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Abstract 

Neural Population Dynamics of Sensorimotor Signals for Eye Movements 

 

Michelle R. Heusser, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

During active vision, we convert information about visual objects in our periphery into 

goal-directed eye movements known as saccades. This process of sensorimotor integration is 

complex; we must incorporate knowledge about our environment, including the spatial location of 

the target object and the urgency of saccade initiation. The superior colliculus (SC) is a deep brain 

structure that is critical for active vision, with most neurons in this area responding to the presence 

of a visual stimulus and increasing their activity to signal for saccade initiation. In the studies 

presented in this dissertation, we characterized the combined activity patterns of small populations 

of neurons in the non-human primate SC across multiple contexts to probe various parameters of 

active vision. We used simple machine learning techniques (i.e., dimensionality reduction and/or 

classification) that quantitatively capture the activity pattern across many simultaneously recorded 

channels. First, we examined the dynamics of population activity during the time between 

sensation and action and found that activity slowly evolves from a visual-like to a motor-like 

pattern when a delay is imposed. This sensorimotor transformation signature is robust to 

perturbations induced by small fixational saccades and is correlated with saccade latency, 

indicative of a potential mechanism for movement generation. Next, we investigated the impact of 

behavioral context on the population-level representation during the sensation and action periods 

of active vision and observed unique encoding of both content (sensation/action epochs) and 

context (two comparable behavioral tasks). Last, we determined the time course and spatial extent 

of intended saccade target direction encoding by SC neural populations in an eight-target delayed 
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saccade task. We compared these profiles with a second signal modality – the local field potentials 

(LFPs), which represent collective activity in a broader region of the SC. Neural spiking activity 

better encoded target direction throughout the time course of sensorimotor integration than did 

LFP signals. Population activity during the motor epoch exhibited broader spatial tuning than in 

the visual epoch, indicative of dynamic encoding of spatial parameters. Taken together, these 

studies provide foundational knowledge of the SC’s role in the process of active vision. 
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1.0 Introduction 

Active vision is a complex behavioral phenomenon. When we see an object in the periphery 

of our visual field, we often make rapid eye movements known as saccades to redirect our line of 

sight to the visual stimulus to project its image on the fovea where visual acuity is the highest. The 

process of converting visual information into a goal-directed eye movement is also called 

sensorimotor transformation. The intricacies of this process in natural settings are perhaps obvious 

– we must take into account the distance and direction of the visual target from our current eye 

position, incorporate our prior understanding or estimation of the object’s identity, and often 

withhold or delay an eye movement when appropriate. The studies presented in this dissertation 

isolate three different aspects of active vision and investigate the manners by which groups of 

neurons in one brain area (henceforth referred to as neural populations) represent their activity 

during the process of sensorimotor transformation. 

1.1 The Superior Colliculus, a Key Player in Active Vision 

The superior colliculus (SC) is a neural structure in the midbrain that is integral to the 

process of converting visual information into an eye movement command. Located close to the 

effectors (i.e., eye muscles), this area is late in the oculomotor circuitry and receives signals from 

almost every structure involved in eye movements (Wurtz et al., 2001). Many SC neurons 

transiently increase their activity level before the onset of a saccade (“motor burst”). Some neurons 

fire in a similar manner following the appearance of a visual stimulus in the periphery (“visual 
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burst”), with the majority of neurons signaling to some degree during both time periods, or epochs 

(Wurtz et al., 2001). Visual, visuomotor, and motor neurons vary along the dorsoventral axis of 

the SC in a continuum, with visual neurons found in the superficial layers, visuomotor neurons in 

the intermediate and deep layers, and motor neurons in the deep layers (Basso & May, 2017; 

Massot et al., 2019). 

Within a single layer (i.e., the plane orthogonal to the dorsoventral axis), neurons in the SC 

are topographically organized – the spatial tuning preferences of neurons are indicated by their 

position along the rostral-caudal and mediolateral axes. Along these axes, neurons that are visually 

responsive fire maximally when a target is presented in the preferred location (i.e., target 

eccentricity and direction, respectively, relative to current eye position), and neurons that are 

motor-related fire similarly when signaling to generate a saccade with their preferred spatial 

parameters (again, to their preferred amplitude and direction, respectively) (Gandhi & Katnani, 

2011). Figure 1 shows this spatial topography. In addition to the strong relationship observed 

between SC activity and the external variables of sensation or action, the SC has also been 

implicated in the processing of cognitive factors such as attention (Lovejoy & Krauzlis, 2009) and 

decision-making (Crapse et al., 2018; Keller et al., 2005). An important advance of the studies 

presented in this dissertation is our population-level approach to linking SC activity to several 

behavioral parameters, as described next. 
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Figure 1. Depiction of SC topography for spatial parameters.  

Left: One layer of the SC and the firing properties of the neurons at different locations on the SC map. Along 

the rostral-caudal axis, neurons vary systematically in their preferred visual target eccentricity, and 

equivalently, in their preferred saccade amplitude. Along the mediolateral axis, neurons vary systematically 

in their preferred visual stimulus direction (measured in degrees of visual angle), and likewise for their 

preferred direction of the executed saccade. Right: The hemifield of visual space to which the left SC is 

related. For a given visual stimulus location or saccade vector (indicated by the black dot and the orange 

arrow, respectively), neurons located at the equivalent region on the SC map are maximally active, with 

surrounding neurons firing sub-optimally, leading to a “Gaussian mound” of activation (represented here by 

concentric rings on the SC map). Figure adapted from Gandhi & Katnani, 2011. 

1.2 Identifying Neural Correlates of Behavioral Phenomena 

Historically, our knowledge of the link between brain areas and behavioral parameters has 

been limited to results obtained from single-unit studies. In these studies, experimenters acutely 

insert a single electrode, find and isolate an individual neuron, and record its spiking activity while 
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the animal performs many repetitions (“trials”) of a behavioral task. This process is repeated for 

tens to hundreds of days to obtain a neural population. The activity is then temporally aligned to 

some event of interest (e.g., visual stimulus appearance) and averaged across many repetitions of 

the behavioral task and across all neurons in the population to identify modulations of activity that 

relate to the parameter of interest (e.g., attention). 

Recently, a dynamical systems approach has taken the neuroscience field by storm. With 

advances in technology, experimenters can record the activity of hundreds (for cortical structures) 

or tens (for deep brain structures) of neurons simultaneously with implanted or acutely inserted 

laminar electrode arrays, respectively. We use this advance to our advantage; instead of averaging 

activity across trials and neurons, we retain and leverage information about the correlational 

structure across all simultaneously recorded neurons that produces a single measure of their 

combined activity patterns throughout single trials (Shenoy et al., 2013). The following subsection 

describes our methodology for this holistic population-level approach to investigating 

sensorimotor encoding properties in the SC. 

1.3 Machine Learning for Analysis of Population Dynamics 

1.3.1 Dimensionality Reduction 

Consider the following hypothetical case – you record the activity of two neurons before 

and after a visual stimulus is flashed in an animal’s periphery. Neuron A increases its activity by 

50 spikes per second (spk/s) while the activity of neuron B is suppressed by 50 spk/s compared to 

its activity rate at rest, or baseline. If the two neurons modulate their activity in (roughly equal 
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and) opposite ways in response to this behavioral parameter, the average activity modulation 

across your population is 0 spk/s. You would not be able to link the combined activity of these 

neurons to a behavioral feature because this averaging measure washes out any effect. If instead, 

the modulation of the two neurons considered above was represented as a vector [50 -50], all 

information about the direction (elevation or suppression of activity) as well as the magnitude 

(amount of activity change in units of spk/s) of the response is retained. Extrapolating to a much 

larger population of N simultaneously recorded neurons, we can think of the population response 

as a vector in an N-dimensional space. The pattern of responses across all neurons is much more 

likely to be informative about the neural responses underlying motor control than is an averaging 

measure. But how can we represent this population activity pattern in a simple and intuitive way? 

It is hard to think in N-dimensional spaces. However, it is easy to picture that there are fewer 

degrees of freedom in the population response than there are neurons if we realize that these 

neurons are all connected in a network. For example, if the animal repeats the same eye movement 

a few times, the neural population response won't be exactly [50, -50] each time; there will be 

some variability. But again, because the neurons in question are part of the same network, their 

variability will shared – that is, not independent. This is where dimensionality reduction comes in. 

When applied to neural data, dimensionality reduction algorithms provide a summary of 

population activity by finding weighted linear combinations of neurons that relate to the largest 

amount of shared variability in neural activity across trials. 

In recent years, the field has harnessed these intuitions to capture low-dimensional structure 

in neural population responses – responses that often exhibit temporal dynamics, just as in many 

other physical or engineered systems. Many research groups will first reduce the dimensionality 

of their neural data through one of many possible algorithms (e.g., principal components analysis 
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or factor analysis) and study the activity pattern in the resulting low-dimensional “state space” (see 

Figure 2). The temporal evolution of the activity position is indicative of the activity pattern 

modulation surrounding behavioral events of interest. In Chapters 2 and 3, we applied this concept 

to study the patterns of population activity in the oculomotor system during a sensorimotor 

behavioral task. More specifically, we utilized an algorithm called Gaussian Process Factor 

Analysis (GPFA), which concurrently optimizes the low-dimensional state space parameters and 

the amount of smoothing appropriate for the input activity (Yu et al., 2009). 
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Figure 2. Schematic of dimensionality reduction for population-level analysis of SC activity.  

Left: Representative neural activity profiles across SC depth (from the superficial layers at top to the deeper 

layers on bottom) aligned to the onset of a visual stimulus and to saccade onset during a simple behavioral 

task. Top right: After dimensionality reduction, a smaller number of latent factors have been identified. Each 

factor represents a linear summary of neural activity across all recorded channels. Bottom right: Latent 

activity in three dimensions plotted against each other rather than against time. This state-space 

representation allows for visualization and analysis of the activity pattern across the entire population at any 

given time. Figure adapted from Figure 4 in Chapter 2, and additional details can be found there. 

1.3.2 Offline Decoding 

Decoding is another machine learning technique useful for characterization of population 

activity patterns. Decoding was first introduced in the context of neural prosthetics, where the 
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desire is to infer, or "decode," the movement intentions of a paralyzed person from their neural 

activity alone. Offline decoding algorithms, one version of which are classifiers, are often used as 

a tool to quantify the amount of information encoded by neural activity in relation to external 

parameters. In other words, the more distinct the neural activity patterns are across two or more 

conditions (for example, looking rightward vs. looking leftward), the more accurate the classifier 

will be at categorizing novel activity patterns as correctly belonging to a given condition, and thus, 

the more information (e.g., about target direction) is assumed to be encoded by the neurons. In 

Chapters 2 and 3, we implement a simple linear discriminant analysis (LDA) classifier to quantify 

the uniqueness of dimensionality-reduced population activity patterns in the SC between two 

epochs (sensation and action) and between two behavioral tasks (the delayed saccade task and the 

gap task). In Chapter 4 we extend the classification of population activity patterns to eight 

categories, each representing activity evoked for trials to a particular saccade target direction. From 

this simple classification method, we characterized the time course of spatial information encoding 

in SC signals throughout a sensorimotor task. 

1.4 Dissertation Structure 

In this dissertation, I examine how small populations of neurons in the primate SC encode 

sensorimotor, contextual, and spatial parameters during behavioral tasks in which visual 

information is converted into a goal-directed eye movement. Chapter 2 characterizes the time 

course of sensorimotor transformation signals present in SC neural populations and their 

relationship to movement preparation. Chapter 3 addresses the ways in which neural populations 

vary their activity patterns under two behavioral contexts. Chapter 4 challenges our existing notion 
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that SC neurons in isolated areas on the SC topographic map lack information about spatial 

parameters across a large range of the visual field. The dissertation concludes in Chapter 5 with a 

summary of our findings and a look into future lines of research that could stem from these studies.  
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2.0 Drifting Representation with Transient Resets Characterizes Sensorimotor 

Transformation in the Monkey Superior Colliculus  

This work was submitted as a manuscript: Heusser MR, Jagadisan UK, Gandhi, NJ. “Drifting 

representation with transient resets characterizes sensorimotor transformation in the monkey 

superior colliculus” (In Review) 

2.1 Overview 

To produce goal-directed eye movements known as saccades, we must channel sensory 

input from our environment through a process known as sensorimotor transformation. The 

behavioral output of this phenomenon (an accurate eye movement) is straightforward, but the 

coordinated activity of neurons underlying it is not well understood. We searched for a neural 

correlate of sensorimotor transformation in the activity patterns of simultaneously recorded 

neurons in the superior colliculus (SC) of rhesus monkeys performing a standard delayed saccade 

task. Neurons in its intermediate layers produce a burst of spikes both following the appearance of 

a visual (sensory) stimulus and preceding an eye movement command, but many also exhibit a 

sustained activity level during the intervening time (“delay period”). Each session’s population 

activity was summarized in a low-dimensional framework and assessed on a scale of visual- to 

motor-like throughout the delay period using a novel measure we call the Visuomotor Proximity 

Index (VMPI). On average, population activity slowly evolved from a more visual- to a more 

motor-like pattern throughout the delay period, but microsaccade perturbations transiently 
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deviated it to a visual-like pattern. A correlation was also found between the VMPI and single trial 

saccadic reaction time, even hundreds of milliseconds before the cue to initiate a movement. 

Therefore, we conclude that SC population activity contains a neural signature of the sensorimotor 

transformation process, systematically drifting toward a motor-like representation and 

intermittently reverting to a visual-like representation following a microsaccade. 

2.2 Introduction 

Sensorimotor transformation is the framework by which our brains process sensory input 

and subsequently produce a motor command. Its functionality is easily appreciated in the 

oculomotor system – when we see an object in our periphery, we can promptly direct our line of 

sight to that target. However, at what times are the neural populations representing the presence of 

a visual target through their coordinated activity? At what times are they collectively producing a 

signal that more closely resembles a motor command? And how does the population response 

transition from sensory to motor representations? 

The superior colliculus (SC) is a midbrain structure crucial for sensorimotor transformation 

(Basso and May, 2017; Cooper and McPeek, 2021; Gandhi and Katnani, 2011; Sajad et al., 2020; 

Wurtz and Optican, 1994). Neurons in its deeper layers emit strong bursts of activity both when a 

visual stimulus appears as well as when a high-velocity eye movement, known as a saccade, is 

generated to redirect gaze toward that object of interest. These putative “visual” and “motor” bursts 

are well characterized but the time course of integrating visual stimulus-related information into a 

motor command is not understood as well. Previous research on sensorimotor integration in the 
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oculomotor system has relied on single unit studies. These studies have focused on reference frame 

transformations, with the objective of determining whether the temporally evolving neural activity 

better represents stimulus location or movement amplitude. The general result is that, immediately 

after stimulus presentation, the sensory response is encoded in the reference frame of the stimulus 

modality – oculocentric for vision and craniocentric for audition. Just prior to the movement onset, 

the activity is best represented as a motor command in eye-centered coordinates or in a hybrid 

reference frame. In the intervening delay period, the average activity shows a slow and systematic 

transition from sensation to action representations, one which is sped up when no delay period is 

imposed. Such findings have been reported in the SC (Lee and Groh, 2012; Sajad et al., 2020; 

Sadeh et al., 2020), frontal eye fields (Caruso et al., 2018b; Sajad et al., 2016), parietal cortex 

(Buneo et al., 2002; Mullette-Gillman et al., 2005), and supplementary eye fields (Bharmauria et 

al., 2021). We sought to characterize at a population level the moment-by-moment representation 

of SC activity between sensation and action. We labeled the transient burst representations that 

follow target onset and precede saccade onset as 'visual' and 'motor' subspaces, respectively, while 

remaining agnostic to their preferred coordinate system. We then sought to determine how the 

population activity during the delay period transitioned between the two representations. This 

approach provides a more unsupervised yet still direct understanding of how SC populations 

encode these features. To this end, we searched for a neural correlate of sensorimotor 

transformation in small populations of SC neurons by characterizing the “visual-like” or “motor-

like” pattern of activity during the intervening period of time between the visual and motor bursts 

while rhesus monkeys (Macaca mulatta) performed a visually-guided delayed saccade task (Figure 

3). This paradigm temporally separates the visual from the motor epoch through a “delay period” 

and has been previously employed in countless studies of cognition, sensation, and motor behavior. 
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To characterize the shared activity patterns of neural populations, machine learning 

methods such as dimensionality reduction have been utilized to investigate the dynamics of neural 

activity underlying cognitive or behavioral processes such as stimulus encoding (e.g., Cowley et 

al., 2016), decision making (e.g., Aoi et al., 2020), and movement execution (e.g., Churchland et 

al., 2006). Such techniques transform the activity across the population into a state-space 

framework, where the pattern at any given moment can be represented as a linear combination of 

the activity of individual neurons. This methodology offers a noise-reduced, better-visualizable 

trajectory of activity across consecutive time points (Cunningham and Yu, 2014). Here, we 

employed a dimensionality reduction algorithm called Gaussian Process Factor Analysis (GPFA, 

Yu et al., 2009), to characterize the time course of population-level representations as they relate 

to vision and saccadic eye movement. First, we used a linear discriminant analysis (LDA) classifier 

to determine if the “subspaces” formed by collective activity patterns during the visual and motor 

epochs were distinguishable from each other and found that for the bulk of neural populations, this 

was indeed the case. Exploiting this separability, we then computed the similarity of the activity 

patterns throughout the delay period to either the visual or the motor subspace through a 

Visuomotor Proximity Index (VMPI) (based on the proximity index in Dekleva et al., 2018). When 

looking across repetitions of the task, activity patterns exhibited a slow, systematic drift from a 

visual- to a motor-like pattern. Remarkably, whenever a microsaccade occurred during the delay 

period, the population activity pattern transiently deviated to a visual-like representation before 

rapidly returning to the original trajectory. Finally, we tested an existing theory of arm movement 

generation known as the “initial condition hypothesis” (Afshar et al., 2011) and found that the 

state-space position of the activity on a given trial was correlated with the eventual saccadic 
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reaction time, a relationship that emerged even hundreds of milliseconds before the cue to initiate 

a movement. 

This study extends our knowledge of the SC’s role in sensorimotor transformation through 

both a network-level analysis of neural activity across sensorimotor epochs as well as a direct 

investigation of the relationship between this intermediate activity and behavior. Taken all 

together, these findings indicate that 1) there is a neural signature of the sensorimotor 

transformation process present in SC populations that can be characterized by a slow drift with 

transient resets, and that 2) activity patterns that drift to a stronger motor-like representation by the 

end of the delay period may enable a more rapid initiation of a saccade, substantiating the idea that 

this movement initiation mechanism is conserved across motor systems. 

2.3 Methods 

2.3.1 Subjects and Surgical Approach 

Three adult male rhesus monkeys (Macaca mulatta; monkeys BL, BB, and SU) were used 

for this study. The experimental protocol was approved by the University of Pittsburgh 

Institutional Animal Care and Use Committee. Each animal underwent a sterile surgery under 

general anesthesia to implant a cylindrical recording chamber (Narishige) positioned above a 

craniotomy that allows access to the SC. A Teflon-coated, stainless-steel wire was also implanted 

on one eye in some animals. Surgical methods are described in more detail in Jagadisan & Gandhi, 

2016. 
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2.3.2 Visual Stimuli and Behavioral Paradigm 

Stimulus presentation and the animal’s behavior were under real-time control with a 

LabVIEW-based controller interface (Bryant & Gandhi, 2005). All stimuli were white squares, 

4x4 pixels subtending approximately 0.5°, displayed against a dark grey background on a LED-

backlit flat screen monitor. Eye position was recorded using the scleral search coil technique (CNC 

Engineering) or using an EyeLink 1000 eye tracker (SR Research), both sampled at 1 kHz.  

Each monkey was trained to sit head-restrained in a primate chair and perform a standard 

delayed saccade task in a dimly lit room. To complete a successful trial of this task, the monkey 

fixated on a visual stimulus located in the center of the screen and maintained fixation while a 

visual target was presented in the animal’s periphery. After a variable delay period (600-1200 ms 

for monkeys BL and BB, and 700-1500 ms for monkey SU, weighted to maintain a flat anticipation 

function), the fixation point was extinguished, serving as the animal’s “go cue” to make a saccadic 

eye movement to the target. The animal had to make a saccade to the peripheral target within 460-

800 ms and was required to maintain fixation on it for 300 ms to receive a liquid reward. The 

monkeys performed this task with high accuracy before recording sessions began. Thus, we limited 

our analyses to rewarded trials only. 

2.3.3 Electrophysiology and Data Pre-processing 

On each recording session, a 16- or 24-channel linear microelectrode array (Plexon or 

AlphaOmega) was inserted orthogonal to the SC surface along the dorsoventral axis. Neurons 

recorded using this approach had similar preferred saccade vectors as determined by 

microstimulation (Massot et al., 2019). Care was taken to position the electrode in a way that 
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maximized the yield of neurons exhibiting both visual and motor bursts, and thereby tended to be 

positioned in the deeper SC layers.  

On each given trial, the target presented in the animal’s periphery could be located near the 

center of the response field of the recorded neurons (as determined by microstimulation) or in the 

diametrically opposite position with a 2:1 ratio of occurrence. Only correct trials in which the 

target was presented in the recorded neurons’ response field were included in analyses, and all 

analyses were performed separately for each neural population. Trials were further limited to only 

those with saccadic reaction times of greater than 100 ms to remove potential “cheat” trials. Unless 

otherwise specified, all analyses were performed using MATLAB 2019a (MathWorks) with 

custom code.  

Spike times on each channel were first obtained offline using a voltage thresholding 

method. Each channel’s spiking activity was then manually sorted into single units before 

continuing with analyses (using MKsort, a spike-sorting user interface, Ripple Neuro), and the 

low-dimensional representations of population activity are quite similar (see Figure 14). This is in 

line with previous work demonstrating that spike sorting has a negligible effect on the message of 

studies that focus on low-dimensional dynamics of population neural activity (Trautmann et al., 

2019). Therefore, throughout the text we present results from spike-sorted neural activity but think 

of units (neurons) and multiunits (channels) as interchangeable. A total of 27 sessions were 

obtained and included in this study. 

2.3.4 Dimensionality Reduction 

In order to analyze the spiking patterns across the entire population, we utilized a 

dimensionality reduction method called Gaussian-process factor analysis, or GPFA (Yu et al., 
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2009). In short, this method converts spiking activity from a neural population into a lower-

dimensional continuous “neural trajectory,” where each dimension represents a weighted linear 

combination of neurons.  

To perform GPFA, we used DataHigh (Cowley et al., 2013), a publicly available MATLAB 

code package for visualizing and reducing dimensionality of high-dimensional neural data. For a 

given session of laminar electrode data, all channels’ spike times were first converted into spike 

trains aligned on target onset. Spike counts were grouped into non-overlapping bins of 20 ms 

width. Each observation includes data from one trial of the delayed saccade task beginning 200 ms 

before target onset and continuing through 200 ms post-saccade. This matrix is of size N channels 

x T time bins for each trial, with the latter dimension having a variable length. The GPFA algorithm 

returns a set of latent activity values summarizing the activity pattern across the population for 

each trial (matrix of L latent dimensions x T time bins for each trial). A cross-validation procedure 

was performed to determine the optimal number of reduced dimensions. The optimal 

dimensionality for each found via cross-validation was typically low (one to three). A final 

dimensionality of three was chosen for the sake of consistency across sessions and for ease of 

visualization in a 3D state space, as described next. 

2.3.5 Defining Subspaces and Computing Proximity 

The term “subspace” does not have a widely agreed-upon definition; some groups call each 

factor returned by dimensionality reduction a subspace in which latent neural activity could be 

varying (e.g., Kaufman et al., 2014) while others define new axes and focus on the variable activity 

along that dimension (e.g., Kobak et al., 2016; Libby & Buschman, 2021) or project activity onto 

an axis, plane, or hyperplane contained within a higher-dimensional space (e.g., Aoi et al., 2020; 
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Semedo et al., 2019). Here, we more loosely define a subspace as a distinct region in a low-

dimensional state space occupied by neural activity during a specified condition (as in Churchland 

et al., 2006). The two main conditions here are “visual,” or 100 to 200 ms after target onset (around 

the time of the putative visual burst) and “motor,” or 120 ms to 20 ms before saccade onset (around 

the rising phase of the putative motor burst, and not including activity from after the latest time it 

is likely related to saccade initiation; see (Gandhi & Keller, 1999; Jagadisan & Gandhi, 2017; 

Miyashita & Hikosaka, 1996; Smalianchuk et al., 2018). A baseline condition was also defined, 

and this includes activity from 100 ms before target onset up to the time of target onset. These 

comprise the visual, motor and baseline subspaces, respectively. 

For Figure 5, linear discriminant analysis (LDA) was performed to find the 2D projection 

that best separates visual and motor subspaces from each other. For each session, a two-class 

(“visual” and “motor” categories) linear discriminant classifier was trained and tested using a 10-

fold cross-validation procedure. Only sessions for which the population activity was sufficiently 

separable between the visual and motor epochs (>70% classification accuracy rounded to the 

nearest integer, see Figure 5D) were further analyzed, leaving 22 sessions that met this criterion. 

Given that the visual and motor activity (cyan and orange points, respectively) form distinct 

subspaces, we can use these as reference distributions against which to compare activity from time 

points throughout the course of each trial. We utilized a measure known as the proximity index, 

introduced by Dekleva et al., 2018. In short, the proximity index is a probabilistic measure that 

indicates the relative likelihood that a point of activity is closer in state space to a particular cluster 

than any other comparison cluster. For a single time bin of latent activity S, its proximity to the 

visual or motor cluster (VPI or MPI, respectively) is given by: 

𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑆, {𝐶𝑖}) =
𝑃(𝐷𝑀(𝑆, {𝐶𝑖})|𝑖)

∑ 𝑃(𝐷𝑀(𝑆, {𝐶𝑖})|𝑗)
3
𝑗=1
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where {𝐶𝑖} is the cluster of latent activity points during one of three reference conditions, 

denoted by 𝑖 and 𝑗 (here: visual, motor, or baseline) and 𝐷𝑀(𝑆, {𝐶𝑖}) is the Mahalanobis distance 

between the point S and cluster {𝐶𝑖}. The VPI is formed when 𝑖 =visual activity (and 𝑗 =motor and 

baseline) and likewise, the MPI is formed when 𝑖 =motor activity. The VPI and MPI are 

normalized to the range [0, 1].  

Since visual and motor proximity indices must be computed separately and result in two 

yoked values, we defined a visuomotor proximity index (VMPI) that can range from −1 to +1 

and gives the relative proximity value of a point of activity to either the visual (−1) or motor (+1) 

subspace:  

𝑉𝑀𝑃𝐼 =
𝑀𝑃𝐼 − 𝑉𝑃𝐼

𝑀𝑃𝐼 + 𝑉𝑃𝐼
 

For Figure 6, the VMPI was computed for all non-overlapping 20 ms bins of latent activity 

throughout the time course of each trial. Activity from the baseline condition was treated as a third 

cluster to allow for the possibility of delay period activity existing in a completely different 

subspace than either the visual or motor subspaces, although proximities to this cluster are 

unimportant and hence not shown. It is also important to note that the absolute VMPI value ranges 

are inconsistent across populations (e.g., Figure 8A), but this does not matter for our study. Only 

the dynamics in the VMPI trace over the course of the delay period are of interest; thus, in Figure 

8B-C and Figure 9B-C each population’s VMPI trace was mean-subtracted to allow for a better 

comparison of sensorimotor transformation across populations. 
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2.3.6 Detecting Microsaccades and Aligning Proximity to Microsaccade Onset 

All microsaccades that occurred during the delay period of each trial were detected offline. 

A 20 ms moving average of the eye velocity was taken, and a speed threshold of 5 to 15 deg/s was 

applied depending on noise level in the eye position signal. Saccades greater than 2 degrees in 

amplitude were rejected. Individual trials were manually evaluated to confirm correct automatic 

detection. Sessions were included in the following analysis if there were at least 20 trials in both 

the “one or more microsaccades” and “no microsaccades” conditions. One monkey (BB) did not 

consistently produce microsaccades during the delay period, as we have reported previously 

(Jagadisan & Gandhi, 2016). Hence, we could only include data from one session for this monkey 

using the above criteria. Monkeys BL and SU had five and eight sessions that met the above 

criteria, respectively, for a total of 14 sessions included in this set of analyses. 

To determine the effect of microsaccades on the population activity pattern, we aligned the 

VMPI to microsaccade onset for trials in which at least one microsaccade was detected during the 

delay period. As a control analysis, we also aligned the VMPI to a pseudo microsaccade onset time 

for trials in which there was no microsaccade detected. For each trial, this alignment time was 

created by selecting a random time from the distribution of microsaccade onset times in trials with 

a microsaccade (Figure 9A-B). As in Figure 8, each population’s trace was mean-subtracted to 

better compare trends across sessions.  
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2.3.7 Computing Relationship Between Population Activity Patterns and Behavioral 

Metrics 

To examine whether the position in state space is related to the end behavior (i.e., saccade), 

we computed the correlation between the VMPI value at the animal’s go cue and the eventual 

saccadic reaction time (RT) on that trial. We also asked if the position of the activity even leading 

up to the go cue was correlated with the end behavior. For this analysis, we worked backwards to 

compute the correlation coefficient of every 20 ms bin of activity with the saccadic reaction times 

on their respective trials. Values were tested for significance using a Wilcoxon rank sum test. 

We also employed a similar approach developed by Afshar et al., 2011, that only utilizes 

information about the putative motor subspace rather than the visual subspace. In this framework, 

one can ask whether the distance traveled along the mean neural trajectory at the end of the delay 

period (equivalently, at the time of the animal’s go cue), correlates with the saccadic RT on that 

trial. These methods have been described previously and were followed as closely as possible. In 

short, on a single trial, a vector of spike counts across the population starting at the time of go cue 

and going forward some short time in the future (dt=100 ms) is created. This vector is projected 

onto the vector created by mean values across all trials to obtain a projection value α (see Figure 

10 inset). A correlation coefficient value between saccadic reaction time and this projection value 

was obtained for each session. To compute the correlation between activity prior to the go cue and 

the end behavior, we used the same value of dt (100 ms) but worked backwards to compute the 

median correlation coefficient of every 20 ms bin of activity with the RTs on their respective trials, 

as in the VMPI – RT correlation analysis. Of note, unlike all other results presented in this paper, 

this analysis was performed on spike-sorted but not dimensionality-reduced neural activity for a 

more direct comparison of findings across brain areas. 
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2.4 Results 

In this study, we aimed to characterize delay period activity as exhibiting a visual- or 

motor-like signal and explored the relationship between this activity and the motor behavior to 

better understand the neural correlates of sensorimotor transformation in the SC. Neural activity 

from small populations of neurons was recorded simultaneously with multi-contact laminar probes 

traversing the dorsoventral axis of the SC as rhesus monkeys performed a delayed saccade task 

(Figure 3A-B). Data are examined from 27 recording sessions and limited to the subset of trials 

for which the visual stimulus and subsequent saccade were directed near the center of the response 

field. For electrode penetrations orthogonal to the SC surface, as we used here, all neurons recorded 

in a single session have comparable response fields, and care was taken to drive the electrode to 

the intermediate layers to capture mostly visuomotor neurons (i.e., those having both visual- and 

a motor-related increases in activity). A 24-channel laminar electrode was used for 15 of the 

sessions and a 16-channel electrode for the other 12 sessions. Spike sorting was performed and 

resulted in 12.3 (±3.3, range [7,19]) neurons per track, or population, on average. Across all 27 

sessions, a total of 331 neurons were recorded. 
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Figure 3. Schematic representation of behavioral task and neurophysiological preparation used in this study. 

Standard event sequence in the delayed saccade task. Top – The animal fixates on a central point (shown as a 

plus sign in this illustration). A target (black square) appears in the periphery for a variable “delay period.” 

The dynamics of sensorimotor transformation were analyzed during much of the delay period. The 

disappearance of the fixation point acts as the go cue to generate a saccade toward the target. Center of gaze 

is depicted in all snapshots as a dotted cone. Bottom – A typical timeline of key events in a single trial of this 

task. B. In each experiment, a linear multielectrode array with 16 or 24 recording contacts was acutely 

inserted orthogonal to the SC surface along the dorsoventral axis to obtain a neural population 

representation as monkeys performed the delayed saccade task. Figure adapted from Jagadisan & Gandhi, 

2022. 

2.4.1 Visual and Motor Subspaces are Separable 

We started by plotting for all contacts the average spike density profiles aligned on target 

and saccade onsets. We also separated the delay period from the transient visual burst, as shown 

for one session in Figure 4A. We then applied GPFA (Yu et al., 2009) to compute the latent activity 

patterns during these epochs (Figure 4B). For most datasets (23/27), including this one, the top 3 

factors accounted for at least 95% percent of the variance in the spike density profiles (Figure 4D). 
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Thus, we limited our analysis to 3 dimensions, which also facilitated visualization. Moreover, 

instead of plotting the factors as a function of time, the low-dimensional activity can be illustrated 

in a three-dimensional state space, in which a single point denotes activity across the population 

taken from a 20 ms window from one trial (Figure 4C). This framework, on which we base our 

first set of analyses, allows an assessment of the regions, or “subspaces,” where the activity resides 

during the various epochs of the trial. 
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Figure 4. Analysis of neural population activity in a state space framework allows for an evaluation of 

subspace separability.  

A. Trial-averaged firing rates across electrode depth are shown for one example session. Multiunit activity on 

each of 16 channels is plotted aligned to target onset (left and middle) or saccade onset (right). Each epoch 

window is defined by a vertical rectangle (baseline in gray, visual in cyan, delay in purple, and motor in 
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orange). Delay period activity was defined to start 240 ms after target onset, by which time the transient 

visual response had subsided. B. Latent population activity after dimensionality reduction using Gaussian 

Process Factor Analysis (GPFA) for the same example session after spike sorting into 12 single units. In each 

of the three panels, each trace is the trial-averaged (± one standard deviation) latent activity magnitude, 

plotted using the same alignment and epoch definitions as in (A). C. Latent activity represented in state space 

for the same example session. Latent activity during each of the four colored epochs are plotted as three-

dimensional data points (each 20 ms bin has a magnitude along Factors 1, 2, and 3). Each dot represents the 

summary of the population activity pattern in a single 20 ms window; thus, a single trial contributes multiple 

points, even within the same epoch. D. Amount of covariability across neurons explained by lower-

dimensional models compared to the full GPFA model. Each session is represented by a single trace. The 

majority of sessions have a high amount of shared variance explained by only one to three factors; thus, we 

retain the first three latent dimensions for each session. 

 

In order to justify our comparison of delay period activity against two sets of activity, we 

first need to demonstrate that the activity patterns produced during the visual and motor epochs 

are distinct. Figure 5A-C shows the separability of the visual (100 to 200 ms after target onset) 

and motor (120 to 20 ms before saccade onset) latent activity patterns for three example datasets. 

By eye, the two subspaces are highly separable for these populations, and this separability was 

confirmed using linear discriminant analysis classification (Figure 5D). Across sessions, the mean 

classification accuracy was 82.7% (±11.3%), significantly above chance level of 50% (one-tailed 

t-test). This accuracy was not significantly different when considering multiunit activity (i.e., prior 

to spike sorting, see Figure 14). Our subsequent analyses required a high level of separability 

between the visual and motor subspaces. We used a minimum classifier accuracy of 70% as our 

cutoff criterion, which reduced our yield to 22 datasets. 
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Figure 5. Visual and motor activity are linearly separable in state space for SC neural populations. 

A. Subspaces formed by latent activity patterns during the visual (cyan) and motor (orange) epochs for one 

example session. Time windows used for both epochs and a description of each data point are described in 

Figure 4. The gray shade indicates the plane of maximal separability as determined by linear discriminant 

analysis (LDA). The cross-validated classification accuracy of visual and motor points for this example 

session is also reported. B-C. Same as in (A) but for two additional example sessions. D. Histogram of linear 

discriminant classifier cross-validated accuracy in distinguishing visual from motor patterns across all 27 

sessions. Only sessions with accuracy values of 70% or better were used in analyses that assume high 

separation between visual and motor subspaces, leaving 22 sessions for future analyses. 

2.4.2 A Gradual Evolution from Visual to Motor Subspace Occurs During Sensorimotor 

Transformation 

Once we established that visual and motor activity subspaces are separable, we wanted to 

examine the evolution of latent activity patterns throughout the delay period to determine if there 
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is a consistent trend in the activity pattern from a visual-like representation to a motor-like 

representation. We utilized a Visuomotor Proximity Index measure (VMPI, see Methods) to 

compute the similarity of the population activity pattern during small windows of time to the visual 

and motor subspaces (Figure 6). As expected, the VMPI is very close to the visual subspace during 

the visual epoch (cyan shade), to the motor subspace during the movement epoch (orange shade), 

and in-between during the delay period (purple shade).  

To evaluate the evolution of population activity in sensorimotor transformation, we plotted 

the VMPI during the delay period for all sessions before (Figure 8A) and after (Figure 8B) 

subtracting the mean of the first ten time bins for each session. These traces were then averaged to 

compute the session-averaged VMPI shown in Figure 8C. This trace reveals a slow, ramp-like 

progression of activity toward a motor-like representation as time in the delay period progresses. 

The monotonic trend was small but highly statistically significant (p<0.001, Mann-Kendall test), 

suggesting that the neural activity pattern slowly and systematically drifts toward a motor-like 

representation. The evolution of VMPI was highly variable across trials, exhibiting unique but 

noisy dynamics on individual trials (see two example sessions in Figure 7). Therefore, this 

monotonic trend only became evident when trial-averaging. 
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Figure 6. A Visuomotor Proximity Index (VMPI) can characterize the evolution of sensorimotor 

transformation.  

Mean (± one standard deviation) VMPI values across trials for the same example session as Figure 4. The 

three panels also obey the same alignment and color scheme. A value closer to +1 indicates similarity of 

activity to a motor pattern and a value closer to -1 indicates that activity is more similar to the activity 

pattern produced during the visual epoch. VMPI values are by design limited to the range [-1,1]. The 

evolution of VMPI across the delay period (purple shaded rectangle) give insights into the representations of 

SC population activity between the visual and motor epochs. 
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Figure 7. Single-trial delay period VMPI dynamics are highly variable.  

A. TOP: VMPI values on individual trials (gray) of an example session (same as Figure 3 and Figure 6) after 

removing trials in which a microsaccade was made during the delay period. The across-trial median trace is 

shown in black. All traces have been smoothed with a 5-point moving average filter. BOTTOM: Individual 

trials from the same example session, subsampled from the entire pool of no-microsaccade trials and 

individually colored to highlight the across-trial variability in the VMPI trace. B. Same as (A) but for a 

second example session. Here, the range of VMPI values around the across-trial median is much smaller, yet 

a similarly broad range of dynamics is observable in single trials.  

2.4.3 Microsaccades Transiently Revert Delay Period Activity Toward Visual Subspace 

Microsaccades are rapid eye movements with kinematics resembling those of larger 

saccades but characterized by their small magnitude (less than ~2 degrees) and are frequently 

observed during fixational periods, including the delay period studied here (e.g., Hafed et al., 2015; 
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Jagadisan & Gandhi, 2016; Peel et al., 2016). Therefore, we questioned if microsaccades that 

occurred during the delay period produced perturbations in the neural activity pattern that impacted 

the monotonic trend observed in Figure 8C. Microsaccades were detected offline (see Methods), 

and for sessions with a sufficient number of trials with microsaccades (N=14), trials in which at 

least one microsaccade occurred at any point during the delay period were separated from those 

trials in which no microsaccade was made.  

 

 

Figure 8. Trial-averaged neural activity slowly drifts from a visual- to a motor-like pattern.  

A. Trial-averaged Visuomotor Proximity Index (VMPI) value across the delay period for the 22 sessions with 

>70% accurate separability between the visual and motor clusters. Each session is represented as a single 

trace. B. Same as in (A) but with VMPI traces de-meaned for each session separately based on the first ten 

time bins. This allows us to average the VMPI traces across sessions to generate an across-session 

representation of the evolution of activity from the visual to motor subspace throughout the delay period, as 

shown in panel (C). There is a small but highly statistically significant, monotonic trend (p<0.001, Mann-

Kendall test) from a more visual- to a more motor-like pattern throughout time in the delay period, indicative 

of a sensorimotor transformation signature. 

 

Interestingly, when we aligned the VMPI value on microsaccade onset (microsaccade 

trials) or a semi-random delay period time (non-microsaccade trials, see Methods), we found a 

large and consistent effect, as illustrated in Figure 9A for an individual session’s data and Figure 
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9B as an across session average. Beginning approximately 50 ms after microsaccade onset, the 

VMPI deviated toward the visual subspace, indicating a pronounced shift toward a visual-like 

representation that resolved over roughly the next 100 milliseconds. This aligns well with the idea 

that microsaccades serve to refresh information about the visual stimulus in the SC by jittering the 

target location on the retina (Khademi et al., 2020). However, at no time in the delay period was 

there a significant difference between the VMPI values for session-averaged microsaccade and no-

microsaccade conditions (Figure 9C), indicating that the transient microsaccade-induced 

perturbation of the activity pattern on individual trials did not affect the slow, systematic drift 

observed on average throughout the delay period. 

We decided to “zoom out” and see if this visual-like signature following a microsaccade 

was observable not only at the population level, but at the single neuron level. Figure 9D shows 

the trial-averaged firing rates of individual units aligned to microsaccade onset for two example 

sessions. For the session on the left, the more superficial units – those that typically exhibit a visual 

burst – clearly increase their firing rates following a microsaccade, consistent with the population-

level analysis. This firing rate modulation of superficial units is nowhere near as pronounced for 

the example session on the right, yet the population-level measure we employed (i.e., VMPI) was 

able to easily pick up on a change in representation following a microsaccade (compare VMPI in 

Figure 9A with same session’s individual neuron dynamics in Figure 9D right panel). We probed 

this effect further by correlating across all neurons and sessions the post-microsaccade firing rate 

with the visual burst evoked when a stimulus is presented in the response field (Figure 9E, 

R2=0.64), the motor bursts generated for a saccade to that location (Figure 9F, R2 ≈0), and each 

neuron’s traditional visuomotor index (see Methods; Figure 9G, R2=0.34). The moderately strong 

relationship between visual activity and activity following a microsaccade confirms that the 
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transient reset toward the visual subspace seen in Figure 9B in large part arises due to a strong 

transient increase in the activity of neurons in the population that have a visual burst. 

 

 

Figure 9. Single-trial population neural activity transiently reverts towards a visual pattern after a 

microsaccade.  

A. VMPI values on individual trials (gray) of an example session (same as Figure 4 and Figure 6) in which 

one or more microsaccades were detected during the delay period, with the median trace shown in black. 

VMPI values are aligned to microsaccade onset time, regardless of the absolute time in the delay period the 

microsaccade occurred. On average, the VMPI value dips toward a visual-like pattern ~50 ms following a 
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microsaccade. B. Session-averaged, de-meaned VMPI values (mean in black ± one standard error of the mean 

in gray, as in Figure 8C) aligned to microsaccade onset (solid lines) or pseudo-microsaccade onset on non-

microsaccade trials (dashed lines, see Methods). The population activity pattern significantly and transiently 

deviates from the pattern produced on non-microsaccade trials starting around 50 ms and returns to match 

the pattern produced on non-microsaccade trials by 170 ms (Wilcoxon rank sum test, p<0.05). C. Same setup 

as in Figure 8C, with de-meaned, session-averaged VMPI values throughout the delay period plotted for two 

groups of trials – all trials (solid lines) and trials in which no microsaccade was detected during the delay 

period (dashed lines). The two traces never significantly differ from each other (Wilcoxon rank sum test), 

demonstrating that the presence of microsaccades on some trials does not affect the interpretation of Figure 

8C. D. Trial-averaged firing rates of individual neurons aligned to microsaccade onset for two example 

sessions. Each unit is offset vertically based on the channel on which it was recorded (hence, the example 

session on the right has two units shown on one channel and no units shown on another, as indicated by 

diagonal shading). For many sessions, the superficial neurons burst following a microsaccade, although in 

some sessions – such as the example session on the right – it is difficult to appreciate any activity change 

following a microsaccade when looking at individual neuron firing rates. Still, even for these sessions, there is 

a population-level transient shift in representation toward a visual-like pattern (see same example session in 

(A)). E. Neurons with a visual response exhibit increased activity levels following a microsaccade. Each point 

represents a single neuron from a single session. F-G. Same setup as in (E) but for the relationship between 

peak activity around saccade onset (F) or visuomotor index (G) and the peak firing rate following a 

microsaccade. There is no correlation between the level of motor-related and microsaccade-related firing 

rates, and there is a lower correlation between the relative visual and motor properties of neurons (using 

Visuomotor Index, VMI, as a proxy) and microsaccade-related activity than when only the strength of the 

visual burst is considered (i.e., E). 

2.4.4 Sensorimotor Transformation Process is Predictive of Reaction Time 

We show above that on average, SC activity slowly drifts toward a motor-like 

representation throughout the delay period. This prompted us to ask if the magnitude of this drift 
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on each individual trial was related to the animal’s ability to rapidly initiate an eye movement on 

that trial. We hypothesized that the higher the VMPI at a given time in the delay period (and 

therefore the larger the drift), the less time it would take the monkey to initiate the saccade after a 

cue to initiate movement (“go cue”) was given on that trial. Figure 10A shows the correlation 

coefficients between the VMPI value at time windows leading up to the animal’s go cue and the 

eventual saccadic reaction time (RT). At the time of the go cue to make an eye movement (time=0 

ms, rightmost point of Figure 10A), the VMPI value was significantly correlated with the eventual 

RT, supporting the idea that the amount of drift on an individual trial by the end of the delay period 

is predictive of the animal’s ability to initiate a movement. This relationship held for all time points 

during the delay period leading up to the go cue (time range of -360 to 0 ms, Figure 10A). No other 

saccade metrics (i.e., amplitude, peak velocity, endpoint error) were found to be correlated with 

RT (Figure 11A-B), nor might we expect them to be (Hafed, 2021). 

 

  



 36 

 

Figure 10. The single-trial state-space position of activity is correlated with that trial’s saccadic RT even long 

before the go cue.  

A. Across-trial correlation coefficient between the VMPI value in a single time bin relative to that trial’s go 

cue time and the eventual saccadic reaction time (RT) on that trial. Each gray trace represents the across-

trial correlation coefficients for a single session, with the across-session median trace shown in black. Time 

bins in which the median correlation coefficients were significantly below zero (p<0.05, one-tailed Wilcoxon 

signed rank test) are shaded along the x axis in gray. Even long before the go cue, the state space position of 

activity (as computed via VMPI) is correlated to a behavioral metric. B. Same as in (A) but for correlations 

between a single trial’s projection value α and that trial’s saccadic RT. Each projection value α represents the 

distance traveled along the trial-averaged neural trajectory toward the motor subspace by a certain time 

relative to the go cue on a given single trial i, with the method for finding α shown in the inset. Methodology 

was previously used in Afshar et al., 2011, and applied here to SC neural populations. This different method 

of computing state-space position of activity reveals a similar correlation to saccadic RTs, up to 340 ms before 

the go cue on average. 
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Figure 11. The relationship between VMPI and saccade metrics is variable.  

A. Across-session median correlation coefficient, R, between VMPI and saccade amplitude, for times leading 

up to the go cue. Same conventions as in Figure 10. There is never a significant correlation between the two 

variables (Wilcoxon signed rank test).  B. Same as in (A) but for correlations between VMPI and single-trial 

peak velocity of the saccade. Time bins in which the median correlation coefficients were significantly 

different from zero (p<0.05, Wilcoxon signed rank test) are shaded along the x axis in gray. A positive 

relationship between the two variables emerges approximately 160 ms before the go cue. C. Same as in Figure 

10A but for correlations between the VMPI value aligned to the beginning of the delay period and single-trial 

RT. No significant correlations are observed (one-tailed Wilcoxon signed rank test). 

 

When aligning single-trial VMPI values to the beginning of the delay period (Figure 11C), 

the position of the activity was not correlated to the eventual behavioral output, suggesting that the 

population representation likely drifts at relatively similar rates across trials. If so, then the drift 

would be bigger for the longer delay trials, which would be associated with faster reaction times. 

Indeed, the variable length of the delay period, in the context of our experimental paradigm, seems 

to account for the variable latency in the behavior (Figure 12A-B). 
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Figure 12. Delay lengths are correlated with both VMPI and RT.  

A. The VMPI value is significantly correlated with the delay period length even 400ms before each trial’s go 

cue time (p<0.05, Wilcoxon signed rank test). Same conventions as in Figure 10, with the across-session 

median correlation coefficients shown in black and individual sessions’ correlation values shown in gray. B. 

Histogram of correlation values between each trial’s delay period length and saccadic reaction time for the 22 

sessions included in analysis of sensorimotor transformation. The across-session median correlation 

coefficient (-0.145) was significantly less than zero (p<0.0001, one-tailed Wilcoxon signed rank test), 

indicating an inverse relationship between delay period length and reaction time. 

 

This finding conforms well to an existing theory of arm movement generation – the initial 

condition hypothesis (Afshar et al., 2011; Churchland et al., 2006) – in which the population 

activity pattern at the animal’s go cue informs the latency of the reach initiation on that trial. 

Critically, however, the brain areas relevant to reach initiation (e.g., primary motor cortex and 

dorsal premotor cortex) do not have significant responses to visual stimuli. Because of the strong 

visual bursts exhibited by SC neurons, we wanted to ensure that the relationship between 

population activity pattern and latency of saccade initiation remains even when disregarding the 

visual-likeness of the pattern during the delay period. Therefore, we decided to employ an 

additional methodology (mirroring that of Afshar et al., 2011) that only considers the position and 
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trajectory of activity patterns relative to the patterns underlying motor output rather than relative 

to activity during both the visual and motor epochs (as is the case with the VMPI metric). In short, 

two vectors are created – one that extends from the mean activity position at the time of the go cue 

to some short time later (100 ms) and another that extends to the actual position at the time of the 

go cue (or before) on an individual trial (shown in Figure 10B inset). The projection value 𝛼 

obtained by projecting the latter vector onto the former gives you a magnitude that can be thought 

of as distance traveled toward the motor subspace by a certain time in the delay period.  

When applying these methods to SC population activity, we found that the correlation 

values closely matched both those applied previously to premotor cortex activity and those 

obtained through our VMPI – RT correlation analysis. Across many populations, the median 

correlation between projection value at the go cue and RT across trials was small but significant 

(Figure 10B, data points at t=0 ms), similar to the results of the VMPI – RT correlation analysis 

(i.e., Figure 10A). Also comparable was the significant correlation between projection value 𝛼 and 

eventual RT even long before the go cue (Figure 10B, data points leading up to t=0 ms). Therefore, 

this relationship between the population-level activity pattern and movement initiation latency 

holds even when only considering the motor-likeness of the pattern. 

2.5 Discussion 

In this study, we sought to understand whether population activity in the SC systematically 

transitions from a visual-like pattern to a motor-like pattern throughout the delay period and found 

that on average, the activity pattern (as measured by the VMPI value) did indeed slowly drift from 

a visual-like to a motor-like representation. Notably, following a microsaccade, the activity pattern 



 40 

was characterized by a transient reset to a visual-like representation (Figure 13A). In addition, the 

amount of drift exhibited by the population at times leading up to the animal’s go cue on individual 

trials was predictive of the latency at which a saccade could be initiated on that trial. On the other 

hand, neither the starting representation nor the amount of drift aligned to the beginning of the 

delay period were related to the eventual saccade latency. Together, these findings lead us to 

conclude that activity drifts at a relatively consistent rate across trials and sets the animal up for a 

shorter or longer latency saccade based on the amount of time the activity has had to drift on a 

given trial (Figure 13B). This study therefore provides new insights into the neural dynamics 

expressed within the SC during the delay period of a widely used behavioral task. 

Our population-level results disclosed a gradual evolution from a sensory-like to motor-

like representation that is consistent with the interpretations provided from previous studies on 

sensorimotor transformation in the SC (e.g., Lee and Groh, 2012; Sajad et al., 2020; Sadeh et al. 

2020). If the SC is indeed involved in sensorimotor transformation, then we could have expected 

to observe a few possible alternate dynamics in the visual-like or motor-like representations 

throughout the delay period. First, activity patterns could oscillate between the visual and motor 

subspaces, balancing two needs – retaining information about the sensory stimulus and preparing 

for a movement. This is akin to the idea of maintaining simultaneous representation of multiple 

auditory stimuli (Caruso et al., 2018a). Second, activity patterns could lack a consistent trend 

toward either subspace across the delay period, potentially encoding features independent of 

sensory information or movement preparation (Kaufman et al., 2015). Third, activity patterns 

could exhibit a discrete switch, or step, from one representation to the other (Latimer et al., 2015). 

Instead, the slow evolution we saw in SC population activity patterns toward a motor-like pattern 

is evidence of a smooth and slow drift in representation between the times of sensation and action. 
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Furthermore, recognize that the subspaces labeled as sensory and motor are merely a reduced 

dimensional representation of the population activity. Importantly, they are agnostic to the 

reference frame represented by the neural activity. Finally, we note that the gradual transition was 

only observed when averaging across trials. Despite the many benefits of dimensionality reduction, 

neural activity on single trials is still inherently noisy, and thus the lack of quantifiable trend on 

individual trials does not decrease our confidence that the across-trial sensorimotor transformation 

trend is meaningful.  

 

  



 42 

 

Figure 13. Schematics representing the evolution of SC population activity throughout the course of a 

standard sensorimotor task.  

A. Characteristic time course of population activity during the delay period. On average, population activity 

slowly becomes less visual-like (visual subspace shown as a cyan ellipse) and more motor-like (orange ellipse) 

throughout time in the delay period (purple dotted line). Following a microsaccade, when it occurs, 

population activity transiently and strongly deviates its trajectory toward the visual subspace (cyan dotted 

line) before returning to the characteristic route toward the motor subspace. Vertical purple line denotes 

VMPI at go cue. B. Depiction of the population activity trajectories on microsaccade-absent trials with short 

(top) and long (bottom) saccadic reaction times. Activity during the delay period likely evolves at a 

comparable rate across trials, at least under the experimental conditions we used. However, the activity can 

continue its slow drift toward the motor subspace for a longer time on trials with longer delay period lengths 

(top) than on those with shorter delay period lengths (bottom), thereby only necessitating a limited distance to 

travel to the motor subspace once the cue to initiate the behavior is given (vertical purple line). 

 

In one study, subpopulations of cortical oculomotor neurons categorized based on their 

relative firing rates during the visual and motor epochs were shown to exhibit unique temporal 

dynamics of this reference frame transformation, in contrast to the smooth and gradual transition 

observed when treating all neurons as a single population (Sajad et al., 2016). The VMPI measure 

we use implicitly takes into account the activities of all neural subtypes (i.e., visual, visuomotor, 
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and motor) and produces one concise value, although the neurons recorded in this study were by 

and large visuomotor neurons. Research that specifically teases apart the individual contributions 

of neural subtypes to the time course of sensorimotor transformation may be required for a more 

complete understanding of the SC correlate of this behavioral phenomenon. Also not considered 

within this study are cognitive factors such as reward anticipation, arousal, and attention – factors 

which may in fact be multiplexed with encoded visual and motor signals present in the SC. Thus, 

the exact relationship of delay period SC activity patterns to phenomena other than visual 

processing and movement initiation is ripe for future investigations. 

2.5.1 Does SC Delay Activity Resemble a Preparatory Signal? 

The results shown in Figure 10A and B suggest that a relationship between the activity 

pattern and the reaction time (RT) of the eventual saccade is present long before permission is 

granted to initiate the movement. In other words, if the pattern of SC population activity drifts 

close to the motor subspace (i.e., has a high VMPI value) during the delay period of a given trial, 

the activity will take little time to evolve into a fully motor-like pattern after the go cue, resulting 

in a low-latency saccade. In the context of our task design, SC delay period activity seems to drift 

in representation at a relatively equal rate across trials (Figure 11C). It is on trials with longer 

delays that the population activity has extra time to evolve, and therefore continues to drift toward 

a motor-like representation (equivalently, an increasing VMPI) proportional to the delay period 

length, resulting in proportionally fast reaction times (Figure 12A-B).  

The observation that the rate of drift is unmodulated from one trial to another could be 

reflective of the animal’s internal model of the expected delay period length distribution. To 

extrapolate, if the delay period length was known by the animal to instead be constant, the activity 
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pattern may still drift at slightly different rates from trial to trial, which we posit would constitute 

preparatory activity and serve as a mechanism for movement initiation. Regardless, the schematic 

shown in Figure 13 is inclusive of both schemas. 

The consistent rate of sensorimotor evolution from trial to trial leads us to consider whether 

this drift might act as a self-timing mechanism, indicative of perceived time elapsed in the delay 

period. Suppose the monkey employs a strategy in which he begins to expect a delay period length 

somewhere in between the shortest and longest delays previously experienced (as observed in 

human studies; Jazayeri & Shadlen, 2010). If he consistently plans to initiate an eye movement 

after this expected delay period length, he may receive the benefit of more frequently successful 

trials (and consequently, more frequent and more rapid rewards) since he has optimized the timing 

of his saccade to match his expectation. Neurons in the macaque thalamus (Tanaka, 2007) and 

lateral intraparietal cortex (Leon & Shadlen, 2003) have been shown to encode perceived time 

intervals. Perhaps the drifting representation we observe in SC populations is another signature of 

task timing. Further experiments might explore this concept and its validity.  

Although we consider SC activity during the delay period to be preparatory in the sense 

that it is related to the enhancement or hindrance of rapid saccade initiation following the go cue, 

it does not have “motor potential.” In the smooth pursuit system of the FEF, neural activity was 

found to have motor potential, with partially overlapping subpopulations contributing to both the 

preparation and execution of movement (Darlington & Lisberger, 2020). However, this does not 

seem to be the case for the SC, at least in the context of saccades. Previously, we have 

demonstrated that inhibition of the omnipause neurons during the delay period, which allows SC 

activity to travel to saccade-generating brainstem structures, is not sufficient to evoke a saccade 

(Gandhi & Bonadonna, 2005; Jagadisan & Gandhi, 2017). In addition, the lack of a burst and only 
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a baseline-level “temporal stability” – that is, the consistency in the population activity pattern 

from one time point to another – enhance the argument against delay activity having motor 

potential (Jagadisan & Gandhi, 2022). We have also observed that it is typically the neurons with 

strong visual bursts rather than strong motor bursts that have sustained activity during the delay 

period (Massot et al., 2019). Therefore, it stands to reason that preparatory signals are likely 

encoded in the SC in dimensions orthogonal to those during movement (e.g., orthogonal potent-

null subspaces; Kaufman et al., 2014). 

2.5.2 The Relationship Between Microsaccades and SC Population Activity Patterns 

Microsaccades produced during fixation serve to refresh the visual stimulus on the retina 

in order to combat a fading perception over time (Martinez-Conde et al., 2004). The neural circuit 

in SC suppresses vision during microsaccades (Hafed and Krauzlis, 2010), as it does during large 

amplitude saccades (Robinson and Wurtz, 1976). Following the movement, the nervous system 

responds to its visual environment by evoking activity in visually responsive neurons, although 

extra-retinal sources likely contribute as well. Indeed, we observed that microsaccades produced 

during the delay period consistently perturbed the sensation to action transition by transiently 

deviating SC population activity toward the visual subspace. The effect was strongest in the subset 

of neurons with a robust visual response. This modulation began roughly 50 ms after microsaccade 

onset and peaked another 50 ms later before rapidly meeting back up with the population activity 

patterns observed in non-microsaccade trials. Thus, the resurgence of visual activity likely reflects 

visual reafference following the movement (also see Khademi et al., 2020).  

It is valuable to consider the various ways in which microsaccades generated during the 

delay period could have impacted the oculomotor system. For instance, the movement-related 
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activity associated with microsaccade generation could have accelerated the overall SC output 

toward the motor subspace, resulting in reduced saccade latency – perhaps even triggering it 

prematurely before the go cue – and altered endpoint accuracy (Buonocore et al., 2021). Instead, 

we observed a rapid rebound and return of the system (VMPI trace, Figure 9B) to its original 

trajectory following a microsaccade. We interpret this reset to suggest that the gradual transition 

from a sensory to motor representation may be a network feature that is resistant to the effects of 

transient disruptions. As a whole, these observations lead us to conclude that microsaccades are a 

potential mechanism for engaging the network to produce a visual-like signal very similar to that 

elicited in response to the initial target appearance, but one that is compensated for quickly and 

robustly. 

2.5.3 Low-Dimensional Geometry of SC Population Activity and its Skeletomotor 

Counterparts 

One of our objectives was to extend to the oculomotor system the dynamical systems 

perspective of motor control that has been studied extensively in the skeletomotor system (Shenoy 

et al., 2013; Gallego et al., 2017). Studies of arm reaching that use this framework have given rise 

to multiple hypotheses for mechanisms of movement initiation. One such schema is the “optimal 

subspace hypothesis” (Churchland et al., 2006), which propounds that there is an optimal set of 

population activity patterns that allow for the generation of a goal-directed movement. The initial 

condition hypothesis (Afshar et al., 2011) builds on this framework by postulating that trials in 

which patterns that have traveled closer to the motor subspace by the time of the animal’s go cue 

will have a faster reaction time (RT) than those in which the underlying neural activity has not 

traveled as far along the mean neural trajectory.   



 47 

It might make sense for the oculomotor system to operate in a somewhat different manner 

than the skeletomotor system given the additional element – visual information – encoded within 

the SC and other oculomotor areas. However, even when considering this additional set of patterns 

exhibited by SC populations, we found that on trials in which population activity more closely 

resembles a motor-like pattern, the saccadic RT is significantly shorter (Figure 10A).  

To establish a more direct comparison between SC activity and activity in its skeletomotor 

analogs, we also applied the methods of Afshar et al., 2011, to SC population activity during the 

delayed saccade task and found a comparable, significant correlation between the position of delay 

period activity and the saccadic RT (Figure 10B). Although the exact methodologies applied in 

Figure 10A and B are distinct, they address similar questions – primarily, is the similarity of neural 

activity during the delay period to motor activity related to the speed at which the movement can 

be initiated (i.e., eye movement or reaching movement RT). The findings reported in this study 

support the idea that the initial condition hypothesis is also valid for the oculomotor system. 

The optimal number of dimensions needed to explain the across-trial shared variance of 

our acutely recorded neural populations was much lower than that described in studies using neural 

activity recorded in primary motor cortex (M1) or dorsal premotor cortex (PMd), for example 

(Churchland et al., 2010; Churchland & Shenoy, 2007). We conjecture that this is at least partially 

due to the homogeneity of each recorded population. As SC neurons are traditionally recorded 

along a dorsoventral axis, the topography of the SC yields populations in which each neuron has a 

similar response field, chiefly varying across electrode depth in the strength of their visual and 

motor bursts (Massot et al., 2019). Cortical areas like M1 and PMd yield much more heterogenous 

populations with respect to the spatial locations preferentially encoded by each neuron, and the 

dynamics underlying behavior are typically studied after grouping trials with multiple reach 
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directions. However, since our recorded SC populations vary not in their preferred spatial location 

but rather in their visual and motor signal strengths, we limited our analyses to a single saccade 

direction so that in reducing the dimensionality of the data, the variability between visual and 

motor patterns would be brought to the forefront.  
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Figure 14. Spike-sorted and multiunit populations exhibit nearly-identical activity patterns throughout the 

delayed saccade task.  

A. Low-dimensional representations of population activity patterns during the visual (cyan) and motor 

(orange) epochs for one example session before (left) and after (right) spike sorting. Although each dimension 

is not directly comparable across multiunit and spike-sorted populations, the subspaces formed by population 

activity in both cases are nearly identical. B. Same as in (A) but for a second example session. The subspaces 

formed by visual and motor activity before and after spike sorting have similar levels of separability. The 

exact position of each point of activity is unimportant to the comparison across epochs. Inset. A comparison 

of the visual and motor subspace separability obtained through LDA classification pre (x axis) and post (y 

axis) spike sorting for all 27 sessions. Accuracies for example sessions shown in (A) and (B) are colored in 

gold and magenta, respectively. 



 50 

3.0 Contextual Effects on Population Representation of Sensory and Motor Responses in 

the Superior Colliculus 

This work to be submitted as a manuscript with contributing authors: Ayar EC, Heusser MR, 

Bourrelly C, Gandhi, NJ. 

3.1 Overview 

Sensorimotor transformation is the process of first sensing an object in the environment 

and then producing a movement in response to that stimulus. For visually-guided saccades, 

neurons in the superior colliculus (SC) emit a burst of spikes to register the appearance of stimulus 

and many of the same neurons discharge another burst to initiate the eye movement. We 

investigated whether the neural signatures of sensation and action in SC depend on context. 

Spiking activity along the dorsoventral axis was recorded with a laminar probe as Rhesus monkeys 

generated saccades to the same stimulus location in tasks that require either executive control to 

delay saccade onset until permission is granted or the production of an immediate response to a 

target whose onset is predictable. Using dimensionality reduction and discriminability methods, 

we first verified that the subspaces occupied during the visual and motor epoch were distinct within 

each task. Surprisingly, the low-dimensional spaces spanned by sensation and action epochs were 

also differentiable across tasks. These results imply that cognitive processes associated with task 

requirements are multiplexed in SC population activity during both sensation and action, and that 

downstream structures could use this activity to extract cognitive context. They also suggest that 
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the entire manifolds associated with sensory and motor responses, respectively, may be larger than 

the subspaces explored within a certain set of experiments. 

3.2 Significance Statement 

Sensorimotor transformation is a process that humans perform over 100,000 times a day, 

for example, when we look at or reach for objects of interest. Many areas of the brain register a 

sensory stimulus and convert the stimulus-related information into an appropriate motor output. 

Deficits in sensory and/or motor processes are implicated in neurological dysfunctions like 

attention deficit disorders. We investigated how the context of behavioral tasks impacts patterns 

of population activity during sensation and action. Dimensionality reduction techniques reveal that 

context can impact both the sensory- and movement-related transient activity patterns in the 

population of superior colliculus neurons. This insight is not readily identifiable in single unit 

recordings. 

3.3 Introduction 

Envision a stopped car in a turn-only lane at an intersection. When the traffic signal turns 

green, the driver will either make the turn immediately or wait until oncoming traffic and 

pedestrians in the crosswalk clear. In both cases, the primary sensory input and motor output – 

traffic light turning green and making the turn, respectively – are categorically identical, but 

cognition contributes to the overall process. Executive control clearly impacts when the movement 
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is produced, but it is not apparent whether the neural signals underlying sensation and action are 

also altered. Such conditions can be simulated in the laboratory environment and combined with 

neurophysiological experiments. Accordingly, we relied on the wealth of knowledge in the 

oculomotor system to study contextual impact on the transient sensory and motor representations 

in the superior colliculus (SC) during visually guided saccades. 

Cognitive context can be manipulated through two behavioral tasks that are akin to the 

aforementioned scenarios. The visually-guided delayed saccade task (which we will refer to as the 

“delay task” throughout the text) requires executive control to withhold the eye movement until 

another cue grants permission. This condition prolongs the temporal delay between the sensation 

and action aspects of the task. The “gap task,” in contrast, requires an immediate action. It creates 

a predictable situation in which movement preparation can precede stimulus onset, which can 

reduce further the reaction time (Saslow, 1967; Dorris and Munoz, 1995; Sparks et al., 2000). 

Situated at the roof of the brainstem, the SC is a topographically organized, laminar 

structure that encodes sensory and motoric information along its dorsoventral axis (Wurtz et al., 

2001; Gandhi and Katnani, 2011; Basso and May, 2017; Massot et al., 2019). A population of 

neurons will emit a burst of spikes when a visual stimulus is presented in their response fields. As 

this initial response is largely exogenously driven, it reflects “sensation” or registration of the 

stimulus. Just before saccade onset, an ensemble of SC neurons will produce another burst of 

spikes. This is the “action” command that generates the eye movement. Most neurons that produce 

a movement-related burst also exhibit a sensory (visual) burst and thus are called visuomotor 

neurons. The sensory and motor bursts are temporally separated from each other in the delay task 

but can occur in close temporal proximity and even overlap partially in the gap task (e.g., Munoz 
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and Wurtz, 1995; Sparks et al., 2000). Our goal was to determine whether the population SC 

activity in the sensory and motor response epochs are task dependent.  

Previous neurophysiological studies of SC have mainly used single electrodes. Compared 

to the delay task, the gap task can evoke a slightly stronger sensory response for high luminance 

stimuli, especially when the target location and onset time are highly predictable (Marino et al., 

2012). The motor burst, in contrast, is essentially comparable across tasks, provided that the 

saccade is directed to a visible target (Edelman and Goldberg, 2001). We applied machine 

learning-inspired dimensionality reduction techniques to identify the latent factors and subspaces 

spanned by the visual and motor responses of neural populations in both tasks, aiming to expand 

on the knowledge previously provided by single-electrode studies. Discriminant analyses were 

then used to determine the separability of the response distributions across epochs and tasks. The 

results verified that the visual responses were separable from motor responses in the delay task 

(Jagadisan and Gandhi, 2022), and a similar result was observed for the gap task. Interestingly, we 

also found across-task separability in both visual and movement responses. We interpret this latter 

finding to indicate that cognitive context can impact both exogenous and endogenous components 

of the sensory response as well as the transient features of the motor burst. 
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Figure 15. Overview of tasks and corresponding neural firing rate properties.  

A. Flow of a single trial of the delay task (left) and gap task (right). The two tasks have identical key events 

(fixation on a central point, subsequent target appearance, and instructed saccade) that occur with different 

timing in each task. B. Multiunit activity averaged across trials for each recorded channel of one example 

session arranged in order from superficial to deep along the dorsoventral axis of the SC. The activity on each 

channel is aligned to target onset (left panel of each task) and saccade onset (right panel of each task). 

Activity around the peak of the visual and motor bursts are indicated by blue and orange vertical lines, 

respectively. For the gap task, the shaded rectangle in each panel corresponds to ±1 standard deviation 

around the mean saccade onset time (left panel) or visual burst time (right panel). 
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3.4 Methods 

3.4.1 Animal Preparation 

All procedures were approved by the Institutional Animal Care and Use Committee at the 

University of Pittsburgh and followed the guidelines of the Public Health Service Policy on 

Humane Care and Use of Laboratory Animals. Data were collected from two adult male Rhesus 

monkeys (Macaca mulatta, identified as BL and SU) who were trained to perform oculomotor 

tasks using operant conditioning and surgically prepared under aseptic conditions for 

neurophysiological recordings from the SC. The recording chamber was tilted 40 degrees posterior 

with respect to vertical to allow microelectrode penetrations orthogonal to the SC surface. A subset 

of the data used in this manuscript are a new analysis of data reported previously, and additional 

methodological details can be found there (Massot et al., 2019). 

3.4.2 Experimental Design and Statistical Analyses 

Stimulus display and acquisition of behavioral data were controlled by a central, 

customized program written in LabView architecture (Bryant & Gandhi, 2005). Eye position was 

measured using a camera-based pupil tracker (EyeLink 1000, SR Research, Ltd.) sampled at 1 

kHz. Each animal was trained to perform two oculomotor tasks. Every trial was initiated by the 

presentation of a fixation point at the center of the screen, and the animal was required to direct its 

line of sight on this stimulus. In the delay task (Figure 15A, left panel), a single target was 

presented at an eccentric location while the monkey continued to fixate the central stimulus. The 

fixation point was extinguished after a “delay” period (randomized between 600-1200 ms for 



 56 

monkey BL and 700-1500 ms for monkey SU), permitting the animal to bring its visual axis within 

two degrees of the target. In the gap task (Figure 15A, right panel), the fixation point was first 

turned off, and a constant 200 ms gap in time lapsed before a single target was presented on the 

screen. The animal could not break fixation during the gap period but could make the saccade 

immediately after target onset. In both tasks, the animal received a liquid reward for maintaining 

fixation within a 2-3° window around the final target location for at least 250 ms. Trials of each 

task were either randomly interleaved (6 total included sessions across both monkeys) or presented 

in blocks (14 sessions across both monkeys).  

Neural recordings in the SC were performed with a 16- or 24-channel linear microelectrode 

array (AlphaOmega Inc., or Plexon, Inc., respectively) lowered hydraulically in the SC to record 

neural activity. The probe trajectory was approximately orthogonal to the SC and thus traversed 

its dorsoventral axis. Neural activity was recorded via the Grapevine Scout Neural Interface 

Processor (Ripple, Inc.), visualized with associated Trellis software, and communicated with our 

central data acquisition system. Neural activity was band-pass filtered between 250 Hz and 5 kHz 

to record spiking activity. Spike times were determined using a standard threshold. Spike trains 

and spike density waveforms were inspected online for task-related activity characteristic of the 

SC when a target was presented near the center of the response field. We’ll refer to the activity 

recorded across these contacts as each session’s neural population. We also interleaved trials in 

which the target was placed at the diametrically opposite location, but those data are not considered 

here. 

All analyses were performed using custom code written in MATLAB (MathWorks, Inc.). 

Saccades were detected using a 30-50°/s velocity criterion. For visualization purposes, we 

convolved the spike train with a Gaussian kernel of 10ms width to yield spike density waveforms. 
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For each session, we analyzed offline each channel’s waveforms on a trial-by-trial and trial-

averaged basis to ensure each analyzed session consists of distinctive collicular activity across 

most channels for both the delay (Massot et al., 2019; Jagadisan and Gandhi, 2022) and gap tasks. 

To ensure that our results were not influenced by noise arising from too few trials, we set a criterion 

in which each session needed to have at least 30 trials from each task to be included. In most cases, 

each task condition had around 100 associated trials. Twenty (of 28) recording sessions met the 

above criteria (13 from monkey SU and 7 from BL) and comprise the dataset presented in this 

paper. 

For each session, spiking activity from each channel was sorted into single units using 

MKsort, a supervised spike sorting interface (Ripple, Inc.). We found that both multiunit and single 

unit populations resulted in similar population activity patterns after dimensionality reduction, 

which is in line with a recent study (Trautmann et al., 2019). The results presented in Figure 2 

through Figure 5 were obtained from spike-sorted neural populations.  

A paired Wilcoxon signed rank test was performed on the two distributions of classification 

accuracy values in Figure 17 and Figure 18 to determine if the median difference between the two 

paired distributions was different from zero at an 𝛼 = 0.05 significance level. Additionally, a one-

tailed Wilcoxon signed rank test was performed on each individual distribution in Figure 18 

through Figure 20 to determine if the median classification accuracy was significantly above our 

pre-defined chance level of 50 percent. Last, for each individual session we performed an unpaired 

t-test on the distribution of values from the “delay” and “gap” conditions, as depicted in Figure 

20A (saccade peak velocity) and B (saccade amplitude), followed by a paired t-test on the 

distribution of trial-averaged values from each condition across all sessions. See “Linear 
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Discriminant Analysis classification” subsection for details about the distributions on which these 

statistical tests were performed. 

 

3.4.3 Definition of Sensory- and Motor-Related Activity 

For both tasks, we wanted to compare neural activity across the sensation and action 

periods in two task contexts. Therefore, we describe sensation and action epochs as the respective 

times at which the neural population responds most strongly to a visual stimulus and contributes 

to movement generation in each task. For the delay task, we found through visual inspection of 

target onset-aligned, trial-averaged activity that the visual burst peak time occurred approximately 

160 ms after target appearance for most neurons and sessions. Thus, we used this static time for 

all analyses of the visual epoch. The motor burst typically peaked around the time of saccade onset; 

thus, we used saccade onset time as the epoch from which we extracted motor activity. For the gap 

task, we found that the visual burst peak tended to occur slightly earlier, at approximately 140 ms 

following stimulus onset, and thus was used as the visual epoch for this task. As in the delay task, 

motor activity was taken from saccade onset in each gap task trial. Sensory-related activity is 

represented with (light/dark) orange and motor-related activity with (light/dark) blue (e.g., Figure 

15B). These colors are used throughout the rest of our analyses comparing the neural activity 

underlying these key events.  
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3.4.4 Dimensionality Reduction Methods 

Dimensionality reduction was used to summarize the population activity of simultaneously 

recorded neurons. This approach also offers better visualization of neural activity and comparison 

across tasks (Cunningham & Yu, 2014). Specifically, Gaussian Process Factor Analysis (GPFA) 

was performed on multi-channel spike trains aligned to target onset in discrete 20 ms bins of 

summed spike counts (Yu et al., 2009). Operating on a high-dimensional dataset, GPFA extracts 

a reduced number of factors that account for a large proportion of the variance and, additionally, 

smooths these factors in time. Temporal smoothing while simultaneously performing 

dimensionality reduction provides a more intuitive visual representation of how activity evolves 

over time. We applied the GPFA algorithm from DataHigh, a publicly available MATLAB code 

(Cowley et al., 2013), to a single structure, 𝐷, that pooled data from both tasks. For the delay task, 

we treated activity from 200 ms before target onset to 200 ms after saccade onset of each trial as 

one observation. For the gap task, we used activity from 200 ms before target onset to 600 ms after 

target onset (which includes the period of time in which a saccade is made) as one observation. 𝐷 

consists of an 𝑈𝑥𝑇 matrix where 𝑈 represents the number of units, or neurons, and 𝑇 represents 

the number of 20ms time bins. After inputting 𝐷 into DataHigh, a single low-dimensional 

representation is acquired that consists of both tasks’ latent activity in a new reference frame – 

dimensions for which the highest variance in population neural activity across trials is found. Thus, 

our structure is converted into having a 𝑈′𝑥𝑇 matrix for each trial, where 𝑈’ now represents the 

number of latent dimensions retained. We performed cross validation on our dimensionality-

reduced data and found that the top 2-3 latent dimensions captured a substantial amount of the 

variance; therefore, we chose 𝑈’ to equal 3 for every session for consistency. To note, since spike 
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counts were binned in discrete 20 ms windows aligned to target onset rather than saccade onset, 

we aligned the binned latent activity in Figure 16A (right panels of each task) to the 20 ms bin in 

which the saccade was initiated on that trial for visualization, even though saccade onset could 

occur at any time in that window. Therefore, the latent activity appears to reach its trough slightly 

later than saccade onset; however, this should have no bearing on any across-epoch or across-task 

comparisons of neural activity, as all activity was processed in the same manner. 

When initially plotting state-space activity for each session, we observed that a few 

sessions (𝑁 = 3) had a puzzling subspace “echo” within either the delay or gap task, in which 

activity from a subset of trials was shifted in one or more latent factors. When plotting the latent 

activity values against trial number, we saw for these sessions an abrupt trial on which the subspace 

shifted, potentially indicative of an electrode shift or the addition/loss of signal on one channel. 

For these sessions, we retained only the subset of trials for which the delay and gap task subspaces 

remained constant, discarding trials before or after the echo. 

When performing GPFA on delay task trials only and then projecting gap task trials into 

the same low-dimensional space, we found qualitatively similar subspaces. Observations resulting 

from this analysis are not shown. In this case, we had two separate structures, one for the delay 

saccade task (𝐷1) and one for the gap task (𝐷2). GPFA was performed on the delay task first and 

then the projection weights calculated from this first (and only) occurrence of GPFA were retained 

so that gap task activity could be projected into the same low-dimensional space as the delay task. 

We also compared subspaces using matched visual burst times for both tasks (140 ms after target 

onset) and found them to be qualitatively similar to those formed by activity at the estimated visual 

burst peak time for each task (160 ms for delay; 140 ms for gap), indicating that our analyses of 
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population activity patterns are not highly sensitive to the chosen event time during the visual 

epoch. 

Supplementally, factor analysis (FA) was also performed using varying Gaussian 

smoothing kernels (width = 0, 6, and 10 ms) to ensure that the inherent temporal smoothing 

component of GPFA did not artificially constrain the separability between visual and motor 

activity in the gap task when the activity patterns may diverge at a short temporal scale. We found 

that manually choosing a smoothing parameter of 6ms before FA yielded qualitatively similar low-

dimensional subspaces as those produced by GPFA. When performing FA with a longer kernel 

width of 10ms, the visual and motor subspaces become even more separable (observations not 

shown). This control analysis indicates that our results do not hinge on the exact decoding 

algorithm and parameters used. 

3.4.5 Linear Discriminant Analysis Classification 

A two-class linear classifier (linear discriminant analysis, LDA) was implemented to 

determine the amount of separability between various pairs of subspaces in the low-dimensional 

state space found via GPFA. We trained the classifier using a random partition of 70% of the data 

and the assigned class labels (“delay” and “gap” or “visual” and “motor”). The classifier was then 

tested on the remaining data points. LDA defines a decision boundary, or hyperplane, that 

maximizes the separability between the two classes. Classification accuracies were found by 

determining the number of instances in which the classifier accurately identified a point associated 

with a given label and then dividing by the total number of data points that should have been 

classified as such. To confirm statistical significance of these results, we performed 100 iterations 

of LDA on each data session. Presented in the results are the average classification accuracies 
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taken across the 100 iterations for each data session. In addition, a control analysis was performed 

in which the categorical labels were randomly shuffled before the classifier was implemented to 

confirm our chance level is near the expected 50%. The orthogonality between the LDA planes 

separating visual and motor activity and delay and gap activity was determined by finding the 

angle between the two vectors normal to each plane. This angle was calculated by taking the 

arccosine of the normalized dot product of these vectors. 

3.5 Results 

In this study, we set out to characterize the patterns of population activity in the SC in two 

commonly used behavioral tasks to better understand contextual effects on neural signatures of 

sensation and action. In each task, both a sensory (visual) and motor burst is evident in the activity 

of SC neurons as the animal perceives and subsequently makes a saccade to a target that appears 

in his periphery. The structure of the delay task imposes a clear temporal separation between the 

two epochs while the gap task creates a situation in which the two bursts can overlap or even merge 

into one (Figure 15B). To quantify whether activity is distinct across epochs and/or tasks, we first 

performed GPFA to summarize the population activity in a less noisy, better visualizable 

framework. In doing so, we created a low-dimensional representation where each latent factor is a 

weighted linear combination, or summary, of all individual neurons included in that session’s 

population (as in Figure 16A). In all datasets, like this representative example, the first latent factor 

qualitatively resembles the firing rate profile (the polarity of the signal is not crucial). The second 

factor, in contrast, features opposite deflections in the visual and motor epochs, although this is 

more appreciable when the two periods are separated in time as in the delay task. The third and 
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higher dimension factors show minimal or negligible modulation. For each session, the absolute 

projection weights of each neuron were gathered for each dimension and all neurons were sorted 

by their projection weight magnitudes (Figure 16B). For all dimensions and sessions, we find that 

many neurons contribute to the variance, indicating that any resulting separation in activity is not 

dominated by a small number of individual neurons but rather due to the combined activity of a 

neural population. 

The top 4 latent factors accounted for at least 95% percent of the variance in the firing rate 

profiles for 18/20 datasets. However, we chose to analyze only the top 3 latent dimensions because 

the third and higher dimensions do not show much modulation during the visual and motor epochs. 

This low dimensionality facilitates inspection and comparison of the factors across different 

conditions in a three-dimensional state space. Figure 16C illustrates in schematic form the 

“subspaces” spanned by the latent factors in the visual and motor epochs for the delay and gap 

tasks. Following this step, we implemented a two-class linear classifier to quantify the separability 

between each pair of neural subspaces. The classifier quantified the separability of activity 1) 

across epochs within each task (i.e., visual vs motor activity), 2) across tasks within each epoch 

(i.e., delay vs gap activity), 3) across epochs when both tasks are combined, and 4) across tasks 

when both epochs combined.  
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Figure 16. Overview of dimensionality reduction to view population activity in a state space framework.  

A. Magnitude of trial-averaged latent activity (± 1 standard deviation) across time for each of the first three 

factors retained after performing Gaussian Process Factor Analysis (GPFA) on spike-sorted population 

activity. We used the same conventions and example session here as described in Figure 15B. B. Projection 

weight of all neurons into each latent factor sorted from the neuron with the largest projection weight to that 

with the smallest for each session. Each session contributes one trace to each factor (N = 20). Most sessions 

have many neurons contributing to each latent factor; therefore, the three-dimensional latent values produce 

a true population-level framework rather than one dominated by a select few neurons. C. Hypothetical 

subspaces formed by activity during the visual (blue) and motor (orange) epochs of the delay task (lighter 

colors) and gap task (darker colors). The patterns produced across epochs and/or across tasks could be 
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nearly identical, producing overlapping subspaces, or they could be unique, resulting in separable subspaces 

as schematized here. 

 

3.5.1 Within-Task, Across-Epoch Analysis 

Determining if patterns are distinct across epochs for each task may give intuition as to 

whether there are unique neural signatures during two key points of sensorimotor transformation 

– sensation and action. As expected based on previous work (Jagadisan and Gandhi, 2022), the 

visual subspace is separable from the motor subspace for the delay task (light blue and light orange 

circles, respectively, in Figure 17A, left panel). We now report that the visual and motor subspaces 

are also distinct in the gap task (dark blue and dark orange diamonds, respectively, in Figure 17A, 

right panel). This separability likely reflects the varying contributions of each neuron during each 

epoch, as some SC neurons have larger visual bursts than motor bursts (and vice versa). Overall, 

regardless of the presence (or lack thereof) of an imposed delay, this session’s population activity 

patterns are distinct between the sensory and motor epochs. 

We performed LDA to quantify the separability between these two subspaces for each 

session (see Methods). The separability across epochs within each task was determined via a two-

class linear discriminant classifier (with “visual” and “motor” categories). The classifier performed 

significantly above chance level across all sessions (one-tailed Wilcoxon signed rank test, p < 

0.001), with a mean classification accuracy of 93.2% (±2.19%) for the delay task and 85.3% 

(±2.87%) for the gap task (Figure 17B). The classifier was significantly more accurate in 

distinguishing between sensory- and motor-related activity within the delay task than within the 

gap task (Wilcoxon signed rank test, p < 0.001). These results suggest that the between-epoch 
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subspaces are more separable within the delay task, likely due to the imposed delay period which 

clearly separates the visual and motor epochs, as supported by previous research (Jagadisan and 

Gandhi, 2022). Overall, the separability of visual and motor patterns within a specific behavioral 

context is characteristic of a unique neural population activity pattern during the respective epochs. 

 

 

Figure 17. Separability of visual and motor subspaces within a task condition.  

A. Clusters or subspaces of latent activity in the three-dimensional state space for an example session taken 

from the visual (light/dark blue) and motor (light/dark orange) epochs as defined in Figure 15B. Each point 

represents the latent activity in a 20ms window taken from an individual trial of the delay task (left panel) or 

gap task (right panel). The plane of maximum separability between the two clusters found through a linear 

discriminant analysis model (LDA) is denoted by a gray rectangle. The separability between the visual and 

motor subspaces was determined independently for each task. B. Violin plot of classification accuracy 

between the visual and motor epochs for the delay (left) and gap (right) tasks for all 20 sessions. Individual 

sessions are represented by gray points, with the example session indicated by a black point. A traditional box 

and whiskers plot is overlayed on the vertical meridian. Significance is reported both within and across 

distributions (one-tailed Wilcoxon signed rank test against a median of 50% and two-tailed paired Wilcoxon 

signed rank test, respectively). Accuracy in distinguishing visual from motor latent activity is significantly 

above chance level of 50% for both tasks (p < 0.001). 
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3.5.2 Within-Epoch, Across-Task Analysis 

This analysis was then extended to compare patterns of activity between the two tasks 

within a given epoch. By comparing activity across tasks, we can gain a better idea if cognitive 

context is uniquely encoded in the superior colliculus. In Figure 18A, one can see that for the same 

example session as in Figure 3, there is indeed a separation during the visual epoch between the 

patterns exhibited by this neural population in the gap and delay tasks (blue circles and diamonds, 

respectively). A similar effect was also found for the motor epoch (orange circles and diamonds). 

Again, employing a two-class linear discriminant classifier (with “delay” and “gap” categories) to 

quantify the subspace separability for all sessions, we found the classification accuracy to be 

significantly above chance level during both epochs (one-tailed Wilcoxon signed rank test, p < 

0.001). The across-session mean classification accuracy for the visual epoch was 77.9% (±3.82%) 

and was 80.8% (±3.36%) for the motor epoch (Figure 18B). There was no significant difference 

in the between-task separability of visual-related or motor-related activity (Wilcoxon signed rank 

test, p = 0.24). The presence of two distinct subspaces across tasks suggests that the way in which 

content-related signals are processed in the SC are unique to the cognitive demands of a given 

task.  
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Figure 18. Separability of task-specific representations within an epoch.  

A. Same conventions as in Figure 17A, but with planes of maximum separability computed between activity 

from delay (circles) and gap (diamonds) trials for the visual (left panel) and motor (right panel) epochs. B. 

Same as in Figure 17B, but for accuracy in classifying task condition during the visual (left) and motor (right) 

epochs. Accuracy in distinguishing activity from the delay task from that during the gap task is significantly 

above chance level of 50% for both epochs (p < 0.001). 

 

3.5.3 Combined Across-Task and Across-Epoch Analyses 

Lastly, we combined each task’s activity and compared across epochs to determine if all 

visual activity is distinct from all motor activity regardless of the task condition. Figure 19A shows 

for the same example session the two-dimensional plane that best separates all visual activity from 

all motor activity. Across all sessions, there are distinct patterns of activity between the visual and 

motor epochs with a mean classification accuracy of 87.5% (±1.98%), which is significantly above 

chance level (one-tailed Wilcoxon signed rank test, p < 0.001) (Figure 19C). We also found that a 

single plane can considerably divide delay and gap task activity regardless of the epoch from which 

the activity came (Figure 19B). This classifier also performed significantly above chance level 

across sessions (Wilcoxon signed rank test, p < 0.001), with a mean accuracy of 72.7% (±2.85%) 

(Figure 19E).  
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In order to determine if SC populations encode content (visual vs. motor) and context 

(delay vs. gap) independently, we computed for each population the angle between the two vectors 

normal to each LDA plane. Figure 19D shows the distribution of these angles across all sessions. 

The median angle between decoding axes was 55.7 degrees, indicating a distinct but not orthogonal 

representation of content and context in these SC populations. 
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Figure 19. Combined separability of subspaces across epochs or tasks.  

A and B. Same as in Figure 17A, but for (A) the separability of activity between the visual (blue) and motor 

(orange) epochs when activity is pooled across both tasks, or (B) the separability of activity between delay 

(circles) and gap (diamonds) tasks when activity is pooled across both epochs. C and E. Same as in Figure 

17B, but for (C) accuracy in classifying visual and motor activity when both tasks are combined or (E) 

accuracy in classifying task condition when both epochs are combined. In both cases, the separability is 

significantly above chance level of 50% (p < 0.001). D. Histogram across sessions of the angle between two 

planes that maximally separate the content (e.g., gray plane in A) and context (e.g., gray plane in B) 

subspaces. 
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3.5.4 Behavioral Metrics 

To ensure that the separability in the motor subspaces across tasks is not primarily 

attributable to a mismatch in behavioral metrics between the delay and gap tasks, we performed 

an additional set of analyses comparing the saccade peak velocities and saccade amplitudes across 

the two task conditions. Across sessions, the mean peak velocities for each task condition were 

significantly different (paired t-test, p < 0.05) (Figure 20A), but the difference was small and not 

likely of physiological significance. We think it is unlikely the cause of subspace separability 

across tasks given that separable subspaces were also observed in sessions without a significant 

difference in peak velocity. Saccade amplitude was not statistically different between the two 

conditions (paired t-test, p > 0.05) (Figure 20B).  
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Figure 20. Comparison of behavioral metrics across task conditions.  

A. Trial-averaged saccade peak velocities with 95% confidence intervals for the delay (x axis) and gap (y axis) 

tasks. Each session contributes one point, and the circle is filled in if the saccade peak velocity distributions 

between the two tasks were significantly different for that session (p < 0.05, t-test). Across sessions, the 

difference between the mean peak velocities in the two task conditions did reach significance (p = 0.038, 

paired t-test). B. Same as in (A) but for trial-averaged saccade amplitudes across tasks. Across sessions, the 

difference between the mean saccade amplitudes across tasks was not significant (p = 0.167, paired t-test). 

3.6 Discussion 

The superior colliculus is a central hub in the neuraxis that transforms sensation into action 

while incorporating cognition (Gandhi and Katnani, 2011; Krauzlis et al., 2013; Das, 2016; Basso 

and May, 2017; Cooper and McPeek, 2021). The general chronological order is that stimulus 

presentation induces a transient, exogenous burst of activity in SC neurons. Endogenous processes 

then contribute to SC activity, usually in the form of low-frequency modulation. This modulation 

has been linked to various cognitive features, as dictated by the experimental paradigm (D. L. 
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Sparks, 1999). Some examples include spatial attention (Lovejoy & Krauzlis, 2010), motor 

preparation (Everling et al., 1999; Jagadisan & Gandhi, 2017), anti-saccade generation (Dyckman 

et al., 2007), decision making (Crapse et al., 2018; Keller et al., 2005), visual search (McPeek and 

Keller, 2002; Shen et al., 2011), reward processing (Ikeda & Hikosaka, 2007), and remapping 

(Dunn et al., 2010). The culmination of the contextual processing leads to another burst of activity 

that produces a movement. Crucially, there is little consideration of context-dependent processing 

on the initial sensory and final motor bursts.  Moreover, most studies have analyzed firing rates of 

individual SC neurons and then compiled the results by averaging the measures across neurons. 

The ability to record activity from many neurons simultaneously permits a higher order, dynamical 

systems analysis that examines covariability across neurons (Cunningham & Yu, 2014). Such 

efforts have yielded deeper insights into neural systems, although this technique has scarcely been 

applied to brain structures involved in producing visually-guided eye movements (Darlington & 

Lisberger, 2020). 

In this study, we explored how neural populations in the SC encode two different forms of 

information – content (sensation/action) and context (two comparable behavioral tasks). First, we 

compared the population activity patterns during the periods of sensation and action and observed 

content-specific encoding in both the delay and gap tasks. This result matches closely with our 

intuition based on the known properties of SC neurons. Although we recorded primarily 

visuomotor neurons (i.e., those exhibiting both a transient visual and motor burst), the relative 

firing rate of each individual neuron during each epoch is imbalanced. Along the dorsoventral axis 

of the SC, neurons located more superficially respond more strongly to the appearance of a visual 

stimulus, while deeper neurons fire more strongly for the generation of a saccade (Massot et al., 

2019). Since subspaces are formed by a weighted linear combination of activity across all recorded 
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neurons, it logically follows that the population-level representations are distinct across epochs. 

This result is consistent with the notion that the trajectory formed by the neural population 

traverses through different regions of the state space as the trial transitions through stages of 

sensation, cognition, and action (Afshar et al., 2011; Churchland et al., 2010; Darlington & 

Lisberger, 2020) and is confined to lower-dimensional “manifolds” (Duncker & Sahani, 2021). 

We recently presented evidence for a temporal mechanism by which structures downstream of the 

SC could distinguish sensory from motor activity – even when the population-average firing rates 

are matched (Jagadisan and Gandhi, 2022). We also demonstrated that the temporal stability 

framework supplements the rate code by confining it to a subspace; thus our current and previous 

results align with each other. The present study therefore builds another case for the importance of 

characterizing neural activity through a measure that accounts for the relationship between neurons 

rather than by averaging the signal across all neurons, as is the standard in single unit studies.  

Next, we explored the subspaces formed by population activity during the delay and gap 

tasks. During both the sensory period (equivalently, around the peak time of transient visual-

related activity) and the motor period (around saccade onset), the subspace formed by the 

population activity pattern diverged across the two tasks, consistent with a context-specific 

representation. As the initial component of the sensory transient is considered exogenously driven, 

one may expect the visual subspaces to largely overlap for identical stimuli, but dimensionality 

reduction methods revealed a large separation for the two tasks (Figure 18). This is likely due to 

the interaction or addition of bottom-up visual transient with movement preparation-related 

activity that begins accumulating in the gap period, particularly when target locations and onset 

times are largely predictable (Dorris & Munoz, 1998; Edelman & Keller, 1996; Everling et al., 

1999; Marino et al., 2022; D. Sparks et al., 2000), which is the case in our experiments. This 
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accumulating activity can even be observed in early visual areas (Kim & Lee, 2017), which 

arguably serves to induce a different state in the sensorimotor circuitry by the time of target 

presentation and impacts the subsequent visual response in the gap task. 

For matched behavioral metrics, the saccade-related motor burst of SC neurons is thought 

to be task invariant as long as the target remains illuminated (Dorris & Munoz, 1998; Edelman & 

Goldberg, 2001), although some exceptions have been reported (Hafed, 2021; Peel et al., 2021). 

Thus, we were surprised by the separation of motor subspaces across the two tasks (Figure 18). 

We were concerned that temporal smoothing component of GPFA, which prevents large and fast 

deviations of the neural trajectory, may have compromised occupancy of the actual motor subspace 

in the gap task because of the temporal proximity of the visual and motor bursts. Thus, we repeated 

the dimensionality reduction procedure with factor analysis (FA; see Methods) and found that the 

motor subspaces remained separated. We therefore believe the effect is physiologically 

meaningful, which can be appreciated by inspecting the spike density waveforms. In Figure 16B, 

for example, the 2nd and 3rd traces from the top show a stronger motor burst in the gap task. Such 

differences across neurons could account for the separation of motor subspaces across tasks. We 

speculate that this effect may arise because the animal updates his internal model of the 

relationship between neural activity and motor effector in response to the task context (e.g., Golub 

et al., 2015).  

For our experimental design, we took considerable inspiration from a study by Lara et al. 

in which population activity patterns during reach preparation were found to be largely conserved 

across tasks with similar external events but that varied in both temporal and cognitive context 

(Lara et al., 2018). Here, we do not report the across-task neural patterns during the period in 

between sensation and action but rather during the sensation and action periods themselves. 
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Extrapolating our finding that the neural representations in the SC underlying sensation and action 

were not invariant to context, it would follow that activity patterns in the SC during the 

sensorimotor transformation process are also distinct across tasks. Additional studies that examine 

conversion of sensory into motor signals across multiple contexts are needed for oculomotor areas.  

Since we found that SC activity is not only distinct in the sensory and motor epochs but 

also modulated by context, we lastly asked if these two dimensions of information are encoded not 

only simultaneously, but also independently. We found that within the scope of our study, these 

elements are not fully dissociable, as the planes that divide content 1 (visual burst) from content 2 

(motor burst) and context 1 (delay task) from context 2 (gap task) are not orthogonal (Figure 19D). 

On the other hand, the planes are not parallel, which means that oculomotor areas to and from 

which the SC relays its signals might still decode task context somewhat separately from sensory 

and motor signals. In other words, knowing which task is being performed is not necessary for 

interpretation of epoch (i.e., deciphering whether the SC is signaling for target appearance or 

initiating a saccade command). Conversely, SC activity carries information about task context 

regardless of epoch. This dissociability of signals is analogous to a mechanism proposed by 

Kaufman and colleagues in which orthogonal encoding of preparatory and motor signals in dorsal 

premotor cortex prevents premature arm movement initiation (Kaufman et al., 2014). Hence, we 

believe that the application of dynamical systems approach is a valid and fruitful framework for 

future research into the representation of sensation and action in the oculomotor system across the 

multitude of possible behavioral contexts. 

 



 77 

4.0 Decoding the Time Course of Spatial Information from Spiking and Local Field 

Potential Activities in the Superior Colliculus During a Sensorimotor Task 

This work to be submitted as a manuscript with contributing authors: Heusser MR, Bourrelly C, 

Gandhi, NJ 

4.1 Overview 

How does the nervous system integrate sensory information into a goal-directed 

movement? This process, known as “sensorimotor transformation,” engages the superior colliculus 

(SC) for control of the eyes. Neurons across its dorsoventral axis exhibit transient bursts of activity 

following the appearance of a visual target and/or preceding a rapid eye movement to that target. 

The discriminability of spatial information encoded by neurons contained within a laminar column 

along this axis is thought to be limited to a narrow range of directions and amplitudes. We sought 

to challenge this notion by characterizing the time course of target direction tuning in two different 

signal modalities present in the SC – spiking activity and local field potentials. We recorded 

activity across many channels in a laminar column of the SC while rhesus monkeys (Macaca 

mulatta) performed a delayed saccade task to one of eight targets, which temporally separates the 

three main epochs of sensorimotor integration – visual, delay, and motor. To obtain a singular 

measure of spatial tuning across all channels, we employed a separate offline classification 

algorithm for each sliding time window and signal modality. For both spiking and LFP activity, 

decoding performance was highest during the visual and motor epochs. During the delay period, 
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spiking activity exhibited spatial tuning akin to visual epoch tuning, while target direction was 

represented more broadly during the motor epoch. For LFP activity, spatial tuning was similar to 

that of spiking activity during the visual and motor epochs. Delay period tuning was largely absent 

in LFP signals, often confined to the target in the preferred direction. Overall, this study 

demonstrates that the encoding of direction information across layers of the SC is broad in tuning 

and dynamic in nature. 

4.2 Introduction 

We interact with our environment by redirecting our line of sight to objects of interest. A 

large network of neural structures is involved in this process of sensorimotor integration. The main 

neural pathway for producing fast eye movements, also known as saccades, is from the cortex to 

the midbrain, then to deeper nuclei in the brainstem, and finally to the end effectors (i.e., eye 

muscles). For any given saccade, populations of neurons are active and signal to varying degrees 

the spatial parameters (e.g., direction and amplitude) of the target and/or the intended movement, 

but the anatomical organization with respect to spatial parameters varies across areas. Placing 

multicontact electrodes into cortical oculomotor structures such as the frontal eye fields (FEF) 

yields a heterogenous population – each neuron in the recorded population will signal maximally 

for a very different amplitude and direction of the intended eye movement (Bruce et al., 1985; 

Sommer & Wurtz, 2000). The superior colliculus (SC) is a deep brain structure that receives direct 

input from cortical oculomotor areas and is thought to be a hub for sensorimotor integration (see 

reviews by Basso & May, 2017; Gandhi & Katnani, 2011). In contrast to cortical oculomotor areas, 

a typical electrode trajectory through the SC does not provide appreciable spatial variability. 
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Within a layer of the SC, neurons vary in their preferred saccade direction and amplitude along 

the mediolateral and rostral-caudal axes, respectively. Thus, the position on the SC topographic 

map of maximal activity across all active neurons (i.e., the “hot spot”) is what determines the 

direction and amplitude of the executed saccade. However, experimenters most often approach the 

SC with probes inserted orthogonally to the SC surface, with electrode contacts spanning the 

dorsoventral axis. Neurons along this axis systematically vary in the degree to which they signal 

for sensory or motor parameters across time and depth (Ikeda et al., 2015; Massot et al., 2019; 

Mohler & Wurtz, 1976) but are thought to encode roughly the same intended saccade vector and 

thus give a highly homogenous population in this regard.  

Solving the inverse problem – decoding the intended saccade direction from activity 

recorded at one particular location on the SC’s topographic map – is not straightforward. Single 

unit studies would have us believe this is not possible; neurons located at a given point on the SC 

map fire maximally for a specific target or saccade direction, but any equal amount of change in 

direction from the preferred direction (say, ± 45 degrees of visual angle) results in roughly equal 

firing profiles and obscures any relationship with the external parameter. On the other hand, if we 

record from many neurons along the dorsoventral axis simultaneously, the pattern across the 

population may still contain information about spatial parameters across a broad range of the visual 

field despite the assumed homogeneity across layers.  

Therefore, we set out to determine if information about saccade or target direction can be 

obtained from activities of small populations of SC neurons within a specific location on the SC 

topographic map, and if so, at what time(s) during the sensorimotor integration process this spatial 

information is present. Accordingly, we investigated the time course of direction tuning present in 

the spiking activity of SC neural populations and compared the neurons’ encoding properties with 
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a second signal modality, the local field potential (LFP), which at a given recording site reflects 

the aggregate activity of nearby neurons through a measure of their extracellular voltage (Buzsáki 

et al., 2012). We recorded the spiking (Figure 21) and LFP (Figure 22) activity simultaneously 

across layers of the SC while rhesus monkeys (Macaca mulatta) performed delayed saccades to 

one of eight targets radially equidistant in direction. We then trained a simple linear classifier to 

output the most likely direction to which small windows of spiking or LFP activity belonged. The 

performance of the classifier across time and directions gives a comprehensive indication of the 

spatial encoding properties of SC activity during sensorimotor integration. We found that 

beginning in the early delay period, spatial information is more strongly encoded in spiking activity 

than in LFPs. For both modalities, the spatial tuning width was significantly broader in the motor 

epoch than in the visual epoch. Overall, these results indicate that broad directions are encoded 

within single columns of the SC and that the spatial encoding properties are distinct across signal 

modalities and epochs. Perhaps the inverse problem of broad spatial parameter decoding from the 

epicenter of SC activity is not a problem after all. 
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Figure 21. Peri-event time histograms of spiking activity simultaneously recorded across 24 channels.  

The across-trial mean firing rates for all 24 channels recorded during an example session are plotted aligned 

to target onset (left) and saccade onset (right) for trials to eight radially equidistant targets. Each colored 

trace represents the spiking activity on one channel averaged across all trials to a particular target. Subplots 

are rotated so that the preferred target direction of this population is displayed horizontal and rightward 

with respect to center. 
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Figure 22. Peri-event voltage values of local field potentials (LFPs) simultaneously recorded across 24 

channels.  

The across-trial mean LFP voltage value for all 24 channels recorded during an example session are plotted 

aligned to target onset (left) and saccade onset (right) for trials to eight radially equidistant targets. All 

conventions are the same as in Figure 21. 
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4.3 Methods 

4.3.1 Animal Preparation 

Two adult male rhesus monkeys (Macaca mulatta; BL and SU) were used in this study. 

All experimental procedures were approved by the University of Pittsburgh Institutional Animal 

Care and Use Committee. A sterile surgery was performed on each animal to implant a stainless 

steel recording chamber (Narishige, Inc.) angled 40 degrees posterior with respect to vertical. 

Electrode penetrations through this chamber approach the SC orthogonal to its surface and 

traverses its dorsoventral axis along a track where neurons have similar response fields. Both 

animals were fitted with a thermoplastic mask to achieve fixation of the head during experimental 

sessions. 

4.3.2 Data Collection 

Comprehensive details about neurophysiology and microstimulation are provided in 

Massot et al., 2019. In brief, a 16 (monkey BL) or 24 (SU) channel laminar microelectrode (Alpha 

Omega, Inc., or Plexon, Inc., respectively) was inserted acutely into the SC to record neural activity 

across different layers. Many individual channels were stimulated to qualitatively determine an 

average evoked saccade vector, which was used as the preferred location for that session’s neural 

population. The raw activity recorded on each channel was separated into spike times (high pass 

filtered at 250 Hz and discretized using a standard threshold) and LFP (low pass filtered at 250 

Hz). For visualization only, spike counts were converted into firing rates by convolving each 

channel’s spike train with a Gaussian kernel of 10ms width (as in Figure 21) and LFPs were 
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bandpass filtered between 0.5 and 250 Hz with a notch filter at 60 Hz (as in Figure 22). The 

majority of channels with task-related spiking activity encountered visuomotor neurons that 

exhibited large transient bursts both in response to a visual stimulus and before/during saccade. 

Data from 15 sessions from monkey SU and 3 sessions from monkey BL were collected and all 

correct trials were included in analyses (𝑁 = 18 total sessions). 

4.3.3 Behavioral Paradigm 

Each monkey was trained to sit in a primate chair and perform a standard eye movement 

task in a dark room. Eye position was tracked with an infrared eye tracker (EyeLink 1000, SR 

Research, Ltd.; see Massot et al., 2019 for additional details). During each recording session, 

animals performed many trials of a delayed saccade task to one of eight possible targets evenly 

spaced in 45-degree increments around the fixation point. Each target had an equal likelihood of 

presentation, and “Target 1” was either placed at the spatial location corresponding to the estimated 

preferred saccade vector (for the majority of sessions) or at the position (10, 0) in Cartesian 

coordinates. In the latter case, preferred target direction was re-defined as Target 1 following 

examination of the average spiking activity profiles for that session (as in Figure 21). Temporal 

progression of a typical trial is shown in Figure 3. Important to note are the three main epochs that 

occur in each trial – visual, delay, and motor. The animal was given a liquid reward after successful 

trials, and only these trials were included in analyses (typically yielding over 1000 total trials 

across all target directions per session).  
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4.3.4 Classification Methods 

Custom MATLAB code (MathWorks, Inc.) was used for all analyses unless otherwise 

specified. Target location was decoded offline from population activity on each session 

individually. Summed spike counts or average LFP voltage on each channel in 100 ms time 

windows (different lengths were also used, as described below) sliding across the duration of each 

individual trial (dt = 10 ms) were labeled as belonging to Target 1 through Target 8 depending on 

the target location presented on that trial. For each individual 100 ms time bin, a separate linear 

discriminant classifier was trained on these summed spike counts or average LFP voltage from a 

randomly selected 70% of total trials (pooled across all targets), and its performance was tested on 

the remaining 30%. Classifier performance was measured through the F1 score, a common metric 

for multiclass classifiers that takes into account both the sensitivity and precision of the model for 

each target, which counters any overfitting/underfitting of the model to activity belonging to 

particular target (e.g., Zhi et al., 2018). This process of randomly selecting 70% and 30% as 

training and test trials, respectively, was repeated for a total of 10 times for each window and each 

session to obtain an average classifier performance across iterations. Importantly, each classifier 

was trained and tested only on activity belonging to a particular time range and had no information 

about future or past windows that would influence performance within a given window. To 

determine an experimental chance level, target labels were randomly shuffled and the classification 

process described above was repeated. The actual chance level tended to closely match theoretical 

chance level performance of 1 out of 8 targets, or 12.5% (results not shown). Before averaging 

across sessions, the classifier performance value of true and shuffled data in each window for each 

target was subtracted by the mean performance value for that target during the first 200 ms of the 

baseline period (i.e., 400 ms to 200 ms before target onset). This was done to normalize all 
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sessions’ performance values as a change in performance relative to baseline. Therefore, in Figure 

23 through Figure 27, performance values do not represent the absolute performance of the 

classifier (which often reached 1, the highest possible value). 

A linear discriminant analysis (LDA) classifier is a supervised, geometric model that finds 

a hyperplane that maximally separates the input features between two categories, or “classes,” 

during the training phase. In this paradigm, there are 24 input features that correspond to the 

spiking or LFP activity on each channel, but there are 8 classes that correspond to the 8 targets 

presented. Since an LDA model is by definition a binary classifier, we implemented a common 

technique called error-correcting output codes (ECOC) that fits a series of binary LDA classifiers 

in a one-vs-one manner to convert the model into a multiclass classifier, allowing for simultaneous 

classification into more than two categories (Derya Übeyli, 2008). During the testing phase, new 

data is shown to the model, and the class (i.e., target to which the activity corresponds) is 

determined by the position relative to the hyperplanes that were found during the training phase. 

To note, a pseudolinear discriminant classifier was implemented for spiking activity to combat the 

low or absent spike counts on some channels in certain time windows, which often leads to zero 

variance across observations and disrupts model fitting. We also repeated all analyses using a 

ECOC support vector machine (SVM) algorithm and found classifier performance dynamics for 

both spiking and LFP activity to be quite similar to results found via ECOC LDA classification. 

For analysis of the effect of window length on classifier performance, spike counts were 

summed and LFP voltage was averaged across each window of length [20, 50, 100, 200, 300] ms, 

which again were calculated in sliding increments of 10 ms. In all visualizations of classifier 

performance across time (Figure 23 through Figure 26), values are plotted in a causal manner; for 

example, performance for the set of observations in the time window 100 to 200 ms after target 
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onset is plotted at the 200 ms mark to represent that only historical activity was used to create and 

test a model of spatial location information. 

To represent the spatial tuning properties of our neural populations during the many epochs 

of this behavioral task, we defined a range of times for each of five epochs (baseline, visual, early 

delay, late delay, and motor) during which we pulled out a single across-session classifier 

performance value for each target direction. Baseline performance was taken as the mean value in 

the range of 400 ms to 200 ms before target onset. Visual performance was taken as the maximum 

value around the time of the visual burst, typically occurring within the 100 ms to 200 ms range 

after target onset. Early delay performance was taken as the mean value in the range of 250 ms to 

450 ms after target onset. Late delay performance was taken as the mean value in the range of 300 

ms to 100 ms before saccade onset. Motor performance was taken as the maximum value around 

the time of the motor burst, typically occurring near saccade onset. 

All statistical comparisons of classifier performance between signal modalities or epochs 

(in Figure 27 and Figure 28) were performed using a paired two-tailed t-test with α < 0.05 

indicating a significant difference between the two distributions included in the comparison. 

4.4 Results 

In this study, we set out to determine if and at what times during a behavioral task do neural 

populations in a single column of the SC encode information about saccade target direction. We 

employed a simple offline decoding algorithm (linear discriminant classifier) as a proxy for 

discriminability of spatial location (i.e., to which out of 8 possible targets will an animal make a 

saccade on a given trial) during independent sliding windows of time throughout a behavioral task. 
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This decoding algorithm was first applied to spiking activity of simultaneously recorded neurons 

and then to the local field potential (LFP) recorded at the same locations across the dorsoventral 

axis of the SC. Importantly, we remain agnostic with respect to whether the population encodes 

sensory and/or motor information at any given time. Instead, we will use any combination of terms 

“target/saccade direction/location” throughout the text and do not make any attempts to distinguish 

whether the spatial information being encoded is related to sensory (i.e., visual stimulus angle 

relative to eye position at fixation) or motor (i.e., intended saccade direction relative to starting 

eye position) representations. 

Figure 23 shows the across-session mean performance in decoding target location from 

small windows of summed spike counts for each target. Here, Target 1 (middle right) has been 

rotated for each session to represent the target location most preferred by the neural population 

recorded on that day (as determined by microstimulation, see Methods). By aligning all sessions 

according to their preferred target location, we can better appreciate any change in decoding target 

location as a function of the proximity of a target to the preferred target. In other words, Targets 2 

and 8 are approximately equidistant from the preferred target, while Target 5 represents the target 

diametrically opposite to the preferred target – one that is in the opposite hemifield.  
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Figure 23. Linear discriminant classification of spiking activity.  

Sliding 100 ms windows of summed spike counts on each channel were used to train a linear discriminant 

analysis (LDA) model and test its ability to decode target direction. Mean (±SEM) across-session classifier 

performance is plotted separately for each of eight target directions and aligned to target onset (left panels) or 

saccade onset (right panels). Chance level classifier performance was obtained by using shuffled class labels 

during the training phase. Performance values were grouped across sessions by aligning to each session’s 

preferred target direction (visualized here as the right middle panels), and the performance for each session 

and each target was baseline-subtracted before averaging. Values for each window are plotted aligned to the 

end of that window (e.g., performance of the classifier trained and tested on the 0 ms to 100 ms window 

following target onset is plotted at 100 ms on the x axis). Inset: Summary polar plot of mean across-session 

classifier performance distribution across target directions during each epoch as defined in Methods. Spatial 

tuning of spiking activity is broader in the motor epoch than any other epoch. 

 

The first, and perhaps most obvious, observation to note is that spatial information is best 

decoded during the neural populations’ visual and motor bursts, peaking roughly 150 ms after 
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target onset and again around saccade onset, respectively. This aligns well with the population-

averaged response during these two epochs (Figure 21). Next, and perhaps just as intuitive, is the 

observation that the decoding performance is best for the target in the preferred location. 

Equivalently, the spiking activity pattern is most distinct from other target locations when the 

target is presented in the preferred location (i.e., the target that evokes a maximal firing rate in 

response to its appearance). 

Another observation from Figure 23 is that spatial information can still be decoded from 

targets far away from the preferred location (e.g., Targets 4-6). Despite the low firing rate 

modulation for these targets, the spiking activity is in fact still distinct across targets presented in 

this region; otherwise, the performance would remain at baseline level (here, at 0 on the y-axis) 

throughout the trial. Instead, the classification performance is well above chance level for these 

directions, including for the location diametrically opposite the preferred direction. This result can 

likely be attributed to the activity seen in individual channels when targets in this region are 

presented, although the direction of modulation (i.e., elevation or suppression of activity) for 

saccade targets in this hemifield is unique to each individual neuron and population (see example 

session in Figure 21). 

The last main observation in Figure 23 is that the decoding accuracy remains elevated 

throughout the delay period, in the time between the transient visual burst and the much-later motor 

burst, especially for targets in and near the preferred location. This result suggests that target 

location is one form of information still present during the delay period, which can be attributed 

to the sustained tonic activity exhibited by many SC neurons following the end of the transient 

visual response.  
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Figure 24. Linear discriminant classification of spiking activity: systematic variation of bin width.  

Classifiers were trained and tested on summed spike counts during windows of lengths ranging from 20 ms to 

300 ms. Average performance over 50 bootstrapping iterations for each target direction and each window 

length condition are plotted using the same conventions as Figure 21 for one example session. Again, values 

are plotted aligned to the end of each window; therefore, each condition peaks in classification performance 

at different times but this is not the comparison of interest. Spike count-based classification is largely robust 

to window size during the transient visual and motor epochs (as indicated by the dark blue and green arrows 

at Target 1) but performance increases with increasing window sizes during the delay period. 

 

We wanted to determine if these observations were robust to the size of the window used 

to classify the target location. Therefore, we systematically varied the bin width of summed spike 

counts used to train and test the classifier from very small (20 ms) to very large (300 ms), and the 

across-session mean performance for each bin width is shown in Figure 24 for one example 

session. Indeed, varying the bin width did not qualitatively change the conclusions drawn above. 



 92 

Instead, the spatial location decoding performance gradually increased as bin width increased, 

plateauing around the 100 ms window length. In other words, using summed spiking activity from 

time ranges longer than 100 ms did not improve the classifier performance, from which we infer 

that information about spatial location is encoded maximally in short periods of spiking. 

 

 

 

Figure 25. Linear discriminant classification of local field potentials.  

Sliding 100 ms windows of average LFP voltage on each channel were used to train an LDA model and test its 

ability to decode target direction. Mean (±SEM) across-session classifier performance is plotted separately for 

each of eight target directions and aligned to target onset (left panels) or saccade onset (right panels). All 

other conventions are the same as in Figure 21. Inset polar plot shows that decoding accuracy is lower during 

the delay period but is consistent between the visual and motor epochs. 

 



 93 

Next, we applied a classification algorithm to the local field potentials recorded 

simultaneously across many channels. Figure 25 shows the across-session mean performance 

when decoding target location from small windows of averaged LFP voltage signals. A decoding 

performance comparable to the spike count-based classifier was found during the visual epoch. 

However, in contrast to the spiking activity-based classification, the ability to decode spatial 

location from LFPs during the delay period is much more constrained to the preferred target 

direction. This tuning reverts to a broad one during the motor epoch, although the extent of spatial 

information does not expand past that observed during the visual epoch as it does in the spike-

based classifier. When the LFP signal is averaged across windows ranging from 20 ms in length 

to 300 ms in length, as shown in Figure 26, we see that the maximum performance is reached when 

the window length is the shortest during the visual and motor epochs (see dark blue and light green 

arrows for Target 1). This short optimal window length suggests that spatial information is encoded 

maximally in short periods of time during these transient epochs, unlike that observed in the spike-

based classifier. However, just as with spiking activity, spatial information seems to be maximally 

encoded on a longer time scale during the delay period. 
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Figure 26. Linear discriminant classification of local field potentials: systematic variation of bin width. 

Classifiers were trained and tested on average LFP voltage on each channel during windows of lengths 

ranging from 20 ms to 300 ms. Average performance over 50 bootstrapping iterations for each target 

direction and each window length condition are plotted using the same conventions as Figure 21 for one 

example session. A decrease in performance with increasing window lengths can be seen during the motor 

epoch (indicated by dark blue and light green arrows at Target 1), but the opposite effect can be seen during 

the delay period. 

 

Last, we quantitatively compared the spatial encoding properties across epochs and signal 

modalities – first for each individual target direction and then integrated across all eight target 

directions. Figure 27 breaks down the classification performance during the visual epoch vs. the 

motor epoch independently for each target and signal modality. The spike-based classifier 

produced consistently higher performance in the motor epoch than in the visual epoch for all target 

directions irrespective of the angular distance from the preferred location. On the contrary, the 
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LFP-based classifier only displayed significantly different performance between the visual and 

motor epochs for target directions far from the preferred direction. 

 

 

 

Figure 27. Comparison of direction encoding during the visual and motor epochs for each target.  

Average decoding performance in the visual (x-axis) vs. motor (y-axis) epoch as defined in Methods for each 

target. Spike-based classifiers are indicated in black and LFP-based classifiers are indicated in green. Each 

session (N=18) contributes two points to each of the eight target subplots – one for spiking activity and 

another for LFP activity. Inset: Significant (paired t-test) differences in performance level during the visual 

and motor epochs for each target are represented, with p<0.05 indicated by a single asterisk, p<0.01 by 

double asterisks, and p<0.001 by triple asterisks. For spike-based classifiers, the performance is significantly 

different between epochs for all targets. For LFP-based classifiers, only targets far from the preferred 

direction have significantly different encoding across epochs. 
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Figure 28A shows the integrated decoding accuracy across targets into four different 

epochs (see Methods for definitions) for the spike-based classifier in black and the LFP-based 

classifier in green. We computed the area under the tuning curves separately for each epoch and 

signal modality to obtain a proxy for overall accuracy, and these values are shown in Figure 28B. 

Beginning in the visual epoch, the amount of spatial information is significantly different between 

spikes and LFPs (paired t-test), and this separation persists throughout the time course of the trial. 

To obtain a measure of the classification tuning width – that is, the narrowness or breadth of ability 

to characterize activity across the full range of target directions – we shifted each population’s 

decoding values such that the decoding performance was 1 for the target in the preferred direction 

(i.e., Target 1) before taking the area under the tuning curve. This provides a means of 

normalization across epochs so that any uniform shifts in decoding performance across all targets 

from one epoch to another do not impact this measure. The results in Figure 28C demonstrate that 

the spatial tuning width is only significantly different between signal modalities during the delay 

period (paired t-test). Comparing each signal modality’s tuning properties across epochs (Figure 

28D), we see that for the spike-based classifier, the tuning width is only significantly different 

between the visual and motor epochs and between the late delay and motor epochs. For the LFP-

based classifier, the tuning width is significantly different across all epochs, indicating a dynamic 

shift in spatial encoding across epochs. 
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Figure 28. Comparison of spatial encoding properties of spiking and LFP activity across epochs.  

A. Baseline-shifted classification performance on spiking (black) and LFP (green) activity during each of the 

four main epochs (as defined in Methods) for each target aligned to the preferred direction of the population. 

Mean across sessions (bold lines) as well as each session’s individual tuning curve (N=18, thin lines) are 

shown. B. Trapezoidal area under the observed tuning curve (AUC) during each epoch for each session (thin 

lines) along with the across-session mean AUC (bold lines). Significant differences between spiking and LFP 

classifier distributions using a paired t-test are shown with asterisks at the α=0.05 significance level (p<0.05 is 

indicated by a single, p<0.01 double, and p<0.001 triple asterisk). Following the visual epoch, the encoding of 

spatial information becomes strongly significantly different between spiking and LFP signals. C. As in (B), 

the area under the tuning curve for each epoch and signal modality was computed, but after shifting each 

population’s decoding values such that the decoding performance was 1 for the target in the preferred 

direction (i.e., Target 1). This measure of tuning width is only significantly different (paired t-test) between 

spiking and LFP activity during the delay period. D. Grid of statistical differences (paired t-test) in tuning 
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width across pairs of epochs computed separately for each signal modality. For spiking activity, the tuning 

width is only significantly different between the visual and motor epochs and between the late delay and 

motor epochs. For LFPs, the tuning width is significantly different across all epochs. 

4.5 Discussion 

In this study, we investigated the spatial tuning properties of spiking activity and local field 

potential signals in the SC, an oculomotor structure critical for the transformation of sensory input 

into motor commands. The combination of the anatomical organization of the SC and the typical 

electrophysiological approach lends itself to recording neural activity within a narrow column 

along the dorsoventral axis. Neurons within a column have largely similar preferred saccade 

directions as well as largely similar preferred visual target eccentricities (Gandhi & Katnani, 2011). 

We showed that despite this homogeneity, the active populations encode a wide range of 

directions. This population-level viewpoint provides insights into the spatial extent of direction 

tuning in the SC within a column that through single unit studies was thought to be essentially 

nonexistent for all visual angles except those close to the preferred direction. 

For each short sliding window along the timeline of a delayed saccade task, a simple linear 

classifier was trained offline to categorize either spiking or LFP activity as belonging to one of 

eight target directions. We employed a classifier so that the amount of change in classification 

performance above baseline provided a singular measure of spatial information across the 24 

channels on which activity was recorded. Such offline decoding algorithms have been used to 

characterize the spatial encoding properties of spiking activity (Boulay et al., 2016; Khanna et al., 

2020; Ohmae et al., 2015) and LFP signals (Tremblay et al., 2015) in cortical oculomotor areas. 
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The implementation of classifiers to link neural activity to a behavioral phenomenon is beneficial 

because they provide a quantitative, comprehensive measurement of information encoding in 

neural populations (Glaser et al., 2020). Of note, we do not claim that the encoded information at 

any time represents a particular feature such as sensation, motor preparation, or motor initiation. 

Instead, we simply characterize the amount of information about direction present in the 

population throughout the timeline of sensorimotor integration. The end position of the saccade 

had to be within two degrees of the target position to count as a correct trial, which is a negligible 

displacement compared to the 45-degree angular distance between each pair of the eight targets 

used as the categories for classification. Thus, we have referred to the encoded target direction and 

saccade direction synonymously. However, a fine-scale characterization of the time points at 

which SC neurons encode spatial parameters in target-centered and gaze-centered coordinates can 

be found in Sajad et al., 2020. 

Previous studies have compared the visual receptive fields of oculomotor neurons to their 

movement fields (equivalently, their spatial tuning properties during the respective visual and 

movement epochs). In cortical areas such as the FEF, the preferred target direction of individual 

neurons tends to be consistent between the visual and motor epochs (Khanna et al., 2020). The 

visual receptive fields of SC neurons have also been shown to largely overlap with their movement 

fields (Anderson et al., 1998; Wurtz & Goldberg, 1972). However, a more recent study 

demonstrated that despite this alignment, the movement fields are significantly larger than the 

visual receptive fields (Marino et al., 2008). Our results conform with these previous findings. 

When comparing the visual and motor epochs within a signal modality, we observed that the tuning 

width of spiking activity is significantly broader in the motor epoch than in the visual epoch (see 

Figure 28D).  
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Of much recent interest in the neuroscience community are the questions of what and how 

much information about various behavioral phenomena is contained in LFP signals – questions 

that have elicited studies on reach kinematic encoding by LFPs in primary motor cortex (Perel et 

al., 2015), attention in visual cortex (Prakash et al., 2021), route selection in hippocampus (Cheng 

et al., 2021), and grasping postures in anterior intraparietal cortex (Lehmann & Scherberger, 2015), 

among others. When comparing spatial encoding properties across the two simultaneously 

recorded signal modalities in this study, we found that the amount of spatial information present 

in spiking activity and LFPs diverged beginning in the early delay period, with the spike-based 

classifier better at decoding target location from small windows of activity. Both signal modalities 

displayed similar tuning widths to each other during the visual and motor epochs; in other words, 

the spatial extent of decoding performance across the eight targets was comparable between spike- 

and LFP-based classifiers during the visual response period and motor initiation period (considered 

independently – see Figure 28D). During the intervening delay period, the spike-based classifier 

performance remained high, but LFP-based performance dropped to near baseline levels for all 

targets except the target closest to the neural population’s preferred direction. Thus, the encoding 

of direction is dynamic across epochs and signal modalities in the SC. 

We suggest that the SC is a suitable candidate for brain-computer interface (BCI) 

applications, especially in BCIs implemented to address fundamental neuroscience questions (e.g., 

Sadtler et al., 2014). Although the vast majority of prior work that implements closed loop control 

of a computer cursor or robot arm has decoded neural activity from skeletomotor structures, a few 

groups have ventured into the oculomotor domain and demonstrated that volitional control of 

neural activity is possible in these areas (Graf & Andersen, 2014; Jia et al., 2017; Schafer & Moore, 

2011) as well as in wholly non-motor areas (e.g., primary visual cortex, Neely et al., 2018). We 



 101 

foresee two possible limitations to using SC neurons or LFPs to decode intended saccade direction. 

First, the SC is a deep brain structure, which imposes a constraint on the number of recordable 

electrode sites. Cortical arrays fit electrode sites on the scale of hundreds, while laminar probes 

suitable for deep brain recording only allow for contacts on the order of tens. This is the likely 

reason that prior implementations of oculomotor BCIs have targeted cortical regions such as the 

lateral intraparietal area (LIP), frontal eye fields (FEF), and supplementary eye fields (SEF). 

However, advances in technology (e.g., Neuropixels) may soon negate this limitation. Second, the 

organization of neurons within a column along the dorsoventral axis results in neural populations 

with largely the same tuning properties (Gandhi & Katnani, 2011). This homogeneity theoretically 

reduces the spatial extent of decoding capability to targets far from the preferred target location, 

although we surprisingly observed that this is not the case; in fact, even targets in the diametrically 

opposite location of the preferred direction have above-chance decoding performance during the 

putatively preparatory delay period when the classifier is based on spiking activity (e.g., Figure 

23). Nonetheless, a neural population with more varied preferred directions would maximize the 

spatial extent of high decoding performance. Recording from the FEF, a cortical oculomotor area, 

yields much more heterogeneity in directional tuning across electrode depth (Bruce et al., 1985), 

although due to its position in the bank of the arcuate sulcus the first limitation would still apply. 

Therefore, we are eager for the field to recognize the potential the SC has for brain-computer 

interface applications. 
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5.0 Summary and Conclusions 

In this dissertation, I described three studies that add foundational knowledge of the role 

of the superior colliculus (SC) during active exploration of our visual environment. Each study 

provides a unique contribution to the characterization of SC population activity dynamics 

throughout various epochs of behavioral tasks that rely on sensorimotor integration – starting with 

the time course of visual- and motor-related signals during the period between sensation and 

action, continuing with the effect of behavioral context on the population activity patterns during 

the periods of sensation and action themselves, and finally ending with how SC populations encode 

broad ranges of visual stimulus angles and saccade directions throughout the entire timeline of 

sensorimotor integration through multiple signal modalities. 

5.1 Summary of Chapter 2 – Timeline of Sensorimotor Transformation Signatures in the 

SC 

In Chapter 2 we set out to characterize the dynamics of sensory and motor representations 

in the SC during the time period between the appearance of a visual stimulus and a goal-directed 

eye movement toward it. Although the SC is well known for its rapid firing rates signaling 

sensation and action on either end of sensorimotor integration, many neurons exhibit elevated 

activity during the intermediate period, which is often referred to as the “delay period” when a 

temporal delay is imposed on the sensation and action periods in a behavioral task. We employed 

a dimensionality reduction algorithm (refer to 1.3.1 for additional details about this machine 
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learning technique) to view the correlated activity across each small SC population in a 

summarized fashion. First, we used a linear discriminant classifier (see 1.3.2 for an overview) to 

ensure that the population “subspaces” – that is, the patterns of activity represented in the low-

dimensional framework (i.e., in Figure 2) – were separable between the sensory and action periods. 

Since we found that this was indeed the case, we computed the similarity of activity patterns during 

the delay period to either the visual or motor subspace using a probabilistic measure of the relative 

distance from either subspace. We observed a slow, systematic drift from a visual- to a motor-like 

representation as time in the delay period progressed. When small fixational saccades called 

microsaccades occurred at any point in the delay period, the population activity pattern transiently 

“reset” to a visual-like representation and was followed by a quick return to the original drifting 

dynamic. When we computed the correlation between the state-space position of the activity and 

the saccadic reaction time, a relationship emerged hundreds of milliseconds before the saccadic go 

cue. 

These results prompt a number of future directions that could further build on this 

conceptualization of SC’s role in sensorimotor transformation. First, an additional analysis of the 

“motor potential” of SC neurons at the end of the delay period would be fruitful. Previous work in 

the Gandhi lab has demonstrated that early disinhibition of the omnipause neurons (OPNs) in the 

brainstem often evokes a low-latency saccade (Jagadisan & Gandhi, 2016). This led to the 

conclusion that the SC does carry motor potential by the end of the delay period, and it resulted in 

another recently published study that provides evidence for “temporal stability” – in other words, 

the consistency in the population activity rank order across successive time points – as a potential 

mechanism for movement generation in the eye movement system. Building on the current study 

presented in Chapter 2, perhaps SC activity has higher motor potential (and thereby, a higher 
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probability of inducing a saccade) on trials in which the population activity pattern has a higher 

motor-like representation as computed here. Both temporal stability and degree of motor-likeness 

may play a role in saccade initiation. 

Historically, the large majority of oculomotor researchers have argued that the mechanisms 

for saccade generation are wholly distinct from those for arm reach generation due to the presence 

of OPNs acting as a gating signal, which are tonically active and are suppressed during a saccade 

(e.g., as noted in Darlington & Lisberger, 2020). It has also been thought that once SC populations 

reach a firing rate threshold, the OPNs are inhibited, and the SC motor command can reach the 

brainstem and the eye muscles for movement initiation (Jantz et al., 2013). Although this is an 

enticing view, it is overly simplistic. During the initial representation of a visual stimulus, the 

population activity often reaches the same firing rate level but does not evoke a movement. With 

this need for distinct representations of sensory and motor signals, it logically follows why we 

observed separable subspaces of population activity during the visual and motor epochs in the 

current study. Further studies are needed to solidify our understanding of the SC’s role in 

movement initiation, but our findings suggest that movement generation mechanisms might be 

more conserved across motor systems than previously thought. 

It would also be worthwhile to further investigate the effect of microsaccades on 

sensorimotor transformation. In this study, we grouped time periods of neural activity surrounding 

a detected microsaccade regardless of the time in the delay period at which the microsaccade 

occurred. These effects could be broken down by microsaccade timing (early or late) and direction 

(toward or away from the visual stimulus) to determine if the neural representation is unique across 

these conditions. 
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Finally, future studies could examine any change in the time course of sensorimotor 

transformation during tasks in which the cognitive load is higher. The memory-guided delayed 

saccade task (MG delay) is one such task – the sequence of a trial of this task is identical to the 

visually-guided delayed saccade task studied here with the exception of the disappearance of the 

visual stimulus shortly after its presentation. In the MG delay task, the animal must utilize working 

memory and make a delayed saccade to the remembered target location. Perhaps the population 

representation will evolve more rapidly or even “step” to a motor-like representation. On the other 

hand, the sensorimotor transformation signature may remain unaffected if cognitive factors such 

as this working memory component are encoded independently of sensory and motor features 

during the delay period (as observed in Chapter 3 during the periods of sensation and action). I 

hypothesize that microsaccades generated after target disappearance do not induce any transient 

perturbation in the population representation during the MG delay task because there is no longer 

peripheral visual stimulus to be jittered on the retina. 

5.2 Summary of Chapter 3 – Contextual Effects on Sensorimotor Encoding in the SC 

In the study presented in Chapter 3, we explored how neural populations in the SC encode 

two different forms of information – content (sensation/action) and context (delay/gap tasks) 

during the bookending visual and motor epochs of simple behavioral tasks. As in Chapter 2, we 

performed dimensionality reduction to summarize the pattern of activity across the population. 

The separability of the subspaces formed during the visual and motor epochs both within and 

across tasks were compared in a one-by-one manner using a simple linear discriminant classifier 

that was trained to identify activity patterns as belonging to one of two categories. The accuracy 
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of the classifier above chance level gave an indication of the degree to which the activity patterns 

were distinct across conditions. The visual and motor patterns within each task were consistently 

separable, extending the result presented in Chapter 2 (i.e., that sensory and motor representations 

are distinct in the SC) to a second task. During both the sensory and motor periods, the population 

subspaces diverged across the two tasks, and we argued that the interaction of the bottom-up visual 

transient with movement preparation-related activity that begins accumulating in the gap period of 

the gap task (Edelman & Keller, 1996) serves to induce a different state in the oculomotor circuitry 

compared to trials of the delay task. 

A potential future direction of this study is the exploration of population subspaces during 

a wider variety of behavioral and cognitive contexts. We started with a comparison of two tasks 

that have been thought to elicit similar neural responses in the SC but found that through a 

population-level analysis the patterns were surprisingly distinct across contexts. Therefore, it 

would be wise to examine the subspaces occupied by SC neural activity during a wider range of 

tasks, including the MG delay task described in 5.1. If the cognitive process of working memory 

adds complexity to the task, how are the population patterns affected? We have collected 

preliminary data in which neural populations were recorded while a monkey performed interleaved 

trials of the delay (i.e., visually guided, or VG), MG delay, and gap tasks, and performed initial 

analyses of the population representations during sensation and action. Having only a few data sets 

it is hard to form a concrete conclusion. I hypothesize that the sensory representation in the MG 

delay task will be overlapping that in the VG delay task because the trial flow is identical up to 

that point. Only after the stimulus disappears (i.e., after the transient sensory response is evoked) 

does the animal know that he is performing MG delay trial. I hypothesize that the motor 

representations will be slightly differentiable between the VG and MG delay tasks because of the 
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different “neural state” imposed by the addition of a working memory component. We have 

already shown that if the activity is in a different initial state it will keep evolving differently even 

if the saccade produced has the same behavioral metrics (also see Afshar et al., 2011). We hope 

that future research explores the entire repertoire of SC network patterns and their multiplexed 

relationships to cognitive and behavioral phenomena. 

5.3 Summary of Chapter 4 – Encoding of Spatial Parameters in Spiking and LFP SC 

Signals 

In the final study, we explored the range of information about target/saccade direction 

contained within SC signals throughout the timeline of sensorimotor integration. Unlike in 

previous chapters where we only considered spiking activity, we included in this study an analysis 

of a second signal modality – the local field potential (LFP). We implemented a multiclass version 

of a linear discriminant analysis classifier (see overview in Offline Decoding 1.3.2), training it to 

categorize the target direction (one of eight possible) to which small windows of neural activity 

from single trials belonged. The performance at a particular time in the sensorimotor integration 

process gives an indication of the amount of information encoded by neural populations at that 

time. We found that the discriminability of target direction was rather broad and not limited to 

locations near the population’s preferred direction during the transient sensory and motor epochs 

for both signal modalities. For each signal modality, this encoding of direction by SC populations 

was also dynamic, exhibiting distinct tuning properties across the visual, delay, and motor epochs. 

The logical next step for this line of research is investigating the time course of population-

level information related to target/saccade amplitude, the other main spatial parameter encoded by 
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SC neurons. Here, we held the target amplitude constant across trials and varied the direction. 

Recording from an SC column while monkeys perform a delayed saccade task to a target with a 

constant direction across trials but with a varied amplitude would provide insights into this second 

dimension. To obtain a sufficient number of trials each recording session (equivalently, for each 

neural population), we limited the spatial resolution of both our behavioral paradigm and analyses 

to eight targets with 45-degree spacing increments. A variety of techniques are being developed in 

the field that seek to provide a way to combine neural activity across many sessions (Gallego et 

al., 2020; Pandarinath et al., 2018). We hope that in the future, the spatial resolution of spatial 

decoding can be implemented at a finer scale (i.e., with a narrower range of directions presented 

each day) and then combined across sessions through the use of such techniques. 

In addition, I envision future analyses that break down the LFP signals into different 

frequency bands. For the analyses included in Chapter 4, all frequencies below 250 Hz were 

included in the time-domain LFP signal. The LFPs, at least the way quantified here, do not have 

much direction information outside of the visual and motor epochs. Do certain frequency bands 

yield better or worse classifiers? Do those frequency bands contain direction information that is 

obscured when all frequency bands are considered?  A more thorough investigation of the 

relationship between population LFPs and target/saccade direction would be beneficial. 

Finally, deep brain areas like the SC should be considered as a target structure for brain-

computer interfaces (BCIs). Although deep brain structures are less accessible for 

electrophysiological recordings, the oculomotor system is arguably simpler than the skeletomotor 

system and is well-studied. The unique, structured organization of the SC in relation to spatial and 

sensorimotor parameters should make it an enticing structure of interest for future BCI 

experiments. 
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