stored in the cloud. The UGW only shares small metadata that is sufficient for the

OGW to verify the integrity of data for use by the UGW. Under these constraints, ADI

is able to detect accidentally corrupted, forged, or fabricated data sent to the third-party

retriever (UGW) instead of the original data. We assume that OGW is the trusted secure

verifier and since UGW is the third party that requests the data, it only makes sense to trust

this entity with sending the correct metadata to the verifier.

The contribution of this section can be situated in a manner similar to contextual in-

tegrity [117, 13], which, despite its name, has been used to indicate how the notion of privacy

may change with context. We argue that data integrity checks should be context-dependent

and scoped accordingly. We provide a hierarchical integrity verification framework that has 4

layers, including Bloom Filter (BF), encrypted Hash Tree, provable data possession (PDP),

and proof of data retrievable (POR) as shown in Fig. 18 (These methods are explained in

detail in Section 4.3). Each layer of integrity verification increases security or reliability but

at the cost of higher communication, storage, and/or time overhead in comparison to the

previous layer. We discuss a contextual integrity framework that determines the appropriate

layer of integrity required based on the context.

The question we ask is when is it sufficient to use low cost but low latency methodologies

(BFs or Hash Trees) and when to use highly secure methods (PDP and POR) that have

significant overhead (in other words, what is the ambit?). Also, how can we systemati-

cally combine these approaches? Toward this, we adapt the concept of contextual integrity

from Nissenbaum’s theory [117, 13]. Here the determinant parameters are subject, sender,

recipient, information type, and transmission principle (described later).

To the best of our knowledge, this is the first time that layers of data integrity verification

have been considered for stored data from IoT in cloud servers. With ADI, the natural next

step is to develop a secure architecture for it that addresses the requirements of its layers.

We investigated various frameworks and after considering the requirements, we advocate

58

the combination of SDN-SDP in IoT networks with devices8 acting as SDN switches. SDN

supports network partitioning, gathering information about the context in each partition,

variable packet flow headers, and flexible actions to be performed on flows. SDP supports

authentication for the data owner and trusted parties to securely access the data they need

from the cloud server.

The main contributions of this chapter are the 4-layer ADI approach, the use of con-

textual integrity to determine the required layer for data integrity verification for data from

things stored in cloud servers, and an SDP-SDN architectural framework that addresses the

requirements of ADI. To the best of our knowledge, it is the first time that the combination of

SDN and SDP are proposed for IoT applications. These three contributions provide a novel

and efficient solution to the problem of large-scale data integrity verification. We examine

the parameters that can help decide what layer of integrity verification is required in each

ambit and provide a secure framework for this process.

In the following, Section 4.2 summarizes the literature on data integrity and trust in

IoT, contextual integrity, SDN, and SDP. Section 4.3 explores the building blocks of the

selected methodologies including BFs, Hash Trees, PDP and POR. Section 4.4 explains the

idea of using contextual integrity to decide what layer of integrity and therefore what layer

of integrity validation is required based on the ambit. Section 4.5 provides the architectural

framework for implementing this idea, Section 4.6 evaluates ADI and the architecture and

finally, Section 4.7 concludes the chapter.

4.2 Literature Review

In this section, we first consider discussing some recent works in proving integrity verifi-

cation in IoT networks. Then we briefly review the background knowledge required for ADI:

the origins of contextual integrity and privacy and then SDN and SDP which are used to

addresses the requirements of a network supporting ADI.

8These could be phones for a home network or Raspberry Pis or desktop all the way to an edge network
with servers for smart grids or water systems.

59

4.2.1 IoT and data Integrity:

Providing data integrity, privacy, and trust in IoT networks has attracted much attention.

The authors in [68] used a cryptographic one-way hash to detect up to d defective items in

a set of n items. They proposed a digital watermarking technique, to encode authentication

information in the data structure D. They did this by modifying non-data fields, in a way

that they should not be immediately identifiable by an adversary. In their model, the

adversary modified the values of D but not the topology of D ’s pointers. The adversary had

the knowledge of the algorithm but not the cryptographic master key. The authors built

a program that identified up to ‘d’ the number of changes and made it probabilistically

difficult for an adversary to reproduce the database structure. The idea came from blood

testing in which a test consists of selecting a sample including ‘t’ items and performing a

single experiment that determined if the sample contained bad blood. They produced a t×n

matrix, that for any d + 1 columns there was one designated, with non-adaptive combined

group testing scheme performed on each row. The column with a negative test result had 1

in a row and was removed. The remaining columns corresponded to bad elements. In this

method, the only thing that needed to remain at the client-side was a key. In [68], the authors

add some watermarks to the data in the cloud that has the complexity of O(d3 log n log d)

in which ‘d’ determines how many defective items can be identified and n is the number of

bits.

As an example in the work in [15] discussed an amortized verifiable computation in

which the client provided a function and an input to the server. The server replied with

the answer and proof of the correctness of the result. The evaluation of polynomials was

derived from very large data sets. Initially, the client stored the data on the server with

some authentication information and kept a short secret key. The server computed a result

with an authentication code. The client kept the clear text polynomial P and a vector of

coefficients. The server had a vector of groups of the form gaci ri in which ri is the ith coef-

ficient of polynomial R and was calculated using a pseudorandom function. When queried,

the server replied with y = P (x) and t = gaP (x)+R(x) and the client accepts y if t = gay+R(x).

One application of [15] is in verifying outsourced computation to make predictions based on

60

polynomials fitted to many sample points in an experiment. Another application is in up-

dating data and performing verifiable keyword searches and securing proofs of retrievability.

For n variable for polynomial from degree d, assuming Decisional Diffie-Hellman the required

time for the setup is O((n + d)d). After the setup, the required time is O(nd) in the client

and is O((n+ d)d) in the server.

In another work, Catalano-Fiore [33] approach, a value m is encoded into 1-degree poly-

nomial y, that y(0) = m and y(α) = Fk(L), in which F randomizes the label. The server

creates a new MAC with n authentication polynomials (y1, y2, ...yn) that authenticate m

as result of f(m1, ...mn) and also y(α) = f(Fk(L1), Fk(L2), ..., Fk(Ln)). Before this work,

existing verification algorithms were not time efficient. The server sent m′ to the client and

he could test whether m′ is the result of f(m1,m2,,mn) by checking if y(0) = m′ and

y(α) = f(Fk(L1), Fk(L2), ..., Fk(Ln)). The authors wanted to avoid the time consuming

y(α) = f(Fk(L1), Fk(L2), ..., Fk(Ln)) part by safely reusing labels. They constructed a

pseudo-random scheme that pseudo-computes a piece of the label. So they split the labels

into 2-dimensions: the data set identifier and input identifier represented as (∆, τ) that

allows the same τ in labels. Also with pseudo-random function F using new amortized

closed-form efficiency, if user pre-compute some information wf with same τs and different

∆s it is possible to use wf to compute W = f(Fk(∆, τ), Fk(∆, τ), ..., Fk(∆, τ)) in constant

time. In this method, the client either should store the labels, which is a 2-dimensional

matrix, and/or compute them, which has time and communication complexity of at least

O(n2).

In [107] authors integrate new signature into current aggregated signature in which a

single invalid signature invalidate the whole aggregated signature; however, in the secure

aggregation scheme provided in [74, 73] the d-fault-tolerant aggregated signature verifica-

tion algorithm can give the list of correctly signed messages providing that the number of

incorrectly signed messages does not pass the bound (d). Secure aggregation may be more

computationally intensive but the amount of communication for integrity verification will

decrease. This scheme requires d-cover-free family (d-CFF). The characteristics of d-CFF is

as the following: Consider set S with m elements, and set B with n subsets of S, it is not

61

possible to cover one subset with the union of any other d subsets9. Matrix M is used to

show subsets which has rows for subsets and columns for elements. M [i, j] = 1 if the subset

in row i includes the element on column j. Number of incorrect signatures should not pass

d. Number of signatures in an aggregation (n) is bound by
(

n
n−d

)
≤ 2l where l is the length

of aggregation. Claim is a pair of a public key and a message (pk ,m) which is used in the

aggregation. The order and position of aggregating claims in each sequence of claims must

be maintained. Considering that that C1 and C2 are two exclusively mergeable sequence

of claims (have the same claim in each position and in one of them the claim should be

empty) [74, 73].

The aggregation scheme is a an ordered list of Probabilistic Polynomial Time (PPT)

algorithms Σ = (KeyGen, Sign,Agg, V erify) that are defined as: KeyGen creates a public

private key pair or update key and securely erase the previous key. Sign uses the key to

create a signature σ for claim c = (pk, t,m) with message m. V erify takes claim and

signature and outputs a validation (0 or 1). AggSign creates an aggregated signature using

C1 and C2 and their signature (τ1 and τ2) component-wise [74, 73]. The adversary may have

pk and T and can query Update (which updates the key and return Ok) and AggSign for

T −1 times, the adversary may also ask for current key which gives them sk but denied their

further query. The scheme should be secure in the matter that no adversary should be able

to pass the verification with the probability of at least ε in at most time t, by requesting at

most q queries [74, 73]. Using d-CFF scheme, consider C = (c1, ..., cn) and C ′ = (c′1, ..., c
′
n′),

if there exists l different items among C and C ′ that has the same index but different values

and d = |n − n′| + l; then there are d positions with errors in C ′. If errors result in failure

of verification of the subset that includes those d message, then due to d-CFF each correct

messages can be verified in at least one row [74, 73].

Authors in Secure Logging the scheme used this fault tolerant scheme in detecting modi-

fications in log files using sequential aggregation. Logging scheme must remain secure even if

the malicious party gets the secret key; therefore, in each time epoch secret key is calculated

based on the previous secret key and the previous secret key will be deleted securely [25].

9examples of d-CFF’s constructions are based on concatenated codes, polynomials, algebraic-geometric
Goppa and randomized constructions

62

This scheme has a security parameter of κ that specifies the running time of PPT. In this

scheme concatenation (C||C ′) would result in (c1,, cn, c
′
1,, c

′
n) in which each claim for

message m in epoch i is c = (pk, i,m). The goal is to aggregate different messages signature,

in any order, into one equal size signature that can authenticate all those messages, and still

can be aggregated further [74, 73]. Aggregation signature required a lot of key sharing and

key updates and hence is not suitable for internet of things.

In more recent works, In [160], authors provide a method to balance user privacy, data

integrity in cloud servers, and computational cost by adding user-arbitrary weights while

calculating the mean. They also provided biometric elliptic curve cryptography (using users’

identity, password, and imprints) for authentication and used enhanced truth discovery tech-

nique (which includes assigning random weights) to still keep users’ privacy [160]. In [61]

and [2], authors modeled trust and reputation in IoT networks. In [103], a data integrity

monitored method is provided to detect and isolate failures in sensor system (such as fault

in time, format, and value). In [75], authors design a provable data possession scheme that

can perform multiple updates at a time by using a Merkle Hash Tree that enables updating

multiple leaves at the same time and updating the values of all their parents up to the root.

From the above old and recent integrity related solutions and considering previously pro-

vided PDP and POR solutions [9, 8, 42, 7, 57, 59, 142, 168, 24, 23] –and to the best of our

knowledge–, the context or scope of integrity has never been used to determine the required

extent of integrity verification in IoT. In the following some PDP and POR methods are

reviewed.

Proof of Data Possession (PDP) This section discusses methods from the literature

that provide data verification class called provable data possession. [8] provides a provable

data possession (PDP) at untrusted stores, using a fully additive homomorphic signatures;

however, since it is not secure, they added a one time indices to make it secure. In Homomor-

phic message authentication, the user generated a set of tags that authenticated some values

using a secure key. This method is able to dynamically adding blocks without re-tagging

the entire file, support unlimited verifications, and with some variations it also supports

public verifiability; However even in publicly verifiable modified version of this work it still

requires to share the key with other entities which we avoid in HCI. Other works in PDP

63

such as [10, 63, 42, 9, 138] all tried to provide more efficient PDPs. In [66] a Diffie-Hellman

and merkle Hash Tree is used which has the storage overhead as large as the file it self to

reduce the server computation; however, this method increased communication. [63, 48]

are RSA based PDP approaches that has the communication complexity and client storage

complexity of O(1); however, they have heavy computation on the server and performing

RSA over a file is so slow. In [138], authors provided a method in which the signature of

the parity blocks is equal to parity of the signature of the data blocks and use this method

to provide a PDP approach; however, the communication complexity is O(n). In [140, 163],

authors used Diffie-Hellman based approaches; however, in both approaches the client has to

store n bits per data block; therefore, these methods would not be efficient if data blocks are

small. All these methods involve public key cryptography and they all require key sharing.

Block-chain based integrity checks remove the requirement of Third Party Auditors

(TPA) [102]. The authors in [165] proposed a blockchain based Merkle tree for data integrity

verification, those in [158] proposed a decentralized collective trust protocol that allows users

to trace the history of data. The work in [101] proposed a decentralized data provenance

auditor to verify data security through information in the block. However, these methods

have large computational and communication costs due to large data sizes. In [159] authors

provided a block chain based PDP that tried to reduce communication and computation

load using homomorphic verifiable tag (HVT) which requires key sharing.

In Dynamic Provable Data Possession (DPDP) [57, 59, 56, 58], clients store data and a

Skiplist in an untrustworthy server. The Skiplist is a data structure that keeps the meta-data

of n blocks as leaves and rank upper layers as the number of accessible leaves. This method

is based on rank-based authenticated Skiplists. The nodes in the search path are affected

in the case of the insertion, modification, or deletion of blocks. The client keeps the label

of the top-leftmost element in the Skiplist which is the root of the list. The validation of

data integrity consists of the hash of nodes in the verification path (leaf to root) with the

size of O(log(n)). For updating the data, the client verifies the new proof and computes the

new label of the root node after the update. The updating process affects nodes along the

verification path with the length of O(log(n)). This PDP method is used as third level of

integrity verification in this chapter, which is investigated further in Section 4.3.

64

Proof of Retrievability (POR) In [82, 142, 53, 24] proof of retrievablity (POR) is

provided which is applicable on encrypted files only and supports limited number of chal-

lenges. High Availability and Integrity Layer (HAIL) [23] provided a proof of retrievablity

(POR) for a trusted verifier that checks the integrity of data and correct the errors where the

file is distributed across multiple servers with redundancy across servers and a Byzantine

adversary can corrupt multiple servers at a time. In HAIL the client stores the keys. It

assures granularity of a full file by detecting server faults in a challenge-response reactive

cryptographic system and recover corrupted files using cross server redundancy. The file is

publicly verifiable even if it is encrypted. They build IP-ECC (Integrity protected error cor-

recting code) which combines MAc and parity and aggregate responses by combining MACs

across multiple blocks. In HAIL the client is the one that verifies the data and it does not

support public verifiability. In HAIL the server code overhead is 9% of the file size for 1G

data. HAIL is used as forth level of integrity verification in Section 4.3.

4.2.2 Contextual Integrity:

In Nissenbaum’s theory, the term contextual integrity examines whether privacy is vi-

olated as context changes - i.e., the flow of information is contained as long as five pa-

rameters determine that the integrity of the context remain unchanged: subject, sender,

recipient, information type and transmission principle, that conform to norms and ethi-

cal concepts [117, 13]. Three main domains affect privacy policies: government intrusion in

individual privacy, sensitive personal information, and personal space. People perceive infor-

mation as private based on social appropriateness, distribution of information, and changing

norms. The desire to keep information private or to release it depends on parameters such as

information flow (e.g., in social media, people share information to seek attention or snoop

on others), awareness (e.g., the accuracy/type of location information is unclear), modesty

(e.g., not sharing information to avoid bothering others) and maybe secrets [13].

In [81], a trigger action mechanism is used to provide contextual integrity, for permission

requests by IoT platforms, based on users’ opinions in different contexts. The permission

system has two steps: first, it collects the information about the context (including infor-

65

mation about execution path, data flow, inter-procedure control, run time data value, user

interface activity), and then it searches the dataset of mapped contexts and grants permis-

sions approved by the user. If no match is discovered, it prompts the user and inserts a

new record into the mapping dataset. The authors detect IoT attack execution paths while

reducing the frequency of prompting the user [81].

In [40], authors present an information assisting agent that provides implicit contextual

integrity. This agent uses an information model that considers relationships and information

norms. It helps users to be aware of the information they are sharing in each context and

avoids sharing sensitive information (previously unknown to the receiver). Context is defined

by users, the topic of the information, and the knowledge of each user. Permission to share

is granted based on appropriateness; appropriateness(B, t) is the probability that user B

is willing to share information about topic t. The appropriateness is updated after each

information sharing event, based on the knowledge each entity knows or learns [40].

As discussed above, the term contextual integrity has been used to maintain the integrity

of the “context” to ensure privacy violations are minimized. We suggest contextual data

integrity that uses the right mechanisms to verify the integrity of data based on the scope or

ambit. One ambit may need quick verification, but if there is a potential for mischief, this

may be mitigated by changing the ambit.

4.3 ADI Layers

In this section, we describe the hierarchical data integrity framework that contains four

layers of integrity verification, as shown in Fig. 18, to ensure if the data, sent by an owner

to be stored in one or more cloud servers, remain unchanged. The data verification process

has 2 phases – Phase 1: Initialization (creating metadata or tags and storing the data along

with tags in the server) and Phase 2: Challenge-Response (request and receive proof from

the server, and verify the proof). In this framework, higher ambit layers have integrity

verification methods that are more secure and/or reliable at the cost of increased overhead.

The factors that we consider include latency, communication overhead, storage overhead,

66

tagging requirement, key sharing requirement, and repeatability (the server should not be

able to use previous proofs in response to a new challenge or use them to generate new

proofs; therefore, the server cannot claim to have the correct data without actually having

the intact data [8]).

4.3.1 Threat Model

We have the following elements in our scenario:

• Adversary: This entity sends corrupted data to the third party (as an example, in the

healthcare scenario, this hurts the patient because the doctor has incorrect information).

This adversary can be of two forms: (1) The cloud server storing the data, which may

be under attack, itself wants to forge the data or accidentally provides corrupted data

blocks that harm the data owner. (2) An adversary that is a man-in-the-middle that

sends wrong data to the third party instead of the cloud server and thus harms the data

owner.

• Fully Trusted OGW: This entity is the data owner’s gateway which is secure and trust-

worthy. It stores the generalized Bloom Filter and the key used for HMACs in building

the tree. It performs data updates by storing data in the cloud, hashing them into the

Bloom Filter prior to storage, and also hashing them securely in the tree.

• Trustworthy UGW: The UGW is the entity that needs to retrieve and use the data to

service the data owner. If the UGW is not trustworthy it does not have to get any data

and ask for verification from the OGW. It can harm the data owner directly without

any of these hassles; therefore, the only scenario that makes sense is to assume that the

UGW is trustworthy.

4.3.2 The first layer: Nested Bloom Filter

This approach uses a novel Nested Bloom Filters suitable for a low ADI. A Bloom Filter

is a data structure that verifies whether an element is a member of a set or not using an

empty array and set of k (unkeyed) hash functions (e.g., MD-5 - that are also not secure). It

begins with an array of all 0s and then inserts a data block by hashing it using all k functions

67

with the hash outputs as an index. The BF sets the values in the array cells with the output

index to 1. Later on, to check the membership of a data block, it hashes the block using all

k hash functions and compares the output indexes with the array values in those indexes.

If there is a match, i.e., they are all 1, the membership test is passed. Considering that the

best number of hash functions k is k = m · ln(2)/n (see [27]), the minimum required space in

the BF for storing n items is m, which is calculated as m ≥ n log2 e · log2(1/ϵ) [27], where ϵ

corresponds to the maximum fraction of the universe of false positives that is tolerable. As

an example, if we use n = 12 and allow at most 1% false positive, m should be at least 115

bits. This method is fast, but it allows false positive and data cannot be deleted or modified

in the case of change, because they remember old data; therefore, over time, by adding more

data a BF can be saturated (all values turn to 1) and therefore the false positive probability

can dramatically increase.

A solution to saturation is to use a Generalized Bloom Filter (GBF). In GBF [97], the

initial filter is randomly filled by 0’s and 1’s. Then, k1 hash functions set the bit and k2

other hash functions reset the bits. This method limits false positives, but it introduces false

negatives. Concatenation of GBFs (CBF) [113] which consists of multiple GBFs improves

robustness and capacity, since there is less insertion and therefore fewer false negatives in

each sub filter [97, 113]. GBFs (and therefore CBFs) tend to forget old data. Thus CBFs

also address the problem of advertising saturated filters (all-one attacks). In this chapter,

we use CBFs and we assign a dedicated part (subfilter) for each device that generates data

for the owner; therefore, for each device the overall BF has the most recent data. Further, a

device that generates data more frequently does not overwrite data from other devices that

may make less frequent updates. The False Negative probability (FN) and False Positive

probability (FP) calculation is discussed in Section 4.3.2.3, using formulas from [97]).

4.3.2.1 Formal Preliminaries for Nested Bloom Filter The verification system’s

protocols in Hierarchical bloom filter has the following functions for storing data and for

verifying the integrity of retrieved data:

• UpdateCBF (n, {Fi}ni=0, k, {Hi}ki=0, CBF, k1, k2, {H ′
i}k0i=0, {H ′′

i }k1i=0) → CBF : This pro-

cess is performed in the OGW and it updates the Concatenated Bloom Filter. Here, F

68

Figure 19: Layer 1. Bloom filter verification

is the file that has n blocks (Fis) of data. Each block has information about time and

ID of the device that created the data. k is the number of hash functions in ({Hi}ki=0)

which are used set bits in a simple Temporary Bloom Filter (TBF). CBF is the main

Bloom Filter, k0 is the number of hash functions ({H ′
i}k0i=0) that set bits in the CBF ,

and k1 is the number of hash functions ({H ′′
i }k1i=0) that reset the bits in the CBF . This

Update Concatenated Bloom Filter function is implemented using Algorithm 1.

• RequestQuery(time, IDdevice) → time, IDdevice, IDcloud: This function finds the corre-

sponding cloud based on the requested data IDdevice (the ID of the device that generated

that data). UGW forwards the request for the data from specific device in a specific

timeline to the corresponding cloud services.

• Respond(time, IDdevice) → {Fi}ni=0, n, subtree: The cloud responds to the UGW with

the matched blocks and number of those blocks.

• PreV erification(n, {Fi}ni=0, k, {Hi}ki=0)→ {TBFi}ni=0: This process is done in the third-

party user gateway (UGW). {Fi}ni=0 includes the set of blocks that are retrieved, n is

the number of blocks, k is the number of hash functions and, {Hi}ki=0 are the hash

functions for simple Bloom Filter. The output values which are the simple Bloom Filters

({BFi}ni=0) are sent to the OGW. Pre-Verification function is implemented using

69

Algorithm 2.

• V erification(n, {TBFi}ni=0, CBF, k1, k2, {H ′
i}k0i=0, {H ′′

i }k1i=0) → {0, 1}: The owner gate-

way (OGW) receives simple Bloom Filters ({TBFi}ni=0) from the UGW and verifies the

data. The output is reject (0) or verify (1). Verification function is implemented using

Algorithm 3.

The algorithm for updateCBF, Pre-verification, and Verification methods are described

in the following.

In Fig. 19 and Algorithm 1, we illustrate a nested BF approach. To initialize, each

data block is hashed into an empty fixed-size temporary bloom filter (TBF). This TBF is

hashed into a CBF where each section corresponds to a category of data (e.g., data from one

wearable device is stored in its own section of the CBF). The CBF is stored in the owner’s

gateway.

Algorithm 1 Update Concatenated Bloom Filter

1: input: (n, {Fi}ni=0, k, {Hi}ki=0, CBF, k1, k2, {H ′
i}k0i=0, {H ′′

i }k1i=0)

2: output: CBF

3: for each i ∈ {1 . . . n} do
4: TBF : {∀j ∈ {1 . . . k} : υ(Hj(Fi))← 1 } ▷ Hash ith block of data in TBF

5: CBF : {∀j ∈ {1 . . . k0} : υ(H ′
j(TBF))← 1 } ▷ Hash TBF in CBF (set bits to 0 for k0

number of hash functions)

6: CBF : {∀j ∈ {1 . . . k1} : υ(H ′′
j (TBF))← 0 } ▷ Hash TBF in CBF (reset bits for k1

number of hash functions)

7: TBF : {∀j ∈ {1 . . . sizeTBF} : υ(j)← 0 } ▷ Reset the TBF for future blocks

8: end for each

*υ(i) denotes the value of bit i in the corresponding Bloom Filter

During the challenge-response phase, as shown in Figure 20 the owner asks for the TBF of

the intended block (Algorithm 2) and verifies the data (Algorithm 3) by checking the received

TBF’s against the locally stored CBF. If they match, a confirmation is sent otherwise the

data is rejected and an alert is issued.

70

Figure 20: Verification with Nested Bloom Filter

Algorithm 2 Pre-Verification in UGW

1: input: n, {Fi}ni=0, k, {Hi}ki=0, subtree

2: output: {TBFi}ni=0, {SHA-3(Fi)}ni=0, subtree

3: for each i ∈ {1 . . . n} do ▷ For each new block

4: TBFi : {∀j ∈ {1 . . . k} : υ(Hj(Fi))← 1 } ▷ Hash ith block of data in TBF

5: end for each

*υ(i) denotes the value of bit i in the corresponding Bloom Filter

4.3.2.2 False Positive Probability for Simple Temporary Bloom Filter The size

of the Bloom Filter is m and the number of data blocks inserted into the Bloom Filter is

n; however, only one data block (n = 1) is inserted into the Temporary Bloom Filter. For

such a simple Bloom Filter, the false positive probability (that a block that does not exist

is believed to be correct) is calculated as FP = (1 − e(
−k×n

m
))k [97]. Based on this formula,

71

Algorithm 3 Verification in OGW

1: input: n, {TBFi}ni=0, CBF, k1, k2, {H ′
i}k0i=0, {H ′′

i }k1i=0, {SHA-3(Fi)}ni=0, κ, subtree

2: output: {0, 1}
3: for each i ∈ {1 . . . n} do
4: resulti ← min({∀j ∈ {1 . . . k0} : min{υ(Hj(TBFi))}}, {∀j ∈ {1 . . . k1} : min{1 −

υ(Hj(BFi))}}) ▷ Check if received TBF exists in CBF

5: end for each

6: resultBF ← {∀i ∈ {1 . . . n} : min{resulti}} ▷ 1 if all TBFs exist in CBF

our analysis shows that for m = 20 the false positive probability would be less than 0.01

when k is between 2 and 50. As an example, the FP for m ∈ (0, 20) and k = 3 is shown in

Figure 21. For k = 3 and m = 20 we have FP = 0.0027.

4.3.2.3 False Positive and Negative Probability for a General Bloom Filter The

false-negative probability for a GBF is calculated in [97] and summarized in this section. Let

us assume that k0 is the number of hash functions that turn the bit to 1 and k1 is the number

of hash functions that change the bit to 0. The false-negative rate for a GBF is calculated

as shown in the set of equations below (Equation Set 1) with comments:

Equation set 1: False Negative probability in Generalized Bloom Filter [97].

q0 = (1− e(−k0/m)) ▷ q0 determines the probability of a bit reset

q1 = (1− e(−k1/m))× e(−k0/m) ▷ q1 determines the probability of a bit set

b0 = m× q0 ▷ b0 is the probability of resetting m bits

b1 = m× q1 ▷ b1 is the probability of setting m bits

p00(n− i) = [(1− q0 − q1)
i +

q0
q0 + q1

× (1− (1− q0 − q1)
i)]∗

p11(n− i) = [(1− q0 − q1)
i +

q1
q0 + q1

× (1− (1− q0 − q1)
i)]

Fn =
1

n

n−1∑
i=0

[(1− p00(n− i)b0)× (p11(n− i)b1)] ▷ Fn is false negative probability

72

* p00(n− i) is the probability of a bit that is reset in the n− i-th insertion remains 0 after

the ith insertion; p11(n− i) is the same for a bit that is set.

Similarly, the calculation of the false positive for GBF is calculated in Equation set 2 below

with comments:

Equation set 2: False Positive probability in Generalized Bloom Filter [97].

p = p0(1− q0 − q1)
n +

q0
q0 + q1

× (1− (1− q0 − q1)
n)

▷ p is probability of a bit remaining zero after n insertions

Fp = (pb0)× ((1− p)b1) ▷ Fp is the false positive probability

Based on Equation sets 1 and 2, and assuming that each owner generates one data block

(each data block is 16 KB as suggested in [56]) each day and also assuming that in most

cases users may require the data from the past year, in order to keep false positive as low

as 1%, we calculate the minimum required size of the Bloom Filter for n = 365. With

m = 10700 the false positive probability is less than 0.01 for k ≥ 310 (where k = k1 + k2);

Therefore, m ≥ 10700 bits satisfies FP ≤ 0.01. Figure 21 shows the FN and FP rates for

k ∈ {3, 5, 7, 10} as example. As shown in Table 8, in the case the owner is storing more

data blocks each day, if we maintain m = 10700 bits, in order to keep FP less than 0.01, k

should increase. As an example, if the owner (e.g., a patient) is creating 10 data blocks each

day of the year (3650 data blocks), in order to satisfy FP ≤ 0.01, k should be 7. k = 7 also

satisfies FP ≤ 0.01 for 100 data blocks a day (36500 data blocks each year). The reason that

we do not select a higher value of k for is the FN . The false-negative probability increases

with increasing k with a small number of blocks (check k = 7 FP and k = 7 FN in both

Figures 21). It is more efficient to optimize k based on the application requirements as this

reduces the time needed for integrity verification.

10The upper bound is an 8 digit number.

73

Figure 21: FP & FN probability; left: n = 1 & k = 3, middle: n = 365, right: n = 36500

Table 8: FP and FN probability for CBF size of 10700 bit

k = 3 k = 5 k = 7 k = 10

Blocks per day FP FN FP FN FP FN FP FN

365 (one block) 0.01 0.03 0.001 0.08 0.00026 0.13 0.000029 0.19

3560 (10 blocks) 0.10 0.17 0.028 0.21 0.0076 0.16 0.00097 0.09

36500 (100 blocks) 0.12 0.22 0.031 0.15 0.0078 0.09 0.00098 0.03

74

4.3.2.4 Analysis We investigate security (collision), storage, time and communication

for Nested Bloom Filter verification method.

Security: In Nested Bloom Filter, data is first hashed into a simple temporary Bloom

Filter (TBF). Then the TBF will be transformed into a string, and the string is hashed into

a concatenated Bloom Filter. The probability of detecting a forged element as a valid one is

the same as the probability of false-positive, which in Nested Bloom Filter would be equal to

FPt = P1 + (1−P1)× (P2) where P1 is the probability of having a collision in the TBF and

P2 is the probability of having a collision in the CBF. As discussed in Section 4.3.2.2, the

false positive for TBF is calculated as FP = (1 − e(
−k×n

m
))k. For n = 1, k = 3 and m = 20

bits, we have the FP or P1 of 0.0027 (Figure 21). As discussed in Section 4.3.2.3 in Equation

sets 1 and 2, in CBF, for n = 365 (one year data, assuming that each day 1 data block is

created.), k = 7 and m = 10700 bits the FP or P2 would be 0.0002 therefore, the overall false

positive rate would be FPt = P1+(1−P1)× (P2) = 0.0027+(1−0.0027)×0.0002 = 0.0029.

This value will change with time – for example, after two years the data is doubled and this

value would be FPt = P1 + (1− P1)× (P2) = 0.0027 + (1− 0.0027)× 0.0014 = 0.004 when

the number of blocks that are hashed into the Bloom Filters are doubled. Therefore, it is

suggested to use the Hash Tree (layer 2 in ADI) for older data11.

Storage: The cloud services store the data; the CBF can be stored either in the cloud

server or the client gateway (OGW). The CBF has a fixed size (m) which has a storage

complexity of O(1). As shown previously, with n = 36500, to get a FP of 0.01 or less (with

k = 7), m should be 10700 bits. In summary, the storage has the complexity of O(1) (CBF)

in addition to the data blocks.

Time: We have storing time, verification time and updating time. Storing the data

includes the process of inserting the data into the CBF. For storing n data blocks, the time

complexity of inserting data nodes into a CBF using k hash functions is O(kn). The integrity

check process includes comparisons between BFs and CBF; which is done in O(1). The CBF

does not have to be updated since it tends to forget old data.

11We tuned out variables so carefully (e.g., k = 7 and m=10700) that with n increasing, the FP would not
exceed 0.01. As an example, for n = 36500, the FP is 0.0027+(1−0.0027)∗ (0.0078) = 0.0104 and from this
point, increasing n does not affect FP . Choosing efficient k and m, based on the application requirement,
can make a huge difference.

75

Communication: In the process of retrieving the data and verifying the integrity of

data, there are two places that have communication overhead. The communication between

the cloud server and UGW (fetching the data) which is 0 in Nested Bloom Filter (the cloud

only send the data to the third party), and communication between the UGW and OGW (for

verifying the integrity of the retrieved data blocks), for which, the UGW sends a temporary

BF (O(1)) per block.

4.3.2.5 Experiments An implementation in hardware can help us to make a better sense

of the performance of the Nested Bloom Filter method in the real world. We implemented

a server (to emulate the cloud) on a desktop computer using a Mac operating system (with

2.66 GHz Quad-Core Intel Xeon processor and 8 GB 1066 MHz memory), and Java version

8. We also implemented the OGW and UGW on two Raspberry Pis version 3 Model B, with

a Raspbian operating system, running Java 8. Our justification is that a Raspberry Pi can

emulate an IoT gateway (inexpensive but perhaps running a full OS).

The elements (server, OGW, and UGW) communicate with each other using Java sock-

ets12. We tested this implementation on different networks including a wireless network

(WiFi with a data rate of 28 Mbps using NET GEAR N750 wireless dual band gigabit

router), wired Ethernet network (using Cisco gigabit smart switch SG 200-08), and finally,

in order to eliminate the effect of network connection speed and processing power of Rasp-

berry Pis, we also performed experiments on a single system (PC) for comparison.

We used crowd-sourced fit bit data sets from [62]. The devices in our experiment include

HRM (heart rate monitor), activity tracker, and calorimeter. We assumed that each device

stored its data in a corresponding server (on the desktop). We assumed 36500 data blocks

(each block 214 bytes as suggested in [56]) as information from a single year (each day

generates 100 blocks of data) to select the tuned Bloom Filter size (m value) for tolerable

FP and FN rates. As discussed in Section 4.3.2.3, to satisfy an FP rate of at most 0.01, in

CBF the value of m = 10700 bits is enough (considering that k should be chosen based on

the number of data), as shown in Figures 21. In the temporary BF, as shown in Figure 21,

12The implementation is available on Github and can be reached at https://github.com/Maryam-mary-
karimi/HDI

76

https://github.com/Maryam-mary-karimi/HDI
https://github.com/Maryam-mary-karimi/HDI

Figure 22: Verification time with bloom filter

the size as small as m = 20 bits gives us the overall FP of less than 0.01.

In order to evaluate the performance, we measured the execution time of verification

processes. We repeated each experiment 100 times and calculated the average with a 95%

confidence interval (as shown in Figure 22). In this experiment, we measured the verification

time, starting from the time that the UGW receives the data and metadata from Servers.

The UGW then starts negotiating with the OGW and the OGW verifies/rejects the data and

replies to the UGW. We also measured the required processing time for the OGW to verify

the data with CBF. In all cases, the integrity verification time using only the CBF took

less than 0.5 ms. Considering the real-world situation (using WiFi as the communication

network protocol and Raspberry Pis as gateways), verifying the integrity of data blocks using

CBF took only 0.37 ms on average in the OGW, and in this situation, the entire verification

process took only 207 ms (considering the PC experiment which eliminates the network

delays this time would be 63 ms).

As our simulations show Nested Bloom Filter verification is very fast. This method

however is not “repeatable” if the recipient is a cloud server that stores the data. It works

well with a trusted third-party retrieving the data and asking the owner’s gateway to verify

the data for it, without having to send the data to the owner’s gateway, without sharing any

77

keys or tagging of the data, requiring a small fixed size extra storage on the owner’s gateway

(or in the server). The nested BF reduces the communication cost of integrity validation

since the third party can send the TBF of the data block instead of the whole block. This

layer has the lowest storage cost and delay; however, the drawbacks of this method are

the false positive (FP) and false-negative (FN) probability in the TBF and CBF (which is

negligible for more recent data) and lack of explicit security guarantees. This method is

suitable for situations where the owner has an extremely low resource for computation, the

bandwidth is limited, sessions are short, the storage server is most trusted, the stored data

is not highly sensitive, the most recent data is relevant, historical data is not usually needed

and a trusted third party (or the owner) is retrieving the data itself (not simply checking

for its existence). Experiments show that this method can verify data in less than 1 ms, the

communication cost is 20 bits (size of TBF) per data block, the storage cost in the owner’s

gateway is 1.3 KB (independent of the number of the blocks) and no storage overhead in the

cloud server.

4.3.3 The second layer: Hash Tree

Supporting ADI is a novel Hash Tree verification. We use secure hashes – SHA-3 [17]

(unkeyed) and HMAC [92] (keyed) hash functions to build a secure tree which we employ in

data integrity verification.

4.3.3.1 Formal Preliminary for Hash Tree The Hash Tree has the following functions

for storing data and for verifying the integrity of retrieved data:

• KeyGen(1λ) → κ: The OGW Generates a random private key κ of size of λ from a

keyspace K. κ is used for building the tree hash values using HMAC 13.

• UpdateTree(n, {Fi}ni=0, subtree, κ, d) → subtree: This process is done in OGW. F and

n are defined previously. subtree is received from the cloud and will be updated using

SHA-3 values of the tree nodes and HMAC values of the cluster of nodes (nodes with

similar attributes (device ID, creation time, etc.)). The key κ is used in the HMAC and

13We assume that the key size is commensurate with the needed security.

78

d is the maximum number of children each node in the tree can have. The Update Tree

function is implemented using Algorithm 4.

• RequestQuery(time, IDdevice) → time, IDdevice, IDcloud: This function finds the corre-

sponding cloud based on the requested data IDdevice (the ID of the device that generated

that data). UGW forwards the request for the data from specific device in a specific

timeline to the corresponding cloud services.

• Respond(time, IDdevice) → {Fi}ni=0, n, subtree: The cloud responds to the UGW with

the matched blocks and number of those blocks along with the subtree corresponding to

those blocks.

• PreV erification(n, {Fi}ni=0, subtree) → {SHA-3(Fi)}ni=0, subtree: This process is done

in the third-party user gateway (UGW). {Fi}ni=0 includes the set of blocks that are

retrieved and n is the number of blocks. The output values includes the SHA-3 values

({SHA-3(Fi)}ni=0) for each block and the subtree are sent to the OGW. This function is

implemented using Algorithm 5.

• V erification(n, {TBFi}ni=0, {SHA-3(Fi)}ni=0, subtree, κ) → {0, 1}: The OGW receives

the SHA-3 values and the subtree from the UGW and verifies the data. The OGW uses

SHA-3 values, the HMAC function, and the key (κ) to rebuild a tree and compares it to

the received subtree. The output is reject (0) or verify (1). Verification function is

implemented using Algorithm 6.

The algorithm for UpdateTree, Pre-verification, and Verification methods are described

in the following. As shown in Algorithm 4 and Figure 23, in order to initialize, the owner

builds a tree by first securely hashing the data blocks (say SHA-3) and then grouping SHA-3

values based on features such as the device, date, and then applying HMAC on SHA-3 values

in one group. As an example, in Fig. 23, the nodes 1, 2, 3, 5 were created by device B in year

2020. In stage 2 of the initialization, the leaves of the tree (SHA-3 values) are omitted and

the HMAC tree is stored in the corresponding cloud server along with the data. The HMAC

key remains in the owner’s gateway.

79

Algorithm 4 Update Tree

1: input: (n, {Fi}ni=0, subtree, κ, d)

2: output: subtree

3: for each f ∈ {Fi}ni=0 do ▷ For each new block

4: insert the node n under the proper node ▷ Proper node is leaves’ parent (second

layer) with proper device ID and date

5: split the branch if the number of nodes exceeds d ▷ shown in Figure 24

6: s ← SHA-3(f) ▷ Calculate SHA-3 value for the new block

7: n← HMAC((s|∀x ∈ {siblings} : s = s⊕ SHA3(x)), κ) ▷ new HMAC

8: for each np in the path from n to subtree root do

9: np← HMAC((s|∀x ∈ {npsiblings} : s = s⊕ x), κ) ▷ Update HMAC value for

nodes in the path to the root

10: end for each

11: end for each

12: omit leaves from the subtree

In the challenge-response phase (as shown in Figure 25), the owner asks for SHA-3 values

of data blocks and the HMAC tree. The owner builds a tree using the SHA-3 values and

compares it with the received tree to verify its integrity. Integrity verification can be done

reasonably fast; however, it is not repeatable. Previous SHA-3 values could be used as

proof that the data exists unless the data are retrieved by a third party (e.g., the healthcare

provider) that then generates the SHA-3 values from them. The owner’s gateway simply

verifies the data integrity for the third party, without having to retrieve the data itself and

without sharing any key. This method is suitable when the cloud server is trusted and

is not overloaded, the stored data needs a level of integrity and a trusted third party is

retrieving and needs data from several time periods, not necessarily the latest. Our analysis

and experiments show that this method can verify data in 26 ms, communication cost is 2.94

KB (tree and SHA-3 values) for each data block and the storage overhead cost in the server

is 35 KB for storing 1G file including 216 blocks.

80

Figure 23: Layer 2. Hashing tree verification

5 141 2 3

1 2 3 5

Ye
ar

Bl
oc

k

13 4 7 8 9 10 11 12

<latexit sha1_base64="ao0nABZZXIBWyno4I+KTHnTR6Pk=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4sWSLoseiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIbi/G3t7K6tr6xWdgqbu/s7u2XDg6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoduq3npg2XMkHO05YEJOB5BGnxDqpWcVVfH7TK5VxBc+AlomfkzLkqPdKX92+omnMpKWCGNPxcWKDjGjLqWCTYjc1LCF0RAas46gkMTNBNrt2gk6d0keR0q6kRTP190RGYmPGceg6Y2KHZtGbiv95ndRG10HGZZJaJul8UZQKZBWavo76XDNqxdgRQjV3tyI6JJpQ6wIquhD8xZeXSbNa8S8r+P6iXMN5HAU4hhM4Ax+uoAZ3UIcGUHiEZ3iFN095L9679zFvXfHymSP4A+/zB7kQjds=</latexit>

2020�B
<latexit sha1_base64="fwjTFdNEjuJqdq2KAAJqoZkHBqM=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4sWSLoseiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIbi/G3t7K6tr6xWdgqbu/s7u2XDg6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoduq3npg2XMkHO05YEJOB5BGnxDqpWcVV//ymVyrjCp4BLRM/J2XIUe+Vvrp9RdOYSUsFMabj48QGGdGWU8EmxW5qWELoiAxYx1FJYmaCbHbtBJ06pY8ipV1Ji2bq74mMxMaM49B1xsQOzaI3Ff/zOqmNroOMyyS1TNL5oigVyCo0fR31uWbUirEjhGrubkV0SDSh1gVUdCH4iy8vk2a14l9W8P1FuYbzOApwDCdwBj5cQQ3uoA4NoPAIz/AKb57yXrx372PeuuLlM0fwB97nD7qWjdw=</latexit>

2021�B

6 CB

Peter

<latexit sha1_base64="LFUhF9cQA8Mc9T1iWNYkuv0UAOg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBiyVbFD0WevFYwX5Au5Rsmm1js8mSZIWy+B+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqG5VqylpUCaW7ITFMcMlallvBuolmJA4F64STxszvPDJtuJL3dpqwICYjySNOiXVSu4Zr/kVjUK7gKp4DrRI/JxXI0RyUv/pDRdOYSUsFMabn48QGGdGWU8GeSv3UsITQCRmxnqOSxMwE2fzaJ3TmlCGKlHYlLZqrvycyEhszjUPXGRM7NsveTPzP66U2ugkyLpPUMkkXi6JUIKvQ7HU05JpRK6aOEKq5uxXRMdGEWhdQyYXgL7+8Stq1qn9VxXeXlTrO4yjCCZzCOfhwDXW4hSa0gMIDPMMrvHnKe/HevY9Fa8HLZ47hD7zPH7wajd0=</latexit>

2021� C
<latexit sha1_base64="b12Cnrhd5AjNQVTbjyo7cwxDvPg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBiyVbFD0WevFYwX5Au5Rsmm1js8mSZIWy+B+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqG5VqylpUCaW7ITFMcMlallvBuolmJA4F64STxszvPDJtuJL3dpqwICYjySNOiXVSu4Zr+KIxKFdwFc+BVomfkwrkaA7KX/2homnMpKWCGNPzcWKDjGjLqWBPpX5qWELohIxYz1FJYmaCbH7tEzpzyhBFSruSFs3V3xMZiY2ZxqHrjIkdm2VvJv7n9VIb3QQZl0lqmaSLRVEqkFVo9joacs2oFVNHCNXc3YromGhCrQuo5ELwl19eJe1a1b+q4rvLSh3ncRThBE7hHHy4hjrcQhNaQOEBnuEV3jzlvXjv3seiteDlM8fwB97nD7qUjdw=</latexit>

2020� C

14 Nu
m

be
r o

f l
ea

f n
od

es

ex
ce

ed
s d

=4
 w

ith
 th

e
int

ro
du

ct
io

n
of

 n
od

e
14

Ye
ar

<latexit sha1_base64="ao0nABZZXIBWyno4I+KTHnTR6Pk=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4sWSLoseiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIbi/G3t7K6tr6xWdgqbu/s7u2XDg6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoduq3npg2XMkHO05YEJOB5BGnxDqpWcVVfH7TK5VxBc+AlomfkzLkqPdKX92+omnMpKWCGNPxcWKDjGjLqWCTYjc1LCF0RAas46gkMTNBNrt2gk6d0keR0q6kRTP190RGYmPGceg6Y2KHZtGbiv95ndRG10HGZZJaJul8UZQKZBWavo76XDNqxdgRQjV3tyI6JJpQ6wIquhD8xZeXSbNa8S8r+P6iXMN5HAU4hhM4Ax+uoAZ3UIcGUHiEZ3iFN095L9679zFvXfHymSP4A+/zB7kQjds=</latexit>

2020�B
<latexit sha1_base64="fwjTFdNEjuJqdq2KAAJqoZkHBqM=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4sWSLoseiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIbi/G3t7K6tr6xWdgqbu/s7u2XDg6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoduq3npg2XMkHO05YEJOB5BGnxDqpWcVV//ymVyrjCp4BLRM/J2XIUe+Vvrp9RdOYSUsFMabj48QGGdGWU8EmxW5qWELoiAxYx1FJYmaCbHbtBJ06pY8ipV1Ji2bq74mMxMaM49B1xsQOzaI3Ff/zOqmNroOMyyS1TNL5oigVyCo0fR31uWbUirEjhGrubkV0SDSh1gVUdCH4iy8vk2a14l9W8P1FuYbzOApwDCdwBj5cQQ3uoA4NoPAIz/AKb57yXrx372PeuuLlM0fwB97nD7qWjdw=</latexit>

2021�B

6 CB

Peter

<latexit sha1_base64="LFUhF9cQA8Mc9T1iWNYkuv0UAOg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBiyVbFD0WevFYwX5Au5Rsmm1js8mSZIWy+B+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqG5VqylpUCaW7ITFMcMlallvBuolmJA4F64STxszvPDJtuJL3dpqwICYjySNOiXVSu4Zr/kVjUK7gKp4DrRI/JxXI0RyUv/pDRdOYSUsFMabn48QGGdGWU8GeSv3UsITQCRmxnqOSxMwE2fzaJ3TmlCGKlHYlLZqrvycyEhszjUPXGRM7NsveTPzP66U2ugkyLpPUMkkXi6JUIKvQ7HU05JpRK6aOEKq5uxXRMdGEWhdQyYXgL7+8Stq1qn9VxXeXlTrO4yjCCZzCOfhwDXW4hSa0gMIDPMMrvHnKe/HevY9Fa8HLZ47hD7zPH7wajd0=</latexit>

2021� C
<latexit sha1_base64="b12Cnrhd5AjNQVTbjyo7cwxDvPg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBiyVbFD0WevFYwX5Au5Rsmm1js8mSZIWy+B+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqG5VqylpUCaW7ITFMcMlallvBuolmJA4F64STxszvPDJtuJL3dpqwICYjySNOiXVSu4Zr+KIxKFdwFc+BVomfkwrkaA7KX/2homnMpKWCGNPzcWKDjGjLqWBPpX5qWELohIxYz1FJYmaCbH7tEzpzyhBFSruSFs3V3xMZiY2ZxqHrjIkdm2VvJv7n9VIb3QQZl0lqmaSLRVEqkFVo9joacs2oFVNHCNXc3YromGhCrQuo5ELwl19eJe1a1b+q4rvLSh3ncRThBE7hHHy4hjrcQhNaQOEBnuEV3jzlvXjv3seiteDlM8fwB97nD7qUjdw=</latexit>

2020� C

13 4 7 8 9 10 11 12

Jan-Jun Jul-Dec

M
on

th
Bl

oc
k

Node is split

Figure 24: Splitting nodes when the number of children exceeds d (here d = 4)

81

Figure 25: Verification with Hash Tree

Algorithm 5 Pre-Verification in UGW

1: input: n, {Fi}ni=0, subtree

2: output: {SHA-3(Fi)}ni=0, subtree

3: for each i ∈ {1 . . . n} do ▷ For each new block

4: SHA-3i ← SHA-3(Fi)) ▷ Calculate SHA-3 values

5: end for each

82

Algorithm 6 Verification in OGW

1: input: n, {SHA-3(Fi)}ni=0, κ, subtree

2: output: {0, 1}
3: Build a new-subtree using SHA-3 values:

4: Merge SHA-3i values with the same device-ID and time interval to create HMAC

parents

5: Merge HMAC parents with the same device-ID to create a parent

6: resultTree← compare(subtree, new-subtree) ▷ Compare the built subtree and received

subtree, output is 1 if they are equal

In order to reduce the amount of data required to be fetched from the server for verifi-

cation, we suggest choosing d (the number of children for each parent in the tree) between

2 and log(n); The lower bound is 2, in view of the fact, that it is more efficient to merge the

child and parent into a single node if a node has only one child. The upper bound is log(n),

since it limits the number of extra sibling data blocks that have to be fetched when data is

being retrieved and verified; therefore, the communication complexity between cloud server

and UGW would be more efficient and is limited to O(log(n)) (considering that subtree size

complexity is also O(log(n))). As shown in Figure 24, if any node has more than d children,

the tree splits into two branches (in this example, we selected d to be 4). Here we have

shown this split happening between the first six months and the next six months of the year

for illustration only - the split can be accomplished using other factors.

Another refinement that can be done to reduce the communication complexity during

the verification process is to avoid sending the middle nodes of the subtree that can be

rebuilt using the received SHA-3 values; therefore, in such a case, it is sufficient to send

SHA-3 values and some high-level common parents. As an example in Figure 23(b) nodes

”2021 − B” and ”B” can be rebuilt using current information (SHA-3 for blocks 4 and 7

and HMAC values for 2020-B) and sending them as a part of the subtree will not add to the

security of the integrity verification; furthermore, in the verification phase step 6 − B, it is

not required for those nodes (2021-B and B) to be compared to the rebuilt tree.

Yet another possibility that reduces the communication overhead is to send the SHA-3

83

1 2 3 5
Ye

ar
Bl
oc

k
4 7 8 9 10 11 12

<latexit sha1_base64="ao0nABZZXIBWyno4I+KTHnTR6Pk=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4sWSLoseiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIbi/G3t7K6tr6xWdgqbu/s7u2XDg6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoduq3npg2XMkHO05YEJOB5BGnxDqpWcVVfH7TK5VxBc+AlomfkzLkqPdKX92+omnMpKWCGNPxcWKDjGjLqWCTYjc1LCF0RAas46gkMTNBNrt2gk6d0keR0q6kRTP190RGYmPGceg6Y2KHZtGbiv95ndRG10HGZZJaJul8UZQKZBWavo76XDNqxdgRQjV3tyI6JJpQ6wIquhD8xZeXSbNa8S8r+P6iXMN5HAU4hhM4Ax+uoAZ3UIcGUHiEZ3iFN095L9679zFvXfHymSP4A+/zB7kQjds=</latexit>

2020�B
<latexit sha1_base64="fwjTFdNEjuJqdq2KAAJqoZkHBqM=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4sWSLoseiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIbi/G3t7K6tr6xWdgqbu/s7u2XDg6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoduq3npg2XMkHO05YEJOB5BGnxDqpWcVV//ymVyrjCp4BLRM/J2XIUe+Vvrp9RdOYSUsFMabj48QGGdGWU8EmxW5qWELoiAxYx1FJYmaCbHbtBJ06pY8ipV1Ji2bq74mMxMaM49B1xsQOzaI3Ff/zOqmNroOMyyS1TNL5oigVyCo0fR31uWbUirEjhGrubkV0SDSh1gVUdCH4iy8vk2a14l9W8P1FuYbzOApwDCdwBj5cQQ3uoA4NoPAIz/AKb57yXrx372PeuuLlM0fwB97nD7qWjdw=</latexit>

2021�B

6 CB

Peter

<latexit sha1_base64="LFUhF9cQA8Mc9T1iWNYkuv0UAOg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBiyVbFD0WevFYwX5Au5Rsmm1js8mSZIWy+B+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqG5VqylpUCaW7ITFMcMlallvBuolmJA4F64STxszvPDJtuJL3dpqwICYjySNOiXVSu4Zr/kVjUK7gKp4DrRI/JxXI0RyUv/pDRdOYSUsFMabn48QGGdGWU8GeSv3UsITQCRmxnqOSxMwE2fzaJ3TmlCGKlHYlLZqrvycyEhszjUPXGRM7NsveTPzP66U2ugkyLpPUMkkXi6JUIKvQ7HU05JpRK6aOEKq5uxXRMdGEWhdQyYXgL7+8Stq1qn9VxXeXlTrO4yjCCZzCOfhwDXW4hSa0gMIDPMMrvHnKe/HevY9Fa8HLZ47hD7zPH7wajd0=</latexit>

2021� C
<latexit sha1_base64="b12Cnrhd5AjNQVTbjyo7cwxDvPg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBiyVbFD0WevFYwX5Au5Rsmm1js8mSZIWy+B+8eFDEq//Hm//GtN2Dtj4YeLw3w8y8MBHcWIy/vcLa+sbmVnG7tLO7t39QPjxqG5VqylpUCaW7ITFMcMlallvBuolmJA4F64STxszvPDJtuJL3dpqwICYjySNOiXVSu4Zr+KIxKFdwFc+BVomfkwrkaA7KX/2homnMpKWCGNPzcWKDjGjLqWBPpX5qWELohIxYz1FJYmaCbH7tEzpzyhBFSruSFs3V3xMZiY2ZxqHrjIkdm2VvJv7n9VIb3QQZl0lqmaSLRVEqkFVo9joacs2oFVNHCNXc3YromGhCrQuo5ELwl19eJe1a1b+q4rvLSh3ncRThBE7hHHy4hjrcQhNaQOEBnuEV3jzlvXjv3seiteDlM8fwB97nD7qUjdw=</latexit>

2020� C

Figure 26: Subtree for retrieving block number 4

values and the lowest common parent(s). As an example, in Figure 26 to retrieve and verify

the integrity of node 4, only the SHA-3 value of nodes 4 and 7 and the HMAC value of the

node 2021−B are needed 14.

4.3.3.2 Analysis We analyses security (linearity and collision), storage, time and com-

munication for Hash Tree.

Security: One of the advantages of Hash Tree is that the hash functions do not have

to be linear or homomorphic as in most (if not all) provable data possession (PDP)

and proof of retrievability (POR) provided solutions. Here we chose SHA-3 and HMAC but

other secure hash functions can be used as well (e.g., SHA-512). In the tree, the collision

happens based on the collision probability in SHA-3, which is negligible ([119]).

Storage: The cloud services store the data and the tree. The number of children each

node of the tree can have is between 2 and d (2 ≤ d ≤ log(n)). The number of nodes in the

tree can be calculated using a geometric progression sum as S =

(
1−dh

)
1−d

, in which h is the

height of the tree (considering the value of d, h is between logd(n) and log2(n)). Assuming

we have n data blocks, the number of nodes in the worst case, when each node has only 2

children, is (n− 1) (note that the leaves are omitted). Thus, the cloud storage of the tree is

14As another example, in Figure 26, to retrieve and verify the integrity of nodes 5 and 7, UGW sends
SHA-3 values for 1,2,3,5,4,7 and HMAC for B to OGW. In a more complicated example to retrieve and verify
the integrity of nodes 7 and 8, UGW sends SHA-3 for 4,7,8,9, and to create node Peter we also need the
HMAC of node A. There is no need to send node B since it can be created using SHA-3 values. However,
OGW still needs 2020-B (there is no need to transmit node 2021-B since it can be created using SHA-3
values), the same situation is true for node C that needs node 2021-C for verifying data integrity.

84

O(n). In summary cloud storage has the complexity of O(n) (tree) in addition to the data

blocks.

Time: Storing the data includes the process of creating the tree. To create the tree,

all blocks need hashing (i.e., a calculation of SHA-3 or HMACs values) which is fast to

compute [119, 92]. For a tree with 2n − 1 nodes,15 this process has the time complexity of

O(n).

The integrity check process includes sub-tree rebuilding. There is log(n)− 2 number of

HMAC calculations to rebuild the sub-tree; therefore, the overall verification process time

complexity is O(log(n))

To update the tree (change, insert, delete), the SHA-3 or HMAC for the siblings is

retrieved and the nodes along the path to the root should be updated (log(n)−2). The CBF

does not have to be updated since it tends to forget old data. The overall time complexity

for updating process is O(log(n)).

Communication: In the process of retrieving the data and verifying the integrity of

data, there are two places that have communication overhead. The communication between

the cloud server and UGW (fetching the data) and communication between the UGW and

OGW (for verifying the integrity of the retrieved data blocks).

In fetching the data, the cloud server sends the data (O(n)) and the sub-tree to the

UGW O(log(n)). The sub-tree is the certain overhead in Tree, which has the complexity of

O(log(n)) (n is the size of the retrieved data). Based on the nature of the user’s query, the

data may need to include not only the requested data but also sibling blocks of the requested

data. In the scenarios, we considered, this situation happened rarely in experiments, where

the user requested data from a random time period and random device and mostly included

all of the children of one parent node. In rare cases that sibling data blocks are required, in

a worst-case scenario, the number of overhead sibling data blocks would be d−1 data blocks

(each block is 16 KB as suggested in [56] and considering 2 ≤ d ≤ log(n).); therefore, the

complexity of communication overhead between the cloud and the UGW including sibling

data blocks (O(log(n))) and subtree (O(log(n))) still would be O(log(n)).

15Building the tree involves n number of SHA − 3 computations and at most n − 1 number of HMAC
computations. Although the SHA− 3 values are omitted from the tree, they affect the time complexity of
computation.

85

0

10

20

30

40

50

WiFi Ethernet One
system

R
eq

ui
re

d
tim

e
to

 u
pd

at
e

tre
e

(m
s)

36 35

5

0

200

400

600

800

1000

WiFi Ethernet One
system

R
eq

ui
re

d
tim

e
to

 u
pd

at
e

(m
s)

552

383

180

Figure 27: Updating time with Hash Tree

In verifying the data, the UGW sends the sub-tree (O(log(n))) and SHA-3 of blocks

(O(1) per block – we have at most d blocks due to the limited number of children in the

tree (2 ≤ d ≤ log(n)); therefore, the complexity is O(log(n)) to the OGW. Hence, the entire

communication overhead complexity between OGW and UGW is O(log(n)).

In order to evaluate the performance, we measured the execution time of updating and

verification processes using the same framework we used for evaluating Nested Bloom Filter.

We repeated each experiment 100 times and calculated the average with a 95% confidence

interval.

The experiment outcome (time) for the updating process is shown in Figure 27. The re-

quired time for updating the tree (left) and the entire updating process (right) was measured.

Updating the tree involves requesting the related part of the tree from the server, creating

new leaves (SHA-3 values) for new blocks of data, and rebuilding the tree. This process took

36 ms using the wireless network, 35 ms in a wired network, and 5 ms in a single system,

on average. The entire updating process including receiving data, updating the tree, and

sending the new data and the tree to the server took 552 ms using WiFi connection, 383 ms

in wired connection, and 180 ms in a single system, on average.

Figure 28 shows the required time to verify the data in owner’s gateway using tree in

the left chart and the entire verification time in the right chart. The verification process

86

Figure 28: Verification time with Hash Tree

is shown in Figure 25. We measured the verification time, starting from the time that the

UGW receives the data and metadata from Servers. The UGW then starts negotiating with

the OGW and the OGW verifies/rejects the data and replies to the UGW. We also measured

the required processing time for the OGW to verify the data both with CBF or the tree.

The averages in the experiments yield that the number of nodes in the tree is 377.7 and the

average size of the sub-tree that should be sent to the UGW contains 50.19 nodes. As shown

Figure 28, considering the real-world situation (using WiFi as the communication network

protocol and Raspberry Pis as gateways), it takes 6.1 ms for the OGW to verify the data

using the tree.

4.3.4 The third layer: Provable Data Possession

In Provable Data Possession (PDP), the problem is that the owner needs to know that

the correct data still exists. We choose the provided method in [57, 59, 56, 58], which is

called dynamic provable data possession (DPDP) in which clients store data in a rank-based

authentication Skiplist (a data structure that keeps the meta-data of n blocks as leaves and

ranks upper layers as the number of accessible leaves) in an untrustworthy server. The

nodes in the search path are affected in the case of the insertion, modification, or deletion

87

of blocks. It tags the data using fully additive homomorphic signature (In homomorphic

message authentication, the owner generates a set of tags that authenticates some values

using a secure key and using one-time indices to make it secure. Later on, the owner

challenges the server for proof of data possession along with the tag. The tag and response are

used to verify that data are still stored in the cloud server. This method can dynamically

add blocks without re-tagging the entire file and can detect 1% of data change with a

probability of 99%. It is repeatable, meaning that, the proof should be different each time

to make it impossible for the server to use the same proof for further challenges while it no

longer owns the (intact) data and supports an unlimited number of verifications; however,

it is computationally expensive. Formal Preliminaries and evaluation and experiments for

DPDP is available in [57].

This method is appropriate when a cloud server cannot be trusted to have reliably kept

the data and may try to manipulate the data or deliberately or accidentally delete the data

and use the storage space for other purposes and a paying owner wants to randomly verify

that the data exists. It also encourages the storage service to care for customer data. The

owner must be able to perform key establishment and complicated cryptographic operations.

Experiments show that this method can verify data in 40 ms, the communication cost is 412.5

KB (the size of the proof), the required storage in the client side is 18.13 KB and the storage

overhead cost in the server is 84 KB for storing a 1G file including 216 blocks [57, 56, 59].

4.3.5 The fourth layer:Proof of Data Retrievability

For Proof Of Retrievability (POR) [82] we choose HAIL [23], which protects data integrity

against an active dynamic, byzantine adversary that tries to corrupt the data, in up to b

servers out of n servers, in each time epoch. As shown in Fig. 29, in HAIL, the data file is

divided into l segments (3 in this example) and parity, called server code, is added to each

segment, which adds 9% redundancy. Then a dispersal code (tag) which is a combination of

a universal hash function (as parity) and a pseudorandom function is added to the data; it is

calculated as F d
ij ← RS −UHFkj(Fi1....Fil) + gk′j(τij)for i ∈ [1......m], j = [l+ 1, n] in which

RS-UHF is defined as (m1k
l−1
1 + ...+m1 ++m1k

l−1
n + ...+m1) and τij the input to

88

Figure 29: Layer 4. POR verification using HAIL[23]

the random number generator, it is the file name and off set of the file in the position (i, j).

The original data along with the corresponding server codes are stored in l primary servers

(S1, S2 and S3) and the dispersal codes are stored on the secondary servers (S4 and S5).

HAIL verifies the data and if verification fails it uses the error correction codes in dispersal

and server code to recreate the data [23]. However, the storage overhead is much larger here.

Formal Preliminaries and evaluation and experiments for HAIL is available in [23].

This method is useful when the data are critically important, an active dynamic ad-

versary is trying hard to corrupt the data, the server price and high redundancy do not

matter and additional servers are available. The owner’s gateway must be able to perform

key establishment and complicated cryptographic operations. The latency is high (the ini-

tialization phase, for storing 1G file on b primary servers and n − b secondary servers, is

likely to be several orders of magnitude larger than simply communicating BF arrays). The

owner’s gateway must be able to challenge all servers and if required, gather parts of the

corrupted data from servers, retrieve the intact data and redistribute it all in a one-time

epoch. This may also work only with static files [23]. Experiments show that this method

has a 9% server storage overhead cost which will be 92 MB for storing a 1G file [23]. HAIL

generate n sets of keys, each key is 64 byte and assuming that only keys are stored on client

side, the required storage on client would be 4096 KB.

89

4.3.6 Comparison

We compare Nested Bloom Filter, Hash Tree, DPDP and HAIL in this section in the

manner of storage, time and communication complexity and efficiency. For comparison we

are storing a 1 GB file which is divided to 216 blocks of data. As shown in Figure 30, HAIL

stores parity and tag which adds 9% redundancy which would be 1.090 GB. DPDP stores

its Skiplist in the cloud with the complexity of O(nϵ log(n)) (ϵ is expected amortized and

is between 0 and 1 [56, 58].) while Hash Tree stores the tree with the complexity of O(n).

Storing 216 blocks in DPDP consumes 1.0084 GB while in Hash Tree it takes at most 1.0035

GB. Bloom filter stores a fixed size CBF (10700 bit=1.3 KB) either in cloud server or client

side. Storage in the client (OGW) in both Tree and DPDP methods has the complexity

of O(1). DPDP stores the root node and a key and Tree stores the key. Although they

both have the same complexity of O(1), experiments show that for 216 blocks DPDP needs

18.13 KB, while, Tree requires 4.13 KB (as discussed in Section 4.3.2.3, the required size of

the CBF is 10700 bits), to make sure that the integrity of one whole year worth of data is

verifiable with a false positive probability of less than 0.01, without requiring to use the Tree

or other methods for verification. Tree requires less storage than DPDP in client storage as

depicted in Figure 30. HAIL stores n (n is number of data blocks) sets of keys in the client,

which has the complexity of O(n), and for storing our file, the client need 4 MB space for

storing keys.

Considering that DPDP and HAIL are implemented in C++ and Nested Bloom Filter

and Hash Tree are implemented in Java and they used different platforms, comparing the

experimental execution time may not be valid; however, the analytical comparison can give

us a good estimation. The integrity verification time in BF is O(k) where k is the number

of hash functions and is a fixed number; therefore, it has the complexity of O(1), both

Hash Tree and DPDP and Hash Tree has the complexity of O(log(n)); Of course, we cannot

compare the security implications completely in the case of using Bloom Filters. Tree and

DPDP both have the time complexity of O(log(n)) for updating the data. The design of an

efficient update for HAIL is left for future work and there is no complexity analysis provided

for HAIL in [23]; however, authors showed that HAIL is able to encode 2 to 4 MB per

90

Figure 30: Cloud Storage(left), Client Storage(middle), and Communication(right) overhead

second [23].

We compared communication overhead as well. Communication complexity in DPDP

includes sending the ”proof” (the path from the root to leaf) and the key which has the

complexity of O(log(n)) which would be 415.5 KB overhead in experiments [56]. In our

experiments for Hash Tree, the user requests data blocks from a random device and random

time period. In assessing the communication complexity between the cloud and UGW, based

on such experiments, the query includes all leaf-level children of one parent (recall that leaves

are SHA values that are omitted and only pointers remain to determine which data blocks

belong to this lowest-level parent.); therefore, the communication overhead between the cloud

and UGW includes only the subtree (with the size complexity of O(log n) which was 480

bytes on average in the experiments– n is the number of nodes in the tree and each node size

is 32 bytes); however, imagine the case where the user queried data that does not include all

children of the lowest parent. In this case, the cloud server should also send the requested

sibling blocks to the UGW. In the worst-case scenario, the number of sibling data blocks

is (d − 1) and each block is 16 KB. In this case, considering the communication between

cloud and UGW, with d ≤ 28, Tree is still better than DPDP. Consider also that DPDP

91

is assumed to be working with a single source of data stored in a single cloud; hence the

assumption is to have one skip list for all data; however, if we apply DPDP to the multiple

clouds scenario we may need multiple skip lists which may also increase the communication

overhead by a factor of c which is the number of cloud servers.

The communication complexity between UGW and OGW, for Nested Bloom Filters

includes temporary BFs (O(n(1)), for Hash Tree includes sub-tree (O(log(n))) and SHA-3

values (O(1)) which is O(log(n)) in overall and for DPDP is the proof which is O(log(n));

however, as shown in Figure 30, experiments showed that for 216 blocks, DPDP has 415.5 KB

overhead while Tree has only 1.11 KB, overhead. The number of siblings does not change

this communication overhead considerably, since each extra sibling will add only 32 bytes

(size of SHA-3 output value) to the communication overhead.

Analytical and experimental results showed that Hash Tree performs as well or somewhat

better than DPDP in time, storage, and communication overhead, Nested Bloom Filter is

more efficient than both of them and HAIL is the most expansive one. In addition BF and

Tree do not need to share the key any key with any party; however, HAIL and PDP requires

to share the public key with the cloud while provide repeatability.

4.4 ADI and Contextual Integrity

In this section, we introduce parameters inspired by Nissenbaum’s theory [117] that can

be used to define the ambit and context to assess which ADI layer is suitable for a certain

situation. As mentioned in [117, 13] the determinant parameters (there for privacy) are

(i) subject, (ii) sender, (iii) recipient, (iv) information type, and (v) transmission principle.

These are relevant to the integrity of the context to ensure that privacy is maintained. In

our work, we use comparable factors to define similar parameters, but for data integrity.

These factors will likely have to be refined further based on specific applications. But we

emphasize that it is important to have clear context to specify the right ADI.

Imagine a scenario in which data are generated by things that belong to the owner, a

diabetic patient, and are delivered to multiple cloud servers. These could include an auto-

92

matic insulin pump, a smartwatch to monitor heart rate and walking steps, a smart weighing

machine, a sleep cycle monitoring device, and her cell phone to capture her symptoms and

test results. In the integrity verification phase, which is of interest here, the cloud server

is the sender and the doctor (trusted party) is the initial recipient. The trusted party may

send (see Section 4.3) a verification tag to the owner of the data, the patient. Alternatively,

the patient may herself be the recipient of data.

(1) Subject: The person or the thing that this information is about. The subject can

be specified by merit, start time (birthday or production date), and functionality (career,

relation, or function). When the subject is a diabetic patient, information like glucose level

is critical but the number of walking steps may not be important.

(2) Sender: The sender can be either the data owner or the device that generated

the data. The device can be an insulin pump, smartwatch, weighting machine, sleep cycle

monitoring, etc.

(3) Receiver: The receiver is the cloud server. The security and trustworthiness of the

server and the storage price, are important factors.

(4) Information Type: The information type depends on the device: from the insulin

pump, the information type is the glucose level, from the smartwatch it is heart rate, blood

pressure, number of steps, etc. The information type is defined by merit (see below) of the

information (e.g., blood glucose for a diabetic person has a high ADI while the number of

walked steps do not), a timestamp, useful lifetime/history, and update rate.

(5) Transmission Principle: The characteristics of the channel that is carrying the

information to the cloud include availability, confidentiality, rate of data loss, etc.

Each of the above may have specific attributes:

(i) Awareness and consent of owner (c): The data should not be stored if the owner

of the data does not provide consent. Therefore (as we explain in Section 4.5), the first time

that a new information type (or from a new device, entity, etc.) is sent, the gateway needs

user permission and information about the factors that would be used for selecting a suitable

ADI layer. This is similar to a situation when a new flow comes to an SDN switch and the

controller is polled.

(ii) Merit (m): Let D be the data, whose ADI is under consideration. Associated with

93

these data may be their merit m, which suggests how important the data are for the scenario.

The data may be used for quick decisions on a variety of mundane or specialized problems

with low merit, or be used for auditing and forensics that may have lead to a spectacular

event in which case the merit is high. The former may have a low ADI and the latter a very

high ADI to make sure of the retrievability/integrity/correctness of the data. We anticipate

a continuum or at least a quantized set of m values in between a minimum and maximum -

for instance, there may be critical healthcare data that has an ADI somewhere in between,

where more recent data is important compared to older data. Merit defines how important

is the integrity of data and how much damage in the terms of life and price it has if the

information is eliminated or manipulated. The higher the cost of damage, the higher the

merit.

(iii) Time (t): Time plays several roles in ADI; the rate at which data are updated (tu),

the tolerable latency of data verification (tl), and the remaining useful lifetime of data (th).

(iv) Storage price and affordability (p): This factor considers the price for the

storage space considering the data owners budget, and if the storage is free

(v) Trust (i): Trust is calculated based on the integrity of the cloud server and integrity

of the transmission channel.

(vi) Redundancy (r): Redundancy in data may be from aggregated values that still

have important information (e.g., avg., min, max, etc.) even if the fine-grained data is

corrupted.

In Fig. 31, we built a decision tree using these factors. For a diabetic patient, information

about glucose and insulin dosage is critical. A health care provider who needs to attend to

an emergency may need these data with the highest ADI (layer-4), considering the server

price is affordable and there is no redundancy in the data. The owner should verify this

information regularly. Heart rate and blood pressure measurements between doctor visits

may be useful for diagnosis but are not necessarily the only sources of data if the doctor can

talk with the patient. The integrity of such data should be checked when retrieved by the

doctor, but corrupted values may waste time. Hence using Hash Trees (layer 2) is a good

option (low merit, low latency). Historical values of the number of steps in a day and sleep

cycles may not be required and are not critical if they are corrupted. If a sleep monitor

94

Figure 31: The decision tree selects required ADI layer based on context.

server does not allow any extra storage for tags, ADI layer 1 is a sufficient option where the

CBF stays in a patient’s gateway.

4.5 SDN-SDP Architecture for ADI

We now discuss a framework to gather context variables, select the required ADI layer and

store data and metadata in the cloud server(s) securely. We integrate SDN and SDP [135, 45,

54, 151] to meet the framework requirements. We chose Software Defined Networks (SDN) to

allow us to partition and gather information to select the ADI layer appropriate for incoming

data from a device. An SDN decouples the control plane from the data plane, pushes network

management, policy application, decision making, security, routing, and other services to the

programmable controller software. Switches and routers are now simple forwarding devices

that receive instructions from the controller, which has the global view of the network status.

When a switch receives a flow, it compares the flow header against the flow table inside the

95

switch – if there is a match, it forwards the flow based on the matched rule; otherwise, it

forwards the flow to the controller. The controller with a global view routes the flow and

installs the proper rule in the corresponding switches. This advantage of SDN, which we

require in the integrity verification process, is the flexibility of the rules in the flow table.

The rules include two parts: match and action. The match part is compared with the flow

header. For storing/retrieving data we need the ADI layer information in the header. The

action part in the typical SDN network includes forward, drop, quarantine, etc. Here, to

store/retrieve data we have to specify the correct verification process.

Devices, data owners, third-party entities need authentication for access to the cloud

servers; therefore, we chose the SDP [114, 19] as the architecture to authenticate users,

devices, and services. SDP creates an exclusive secure channel (e.g., Virtual Private Network

(VPN)) between the communicating parties. In SDP, there are 3 main modules: SDP

Initiating Host (IH), SDP Accepting Host (AH), and SDP controller (CTRL). The IH is

typically installed on a client. The AH is installed on an SDP gateway and manages the

communication between AH and CTRL, while CTRL is authenticating the user and creating

a secure channel between the user and the service. The combination of SDN and SDP in

IoT [135] can address the security requirements for implementing ADI.

In our architecture, we integrate both SDN and SDP controllers and implement all of

their required functionality in a single SDP-SDN controller. The SDP-SDN controller has

global view and comprehensive information about network. It decides –and therefore is

aware of– many management and security specifications of the network. It communicates

with switches, devices and users to gather required information for ADI application to choose

the correct ADI. It authenticates the users, devices, services and creates a secure exclusive

channel (e.g., VPN) between them and SDP-SDN switch (as in SDP controller) and also is

responsible for partitioning the network, routing the packets, and providing required services

to the network elements using SDN applications (as in SDN controller). A partition can

include IoT devices (devices that belong to one user, devices in a residence, devices for

monitoring an infrastructure). An SDN application selects the suitable integrity verification

process based on the security policies and contextual information. The SDP-SDN switch

forwards the packet based on its flow/policy table. If the host is not authenticated (matching

96

rule for a packet does not exist in the table) the switch drops the packet, unless it is a valid

SPA (Single Packet Authentication)–SPA requests authentication and connection, contains

information such as host ID, requested service ID, gateway IP, timestamp, randomized data.–

the switch forwards the SPA to the controller to authenticate host, make a decision about

the packet forwarding, install routing rule in the tables, share updated authorized host and

services with switches and provide requested services such as deciding about the ADI layer.

The Owner Gateway (OG) and Server Gateway (SG) are both SDP-SDN switches (Fig. 32).

It can simply be a residential SDN switch or it can even be a mobile phone with OVS and

AH installed on it [124]. An agent installed on the OG performs partially the functions

of the controller. It gathers information and monitors the changes in the integrity ambit.

The ADI layer (from Section 4.3) is defined by the cross-tabular set of parameters (from

Section 4.4). When a user wants to store a new type of data in the cloud server, the OG

uses this context in the packet header and sends it to the controller. The controller uses

the flow header information and sends ”user-defined policy” and ”ADI layer information” to

the integrity verification application to select the suitable integrity verification process. The

controller installs a new rule in the user gateway that defines the routing path to the cloud

and the ADI is recorded.

In Fig. 32, when the network and devices are initially setting up, the gateways and servers

and services are sending SPA and network access request and are being authenticated and

registered in an SDP-SDN controller (steps 0-1, through 0-8 shown by dashed arrows and gray

text). Each device generating data first communicates with the owner’s gateway (SDP-SDN

switch called OG here). 1) SPA (single packet authorization – used for identifying clients

in SDP), data, and metadata (update frequency, lifetime, tolerable latency and ID of the

destination cloud server) reach the OG. 2) based on requested services in SPA, a questionnaire

may be sent to the owner to gather information about the owner (in the cased of ADI:

permissions, data merit, and storage affordability). 3) The owner responds. 4) OG Sends

SPA, data, and metadata to the SDP-SDN controller. 5) The SDN controller authenticates

the owner and forwards the information to an ADI application. The ADI application uses

the decision tree (Fig. 31) to choose the suitable ADI layer. 6) The application responds

with the required ADI level. 7) The controller installs the proper rules (includes the required

97

Figure 32: The designed IoT data integrity verification protocol using SDP-SDN

level of ADI and route to SG) in the corresponding SDP-SDN switches (e.g., OG, SG, etc.).

The controller also provides information about authorized services and connections to the

OG. the agent installed on OG uses this information to create metadata (one of these based

on the verification method: CBF, HashTree, PDP tag, POR tag or parity) and adds it to

the data. 8) OG sends SPA to the SG and requests connection to the cloud server(s). 9,10)

SG opens the connection to the cloud server and responds to OG. 11,12) OG and cloud

server(s) can now exchange information (data and meta data) for the session (13). The data

retrieval process is pretty much the same; however, when a third party wants to retrieve the

data (user gateway - UG instead of OG) the SDP-SDN controller should communicate with

the OG (and owner) to request permission to share the information with the UG. Once the

third party retrieves the data, the OG has to verify the integrity using the correct ADI.

98

Figure 33: Time and storage using in ADI versus pure POR and PDP

4.6 Evaluation

In this section, we evaluate the feasibility and efficiency of ADI. We run the whole

process explained in the above framework and the protocol in Section 4.5 to determine

how much time this process requires and if this time is reasonable. In the efficiency study,

we store a dataset using ADI integrity verification and we compare the storage overhead

with the methods that purely use PDP or POR. We implement a simple simulation of this

protocol on Mininet 2.2.0 [112], Ubuntu 14.04.6 operating system, and Intel® Core™ i5-560M

Processor 2.66 GHz, using POX SDN controller [6]. We use SDN firewall [47] to simulate

the SDP controller on the SDN POX controller. We install agents on SDN-SDP switches

that use POX messenger to relay the extra required information from user and switches to

the controller [86] and develop a python ADI selection application (python 3.4.3) to use the

context information acquired from the user, SDN-SDP switch and SDN-SDP controller and

select the matching verification level based on that context. The experiments show that

the whole process of sending gathered information from OG to the controller and then to

the ADI application to select the proper ADI layer, and sending back the chosen ADI to

OG, takes 37 ms on average. The code and details about the implementation are available

online [84].

To evaluate the efficiency, we implement all four verification methods in python. We

99

use the data set of ”Hospitalized patients with heart failure” [169, 64] with the size of 1.38

MB, 2007 patients, and information such as admission ward, emergency status, occupation,

whether the patient died, discharged or still in care, body temperature, blood pressure, pulse,

respiration, history of diseases such as heart failure, diabetes, leukemia, tumor, liver disease,

AIDS, and many other features (total of 164 features). We gather domain knowledge from

different resources16 to annotate the data and extract the required information to be used

in the decision tree (Figure 31) and select the proper verification method for each record.

For instance, the occupation feature and the average wage of that job are used to estimate

the affordability of storage for that specific patient, and emergency admission is used to

determine the low latency tolerant data. Data for the history of the disease are required for

a long time and have high merit and should be stored with proof of retrievability if affordable,

while the weight, height, blood pressure, and heart rate can be stored in a less expensive

way depending on how normal or abnormal they were (blood pressure higher than 180/110

is critically dangerous and should be stored with more protection and be accessible in the

case of need). Results show that 1.2% of data is selected for being evaluated with POR, 65%

of data is selected to be evaluated by PDP, 4.6% of data is evaluated by the Hash Tree and

20% of the data is evaluated by BF (the remaining data was null values). More information

about data processing along with the implementation is available on GitHub [84]. Figure 33

compares the ADI storage overhead with the methods that purely use PDP or POR. PDP

uses 4.4% more time and 7.4% more storage and POR uses 26 times more time and storage

than ADI. The results show that using ADI can reduce the required time and storage while

still protecting the more critical data that need higher levels of secure integrity verification.

This it does by keeping the ambit or scope of the integrity needs of data.

16Medical domain knowledge is achieved from the following websites:
https://www.hopkinsmedicine.org,
https://oxfordmedicine.com,
https://www.heart.org/en/health-topics/heart-failure,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891119

100

4.7 Conclusion

In this chapter, our purpose is to provide an architectural framework for IoT that will

eventually automate the data integrity verification process using the right scope or ambit

of data integrity – ADI. This framework allows us to choose the best integrity verification

method based on contextual parameters of the data and its usage, as well as the characteris-

tics of the intervening entities. We consider 4 layers of integrity verification in which higher

ADIs cost more in terms of higher storage, time, and communication, but better protect

the information from malicious or accidental corruption. To the best of our knowledge, this

is the first time that the contextual integrity concept has been applied for determining the

required layer of integrity verification. Also to the best of our knowledge, this is the first ap-

proach at all to determine the required layer of integrity verification. ADI efficiently reduces

the required time and storage space while still storing the critical data using high integrity

assurance methodologies.

To support this data integrity verification scheme we suggest a secure and flexible SDN-

SDP framework that supports network partitioning, gathering context information from each

partition, connect to the application to select the suitable verification process that selects the

ADI layer, and stores data in the cloud supporting the corresponding integrity verification

process. As part of the future work, we expect to evaluate the approach by implementing the

framework and performing experiments with data owners being able to define parameters

for ADI carefully and investigate a range of possible values.

101

5.0 Software Defined Ambit of Data Reliability for the Internet of Things

As the Internet of Things (IoT) grows, new challenges and opportunities arise. Vari-

ous IoT devices may need to outsource sensed or generated data to multiple heterogeneous

cloud servers and con-firm data availability at all times at varying granularities. Previ-

ously, reliability has been achieved by client-side processing, encryption, and storage, which

is computationally infeasible for IoT devices. We propose the “ambit of data reliability

(ADR)” which (i) summarizes the data (ii) adds low computation erasure code (iii) adapting

the notion derived from contextual privacy to extract important parameters that determine

the tradeoff between reliability and performance. The summary allows data at a coarser

granularity when acceptable. The erasure codes protect against data damage. The con-

text determines the “levels” of coarseness and reliability that correspond to the “ambit”

of the data. A suitable architecture that can extract this context information and employ

data-driven decisions for ADR, comprises of software defined networks (SDN) and software

defined perimeter (SDP). With Bayesian Regression, we demonstrate how to determine the

preferred error rate and availability probability for each context, and as a result how much

storage, bandwidth, and computation are needed and how they can be reduced to maintain

high performance based on application requirements. Integration of SDN and SDP can de-

termine network parameters’ values, perform decision making and enforce summarization,

verification, and proof of retrieval. ADR can improve storage and bandwidth usage while

sacrificing granularity in comparison with existing data reliability methods.

5.1 Introduction

In this chapter, we consider a final case study of approaches to ensure that data is

available at a variable granularity at all times, trading off the reliability with performance.

Previously we described HAIL[23] that added an erasure code to the data and provided

Byzantine data availability. HAIL increases the storage (both on client-side and server-side)

102

and bandwidth usage exponentially and it also requires a lot of processing at the gateway in

an IoT network. In this chapter, we want to assure data availability as well; however, at the

same time we would like to be able to trade-off the storage, bandwidth, and time for update

and data retrieval - which is possible using a global view of the generated data. Toward this,

we summarize the data into a RACE-Sketch (described below) where possible, we use the

hash tree integrity checks as before (see Chapter 4), and then we add an erasure code to

data where required. We demonstrate the simple use of Bayesian Regression to determine

the actions based on the preferred error rate and availability probability, how much resources

(storage, bandwidth, computation) have to be used and how they can be reduced based on

the application requirement (storage time, update time, retrieval time) while keeping the

performance as high as possible. We show how the integration of SDN and SDP helps us to

determine the network parameters value and how to perform decision making and enforce

summarizing verification, and proof of retrieval.

Once again, we assume the use of an “owner’s gateway” to manage data from “things”

in the network and a “service gateway” that retrieves this data for the use by the owner

or a third-party service. In IoT networks managing the limited resources is crucial and

considering this limitation many applications may not be feasible with sensors or things.

In this dissertation the idea is to enable performance tradeoffs using the integration of a

framework combining SDN and SDP for IoT or wireless applications. As seen previously,

SDN provides a global view of the network and SDP provides security information (and

mechanisms for protection and authentication). With the architecture we suggest, using

integration of SDN and SDP, we move the decision process to the controller and application

and use historical data to make procedures more efficient and thus suitable for IoT networks.

In this section we use this framework to enhance data reliability. In other words, we want

to assure the ability to retrieve data and keep it available. The basic idea comes from the

purpose of Proof of Retrievability (POR) [82, 142, 53, 24] which is to ensure the integrity of

data in a network with high failure probability storage nodes. Most of the previously pro-

posed methods require huge storage and computation overhead. Furthermore, most POR

mechanisms can only be applied to encrypted files and supports a limited set of challenges

(challenges are data queries that look for data corruptions and if they fail and the failure

103

number exceeds a threshold, it triggers a redistribution of shares, which revokes all files from

server, retrieves the file and redistributes). An example of such methods is the “high avail-

ability and integrity layer” (HAIL) [23] that demonstrated a proof of retrievability (POR)

for a trusted verifier to check data integrity, correct errors when files are distributed across

multiple servers with redundancy between servers and byzantine adversaries can corrupt up

to b servers out of n servers, simultaneously. HAIL verifies the data and if verification fails

it uses the error correction codes in dispersal and server code to recreate the data. Clients

in HAIL only store the key. By using a challenge-response reactive cryptographic system,

HAIL ensures the granularity of a full file and recovers corrupted files by using cross-server

redundancy. Although the file is encrypted, it is publicly verifiable. With IP-ECC (In-

tegrity Protected Error Correcting Code), multiple message authentication codes (MACs)

are merged and aggregated responses are derived. HAIL verifies data only by the client, and

public verification is not supported. Experiments show that this method has a 9% server

storage overhead cost which will be 92 MB for storing a 1G file. HAIL generates n sets

of keys, each key is 64 bytes, and assuming that only keys are stored on client side, the

required storage on the client has the complexity of O(n) and would be 4096 KB. The design

of an efficient update for HAIL is left for future work and there is no complexity analysis or

communication analysis in [23].

However previous methods such as HAIL are not suitable for IoT since they require key

generation by multiple devices, key sharing, and client-side computation to store the data

and a huge storage overhead. In this work we suggest to use data summarization where

possible to reduce the cloud server storage, then apply hash tree integrity verification to

detect data missing and then use network coding to provide an erasure code with a light

computation in the client side gateway. In this process, both summarization and network

coding require multiple parameters that specifies the tolerable error rate, available storage

and frequency of updates for summarizing and tolerable unavailability, available storage and

bandwidth for network coding. Providing this data -if not impossible- is a huge burden on

a data owner and data owner’s gateway (the architecture is similar to that in Chapter 4).

We can use SDN-SDP framework to use decision making applications using trained models

to provide these parameters to client gateway and facilitate data storage as well as make

104

Figure 34: Ambit of Data Reliability Framework

sure that the data is available; while changing the granularity and increasing the availability

probability for more sensitive and critical data and reducing storage, time and bandwidth

requirements for less critical data. In this way, we are changing the reliability “level” to

improve performance, based on the ambit or scope of the data, similar to Chapter 4. We

call this the Ambit of Data Reliability or ADR.

The overall scenario is depicted in Figure 34. For both summarization and erasure code

first data owner provide some information to the gateway which forwards them to the SDN-

SDP integrated controller, SDN-SDP controller has global view of the network so it has

access to the information about cloud servers, their available storage, their prices, available

bandwidth, the security of the network devices, failure frequency and connections. The

controller forwards its information along with the information received from the gateway to

ADR application to estimate the tolerable summarization error rate and tolerable unavail-

ability error rate and calculates the required parameters for them. The application sends

this information to the controller which forwards them to the owner gateways along with

105

the connection and storage information. The gateway uses this information to summarize

the data and apply the network coding erasure code and send them to the proper storage

node for storage. Whenever a storage node fails it is the controller’s responsibility to notify

the service gateway and provide it with the required erasure parameters to rebuild a storage

node.

5.2 Background

In this section, we provide some background on RACE-Sketch which we used for data

summarising and network coding which we used for providing the ability to retrieve data in

an IoT network.

5.2.1 RACE-Sketch

Repeated Array of Count Estimators known as RACE Sketch [39] is a recent approach

used for providing differential privacy in previous works, can provide data summaries that

are linear, merge-able and suited to IoT devices with small resources unlike other KDEs

(kernel density estimates1). Considering a dataset D = x1, x2, ...xN ⊂ Rd and kernel k

in which k(x, y) ∈ [0, 1] is the collision probability of x and y; the KDE for query q is

defined as KDE(q) = 1
N

∑
x∈D k(x, q) which requires O(Nd) memory. However, RACE

Sketch compresses N high dimensional vectors into small counter arrays indexed using locally

sensitive hash functions. To store an element, this algorithm hashes the element with hash

functions and for each hash value, the counter in the corresponding index will be incremented.

When requesting the data, the average counter value is returned. Figure 35 shows this

approach with an example of storing and querying the data. Imagine matrix A is our sketch

– in order to store an element x ∈ D, we hash x with L hash functions h1(x), h2(x), ...hL(x)

and increment the counter in A(i, hi(x)). Here, hi(x) is a local hash function in which

the similar points x and y would have the same hash with high probability of k(x, y) and

1Methods for estimating the probability density function of a random variable.

106

would be in the range of (1, R). If we concatenate the hash function for p times then

the collision probability for this new hash function will be kp(x, y) and the hash outputs

would be in the range of (1, Rp). In this case the RACE estimator for query q would be

E{A[h(q)]} = ∑x∈D kp(x, q) and the variance would be var(A[h(q)]) ≤
(∑

x∈D kp/2(x, q)
)2
.

Two sketches A1 and A2 can be merged by simply adding the counters in two matrix.

Coleman et al. analysed RACE sketch for the locally sensitive hash (LSH) family. Such

LSH functions are a family of hash functions that tends to have similar hash for similar

data items and therefore similar items x and y closer than a distance d (can be defined as

Euclidean or Manhattan or other distances) tends to collide with a probability of k(x, y).

In a simple version in angular Kernel, where the range of data is between (−1, 1) the esti-

mate for query q is calculated as K(q) = 1
|D|
∑

x∈D kp(x, q) while the collision probability is

k(x, y) = 1 − 1
π
θ(x, y) where θ(x, y) is the angle between x and y. The memory bound is

L = O

((
K̃(q)
K(q)

)2
1
ϵ2
log 1

δ

)
with probability of (1− δ) where K̃(q) = 1

|D|
∑

x∈D kp/2(x, q) [39].

In such cases we can limit the range of hash output by using rehashing. Then the

estimator would be K̂(q) =
(

A[h(q)
|D| − 1

R

)
R

R−1
and var(K̂(q)) ≤

(
R

R−1

)2 (√R−1
R

K̃(q) + 1√
R

)2
.

When we bound the memory to range [0, R] then with the probability of 1− δ and error of

1 ± ϵ, we have the equation 5.1 in which L is the number of LSH functions (and therefore

number of rows) [39]. The implementation is available online at https://github.com/brc7/

RACEKernels in c++.

L = O

((
R

R− 1

)2
1

K(q)2
1

ϵ2
log

1

δ

)
[39] (5.1)

In [38], authors uses the RACE sketch to provide differential privacy to address the

user’s privacy challenge when building a model for a data set with many users’ records.

Differential Privacy (DP) provides privacy-utility trade off. The definition is that a function

A can provide ϵ differential privacy if for data base D and D′ which differs only in one

element, it can be proven that Pr[A(D) ∈ S] ≤ exp(ϵ)Pr[A(D′) ∈ S] in which S is the sets

of A’s domain. A’s sensitivity is defined as △ = sup ∥ A(D)− A(D′) ∥ over all neighboring
D and D′s. For instance, adding Laplace noise (z ∼ Lap(△/ϵ)) to function A(D) provides

ϵ differential privacy; also Fourier, Bernstein, trigonometric polynomial and various other

mechanisms have been used to provide differential privacy [38].

107

https://github.com/brc7/RACEKernels
https://github.com/brc7/RACEKernels

Figure 35: How RACE Sketch works

Authors in [38] provided an efficient one pass private sketch that works with most machine

learning methods using RACE sketch (i.e., approximate pairwise sums) and Locally Sensitive

Hash (LSH) kernel (i.e., hash functions in which collision probability k(x, y) decreases as

distance d(x, y) increases). The process of Private RACE Sketch is as the following: It starts

with SD ← 0R×W , where R and W are the number of rows and columns correspondingly. R

functions from LSH family {l1(x), ...lR(x)} are defined and used to hash x (coming from the

streaming data) to get R hash values for each row of SD and it increments r in SD[r, lr(x)].

Finally SD = [SD + Z] where Z ∼ LAP (Rϵ−1). This process computes O(NR) hash values

thus had the run time of O(dN), since R is assumed to be fixed. In RACE, the query q

response is the process of getting the mean of SD[r, lr(x)] over R rows to approximates the

quantity fD(q) [38].

With a data set D = {z1...zN} and loss function L(θ, z), RACE can approximate Em-

pirical Risk (as in Empirical Risk Minimization (ERM) 2). Authors proved that the output

of A(D) is ϵ-differential private. This differential privacy mechanism can be used in ap-

plications such as Kernel Density Estimation, Mode Finding, Naive Bayes Classification,

2Estimate statistical theoretical performance bound of learning algorithms using known training data
sets.

108

Anomaly Detection and Sampling, and Linear Regression. The implementation is available

online [38].

5.2.2 Data Retrievability

Many of the the proof of retrievability methodologies use Maximum Distance Separable

(MDS) codes to generate erasure code to tradeoff the redundancy and reliability. One of the

most well known branches of MDS codes is Reed-Solomon codes [51]. In order to understand

Reed-Solomon codes let us have an overview of the algebraic structure called Fields. Finite

Fields (F) also know as Galois Fields are closed, Associative, commutative, there should exist

an identity elements and each element should have an inverse in the set. The size of a Field is

determined by pm where p is a prime number, if m = 1 it is a prime field, otherwise if m > 1

it is an extension field GF (pm) that each element has the form of am−1X
m−1+ ...+a1X

1+a0

where ai ∈ (0, p−1). Fp[X] is a Finite Field when operations are defined modulo irreducible

polynomial g(x). The elements of Fpm are the roots of Xpm −X ∈ Fp[X] [20].

Now let us define Reed-Solomon codes. For integer k between 1 and n and Field F with

the size bigger than n and the set S = {α1, ..., αn} ⊆ F Reed-Solomon is define as RS(n, k) =

{p(α1), p(α2), ..., p(αn)} ∈ Fn in which the code for message m = (m0,m1, ...mk−1) would be

p(X) = m0 +m1X + ...+mk−1X
k−1 ∈ F[X] [21, 23].

In another definition, for integer k between 1 and n and Field F with the size n+ 1 and

the set S = {1, α1, ..., αn−1} ⊆ F Reed-Solomon is defined as RS(n, k) = {(c0, c1, ..., cn−1 ∈
Fn | C(X) = c0 + c1X + ... + cn−1X

n−1 satisfies c(α) = c(α2) = ... = c(αn−k = 0) }
This means that RS code with evaluation points 1, α,, αn−1 is equal to zero at the points

α, α2,, αn−k [21, 23].

BCH codes and Reed-Muller codes have a similar definition as RS-codes; however, the

coefficients in RS-codes are from F2m , in BCH are from F2 and in Reed-Muller are from

Fq [21].

Concatenated codes are defined by the outer code which converts the message to code-

words and inner code that convert symbols to codewords(C = Cout⋄Cin). Cout[n, k, n−k+1]

can be implemented using Reed-Solomon codes (RS) with block length of n = 2m and

109

Cin[m/r,m, d]2 can be a binary linear code [21].

The high availability and integrity layer (HAIL) [23] used Reed-Solomon coding to

provide proof of retrievability. In order to do that, it divides the data file into l seg-

ments (l = 3 in Fig. 29) and parity, called server code, is added to each segment. Then

a dispersal code (tag) which is a combination of a Reed-Solomon universal hash func-

tion (as parity) and a pseudo-random function is added to the data; it is calculated as

F d
ij ← RS − UHFkj(Fi1....Fil) + gk′j(τij) for i ∈ [1......m], j = [l + 1, n] in which RS-UHF is

defined as (m1k
l−1
1 + ...+m1 ++m1k

l−1
n + ...+m1) and τij the input to the random

number generator, it is the file name and off set of the file in the position (i, j). The origi-

nal data along with the corresponding server codes are stored in l primary servers and the

dispersal codes are stored on the secondary servers (S4 and S5) [23].

HAIL is useful when the data are critically important, the network is unstable and

storage nodes have high probability of failure or an active dynamic adversary is trying hard

to corrupt the data, the server price and high redundancy do not matter and additional

servers are available. The owner’s gateway must be able to perform key establishment and

complicated cryptographic operations. In Hail, a client should generate n−l pairs of dispersal
keys (erasure), n server code keys (parity) and challenge keys. Considering each key is 64

bytes, overall, a client has to store 4096 KB of keys for a 1G file which is not suitable for IoT

devices with limited storage. The process of adding server code and dispersal code using Reed

Solomon Universal Hash function is way too complicated for most IoT devices. In addition,

the latency is high. If the number of detected corruptions pass a threshold, the owner’s

gateway must be able to challenge all servers and if required, gather parts of the corrupted

data from servers, retrieve the intact data and redistribute it all in a one-time epoch, which

is a huge burden on bandwidth and processor and most IoT low rate protocols cant support

such heavy communication. This may also work only with static files [23]. HAIL requires

a lot of processing which makes it unsuitable for the IoT applications; therefore we suggest

network coding to build a more suitable erasure code for IoT.

110

5.2.3 Network Coding

Network coding is originally used to maximize network traffic throughput. Considering

the network(V,E, c) in which V is set of nodes, E is set of edges (directed links) and c(e)

is the capacity of the link e ∈ E. The question is having set of sessions (s1, T1), ..., (sN , TN)

in this network can we achieve the network rate (r1,rN) where ri is the achievable rate

for session between source si and and destination Ti, where si ∈ V and Ti ∈ V . In unicast

session the maximum possible rate is r(s, t) = MinCut(s, t). Min cut is the sum of weight

of the edges that if removed the network will be disconnected. In 1972 Edmonds proved

that r(s, V) = minν∈VMinCut(s, ν) is achievable using maximum number of edges disjoint

spanning trees rooted at s. In multicast this rate is upper bound and mostly achievable.

Steiner tree or multicast tree, is the tree that starts from s and reaches every node in T .

In traditional methods the number of edge disjoint Steiner tree determines the maximum

rate, which is an NP-hard problem and even if can be calculated still cannot reach the upper

bound. However using network coding at source (addition, subtraction and XOR over finite

field) and decoding at destination the upper bound is achievable and the efficient coding can

be computed in polynomial time. Assuming ∀e ∈ E : c(e) = 1, single senders, set of receiver

T ⊂ V , and there are h = Mincut(s, T) symbols x1, ...xh that are going to travel from s to

T . We have edges e′1,, e
′
h that entering s and carry symbols y(e′1), ...y(e

′
h), let’s consider

them as x1, ...xh. y(e) denotes the symbol carried by e that is the combination of all y(e′) on

e that entered node ν; therefore, y(e) =
∑h

i=1 gi(e)xi where g(e) = [g1(e), ..., gh(e)] is global

encoding vector. Calculating y(ei) on all edges ei can be performed using the following

equation [36]:


y(e1)
...

y(eh)

 =


g1(e1) . . . gh(e1)

...
. . .

...

g1(eh) . . . gh(eh)



x1

...

xh

 = Gt


x1

...

xh

 (5.2)

Gt is invertible and its coefficients are chosen randomly, independently and uniformly.

The receiver should apply the inverse of Gt to decode the symbol[36]. For tagging the ui form

the global vector will be prefixed to the xi. The tag g(e) add h symbols as overhead to the

information. If we consider that there are h packets in a block related to the kth generation

111

and tagged with k, blocks inside a generation can be synchronized using buffering[36].

At each node after receiving h packets in a generation and extract the tags to form

Gt and apply inverse Gt to the symbols, the message can be decoded[36]. Network coding

can also minimize the amount of energy required for each packet as well as minimized the

delay (number of hops to the destination). Network coding can be accomplished with 3

simple ideas: random coding (distributed randomly and uniformly), packet tagging to enable

decoding, and buffering for dealing with asynchronous packet arrivals[36].

In erasure codes using Reed-Solomon coding, the file is divided into k parts of size M/k

and these parts are encoded to n pieces and are distributed over n servers. In case of server

failure, data from at least k servers should be decoded and re-encoded to replace the failed

servers. However if network coding is being used, with a little more storage overhead by the

factor of β ≤ 2 the new node can be generated by getting randomly re-encoded data of size

βM/k2 from random k servers[50].

5.3 Summarizing Data with RACE Sketch

We chose RACE sketch for summarizing because it is efficient and also experiments

in [38] shows that the summarized data can still be used for training machine learning models

and decision making. More specifically RACE can create classifiers using both maximum

likelihood and maximum posteriori rules.

In RACE sketch The choice of L and R make the difference in memory computation

trade off. While minimizing R optimizes the memory (R = 3 is the optimum range), update

and query has the time complexity of O(L); therefore two out of three parameters of error,

memory and update, cost should be chosen for optimization. For example, both (R = 3,

L = 10× 103) and (R = 43, L = 2× 103) have an error rate of 0.5%; however the first one

uses 260 times less memory and the second one has 5 times faster updates. In order to obtain

the KDE with less than 1% error rate, for a 5GB dataset, RACE sketch only requires 4MB.

Experiments show that RACE compression ratio is 10 times better than random sampling

(RS), hash based sampling (HBS) and sparse kernel approximation (SKA) [39].

112

In this work, we used RACE Sketch to summarize the data. We have the dataset D that

we summarize it in a matrix A, with L rows (number of LSH), each one is an array of size R in

which the similar data would face collision with the probability of δ (The collision probability

is calculated using k(x, y)). When we add a data element, where collision happens, we add

one to the counter. When we query an element q, the element q is hashed using those L hash

functions, as shown in Figure 35, and the median or mean of the counters will be returned

as an estimation. The memory usage is calculated using equation 5.1. Equation 5.1, can

be used to estimate L, R, ϵ and collision probability δ; however we have to calculate K(q),

therefore in order to optimize the value of L and R based on the required ϵ, we need to have

an estimation of K(q) = 1
|D|
∑

x∈D kp(x, q) (which eventually is mean of the counters). For

simplicity we can imagine that the data has uniform distribution, in which case we would

know that each counter in hash arrays can be estimated as |D|/R and considering that

the data is normalized it would be 1/R, so we can use this value as mean of the counters.

However, Authors in [150] suggest using K(q) = 0.1√
|D|

for other distributions.

From equation 5.1 we can derive absolute error which is |K(q) − K̃(q)| < 8 ∗ (R
R−1

) ∗√
log 1

δ
∗ 1√

L
. The equation 5.1 uses absolute error. To get relative error (ϵ) we replace

ϵ = absolute error/kde(q) and as we discussed K(q) = 0.1√
|D|

therefor the relative error is

ϵ < 8 ∗ (R
R−1

) ∗
√

log 1
δ
∗ 1√

L
∗
√

|D|
0.1

.

It is also possible to estimate typical values of K(q) for an application by computing the

ground-truth KDE for a few hundred queries and then taking the average [39]. Furthermore,

if data has a timeline and maybe considered as a time series, in order to store and summarize

the data using RACE sketch, we suggest to use an array of time instead of counters.

5.4 Data Reliability with Network coding

In [52] a decentralized erasure code using linear codes with probabilistic structure that

leads to sparse matrix is introduced for reliable distribution storage where multiple nodes

generate the data and store it in multiple storage nodes. There are k data generating nodes

(each node generates 1 packet) storing data in n > k storage nodes (each storage node has

113

the capacity of 1 packet data) with the condition that the data retriever can query any

arbitrary k storage nodes and rebuild the original k data packets. For d(k) times each node i

randomly, uniformly and independently is assigned to an storage node, (some storage nodes

may be chosen more than once for each node so N(i) the number of storage nodes for node i

may be less than d(k)) each storage node creates a random linear combination of data nodes

connected to it and stores it along with the random coefficients from Field Fq used in that

linear combination (see Figure 36) which leads to storage overhead of N(j)(log2(q)+log2(k))

bits for storage j. It can be formulated using s = mG, in which s is stored data, m is data

vector and Gk×n is an sparse matrix representing bipartite graph of data nodes and storage

nodes. A data retriever query random k storage nodes and use maximum likelihood (ML)

decoding solved by inverting the G′
k×k sub-matrix of G. In order to optimize the storage

overhead d(k) should be minimized while ensure that the sub-matrix is full rank (rows are

linearly independent and thus matrix is invertible). It is proven that d(k) = c ln k is optimal

for any c > 5n
k
(each node sent data to 5n

k
lnk). The storage overhead complexity is O(log(k)

and the overall overhead is O(log(k)(log(q) + log(k)) which is negligible using large packets.

Most common erasure codes are Reed-Solomon, the benefit of network coding erasure code

is that it is decentralized and no matrix is explicitly stored [52].

Figure 36: Network coding used to form an erasure code using randomly uniformly and

independently storage selections and linear combinations with random coefficients [52]

Using network coding as an erasure/regeneration code to recover from node failure, au-

114

thors in [51] tried to find the optimum tradeoff between storage and repair bandwidth. The

repair process is shown in Figure 37. There are two extremal points on the tradeoff curve

which are minimum storage regenerating (MSR) also known as maximum distance separable

(MDS) 3 and minimum bandwidth regenerating (MBR). Previous erasure codes required M

bit bandwidth communication to repair a node; however, MBR reduces repair bandwidth

significantly by storing slightly more than M/k bits per storage node. Analysis show that

in a graph G(n, k, d, α, γ) where M is the whole data size, n is the number of storage nodes,

each node store α bits, k is the number of nodes require to recover data, d ≤ n − 1 is the

number of survived nodes available and can be used to repair and build a new node β bits,

which requires γ = dβ bandwidth, G(n, k, d, α, γ) is feasible for any α ≥ α∗(n, k, d, γ).

α∗(n, k, d, γ) =


M
k

γ ∈ [f(0),+∞)

M−g(i)γ
k−i

γ ∈ [f(0), f(i− 1))

[51] (5.3)

where f(i) = 2Md
(2k−i−1)i+2k(d−k+1)

and g(i) = (2d−2k+i+1)i
2d

and d ≤ n − 1; as a result the

minimum bandwidth for repair is γmin = f(k − 1) = 2Md
2kd−k2+k

.

A couple of methods are compared using this analysis, including:

• Hybrid: Use one full replica for rebuilding failed nodes and multiple erasure code frag-

ments. This method reduce the repair bandwidth process to M/k however if the replica

is lost, new fragments cannot be created until it restored.

• MSR: For minimum storage α = M
k

and γ = Md
k(d−k+1)

where communication for repair

would be M for d = k and it would be M
k
.n−1
n−k

for d = n− 1.

• MBR: For minimum repair bandwidth α = 2Md
2kd−k2+k

and γ = 2Md
2kd−k2+k

so α = γ and for

d = n − 1, α = γ = M
k
. 2n−2
2n−k−1

; therefore communication is exactly the same as amount

of stored data.

Evaluation analysis assumed that a fraction of f nodes fails in each time period and the

node is available with a probability of a and assume that we have R replicas.

• Simple replication: the amount of data has to be stored is R.M and f.R.M bits has to

be replaced in each time unit the unavailability probability is (1− a)R.

3Reed-Solomon codes are also MDS

115

Figure 37: Network coding repair process

• Ideal erasure code: n = k.R and f.R.M bits has to be replaced, which gives the unavail-

ability of Uideal(n, k) =
∑k−1

i=0

(
n
i

)
ai(1− a)n−i.

• Hybrid: store R.M bits and replace f.R.M bits and has the unavailability probability of

(1 − a).Uideal(n, k). It has an asymmetric design and can cause bottleneck in disk I/O.

They make the system over complicated, for a negligible bandwidth efficiency that is

minimal in a more stable environment.

• MSR: R = n/k and store R.M (same is ideal erasure code) and replace f.R.M , therefore

extra storage would be (n−1)β
M/k

= n−1
n−k

and unavailability of Uideal(n, k).

• MBR: ideal fragment size is b = (n−1)β
M/k

= 2(n−1)
2n−k−1

which stores M.n.b bytes and replaces

f.M.n.b bytes to provide the unavailability of Uideal(n, k).

Experiments show that the MSR storage is the same as ideal erasure code storage. MSR

and MBR have the same unavailability probability and both provides better availability that

Hybrid (0.000059 vs 0.00018).

116

5.5 Bayesian Regression

We use Bayesian Regression [94, 95] with specific data sets to improve the performance

of decision-making and automate the decision process at the SDN controller for reliability.

We use Bayesian Regression in two different steps; first in data summarizing to determine

the proper values to limit the error rate while minimizing the resources based on priori-

ties (storage/ update time) and second in providing erasure code with network coding to

maximize data availability probability while minimizing the used resources based on the pri-

orities (storage/bandwidth). Bayesian inference describes the data and extracts the relative

credibility of features (effect of one feature on another) considering their prior probabilities.

Bayesian inference can help in assessing how critical each context variable is and how it

would affect the probability of choosing an action to be enforced.

We use a data set of “Hospitalized patients with heart failure” [169, 64] with the size

of 1.38 MB, 2007 patients, and information such as admission ward, emergency status,

occupation, whether the patient died, discharged or still in care, body temperature, blood

pressure, pulse, respiration, history of diseases such as heart failure, diabetes, leukemia,

tumor, liver disease, AIDS, and many other features (total of 164 features).

Please note that the use of Bayesian Regression will be just one example of using ML

in the SDN/SDP framework for performance improvements and tradeoffs. The objective

here is to show a proof of concept. Other techniques and their systematic evaluation are

beyond the scope of this dissertation. We use Bayesian Regression to decide what values of

parameters will be effective and give us the sufficient and required summarizing and erasure

codes for reliability under failure.

As we previously discussed, in order to provide efficient reliability, we first want to

summarize the data, then we hash the data using hash tree for data verification and finally we

add erasure code using network coding. We are using Bayesian Regression in two steps: (i) in

summarizing to figure out the tolerable error rates for data and based on that we can choose

the proper storage variables (L and R), and (ii) in erasure codes to figure out the tolerable

unavailability probability and based on that to determine how much storage and bandwidth

are required. We used the data set of “Hospitalized patients with heart failure” [169, 64]

117

with the size of 1.38 MB, 2007 patients, and information such as admission ward, emergency

status, occupation, whether the patient died, discharged or still in care, body temperature,

blood pressure, pulse, respiration, history of diseases such as heart failure, diabetes, leukemia,

tumor, liver disease, AIDS, and many other features (total of 164 features)

In this Bayesian task we want to find the tolerable summarization error rate and toler-

able unavailability rate. For this task we change the dataset format and build a synthetic

dataset based on the features and feature values of “Hospitalized patients with heart failure”

dataset. For each Feature belong to each person (for every cell of the data) we considered

describers such as “permission”, “merit”, “afford”, “lifetime”, “update”, “latency”, “trust”,

“redundancy”, “tolerable error rate” to help us decide how to handle that cell of data. I (the

human), manually annotated the data values considering the range of the feature value in

combination with other feature values. For example, for a patient heart rate value, based on

the fact that the value is bound in a normal range (low merit) or it is in danger zone (high

merit), the occupation of the patient is used for estimating affordability, the the admission

ward is used for estimating trust, the emergency is used for latency, and so on. We ended

up with having a dataset with 325734 records and a few records are shown in Table 9.

5.5.1 Bayesian Regression for Data Summarizing

For data summarizing our objective is to estimate the tolerable error rate and then use

that to determine L (number of hash functions) and R (length of each array) based on the

requirement of whether we need to optimize storage (minimizing R minimize the storage)

or we need to optimize retrieval and update time (reducing the number of hash functions

reduce the update time). We first find the distribution of the “tolerable error rate” which

was logarithmic Laplace (a.k.a logarithmic double exponential). We declared parameters and

descriptive mathematical model. We modeled the data with Bayesian linear regression and

used linearmodel.BayesianRidge() from Sklearn package in Python to to estimate regression

parameters using a linear model in Bayesian Regression. We used 70% of the data for train

and 30% for test The Coefficients and the intercept are as follows:

coef = [−1.21536796e − 01,−7.06715953e − 02,−1.01147732e + 00,−7.75073535e −

118

F
ea
tu
re

V
al
u
e

p
er
m
is
si
on

m
er
it

aff
o
rd

li
fe

ti
m
e

u
p
d
a
te

la
te
n
cy

tr
u
st

re
d
u
n
d
an

cy

er
ro
r
ra
te

Killip grade I yes high some long no low yes no 0.12
NYHA
cardiac
function
class

IV yes high some long no high yes no 0.1

gender Male yes low some short no low yes no 0.94
visit.times 1 yes low some short no low yes no 0.95
respiration 21 yes high some short no low yes no 0.16
occupation Urban

Resident
yes low some short yes high yes no 0.80

admission
way

Non
Emer-
gency

yes low some short yes high yes no 0.97

Table 9: Error rate estimation data for Bayesian Regression model

01, 6.41217771e− 02,−2.10275960e− 02, 5.97534438e− 12, 3.87825318e− 03], and

intercept = 1.5085833599387743 and finally the mean square error (MSE) is 0.0256. Af-

ter creating the model we can feed the new upcoming data to the model to get an estimation

of error rate before summarizing and storing it.

The estimated error rate determines how fine grained the data should be (ϵ the error

rate); therefore, if it is zero we wont summarize at all. The next task is to find L and R,

and based on the overall available storage (L × R maximum possibility) and considering

data requirements -whether it require minimum storage or minimum computation (when

the data needs a lot of query or update)-we optimize the values of L and R. We use the

formula 5.1 where k(q) can be estimated as 0.1√
|D|

[150] and |D| is the size of the data. So

we have ϵ < 8 ∗ (R
R−1

) ∗
√
log(1

δ
) ∗ 1√

L
∗
√

|D|
0.1

. In this equation ϵ, is determined with trained

Bayesian regression model, |D| is defined by the size of dataset and δ is assumed to be 0.05

(when availability probability is 95% the log(1
δ
) is equal to 1.3)[38].

119

L <

(
8 ∗ log1/δ ∗ |D|

ϵ2 ∗ 102
)(

R

R− 1

)2

[39] (5.4)

Considering equation 5.4 Let’s assume constant c =
(

8∗log1/δ∗|D|
ϵ2∗102

)
. Therefore to optimize

storage (S) we should minimize S = L×R ∗ 4 + (R ∗ 4) (we need 4R to store hash seeds).

S(R) =

(
c ∗
(

R

R− 1

)2

+ 1

)
∗ 4R (5.5)

I replaced L = c ∗
(

R
R−1

)2
in storage equation 5.5 and solved S ′(R) = 0. The roots were

R =
√
13+5
2

and R = −
√
13+5
2

. The trade-off between error rate and storage when we focus on

optimizing storage is shown in Figure 38.

Figure 38: Performance vs error rate with efficient storage

To optimize update we should minimize L. Minimizing L increases the storage, so in

this case we consider the maximum possible storage value that is available and user is willing

to pay for, which is achieved from the SDN controller (one scenario can be that we provide

the min required storage-as mentioned above- to SDN controller and the controller provides

us with how much more capacity is available while ensuring that giving us at least the

minimum requirement) and then calculate R based on that.The trade-off between error rate

and storage when we focus on optimizing update is shown in Figure 39.

As an example, for storing 1GB File with 0.01 error rate the required storage would be

4 ∗ 106 bits.

120

Figure 39: Performance vs error rate in efficient update computation

5.5.2 Bayesian Regression for for Network Coding Erasure code

For data erasure code, our objective is to estimate the tolerable unavailability and then

use that to determine k (number of data blocks) and n(number of storage nodes) based on the

requirement of whether we need to optimize storage (minimizing R minimizes the storage)

or we need to optimize retrieval and update time (reducing the number of hash functions

reduce the update time). The unavailability is calculated using Equation 5.6 where a is the

availability probability of each node and should be achieved from SDP (or in our frame work

integrated SDN-SDP) controller. Figure 40 is an example of different choice of n and k and

their effects on Unavailability 4.

Uideal(n, k) =
k−1∑
i=0

(
n

i

)
ai(1− a)n−i (5.6)

MSR: for minimum storage α = M
k

and γ = Md
k(d−k+1)

where communication for repair

would be M for d = k and it would be M
k
.n−1
n−1

for d = n − 1. In MSR R = n/k and

store R.M (same is ideal erasure code) and replace f.R.M , therefore extra storage would be

4To have a better sense of proper range of parameters, here are some pairs of (n, k) that gives us the
unavailability of 0.01 (14, 10), (25, 19), (31, 24), (37, 29), (50, 40), (57, 46), (64, 52), (71, 58), (78, 64), (85,
70), (92, 76), (99, 82)

121

Figure 40: Different choices of n and k and their effects on U in 2D and 3D plots

(n−1)β
M/k

= n−1
n−k

with unavailability of Uideal(n, k).

MBR: for minimum repair bandwidth α = 2Md
2kd−k2+k

and γ = 2Md
2kd−k2+k

so α = γ and for

d = n − 1, α = γ = M
k
. 2n−2
2n−k−1

; therefore communication is exactly the same as amount of

stored data. In MBR ideal fragment size is b = (n−1)β
M/k

= 2(n−1)
2n−k−1

which stores M.n.b bytes

and replaces f.M.n.b bytes to provide the unavailability of Uideal(n, k).

For this case we took the same approach as data summarization and we ran Bayesian

regression (Bayesian Ridge). We obtained the following model coefficients:

coef = [−1.87567410e − 02,−6.42720467e − 01,−1.04731402e + 00,−4.95920567e −
01, 5.86055624e− 02,−4.23610894e− 01, 3.45508294e− 12, 3.52801638e− 03] and

intercept = 1.645630640548738 and Mean Square error is 0.053493169576964844. We

use this model to estimate the tolerable unavailability and based on that we can estimate k

and n and then based on the requirement (minimum storage or minimum bandwidth) choose

either of MSR or MBR to calculate the other required storage parameters. Considering the

provided formulas for α and γ and assuming that we get the tolerable unavailability of 0.01,

with the choice of n = 14 and k = 10, Figure 41 depicts the effect of different choices of d

and mode (either we require MBR or MSR) and the required storage in each node (α), in

addition to the required bandwidth for each node transmission (γ).

122

Figure 41: Different choices of d and its effects on storageandbandwidth in different modes

As an example, let us suppose we want to store a 1GB file: In the summarizing phase

with an error rate of 0.01, the storage requirement would be 4×106 bytes of storage. Adding

an erasure code with n = 14, k = 10 and unavailability probability of 0.01 in MSR mode,

each storage node should store 4× 105 bytes and the overall storage cost would be 56× 106

bytes. Compared to HAIL, which was 1.09 GB 42, the cost with ADR is almost 20 times

smaller. Moreover ADR does not have complicated client side computation which makes it

suitable for IoT networks. This all is gained at the cost of losing data granularity.

Figure 42: Comparison of HAIL and ADR storage

123

5.6 Discussion

We have not performed a detailed systematic analysis of the trade-offs between gran-

ularity of data and storage costs, but in the proof-of-concept analysis, we show that this

approach outperforms HAIL, but at the cost of data granularity. If applications can toler-

ate this lack of granularity, which we believe is the case when data from “things” may not

change significantly over time, this approach would yield efficiencies that are not possible

with HAIL, while maintaining application needs. Moreover decisions about which reliability

method is required are made in real-time for streaming data at the time that we are storing

the data; however once the decision is made for stored data, the erasure code would be there

and when retrieving the data the system does not make any decision, it just uses the erasure

code to retrieve the data under failure. If the decision making model is updated then the

update would be effective on new data to come and older data will not change. If for any

reason there is a need to update the decision, it is possible to change the erasure code for

the data by rebuilding the file and doing the entire process of creating the erasure code and

distribution from the beginning. In the case of changing the decision for summarizing, once

we summarize the data the only possibility is to summarize it further (increase the tolerable

error rate and hence decrease storage and/or update time), and there is no mechanism to

decrease the error rate.

124

6.0 Conclusion

In this dissertation, we consider the use of a secure and flexible architecture using the

integration of SDN and SDP to improve decision making and action enforcing in WiFi

and IoT networks considering the resource limitation of IoT. We apply this architecture in

three different scenarios to show possible applications with proof of concept. In the first

scenario we used historical data to predict the quality of service by building a decision

tree and deciding what flows to throttle (e.g., reducing packet size) towards managing an

SDN WiFi network where interference from competing transmissions may impact the quality

observed by critical flows. We use the global view in the SDN controller and install agents on

Access Points to gather required information for predicting maximum delay using the decision

tree. In the second scenario we choose the best integrity verification method (among four

provided methods including Nested Bloom Filter (new), Hash Tree (new), PDP (previous),

POR (previous)) based on contextual parameters of the data and its usage, using an static

decision tree. Finally in the third scenario we consider trade-offs between data reliability and

performance using data summarizing and network coding and we used Bayesian Regression

for bounding the error in data summarizing and deciding the probability of data availability.

6.1 Limitations

One significant issue in this study was the lack of a suitable public dataset to use for

model training and a concrete method of extracting the required features from the dataset.

While SDP and SDN networks have a range of applications such as managing Data Centers

and IoT networks, as far as we know, there is not any large scale implementation of SDN

that exploits machine learning for performance trade-offs. Also, SDP indeed reduces the

burden on the controller and avoid unauthenticated packets to get to the controller. Yet

it still has a single point of failure that if for any reason crashes, the whole network will

go down. All data about the network will get lost as well which brought up the idea of

125

using distributed controllers or simply having a backup controller. We compared our work

with existing approaches to demonstrate the trade-offs, but did not systematically try to

determine the optimum parameters or algorithms. Finally, we do not consider a rapidly

changing dynamic environment (especially in scenario 1).

6.2 Future Works

In this dissertation we provided a framework using the combination of SDN and SDP

concepts, that secures the network, provide global view of the network and can manage

nodes and makes decision for them. We used three different scenarios as examples and

demonstrate proof of concept for each one of them. Performing a comprehensive human

subject study to create a real data set and complete software implementation, is in the plan

to be done in future. Also in this dissertation we annotated the data using human input in

order to change the data format and extract the values of decision merit (”merit”, ”trust”,

”affordability”,....) ; however, we plan to use Natural Language Processing (e.g., word2vec

and cosine similarity and similar methodologies) to automate feature extraction.

We also did not consider in detail the relationship of this work to emerging paradigms

of IoT like the Helium People-Powered Networks [79]. In Helium, a crypto-token is used

to incentivize coverage toward creation of a decentralized wireless infrastructure for IoT.

Tokens are used to verify coverage provided (the consensus mechanism is called “Proof-

of-Coverage”). However the objective here is to provide Internet connectivity using low

power. The LoRAWAN base stations simply relay the IoT data to the Internet. As far as

we know, the network does not support additional services such as resource management or

data integrity or data reliability, nor are they required to use SDN/SDP. One can imagine

services built on top of Helium - perhaps a “Proof of Service” token with different valuations

for different edge services. This is also a project for the future.

126

6.3 Publications

• Karimi, M., Krishnamurthy, P., Joshi, J., & Tipper, D. (2017, November). Mining

historical data towards interference management in wireless sdns. In Proceedings of the

13th ACM Symposium on QoS and Security for Wireless and Mobile Networks (pp.

81-88).

• Karimi, M., & Krishnamurthy, P. Hierarchical Data Integrity for IoT Devices in Con-

nected Health Applications. Open Journal of Internet of Things (OJIOT), Volume 7,

Issue 1, 2021, ISSN 2364-7108

• Karimi, M., & Krishnamurthy, P. Software Defined Ambit of Data Integrity for the Inter-

net of Things, 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and In-

ternet Computing (CCGrid), 2021, pp. 737-745, doi: 10.1109/CCGrid51090.2021.00089.

127

Bibliography

[1] Adnan Akhunzada, Ejaz Ahmed, Abdullah Gani, Muhammad Khurram Khan,
Muhammad Imran, and Sghaier Guizani. Securing software defined networks: taxon-
omy, requirements, and open issues. IEEE Communications Magazine, 53(4):36–44,
2015.

[2] Nuray Baltaci Akhuseyinoglu, Maryam Karimi, Mai Abdelhakim, and Prashant Kr-
ishnamurthy. On automated trust computation in iot with multiple attributes and
subjective logic. In 2020 IEEE 45th Conference on Local Computer Networks (LCN),
pages 267–278. IEEE, 2020.

[3] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration analysis and verifica-
tion of federated openflow infrastructures. In Proceedings of the 3rd ACM Workshop
on Assurable and Usable Security Configuration, SafeConfig ’10, page 37–44, New
York, NY, USA, 2010. Association for Computing Machinery.

[4] Gaurav Ambekar, Tushar Chikane, Shiben Sheth, Abhilasha Sable, and Kranti Ghag.
Anticipation of winning probability in poker using data mining. In Computer, Com-
munication and Control (IC4), 2015 International Conference on, pages 1–6. IEEE,
2015.

[5] Javed Ashraf and Seemab Latif. Handling intrusion and ddos attacks in software de-
fined networks using machine learning techniques. In Software Engineering Conference
(NSEC), 2014 National, pages 55–60. IEEE, 2014.

[6] Murphy McCauley at UC Berkeley. The pox network software platform. https:

//github.com/noxrepo/pox. Accessed:11/21/2019.

[7] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Osama Khan, Lea
Kissner, Zachary Peterson, and Dawn Song. Remote data checking using provable
data possession. ACM Transactions on Information and System Security (TISSEC),
14(1):1–34, 2011.

[8] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. Provable data possession at untrusted stores. In
Proceedings of the 14th ACM conference on Computer and communications security,
pages 598–609, 2007.

128

https://github.com/noxrepo/pox
https://github.com/noxrepo/pox

[9] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. Scal-
able and efficient provable data possession. In Proceedings of the 4th international
conference on Security and privacy in communication netowrks, pages 1–10, 2008.

[10] Michael Backes, Dario Fiore, and Raphael M Reischuk. Verifiable delegation of
computation on outsourced data. In Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & communications security, pages 863–874. ACM, 2013. https:
//dl.acm.org/citation.cfm?id=2516681.

[11] Jeffrey R Ballard, Ian Rae, and Aditya Akella. Extensible and scalable network
monitoring using opensafe. In INM/WREN, 2010.

[12] Manu Bansal, Jeffrey Mehlman, Sachin Katti, and Philip Levis. Openradio: a pro-
grammable wireless dataplane. In Proceedings of the first workshop on Hot topics in
software defined networks, pages 109–114. ACM, 2012.

[13] Louise Barkhuus. The mismeasurement of privacy: using contextual integrity to
reconsider privacy in hci. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 367–376, 2012.

[14] Petros Belsis, Dimitris Vassis, Stefanos Gritzalis, and Christos Skourlas. W-ehr:
a wireless distributed framework for secure dissemination of electronic healthcare
records. In Systems, Signals and Image Processing, 2009. IWSSIP 2009. 16th In-
ternational Conference on, pages 1–4. IEEE, 2009.

[15] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation
of computation over large datasets. In Annual Cryptology Conference, pages
111–131. Springer, 2011. https://link.springer.com/content/pdf/10.1007/

978-3-642-22792-9_7.pdf.

[16] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al.
Onos: towards an open, distributed sdn os. In Proceedings of the third workshop on
Hot topics in software defined networking, pages 1–6, 2014.

[17] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 313–314. Springer, 2013. https://link.springer.com/content/
pdf/10.1007/978-3-642-38348-9_19.pdf.

129

https://dl.acm.org/citation.cfm?id=2516681
https://dl.acm.org/citation.cfm?id=2516681
https://link.springer.com/content/pdf/10.1007/978-3-642-22792-9_7.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-22792-9_7.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_19.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_19.pdf

[18] Albert Bifet. Teaching material, comp423/523a 2012 stream data mining/regression,
2012. https://speakerdeck.com/abifet/regression.

[19] Brent Bilger, Alan Boehme, Bob Folres, Zvi Guterman, Mark Hoover, Michaela Iorga,
Junaid Islam, Marc Kolenko, Juanita Koilpilla, Gabor Lengyel, et al. Sdp specification
1.0, 2014.

[20] Eric Blais and Venkat Guruswami. Introduction to coding theory, basics of finite
fields, 2010. http://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/

algebra-brief-notes.pdf.

[21] Eric Blais and Venkat Guruswami. Introduction to coding theory, notes 6: Reed-
solomon, bch, reed-muller, and concatenated codes. CMU: Spring 2010, 2010. http:
//www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes6.pdf.

[22] Fabio Botelho, Fernando Manuel Valente Ramos, Diego Kreutz, and Alysson Bessani.
On the feasibility of a consistent and fault-tolerant data store for sdns. In Software De-
fined Networks (EWSDN), 2013 Second European Workshop on, pages 38–43. IEEE,
2013.

[23] Kevin D Bowers, Ari Juels, and Alina Oprea. Hail: A high-availability and integrity
layer for cloud storage. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 187–198, 2009.

[24] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and im-
plementation. In Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 43–54, 2009.

[25] Xavier Boyen, Hovav Shacham, Emily Shen, and Brent Waters. Forward-secure signa-
tures with untrusted update. In Proceedings of the 13th ACM conference on Computer
and communications security, pages 191–200, 2006.

[26] Rodrigo Braga, Edjard Mota, and Alexandre Passito. Lightweight ddos flooding attack
detection using nox/openflow. In Local Computer Networks (LCN), 2010 IEEE 35th
Conference on, pages 408–415. IEEE, 2010.

[27] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A
survey. Internet mathematics, 1(4):485–509, 2004. https://projecteuclid.org/

download/pdf_1/euclid.im/1109191032.

130

https://speakerdeck.com/abifet/regression
http://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/algebra-brief-notes.pdf
http://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/algebra-brief-notes.pdf
http://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes6.pdf
http://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes6.pdf
https://projecteuclid.org/download/pdf_1/euclid.im/1109191032
https://projecteuclid.org/download/pdf_1/euclid.im/1109191032

[28] Kai Bu, Yutian Yang, Zixuan Guo, Yuanyuan Yang, Xing Li, and Shigeng Zhang.
Securing middlebox policy enforcement in sdn. Computer Networks, 193:108099, 2021.

[29] Lakshmi Devasena C. Comparative analysis of random forest, rep tree and j48 classi-
fiers for credit risk prediction. International Journal of Computer Applications (0975
-8887), International Conference on Communication, Computing and Information
Technology (ICCCMIT-2014), 2014.

[30] Lakshmi Devasena C. Article: Comparative analysis of random forest, rep tree and j48
classifiers for credit risk prediction. IJCA Proceedings on International Conference on
Communication, Computing and Information Technology, ICCCMIT 2014(3):30–36,
March 2015. Full text available.

[31] Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, and Jennifer Rexford. A
nice way to test openflow applications. In Proceedings of the 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), number EPFL-CONF-
170618 in 9, 2012.

[32] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker. Ethane: Taking control of the enterprise. In ACM SIGCOMM
Computer Communication Review, volume 37, pages 1–12. ACM, 2007.

[33] Dario Catalano and Dario Fiore. Practical homomorphic macs for arithmetic circuits.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 336–352. Springer, 2013. https://link.springer.com/content/
pdf/10.1007/978-3-642-38348-9_21.pdf.

[34] Min-Cheng Chan, Chien Chen, Jun-Xian Huang, Ted Kuo, Li-Hsing Yen, and Chien-
Chao Tseng. Opennet: A simulator for software-defined wireless local area network.
InWireless Communications and Networking Conference (WCNC), 2014 IEEE, pages
3332–3336. IEEE, 2014.

[35] Balakrishnan Chandrasekaran, Brendan Tschaen, and Theophilus Benson. Isolating
and tolerating sdn application failures with legosdn. In Proceedings of the Symposium
on SDN Research, page 7. ACM, 2016.

[36] Philip A Chou and YunnanWu. Network coding for the internet and wireless networks.
IEEE Signal Processing Magazine, 24(5):77–85, 2007.

131

https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_21.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-38348-9_21.pdf

[37] Ronald H Coase. The federal communications commission. The Journal of Law and
Economics, 56(4):879–915, 2013.

[38] Benjamin Coleman and Anshumali Shrivastava. A one-pass private sketch for most
machine learning tasks. arXiv preprint arXiv:2006.09352, 2020. implementation avail-
able at: https://github.com/brc7/PrivateRACE.

[39] Benjamin Coleman and Anshumali Shrivastava. Sub-linear race sketches for approxi-
mate kernel density estimation on streaming data. In Proceedings of The Web Con-
ference 2020, pages 1739–1749, 2020.

[40] Natalia Criado and Jose M Such. Implicit contextual integrity in online social net-
works. Information Sciences, 325:48–69, 2015.

[41] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. Devoflow: scaling flow management for high-
performance networks. In ACM SIGCOMM Computer Communication Review, vol-
ume 41, pages 254–265. ACM, 2011.

[42] Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese. Mr-pdp:
Multiple-replica provable data possession. In 2008 the 28th international conference
on distributed computing systems, pages 411–420. IEEE, 2008.

[43] Anderson Santos da Silva, Paul Smith, Andreas Mauthe, and Alberto Schaeffer-Filho.
Resilience support in software-defined networking: A survey. Computer Networks,
92:189–207, 2015.

[44] Anderson Santos da Silva, Juliano Araujo Wickboldt, Lisandro Zambenedetti
Granville, and Alberto Schaeffer-Filho. Atlantic: A framework for anomaly traffic
detection, classification, and mitigation in sdn. In Network Operations and Manage-
ment Symposium (NOMS), 2016 IEEE/IFIP, pages 27–35. IEEE, 2016.

[45] Ala’ Darabseh, Mahmoud Al-Ayyoub, Yaser Jararweh, Elhadj Benkhelifa, Mladen
Vouk, Andy Rindos, et al. Sdsecurity: A software defined security experimental frame-
work. In 2015 IEEE international conference on communication workshop (ICCW),
pages 1871–1876. IEEE, 2015.

[46] Bálint Daróczy, Péter Vaderna, and András Benczúr. Machine learning based ses-
sion drop prediction in lte networks and its son aspects. In Vehicular Technology
Conference (VTC Spring), 2015 IEEE 81st, pages 1–5. IEEE, 2015.

132

https://github.com/brc7/PrivateRACE

[47] Jash Desai. Sdn-openflow-pox-firewall, 2018. https://github.com/jashdesai95/

SDN-OpenFlow-Pox-Firewall.

[48] Yves Deswarte, Jean-Jacques Quisquater, and Ayda Säıdane. Remote integrity check-
ing. InWorking Conference on Integrity and Internal Control in Information Systems,
pages 1–11. Springer, 2003.

[49] Andrea Detti, Claudio Pisa, Stefano Salsano, and Nicola Blefari-Melazzi. Wireless
mesh software defined networks (wmsdn). In Wireless and Mobile Computing, Net-
working and Communications (WiMob), 2013 IEEE 9th International Conference on,
pages 89–95. IEEE, 2013.

[50] Alexandros G Dimakis, P Brighten Godfrey, Martin J Wainwright, and Kannan Ram-
chandran. The benefits of network coding for peer-to-peer storage systems. In Third
Workshop on Network Coding, Theory, and Applications, 2007.

[51] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J Wainwright, and
Kannan Ramchandran. Network coding for distributed storage systems. IEEE trans-
actions on information theory, 56(9):4539–4551, 2010.

[52] Alexandros G Dimakis, Vinod Prabhakaran, and Kannan Ramchandran. Decentral-
ized erasure codes for distributed networked storage. IEEE Transactions on Informa-
tion Theory, 52(6):2809–2816, 2006.

[53] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hardness
amplification. In Theory of Cryptography Conference, pages 109–127. Springer, 2009.

[54] Zeal Egaesiri Ekrebe. Security of software defined network with software defined
perimiter. ERA (Education and Research Archive),University of Alberta, 2020.

[55] Karim ElDefrawy and Tyler Kaczmarek. Byzantine fault tolerant software-defined
networking (sdn) controllers. In Computer Software and Applications Conference
(COMPSAC), 2016 IEEE 40th Annual, volume 2, pages 208–213. IEEE, 2016.

[56] C Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia.
Dynamic provable data possession. ACM Transactions on Information and System
Security (TISSEC), 17(4):15, 2015. https://user.eng.umd.edu/~cpap/published/
cce-alp-cpap-rt-09.pdf.

133

https://github.com/jashdesai95/SDN-OpenFlow-Pox-Firewall
https://github.com/jashdesai95/SDN-OpenFlow-Pox-Firewall
https://user.eng.umd.edu/~cpap/published/cce-alp-cpap-rt-09.pdf
https://user.eng.umd.edu/~cpap/published/cce-alp-cpap-rt-09.pdf

[57] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia.
Dynamic provable data possession. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, page 213–222, New York, NY,
USA, 2009. Association for Computing Machinery.

[58] Ertem Esiner, Adilet Kachkeev, Samuel Braunfeld, Alptekin Küpçü, and Öznur
Özkasap. Flexdpdp: Flexlist-based optimized dynamic provable data possession.
ACM Transactions on Storage (TOS), 12(4):1–44, 2016. https://crypto.ku.edu.

tr/wp-content/uploads/2019/05/flexdpdp.pdf.

[59] Ertem Esiner, Alptekin Küpçü, and Öznur Özkasap. Analysis and optimization on
flexdpdp: A practical solution for dynamic provable data possession. In International
Conference on Intelligent Cloud Computing, pages 65–83. Springer, 2014.

[60] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C Mogul.
Extending {SDN} to handle dynamic middlebox actions via {FlowTags}. In Open
Networking Summit 2014 (ONS 2014), 2014.

[61] Giancarlo Fortino, Lidia Fotia, Fabrizio Messina, Domenico Rosaci, and Giuseppe ML
Sarné. Trust and reputation in the internet of things: state-of-the-art and research
challenges. IEEE Access, 8:60117–60125, 2020.

[62] Robert Furberg, Julia Brinton, Michael Keating, and Alexa Ortiz. Crowd-sourced fit-
bit datasets 03.12.2016-05.12.2016, May 2016. https://doi.org/10.5281/zenodo.

53894.

[63] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder Barreto. Demonstrating
data possession and uncheatable data transfer. IACR Cryptology ePrint Archive,
2006:150, 2006.

[64] A Goldberger, L Amaral, L Glass, J Hausdorff, PC Ivanov, R Mark, JE Mietus,
GB Moody, CK Peng, HE Stanley, PhysioBank, PhysioToolkit, and PhysioNet. Com-
ponents of a new research resource for complex physiologic signals. PhysioNet, 2000.
Circulation. 101 (23), pp. e215–e220.

[65] Shyamnath Gollakota, Haitham Hassanieh, Benjamin Ransford, Dina Katabi, and
Kevin Fu. They can hear your heartbeats: non-invasive security for implantable
medical devices. ACM SIGCOMM Computer Communication Review, 41(4):2–13,
2011.

134

https://crypto.ku.edu.tr/wp-content/uploads/2019/05/flexdpdp.pdf
https://crypto.ku.edu.tr/wp-content/uploads/2019/05/flexdpdp.pdf
https://doi.org/10.5281/zenodo.53894
https://doi.org/10.5281/zenodo.53894

[66] Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic primitives enforc-
ing communication and storage complexity. In International Conference on Financial
Cryptography, pages 120–135. Springer, 2002.

[67] Mihaela Göndör and Vasile Paul Bresfelean. Reptree and m5p for measuring fiscal
policy influences on the romanian capital market during 2003–2010. International
Journal of Mathematics and Computers in Stimulation, 6(4):378–386, 2012.

[68] Michael T Goodrich, Mikhail J Atallah, and Roberto Tamassia. Indexing information
for data forensics. In International Conference on Applied Cryptography and Network
Security, pages 206–221. Springer, 2005. https://link.springer.com/content/

pdf/10.1007/11496137_15.pdf.

[69] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and future
directions. Future generation computer systems, 29(7):1645–1660, 2013.

[70] Tang Guodong, Qin Xi, and Chang Chaowen. A sdn security control forwarding
mechanism based on cipher identification. In Communication Software and Networks
(ICCSN), 2017 IEEE 9th International Conference on, pages 1419–1425. IEEE, 2017.

[71] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. Splendid isolation: A
slice abstraction for software-defined networks. In Proceedings of the first workshop
on Hot topics in software defined networks, pages 79–84. ACM, 2012.

[72] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[73] Gunnar Hartung, Björn Kaidel, Alexander Koch, Jessica Koch, and Dominik Hart-
mann. Practical and robust secure logging from fault-tolerant sequential aggregate
signatures. In International Conference on Provable Security, pages 87–106. Springer,
2017.

[74] Gunnar Hartung, Björn Kaidel, Alexander Koch, Jessica Koch, and Andy Rupp.
Fault-tolerant aggregate signatures. In Public-Key Cryptography–PKC 2016, pages
331–356. Springer, 2016.

135

https://link.springer.com/content/pdf/10.1007/11496137_15.pdf
https://link.springer.com/content/pdf/10.1007/11496137_15.pdf

[75] Jialing He, Zijian Zhang, Meng Li, Liehuang Zhu, and Jingjing Hu. Provable data
integrity of cloud storage service with enhanced security in the internet of things.
IEEE Access, 7:6226–6239, 2018.

[76] Chaesub Lee (head). Software-defined networking (sdn). https://www.itu.int/en/
ITU-T/sdn/Pages/default.aspx. Accessed: 2019-08-23.

[77] Tom Henderson. ns3::logdistancepropagationlossmodel, 2015.

[78] Tom Henderson. ns3::nisterrorratemodel, 2015.

[79] Helium Systems Inc. Helium - introducing people powered networks. https://www.
helium.com/. Accessed:4/26/2022.

[80] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Openflow random host mutation:
transparent moving target defense using software defined networking. In Proceedings
of the first workshop on Hot topics in software defined networks, pages 127–132. ACM,
2012.

[81] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Zhuoqing Morley Mao, Atul Prakash, and Shanghai JiaoTong Unviersity. Contexlot:
Towards providing contextual integrity to appified iot platforms. In NDSS, 2017.

[82] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In
Proceedings of the 14th ACM conference on Computer and communications security,
pages 584–597, 2007.

[83] Yossi Kanizo, David Hay, and Isaac Keslassy. Palette: Distributing tables in software-
defined networks. In INFOCOM, 2013 Proceedings IEEE, pages 545–549. IEEE, 2013.

[84] Maryam Karimi. Adi, 2020. https://github.com/Maryam-mary-karimi/ADI.

[85] Maryam Karimi and M Ahmadzadeh. Mining robocup log files to predict own and
opponent action. International Journal of Advanced Research in Computer Science
(IJARCS), 5(6):27–32, 2014.

[86] Maryam Karimi, Prashant Krishnamurthy, James Joshi, and David Tipper. Mining
historical data towards interference management in wireless sdns. In Proceedings of

136

https://www.itu.int/en/ITU-T/sdn/Pages/default.aspx
https://www.itu.int/en/ITU-T/sdn/Pages/default.aspx
https://www.helium.com/
https://www.helium.com/
https://github.com/Maryam-mary-karimi/ADI

the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks,
pages 81–88. ACM, 2017.

[87] Maryam Karimi, Mohammad Sadegh Najafi, Reza Akbari, and Manijeh Keshtgari.
Presenting a new method, using topology virtualization for stabilizing flow tables
in sdwn. In 2017 IEEE 3rd International Conference on Collaboration and Internet
Computing (CIC), pages 219–226. IEEE, 2017.

[88] Pradeeban Kathiravelu and Lúıs Veiga. Sdn middlebox architecture for resilient trans-
fers. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pages 560–563, 2017.

[89] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Godfrey. Veriflow: Verify-
ing network-wide invariants in real time. In Proceedings of the first workshop on Hot
topics in software defined networks, pages 49–54. ACM, 2012.

[90] Hyojoon Kim, Mike Schlansker, Jose Renato Santos, Jean Tourrilhes, Yoshio Turner,
and Nick Feamster. Coronet: Fault tolerance for software defined networks. In Net-
work Protocols (ICNP), 2012 20th IEEE International Conference on, pages 1–2.
IEEE, 2012.

[91] Rowan Kloti, Vasileios Kotronis, and Paul Smith. Openflow: A security analysis. In
Network Protocols (ICNP), 2013 21st IEEE International Conference on, pages 1–6.
IEEE, 2013.

[92] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for message
authentication, 1997.

[93] Diego Kreutz, Fernando Ramos, and Paulo Verissimo. Towards secure and dependable
software-defined networks. In Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, pages 55–60. ACM, 2013.

[94] John Kruschke. Doing bayesian data analysis: A tutorial with r, jags, and stan.
Academic Press, 2014.

[95] John K Kruschke. Bayesian estimation supersedes the t test. Journal of Experimental
Psychology: General, 142(2):573, 2013.

137

[96] Adrian Lara and Byrav Ramamurthy. Opensec: Policy-based security using software-
defined networking. IEEE transactions on network and service management, 13(1):30–
42, 2016.

[97] Rafael P Laufer, Pedro B Velloso, and Otto Carlos MB Duarte. A generalized bloom
filter to secure distributed network applications. Computer Networks, 55(8):1804–
1819, 2011. https://www.gta.ufrj.br/ftp/gta/TechReports/LVD11.pdf.

[98] Kin K Leung. Power control by interference prediction for broadband wireless packet
networks. IEEE Transactions on Wireless Communications, 1(2):256–265, 2002.

[99] He Li, Peng Li, Song Guo, and Amiya Nayak. Byzantine-resilient secure software-
defined networks with multiple controllers in cloud. IEEE Transactions on Cloud
Computing, 2(4):436–447, 2014.

[100] He Li, Peng Li, Song Guo, and Shui Yu. Byzantine-resilient secure software-defined
networks with multiple controllers. In Communications (ICC), 2014 IEEE Interna-
tional Conference on, pages 695–700. IEEE, 2014.

[101] Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin Kwiat, and
Laurent Njilla. Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability. In 2017 17th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages
468–477. IEEE, 2017.

[102] Bin Liu, Xiao Liang Yu, Shiping Chen, Xiwei Xu, and Liming Zhu. Blockchain based
data integrity service framework for iot data. In 2017 IEEE International Conference
on Web Services (ICWS), pages 468–475. IEEE, 2017.

[103] Gong-Xu Liu, Ling-Feng Shi, and Dong-Jin Xin. Data integrity monitoring method of
digital sensors for internet-of-things applications. IEEE Internet of Things Journal,
7(5):4575–4584, 2020.

[104] Angus Loten. CIOs contend with ever-expanding range of cloud services. The Wall
Street Journal, December 1st 2017.

[105] Tze-Ping Low and Jangwook Moon. Interference modulation order detection with su-
pervised learning for lte interference cancellation. In Vehicular Technology Conference
(VTC Fall), 2015 IEEE 82nd, pages 1–5. IEEE, 2015.

138

https://www.gta.ufrj.br/ftp/gta/TechReports/LVD11.pdf

[106] Shouxi Luo, Hongfang Yu, et al. Fast incremental flow table aggregation in sdn. In
Computer Communication and Networks (ICCCN), 2014 23rd International Confer-
ence on, pages 1–8. IEEE, 2014.

[107] Di Ma and Gene Tsudik. A new approach to secure logging. ACM Transactions on
Storage (TOS), 5(1):1–21, 2009.

[108] Mehdi Malboubi, Liyuan Wang, Chen-Nee Chuah, and Puneet Sharma. Intelligent sdn
based traffic (de) aggregation and measurement paradigm (istamp). In INFOCOM,
2014 Proceedings IEEE, pages 934–942. IEEE, 2014.

[109] Cintia B Margi, Renan CA Alves, and Johanna Sepulveda. Sensing as a service:
secure wireless sensor network infrastructure sharing for the internet of things. Open
Journal of Internet Of Things (OJIOT), 3(1):91–102, 2017.

[110] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innovation
in campus networks. ACM SIGCOMM Computer Communication Review, 38(2):69–
74, 2008.

[111] Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. Revisiting traffic anomaly
detection using software defined networking. In International workshop on recent
advances in intrusion detection, pages 161–180. Springer, 2011.

[112] Mininet-Core-Team. Mininet, 2020. http://mininet.org.

[113] Marcelo Duffles Donato Moreira, Rafael Pinaud Laufer, Pedro Braconnot Velloso,
and Otto Carlos MB Duarte. Capacity and robustness tradeoffs in bloom filters for
distributed applications. IEEE Transactions on Parallel and Distributed Systems,
23(12):2219–2230, 2012. https://ieeexplore.ieee.org/abstract/document/

6171165.

[114] Abdallah Moubayed, Ahmed Refaey, and Abdallah Shami. Software-defined perimeter
(sdp): State of the art secure solution for modern networks. IEEE Network, 33(5):226–
233, 2019.

[115] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark. Resonance: dy-
namic access control for enterprise networks. In Proceedings of the 1st ACM workshop
on Research on enterprise networking, pages 11–18. ACM, 2009.

139

http://mininet.org
https://ieeexplore.ieee.org/abstract/document/6171165
https://ieeexplore.ieee.org/abstract/document/6171165

[116] G Neri, RCS Morling, GD Cain, E Faldella, M Longhi-Gelati, T Salmon-Cinotti, and
P Natali. Mininet: A local area network for real-time instrumentation applications.
Computer Networks (1976), 8(2):107–131, 1984.

[117] Helen Nissenbaum. Privacy in context: Technology, policy, and the integrity of social
life. Stanford University Press, 2009.

[118] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and
Thierry Turletti. A survey of software-defined networking: Past, present, and future
of programmable networks. IEEE Communications Surveys & Tutorials, 16(3):1617–
1634, 2014.

[119] Christof Paar and Jan Pelzl. Sha-3 and the hash function keccak. Understanding
Cryptography A Textbook for Students and Practitioners, www. crypto-textbook. com,
2010. http://professor.unisinos.br/linds/teoinfo/Keccak.pdf.

[120] Guangyu Pei and Thomas R Henderson. Validation of ofdm error rate model in ns-3.
Boeing Research Technology, pages 1–15, 2010.

[121] Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott Baker, Andy Bavier, Saurav Das,
Jonathan Hart, Guru Palukar, and William Snow. Central office re-architected as a
data center. IEEE Communications Magazine, 54(10):96–101, 2016.

[122] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and
Guofei Gu. A security enforcement kernel for openflow networks. In Proceedings of
the first workshop on Hot topics in software defined networks, pages 121–126. ACM,
2012.

[123] Phillip A Porras, Steven Cheung, Martin W Fong, Keith Skinner, and Vinod Yeg-
neswaran. Securing the software defined network control layer. In NDSS, 2015.

[124] Konstantinos Poularakis, Qiaofeng Qin, Erich Nahum, Miguel Rio, and Leandros
Tassiulas. Bringing sdn to the mobile edge. In 2017 IEEE SmartWorld (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–6. IEEE, 2017.

[125] Narasimha Prasad, Kishor Kumar Reddy, and Ramya Tulasi Nirjogi. A novel approach
for seismic signal magnitude detection using haar wavelet. In Intelligent Systems,
Modelling and Simulation (ISMS), 2014 5th International Conference on, pages 324–
329. IEEE, 2014.

140

http://professor.unisinos.br/linds/teoinfo/Keccak.pdf

[126] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan
Yu. Simple-fying middlebox policy enforcement using sdn. In Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, pages 27–38, 2013.

[127] Chao Qi, Jiangxing Wu, Hongchang Chen, Hongtao Yu, Hongchao Hu, and Guozhen
Cheng. Game-theoretic analysis for security of various software-defined networking
(sdn) architectures. In Vehicular Technology Conference (VTC Spring), 2017 IEEE
85th, pages 1–5. IEEE, 2017.

[128] Chao Qi, Jiangxing Wu, Hongchao Hu, Guozhen Cheng, Wenyan Liu, Jianjian Ai, and
Chao Yang. An intensive security architecture with multi-controller for sdn. In Com-
puter Communications Workshops (INFOCOM WKSHPS), 2016 IEEE Conference
on, pages 401–402. IEEE, 2016.

[129] John R Quinlan et al. Learning with continuous classes. In 5th Australian joint
conference on artificial intelligence, volume 92, pages 343–348. Singapore, 1992.

[130] Manickam Ramasamy, Shanthi Selvaraj, and M Mayilvaganan. An empirical analysis
of decision tree algorithms: Modeling hepatitis data. In Engineering and Technology
(ICETECH), 2015 IEEE International Conference on, pages 1–4. IEEE, 2015.

[131] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. Fattire: Declarative
fault tolerance for software-defined networks. In Proceedings of the second ACM SIG-
COMM workshop on Hot topics in software defined networking, pages 109–114. ACM,
2013.

[132] George F Riley and Thomas R Henderson. The ns-3 network simulator. In Modeling
and Tools for Network Simulation, pages 15–34. Springer, 2010.

[133] Zahra Ronaghi, Edward B Duffy, and David M Kwartowitz. Toward real-time remote
processing of laparoscopic video. Journal of Medical Imaging, 2(4):045002–045002,
2015.

[134] Shiva Rowshanrad, Sahar Namvarasl, Vajihe Abdi, Maryam Hajizadeh, and Manijeh
Keshtgary. A survey on sdn, the future of networking. Journal of Advanced Computer
Science & Technology, 3(2):232, 2014.

[135] Ahmed Sallam, Ahmed Refaey, and Abdallah Shami. On the security of sdn: A
completed secure and scalable framework using the software-defined perimeter. IEEE
Access, 7:146577–146587, 2019.

141

[136] Salvatore Sanfilippo. hping3(8) - linux man page, 2016.

[137] Julius Schulz-Zander, P Lalith Suresh, Nadi Sarrar, Anja Feldmann, Thomas Hühn,
and Ruben Merz. Programmatic orchestration of wifi networks. In USENIX Annual
Technical Conference, pages 347–358, 2014.

[138] Thomas SJ Schwarz and Ethan L Miller. Store, forget, and check: Using algebraic
signatures to check remotely administered storage. In 26th IEEE International Con-
ference on Distributed Computing Systems (ICDCS’06), pages 12–12. IEEE, 2006.

[139] Sandra Scott-Hayward, Sriram Natarajan, and Sakir Sezer. A survey of security in
software defined networks. IEEE Communications Surveys & Tutorials, 18(1):623–
654, 2016.

[140] F Sebe, A Martinez-Balleste, Y Deswarte, J Domingo-Ferrer, and JJ Quisquater.
Time-bounded remote file integrity checking. Technical Report 04429, 2004.

[141] Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur Chouhan, Barbara Fraser,
David Lake, Jim Finnegan, Niel Viljoen, Marc Miller, and Navneet Rao. Are we
ready for sdn? implementation challenges for software-defined networks. IEEE Com-
munications Magazine, 51(7):36–43, 2013.

[142] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 90–107. Springer, 2008.

[143] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick
McKeown, and Guru Parulkar. Flowvisor: A network virtualization layer. OpenFlow
Switch Consortium, Tech. Rep, 1:132, 2009.

[144] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick
McKeown, and Guru M Parulkar. Can the production network be the testbed? In
OSDI, volume 10, pages 1–6, 2010.

[145] Seungwon Shin and Guofei Gu. Cloudwatcher: Network security monitoring using
openflow in dynamic cloud networks (or: How to provide security monitoring as a
service in clouds?). In Network Protocols (ICNP), 2012 20th IEEE International
Conference on, pages 1–6. IEEE, 2012.

142

[146] Seungwon Shin and Guofei Gu. Attacking software-defined networks: A first feasibility
study. In Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, pages 165–166. ACM, 2013.

[147] Seungwon Shin, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, Guofei Gu,
and Mabry Tyson. Fresco: Modular composable security services for software-defined
networks. In NDSS, 2013.

[148] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip
Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang. Rosemary:
A robust, secure, and high-performance network operating system. In Proceedings of
the 2014 ACM SIGSAC conference on computer and communications security, pages
78–89. ACM, 2014.

[149] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Avant-guard:
Scalable and vigilant switch flow management in software-defined networks. In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer & communications secu-
rity, pages 413–424. ACM, 2013.

[150] Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, and Philip Levis. Re-
hashing kernel evaluation in high dimensions. In International Conference on Machine
Learning, pages 5789–5798. PMLR, 2019.

[151] Jaspreet Singh, Ahmed Refaey, and Abdallah Shami. Multilevel security framework
for nfv based on software defined perimeter. IEEE Network, 34(5):114–119, 2020.

[152] Mayank Taneja, Kavyanshi Garg, Archana Purwar, and Samarth Sharma. Prediction
of click frauds in mobile advertising. In Contemporary Computing (IC3), 2015 Eighth
International Conference on, pages 162–166. IEEE, 2015.

[153] Moazzam Islam Tiwana, Berna Sayrac, and Zwi Altman. Statistical learning in auto-
mated troubleshooting: Application to lte interference mitigation. IEEE Transactions
on Vehicular Technology, 59(7):3651–3656, 2010.

[154] Eric Topol. The smart-medicine solution to the health-care crisis. The Wall Street
Journal, July 7 2017.

[155] Renlong Tu, Xin Wang, Jin Zhao, Yue Yang, Lei Shi, and Tilman Wolf. Design of a
load-balancing middlebox based on sdn for data centers. In 2015 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pages 480–485, 2015.

143

[156] Ricard Vilalta, Raluca Ciungu, Arturo Mayoral, Ramon Casellas, Ricardo Martinez,
David Pubill, Jordi Serra, Raul Munoz, and Christos Verikoukis. Improving security
in internet of things with software defined networking. In Global Communications
Conference (GLOBECOM), 2016 IEEE, pages 1–6. IEEE, 2016.

[157] Matthew P Wallen, Sjaan R Gomersall, Shelley E Keating, Ulrik Wisløff, and Jeff S
Coombes. Accuracy of heart rate watches: Implications for weight management. PloS
one, 11(5):e0154420, 2016. https://www.ncbi.nlm.nih.gov/pubmed/27232714.

[158] Chao Wang, Shizhan Chen, Zhiyong Feng, Yanan Jiang, and Xiao Xue. Block chain-
based data audit and access control mechanism in service collaboration. In 2019 IEEE
International Conference on Web Services (ICWS), pages 214–218. IEEE, 2019.

[159] Haiyan Wang and Jiawei Zhang. Blockchain based data integrity verification for large-
scale iot data. IEEE Access, 7:164996–165006, 2019.

[160] Tian Wang, Md Zakirul Alam Bhuiyan, Guojun Wang, Lianyong Qi, Jie Wu, and
Thaier Hayajneh. Preserving balance between privacy and data integrity in edge-
assisted internet of things. IEEE Internet of Things Journal, 7(4):2679–2689, 2019.

[161] Ye Wang, Yueping Zhang, Vishal Singh, Cristian Lumezanu, and Guofei Jiang. Net-
fuse: Short-circuiting traffic surges in the cloud. In Communications (ICC), 2013
IEEE International Conference on, pages 3514–3518. IEEE, 2013.

[162] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann. Ofrewind:
enabling record and replay troubleshooting for networks. In USENIX Annual Tech-
nical Conference, pages 327–340. USENIX Association, 2011.

[163] Go Yamamoto, Satoshi Oda, and Kazumaro Aoki. Fast integrity for large data. In
Proc. ECRYPT Workshop Software Performance Enhancement for Encryption and
Decryption, pages 21–32, 2007.

[164] Guang Yao, Jun Bi, and Peiyao Xiao. Source address validation solution with open-
flow/nox architecture. In Network Protocols (ICNP), 2011 19th IEEE International
Conference on, pages 7–12. IEEE, 2011.

[165] Dongdong Yue, Ruixuan Li, Yan Zhang, Wenlong Tian, and Chengyi Peng. Blockchain
based data integrity verification in p2p cloud storage. In 2018 IEEE 24th International
Conference on Parallel and Distributed Systems (ICPADS), pages 561–568. IEEE,
2018.

144

https://www.ncbi.nlm.nih.gov/pubmed/27232714

[166] University of Michigan Z. Morley Mao. Network service model, 2010.

[167] Yongheng Zhao and Yanxia Zhang. Comparison of decision tree methods for finding
active objects. Advances in Space Research, 41(12):1955–1959, 2008.

[168] Qingji Zheng and Shouhuai Xu. Fair and dynamic proofs of retrievability. In Proceed-
ings of the first ACM conference on Data and application security and privacy, pages
237–248, 2011.

[169] Zhang Zhongheng, Cao Linghong, Zhao Yan, Xu Ziyin, Chen Rangui, Lv Lukai, and
Xu Ping. Hospitalized patients with heart failure: integrating electronic healthcare
records and external outcome data (version 1.2). PhysioNet, 2020.

145

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	2. Fields and Description
	3. Access Points' Attributes
	4. Evaluation of QoS trees
	5. Flow's attributes
	6. Evaluation of All Data Delay Decision Tree
	7. Evaluation of Classification Delay Tree
	8. FP and FN probability for CBF size of 10700 bit
	9. Error rate estimation data for Bayesian Regression model

	List of Figures
	1. SDN simple architecture~karimi2017mining
	2. Attacks (red box) and Malfunctions (yellow boxes)
	3. SDN-SDP architecture
	4. SDN general architecture
	5. Attacks and problems (dark and light blue), effects (red) and solutions (blue)
	6. SDP architecture
	7. Protocol for Integrated SDN and SDP
	8. SDN issues resolved by SDP
	9. Feasibility study
	10. Steps in experiment
	11. Experiment's topology
	12. The selected decision tree
	13. Results for single flow decision tree
	14. Results for delay decision tree
	15. Results for delay decision tree
	16. Dynamic tree
	17. Motivating Scenario
	18. Integrity Ambit
	19. Layer 1. Bloom filter verification
	20. Verification with Nested Bloom Filter
	21. FP & FN probability; left: n=1 & k=3, middle: n=365, right: n=36500
	22. Verification time with bloom filter
	23. Layer 2. Hashing tree verification
	24. Splitting nodes when the number of children exceeds d (here d=4)
	25. Verification with Hash Tree
	26. Subtree for retrieving block number 4
	27. Updating time with Hash Tree
	28. Verification time with Hash Tree
	29. Layer 4. POR verification using HAILbowers2009hail
	30. Cloud Storage(left), Client Storage(middle), and Communication(right) overhead
	31. The decision tree selects required ADI layer based on context.
	32. The designed IoT data integrity verification protocol using SDP-SDN
	33. Time and storage using in ADI versus pure POR and PDP
	34. Ambit of Data Reliability Framework
	35. How RACE Sketch works
	36. Network coding used to form an erasure code using randomly uniformly and independently storage selections and linear combinations with random coefficients~dimakis2006decentralized
	37. Network coding repair process
	38. Performance vs error rate with efficient storage
	39. Performance vs error rate in efficient update computation
	40. Different choices of n and k and their effects on U in 2D and 3D plots
	41. Different choices of d and its effects on storage and bandwidth in different modes
	42. Comparison of HAIL and ADR storage

	Preface
	1.0 Introduction
	1.1 SDN and SDP in Brief
	1.2 Overview of Dissertation
	1.2.1 Interference and Delay Tradeoffs
	1.2.2 Contextual Data Integrity
	1.2.3 Contextual Data Reliability

	1.3 Organization of the Dissertation

	2.0 Software Defined Secure Framework
	2.1 SDN security issues and solutions
	2.1.1 SDN security issues
	2.1.1.1 Element 1. Application
	2.1.1.2 Element 2. Main controller
	2.1.1.3 Element 3. Layer 2 controller
	2.1.1.4 Element 4: The link between the controller and the switch
	2.1.1.5 Element 5. Switch
	2.1.1.6 Element 6. Gateway
	2.1.1.7 Element 7. Access Point
	2.1.1.8 Element 8. Host and Servers

	2.1.2 SDN security solutions
	2.1.2.1 Managing Applications:
	2.1.2.2 Slicing:
	2.1.2.3 TLS and Authentication:
	2.1.2.4 DoS against controller:
	2.1.2.5 DoS attack on data plane:
	2.1.2.6 Bandwidth attacks
	2.1.2.7 DoS attack on Hosts:

	2.2 Software Defined Perimeter (SDP) integrated with SDN
	2.2.1 Integrated SDN-SDP Framework and Protocol
	2.2.2 Feasibility study

	3.0 Mining Historical Data towards Interference Management in Wireless SDNs
	3.1 Introduction
	3.2 Background and Preliminaries
	3.2.1 Data Mining
	3.2.2 Managing interference by using machine learning algorithms
	3.2.3 Software Defined Wireless Network

	3.3 Experimental Design and Results
	3.3.1 Test Scenario
	3.3.2 Pre-processing

	3.4 Simple Decision Tree for one flow
	3.4.1 Creating the tree
	3.4.2 Measuring the effectiveness of the tree
	3.4.3 Results

	3.5 Decision Trees for more flows
	3.5.1 Regression Tree for Delay
	3.5.2 Delay Classification tree
	3.5.3 Dynamic Tree

	3.6 Discussion and Limitations
	3.7 Conclusion

	4.0 Software Defined Ambit of Data Integrity for the Internet of Things
	4.1 Introduction
	4.2 Literature Review
	4.2.1 IoT and data Integrity:
	4.2.2 Contextual Integrity:

	4.3 ADI Layers
	4.3.1 Threat Model
	4.3.2 The first layer: Nested Bloom Filter
	4.3.2.1 Formal Preliminaries for Nested Bloom Filter
	4.3.2.2 False Positive Probability for Simple Temporary Bloom Filter
	4.3.2.3 False Positive and Negative Probability for a General Bloom Filter
	4.3.2.4 Analysis
	4.3.2.5 Experiments

	4.3.3 The second layer: Hash Tree
	4.3.3.1 Formal Preliminary for Hash Tree
	4.3.3.2 Analysis

	4.3.4 The third layer: Provable Data Possession
	4.3.5 The fourth layer:Proof of Data Retrievability
	4.3.6 Comparison

	4.4 ADI and Contextual Integrity
	4.5 SDN-SDP Architecture for ADI
	4.6 Evaluation
	4.7 Conclusion

	5.0 Software Defined Ambit of Data Reliability for the Internet of Things
	5.1 Introduction
	5.2 Background
	5.2.1 RACE-Sketch
	5.2.2 Data Retrievability
	5.2.3 Network Coding

	5.3 Summarizing Data with RACE Sketch
	5.4 Data Reliability with Network coding
	5.5 Bayesian Regression
	5.5.1 Bayesian Regression for Data Summarizing
	5.5.2 Bayesian Regression for for Network Coding Erasure code

	5.6 Discussion

	6.0 Conclusion
	6.1 Limitations
	6.2 Future Works
	6.3 Publications

	Bibliography

