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Abstract 

Modeling Patient Outcome After Arthroscopic Partial Meniscectomy Using Covariates 

Measured with Error 

 

Tucker J. Harvey, M.S. 

 

University of Pittsburgh, 2022 

 

 

 

 

Pain and reduced function resulting from tears of the meniscus can cause disability, 

compounded by a risk of osteoarthritis. The Knee Injury and Osteoarthritis Score (KOOS) is a tool 

for quantifying pain and functional deficits, but scores can vary even without underlying biological 

change. Arthroscopic Partial Meniscectomy (APM) is a minimally invasive surgery used to repair 

meniscal tears, but it's hypothesized that using improvements in KOOS pain or function sub-scores 

alone is too simplistic to determine whether patients are satisfied with their post-operative results.  

This project modelled post-operative satisfaction using KOOS and baseline demographic 

characteristics, while accounting for the intra-subject variability of KOOS. Logistic regression was 

used to model satisfaction with KOOS and demographic covariates. A backwards-selection 

technique with bootstrapping was used to quantify variable importance. Age, education, race, and 

mental health were identified as important covariates for a reduced model. A multiple imputation 

technique was used to simulate KOOS uncertainty, in which other covariates were used to impute 

potentially true values of the erroneously-measured variables using background information about 

the distribution of errors. This was followed by regression of satisfaction on these imputed values 

and computation of corrected regression coefficient estimates. Minor changes to regression 

coefficient estimates and odds ratios resulted, but the associated confidence intervals generally 

overlapped with the uncorrected estimates. While the effect of KOOS pain on satisfaction 

marginally decreased, the effect of KOOS function increased. Individuals who were worse off 
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(high pain and low function) at baseline, and those whose pain and function improved the most, 

had the highest probability of satisfaction. More research is needed to exactly explain the effect 

estimates for demographic predictors. Additionally, simulation studies would be useful to 

determine the performance of this measurement error correction method, as would a study of 

KOOS using validation data. This project has public health implications in educating clinicians 

and patients about what factors are important in determining satisfaction after APM, specifically 

how KOOS should be used. There are considerable ethical and financial benefits to more 

effectively identifying ideal candidates for surgery, while ruling out those unlikely to benefit. 

  



 vi 

Table of Contents 

Preface ............................................................................................................................................ x 

1.0 Introduction ............................................................................................................................. 1 

1.1 Meniscal Injury ............................................................................................................... 2 

1.2 Analytical Challenges ..................................................................................................... 3 

1.2.1 Model Selection and Variable Importance ........................................................3 

1.2.2 Measurement Error .............................................................................................5 

1.3 Objectives ...................................................................................................................... 12 

2.0 Methods .................................................................................................................................. 13 

2.1 Data ................................................................................................................................ 13 

2.2 Descriptive Statistics .................................................................................................... 14 

2.3 Modeling PASS ............................................................................................................. 15 

2.3.1 Variable Selection...............................................................................................16 

2.3.2 Measurement Error ...........................................................................................18 

2.4 Statistical Details .......................................................................................................... 22 

3.0 Results .................................................................................................................................... 23 

3.1 Descriptive Statistics .................................................................................................... 23 

3.1.1 Univariate Summary ..........................................................................................23 

3.1.2 Bivariate Summary ............................................................................................25 

3.1.2.1 KOOS Predictors by PASS Status ....................................................... 25 

3.1.2.2 Demographic Predictors by PASS Status ............................................ 26 

3.1.3 Potential Interactions .........................................................................................30 



 vii 

3.2 Modeling PASS ............................................................................................................. 32 

3.2.1 Full Uncorrected Model .....................................................................................32 

3.2.2 Variable Selection and Reduced Model ...........................................................34 

3.2.3 Correcting for Measurement Variability .........................................................38 

4.0 Discussion............................................................................................................................... 42 

4.1 Model Selection ............................................................................................................. 42 

4.2 Modelling 1-Year Satisfaction ..................................................................................... 43 

4.2.1 Multiple Imputation for Measurement Error .................................................43 

4.2.2 Interpreting MIME Results ..............................................................................45 

4.3 Conclusion: Future Directions, Validation, and Public Health Implications ......... 48 

Appendix A Using Outcome in Measurement Error Model ................................................... 52 

Appendix B Model Validation with Error Variance Simulations .......................................... 54 

Appendix C Preliminary Full and Reduced Model Diagnostics ............................................. 55 

Appendix D Receiver Operating Characteristic (ROC) Curves ............................................ 59 

Appendix E R code for MIME Procedure ................................................................................ 60 

Bibliography ................................................................................................................................ 82 



 viii 

List of Tables 

Table 1. Summary of Demographics and KOOS in Study Sample ........................................ 23 

Table 2. KOOS Predictors by Outcome Status ........................................................................ 25 

Table 3: Demographic Predictors by Outcome Status ............................................................ 27 

Table 4. Logistic regression results of full uncorrected model ............................................... 32 

Table 5. Bootstapping and Model Building Results. ................................................................ 34 

Table 6. Reduced Uncorrected Model ....................................................................................... 37 

Table 7. Full and Reduced Model Comparison........................................................................ 37 

Table 8. Coefficients and Estimates from Corrected Model ................................................... 40 

Table 9. Estimated Probabilities of Satisfaction ...................................................................... 46 

Table 10. Coefficients from Model using Y for Imputations .................................................. 52 

Table 11. Coefficients when Measurement Error is Adjusted ................................................ 54 

Table 12. Variance Inflation Factors from Full and Reduced Model .................................... 57 

 

 



 ix 

List of Figures 

Figure 1. Current Satisfaction vs. Pain and Function (KOOS). ............................................. 26 

Figure 2. Current Satisfaction vs. Continuous Demographic Predictors. ............................. 29 

Figure 3. Current Satisfaction vs. Categorical Demographic Predictors. ............................. 30 

Figure 4. Interactions Between KOOS Variables. ................................................................... 31 

Figure 5. Diagnostic Plots for Full Model ................................................................................. 56 

Figure 6. Diagnostic Plots for Reduced Model ......................................................................... 57 

Figure 7. ROC Curves ................................................................................................................ 59 

 



 x 

Preface 

Definitions of most common abbreviations used (also defined as used throughout text): 

• PASS: Patient Acceptable Symptom State, Outcome Variable  

• KOOS: Knee Injury and Osteoarthritis Score, Primary Predictors of Interest  

• APM: Arthroscopic Partial Meniscectomy Surgery 

• OA: Osteoarthritis  

• MIME: Multiple Imputation for Measurement Error  

 

Definitions of most common variables used (also defined as used throughout text):  

• Z: Variables measured with error (KOOS in this case) 

o ZM: Erroneously measured values 

o ZT: True values  

• X: Covariates not measured with error 

• Y: Outcome variable (PASS in this case) 

• ME: Measurement error  

 

I’d like to acknowledge Dr. Naveen Subhas and the Imaging Department at the Cleveland 

Clinic Foundation for allowing to conduct this project as a visiting researcher, providing me with 

access to this data, and supporting this work. I’d also like to acknowledge all University of 

Pittsburgh faculty members who served as my committee members and have provided me with 

support and guidance during this project. 
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1.0 Introduction 

Modelling clinical outcomes is a challenging yet necessary task. Often, the goals are to 

predict patient outcomes using available data on personal and medical factors. While building a 

model which consistently makes accurate predictions is generally desirable, in some cases it may 

also be of interest to understand whether and how particular personal and medical factors can best 

be used to explain why a particular outcome occurs. This interpretive goal, of better understanding 

the relationship between predictor and outcome, and whether such a relationship is statistically 

significant, in addition to making accurate predictions overall, was a central aim of this project. 

Such an understanding is particularly important when considering the outcomes of costly 

procedures with an extended recovery period and variable results, as was the case with 

Arthroscopic Partial Meniscectomy (APM) knee surgery which was considered here. An 

additional challenge can result when patient factors potentially associated with clinical outcomes 

are those perceived by patients rather than measured strictly. However, patient perception of 

deficits prior to surgery, the resulting perceived improvements in those deficits, and patients’ 

overall feelings of satisfaction associated with their treatment experience and outcome should be 

of foremost consideration, as was the case in this modelling project. A deeper understanding of 

the association between such perceived deficits and clinical outcome by both physicians and 

patients could be highly beneficial in better tailoring treatment decisions to individual cases of 

knee injury.  
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1.1 Meniscal Injury 

Knee injury is an extremely common cause of discomfort which often leads to disability, 

particularly in cases of severe and/or chronic pain. Severe disability is associated with increased 

age, as well as a variety of other physical and personal factors (Baldwin et al. 2017). The high 

prevalence of debilitating knee pain can partially be attributed to osteoarthritis (OA), for which 

torn meniscus (cartilage of the knee joint) is a strong risk factor (Englund, Roos, & Lohmander, 

2003). Patients with symptomatic OA alone can often be treated with physical therapy and other 

non-surgical treatment, whereas individuals with meniscal tears may require arthroscopic partial 

meniscectomy (APM) (Samson et al. 2007). APM is a very common treatment for meniscal tears, 

but the benefit of surgery over other treatment is questionable for some individuals (Katz et al., 

2013). Increased age and several health comorbidities, including OA, have been reported to be 

associated with decreased surgical benefit and adverse outcomes (Abram et al., 2018) (Englund, 

Roos, & Lohmander, 2003). Understanding the patient-specific personal and medical factors 

associated with successful APM is necessary to both inform its clinical use and to adequately 

educate patients about treatment options. Patient-perceived satisfaction with surgical results 

should be of principal importance in determining procedure success.  

The Knee Injury and Osteoarthritis Score (KOOS) is derived from a questionnaire aimed 

at assessing patients’ opinions of their own knee-associated problems. These are well-established 

metrics used for both research and clinical purposes (Roos & Lohmander, 2003). KOOS is 

intended for use in knee-injury cases which may result in OA (such as meniscus injury) and can 

serve to both comprehensively assess patient experience at initial consultation and to monitor 

individuals over time (Roos & Lohmander, 2003). KOOS combines daily function and disability 

with recreational abilities, increasing validity for a wide range of patient lifestyles. Completion of 
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the KOOS questionnaire results in scores for multiple subsections. This project focused on baseline 

(prior to surgery) KOOS pain and function subsections, as well as the change in both pain and 

function between baseline and a 1-year post-operative follow-up point. These four scores served 

as the primary predictors of interest in this project. KOOS pain and function are both measured 

with a range of [0, 100], whereas change in pain and function have a potential range of [-100, 100]. 

High baseline scores represent severe patient-reported pain and greater levels of perceived 

functioning (low disability), whereas higher values for both change in pain and change in function 

represent greater improvement (decreased pain, improved function).  

1.2 Analytical Challenges  

1.2.1 Model Selection and Variable Importance  

Covariate selection is a seemingly simple yet important task in modeling, particularly in 

clinical settings. While models built with the primary goal of maximizing predictive accuracy may 

benefit from including as many predictors as the sample size will allow, those built with goals of 

understanding and testing the effects of individual covariates on the outcome, as was the case with 

this project, may wish to build simpler and/or smaller models (James et al., 2017). In some cases, 

inclusion of many non-essential predictors in a logistic regression model has been reported to 

weaken estimates of the true associations between predictors and outcome, lead to imprecise 

estimates, and increase type II error (Ranganathan, Pramesh, & Aggarwal, 2017). Often, univariate 

analysis precedes modeling, in which the association of each variable with the outcome is first 

tested without the presence of other variables, and additionally considered for its scientific 
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plausibility (Ranganathan, Pramesh, & Aggarwal, 2017). Following such preliminary steps, 

backwards stepwise selection is one of the most common and straightforward methods by which 

important covariates are selected from a high-dimensional dataset, one with many variables. In the 

case of logistic regression, variables are typically removed one at a time, selected by minimizing 

model deviance at each step, and then models of different sizes can be compared in several ways 

(James et al., 2017). Backwards selection has been shown to have weaknesses when used in place 

of purposeful selection methods (Bursac et al., 2008). Once a variable is excluded in the stepwise 

process, it is not allowed to return, even if it becomes more useful in a smaller model. For this 

reason, one “best” subset of predictors is not guaranteed to be found (James et al., 2017). 

Additionally, limited information is provided about the importance of variables by this method. 

Variables are either removed or not, which may be unique to the sample being considered, and 

prevents the degree of their usefulness from being ascertained.  

The bootstrap is a tool which is widely applicable to situations where it is desirable to 

quantify the uncertainty associated with a statistical method (James et al., 2017). It overcomes the 

limitations that result from having only one sample with which to draw inferences about a sampling 

distribution. In bootstrapping, observations are randomly sampled from a main dataset of interest, 

usually with replacement, to create a new bootstrapped sample. By repeating this sampling process 

many times, slightly different bootstrapped samples can be obtained, creating a simulated sampling 

distribution. Often, a statistical process is performed on each bootstrapped sample, each time 

resulting in an estimate of interest, and their variance can then be computed (James et al., 2017). 

In our case, bootstrapping was used to overcome the limitations of backwards selection. By 

performing this variable selection technique on multiple bootstrapped samples, a more robust 

understanding of the frequency with which variables were selected and the consistency with which 
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they were useful in our logistic regression model was obtained. This information was then used to 

make a better-informed judgement about variable importance in our specific case.  

1.2.2 Measurement Error 

Following an investigation of variable importance and covariate selection, the primary 

analytical challenge associated with the current project is that the pain and function scores derived 

from the KOOS questionnaire are measurements that suffer from intra-subject variability. The test-

retest variance for the KOOS pain score has been reported to be 4.8, and 8.3 for the KOOS function 

score (Collins et al. 2011).  For example, if the KOOS pain was measured for a patient on multiple 

consecutive days where there was no biological change, the variance of those scores is 4.8 (Collins 

et al. 2011). Therefore, the analyses used in this project focus on methods attempting to correct for 

such within-subject uncertainty. This uncertainty is effectively a type of measurement error, as the 

subject reported score varies somewhat from the true measure of pain or function.  

Measurement error is a widespread problem which is particularly present in observational 

studies involving inaccurate instruments, expense associated with exact measurement, subjectivity 

associated with some self-reported measurements, and variables for which exact measurements 

cannot be achieved (Guolo, 2008). Failure to correct for measurement error can result in biased 

regression coefficient estimates, both for the variable(s) measured with error, and for other 

covariates in the model, either towards or away from the null value (Rosner, Spiegelman, & 

Willett, 1990) (Thürigen et al., 2000). Measurement error can also result in unreliable confidence 

interval spread and reduced statistical testing power (Armstrong, 2003). Mis-measured values 

sometimes show bias through systematically overestimating or underestimating true values 

(Thürigen et al., 2000). In the present case, KOOS pain and function measures represent patient 
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perception, and therefore “true” values are unattainable, but their error is believed to have a mean 

of zero. If Z is a variable measured with error, the true value of that variable, ZT, is e qual to the 

sum of the measured value (ZM) and the error associated with that measurement (ME) (Keogh & 

White, 2014). In the present case, ME can be considered a random variable which follows a normal 

distribution with known variance (2).   

 𝒁𝑻 = 𝒁𝑴 + 𝑴𝑬 Equation 1 

 

 𝑴𝑬 ~ 𝑵(𝟎, 𝝈𝟐) Equation 2 

 

Although several methods have been proposed to correct for such problems associated with 

measurement error, they are infrequently used (Thürigen et al., 2000).  

Corrective methods for measurement error have been developed for multivariable 

regression models including logistic regression, which is the focus of this project. In models with 

a binary outcome, Y, the outcome model is defined as the probability of having a positive outcome 

(or success), conditional on the true values of predictor variables measured with error, ZT, and any 

number of other non-erroneous predictors, X, which is equal to a function of ZT, X, and a vector 

of parameter estimates for the outcome model, 𝛽. (Equation 3).  

 𝑷(𝒀 = 𝟏|𝒁𝑻, 𝑿) = 𝒉(𝒁𝑻, 𝑿, 𝜷) Equation 3 

A model for the true values of the mis-measured variable, ZT, can be defined as a function of the 

measured values, ZM, and vector of parameter estimates for those measured values, 𝜆, plus an error 

term for this measurement error model, 𝛿.  

 𝒁𝑻 = 𝒇𝒁(𝒁𝑴, 𝝀) + 𝜹 Equation 4 
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Corrective techniques generally rely on the assumption that the measured values, ZM, and the 

outcome, Y, are conditionally independent, given the true values of mis-measured variables, ZT. 

(Thürigen et al., 2000). Practically, the error, ME, does not explain anything about Y beyond what 

is explained by the true values of Z.  

 𝒇(𝒀|𝒁𝑻, 𝒁𝑴, 𝑿) = 𝒇(𝒀|𝒁𝑻, 𝑿) Equation 5 

 

Many correction methods intended to account for measurement error involve using a 

validation dataset, in which both the true value of the mis-measured variable, ZT, and the value 

measured with error, ZM, are present in either a sub-set of observations, or a related dataset 

(Rosner, Spiegelman & Willett, 1990). This data structure allows for an understanding of the 

relationship between the true and measured values, which is then used for calculation of corrected 

regression coefficient estimates. These methods assume that the probability of an 

observation/subject being present in the validation dataset is independent of any variables in the 

dataset (Thürigen et al., 2000). Finally, methods rely on the assumption of transferability, that the 

parameter estimates describing the relationship between the true and measured values from a 

validation dataset will converge on those of the main study, or that the measurement error model 

(equation 4) is transferable between the validation data and main study data (Thürigen et al., 2000).   

Regression calibration methods of measurement error correction for logistic regression 

were developed in the late 1980’s (Rosner, Spiegelman & Willett, 1989) (Armstrong, Whittemore, 

& Howe, 1989), and have been since used in and modified for multiple applications (Guolo, 2008). 

Here, a parametric model is constructed from validation data describing the association between 

true and measured values. In most cases, this validation (or measurement error) model is used to 

directly correct the coefficient estimates from an uncorrected model predicting the outcome of 
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interest, built using the main study dataset. Rosner et al. describes a common version this method 

for the case of multiple covariates measured with error (1990):  

1. An uncorrected logistic regression model is built using the main study dataset, 

where mis-measured values and other variables are used to predict outcome (Y ~ 

ZM + X). These uncorrected coefficient estimates are stored. Let 𝛽𝑍 be a vector of 

coefficient estimates for variables measured with error and 𝛽𝑋 be a vector of 

coefficient estimates for non-erroneous variables.  

 𝒍𝒐𝒈𝒊𝒕[𝑷(𝒀|𝒁𝑴, 𝑿)] = 𝜶 + 𝜷𝒁𝒁𝑴 + 𝜷𝑿𝑿 Equation 6 

 

2. In the case of continuous variables measured with error, a multivariate linear 

regression model is fit using the validation dataset, with the true values of all 

covariates measured with error are regressed on the erroneous measurements and 

other variables. Let 𝜆𝑍 be a matrix of regression coefficient estimates for variables 

measured with error and 𝜆𝑋 be a matrix of regression coefficient estimates for non-

erroneous variables. 

 𝒁𝑻 = 𝜶′ + 𝝀𝒁𝒁𝑴 + 𝝀𝑿𝑿 + 𝒆  Equation 7 

3. A vector of uncorrected coefficient estimates from step 1 is multiplied by a matrix 

of the coefficient estimates from step 2, augmented by the identity matrix and zero 

matrix, to calculate a vector of the corrected regression coefficients:   

 𝜷∗ = 𝜷𝝀−𝟏 Equation 8 

Where 𝛽 is a vector of uncorrected regression coefficients: 

 𝜷 = (𝜷𝒁,  𝜷𝑿) Equation 9 

And 𝛽∗ is a vector of corrected regression coefficients: 
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 𝜷∗ = (𝜷𝒁
∗,  𝜷𝑿

∗) Equation 10 

And letting I be the identity matrix, the matrix 𝜆 is given by: 

 𝝀 =  (
𝝀𝒁 𝝀𝑿

𝟎 𝑰
) 

 

Equation 11 

Similar methods of regression calibration use a model built on the validation dataset to 

predict the true values, ZT, using measured values and other variables (ZT ~ ZM + X), but then 

apply this model to the main dataset to replace the erroneous measurements with predictions of 

ZM, adjusted values which can then be used directly to model the outcome (Guolo, 2008).  

Alternative models have also been used to calculate adjusted values. For instance, an empirical 

Bayes estimate of the true value conditional on the outcome in moment reconstruction methods 

(Kromhout, 2009), maximum likelihood approaches, which maximize a likelihood function of Y 

given ZT and ZM, semi- and non-parametric methods, which don’t specify the distribution of the 

measurement error or measurement error model, and Bayesian methods could be considered 

(Thürigen et al., 2000).  

In cases where true measurements are unavailable (or not applicable, as in our case of pain 

and function) a regression calibration model can be indirectly estimated using repeated 

measurements taken with error for some or all observations/subjects, and use of this type of 

correction often has the effect of strengthening the relationship between predictor and outcome 

(Freedman et al. 2004) (Wong et al., 1999). Such methods have been developed in cases where 

repeated measures are taken of erroneous variables derived from questionnaires, and where other 

variables may also be present, which is closely related to the present case regarding the KOOS 

predictors. Wong et al. describes how a correction factor for the coefficient of the erroneous 

variable can be calculated from the variance of the repeated measures and the correlation between 

them (1999). Bashir and Duffy also review various methods of dealing with data containing 
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predictors with repeated erroneous measurements, including linear imputation methods and a 

discriminant analysis method, in which it is assumed that repeated errors are independent and 

normally distributed (1997).  

Imputation methods involve making predictions for the true values of the erroneous 

variable, ZT, and treating measurement error as a missing data problem. Here, other variables, 

including the outcome, can be used fill in a missing (or mis-measured) value (Padilla et al., 2009). 

Similar to regression calibration, these methods typically rely on either validation data (Cole, Chu, 

& Greenland, 2006) or repeated measures taken on the same observation (Keogh & White, 2014) 

(Bashir & Duffy, 1997). When performing multiple imputations of a mismeasured variable, 

imputed values are treated as potentially true values, rather than a single true value, having the 

benefit of accounting for uncertainty about the actual value. This may prevent underestimation of 

standard errors and inflated type I error rates and may result in more conservative confidence 

intervals (Padilla et al., 2009). The following is a common version of a multiple imputation 

approach described generally in a review by Padilla et al. (2009): 

1. A regression model is created predicting the variable measured with error using 

other variables in the dataset as predictors.  

2. The coefficient estimates from this model, along with their variances-covariance 

matrix is used to generate a new set of M random parameter estimates. It is 

generally assumed that the generated estimates follow a normal distribution around 

the original estimate for each variable from step 1.  

3. For each of the M sets of generated coefficient estimates, a prediction (or 

imputation) of a potential true value of the mis-measured variable is made.  
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4. The model of interest is fit using the M potential true values of the mis-measured 

variable.  

5. The M sets of coefficient estimates from the model in step 4 are combined and their 

total variance is calculated as described by Rubin (1987).  

Here, a similar method using multiple imputation to correct for measurement error was 

used but modified for our specific case. The dataset available for use in this project did not contain 

either validation data or repeated measures of mis-measured variables, preventing the use of 

standard regression calibration methods. However, limited information was known regarding the 

distribution of the measurement error typically associated with each KOOS predictor individually, 

described above in equation 2. Unfortunately, the covariance between measurement errors in 

KOOS predictors was unknown. For example, it was unclear how much of the error in a 

measurement of baseline pain can be explained by the error in a measurement of baseline function 

for the same subject. For this reason, the multiple imputation method used here could not involve 

the use of a variance-covariance matrix to generate imputations. A conservative approach was 

instead used in which there was no correlation between the errors in different KOOS variables. 

Rather than using the variability inherent in the measurement error model to randomly generate 

potentially true associations between mis-measured variables and other variables (as in step 2 

above), we simply used the least-squares estimates from our measurement error model, but 

subsequently added in the known error distribution directly when imputing possible true values 

for the KOOS variables. While this approach was simple compared to many of those described, it 

retained the benefit of using multiple imputations to simulate the uncertainty inherent in 

measurement error (rather than attempting to calculate a single “corrected” value) and made the 

best use of our limited background information regarding the measurement of KOOS.  
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1.3 Objectives  

This project sought to better understand patient outcome after APM. Specifically, we were 

interested in modeling whether patients are satisfied with their results at the 1-year follow-up point. 

Although a 10-unit improvement in pain (KOOS) is commonly used to indicate that treatment was 

a success, we posit that this is too simplistic since the relationship between KOOS and overall 

satisfaction is complicated, likely involving other potentially confounding factors which are 

necessary to take into account and control for in a potential model. It has been observed that some 

patients with great improvement in pain and function are not satisfied with their outcome, while 

others with moderate function at baseline, and who show only modest improvements in pain and 

function, are satisfied with their outcome. This project sought to identify what factors are most 

important in determining overall patient satisfaction. It was hypothesized that demographic 

predictors most closely related to other health comorbidities, such as age and BMI, would be most 

important to control for. This project also sought to determine how KOOS pain and function could 

best be used to predict whether patients will be satisfied with their surgical outcome. It was 

hypothesized that all four KOOS variables would be important in predicting ultimate patient 

satisfaction, but that this association would be less strong after considering the uncertainty 

associated with measurement error. It was our hope that by being able to better understand and 

predict patient outcomes, physicians could better identify ideal candidates for surgery and may be 

able to rule out those least likely to benefit.  
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2.0 Methods 

2.1 Data 

Data came from a study population taken from the OrthoMiDaS Episode of Care (OME) 

prospective surgical cohort at the Cleveland Clinic. The OME cohort, which includes surgical and 

outcome data from elective knee, hip, and shoulder surgeries performed at all Cleveland Clinic 

sites, was collected from February 2015 to December 2017. Out of this cohort, only APM surgical 

patients (with meniscal tears) who had valid MRI data were selected for this project. Patients under 

the age of 45, as well as those who had received previous knee surgery or who underwent another 

concurrent surgery were additionally excluded, so as to focus on typical cases in individuals with 

a higher prevalence of osteoarthritis (OA) (N=924). 

The primary outcome of interest was the binary variable Patient Acceptable Symptom State 

(PASS), whether or not the patient reported overall satisfaction with their surgical outcome at the 

1-year follow-up timepoint after APM (Wright et al., 2015). Of primary interest as predictors were 

the continuous patient-reported KOOS variables: baseline pain, baseline function, 1-year change 

in pain, and 1-year change in function (Roos & Lohmander, 2003). Also of interest were a selection 

of demographic variables, summarized in Table 1. Categorical variables were summarized with 

counts and percentages, and continuous variables were summarized with mean, standard deviation 

(SD), and range. Clinical recommendations were considered in cases where the linear form of a 

continuous variable was deemed not appropriate. Specifically, the variables body mass index 

(BMI), area deprivation index (ADI), and mental component summary (MCS) were used in both 

their quadratic (squared) and original linear forms. Additionally, the variables age, years of 
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education, and comorbidity index were each categorized based on clinically recommended split-

points.  

2.2 Descriptive Statistics 

The primary predictors of PASS, the KOOS variables, were graphically compared using 

side-by-side boxplots, demonstrating the difference in distribution of baseline pain, baseline 

function, change in pain, and change in function by overall patient satisfaction. Each boxplot was 

visually assessed for normality. A 2-sample t-test with unequal variances was performed for each 

KOOS variable under the null hypothesis that the mean scores were equal in satisfied and 

unsatisfied patients. The assumptions of this test were verified; subjects were independent, and the 

central limit theorem was satisfied by the large size of each group (considerably greater that n=30).  

Continuous demographic variables were similarly graphically summarized by PASS 

outcome status using side-by-side boxplots. Categorical predictor variables were graphically 

summarized by PASS outcome status using side-by-side bar graphs. This preliminary examination 

of plots was intended to qualitatively assess the relationship between each predictor and patient 

satisfaction.  

Interactions between baseline pain with change in pain, baseline function with change in 

function, and baseline function with baseline pain were also assessed. Scatterplots were used to 

visually examine the relationship between each predictor in the interaction and stratified by 

outcome status. Flexible lines (using a generalized additive model) were fit to each stratum and 

the relationship between the slopes of each line was examined to assess the extent of the 

interaction. Logistic regression, using PASS as the outcome and each interaction, along with the 
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two individual variables, as the only predictors, was used to assess the significance of each 

interaction individually, using the p-value from the Wald test. 

2.3 Modeling PASS 

Logistic regression (James et al., 2017) was used to model patient satisfaction. All 

covariates were regressed on PASS using a logit link in order to model the probability of each 

patient being satisfied. Let Y be the outcome variable PASS and X a vector of covariates.  

 
𝒑(𝒀) =

𝒆𝜷𝟎+𝜷𝟏𝑿

𝟏 +  𝒆𝜷𝟎+𝜷𝟏𝑿
 

 

Equation 12 

 

Or equivalently: 

 
𝐥𝐨𝐠 (

𝒑(𝒀)

𝟏 − 𝒑(𝒀)
) =  𝜷𝟎 + 𝜷𝟏𝑿 

 

Equation 13 

 

Coefficients were estimated using the general method of maximum likelihood, such that 

the predicted probability of satisfaction for each subject is as close as possible to that individual’s 

satisfaction status.  

This full uncorrected model contained all covariates shown in table 1. Based on clinical 

recommendations provided at the time of data acquisition, both the linear and second-order 

polynomial transformations are used in the model for the variables body mass index (BMI), 

National Area Deprivation Index (ADI), and Mental Health Score (MCS). In the case of categorical 

predictors, dummy variables were created for all but the first (or lowest) level of each variable, 

such that each could only take on two possible numeric values (i.e. 1 or 0 corresponding to yes or 
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no), and these were used as predictors in the regression model. Interactions of potential clinical 

relevancy were also included between the primary (KOOS) variables of interest, specifically 

interactions between baseline pain with change in pain, baseline function with change in function, 

and baseline function with baseline pain.  

Model fit was assessed using several diagnostic methods. To evaluate overall model fit, 

the scaled deviance and pseudo-R2 metrics were calculated, and the Hosmer-Lemeshow goodness-

of-fit test was performed under the null hypothesis that the predicted and observed probabilities 

were similar (i.e. high model fit). A residual plot was examined to assess the assumption that the 

logistic model was correctly specified, or that data fits linearly on the logit scale. The presence of 

outliers was investigated using a standardized Pearson residual plot. A Pregibon leverage plot was 

examined to assess whether observations had extreme covariate patterns, a plot of Pregibon delta-

beta (dbeta) statistics was used to detect high influence, and variance inflation factors (VIF) were 

used to assess multicollinearity.  

2.3.1 Variable Selection 

A reduced model was constructed to eliminate variables not contributing significantly to 

the prediction of PASS, to improve the overall interpretability of the model, and to prevent 

overfitting. A reverse stepwise selection technique was employed. Starting with the full model, 

reduced models of size p-1 were built by removing each variable one at a time, where p is the total 

number of predictors. The best of these was selected based on that which had the smallest deviance. 

Then, beginning with the p-1 sized model, variables were again removed one at a time and a best 

model of size p-2 was chosen in the same fashion. This was repeated until the best single-variable 

model was reached. The result was a selection of p+1 models with the number of variables ranging 
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from the null model (0 predictors) to the original full model (p predictors). The model with the 

lowest AIC was then selected among these p+1 best models of different sizes.  

To better understand the importance of each variable and the consistency with which it 

could be used predict patient satisfaction, a bootstrapping technique was employed. Out of the 828 

observations in the dataset, a sample of those observations of size N=828 was randomly drawn 50 

times with replacement. Each time, the best p+1 models were selected based on deviance, and the 

best size model was selected based on AIC. Using this resampling technique, the percentage of 

times (or the percentage of bootstrapped samples) in which each variable was selected was 

calculated. Similarly, the percentage of times in which each variable was significant was 

calculated. Based on the combination of these findings and clinical judgement about the relevance 

of each variable in predicting patient satisfaction, a selection of variables was made, and a reduced 

uncorrected model was constructed. Particularly in the case of interactions, the meaningfulness of 

these covariates on the probability of satisfaction, in addition to statistical significance, was also 

taken into consideration.  

The diagnostic methods of evaluating model fit and the presence of problematic points 

used for the full uncorrected model was again used to assess this reduced uncorrected model. 

Additionally, the performance of full and reduced models was compared. A c-statistic was 

calculated to measure discrimination between satisfied and unsatisfied patients, which was 

graphically represented using an ROC curve (James et al., 2017). A higher c-statistic (closer to 1) 

indicates stronger model discrimination. Brier score (BS), the mean of the square of the differences 

between the true PASS outcome and predicted probability of satisfaction for each observation, was 

calculated for each model (Wu & Lee, 2014). Here, a lower BS (close to 0) indicates more accurate 
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predictions. Where t is the observation number from 1 to N, ft is the probability forecasted by the 

model for the t-th observation, and ot is the actual outcome for that observation, the brier score is: 

 

𝑩𝑺 =
𝟏

𝑵
∑(𝒇𝒕 − 𝒐𝒕)𝟐

𝑵

𝒕=𝟏

 

 

Equation 14 

 

Additionally, AIC and pseudo-R2 was used to compare models.  

2.3.2 Measurement Error 

To correct for the potentially biased regression coefficient estimates and the uncertainty of 

these estimates due to the presence of within-subject variability in baseline and change in pain and 

function KOOS variables, a multiple-imputation method of correcting for measurement error 

(MIME) was used to calculate corrected regression coefficient estimates. The following planned 

procedure was modified from that used by Cole et al. (2006), Padilla et al. (2009), and Keogh & 

White (2014), to accommodate the lack of a validation study or repeated measures, but with prior 

knowledge of the distribution of measurement errors: 

1. Let Z1, Z2, Z3, and Z4 be the recorded values of four variables subject to measurement error, 

Y be the outcome, and Xi be a vector of all other predictors free of measurement error. 

Each erroneous variable of interest, Z, was regressed on all other predictors, X1,…, Xp, and 

other Zi, using the linear model in equation 4. 

 𝒁𝟏 ~ 𝒁𝟐 + 𝒁𝟑 + 𝒁𝟒 + 𝑿𝟏 + ⋯ + 𝑿𝒑 Equation 15 

 

2. Let Z* be the predicted value of Z, 0,…, p, and Y be the regression coefficient estimates 

from the linear model in equation 4, and e be the error with which Z was measured. It is 
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assumed that e follows a normal distribution with mean zero and known variance, 2, such 

that: 

 𝒆 ~ 𝑵(𝟎, 𝝈𝟐) Equation 16 

The regression coefficients estimated in step 1 were stored and used to predict the value of 

each Zi using equation 6. The resulting predictions, Zi*, were considered to be possible true 

values of Zi, which have been subjected to measurement error with variance 2. 

 𝒁𝟏
∗ =  𝟎 +  𝟏𝒁𝟐 + 𝟐𝒁𝟑 + 𝟑𝒁𝟒 + 𝟒𝑿𝟏 + ⋯ + 𝒑+𝟑𝑿𝒑 + 𝒆 

𝒁𝟐
∗ =  𝟎 +  𝟏𝒁𝟏 + 𝟐𝒁𝟑 + 𝟑𝒁𝟒 + 𝟒𝑿𝟏 + ⋯ + 𝒑+𝟑𝑿𝒑 + 𝒆 

𝒁𝟑
∗ =  𝟎 +  𝟏𝒁𝟏 + 𝟐𝒁𝟐 + 𝟑𝒁𝟒 + 𝟒𝑿𝟏 + ⋯ + 𝒑+𝟑𝑿𝒑 + 𝒆 

𝒁𝟒
∗ =  𝟎 +  𝟏𝒁𝟏 + 𝟐𝒁𝟐 + 𝟑𝒁𝟑 + 𝟒𝑿𝟏 + ⋯ + 𝒑+𝟑𝑿𝒑 + 𝒆 

 

 

 

 

Equation 17 

 

3. Step 2 was repeated 10 times, each time with a randomly simulated value of e, under the 

distribution in equation 5, resulting in 10 probable true scores for each Zi. Here, the first 

subscript indicates which variable and the second indicates which imputation.  

 𝒁𝟏,𝟏
∗ , 𝒁𝟏,𝟐

∗ , … , 𝒁𝟏,𝟏𝟎
∗  

⋮ 

𝒁𝟒,𝟏
∗ , 𝒁𝟒,𝟐

∗ , … , 𝒁𝟒,𝟏𝟎
∗  

 

 

 

Equation 18 

The similarly between the measured values, Z, and imputed predictions, Z*, was calculated 

using the mean squared error (MSE). Here, i is the ith KOOS variable, j is the jth 

imputation, and k is the kth observation.  

 

𝑴𝑺𝑬𝒊,𝒋,𝒌 =
𝟏

𝟏𝟎
∑

𝟏

𝑵
∑(𝒁𝒊 − 𝒁𝒊

∗)𝟐

𝑵

𝒌=𝟏

𝟏𝟎

𝒋=𝟏

 

 

Equation 19 
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4. The outcome Y was regressed on all predictors, including Z1*, …, Z4*, and X1,…, Xp, in a 

logistic regression model. This was repeated 10 times, once for each set of imputed Z*.  

 𝒀 ~ 𝒁𝟏,𝟏
∗ + ⋯ + 𝒁𝟒,𝟏

∗ + 𝑿𝟏 + ⋯ + 𝑿𝒑 

⋮ 

𝒀 ~ 𝒁𝟏,𝟏𝟎
∗ + ⋯ + 𝒁𝟒,𝟏𝟎

∗ + 𝑿𝟏 + ⋯ + 𝑿𝒑 

 

 

 

Equation 20 

 

Let 0, 1, …, p, and Z be the resulting regression coefficients of the above model 

(equation 19). Different values of Z* for each of the 10 imputations gave slightly different 

sets of regression coefficients:  

(
𝛽0̂

⋮
𝛽�̂�

)

1

, … , (
𝛽0̂

⋮
𝛽�̂�

)

10

  

Each with estimated standard errors: 

(

𝜎0̂

⋮
𝜎�̂�

)

1

, … , (

𝜎0̂

⋮
𝜎�̂�

)

10

  

5. An estimate of the corrected regression coefficient for each variable was the average of the 

m estimates for i, as described by Yuan (2010). The subscript i is an indicator for all 

variables being considered in this model (1 through p for X variables, and Z1 through Z4 

for KOOS variables), and the subscript j is an indicator for imputations 1 through 10.  

 

𝜷𝒊 =
𝟏

𝟏𝟎
∑ 𝜷𝒊𝒋

̂

𝟏𝟎

𝒋=𝟏

 

 

Equation 21 

 

The final corrected model was constructed using these averaged regression coefficients: 
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𝐥𝐨𝐠 (

𝒀

𝟏 − 𝒀
) =  𝜷

𝟎
+ 𝜷

𝐙𝟏
𝒁𝟏 + ⋯ 𝜷

𝐙𝟒
𝒁𝟒 + 𝜷

𝟏
𝑿𝟏 + ⋯ + 𝜷

𝒑
𝑿𝒑 

 

Equation 22 

 

6. An estimate of the variance associated with each corrected coefficient was also calculated 

(Yuan, 2010) as both a function of both the within-imputation variance, w
2, and between 

imputation variance, b
2, giving the total variance of the regression coefficient estimate, 

T
2. For these variance terms, the associated subscript w stands for “within”, b stands for 

“between”, and T stands for “total”.  

 

𝝈𝒊𝒘
𝟐 =  

𝟏

𝟏𝟎
∑ 𝝈𝒊�̂�

𝟏𝟎

𝒋=𝟏

 

 

Equation 23 

 

 

𝝈𝒊𝒃
𝟐 =

𝟏

𝟏𝟎 − 𝟏
∑(𝜷𝒊𝒋

− 𝜷𝒊)
𝟐

𝟏𝟎

𝒋=𝟏

  

 

Equation 24 

 

 
𝝈𝒊𝑻

𝟐 = 𝝈𝒊𝒘
𝟐 + (𝟏 +

𝟏

𝟏𝟎
)𝝈𝒊𝒃

𝟐 
 

Equation 25 

 

7. A test statistic for i was constructed as described by Rubin (1987), which follows a t-

distribution: 

 (𝜷 − 𝜷𝒊)

√𝝈𝒊𝑻
𝟐

⁄  ~ 𝑻(𝒗) 
 

Equation 26 

With v degrees of freedom: 

 
𝒗 = (𝟏𝟎 − 𝟏)(𝟏 +

𝝈𝒊𝒘
𝟐

(𝟏 − 𝟏
𝟏𝟎⁄ )𝝈𝒊𝒃

𝟐
)𝟐 

Equation 27 
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The adjusted coefficients of this final corrected reduced model were compared to those of the 

uncorrected reduced model. Additionally, estimates for the odds ratios associated with an increase 

in pain or function were also calculated, compared to the uncorrected model, and used to interpret 

the effects of these variables on patient satisfaction. The statistical significance of each corrected 

regression coefficient estimate was calculated using the test described above and compared to the 

Wald test results from the uncorrected model. Finally, predictions of the probability of patient 

satisfaction were made based on this corrected model. These were used to calculate a C-statistic, 

brier score, and ROC curve, in order to compare the performance of models.  

2.4 Statistical Details 

For all hypothesis tests, a p-value of 0.05 was used as the threshold for statistical 

significance. Such tests include the t-tests and chi-squared tests used in preliminary analysis, as 

well as Wald tests and likelihood ratio tests from various logistic regression models. All applicable 

assumptions of such tests were checked using visual inspection or knowledge of sample 

characteristics when appropriate. R-studio software was used for all analyses.  
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3.0 Results 

3.1 Descriptive Statistics 

3.1.1 Univariate Summary 

Data, including primary KOOS predictors and demographic variables, were summarized 

in table 1. Counts with percentages were presented for categorical predictors and means with 

standard deviation (SD) and ranges were presented for continuous predictors. The continuous 

variables age, education, and comorbidity index were additionally categorized based on clinical 

recommendations.  

 

 

Table 1. Summary of Demographics and KOOS in Study Sample 

Continuous Variables  Mean (Standard Deviation) 

Baseline Pain (KOOS) 46.8 (17.2)  

Baseline Function (KOOS) 45.7 (16.5)  

Change in Pain (KOOS) 29.0 (22.1)  

Change in Function (KOOS) 19.0 (20.1)  

BMI  30.4 (6.4)  

Income  79564 (37638) 

Mental Component Summary (MCS) Score  54.0 (9.8)  

National Area Deprivation Index (ADI) 42.5 (25.2)  

Categorical Variables  Count (Percent of Sample) 

Age 

     <50 

 

167 (20.2%) 
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     50-70 

     >70 

611 (73.8%) 

50 (6.0%) 

Sex  

     Female 

     Male 

 

410 (49.5%) 

418 (50.5%) 

Race  

     White 

     Non-white 

 

735 (88.8%) 

93 (11.2%) 

Ethnicity 

     Non-Hispanic or -Latino 

     Hispanic or Latino 

 

797 (96.3%) 

31 (3.7%) 

Years of Education  

     <12 years 

     13-16 years 

     >16 years 

  

327 (39.5%) 

354 (42.8%) 

147 (17.7%) 

Smoking status 

     Never or quit>6m  

     Quit<6m or current 

 

482 (59.1%) 

336 (40.9%) 

Insurance  

     Medicaid or Uninsured 

     Medicare or Private 

 

185 (22.3%) 

643 (77.7%) 

Comorbidity index  

     0: No comorbidities  

     1 or 2: Low comorbidities 

     >2: High comorbidities 

 

551 (65.9%) 

229 (27.5%) 

48 (5.8%) 
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3.1.2 Bivariate Summary  

3.1.2.1 KOOS Predictors by PASS Status 

Data were then stratified by outcome (PASS) status. There were 292 subjects who reported 

being unsatisfied with their surgical outcome and 617 subjects who reported being satisfied. Means 

and standard deviations (SD) of the primary KOOS predictors, stratified by outcome status, are 

shown in table 2. Also shown were corresponding p-values from 2-sample t-tests for evaluating 

whether the mean scores were different between the outcome groups (table 2). In all cases, these 

results were highly statistically significant. Patients who had higher baseline pain and lower 

baseline function, as well as those who experienced a greater reduction of pain and greater 

improvement in function after surgery were more likely to be satisfied by their outcome.  

 

Table 2. KOOS Predictors by Outcome Status 

 Unsatisfied, n = 267 Satisfied, n = 561  

KOOS Variables Mean (SD) Mean (SD) P-value 

Baseline Pain 42.1 (16.1) 49.5 (17.1) <0.001 

Baseline Function  50.3 (17.3) 43.2 (15.6) <0.001 

Change in Pain 12.4 (20.4) 36.9 (18.1) <0.001 

Change in Function 6.2 (18.9) 25.0 (17.6) <0.001 

 

Figure 1 shows the distribution of each KOOS predictor by outcome status. These figures 

demonstrate the same associations between KOOS and PASS described and tested above.  
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Figure 1. Current Satisfaction vs. Pain and Function (KOOS).  

Outcome status (PASS) is used to separate patients based on whether they were satisfied (blue) or unsatisfied (red). 

Boxplot is overlayed, showing mean (center) and 1st and 3rd quartiles of pain and function distributions.  

3.1.2.2 Demographic Predictors by PASS Status 

Demographic predictors were stratified by outcome status. Means and standard deviations 

in each outcome category are shown for continuous variables, while counts in each outcome 

category are shown for categorical variables in table 3. Two-sample t-tests were used for 

continuous predictors, while chi-squared tests were used for categorical predictors, to determine 

whether the means and distributions of these predictors differed by outcome status. Sex, BMI, 

education, income, MCS score, comorbidities, and national ADI were significantly associated with 

surgical satisfaction (table 3).  
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Table 3: Demographic Predictors by Outcome Status 

 Unsatisfied, n = 267 Satisfied, n = 561  

Continuous Variables  Mean (SD) Mean (SD) P-value  

(t-test) 

BMI  31.7 (6.6) 29.9 (6.2)  <0.001 

Income 74,787 (36517)  81,820 (37977)  0.008 

Mental Component 

Summary (MCS) Score  

51.3 (12.3)  55.3 (7.9) 0.001 

National ADI  46.6 (26.7)  40.6 (24.1)  0.001 

Categorical Variables  Count (percentage 

of unsatisfied) 

Count (percentage 

of satisfied) 

P-value  

(Chi-squared) 

Age  

     <50 

     50-70 

     >70 

 

59 (22.1%) 

189 (70.8%) 

19 (7.1%) 

 

108 (19.3%) 

422 (75.2%) 

31 (5.5%) 

0.374 

Sex  

     Female 

     Male 

 

152 (56.9%) 

115 (43.1%) 

 

258 (46.0%) 

303 (54.0%) 

0.003 

Race  

     White 

     Non-white  

 

232 (86.9%) 

35 (13.1%) 

 

503 (89.7%) 

58 (10.3%) 

0.238 

Ethnicity 

     Non-Hispanic or -Latino 

     Hispanic or Latino 

 

256 (95.9%) 

11 (4.1%) 

 

541 (96.4%) 

20 (3.6%) 

0.694 

Education 

     <12 

     13-16 years 

     >16 years 

 

109 (38.2%) 

98 (36.7%) 

60 (22.5%) 

 

218 (38.9%) 

256 (45.6%) 

87 (15.5%) 

0.014 

Smoking status:  

     Never or quit>6m  

 

156 (58.4%) 

 

336 (59.9%) 

0.688 
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     quit<6m or current 111 (41.6%) 225 (40.1%) 

Insurance  

     Medicaid or Uninsured 

     Medicare or Private 

 

65 (24.3%) 

202 (75.7%) 

 

102 (18.2%) 

441 (81.8%) 

0.340 

Comorbidity Index  

     No comorbidities  

     Low comorbidities 

     High comorbidities 

 

167 (62.5%) 

84 (31.5%) 

16 (6.0%) 

 

384 (68.4%) 

145 (25.8%) 

32 (5.7%) 

0.219 

 

The distributions of continuous predictors by outcome status are shown in figure 2. 

Following the results in table 3, the mean BMI of unsatisfied patients was higher than that of 

satisfied patients, the mean income of unsatisfied patients was lower than that of satisfied patients, 

the mean MCS score of unsatisfied patients was lower (worse mental health) than that of satisfied 

patients, and the mean national ADI of unsatisfied patients was (greater deprivation) than that of 

satisfied patients.  

The distributions of categorical predictors by outcome status are shown in figure 3. 

Following the results in table 3, the proportion of satisfied individuals was similar across age, race, 

ethnicity, smoking insurance, and comorbidity groups. A greater proportion of females were 

unsatisfied than males, and the proportion of satisfied patients in the medium (13-16 year) educated 

group was less than the proportion of satisfied patients in the highly educated group (>16 years).  
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Figure 2. Current Satisfaction vs. Continuous Demographic Predictors.  

Outcome status (PASS) was used to separate patients based on whether they were satisfied (blue) or unsatisfied 

(red). Boxplot is overlayed, showing mean (center) and 1st and 3rd quartiles of pain and function distributions.  
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Figure 3. Current Satisfaction vs. Categorical Demographic Predictors.  

Outcome status (PASS) was used to stratify patients based on whether they were satisfied (blue) or unsatisfied (red). 

Total height of bars represent the number of subjects in each group, further divided into colored portions of bars 

representing the number of subjects in each outcome status of each group.  

3.1.3 Potential Interactions 

Potential clinically suggested interactions between the primary KOOS predictors were 

examined prior to modelling. Specifically, interactions between baseline pain and function, 

between baseline function and change in function, and between baseline pain and change in pain 

are shown in figure 4. In each case, there were no more than minor differences identified between 
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outcome statuses (satisfied and unsatisfied subjects) in the slope of a line of best fit graphed 

between two KOOS predictors, suggesting that interactions were minimal (Figure 4). Logistic 

regression with each interaction (and both main effects) as the covariates revealed that the 

interaction between baseline pain and baseline function was not statistically significant (p = 0.94), 

while the interactions between baseline pain and change in pain, and between baseline function 

and change in function were statistically significant (both p<0.001).  

 

 

Figure 4. Interactions Between KOOS Variables.  

A scatterplot between two KOOS predictors is shown. Points were colored based on outcome status (blue: satisfied, 

red: unsatisfied). A flexible line of best fit was fitted to each outcome status using a generalized additive model 

(GAM). Differences in the slopes between lines at the same point indicate the effect of one predictor differs based 

on the value of the other.  
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3.2 Modeling PASS 

3.2.1 Full Uncorrected Model  

The full uncorrected model was built using logistic regression and contained all KOOS 

variables, interactions, and demographic variables. As no correction was applied for the KOOS 

variables measured with error, the estimates for those predictors may be biased, which could also 

slightly alter the estimates of other predictors. Additionally, although all KOOS predictors were 

significant, when considered as part of interaction(s), many of the demographic predictors were 

not (Table 4).  

The full model was then evaluated for performance and fit (Table 7). In the overall 

likelihood ratio test, this model predicted the outcome statistically significantly better than the null 

model (538.8, df=26, p<0.0001). The Hosmer-Lemeshow Goodness of Fit test was not statistically 

significant, indicating no significant deviation of fit (8.48, df = 8, p = 0.388). An ROC curve 

suggested discrimination was very strong, with an AUC of 0.936. The Brier score is low (0.092), 

indicating that the predicted probabilities of PASS are close to the actual outcomes. Additionally, 

AIC and BIC were 554.3 and 656.8 respectively, and pseudo-R2 was 0.518. Additional model 

diagnostics and plots, shown in appendix C, did not reveal substantial deviations of model fit.  

 

Table 4. Logistic regression results of full uncorrected model 

 Coefficient Estimate P-value (Wald test) 

Intercept -12.18 0.002 

Baseline Pain (KOOS) 0.121 <0.001 

Change in Pain (KOOS) 0.0632 0.002 
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Baseline Function (KOOS) 0.0281 0.317 

Change in function (KOOS) 0.0859 <0.001 

Age (reference category <45) 

     [50,70) 

     [70,inf) 

 

0.157 

0.686 

 

0.595 

0.245 

Sex (reference Female) 

     Male 

 

0.0437 

 

0.858 

BMI 

BMI^2 

0.108 

-0.00148 

0.442 

0.479 

Race (reference white) 

     Non-white 

 

-0.634 

 

0.147 

Ethnicity (reference non-hispanic) 

     Hispanic or Latino 

 

-0.513 

 

0.359 

Insurance (reference insured) 

     Medicaid or uninsured 

 

-0.0490 

 

0.869 

Income -0.00000219 0.740 

Comorbidities (reference Medium) 

     Low 

     High 

 

-0.177 

0.463 

 

0.496 

0.353 

Education (reference <13 years) 

     13-16 years 

     >16 years 

 

-0.667 

-1.34 

 

0.018 

<0.001 

National Area Deprivation Index (ADI) 

ADI^2 

-0.000676 

0.0000552 

0.980 

0.801 

Mental Health Score (MCS) 

MCS^2 

0.193 

-0.00199 

0.008 

0.008 

Smoking (reference No) 

     Yes 

 

-0.00969 

 

0.967 

Baseline pain x change in pain 0.000955 0.026 

Baseline function x change in function -0.000822 0.026 
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Baseline pain x baseline function -0.00121 0.013 

    

3.2.2 Variable Selection and Reduced Model 

Backwards stepwise selection was performed on 50 bootstrapped samples from the original 

dataset. Each time, all variables in the full model were considered for removal. The percentage of 

time, out of the 50 bootstrapping iterations, that each variable was selected for the “best” model is 

shown in table 5. Additionally, the percentage of the 50 “best” models in which each variable was 

significant is shown in table 5.  

 

Table 5. Bootstapping and Model Building Results. 

 Covariates Selected (%) Significant (%) 

Baseline Pain 100 100 

Change in Pain 100 88 

Baseline Function 100 28 

Change in function 96 100 

Age 36 83.3 

Sex 20 60 

BMI 

BMI^2 

30 

24 

53.3 

58.3 

Race  46 69.6 

Ethnicity 46 65.2 

Insurance  30 66.7 

Income 20 50 

Comorbidities  38 36.8 

Education  94 97.9 
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National Area Deprivation Index (ADI) 

ADI^2 

44 

40 

63.6 

60.0 

Mental Health Score (MCS) 

MCS^2 

88 

88 

86.4 

86.4 

Smoking  16 50 

Baseline pain x change in pain 74 83.8 

Baseline function x change in function 68 79.4 

Baseline pain x baseline function 74 75.7 

 

The four KOOS variables, baseline and change in pain function, were the top performing 

variables in this procedure and selected for a reduced model. They were each selected for the best 

model in over 96% of bootstrapped samples. Baseline pain and change in function were 

statistically significant 100% of the time, whereas baseline function and change in pain were 

statistically significant 88% and 28% of the time respectively. These lower significance 

percentages were due to the presence of interaction terms which were selected only approximately 

72% of the time. In cases where interactions were present, this considerably reduced the 

significance level of each KOOS variable in that interaction. Because of this, all four KOOS 

variables were deemed important and necessary individually, even though their significance 

percentages were influenced by the inclusion of interactions.  

The top performing demographic variables selected for a reduced model were education, 

which was selected 94% of the time and significant 98% of the time; MCS and the quadratic MCS2, 

which were each selected 88% of the time and significant 86% of the time; race, which was only 

selected 46% of the time but significant 70% of the time; and age, which was only selected 36% 

of the time but significant 83% of the time. These decisions made regarding which variables were 

top performing were somewhat subjective, considering both selection and significance percentage 
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metrics, significance level in the full model, descriptive statistics, and clinical recommendation. It 

is often desirable to control for age, for example, in many clinical modeling situations. Finally, no 

demographic variables were included which were expected to have substantial overlap, such as 

race and ethnicity for example.  

Although interactions performed relatively well, selected approximately 72% of the time, 

and significant approximately 80% of the time, the decision was made to exclude these from the 

final model. The magnitude of these coefficients, or their difference from zero, was much smaller 

than the coefficients of the individual KOOS variables, by approximately a factor of 10 (Table 4). 

Considering the large sample size, these interactions were likely large enough to be statistically 

significant, but not clinically meaningful. The same conclusion was apparent in the interaction 

plots (figure 4). Additionally, the interpretation of the effect of each KOOS variable on the odds 

of satisfaction would be complicated if that variable were present in an interaction, and therefore 

interactions were not optimal for our interpretative objectives.  

A reduced uncorrected model is shown in table 6. The Wald tests for all the selected 

variables described above were statistically significant in this model, except for age. In the overall 

likelihood ratio test, this model predicted the outcome statistically significantly better than the null 

model (520.1, df=12, p<0.0001). The Hosmer-Lemeshow Goodness of fit test was not statistically 

significant, indicating no significant deviation of fit (9.482, df = 8, p = 0.303). Discrimination was 

very strong, with an AUC of 0.930. The Brier score is low (0.098), indicating that the predicted 

probabilities of PASS are close to the actual outcomes. AIC and BIC were 545.1 and 588.2 

respectively, and pseudo-R2 was 0.50. These metrics are compared to the full model in table 7, and 

indicate that there was almost no sacrifice in performance when less-important demographic 
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predictors were removed. Additional model diagnostics and plots, shown in appendix C, did not 

reveal substantial deviations of model fit. 

 

Table 6. Reduced Uncorrected Model 

 Coefficient Estimate P-value (Wald test) 

Intercept -7.899 <0.001 

Baseline Pain* 0.080 <0.001 

Change in Pain* 0.095 <0.001 

Baseline Function* -0.040 0.016 

Change in Function* 0.047 0.002 

Age (reference category <45) 

     [50,70) 

     [70,inf) 

 

0.086 

0.619 

 

0.761 

0.256 

Race (reference white) 

     Non-white 

 

-0.922 

 

0.016 

Education (reference <13 years) 

     13-16 years 

     >16 years 

 

-6.68 

-1.38 

 

0.012 

<0.001 

Mental Health Score (MCS) 

MCS^2 

0.215 

-0.002 

0.005 

0.004 

* Measured with error/variability 

 

Table 7. Full and Reduced Model Comparison  

 Full Model Reduced Model 

LRT () 538.8 (df = 26) (p = 6.64e-98) 520.1 (df = 12) (p = 1.66e-104) 

HL GOF Test () 8.485 (df = 8) (p = 0.388) 9.482 (df = 8) (p = 0.303) 

Pseudo-R2 0.518 0.500 
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AIC 

BIC 

554.3 

656.8 

545.1 

588.2 

AUC 0.936 0.930 

BS 0.092 0.098 

 

3.2.3 Correcting for Measurement Variability 

The multiple imputation method of correcting for measurement error was performed with 

10 imputations, using only the variables from the reduced model. The MSE describing the average 

squared difference between measured and imputed values for baseline pain was 61.0, or 7.8 

describing the unsquared difference. The MSE describing the average squared difference between 

measured and imputed values for baseline function was 57.2, or 7.5 describing the unsquared 

difference. The MSE describing the average squared difference between measured and imputed 

values for change in pain was 102.2, or 10.1 describing the unsquared difference. The MSE 

describing the average squared difference between measured and imputed values for change in 

pain was 97.7, or 9.9 describing the unsquared difference. The coefficients from the model using 

imputed values for KOOS were used to make predictions of PASS and these predictions were 

compared to those of the uncorrected reduced models. The corrected model had an AUC of 0.927 

and Brier score of 0.10, indicating almost no decrease in predictive performance compared to the 

uncorrected model.  

A comparison between the corrected and uncorrected coefficients is shown in table 8, along 

with the p-values testing whether each coefficient was different from zero, odds ratios associated 

with a 10-point increase in KOOS, and 95% confidence intervals for each odds ratio. The estimates 
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for all four KOOS predictors changed somewhat, although in all cases the odds ratio confidence 

intervals from the uncorrected model have some overlap with those from the corrected model. 

Whereas the corrected coefficients for both KOOS pain variables moved towards the null value, 

corrected coefficients for both KOOS function variables moved away from the null value. 

However, both the uncorrected and corrected coefficients were statistically significant for all four 

KOOS predictors and the direction of the effect remained the same. The corrected coefficient for 

baseline function was farthest from the null, followed by change in function. Similarly baseline 

function have an effect which was larger in magnitude than baseline pain, and change in function 

had a larger effect than change in pain, suggesting that function scores were additionally important 

in driving ultimate satisfaction.  

In the corrected model, for each 10-point increase in baseline pain, the odds of a patient 

reporting overall satisfaction were 1.6 times greater, and we are 95% certain this was between 1.17 

and 2.19. For each 10-point increase in baseline function, the odds of a patient reporting overall 

satisfaction were 0.36 times as great, and we are 95% certain this was between 0.27 and 0.49. For 

each 10-point increase in pain improvement the odds of a patient reporting overall satisfaction 

were 2.18 times greater, and we are 95% certain this was between 1.74 and 2.74. And for each 10-

point increase in functional improvement, the odds of a patient reporting overall satisfaction were 

2.38 times greater, and we are 95% certain this was between 1.85 and 3.06. The 10-unit increase 

for KOOS odds ratios is chosen here because this is an amount often used to signify a clinically 

relevance change in pain, function, etc.  

For these KOOS predictors, it was generally observed that the width of the odds ratio 

confidence intervals from the corrected model remained generally consistent with those of the 

uncorrected model, likely because the measurement variability being considered was small. The 
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general pattern of consistent effect direction with only minor changes in magnitude, and 

comparable estimation of uncertainty, was largely observed across demographic predictors as well 

(table 8).   

 

Table 8. Coefficients and Estimates from Corrected Model 

 Uncorrected Corrected  

Brier Score 0.098 0.100 

AUC 0.930 0.927 

Variable Coefficient (p-value) 

OR (95% CI) 

Coefficient (p-value) 

OR (95% CI) 

Intercept -7.899 (p < 0.001) -3.216 (p = 0.149) 

Baseline Pain 

 

0.080 (p < 0.001) 

*2.22 (1.67, 2.96) 

 0.0471(p = 0.0033) 

*1.60 (1.17, 2.19) 

Baseline Function 

      

-0.040 (p = 0.016) 

*0.67 (0.49, 0.93) 

 -0.101(p < 0.001) 

*0.36 (0.27, 0.49) 

Change in Pain 

 

0.095 (p < 0.001) 

*2.58 (2.02, 3.31) 

0.078 (p < 0.001) 

*2.18 (1.74, 2.74) 

Change in Function 

 

0.047 (p = 0.002) 

*1.60 (1.19, 2.13) 

0.087 (p < 0.001) 

*2.38 (1.85, 3.06) 

Age 50-70 (vs. <50 group) 0.086 (p = 0.761) 

1.09 (0.63, 1.89) 

0.074 (p = 0.795) 

1.08 (0.62, 1.88) 

Age >70 (vs. <50 group) 0.619 (p = 0.256) 

1.86 (0.64, 5.40) 

0.735 (p = 0.172) 

2.08 (0.73, 5.99) 

Race non-white (vs. white) 

     

-0.923 (p = 0.016) 

0.40 (0.19, 0.84) 

-1.11 (p = 0.0049) 

0.33 (0.15, 0.71) 

Education Medium (vs. Low) 

      

-0.668 (p = 0.012) 

0.51 (0.30, 0.87) 

-0.823 (p = 0.0029) 

0.44 (0.26, 0.75) 

Education High (vs. Low) 

   

-1.385 (p < 0.001) 

0.25 (0.13, 0.47) 

-1.473 (p < 0.001) 

0.23 (0.12, 0.44) 
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Mental Health Score (MCS) 

 

 

MCS2 

 

0.215 (p = 0.005) 

1.24 (1.07, 1.44) 

 

-0.0022 (p = 0.004) 

0.997 (0.996, 0.999) 

0.170 (p = 0.027) 

1.19 (1.02, 1.38) 

 

-0.0019 (p = 0.014) 

0.998 (0.996, 0.999) 

*Odds ratios associated with a 10-point increase in KOOS score.  
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4.0 Discussion 

4.1 Model Selection  

Overall, results support the importance of careful and purposeful model selection 

(Ranganathan, Pramesh, & Aggarwal, 2017). Although many variables were removed in the model 

building process, some of which were individually associated with PASS, the predictive 

performance of the reduced model remained high, and very similar to that of the full model.  

Results support the hypothesis that KOOS pain and function sub-scores, both at baseline 

and at the 1-year follow-up point, would be statistically significant and important predictors of 

PASS. This was repeatedly shown, both using t-tests in the preliminary analysis, and evidenced 

by the statistically significant logistic regression coefficient estimates from the full, reduced, and 

MIME-corrected models. Further, the bootstrapping procedure revealed that all four KOOS 

predictors were consistently chosen by backwards selection, across different bootstrap-simulated 

samples. These results are consistent with what has been previously reported about KOOS and its 

broad applicability and usefulness in assessing the impact of knee injury on patient experience 

(Roos & Lohmander, 2003). However, this is believed to be the first study that directly assesses 

the association between KOOS pain and function sub-scores and patient satisfaction after APM 

specifically, and its predictive usefulness.   

Results only partially support the hypothesis that demographic predictors most closely 

related to other health comorbidities, such as age and BMI, would be most important to control for 

in modeling PASS. BMI statistically significantly predicted PASS individually, but was rarely 

chosen in the bootstrapping procedure, and produced inconsistent results in the models in which it 
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was included. Surprisingly, age was not statistically significant individually, nor was it often 

chosen in backwards selection. However, it was frequently statistically significant in the models 

in which it was selected. Age was also thought to be a potential source of confounding, having a 

plausible association with satisfaction, subjects’ potential to recover from injury, and susceptibility 

to OA (Abram et al., 2017), and therefore selected in the reduced model out of the necessity to 

control for its effects on PASS. Also selected were MCS and education, due to their relatively high 

likelihood of being chosen by backwards selection. MCS is a general mental health score, linked 

to a number of health comorbidities (Paredes et al., 2020), which therefore aligned with our general 

hypothesis. Further, any number of factors related to mental health could have plausible 

associations with perceived pain, function, and recovery satisfaction, and therefore MCS was 

useful to include and control for in the final model. Education level has also been linked to health 

comorbidities (Clark & Royer, 2013), but its association with knee injury recovery and satisfaction 

after APM specifically are less well understood. Finally, racial disparities in healthcare, and 

surgical outcomes and recovery specifically, have been documented (Esnaola et al., 2008) (Egede, 

2006). Therefore, although it only performed moderately well, race was selected as an important 

variable to control for in our reduced model.   

4.2 Modelling 1-Year Satisfaction 

4.2.1 Multiple Imputation for Measurement Error  

The multiple imputation for measurement error (MIME) approach used here was intended 

to use the known information about the variability of KOOS measurements to simulate potentially 
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true values for pain and function. Then, it was hypothesized these imputed values could be used 

in modelling patient satisfaction, while taking into account the additional uncertainty involved 

with using multiple imputations for the same subject, better replicating the variability involved 

with using questionnaire-derived measurements. It was our hope that the resulting estimates of the 

regression coefficients for KOOS variables would show less bias towards the erroneously-

measured values and that their variances would give a more realistic idea of their uncertainty, 

although confirmation of this behavior would require a study using simulated data, which was 

beyond the scope of this project.  

Following the generation of imputed (or predicted) values for the pain and function values 

for each observation, using error simulated from the known measurement error distributions for 

each variable, the similarity of these imputations to the measured value was calculated using MSE, 

averaged across all 10 imputations. The average difference between imputed and measured values 

ranged from 7.5 to 10.1, which seemed reasonably close considering the moderate size of the errors 

used. Similarly, the overall predictive performance of the corrected model was virtually 

unchanged, judged by both Brier score and AUC, despite considerable differences from some of 

the coefficients, supporting the feasibility of this MIME approach.  

Results only partially supported the hypothesis that the association between KOOS pain 

and function would be less strong after considering the uncertainty associated with measurement 

error. Interestingly, while the corrected coefficients for both baseline and change in pain moved 

closer to the null value of zero, both baseline and change in function moved farther from the null. 

This would suggest that, prior to considering the uncertainty associated with measurement error, 

models models may overestimate the effect of pain but underestimate the effect of function. It 

would also suggest that imputed values of KOOS function were more closely associated with the 
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outcome. It is additionally curious that the reported measurement variance was greater for function 

than it was for pain, and the imputation MSEs for function were higher. It was also noted that there 

was some correlation present between KOOS variables. Since the MIME procedure involves 

simulating additional variability in the imputation of each KOOS predictor individually, it is 

possible that some of the increases observed in coefficient magnitude could result from this 

collinearity being decreased. Despite the changes observed, the confidence intervals (before vs. 

after MIME) for overlapped for each KOOS variable, and the direction of the effects remained 

consistent. This provides additional validation for this procedure. Concerning covariates beyond 

KOOS, changes were generally less considerable, and the direction of effects and approximate 

level of statistical significance remained consistent. Since these variables were not imputed, the 

subtle changes likely only resulted from the larger changes to KOOS variable estimates.  

4.2.2 Interpreting MIME Results  

Beyond drawing comparisons between corrected and uncorrected models, evaluation of the 

corrected model provides some insights into the prediction satisfaction with surgical results. First, 

the effect direction of KOOS coefficients makes intuitive sense: individuals who are worse off to 

start (have greater pain and poorer function), and those who improve the most, have the greatest 

probability to be satisfied. There is a logical clinical explanation for the finding that function 

appears to be the most important in determining satisfaction. Pain, while important, is often 

treatable and manageable with medication. Furthermore, pain from meniscal injury specifically is 

often not chronic, and occurs primarily during times of heightened use of the knee joint. The KOOS 

questionnaire for function, however, targets daily activities specifically, focusing on the necessary 

lifestyle changes and deficits that result from injury (Roos & Lohmander, 2003). The impact on 
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daily function is much less easily treatable, often relying on frequent physical therapy for only 

marginal benefit, and likely a much stronger motivator for surgery.  

Part of the overall objectives of this project was identify ideal, and non-ideal candidates 

for surgery using primarily KOOS questionaries. It was the hope that this could aid clinicians in 

ruling out individuals less likely to perceive a benefit. With this aim, the estimated probabilities of 

1-year APM satisfaction for the individuals in the 25th 50th, and 75th percentiles of KOOS baseline 

pain and function were tabulated (shown in table 9) using the corrected coefficient estimates, with 

other variables held at the sample mean values or the most popular category (from table 1). 

Probabilities were calculated using equation 12 and the coefficients in table 8. As expected, most 

individuals have a high (>0.5) probability of satisfaction. However, that probability is highest for 

individuals in the 75th percentile for pain and 25th percentile for function, and lowest for individuals 

in the 25th percentile for pain and 75th percentile for function.  

 

Table 9. Estimated Probabilities of Satisfaction 

Baseline Pain Baseline Function Estimated Probability of Satisfaction 

36.2 (25th PCTL) 37.5 (25th PCTL) 0.820 

36.2 (25th PCTL) 44.0 (50th PCTL) 0.702 

36.2 (25th PCTL) 56.6 (75th PCTL) 0.398 

47.2 (50th PCTL) 37.5 (25th PCTL) 0.884 

47.2 (50th PCTL) 44.0 (50th PCTL) 0.798 

47.2 (50th PCTL) 56.6 (75th PCTL) 0.526 

58.4 (75th PCTL) 37.5 (25th PCTL) 0.928 

58.4 (75th PCTL) 44.0 (50th PCTL) 0.870 
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58.4 (75th PCTL) 56.6 (75th PCTL) 0.653 

 

The coefficients of demographic control variables also provide some insight into predicting 

patient satisfaction. Table 9 could easily be expanded to include percentiles/categories for 

additionally relevant baseline characteristics, depending on clinical needs. Although neither the 

50-70 or >70 age categories were statistically significantly different from the <50 category, the 

>70 group showed a trend level increase in the probability of satisfaction. This suggests that older 

patients may be on average slightly better candidates for surgery, although with considerable 

person-to-person variability. It is possible that the effects of meniscal injury and OA pose a 

heightened burden on elderly populations which is best relieved with surgery, as opposed to non-

invasive therapies, although the exact reasons for this are unclear.  

The statistically significant coefficient for race indicated that individuals identifying with 

non-white populations have poorer satisfaction after APM that those identifying as white. This 

was not surprising, as people of color have not only been reported to have poorer health outcomes 

overall, including after surgical procedures, and suffer a disproportionate burden from many 

comorbidities (Esnaola et al., 2008) (Egede, 2006). Such disparities may be linked to 

socioeconomic status, which was not included in this model but may account for slight differences 

in access to quality post-surgical rehabilitation. However, more work is necessary to fully 

understand the effects of race in the specific case of APM and meniscal injury.  

Surprisingly, the coefficient estimates for both medium (undergraduate-level college) and 

highly (graduate-level) educated groups were negative and statistically significant, indicating that 

the probability of satisfaction was highest in those who were the least educated. Furthermore, the 

magnitude of this difference was greatest for the highly educated group. The reasons for this are 
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unclear, and more research is needed to both validate this finding in the specific case of APM, and 

to investigate potential explanations. It is speculated that individuals who are more highly educated 

would be able to best take advantage of appropriate physical therapy to regain function and 

medication to treat pain, therefore reducing the necessity of surgery in some cases and lessening 

its beneficial effect.  

Finally, the coefficient for Mental Component Summary (MCS), an overall mental health 

score, was statistically significant, both in its linear form and quadratic transformation. While the 

linear MCS had a positive effect on satisfaction, quadratic was negative, and its magnitude was 

much smaller. This indicates that, at low MCS levels, an increase of MCS has a large effect of 

increasing probability of satisfaction. But at higher levels of MCS, the effect of increasing MCS 

is lessened. This is not surprising, as better mental health is expected to be positively associated 

with better outcomes and surgical satisfaction (Paredes et al., 2020). However, this effect is most 

pronounced in severe cases of mental illness risk (low MCS), with less of a difference between 

individuals with moderate vs high MCS scores, which helps to explain the results of the quadratic 

term.  

4.3 Conclusion: Future Directions, Validation, and Public Health Implications 

More research is necessary to better understand how measurement variability in the KOOS 

questionnaire impacts estimates of its effect on patient satisfaction after APM. Specifically, a 

validation study or a dataset with repeated measures of KOOS variables present for some or all 

observations would allow for the typical regression calibration or multiple imputation approaches 

to be performed and compared to the methods used here. In the present case, we lack an 
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understanding of the relationship between measurement errors on different KOOS variables. We 

could not use the covariance between measurement error model parameter estimates to generate 

new parameter estimates for imputation as is frequently done (Keogh & White, 2014), which is a 

limitation of this method. Nor could we perform regression calibration methods which often rely 

on some true values being present (Rosner, Spiegelman, &Willett, 1990).  

To provide some validation for the present method, two approaches were tested. First, the 

amount of measurement error was adjusted by greatly increasing the simulated variance used in 

step 2 of the methods (equation 16). This made the predicted/imputed values for KOOS variables, 

Z*, much less accurate, resulting in the estimated (corrected) coefficients for those variables 

moving towards the null value (zero), becoming much less statistically significant, and the 

predictive performance of the model decreasing. Similarly, adjusting the amount of measurement 

error down to zero was also tested. This had the opposite effect: imputed values were very close 

to measured values, corrected coefficients were highly statistically significantly different from 

zero, and overall predictive performance of the model was high. Details are presented in appendix 

B. These results matched what was expected: the more uncertainty about the accuracy of measured 

values, the less can be said about the association between that variable and the outcome. This 

finding serves to additionally validate that MIME procedure and associated code was written and 

executed correctly.  

The second approach tested was to use the outcome, PASS (or Y), as one of the covariates 

when building the linear imputation model in step 1 of the methods (equation 15). This was the 

initial plan for this project because it is done in other MIME methods (Cole et al., 2006) (Padilla 

et al., 2009) (Keogh & White, 2014). However, it was found that the final coefficient estimates for 

KOOS variables were implausibly large and their confidence intervals often did not overlap with 



 50 

those from the uncorrected model. Since Y (PASS) was used to predict Z* (imputed/potential 

value for KOOS), and Z* was then used to model Y, the association between Z* and Y in step 4 

(equation 20) appeared much higher than it should have. Details are presented in appendix A. It is 

speculated that related methods may suffer from similar problems, but to a much lesser extent, 

since they randomly draw potential coefficients for Y from its distribution in the measurement 

error model step, before making imputations.  

A simulation study would be required and recommended for future research in dealing with 

this specific case of KOOS measurement error in predicting APM satisfaction, although this was 

beyond the scope of the present project. In such a study, “true” values for pain and function could 

be simulated, which are realistically impossible to attain. Then erroneous measurements could be 

simulated, drawn using the known error associated with each KOOS variable. This MIME 

procedure could be used on the erroneous measurements, and a set of corrected estimates and their 

confidence intervals could be attained. Then these could be compared to estimates from a model 

built on the “true” values. Ideally, the corrected estimates would be within the confidence limits 

of the true estimates and the width of the corrected confidence intervals would approximate the 

uncertainty associated with measurement error.  

Findings from this project have useful applications for public health. Although APM is 

relatively non-invasive, it still requires substantial recovery time and rehabilitation efforts. This 

burdens both patients and their caregivers via potential financial expenses, loss of work, temporary 

handicap, and overall reduced quality of life. Although effort every effort is generally taken to 

minimize such downsides, the decision to undergo this procedure still requires careful 

consideration. It is the responsibility of physicians to both identify surgical candidates who they 

believe are likely to benefit, and to educate patients on the risks associated with their particular 
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case so they can make an informed decision. Often, a standardized improvement in KOOS has 

been a convenient determinant of surgical success. While findings from this project reveal that 

such improvement is a major determinant of surgical success, it is not the only factor affecting 

patients’ perceived feelings of satisfaction, which involves baseline KOOS measurements and 

several personal demographic factors. The final model from this project is intended to better 

explain how KOOS can be used as a tool to make such clinical decisions, despite its measurement 

variability.  
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Appendix A Using Outcome in Measurement Error Model   

All steps from the MIME procedure described in the methods were repeated, apart from 

adding Y to the covariates of the imputation model in step 1. Table 10 compares results from this 

MIME model to the reduced uncorrected model.  

The MSE for imputations of baseline pain was 56.3, 51.9 for baseline function, 88.3 for 

change in pain, and 84.5 for change in function.  

 

Table 10. Coefficients from Model using Y for Imputations 

 Uncorrected Corrected  

Brier Score 0.098 0.110 

AUC 0.930 0.928 

Variable Coefficient (p-value) 

OR (95% CI) 

Coefficient (p-value) 

OR (95% CI) 

Intercept -7.899 (p < 0.001) -10.047 (p = 0.004) 

Baseline Pain 

 

0.080 (p < 0.001) 

*2.22 (1.67, 2.96) 

0.190 (p < 0.001) 

*6.69 (3.75, 11.94) 

Baseline Function 

      

-0.040 (p = 0.016) 

*0.67 (0.49, 0.93) 

-0.114 (p < 0.001) 

*0.32 (0.20, 0.50) 

Change in Pain 

 

0.095 (p < 0.001) 

*2.58 (2.02, 3.31) 

0.205 (p < 0.001) 

*7.79 (4.80, 12.64) 

Change in Function 

 

0.047 (p = 0.002) 

*1.60 (1.19, 2.13) 

0.118 (p < 0.001) 

*3.26 (2.18, 4.88) 

Age 50-70 (vs. <50 group) 0.086 (p = 0.761) 

1.09 (0.63, 1.89) 

-0.183 (p = 0.680) 

0.83 (0.35, 1.99) 

Age >70 (vs. <50 group) 0.619 (p = 0.256) 

1.86 (0.64, 5.40) 

1.782 (p = 0.027) 

5.94 (1.22, 28.9) 
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Race non-white (vs. white) 

     

-0.923 (p = 0.016) 

0.40 (0.19, 0.84) 

-2.023 (p < 0.001) 

0.13 (0.04, 0.43) 

Education Medium (vs. Low) 

      

-0.668 (p = 0.012) 

0.51 (0.30, 0.87) 

-1.331 (p = 0.002) 

0.26 (0.12, 0.60) 

Education High (vs. Low) 

   

-1.385 (p < 0.001) 

0.25 (0.13, 0.47) 

-2.309 (p < 0.001) 

0.099 (0.03, 0.29) 

Mental Health Score (MCS) 

 

 

MCS2 

 

0.215 (p = 0.005) 

1.24 (1.07, 1.44) 

 

-0.0022 (p = 0.004) 

0.997 (0.996, 0.999) 

0.203 (p = 0.076) 

1.23 (0.98, 1.53) 

 

-0.0026 (p = 0.027) 

0.997 (0.995, 1.00) 

*Odds ratios associated with a 10-point increase in KOOS score.  
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Appendix B Model Validation with Error Variance Simulations 

All steps from the MIME procedure described in the methods were repeated, apart from 

changing the measurement variance in step 2. Table 11 shows abbreviated results from a model 

with a measurement error variance of zero, and a model with measurement error variance of 30 

points for baseline pain and function variables and 60 points for change in pain and function 

variables.  

For the no measurement error model, the MSE for imputations of baseline pain was 56.7, 

49.7 for baseline function, 90.9 for change in pain, and 72.1 for change in function. For the large 

measurement error model, the MSE for imputations of baseline pain was 1664, 1645.1 for baseline 

function, 6803.2 for change in pain, and 6494.2 for change in function.  

 

Table 11. Coefficients when Measurement Error is Adjusted 

 No Measurement Error  Large Measurement Error  

Brier Score 0.101 0.194 

AUC 0.927 0.738 

Variable Coefficient (p-value) Coefficient (p-value) 

Baseline Pain 0.055 (p = 0.001) 0.0011 (p = 0.754) 

Baseline Function -0.106 (p < 0.001) -0.0042 (p = 0.173) 

Change in Pain 0.081 (p < 0.001) 0.0024 (p = 0.110) 

Change in Function 0.096 (p < 0.001) 0.0027 (p = 0.074) 
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Appendix C Preliminary Full and Reduced Model Diagnostics  

Model diagnostics were performed to assess both the full and reduced uncorrected models, 

shown in figures 5 and 6 respectively. A binned residual plot was used as an alternative to a 

standard residual plot to assess linearity on a logit scale. A severe violation of this assumption 

would be expected to result in points which show trends or patterns for certain predicted values, 

and/or far away from the zero line. Severe violations were not observed for either model. 

Standardized Pearson residuals were used to detect outliers. Such residuals would be expected to 

cluster around the zero, and points >2 could be considered potential outliers. In both models, there 

are approximately 20-30 points which fall slightly outside the normal range, but this was not 

thought to be a major concern for this project. Pregibon leverage was used to identify high leverage 

points, those which have predictor values which fall far from the mean. In this case, points with 

Pregibon leverage greater than approximately 2(25)/828 = 0.06 for the full model and 2(11)/828 = 

0.03 for the reduced model were considered high. There were several points which fell into this 

high range for both models. Finally, the Pregibon delta-beta (dbeta) influence statistic was used to 

measure the degree of change in coefficient estimates which would result from deleting various 

covariate patterns. Here, points with dbeta statistics greater than approximately 1 were considered 

high. No points fell into this range for either model. Finally, variance inflation factors (VIF) were 

calculated to assess multicollinearity. These are shown in table 12. Variables with a VIF greater 

than approximately 10 were considered high. There were several variables in the full model which 

fell into this range. This was affected by the presence of both linear and squared transformations 

of some variables being included together, as well as KOOS variables being included in multiple 

interactions terms. However, no high VIFs were found in the reduced model.  
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Figure 5. Diagnostic Plots for Full Model  

(A) Binned Residual Plot: Data are divided into categories (or bins) based on fitted values. The average residual 

value is given for the average fitted value for each bin. Grey lines represent +/- 2 standard errors (SE), expected to 

contain approximately 95% of observations. (B) Standardized Pearson residuals. (C) Pregibon leverage. (D) 

Pregibon delta-beta (DBETA) influence statistics.  
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Figure 6. Diagnostic Plots for Reduced Model 

(A) Binned Residual Plot: Data are divided into categories (or bins) based on fitted values. The average residual 

value is given for the average fitted value for each bin. Grey lines represent +/- 2 standard errors (SE), expected to 

contain approximately 95% of observations. (B) Standardized Pearson residuals. (C) Pregibon leverage. (D) 

Pregibon delta-beta (DBETA) influence statistics.  

 

Table 12. Variance Inflation Factors from Full and Reduced Model  

 Full Model Reduced Model 

Baseline Pain  14.62 4.57 

Change in Pain  9.63 3.41 

Baseline Function  18.15 5.58 

Change in function 14.51 4.40 

Age 1.23 1.06 

Sex  1.15  

BMI 

BMI^2 

64.78 

64.59 
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Race  1.41 1.08 

Ethnicity 1.08  

Insurance  1.17  

Income 5.02  

Comorbidities 1.23  

Education  1.41 1.04 

National Area Deprivation Index (ADI) 

ADI^2 

37.19 

25.88 

 

 

Mental Health Score (MCS) 

MCS^2 

39.93 

39.84 

6.51 

6.51 

Smoking  1.08  

Baseline pain x change in pain 4.99  

Baseline function x change in function 21.08  

Baseline pain x baseline function 6.24  

 

 

 

 



 59 

Appendix D Receiver Operating Characteristic (ROC) Curves  

ROC curves were built to evaluate models used in this project. Figure 10 shows ROC 

curves from the full, reduced, and corrected models, as well as the variations to the corrected model 

described in appendices A and B. AUCs (area under the curve) for each of these are presented 

elsewhere in the text and figures.  

 

 

Figure 7. ROC Curves 

ROC curves were built to evaluate the descrimination between PASS (outcome) categories for each model 

investigated. For each curve, the model sensitivity is plotted on the Y-axis and 1 minus the specificity on the X-axis. 

Diagonal line represents no descrimination (or random descrimination) between outcome categories.   (A) Full 

uncorrected model. (B) Reduced uncorrected model. (C) Corrected model. (D) Corrected model with no error 

variance. (E) Corrected model with very large error variance. (F) Model using Y in imputation model step.  
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Appendix E R code for MIME Procedure  

## 1. Regress error variable on others  

 

```{r} 

lm_baseline_pain<- summary(lm(baseline_pain ~ diff_pain + baseline_func + 

diff_func + age50 + age70 + race_cat + educMed + educHigh + score_pat1_vr12_mcs + 

MCS2, data = data)) 

 

lm_baseline_func<- summary(lm(baseline_func ~ diff_pain + baseline_pain + 

diff_func + age50 + age70 + race_cat + educMed + educHigh + score_pat1_vr12_mcs + 

MCS2, data = data)) 

 

lm_diff_pain<- summary(lm(diff_pain ~ baseline_pain + baseline_func + diff_func 

+ age50 + age70 + race_cat + educMed + educHigh + score_pat1_vr12_mcs + MCS2, data = 

data)) 

 

lm_diff_func<- summary(lm(diff_func ~ baseline_pain + diff_pain + baseline_func 

+ age50  + age70 + race_cat + educMed + educHigh + score_pat1_vr12_mcs + MCS2, data = 

data)) 

``` 

 

## 2-3. Predict the mis-measured variable with error variance  

```{r} 

for(i in 1:10) { 

set.seed(i) 

# Baseline Pain 

e_baseline_pain <- rnorm(828,0,sqrt(4.8)) 

assign(paste0("baseline_pain_pred_", i), ( 

  coef(lm_baseline_pain)["(Intercept)","Estimate"] +  
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  data$baseline_func*coef(lm_baseline_pain)["baseline_func","Estimate"] +  

  data$diff_pain*coef(lm_baseline_pain)["diff_pain","Estimate"] +  

  data$diff_func*coef(lm_baseline_pain)["diff_func","Estimate"] +  

  data$age50*coef(lm_baseline_pain)["age50","Estimate"] +  

  data$age70*coef(lm_baseline_pain)["age70","Estimate"] +  

  data$race_cat*coef(lm_baseline_pain)["race_cat","Estimate"] + 

  data$educMed*coef(lm_baseline_pain)["educMed","Estimate"] + 

  data$educHigh*coef(lm_baseline_pain)["educHigh","Estimate"] +  

data$score_pat1_vr12_mcs*coef(lm_baseline_pain)["score_pat1_vr12_mcs","Estimate

"] +  

  data$MCS2*coef(lm_baseline_pain)["MCS2","Estimate"] +  

  e_baseline_pain)) 

 

### Baseline function 

e_baseline_func <- rnorm(828,0,sqrt(8.3)) 

assign(paste0("baseline_func_pred_", i), ( 

  coef(lm_baseline_func)["(Intercept)","Estimate"] +  

  data$baseline_pain*coef(lm_baseline_func)["baseline_pain","Estimate"] +  

  data$diff_pain*coef(lm_baseline_func)["diff_pain","Estimate"] +  

  data$diff_func*coef(lm_baseline_func)["diff_func","Estimate"] +  

  data$age50*coef(lm_baseline_func)["age50","Estimate"] +  

  data$age70*coef(lm_baseline_func)["age70","Estimate"] +  

  data$race_cat*coef(lm_baseline_func)["race_cat","Estimate"] + 

  data$educMed*coef(lm_baseline_func)["educMed","Estimate"] + 

  data$educHigh*coef(lm_baseline_func)["educHigh","Estimate"] +  

data$score_pat1_vr12_mcs*coef(lm_baseline_func)["score_pat1_vr12_mcs","Estimate

"] +  

  data$MCS2*coef(lm_baseline_func)["MCS2","Estimate"] +  

  e_baseline_func)) 

 

### Change in pain 

e_diff_pain <- rnorm(828,0,sqrt(2*4.8)) 
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assign(paste0("diff_pain_pred_", i), ( 

  coef(lm_diff_pain)["(Intercept)","Estimate"] +  

  data$baseline_pain*coef(lm_diff_pain)["baseline_pain","Estimate"] +  

  data$baseline_func*coef(lm_diff_pain)["baseline_func","Estimate"] +  

  data$diff_func*coef(lm_diff_pain)["diff_func","Estimate"] +  

  data$age50*coef(lm_diff_pain)["age50","Estimate"] +  

  data$age70*coef(lm_diff_pain)["age70","Estimate"] +  

  data$race_cat*coef(lm_diff_pain)["race_cat","Estimate"] + 

  data$educMed*coef(lm_diff_pain)["educMed","Estimate"] + 

  data$educHigh*coef(lm_diff_pain)["educHigh","Estimate"] +  

  data$score_pat1_vr12_mcs*coef(lm_diff_pain)["score_pat1_vr12_mcs","Estimate"] 

+  

  data$MCS2*coef(lm_diff_pain)["MCS2","Estimate"] +  

  e_diff_pain)) 

 

### Change in pain 

e_diff_func <- rnorm(828,0,sqrt(2*8.3)) 

assign(paste0("diff_func_pred_", i), ( 

  coef(lm_diff_func)["(Intercept)","Estimate"] +  

  data$baseline_pain*coef(lm_diff_func)["baseline_pain","Estimate"] +  

  data$baseline_func*coef(lm_diff_func)["baseline_func","Estimate"] +  

  data$diff_pain*coef(lm_diff_func)["diff_pain","Estimate"] +  

  data$age50*coef(lm_diff_func)["age50","Estimate"] +  

  data$age70*coef(lm_diff_func)["age70","Estimate"] +  

  data$race_cat*coef(lm_diff_func)["race_cat","Estimate"] + 

  data$educMed*coef(lm_diff_func)["educMed","Estimate"] + 

  data$educHigh*coef(lm_diff_func)["educHigh","Estimate"] +  

  data$score_pat1_vr12_mcs*coef(lm_diff_func)["score_pat1_vr12_mcs","Estimate"] 

+  

  data$MCS2*coef(lm_diff_func)["MCS2","Estimate"] +  

  e_diff_func)) 

} 
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``` 

 

### Combine variables into data 

```{r} 

new.df <- data.frame(baseline_pain_pred_1, baseline_pain_pred_2, 

baseline_pain_pred_3, baseline_pain_pred_4, baseline_pain_pred_5, 

baseline_pain_pred_6, baseline_pain_pred_7, baseline_pain_pred_8, 

baseline_pain_pred_9, baseline_pain_pred_10, baseline_func_pred_1, 

baseline_func_pred_2, baseline_func_pred_3, baseline_func_pred_4, 

baseline_func_pred_5, baseline_func_pred_6, baseline_func_pred_7, 

baseline_func_pred_8, baseline_func_pred_9, baseline_func_pred_10, diff_pain_pred_1, 

diff_pain_pred_2, diff_pain_pred_3, diff_pain_pred_4, diff_pain_pred_5, 

diff_pain_pred_6, diff_pain_pred_7, diff_pain_pred_8, diff_pain_pred_9, 

diff_pain_pred_10, diff_func_pred_1, diff_func_pred_2, diff_func_pred_3, 

diff_func_pred_4, diff_func_pred_5, diff_func_pred_6, diff_func_pred_7, 

diff_func_pred_8, diff_func_pred_9, diff_func_pred_10) 

data <- cbind(data, new.df) 

``` 

 

## 4. Regress PASS on all variables (including predicted KOOS) 

```{r} 

for(i in 1:10) { 

 

assign(paste0("fit_corrected_", i), 

summary(glm(as.formula(paste("as.factor(score_pat1_pass)", "~", 

paste(colnames(data)[c((41+i),(51+i),(61+i),(71+i))], collapse="+"), paste(" + age50 + 

age70 + race_cat + educMed + educHigh + score_pat1_vr12_mcs + MCS2"), sep = "")), 

data=data, family = binomial))) 

   

} 

``` 
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## 5. Construct corrected model 

 

### Corrected Coefficients  

```{r} 

Beta_correct_intercept <- (1/10)*((coef(fit_corrected_1)["(Intercept)", 

"Estimate"]) + (coef(fit_corrected_2)["(Intercept)", "Estimate"]) + 

(coef(fit_corrected_3)["(Intercept)", "Estimate"]) + 

(coef(fit_corrected_4)["(Intercept)", "Estimate"]) + 

(coef(fit_corrected_5)["(Intercept)", "Estimate"]) + 

(coef(fit_corrected_6)["(Intercept)", "Estimate"]) + 

(coef(fit_corrected_7)["(Intercept)", "Estimate"]) + 

(coef(fit_corrected_8)["(Intercept)", "Estimate"]) + 

(coef(fit_corrected_9)["(Intercept)", "Estimate"]) + 

(coef(fit_corrected_10)["(Intercept)", "Estimate"])) 

 

Beta_correct_baseline_pain <- 

(1/10)*((coef(fit_corrected_1)["baseline_pain_pred_1", "Estimate"]) + 

(coef(fit_corrected_2)["baseline_pain_pred_2", "Estimate"]) + 

(coef(fit_corrected_3)["baseline_pain_pred_3", "Estimate"]) + 

(coef(fit_corrected_4)["baseline_pain_pred_4", "Estimate"]) + 

(coef(fit_corrected_5)["baseline_pain_pred_5", "Estimate"]) + 

(coef(fit_corrected_6)["baseline_pain_pred_6", "Estimate"]) + 

(coef(fit_corrected_7)["baseline_pain_pred_7", "Estimate"]) + 

(coef(fit_corrected_8)["baseline_pain_pred_8", "Estimate"]) + 

(coef(fit_corrected_9)["baseline_pain_pred_9", "Estimate"]) + 

(coef(fit_corrected_10)["baseline_pain_pred_10", "Estimate"])) 

 

Beta_correct_baseline_func <- 

(1/10)*((coef(fit_corrected_1)["baseline_func_pred_1", "Estimate"]) + 

(coef(fit_corrected_2)["baseline_func_pred_2", "Estimate"]) + 

(coef(fit_corrected_3)["baseline_func_pred_3", "Estimate"]) + 

(coef(fit_corrected_4)["baseline_func_pred_4", "Estimate"]) + 
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(coef(fit_corrected_5)["baseline_func_pred_5", "Estimate"]) + 

(coef(fit_corrected_6)["baseline_func_pred_6", "Estimate"]) + 

(coef(fit_corrected_7)["baseline_func_pred_7", "Estimate"]) + 

(coef(fit_corrected_8)["baseline_func_pred_8", "Estimate"]) + 

(coef(fit_corrected_9)["baseline_func_pred_9", "Estimate"]) + 

(coef(fit_corrected_10)["baseline_func_pred_10", "Estimate"])) 

 

Beta_correct_diff_pain <- (1/10)*((coef(fit_corrected_1)["diff_pain_pred_1", 

"Estimate"]) + (coef(fit_corrected_2)["diff_pain_pred_2", "Estimate"]) + 

(coef(fit_corrected_3)["diff_pain_pred_3", "Estimate"]) + 

(coef(fit_corrected_4)["diff_pain_pred_4", "Estimate"]) + 

(coef(fit_corrected_5)["diff_pain_pred_5", "Estimate"]) + 

(coef(fit_corrected_6)["diff_pain_pred_6", "Estimate"]) + 

(coef(fit_corrected_7)["diff_pain_pred_7", "Estimate"]) + 

(coef(fit_corrected_8)["diff_pain_pred_8", "Estimate"]) + 

(coef(fit_corrected_9)["diff_pain_pred_9", "Estimate"]) + 

(coef(fit_corrected_10)["diff_pain_pred_10", "Estimate"])) 

 

Beta_correct_diff_func <- (1/10)*((coef(fit_corrected_1)["diff_func_pred_1", 

"Estimate"]) + (coef(fit_corrected_2)["diff_func_pred_2", "Estimate"]) + 

(coef(fit_corrected_3)["diff_func_pred_3", "Estimate"]) + 

(coef(fit_corrected_4)["diff_func_pred_4", "Estimate"]) + 

(coef(fit_corrected_5)["diff_func_pred_5", "Estimate"]) + 

(coef(fit_corrected_6)["diff_func_pred_6", "Estimate"]) + 

(coef(fit_corrected_7)["diff_func_pred_7", "Estimate"]) + 

(coef(fit_corrected_8)["diff_func_pred_8", "Estimate"]) + 

(coef(fit_corrected_9)["diff_func_pred_9", "Estimate"]) + 

(coef(fit_corrected_10)["diff_func_pred_10", "Estimate"])) 

 

Beta_correct_age50 <- (1/10)*((coef(fit_corrected_1)["age50", "Estimate"]) + 

(coef(fit_corrected_2)["age50", "Estimate"]) + (coef(fit_corrected_3)["age50", 

"Estimate"]) + (coef(fit_corrected_4)["age50", "Estimate"]) + 
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(coef(fit_corrected_5)["age50", "Estimate"]) + (coef(fit_corrected_6)["age50", 

"Estimate"]) + (coef(fit_corrected_7)["age50", "Estimate"]) + 

(coef(fit_corrected_8)["age50", "Estimate"]) + (coef(fit_corrected_9)["age50", 

"Estimate"]) + (coef(fit_corrected_10)["age50", "Estimate"])) 

 

Beta_correct_age70 <- (1/10)*((coef(fit_corrected_1)["age70", "Estimate"]) + 

(coef(fit_corrected_2)["age70", "Estimate"]) + (coef(fit_corrected_3)["age70", 

"Estimate"]) + (coef(fit_corrected_4)["age70", "Estimate"]) + 

(coef(fit_corrected_5)["age70", "Estimate"]) + (coef(fit_corrected_6)["age70", 

"Estimate"]) + (coef(fit_corrected_7)["age70", "Estimate"]) + 

(coef(fit_corrected_8)["age70", "Estimate"]) + (coef(fit_corrected_9)["age70", 

"Estimate"]) + (coef(fit_corrected_10)["age70", "Estimate"])) 

 

Beta_correct_race_cat <- (1/10)*((coef(fit_corrected_1)["race_cat", 

"Estimate"]) + (coef(fit_corrected_2)["race_cat", "Estimate"]) + 

(coef(fit_corrected_3)["race_cat", "Estimate"]) + (coef(fit_corrected_4)["race_cat", 

"Estimate"]) + (coef(fit_corrected_5)["race_cat", "Estimate"]) + 

(coef(fit_corrected_6)["race_cat", "Estimate"]) + (coef(fit_corrected_7)["race_cat", 

"Estimate"]) + (coef(fit_corrected_8)["race_cat", "Estimate"]) + 

(coef(fit_corrected_9)["race_cat", "Estimate"]) + (coef(fit_corrected_10)["race_cat", 

"Estimate"])) 

 

Beta_correct_educMed <- (1/10)*((coef(fit_corrected_1)["educMed", "Estimate"]) 

+ (coef(fit_corrected_2)["educMed", "Estimate"]) + (coef(fit_corrected_3)["educMed", 

"Estimate"]) + (coef(fit_corrected_4)["educMed", "Estimate"]) + 

(coef(fit_corrected_5)["educMed", "Estimate"]) + (coef(fit_corrected_6)["educMed", 

"Estimate"]) + (coef(fit_corrected_7)["educMed", "Estimate"]) + 

(coef(fit_corrected_8)["educMed", "Estimate"]) + (coef(fit_corrected_9)["educMed", 

"Estimate"]) + (coef(fit_corrected_10)["educMed", "Estimate"])) 

 

Beta_correct_educHigh <- (1/10)*((coef(fit_corrected_1)["educHigh", 

"Estimate"]) + (coef(fit_corrected_2)["educHigh", "Estimate"]) + 



 67 

(coef(fit_corrected_3)["educHigh", "Estimate"]) + (coef(fit_corrected_4)["educHigh", 

"Estimate"]) + (coef(fit_corrected_5)["educHigh", "Estimate"]) + 

(coef(fit_corrected_6)["educHigh", "Estimate"]) + (coef(fit_corrected_7)["educHigh", 

"Estimate"]) + (coef(fit_corrected_8)["educHigh", "Estimate"]) + 

(coef(fit_corrected_9)["educHigh", "Estimate"]) + (coef(fit_corrected_10)["educHigh", 

"Estimate"])) 

 

Beta_correct_score_pat1_vr12_mcs <- 

(1/10)*((coef(fit_corrected_1)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_2)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_3)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_4)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_5)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_6)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_7)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_8)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_9)["score_pat1_vr12_mcs", "Estimate"]) + 

(coef(fit_corrected_10)["score_pat1_vr12_mcs", "Estimate"])) 

 

Beta_correct_MCS2 <- (1/10)*((coef(fit_corrected_1)["MCS2", "Estimate"]) + 

(coef(fit_corrected_2)["MCS2", "Estimate"]) + (coef(fit_corrected_3)["MCS2", 

"Estimate"]) + (coef(fit_corrected_4)["MCS2", "Estimate"]) + 

(coef(fit_corrected_5)["MCS2", "Estimate"]) + (coef(fit_corrected_6)["MCS2", 

"Estimate"]) + (coef(fit_corrected_7)["MCS2", "Estimate"]) + 

(coef(fit_corrected_8)["MCS2", "Estimate"]) + (coef(fit_corrected_9)["MCS2", 

"Estimate"]) + (coef(fit_corrected_10)["MCS2", "Estimate"])) 

 

### Predicted Probabilities 

 

```{r} 

log_odds_correct <- (Beta_correct_intercept) + 

(data$baseline_pain*Beta_correct_baseline_pain) + 
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(data$baseline_func*Beta_correct_baseline_func) + 

(data$diff_pain*Beta_correct_diff_pain) + (data$diff_func*Beta_correct_diff_func) + 

(data$age50*Beta_correct_age50) + (data$age70*Beta_correct_age70) + 

(data$race_cat*Beta_correct_race_cat) + (data$educMed*Beta_correct_educMed) + 

(data$educHigh*Beta_correct_educHigh) + 

(data$score_pat1_vr12_mcs*Beta_correct_score_pat1_vr12_mcs) + 

(data$MCS2*Beta_correct_MCS2) 

 

p_PASS <- exp(log_odds_correct) / (1 + (exp(log_odds_correct))) 

 

data$pred_PASS <- ifelse(p_PASS<0.5, 0, 1) 

``` 

 

 

## 6. Variance of corrected betas 

 

### Var (within) 

```{r} 

Var_WI_correct_intercept <- ((1/10)*((coef(fit_corrected_1)["(Intercept)", 

"Std. Error"]) + (coef(fit_corrected_2)["(Intercept)", "Std. Error"]) + 

(coef(fit_corrected_3)["(Intercept)", "Std. Error"]) + 

(coef(fit_corrected_4)["(Intercept)", "Std. Error"]) + 

(coef(fit_corrected_5)["(Intercept)", "Std. Error"]) + 

(coef(fit_corrected_6)["(Intercept)", "Std. Error"]) + 

(coef(fit_corrected_7)["(Intercept)", "Std. Error"]) + 

(coef(fit_corrected_8)["(Intercept)", "Std. Error"]) + 

(coef(fit_corrected_9)["(Intercept)", "Std. Error"]) + 

(coef(fit_corrected_10)["(Intercept)", "Std. Error"])))^2 

 

Var_WI_correct_baseline_pain <- 

((1/10)*((coef(fit_corrected_1)["baseline_pain_pred_1", "Std. Error"]) + 

(coef(fit_corrected_2)["baseline_pain_pred_2", "Std. Error"]) + 
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(coef(fit_corrected_3)["baseline_pain_pred_3", "Std. Error"]) + 

(coef(fit_corrected_4)["baseline_pain_pred_4", "Std. Error"]) + 

(coef(fit_corrected_5)["baseline_pain_pred_5", "Std. Error"]) + 

(coef(fit_corrected_6)["baseline_pain_pred_6", "Std. Error"]) + 

(coef(fit_corrected_7)["baseline_pain_pred_7", "Std. Error"]) + 

(coef(fit_corrected_8)["baseline_pain_pred_8", "Std. Error"]) + 

(coef(fit_corrected_9)["baseline_pain_pred_9", "Std. Error"]) + 

(coef(fit_corrected_10)["baseline_pain_pred_10", "Std. Error"])))^2 

 

Var_WI_correct_baseline_func <- 

((1/10)*((coef(fit_corrected_1)["baseline_func_pred_1", "Std. Error"]) + 

(coef(fit_corrected_2)["baseline_func_pred_2", "Std. Error"]) + 

(coef(fit_corrected_3)["baseline_func_pred_3", "Std. Error"]) + 

(coef(fit_corrected_4)["baseline_func_pred_4", "Std. Error"]) + 

(coef(fit_corrected_5)["baseline_func_pred_5", "Std. Error"]) + 

(coef(fit_corrected_6)["baseline_func_pred_6", "Std. Error"]) + 

(coef(fit_corrected_7)["baseline_func_pred_7", "Std. Error"]) + 

(coef(fit_corrected_8)["baseline_func_pred_8", "Std. Error"]) + 

(coef(fit_corrected_9)["baseline_func_pred_9", "Std. Error"]) + 

(coef(fit_corrected_10)["baseline_func_pred_10", "Std. Error"])))^2 

 

Var_WI_correct_diff_pain <- ((1/10)*((coef(fit_corrected_1)["diff_pain_pred_1", 

"Std. Error"]) + (coef(fit_corrected_2)["diff_pain_pred_2", "Std. Error"]) + 

(coef(fit_corrected_3)["diff_pain_pred_3", "Std. Error"]) + 

(coef(fit_corrected_4)["diff_pain_pred_4", "Std. Error"]) + 

(coef(fit_corrected_5)["diff_pain_pred_5", "Std. Error"]) + 

(coef(fit_corrected_6)["diff_pain_pred_6", "Std. Error"]) + 

(coef(fit_corrected_7)["diff_pain_pred_7", "Std. Error"]) + 

(coef(fit_corrected_8)["diff_pain_pred_8", "Std. Error"]) + 

(coef(fit_corrected_9)["diff_pain_pred_9", "Std. Error"]) + 

(coef(fit_corrected_10)["diff_pain_pred_10", "Std. Error"])))^2 
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Var_WI_correct_diff_func <- ((1/10)*((coef(fit_corrected_1)["diff_func_pred_1", 

"Std. Error"]) + (coef(fit_corrected_2)["diff_func_pred_2", "Std. Error"]) + 

(coef(fit_corrected_3)["diff_func_pred_3", "Std. Error"]) + 

(coef(fit_corrected_4)["diff_func_pred_4", "Std. Error"]) + 

(coef(fit_corrected_5)["diff_func_pred_5", "Std. Error"]) + 

(coef(fit_corrected_6)["diff_func_pred_6", "Std. Error"]) + 

(coef(fit_corrected_7)["diff_func_pred_7", "Std. Error"]) + 

(coef(fit_corrected_8)["diff_func_pred_8", "Std. Error"]) + 

(coef(fit_corrected_9)["diff_func_pred_9", "Std. Error"]) + 

(coef(fit_corrected_10)["diff_func_pred_10", "Std. Error"])))^2 

 

Var_WI_correct_age50 <- ((1/10)*((coef(fit_corrected_1)["age50", "Std. Error"]) 

+ (coef(fit_corrected_2)["age50", "Std. Error"]) + (coef(fit_corrected_3)["age50", 

"Std. Error"]) + (coef(fit_corrected_4)["age50", "Std. Error"]) + 

(coef(fit_corrected_5)["age50", "Std. Error"]) + (coef(fit_corrected_6)["age50", "Std. 

Error"]) + (coef(fit_corrected_7)["age50", "Std. Error"]) + 

(coef(fit_corrected_8)["age50", "Std. Error"]) + (coef(fit_corrected_9)["age50", "Std. 

Error"]) + (coef(fit_corrected_10)["age50", "Std. Error"])))^2 

 

Var_WI_correct_age70 <- ((1/10)*((coef(fit_corrected_1)["age70", "Std. Error"]) 

+ (coef(fit_corrected_2)["age70", "Std. Error"]) + (coef(fit_corrected_3)["age70", 

"Std. Error"]) + (coef(fit_corrected_4)["age70", "Std. Error"]) + 

(coef(fit_corrected_5)["age70", "Std. Error"]) + (coef(fit_corrected_6)["age70", "Std. 

Error"]) + (coef(fit_corrected_7)["age70", "Std. Error"]) + 

(coef(fit_corrected_8)["age70", "Std. Error"]) + (coef(fit_corrected_9)["age70", "Std. 

Error"]) + (coef(fit_corrected_10)["age70", "Std. Error"])))^2 

 

Var_WI_correct_race_cat <- ((1/10)*((coef(fit_corrected_1)["race_cat", "Std. 

Error"]) + (coef(fit_corrected_2)["race_cat", "Std. Error"]) + 

(coef(fit_corrected_3)["race_cat", "Std. Error"]) + (coef(fit_corrected_4)["race_cat", 

"Std. Error"]) + (coef(fit_corrected_5)["race_cat", "Std. Error"]) + 

(coef(fit_corrected_6)["race_cat", "Std. Error"]) + (coef(fit_corrected_7)["race_cat", 
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"Std. Error"]) + (coef(fit_corrected_8)["race_cat", "Std. Error"]) + 

(coef(fit_corrected_9)["race_cat", "Std. Error"]) + 

(coef(fit_corrected_10)["race_cat", "Std. Error"])))^2 

 

Var_WI_correct_educMed <- ((1/10)*((coef(fit_corrected_1)["educMed", "Std. 

Error"]) + (coef(fit_corrected_2)["educMed", "Std. Error"]) + 

(coef(fit_corrected_3)["educMed", "Std. Error"]) + (coef(fit_corrected_4)["educMed", 

"Std. Error"]) + (coef(fit_corrected_5)["educMed", "Std. Error"]) + 

(coef(fit_corrected_6)["educMed", "Std. Error"]) + (coef(fit_corrected_7)["educMed", 

"Std. Error"]) + (coef(fit_corrected_8)["educMed", "Std. Error"]) + 

(coef(fit_corrected_9)["educMed", "Std. Error"]) + (coef(fit_corrected_10)["educMed", 

"Std. Error"])))^2 

 

Var_WI_correct_educHigh <- ((1/10)*((coef(fit_corrected_1)["educHigh", "Std. 

Error"]) + (coef(fit_corrected_2)["educHigh", "Std. Error"]) + 

(coef(fit_corrected_3)["educHigh", "Std. Error"]) + (coef(fit_corrected_4)["educHigh", 

"Std. Error"]) + (coef(fit_corrected_5)["educHigh", "Std. Error"]) + 

(coef(fit_corrected_6)["educHigh", "Std. Error"]) + (coef(fit_corrected_7)["educHigh", 

"Std. Error"]) + (coef(fit_corrected_8)["educHigh", "Std. Error"]) + 

(coef(fit_corrected_9)["educHigh", "Std. Error"]) + 

(coef(fit_corrected_10)["educHigh", "Std. Error"])))^2 

 

Var_WI_correct_score_pat1_vr12_mcs <- 

((1/10)*((coef(fit_corrected_1)["score_pat1_vr12_mcs", "Std. Error"]) + 

(coef(fit_corrected_2)["score_pat1_vr12_mcs", "Std. Error"]) + 

(coef(fit_corrected_3)["score_pat1_vr12_mcs", "Std. Error"]) + 

(coef(fit_corrected_4)["score_pat1_vr12_mcs", "Std. Error"]) + 

(coef(fit_corrected_5)["score_pat1_vr12_mcs", "Std. Error"]) + 

(coef(fit_corrected_6)["score_pat1_vr12_mcs", "Std. Error"]) + 

(coef(fit_corrected_7)["score_pat1_vr12_mcs", "Std. Error"]) + 

(coef(fit_corrected_8)["score_pat1_vr12_mcs", "Std. Error"]) + 
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(coef(fit_corrected_9)["score_pat1_vr12_mcs", "Std. Error"]) + 

(coef(fit_corrected_10)["score_pat1_vr12_mcs", "Std. Error"])))^2 

 

Var_WI_correct_MCS2 <- ((1/10)*((coef(fit_corrected_1)["MCS2", "Std. Error"]) + 

(coef(fit_corrected_2)["MCS2", "Std. Error"]) + (coef(fit_corrected_3)["MCS2", "Std. 

Error"]) + (coef(fit_corrected_4)["MCS2", "Std. Error"]) + 

(coef(fit_corrected_5)["MCS2", "Std. Error"]) + (coef(fit_corrected_6)["MCS2", "Std. 

Error"]) + (coef(fit_corrected_7)["MCS2", "Std. Error"]) + 

(coef(fit_corrected_8)["MCS2", "Std. Error"]) + (coef(fit_corrected_9)["MCS2", "Std. 

Error"]) + (coef(fit_corrected_10)["MCS2", "Std. Error"])))^2 

 

``` 

 

### Var (between) 

 

```{r} 

Var_BTW_correct_intercept <- (1/9)*((((coef(fit_corrected_1)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_2)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_3)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_4)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_5)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_6)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_7)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_8)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_9)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2) + (((coef(fit_corrected_10)["(Intercept)", 

"Estimate"]) - Beta_correct_intercept)^2)) 

 

Var_BTW_correct_baseline_pain <- 

(1/9)*((((coef(fit_corrected_1)["baseline_pain_pred_1", "Estimate"]) - 

Beta_correct_baseline_pain)^2) + (((coef(fit_corrected_2)["baseline_pain_pred_2", 

"Estimate"]) - Beta_correct_baseline_pain)^2) + 
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(((coef(fit_corrected_3)["baseline_pain_pred_3", "Estimate"]) - 

Beta_correct_baseline_pain)^2) + (((coef(fit_corrected_4)["baseline_pain_pred_4", 

"Estimate"]) - Beta_correct_baseline_pain)^2) + 

(((coef(fit_corrected_5)["baseline_pain_pred_5", "Estimate"]) - 

Beta_correct_baseline_pain)^2) + (((coef(fit_corrected_6)["baseline_pain_pred_6", 

"Estimate"]) - Beta_correct_baseline_pain)^2) + 

(((coef(fit_corrected_7)["baseline_pain_pred_7", "Estimate"]) - 

Beta_correct_baseline_pain)^2) + (((coef(fit_corrected_8)["baseline_pain_pred_8", 

"Estimate"]) - Beta_correct_baseline_pain)^2) + 

(((coef(fit_corrected_9)["baseline_pain_pred_9", "Estimate"]) - 

Beta_correct_baseline_pain)^2) + (((coef(fit_corrected_10)["baseline_pain_pred_10", 

"Estimate"]) - Beta_correct_baseline_pain)^2)) 

 

Var_BTW_correct_baseline_func <- 

(1/9)*((((coef(fit_corrected_1)["baseline_func_pred_1", "Estimate"]) - 

Beta_correct_baseline_func)^2) + (((coef(fit_corrected_2)["baseline_func_pred_2", 

"Estimate"]) - Beta_correct_baseline_func)^2) + 

(((coef(fit_corrected_3)["baseline_func_pred_3", "Estimate"]) - 

Beta_correct_baseline_func)^2) + (((coef(fit_corrected_4)["baseline_func_pred_4", 

"Estimate"]) - Beta_correct_baseline_func)^2) + 

(((coef(fit_corrected_5)["baseline_func_pred_5", "Estimate"]) - 

Beta_correct_baseline_func)^2) + (((coef(fit_corrected_6)["baseline_func_pred_6", 

"Estimate"]) - Beta_correct_baseline_func)^2) + 

(((coef(fit_corrected_7)["baseline_func_pred_7", "Estimate"]) - 

Beta_correct_baseline_func)^2) + (((coef(fit_corrected_8)["baseline_func_pred_8", 

"Estimate"]) - Beta_correct_baseline_func)^2) + 

(((coef(fit_corrected_9)["baseline_func_pred_9", "Estimate"]) - 

Beta_correct_baseline_func)^2) + (((coef(fit_corrected_10)["baseline_func_pred_10", 

"Estimate"]) - Beta_correct_baseline_func)^2)) 

 

Var_BTW_correct_diff_pain <- 

(1/9)*((((coef(fit_corrected_1)["diff_pain_pred_1", "Estimate"]) - 
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Beta_correct_diff_pain)^2) + (((coef(fit_corrected_2)["diff_pain_pred_2", "Estimate"]) 

- Beta_correct_diff_pain)^2) + (((coef(fit_corrected_3)["diff_pain_pred_3", 

"Estimate"]) - Beta_correct_diff_pain)^2) + 

(((coef(fit_corrected_4)["diff_pain_pred_4", "Estimate"]) - Beta_correct_diff_pain)^2) 

+ (((coef(fit_corrected_5)["diff_pain_pred_5", "Estimate"]) - 

Beta_correct_diff_pain)^2) + (((coef(fit_corrected_6)["diff_pain_pred_6", "Estimate"]) 

- Beta_correct_diff_pain)^2) + (((coef(fit_corrected_7)["diff_pain_pred_7", 

"Estimate"]) - Beta_correct_diff_pain)^2) + 

(((coef(fit_corrected_8)["diff_pain_pred_8", "Estimate"]) - Beta_correct_diff_pain)^2) 

+ (((coef(fit_corrected_9)["diff_pain_pred_9", "Estimate"]) - 

Beta_correct_diff_pain)^2) + (((coef(fit_corrected_10)["diff_pain_pred_10", 

"Estimate"]) - Beta_correct_diff_pain)^2)) 

 

Var_BTW_correct_diff_func <- 

(1/9)*((((coef(fit_corrected_1)["diff_func_pred_1", "Estimate"]) - 

Beta_correct_diff_func)^2) + (((coef(fit_corrected_2)["diff_func_pred_2", "Estimate"]) 

- Beta_correct_diff_func)^2) + (((coef(fit_corrected_3)["diff_func_pred_3", 

"Estimate"]) - Beta_correct_diff_func)^2) + 

(((coef(fit_corrected_4)["diff_func_pred_4", "Estimate"]) - Beta_correct_diff_func)^2) 

+ (((coef(fit_corrected_5)["diff_func_pred_5", "Estimate"]) - 

Beta_correct_diff_func)^2) + (((coef(fit_corrected_6)["diff_func_pred_6", "Estimate"]) 

- Beta_correct_diff_func)^2) + (((coef(fit_corrected_7)["diff_func_pred_7", 

"Estimate"]) - Beta_correct_diff_func)^2) + 

(((coef(fit_corrected_8)["diff_func_pred_8", "Estimate"]) - Beta_correct_diff_func)^2) 

+ (((coef(fit_corrected_9)["diff_func_pred_9", "Estimate"]) - 

Beta_correct_diff_func)^2) + (((coef(fit_corrected_10)["diff_func_pred_10", 

"Estimate"]) - Beta_correct_diff_func)^2)) 

 

Var_BTW_correct_age50 <- (1/9)*((((coef(fit_corrected_1)["age50", "Estimate"]) 

- Beta_correct_age50)^2) + (((coef(fit_corrected_2)["age50", "Estimate"]) - 

Beta_correct_age50)^2) + (((coef(fit_corrected_3)["age50", "Estimate"]) - 

Beta_correct_age50)^2) + (((coef(fit_corrected_4)["age50", "Estimate"]) - 
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Beta_correct_age50)^2) + (((coef(fit_corrected_5)["age50", "Estimate"]) - 

Beta_correct_age50)^2) + (((coef(fit_corrected_6)["age50", "Estimate"]) - 

Beta_correct_age50)^2) + (((coef(fit_corrected_7)["age50", "Estimate"]) - 

Beta_correct_age50)^2) + (((coef(fit_corrected_8)["age50", "Estimate"]) - 

Beta_correct_age50)^2) + (((coef(fit_corrected_9)["age50", "Estimate"]) - 

Beta_correct_age50)^2) + (((coef(fit_corrected_10)["age50", "Estimate"]) - 

Beta_correct_age50)^2)) 

 

Var_BTW_correct_age70 <- (1/9)*((((coef(fit_corrected_1)["age70", "Estimate"]) 

- Beta_correct_age70)^2) + (((coef(fit_corrected_2)["age70", "Estimate"]) - 

Beta_correct_age70)^2) + (((coef(fit_corrected_3)["age70", "Estimate"]) - 

Beta_correct_age70)^2) + (((coef(fit_corrected_4)["age70", "Estimate"]) - 

Beta_correct_age70)^2) + (((coef(fit_corrected_5)["age70", "Estimate"]) - 

Beta_correct_age70)^2) + (((coef(fit_corrected_6)["age70", "Estimate"]) - 

Beta_correct_age70)^2) + (((coef(fit_corrected_7)["age70", "Estimate"]) - 

Beta_correct_age70)^2) + (((coef(fit_corrected_8)["age70", "Estimate"]) - 

Beta_correct_age70)^2) + (((coef(fit_corrected_9)["age70", "Estimate"]) - 

Beta_correct_age70)^2) + (((coef(fit_corrected_10)["age70", "Estimate"]) - 

Beta_correct_age70)^2)) 

 

Var_BTW_correct_race_cat <- (1/9)*((((coef(fit_corrected_1)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_2)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_3)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_4)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_5)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_6)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_7)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_8)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_9)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2) + (((coef(fit_corrected_10)["race_cat", 

"Estimate"]) - Beta_correct_race_cat)^2)) 
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Var_BTW_correct_educMed <- (1/9)*((((coef(fit_corrected_1)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_2)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_3)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_4)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_5)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_6)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_7)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_8)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_9)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2) + (((coef(fit_corrected_10)["educMed", 

"Estimate"]) - Beta_correct_educMed)^2)) 

 

Var_BTW_correct_educHigh <- (1/9)*((((coef(fit_corrected_1)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_2)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_3)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_4)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_5)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_6)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_7)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_8)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_9)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2) + (((coef(fit_corrected_10)["educHigh", 

"Estimate"]) - Beta_correct_educHigh)^2)) 

 

Var_BTW_correct_score_pat1_vr12_mcs <- 

(1/9)*((((coef(fit_corrected_1)["score_pat1_vr12_mcs", "Estimate"]) - 

Beta_correct_score_pat1_vr12_mcs)^2) + (((coef(fit_corrected_2)["score_pat1_vr12_mcs", 

"Estimate"]) - Beta_correct_score_pat1_vr12_mcs)^2) + 

(((coef(fit_corrected_3)["score_pat1_vr12_mcs", "Estimate"]) - 

Beta_correct_score_pat1_vr12_mcs)^2) + (((coef(fit_corrected_4)["score_pat1_vr12_mcs", 

"Estimate"]) - Beta_correct_score_pat1_vr12_mcs)^2) + 

(((coef(fit_corrected_5)["score_pat1_vr12_mcs", "Estimate"]) - 
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Beta_correct_score_pat1_vr12_mcs)^2) + (((coef(fit_corrected_6)["score_pat1_vr12_mcs", 

"Estimate"]) - Beta_correct_score_pat1_vr12_mcs)^2) + 

(((coef(fit_corrected_7)["score_pat1_vr12_mcs", "Estimate"]) - 

Beta_correct_score_pat1_vr12_mcs)^2) + (((coef(fit_corrected_8)["score_pat1_vr12_mcs", 

"Estimate"]) - Beta_correct_score_pat1_vr12_mcs)^2) + 

(((coef(fit_corrected_9)["score_pat1_vr12_mcs", "Estimate"]) - 

Beta_correct_score_pat1_vr12_mcs)^2) + 

(((coef(fit_corrected_10)["score_pat1_vr12_mcs", "Estimate"]) - 

Beta_correct_score_pat1_vr12_mcs)^2)) 

 

Var_BTW_correct_MCS2 <- (1/9)*((((coef(fit_corrected_1)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_2)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_3)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_4)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_5)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_6)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_7)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_8)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_9)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2) + (((coef(fit_corrected_10)["MCS2", "Estimate"]) - 

Beta_correct_MCS2)^2)) 

``` 

 

### Var (Total) 

 

```{r} 

Var_T_correct_intercept <- (Var_WI_correct_intercept + (1 + 

(1/10))*Var_BTW_correct_intercept) 

 

Var_T_correct_baseline_pain <- (Var_WI_correct_baseline_pain + (1 + 

(1/10))*Var_BTW_correct_baseline_pain) 
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Var_T_correct_baseline_func <- (Var_WI_correct_baseline_func + (1 + 

(1/10))*Var_BTW_correct_baseline_func) 

 

Var_T_correct_diff_pain <- (Var_WI_correct_diff_pain + (1 + 

(1/10))*Var_BTW_correct_diff_pain) 

 

Var_T_correct_diff_func <- (Var_WI_correct_diff_func + (1 + 

(1/10))*Var_BTW_correct_diff_func) 

 

Var_T_correct_age50 <- (Var_WI_correct_age50 + (1 + 

(1/10))*Var_BTW_correct_age50) 

 

Var_T_correct_age70 <- (Var_WI_correct_age70 + (1 + 

(1/10))*Var_BTW_correct_age70) 

 

Var_T_correct_race_cat <- (Var_WI_correct_race_cat + (1 + 

(1/10))*Var_BTW_correct_race_cat) 

 

Var_T_correct_educMed <- (Var_WI_correct_educMed + (1 + 

(1/10))*Var_BTW_correct_educMed) 

 

Var_T_correct_educHigh <- (Var_WI_correct_educHigh + (1 + 

(1/10))*Var_BTW_correct_educHigh) 

 

Var_T_correct_score_pat1_vr12_mcs <- (Var_WI_correct_score_pat1_vr12_mcs + (1 + 

(1/10))*Var_BTW_correct_score_pat1_vr12_mcs) 

 

Var_T_correct_MCS2 <- (Var_WI_correct_MCS2 + (1 + (1/10))*Var_BTW_correct_MCS2) 

``` 
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## 7. Test 

 

### Statistic 

 

```{r} 

B0 <- 0 

 

T_intercept <- (abs(B0 - Beta_correct_intercept)) / 

(sqrt(Var_T_correct_intercept)) 

T_baseline_pain <- (abs(B0 - Beta_correct_baseline_pain)) / 

(sqrt(Var_T_correct_baseline_pain)) 

T_baseline_func <- (abs(B0 - Beta_correct_baseline_func)) / 

(sqrt(Var_T_correct_baseline_func)) 

T_diff_pain <- (abs(B0 - Beta_correct_diff_pain)) / 

(sqrt(Var_T_correct_diff_pain)) 

T_diff_func <- (abs(B0 - Beta_correct_diff_func)) / 

(sqrt(Var_T_correct_diff_func)) 

T_age50 <- (abs(B0 - Beta_correct_age50)) / (sqrt(Var_T_correct_age50)) 

T_age70 <- (abs(B0 - Beta_correct_age70)) / (sqrt(Var_T_correct_age70)) 

T_race_cat <- (abs(B0 - Beta_correct_race_cat)) / 

(sqrt(Var_T_correct_race_cat)) 

T_educMed <- (abs(B0 - Beta_correct_educMed)) / (sqrt(Var_T_correct_educMed)) 

T_educHigh <- (abs(B0 - Beta_correct_educHigh)) / 

(sqrt(Var_T_correct_educHigh)) 

T_score_pat1_vr12_mcs <- (abs(B0 - Beta_correct_score_pat1_vr12_mcs)) / 

(sqrt(Var_T_correct_score_pat1_vr12_mcs)) 

T_MCS2 <- (abs(B0 - Beta_correct_MCS2)) / (sqrt(Var_T_correct_MCS2)) 

``` 

 

### DF 
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```{r} 

df_intercept <- (9*((1+(Var_WI_correct_intercept/((1-

(1/10))*Var_BTW_correct_intercept)))^2)) 

df_baseline_pain <- (9*((1+(Var_WI_correct_baseline_pain/((1-

(1/10))*Var_BTW_correct_baseline_pain)))^2)) 

df_baseline_func <- (9*((1+(Var_WI_correct_baseline_func/((1-

(1/10))*Var_BTW_correct_baseline_func)))^2)) 

df_diff_pain <- (9*((1+(Var_WI_correct_diff_pain/((1-

(1/10))*Var_BTW_correct_diff_pain)))^2)) 

df_diff_func <- (9*((1+(Var_WI_correct_diff_func/((1-

(1/10))*Var_BTW_correct_diff_func)))^2)) 

df_age50 <- (9*((1+(Var_WI_correct_age50/((1-

(1/10))*Var_BTW_correct_age50)))^2)) 

df_age70 <- (9*((1+(Var_WI_correct_age70/((1-

(1/10))*Var_BTW_correct_age70)))^2)) 

df_race_cat <- (9*((1+(Var_WI_correct_race_cat/((1-

(1/10))*Var_BTW_correct_race_cat)))^2)) 

df_educMed <- (9*((1+(Var_WI_correct_educMed/((1-

(1/10))*Var_BTW_correct_educMed)))^2)) 

df_educHigh <- (9*((1+(Var_WI_correct_educHigh/((1-

(1/10))*Var_BTW_correct_educHigh)))^2)) 

df_score_pat1_vr12_mcs <- (9*((1+(Var_WI_correct_score_pat1_vr12_mcs/((1-

(1/10))*Var_BTW_correct_score_pat1_vr12_mcs)))^2)) 

df_MCS2 <- (9*((1+(Var_WI_correct_MCS2/((1-(1/10))*Var_BTW_correct_MCS2)))^2)) 

``` 

 

### P-values 

 

```{r} 

p_intercept <- 2*pt(q=T_intercept, df=df_intercept, lower.tail=F) 

p_baseline_pain <- 2*pt(q=T_baseline_pain, df=df_baseline_pain, lower.tail=F) 

p_baseline_func <- 2*pt(q=T_baseline_func, df=df_baseline_func, lower.tail=F) 
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p_diff_pain <- 2*pt(q=T_diff_pain, df=df_diff_pain, lower.tail=F) 

p_diff_func <- 2*pt(q=T_diff_func, df=df_diff_func, lower.tail=F) 

p_age50 <- 2*pt(q=T_age50, df=df_age50, lower.tail=F) 

p_age70 <- 2*pt(q=T_age70, df=df_age70, lower.tail=F) 

p_race_cat <- 2*pt(q=T_race_cat, df=df_race_cat, lower.tail=F) 

p_educMed <- 2*pt(q=T_educMed, df=df_educMed, lower.tail=F) 

p_educHigh <- 2*pt(q=T_educHigh, df=df_educHigh, lower.tail=F) 

p_score_pat1_vr12_mcs <- 2*pt(q=T_score_pat1_vr12_mcs, 

df=df_score_pat1_vr12_mcs, lower.tail=F) 

p_MCS2 <- 2*pt(q=T_MCS2, df=df_MCS2, lower.tail=F) 

``` 

 

## Corrected Model Performance  

 

### Brier Score 

 

```{r} 

Brier(p_PASS, data$score_pat1_pass, 0, 1) 

``` 

 

## ROC 

 

```{r} 

par(pty="s") 

roc(data$score_pat1_pass, p_PASS, plot=T, legacy.axes=T) 

``` 
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