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Abstract 

Prediction of Preterm Birth in Southwestern PA using Classification Models: A 

Comparative Analysis 

 

Sabnum Pudasainy, MS 

 

University of Pittsburgh, 2022 

 

 

 

Background: Preterm birth is a global health burden and a leading cause of neonatal 

mortality and morbidity. This study aims to compare prediction models to identify clinical, 

demographic, and environmental risk factors associated with preterm birth using binary 

classification methods. 

Methods: Data from 221,060 infants born between 2010 and 2020 to mothers who resided 

in eight southwestern Pennsylvania counties (Allegheny, Armstrong, Beaver, Butler, Fayette, 

Greene, Washington, Westmoreland) were used. Covariates utilized for this analysis were the 

mother’s and the neonate’s clinical and demographic features and the mother’s mean exposure to 

air pollutants - Carbon monoxide (CO), Nitrogen dioxide (NO2), Particulate Matter (PM2.5), Ozone 

(O3) and Sulfur dioxide (SO2) in mother’s geocoded areas of residence during the mother’s 

gestation period. Exploratory data analysis, including Empirical Bayes approach, was conducted 

to better understand the covariates and the outcome, i.e., preterm birth. Further, three supervised 

machine learning techniques – Elastic Net (GLMNET), Support Vector Machine (SVM) and 

Random Forest – were used to build and compare prediction models based on performance 

metrices like Area under the Curve (AUC), sensitivity and specificity. 

Results: Empirical Bayes identified mothers with fewer prenatal visits (0-10) and mothers 

who resided in Allegheny County to be associated with higher posterior average for event 

probability. Among the three different algorithms used to predict preterm birth, Random Forest 

seemed to outperform GLMNET and SVM with an AUC of 0.83, compared to 0.77 for both 
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GLMNET and SVM. The top important predictors common to GLMNET and SVM were total 

number of prenatal visits, mother’s race and education. Additionally, Random Forest identified 

mean exposures to pollutants as the top features, along with number of prenatal visits and 

Allegheny as the mother’s residential county. The results from Empirical Bayes exploration and 

the classification models were fairly consistent. 

Public Health Significance: Optimal prediction of preterm birth facilitates early 

identification and treatment of at-risk mothers, and enables targeted interventions to minimize 

infant mortality and morbidity, which would significantly benefit the community, nation, and the 

healthcare system as a whole. The environmental factors identified here should be explored further. 
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1.0 Introduction 

1.1 Background and Significance 

Preterm birth, as defined by the World Health Organization, is any birth that takes place 

before 37 weeks of gestation (World Health Organization, n.d.). According to an estimated 

distribution of causes of 3.1 million neonatal deaths in 193 countries in 2010, preterm birth directly 

contributed to about 35% of all neonatal deaths, and indirectly contributed to an increased chance 

of post neonatal deaths, especially deaths from neonatal infections (Blencowe et al., 2013). In the 

United States, preterm birth represented 10.1% of live births in 2020, i.e., 1 in 10 infants were born 

preterm. Over 26 billion dollars is spent annually for the preterm deliveries in the United States 

(March of Dimes, n.d.). Ability to predict preterm births accurately would enable clinicians to 

identify and treat at-risk mothers on time. It would allow clinicians to utilize targeted interventions 

to reduce the burden of preterm birth. 

1.2 Risk factors for preterm birth 

To build a preterm birth risk prediction model, a better understanding of risk factors that 

affect preterm birth is crucial. Previous studies have shown relationship of preterm birth with 

maternal demographic characteristics like mother’s race, education, age, socio-economic status, 

biologic and genetic markers, nutritional status, pregnancy history, smoking status, intrauterine 

infection etc. For instance, women from the black population had higher rates of preterm births 
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(16-18%) compared to white women (5-9%) (Goldberg et al., 2008). Other demographic factors 

like mother’s lower educational attainment and lower socioeconomic status (Goldberg et al., 

2008), mothers younger than 18 and older than 35 (Martin et al., 2018) were also found to be 

associated with preterm birth. Use of tobacco was found to increase the risk of preterm births (< 

2-fold) after adjusting for other factors (Goldberg et al., 2008).  

A systematic review of 68 studies that looked at over 32 million births in the United States 

reported that exposure to fine particulate matter (PM2.5) and ozone (O3) was linked to higher risk 

for preterm births, i.e., the risk of preterm birth increased by a median of 11.5% when exposed to 

PM2.5 and the risk increased from 3% to 9.6% when exposed to O3 (Bekkar et al., 2020). A time-

series analysis done in Pennsylvania from 1997-2001 found increased risk of preterm birth with 

exposure to PM10 (RR=1.07 per 50 μg/m3 increase) and SO2 (RR = 1.15 per 15 ppb increase) in 

the six weeks before birth (Sagiv et al., 2005). This analysis aims to investigate if mother’s 

exposure to air pollutants during the gestation period, in addition to maternal demographic factors, 

is associated with preterm birth. The air pollutants being studied are Carbon monoxide (CO), 

Nitrogen dioxide (NO2), Ozone (O3), particulate matter less than 2.5 microns (PM2.5) and Sulfur 

dioxide (SO2). 

1.3 Objectives 

With current advents in technology for collection and storage of complex and high-volume 

medical data, there are many opportunities for us to explore novel relationships between health 

risks and outcome. Increased interest has been seen over the last few years regarding the use of 

Artificial Intelligence (AI) techniques in medical sector and especially in reproductive health. One 
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subcategory of AI is Machine Learning (ML), which uses complex algorithms to find any potential 

links in the data and provides insights for making clinical decisions (Wang et al., 2019).  

The primary aim of this analysis is to build three classification models using supervised 

ML algorithms to identify potential risk factors associated with preterm birth, including exposure 

to air pollutants, and compare the predictive performance of these models. The other aim is to 

evaluate the importance of predictors used to build the best performing model and to identify the 

predictors which are most significant in optimal prediction of preterm birth.  
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2.0 Methods 

The framework that was followed for data analysis is shown in Figure 1.  

 

Figure 1 Data Analysis Framework 

2.1  Data  

2.1.1 Birth Data  

Birth data were retrieved from the Bureau of Health Statistics and Research, Department 

of Health, Pennsylvania for years 2010 to 2020. Inclusion criteria for the birth records data were 

as follows: 

i. Child Date of Birth between Jan 1, 2010, and Dec 31, 2020 

ii. Maternal residence within the eight Southwest PA counties (Allegheny, Armstrong, 

Beaver, Butler, Fayette, Greene, Washington, Westmoreland) 

Exclusion criteria for the birth records data were as follows: 

i. Multiple births (non-singleton births) 
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ii. Stillbirth 

iii. Birth weight < 500g 

iv. Gestational age < 22 weeks 

All clinical and demographic features of the neonate and mother were treated as 

categorical.  

Neonate sex had two levels: male and female.  

Neonate’s date of birth was used to calculate the season of birth for the neonate: Spring 

(March, April, May), Summer (June, July, August), Autumn (September, October, November) and 

Winter (December, January, February). 

Mother’s residential county had eight levels: Allegheny, Armstrong, Beaver, Butler, 

Fayette, Greene, Washington, and Westmoreland. The counties with less than 5% frequency 

(Fayette, Armstrong, and Greene) were combined as “Other”. 

Mother’s education had eight levels: 8th grade or less, 9th-12th grade/No diploma, High 

school graduate/GED completed, Some college credit but not a degree, Associate degree, 

Bachelor's degree, Master's degree, and Doctorate/Professional degree. Mother’s education 

categories were collapsed into five levels: Less than HS, HS/GED/Some college, Associate degree, 

Bachelor’s degree, and Graduate/Professional degree. 

Mother’s age was a continuous variable. It was categorized into six levels: <20, 20-24, 25-

29, 30-34, 35-39 and 40+. 

Mother’s race had 15 levels: White, Black/African American, American Indian/Alaska 

Native, Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian, Native 

Hawaiian, Guamanian/Chamorro, Samoan, Other Pacific Islander, Other. Mother’s race categories 

were collapsed into five levels: White, Black/African American, American Indian/Alaska Native, 
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Asian/PI and Other. However, due to frequency less than 5%, these categories were further lumped 

into 3 categories: White, Black/African American and Other. 

Mothers’ height and pre-pregnancy weight were used to calculate pre-pregnancy Body 

Mass index (BMI). It was then categorized into four levels: Underweight (<18.5), Normal (18.5-

24.9), Overweight (25-29.9) and Obese (30 and above). 

Mother’s receipt of WIC services, which is a surrogate for low family socioeconomic 

status, had two levels: yes and no. 

Mother’s diagnosis of gestational diabetes, which is a risk factor in this pregnancy, had two 

levels: yes and no. 

Mother’s smoking status prior to pregnancy and during the three trimesters were 

dichotomized into yes and no. Smoking status during the three trimesters were combined to create 

a new smoking variable. The combinations with less than 5% frequency were lumped resulting in 

a total of 3 categories: Yes-Yes-Yes, No-No-No and Other. However, to use both smoking prior 

to pregnancy and the combined smoking variable during the three trimesters was redundant, as 

they followed similar distribution. Hence, only smoking prior to pregnancy was used for analysis. 

Mother’s previous live births had 14 levels: 0-14. Because of the low frequency of some 

of the levels, lumping was used to create five levels: 0, 1, 2, 3 and Other. 

The total number of prenatal visits for mother was a continuous variable. It was used to 

represent mother’s access to prenatal care and was categorized into three levels: 0-10, 10-20 and 

20+.  

For each child, the period of gestation was calculated using the child’s date of birth and 

obstetric estimate of gestation (in weeks). 
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2.1.2 Exposure Data 

The environmental exposure data were obtained from the Air Quality System (AQS) data 

provided by the United States Environmental Protection Agency (US EPA). 

The data for each of the pollutants - Carbon monoxide (CO), Nitrogen dioxide (NO2), 

Particulate Matter (PM2.5), Ozone (O3) and Sulfur dioxide (SO2) - from the year 2009-2020 was 

downloaded from the EPA website and were filtered to include the eight southwestern PA counties. 

O3 and CO were measured in parts per million (ppm), SO2 and NO2 were measured in parts per 

billion (ppb) and PM2.5 was measured in micrograms per cubic meter (µg/m3). To calculate 

mother’s mean exposure to pollutants, all the active monitor sites during the mother’s gestation 

period were identified. Then, the distances between mother's residence and the active monitors 

were calculated using geocoded latitudes and longitudes to identify the nearest monitor. Further, 

all the daily average concentrations during the mother’s gestation period for the particular pollutant 

were extracted based on the nearest monitor’s records and the mean was calculated. This mean 

concentration was assigned as mother’s mean exposure to pollutants during the gestation period. 

The mean and median exposures were highly correlated, so only the mean exposure was used for 

analysis. 

The maps with active EPA monitor sites within each of the eight southwest Allegheny 

counties for CO, NO2, O3, PM2.5 and SO2 are shown in Figure 2. The maps were made using R’s 

ggmap library. 
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Figure 2 Map plots for EPA monitor sites 
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2.1.3 Outcome and covariates 

Outcome: Based on obstetric estimate of gestation, preterm births was classified as “yes” 

for births occurring at < 37 weeks of gestation and “no” for births occurring at >= 37 weeks of 

gestation.  

Covariates: Variables that were utilized for analysis were as follows: 

i. Clinical and demographic features of the neonate and mother: Neonate sex, season of 

neonate birth, mother’s residential county, mother’s education, mother’s age, 

mother’s race, mother’s receipt of WIC services, mother’s diagnosis of gestational 

diabetes, smoking prior to pregnancy, number of previous live births for mother, 

number of prenatal visits. 

ii. Environmental exposures: Mother’s mean exposure to air pollutants (CO, NO2, O3, 

PM2.5 and SO2) in mother’s geocoded areas of residence during the mother’s 

gestation period. 

2.1.4 Data preprocessing 

The data was then assessed for missing value. There were 1,932 records with missing 

values for preterm births. These records were excluded from the study. The data was filtered to 

include only those births where mother’s residential latitude and longitude were known. 8,153 

records with missing values for latitude and longitude were dropped. Missing data visualization 

for the data after preprocessing is shown in Figure 3. 
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Figure 3 Missing Data Visualization 

 

As seen in Figure 3, BMI had about 28% of missing data, because of which BMI was 

dropped from the set of predictor variables. The missingness for other variables did not seem 

concerning and were be assumed to be missing completely at random. These observations with 

missing values were dropped from the analysis.  
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2.2 Analysis section 

2.2.1 Exploratory Data Analysis 

The categorical and continuous predictor variables by preterm births were explored using 

bar plots and frequency polygons respectively. To further understand the categorical variables, an 

Empirical Bayes exploration was carried out. 

2.2.1.1 Empirical Bayes Approach 

Before predictive modeling, Empirical Bayes was used to explore the categorical variables 

of the data. The unique possible combinations of all the categories were used to represent the 

groups. Empirical Bayes can only be used when there are a large number of groups and since there 

were 40,715 groups, the use of Empirical Bayes was valid. 

For each group, the number of preterm births and total births were summarized, and 

proportion of preterm births was calculated. This proportion is the Maximum Likelihood Estimate 

(MLE) for the event probability. There were many groups for which the total number of births 

were very low. For instance, there were 20,280 groups which had one total birth. To get a better 

estimate, these noisy data were removed, and only groups with at least 50 births were selected to 

craft the informative prior. The cutoff point was selected such that it prevented small sample sizes 

from yielding unreliable estimates, but still allowed a variety in the value of MLEs. There were 

568 groups with at least 50 births in the data. The estimated beta prior is shown by the red line in 

Figure 4. 
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Figure 4 Informative prior for all groups with at least 50 births 

 

It can be seen from Figure 4 that the prior is preventing high event probabilities. The other 

finding is that there appears to be two modes, one near 0 and the other near 0.25. The distribution 

of the event probability for all groups with at least 50 births could be a mixture of betas. However, 

just for exploration purposes, the empirical Bayes beta prior was applied to the beta-binomial 

likelihood for all groups. Each group had a beta distribution as the posterior. The distribution of 

the posterior means across groups is shown in Figure 5. Three modes are depicted in Figure 5, first 

one is less than 5%, the second one is near 7%, and the third one is a little above 10%. The posterior 

mean distribution in Figure 5 displays that a small number of groups have rather high posterior 

means with values above 15%. 
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Figure 5 Distribution of posterior means for all groups with at least 50 births 

 

Finally, the distribution of the posterior means conditioned on the individual categorical 

variables was plotted to see which variable was associated with higher posterior means. 

2.2.2 Train Test Split 

Data splitting helps us understand how well the model generalizes to unseen or future data. 

A training set is used in the model building process, in which the features are used to train a model 

that accurately predicts the outcome. After a model is selected from the training set, a testing set 

is used to evaluate unbiased model performance.  

After data preprocessing and exploration, the dataset was split into training and testing sets. 

Some of the commonly used train-test split include splitting the data in the ratio 60-40, 70-30 or 
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80-20. While choosing the split, if too much data are used to train (e.g., more than 80%), the model 

would fit the training data very well but would not generalize well to the other data. This leads to 

overfitting. On the other hand, if too much data are used to test (e.g., more than 40%), we would 

not get a good assessment of model parameters (Boehmke et al., 2020). Additionally, if too much 

data are used to test at the expense of training set, we are evaluating a model that did not reach its 

full learning capacity because of the lack of data in the training dataset. Therefore, an optimal 

selection of train-test split is vital to learning from the data. For this analysis, a train-test split in 

the ratio of 70-30 was used. 

2.2.2.1 Resampling and sub-sampling methods 

The outcome variable in the dataset, preterm births, was heavily imbalanced. In both the 

training and testing sets, the proportion of term birth and preterm birth were about 0.927 and 0.07 

respectively. Imbalanced dataset poses great challenge on model performance because it 

introduces a prediction bias for the abundant class (Leevy et al., 2018). To handle imbalanced data, 

down-sampling technique was utilized. Down-sampling reduces the size of the more frequent class 

to match the occurrence of the less frequent class. As a result, the two outcome classes are balanced 

on the dataset. Down-sampling was performed on the training set before building the models using 

R’s ROSE package. 

Down-sampling was used in this analysis for two main reasons:  

i. The dataset was huge containing 11,004 preterm births i.e., there was sufficient data 

for the analysis (Boehmke et al., 2020). 

ii. Down-sampling greatly reduced the computation time compared to other sub-

sampling methods like Synthetic Minority Oversampling Technique. 
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The resampling method utilized while training the models was k-fold cross validation. k-

fold cross-validation divides the training set into k folds of roughly same size, such that the model 

is trained on k-1 folds and evaluated on the last remaining fold. The process is repeated k times 

and each time, a different fold is used to assess the model performance. This results in k 

performance values, which are then averaged to compute the overall model behavior (Boehmke et 

al., 2020). 

In this analysis, a repeated cross validation with 5-folds and 3 repeats was utilized using 

R’s caret package. This method performs a 5-fold cross-validation on the training data 3 times, 

and for each cross-validation, a different set of folds is utilized. Because of this, a repeated cross-

validation helps to improve the estimates of the model performance.  

2.2.3 Classification model: Elastic Net 

Elastic Net is a regularization technique that combines the penalties from the ridge and 

lasso (least absolute shrinkage and selection operator) regression. The goal for a regularized 

regression model is to minimize the Sum of Squared Errors (similar to Ordinary Least Squares), 

in addition to a penalty term P.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑆𝑆𝐸 + 𝑃)                                                      (Eq 1) 

The penalty parameter constrains the size of coefficients, and the coefficients can increase 

only when there is a comparable decrease in the value of SSE (Boehmke et al., 2020). 

Ridge regression pushes the correlated features towards one another and shrinks the 

coefficient estimates for the less important features to approximately zero. However, it does not 

perform feature selection, meaning it will still retain all the original features in the model. Lasso 
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overcomes this limitation by shrinking the coefficient estimates for the less important features to 

exactly zero, thus conducting automated feature selection. 

Elastic Net takes the best of both worlds such that it provides with ridge penalty’s effective 

regularization (especially for correlated features) and lasso penalty’s feature selection 

characteristics.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑆𝑆𝐸 +  𝜆1 ∑ 𝛽𝑗
2𝑝

𝑗=1 +  𝜆2 ∑ |𝛽𝑗|)𝑝
𝑗=1                                     (Eq 2) 

𝛽𝑗  represents coefficient estimate for the jth feature and p represents the total number of 

features. The first penalty term in the above equation comes from the ridge regression, known as 

L2-regularization, which penalizes the sum of squares of the estimates. The second penalty term 

comes from lasso, known as L1-regularization, which penalizes the sum of absolute values of the 

estimates. Lambda (𝜆) is a shrinkage parameter that controls the penalties. For instance, when 

lambda is sufficiently large, coefficients are shrunk strongly which forces some coefficients to be 

exactly zero in lasso (James et al., 2021).  

R caret’s glmnet method was used to perform this analysis. Alpha (α) is an argument in 

glmnet method which when set to 0 indicates a ridge regression model and when set to 1 indicates 

a lasso model. A tuning grid with alpha 0.1, 0.2, 0.3, 04 and lambda as a sequence of exponent of 

21 numbers from -6 to 1 was used to tune the parameters - alpha and lambda. The model identified 

best parameters as alpha of 0.2 and lambda of 0.003517517. 

2.2.4 Classification model: Support Vector Machine (SVM) 

Support Vector Machine in binary classification is based on the fundamental idea of finding 

a hyperplane that best divides the data into the two classes/categories. Terminologies to better 

understand the SVM algorithm are listed as follows: 
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i. Support Vectors: The data points closest to the hyperplane in both the classes 

ii. Margin: The distance between the hyperplane and the support vectors 

iii. Hyperplane: A hyperplane is defined as  

 𝑓(𝑋) =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 = 0                                               (Eq 3) 

This linear equation defines hyperplane in p-dimensional feature space. 𝛽0 represents the 

intercept, 𝛽1 represents the coefficient for X1 and 𝛽𝑝 represents the coefficient for Xp. 

When p=2, the hyperplane is a line in 2-D space. When p=3, the hyperplane is a plane in 

3-D space.  

The optimal hyperplane is the one for which the margin is maximized. However, with real-

world data, it might not always be feasible to find a hyperplane that accurately separates the classes 

using the original features. SVM overcomes this obstacle by mapping the original feature space or 

non-linear data into a higher dimension space so that data can be linearly divided by a plane. This 

is called the kernel trick. In the enlarged or kernel-induced feature space, SVM then finds a 

hyperplane to separate the classes. The decision boundary from the enlarged feature space is then 

projected back to the original feature space.  

SVM uses kernel functions like d-th degree polynomial, radial basis function, hyperbolic 

tangent to enlarge the feature space. For this analysis, radial basis function was used because of its 

high flexibility. 

𝐾(𝑥, 𝑥′) = exp (𝛾||𝑥 − 𝑥′||2)                                                         (Eq 4) 

The parameters for a SVM Radial Basis Function (RBF) kernel are C and gamma. The 

gamma parameter is related to the inverse of the sigma parameter of a normal distribution 

(Boehmke et al., 2020). Gamma defines the curvature in the decision boundary. For instance, when 
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gamma is low, the decision surface is very broad. The parameter C penalizes misclassification of 

a data point against the simplicity of decision surface. A lower C value means that the model is 

fine with misclassified data points, whereas a higher C value means the model aims to classify all 

data points correctly (Support Vector Machines, n.d.). 

SVM was implemented using R’s caret package. The default parameters selected by the 

model were sigma of 0.01330383 and C of 0.25.  

2.2.5 Classification model: Random Forest (RF) 

Random forest builds on the principles of decision tress and bagging. Bagging aggregates 

the predictions across all the decision trees built on bootstrapped copies of the training data, but 

random forest takes it a step further and performs split-variable randomization. This means, for 

every split or node of the decision tree, a random subset of mtry of original p features is utilized. 

The typical default value used for mtry in classification is √p. This introduces more randomness 

into the tree building process and helps to reduce tree correlation, which is a limitation of the 

bagging method (Boehmke et al., 2020).  

Random forest uses Gini index for splitting the nodes of the decision tree. For any 

classification problem, Gini index of a node (n) is given as 

𝐺𝑖𝑛𝑖(𝑛) = 1 −  ∑ (𝑝𝑗)2𝑐
𝑗=1                                                    (Eq 5) 

where c is the number of classes (c=2 for a binary classification) and pj is the relative 

frequency of the class being observed for that node n. The higher the decrease in Gini score, the 

higher is the importance of the variable in dividing the data into two classes (Sarica et al., 2017). 
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The increasing popularity of Random Forests is due to its decent out-of-the-box 

performance (Boehmke et al., 2020), which is why only the default tuning parameters were used 

for this analysis.  Random Forest was implemented using R’s caret package.  

2.2.6 Performance metrics 

Accuracy as a performance metric is not always adequate. For instance, when the number 

of non-events is much higher than the number of events (Kubat et al., 1998). The metrics that were 

used to compare the performance of the models in both training and testing sets were sensitivity 

and specificity and AUC (Area Under the Curve). In addition, accuracy was also compared for the 

model performance on testing sets. 

For a 2-class classification model, performance metrics are based on the confusion matrix, 

which is shown as follows: 

 

Confusion Matrix Predicted Class 

True Class Event Non-event 

Event True Positive (TP) False Negative (FN) 

Non-event False Positive (FP) True Negative (TN) 

 

Sensitivity (True Positive Rate) is the proportion of events (preterm births) that are 

correctly identified. 

Sensitivity = TP / (TP+FN) 

Specificity (True Negative Rate) is the proportion of non-events (term births) that are 

correctly identified. 
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Specificity = TN / (FP+TN) 

AUC is the area under the Receiver Operating Characteristic (ROC) curve which plots 

sensitivity (True Positive Rate) along the Y-axis and 1-specificity (False Positive Rate) along the 

X-axis. It represents the diagnostic ability of the classifier to distinguish between the two outcome 

classes. AUC value lies between 0.5 to 1, and higher the AUC, the better the performance of the 

model in distinguishing these two classes. 

Accuracy is the proportion of correct predictions made by the classifier. 

Accuracy = (TP+TN) / (TP+FN+FP+TN) 

The metric “ROC” was used in the caret package to assess performance of the models in 

both training and testing datasets.  
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3.0 Results 

Analysis results are presented in two sub-sections. Section 3.1 includes a brief 

characterization of the study cohort with visualizations for distribution of categorical and 

continuous variables by preterm birth. Section 3.2 contains subsections with results from the 

Empirical Bayes exploration and supervised machine learning models on the training and testing 

datasets.   

3.1 Descriptive Statistics 

Descriptive outcome and covariate statistics for the study population of 221,060 births are 

included Table 1 (for categorical covariates) and Table 2 (for continuous covariates). 

The distribution of preterm birth and term birth looks similar for majority of the categorical 

covariates, i.e., ~93% term births and ~7% preterm births in the dataset. However, the proportion 

of preterm births is comparatively higher for some of the levels within the categorical covariates. 

For instance, mothers with more than three previous live births, mothers with less than HS 

education, mothers who are 40 years or older, Black or African American mothers, mothers who 

had gestational diabetes and mothers who smoked prior to pregnancy have higher proportion of 

preterm births than the dataset. The most striking difference though, is for mothers who had 0-10 

prenatal visits. This level had 18.4% preterm births which is much higher than the other categories 

and their levels. This information is visually depicted in Figure 6. The distribution of preterm birth 
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and term birth for each of the mean pollutant exposure seem to be similar for most parts. This can 

be seen in Figure 7. 

 

Table 1  Descriptive outcome and categorical covariate statistics 

Categorical covariates Levels Preterm births 

N (%) 

Term births 

N (%) 

Number of previous 

live births 

 

 00 7017 (7.4%) 87958 (92.6%) 

01 4591 (6.1%) 70178 (93.9%) 

02 2422 (7.4%) 30179 (92.6%) 

03 1038 (8.9%) 10584 (91.1%) 

Other 807 (11.4%) 6286 (88.6%) 

Mother’s education  

 Associate degree 1782 (7.6%) 21808 (92.4%) 

Bachelor's degree 3315 (5.7%) 55195 (94.3%) 

Graduate/Professional Degree 2309 (5.6%) 38843 (94.4%) 

HS/GED/Some college 6931 (8.4%) 75511 (91.6%) 

Less than HS 1538 (10.0%) 13828 (90.0%) 

Mother’s age  

 <20 864 (8.8%) 8943 (91.2%) 

20-24 2951 (7.9%) 34618 (92.1%) 

25-29 4371 (6.7%) 60481 (93.3%) 

30-34 4685 (6.5%) 67167 (93.5%) 

35-39 2421 (7.8%) 28737 (92.2%) 

40+ 583 (10.0%) 5239 (90.0%) 

Mother’s race  

 Black or African American 3130 (10.7%) 25992 (89.3%) 

White 11936 (6.6%) 167931 (93.4%) 

Other 809 (6.7%) 11262 (93.3%) 

Mother’s residential 

county 

 

 Allegheny 8934 (7.3%) 113298 (92.7%) 

Beaver 1001 (6.4%) 14596 (93.6%) 

Butler 1024 (6.2%) 15596 (93.8%) 

Washington 1351 (7.1%) 17582 (92.9%) 

Westmoreland 1992 (7.0%) 26276 (93.0%) 

Other 1573 (8.1%) 17837 (91.9%) 

Receipt of WIC 

services 
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Categorical covariates Levels Preterm births 

N (%) 

Term births 

N (%) 

 No 10789 (6.8%) 147921 (93.2%) 

Yes 5086 (8.2%) 57264 (91.8%) 

Number of prenatal 

visits 

 

 0-10 11208 (18.4%) 49800 (81.6%) 

11-20 4354 (2.8%) 150767 (97.2%) 

20+ 313 (6.3%) 4618 (93.7%) 

Gestational diabetes  

 No 14872 (7.1%) 195551 (92.9%) 

Yes 1003 (9.4%) 9634 (90.6%) 

Season of birth  

 Autumn 3842 (7.0%) 51286 (93.0%) 

Spring 4069 (7.3%) 51480 (92.7%) 

Summer 4234 (7.2%) 54839 (92.8%) 

Winter 3730 (7.3%) 47580 (92.7%) 

Neonate sex  

 Female 7177 (6.6%) 100815 (93.4%) 

Male 8698 (7.7%) 104370 (92.3%) 

Smoking prior to 

pregnancy 

 

 No 12090 (6.7%) 169507 (93.3%) 

Yes 3785 (9.6%) 35678 (90.4%) 
 

Table 2 Descriptive outcome and continuous covariate statistics 

Mean Exposure to pollutants 

(ppm) 

Preterm births 

Mean (SD) 

Term births 

Mean (SD) 

Carbon Monoxide 0.32 (0.12) 0.31 (0.11) 

Nitrogen Dioxide 9.43 (3.18) 9.36 (3.22) 

Ozone 0.03 (0.00) 0.03 (0.00) 

Particulate Matter 2.5 10.23 (1.95) 10.13 (1.91) 

Sulfur Dioxide 2.24 (1.89) 2.21 (1.88) 

 

Distribution of categorical variables by preterm births is also shown in Figure 6 as stacked 

bar plots. 
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Figure 6 Distribution of categorical variables by preterm births 
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Distribution of continuous variables by preterm births is shown in Figure 7 as 

histograms/frequency polygons.  

 

 

Figure 7 Distribution of continuous variables by preterm births 
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3.2 Machine Learning Results 

3.2.1 Empirical Bayes to explore the categorical variables 

The distribution of the posterior means conditioned on the individual categorical variables 

is depicted in Figure 8. 

 

Figure 8 Distribution of posterior means for each categorical variable 
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Based on results from Figure 7, the categorical variable Number of Prenatal Visits 

(NOPV)’s 0-10 level is shown to be associated with highest posterior mean values, i.e., highest 

posterior average for the event probability is observed when NOPV = 0-10. Some association can 

also be seen when mother’s residential county is Allegheny. These categorical variables are 

identified by Empirical Bayes as the important variables which are linked to preterm births. It 

would be interesting to see if the predictors identified as important by the classification models 

later in the analysis is synchronous to results from the Empirical Bayes exploration. 

3.2.2 Performance of the models on the training and testing set 

The down-sampled training data were used to build three machine learning classification 

models (Elastic Net, SVM and Random Forest) using a repeated cross validation with 5-folds and 

3 repeats. Then, the trained models were used to evaluate the model performance on the testing set 

using the performance metrices AUC, Sensitivity and Specificity. 

Results from the Elastic Net (GLMNET), SVM and Random Forest on the training set are 

shown in Figures 9 and 10. The visualization from these figures shows that Random Forest 

performed better than GLMNET and SVM in all three aspects of performance. Random Forest had 

the highest AUC value 0.83 compared to the AUC values for GLMNET and SVM, which were 

approximately 0.77 as seen in Figure 9. Then, Figure 10 shows that Random Forest had the highest 

sensitivity (0.767) compared to GLMNET (0.745) and SVM (0.754) and it also had the highest 

specificity (0.744) compared to GLMNET (0.715) and SVM (0.701) in the training dataset. 
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Figure 9 Model performance on the down-sampled training sets (ROC curves) 
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Figure 10 Model performance on the down-sampled training sets (Sensitivity and Specificity) 

 

These three models were then used to predict on the testing dataset. The results of the 

performance metrics on the testing set are shown in Figures 11 and 12. Random Forest seems to 

perform the best compared to SVM and GLMNET in terms of AUC, Sensitivity, Specificity and 

Accuracy. Random Forest had the highest AUC value 0.83 compared to the AUC values for 

GLMNET and SVM as seen in Figure 11. Then, Figure 12 shows that Random Forest also 

performed the best in testing dataset in terms of accuracy, sensitivity and specificity. 
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Figure 11 Model performance on the testing set (ROC curves) 
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Figure 12 Model performance on the testing set (Accuracy, Sensitivity and Specificity) 

 

To assess these important drivers of the response variable, i.e., preterm birth, a variable 

importance plot was created for each model which is shown in Figures 13-15. If multiple models 

rank same variables as important variables, it increases our confidence that those variables are 

indeed important to the prediction of the outcome. The plots in these figures reveal top ten 

predictors which are important to the prediction of preterm birth based on the models.  
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Figure 13 Variable Importance Plot for GLMNET 

 

 

Figure 14 Variable Importance Plot for SVM 
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Figure 15 Variable Importance Plot for RF 

 

GLMET and SVM both depict that number of prenatal visits, mother’s race and education 

as some of the important predictors. Random Forest, on the other hand, shows that mean exposure 

to pollutants are the top important features. However, the caveat with variable importance plot for 

Random Forest is that categorical variables with many levels and continuous variables have much 

more plausible split points and since more of these splits will be utilized while building the decision 

trees, there is a higher chance that the variable would predict the outcome well. However, Random 

Forest model does show that number of prenatal visits is one of the top important features too, 

which is in line with the findings from the other two models. 
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4.0 Discussion 

For this analysis, three classification models: Elastic Net (GLMNET), Support Vector 

machine (SVM) and Random Forest (RF) were evaluated using a 5-fold cross validation technique 

with 3 repeats to identify potential risk factors associated with preterm birth in southwestern PA.  

The pre-processed data contained 221,060 birth records from the year 2010 to 2020 with 16 

predictor variables. Eleven of the predictors were categorical and 5 were continuous. After pre-

processing, an Exploratory Data Analysis (EDA) was carried out to observe the distribution of 

both categorical and continuous variables by preterm births, which is explained in the Results 

section. To further explore the categorical data, an Empirical Bayes exploration was carried out. It 

was found that higher posterior means were associated with mothers who had fewer (0-10) number 

of prenatal visits, and mothers who resided in Allegheny County.  

Next, a subsampling technique called down-sampling was utilized to handle the imbalance 

in the data, since about 93% of the data was labelled term birth and only 7% of the data was 

labelled preterm birth. Down-sampling was applied on the training data and three classification 

methods were used to train the data and build the models. The models utilized were Elastic Net 

(GLMNET), Support Vector Machine (SVM) and Random Forest. Random Forest model 

performed the best on the training data with an AUC of 0.830, sensitivity of 0.767 and specificity 

of 0.744. All three models were used to assess the model performance on the testing data. Random 

Forest performed the best on the testing data as well, with an AUC of 0.832 and sensitivity and 

specificity of 0.757 and 0.766 respectively.  

To identify which variables could have significant roles in the prediction of preterm birth, 

variable importance plots for each of the three models were created. GLMNET and SVM identified 
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number of prenatal visits, mother’s race and education as some of the important predictors. 

Random Forest showed that the mean exposure to pollutants are the top important features, with 

number of prenatal visits being one of the important predictors too. Random Forest also identified 

mother’s residential county Allegheny as a top ten predictor. These results from Random Forest 

align with the results from Empirical Bayes exploration.  

The results from this analysis are consistent with other literature. For instance, a study 

published on the American Journal of Obstetrics and Gynecology concluded that lack of prenatal 

care increased the relative risk for preterm birth by 2.8-fold in both African-American and white 

women (Vintzileos et al., 2002). Association between mother’s education with preterm birth, as 

seen from the GLMNET and SVM models, is also consistent with findings from an Italian 

population-based study which reported that mothers with higher educational attainment had 

reduced odds (Odds Ratio = 0.81) of preterm births compared to less-educated mothers (Cantarutti 

et al., 2017). Similarly, a systematic review with meta-analysis reported that there is a positive 

association for the risk of preterm birth based on mother’s race, with black women being at a 

higher risk of having preterm deliveries compared to non-black women (Oliveira et al., 2018). This 

is consistent with association that is seen between mother’s race and preterm birth in this study 

from the GLMNET and SVM models. Lastly, even though Random Forest identified mean 

exposure to pollutants as some of the important predictors, further analysis is required to be certain 

of this finding because of the bias introduced by continuous variables in variable importance plot 

for Random Forest as discussed earlier in the Results section. 

One of the limitations of this study is the interpretability of the models. Random Forest 

was selected as the best performing model on both the training and testing dataset; however, it is 

not possible to present the resulting model using a single decision tree. Therefore, even though the 
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Random Forest model performed the best, its interpretation is difficult (James et al., 2021). The 

other limitation is the bias in the variable importance plot for Random Forest. To overcome this 

drawback, one possible future iteration would be to identify response behavior associated with the 

top important features using a partial dependence plot. It helps us study predictive trends by 

understanding the marginal effect of any predictor variable on the predicted outcome variable 

(Boehmke et al., 2020).  

Another possible future study based on this analysis would to be to further explore the 

categorical variable, Number of Prenatal Visits (NOPV), which was used to represent mother’s 

access to prenatal care in the study. This variable was seen to be associated with preterm birth in 

all the three classification models and Empirical Bayes exploration. Identifying what it means 

when a mother does not have access to prenatal care in terms of socio-economic conditions, or 

demographic variables like mother’s race or mother’s residential county could help us further 

explore this question. We could try to see if the influence of environmental variables depends on 

socio-economic factors, while controlling for access to prenatal care. A better understanding of the 

predictors that might significantly contribute to preterm birth will help us target interventions to 

mothers and children in need in a timely manner, ultimately reducing the burden of preterm birth.  
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Appendix A Analysis Script: R Markdown 

--- 

title: "Pre-Processing Code for Thesis" 

output: html_document 

--- 

 

```{r setup, include=FALSE, warning=FALSE} 

knitr::opts_chunk$set(echo = FALSE) 

``` 

 

```{r} 

# install packages 

 

install.packages("RMariaDB") 

install.packages("tidyverse") 

``` 

 

```{r} 

# required libraries 

 

library(RMariaDB) 

library(tidyverse) 

library(naniar) 

``` 

 

```{r} 

#connect MySQL Workbench to R 

 

con <- dbConnect(RMariaDB::MariaDB(), 

       default.file  = "C:/Users/sap196/.my.ini", 

       group = "fracking-group") 

dbListTables(con) 

``` 

 

```{r} 

# pull specific data from a specific table 

statement <- 'select * from birth_data_Combined where momresstate = "Pennsylvania"' 

 

# option 1 

birth_data_Combined <- dbSendQuery(conn = con, statement = statement) 

#dbFetch(birth_data_Combined) 
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# option 2 

#dbGetQuery(conn = con, statement = statement) 

 

## assign data to an object 

birth_data_Combined <- dbGetQuery(conn = con, statement = statement) 

str(birth_data_Combined) 

head(birth_data_Combined) 

``` 

 

```{r} 

# create a new dataset called birth_data to explore the input and output variables of interest 

 

birth_data <- birth_data_Combined 

``` 

 

```{r} 

write_rds(birth_data, 'birth_data.rds') 

``` 

 

```{r} 

# read in the data 

birth_data <- read_rds('birth_data.rds') 

``` 

 

```{r} 

# filtering for multiple births 

birth_data <- birth_data %>% filter(PLURAL==1) 

 

# filtering for birth weight and gestational age 

birth_data <- birth_data %>% filter(!LOP < 22) 

birth_data <- birth_data %>% filter(!BWEIGHT < 500) 

 

 

# selecting only the 8 counties 

birth_data$momrescounty = tolower(birth_data$momrescounty) 

birth_data <- birth_data %>% filter(momrescounty %in% c('allegheny', 

'armstrong','beaver','butler','fayette','greene','washington','westmoreland')) 

 

``` 

 

## Preterm births 

 

Any records with missing values for preterm births are excluded from the study. 

 

```{r} 

# create a new column with dichotomous outcome: preterm birth (yes/no) 
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birth_data <- birth_data %>% replace_with_na(replace = list(LOP = '99')) 

 

 

birth_data <- birth_data %>% mutate(preterm_2 = ifelse(LOP < 37, "yes", "no")) 

birth_data %>% count(preterm_2) 

birth_data <- birth_data %>% drop_na(preterm_2) 

``` 

 

## Neonate sex 

 

```{r} 

# replace U's with NAs 

 

table(birth_data$SEX) 

 

birth_data <- birth_data %>% replace_with_na(replace = list(SEX = c("U"))) 

``` 

 

## Season of birth 

 

```{r} 

# Spring (March–April–May), Summer (June–July–August), Autumn (September–October–

November) and Winter (December–January–February) 

 

birth_data$dob_month <- substr(birth_data$Child_DOB, 6, 7) 

 

birth_data <- birth_data %>% mutate(season = case_when((dob_month == '12') | (dob_month == 

'01') | (dob_month == '02') ~ 'Winter', 

                                                       (dob_month == '03') | (dob_month == '04') | (dob_month == 

'05') ~ 'Spring', 

                                                       (dob_month == '06') | (dob_month == '07') | (dob_month == 

'08') ~ 'Summer', 

                                                       (dob_month == '09') | (dob_month == '10') | (dob_month == 

'11') ~ 'Autumn')) 

 

``` 

 

 

# Maternal Factors 

 

## Mother's education 

 

```{r} 

# replace 9s with NAs 

birth_data <- birth_data %>% replace_with_na(replace = list(MOTHEDU=9)) 
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birth_data <- birth_data %>% mutate(mom_edu=case_when(MOTHEDU == 1~ "8th grade or 

less", 

                                                      MOTHEDU == 2~ "9th - 12th grade; No diploma", 

                                                      MOTHEDU == 3~ "High school graduate or GED completed", 

                                                      MOTHEDU == 4~ "Some college credit, but not a degree", 

                                                      MOTHEDU == 5~ "Associate degree", 

                                                      MOTHEDU == 6~ "Bachelor's degree", 

                                                      MOTHEDU == 7~ "Master's degree", 

                                                      MOTHEDU == 8~ "Doctorate or Professional degree")) 

 

# collapsing into fewer categories 

birth_data <- birth_data %>% mutate(mom_edu_collapsed =case_when((MOTHEDU == 1) | 

(MOTHEDU == 2) ~ "Less than HS", 

                                                      (MOTHEDU == 3) | (MOTHEDU == 4)~ "HS/GED/Some 

college", 

                                                      MOTHEDU == 5~ "Associate degree", 

                                                      MOTHEDU == 6~ "Bachelor's degree", 

                                                      (MOTHEDU == 7) | (MOTHEDU == 8)~ 

"Graduate/Professional Degree")) 

 

``` 

 

## Mother's age 

 

```{r} 

# replace 99s with NAs 

birth_data <- birth_data %>% replace_with_na(replace = list(MOTHAGE=99)) 

 

# categorize maternal age 

birth_data <- birth_data %>% mutate(momAge = case_when((MOTHAGE < 20) ~ '<20', 

                                                              (MOTHAGE >= 20) & (MOTHAGE <= 24) ~ '20-24', 

                                                              (MOTHAGE >= 25) & (MOTHAGE <= 29) ~ '25-29', 

                                                              (MOTHAGE >= 30) & (MOTHAGE <= 34) ~ '30-34', 

                                                              (MOTHAGE >= 35) & (MOTHAGE <= 39) ~ '35-39', 

                                                              (MOTHAGE >= 40) ~ '40+')) 

``` 

 

## Mother's race 

 

```{r} 

table(birth_data$momRace) 

``` 

 

```{r} 

birth_data <- birth_data %>% mutate(momRace = case_when(MOTHRACE == 1 ~ "White", 
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                                                        MOTHRACE == 2 ~ "Black or African American", 

                                                        MOTHRACE == 3 ~ "American Indian or Alaska Native", 

                                                        MOTHRACE == 4 | MOTHRACE == 5| MOTHRACE == 6 | 

MOTHRACE == 7| MOTHRACE == 8| MOTHRACE == 9| MOTHRACE == 10| MOTHRACE 

== 11 | MOTHRACE == 12 | MOTHRACE == 13 | MOTHRACE == 14 ~ "Asian/PI", 

                                                        MOTHRACE == 15 ~ "Other")) 

 

``` 

 

## Pre-pregnancy body mass index 

 

```{r} 

birth_data$MPPWGT <- as.numeric(birth_data$MPPWGT) 

birth_data$momhtFeet <- as.numeric(birth_data$momhtFeet) 

birth_data$momhtInches <- as.numeric(birth_data$momhtInches) 

 

birth_data <- birth_data %>% replace_with_na(replace = list(momhtFeet=9, momhtInches=99, 

MPPWGT=999)) 

 

# change height to meters and weight to kg 

birth_data$momhtMeters <- (birth_data$momhtFeet * 0.3048) + (birth_data$momhtInches * 

0.0254) 

birth_data$momweightKg <- birth_data$MPPWGT * 0.453592 

 

birth_data$BMI <- ((birth_data$momweightKg)/(birth_data$momhtMeters^2)) 

 

``` 

 

## BMI class 

 

I categorized BMI into following classes: 

 

1. BMI < 18. -> 'Underweight' 

2. BMI >= 18.5 & BMI <= 24.9 -> 'Normal' 

3. BMI >= 25.0 & BMI <= 29.9 -> 'Overweight' 

4. BMI >= 30.0 -> 'Obese' 

 

```{r} 

birth_data <- birth_data %>% mutate(BMI_class = case_when((BMI < 18.5)  ~ 'Underweight', 

                                                          (BMI >= 18.5) & (BMI <= 24.9) ~ 'Normal', 

                                                          (BMI >= 25.0) & (BMI <= 29.9) ~ 'Overweight', 

                                                          (BMI >= 30.0) ~ 'Obese')) 

``` 

 

## Smoking status during pregnancy 
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Number of cigarettes smoked three months prior, and during the first, second, and third trimesters. 

I dichotomized the smoking variables as yes/no for each of these categories. 

 

```{r} 

# no. of cigarettes smoked three months prior 

 

# replace 99s with NAs 

birth_data <- birth_data %>% replace_with_na(replace = list(SMKPR=99))   

 

# categorize smoking 3 months prior as Yes/No 

 

birth_data <- birth_data %>% mutate(SMKPR_YN = case_when(SMKPR == 0 ~ 'No', 

                                           SMKPR > 0 ~ 'Yes')) 

 

``` 

 

```{r} 

# no. of cigarettes smoked first three months 

 

# replace 99s with NAs 

birth_data <- birth_data %>% replace_with_na(replace = list(SMKFTM=99)) 

 

# categorize smoking in 1st trimester as Yes/No 

 

birth_data <- birth_data %>% mutate(SMKFTM_YN = case_when(SMKFTM == 0 ~ 'No', 

                                           SMKFTM > 0 ~ 'Yes')) 

``` 

 

```{r} 

# no. of cigarettes smoked second three months 

 

# replace 99s with NAs 

birth_data <- birth_data %>% replace_with_na(replace = list(SMKSTM=99)) 

 

# categorize smoking in 2nd trimester as Yes/No 

 

birth_data <- birth_data %>% mutate(SMKSTM_YN = case_when(SMKSTM == 0 ~ 'No', 

                                           SMKSTM > 0 ~ 'Yes')) 

 

``` 

 

```{r} 

# no. of cigarettes smoked last three months 

 

# replace 99s with NAs 
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birth_data <- birth_data %>% replace_with_na(replace = list(SMKLTM=99)) # there were 3053 

NAs 

 

birth_data %>% ggplot(aes(x=SMKLTM)) + geom_bar() 

 

# categorize smoking in 3rd trimester as Yes/No 

 

birth_data <- birth_data %>% mutate(SMKLTM_YN = case_when(SMKLTM == 0 ~ 'No', 

                                           SMKLTM > 0 ~ 'Yes')) 

``` 

 

## Checking correlation between the smoking variable 

 

```{r} 

birth_data %>% count(SMKFTM_YN, SMKSTM_YN, SMKLTM_YN) %>% drop_na() 

``` 

 

Looks like the variables are related, since the Yes results and the No results are lined up. 

 

```{r} 

# create categories based on unique combinations of smoking Yes/No 

 

birth_data <- birth_data %>% unite(SMK_comb, c(SMKFTM_YN, SMKSTM_YN, 

SMKLTM_YN), sep = ",", remove=FALSE) 

``` 

 

## Total number of prenatal visits (NOPV) 

 

```{r} 

# replace 99s and 88s with NAs 

birth_data <- birth_data %>% replace_with_na(replace = list(NOPV=c(99,88))) 

``` 

 

## Receipt of WIC services (a surrogate for low family socioeconomic status) 

 

```{r} 

# replace X's or U's with NAs 

birth_data <- birth_data %>% replace_with_na(replace = list(MWIC = c("X","U"))) 

``` 

 

## Categorize NOPV based on literature 

 

"Based on a prior study by Buekens that found the median number of PNV in the United States 

was 11" 
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(Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4767570/ and Buekens P, Kotelchuck 

M, Blondel B, Kristensen FB, Chen JH, Masuy-Stroobant G. A comparison of prenatal care use in 

the United States and Europe. American Journal of Public Health. 1993;83(1):31–6.) 

 

In this data set, mean Number of Prenatal visits is 11.95 ~ 12 and the median is 13. 

 

```{r} 

birth_data %>% select(NOPV) %>% summarize(mean=mean(NOPV, na.rm=T), 

                                          median=median(NOPV, na.rm=T)) 

``` 

 

 

```{r} 

# creating categories 

birth_data <- mutate(birth_data, NOPV_c = case_when(NOPV <= 10 ~ '0-10', 

                                        (NOPV >= 11) & (NOPV <= 20) ~ '11-20', 

                                        (NOPV >= 21)~ '20+')) 

 

``` 

 

```{r} 

# calculate the time the child was in womb (Start date and end date) 

 

birth_data$wombStart <- birth_data$Child_DOB - birth_data$LOP*7 

``` 

 

 

```{r} 

# select required columns 

 

birth_data <- birth_data %>% select(Birth_ID, Child_DOB, SEX, momrescounty, MWIC, 

R2,LBIRTH, DERIVED_lat, DERIVED_long, preterm_2, season, mom_edu_collapsed, 

momAge, momRace, BMI_class, SMKPR_YN, SMK_comb, NOPV_c, wombStart) 

``` 

 

```{r} 

glimpse(birth_data) 

``` 

 

```{r} 

# save it as a rds file 

write_rds(birth_data, 'birth_data_1.rds') 

``` 

--- 

title: "Air Data Code for Thesis" 

output: html_document 
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--- 

 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 

``` 

 

## Read in finalized birth data 

 

```{r} 

library(tidyverse) 

library(readxl) 

library(geosphere) 

``` 

 

# Read in files from 2009-2020 for ozone 

 

```{r message=FALSE, warning=FALSE, comment=""} 

 

rm(list=ls()) 

 

# set the working directory to where the excel files are 

 

setwd("C:/Users/sap196/Desktop/EPA Data/Ozone_excel_files") 

 

 

# list files with .csv as the extension 

my_files <- list.files(pattern="*.csv") 

 

ozone <- lapply(my_files, function(i){ 

  x = read_csv(i) 

  x$file=i 

  x 

}) 

 

 

ozone =do.call("rbind.data.frame",ozone) 

 

ozone_data <- ozone 

 

``` 

 

```{r} 

ozone_data <- ozone_data %>% filter(`State Name` == "Pennsylvania") 

``` 

 

```{r} 
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write_rds(ozone_data, 'ozone.rds') 

``` 

 

# SO2 

# Read in files from 2009-2020 for SO2 

 

```{r message=FALSE, warning=FALSE, comment=""} 

 

rm(list=ls()) 

 

# set the working directory to where the excel files are 

 

setwd("C:/Users/sap196/Desktop/MS 2022/EPA Data/SO2_excel_files") 

 

 

# list files with .csv as the extension 

my_files <- list.files(pattern="*.csv") 

 

so2 <- lapply(my_files, function(i){ 

  x = read_csv(i) 

  x$file=i 

  x 

}) 

 

 

#comb[[4]] 

so2 =do.call("rbind.data.frame",so2) 

 

so2_data <- so2 

 

``` 

 

```{r} 

so2_data <- so2_data %>% filter(`State Name` == "Pennsylvania") 

``` 

 

```{r} 

write_rds(so2_data, 'so2.rds') 

``` 

 

# NO2 

# Read in files from 2009-2020 for NO2 

 

```{r message=FALSE, warning=FALSE, comment=""} 

 

rm(list=ls()) 
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# set the working directory to where your excel files are 

 

setwd("C:/Users/sap196/Desktop/MS 2022/EPA Data/NO2_excel_files") 

 

 

# list files with .csv as the extension 

my_files <- list.files(pattern="*.csv") 

 

no2 <- lapply(my_files, function(i){ 

  x = read_csv(i) 

  x$file=i 

  x 

}) 

 

 

#comb[[4]] 

no2 =do.call("rbind.data.frame",no2) 

 

no2_data <- no2 

 

``` 

 

```{r} 

no2_data <- no2_data %>% filter(`State Name` == "Pennsylvania") 

``` 

 

```{r} 

write_rds(no2_data, 'no2.rds') 

``` 

 

# CO 

# Read in files from 2009-2020 for CO 

 

```{r message=FALSE, warning=FALSE, comment=""} 

 

rm(list=ls()) 

 

# set the working directory to where your excel files are 

 

setwd("C:/Users/sap196/Desktop/MS 2022/EPA Data/CO_excel_files") 

 

 

# list files with .csv as the extension 

my_files <- list.files(pattern="*.csv") 
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co <- lapply(my_files, function(i){ 

  x = read_csv(i) 

  x$file=i 

  x 

}) 

 

 

#comb[[4]] 

co =do.call("rbind.data.frame",co) 

 

co_data <- co 

 

``` 

 

```{r} 

co_data <- co_data %>% filter(`State Name` == "Pennsylvania") 

``` 

 

```{r} 

write_rds(co_data, 'co.rds') 

``` 

 

# PM2.5 

# Read in files from 2009-2020 for PM2.5 

 

```{r message=FALSE, warning=FALSE, comment=""} 

 

rm(list=ls()) 

 

# set the working directory to where your excel files are 

 

setwd("C:/Users/sap196/Desktop/MS 2022/EPA Data/PM2.5_excel_files") 

 

 

# list files with .csv as the extension 

my_files <- list.files(pattern="*.csv") 

 

pm2.5 <- lapply(my_files, function(i){ 

  x = read_csv(i) 

  x$file=i 

  x 

}) 

 

 

#comb[[4]] 

pm2.5 =do.call("rbind.data.frame",pm2.5) 
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pm2.5_data <- pm2.5 

 

``` 

 

```{r} 

pm2.5_data <- pm2.5_data %>% filter(`State Name` == "Pennsylvania") 

``` 

 

```{r} 

write_rds(pm2.5_data, 'pm2.5.rds') 

``` 

 

```{r} 

birth_data <- read_rds('birth_data_1.rds') 

glimpse(birth_data) 

``` 

 

## Subset to fewer columns 

 

```{r} 

birth_data_epa <- birth_data %>% select(Birth_ID, Child_DOB, DERIVED_lat, 

DERIVED_long, wombStart) 

 

### only keep the birth data with complete location coordinates 

birth_data_epa <- birth_data_epa %>% 

  filter(!is.na(DERIVED_lat)) %>% 

  filter(!is.na(DERIVED_long)) 

 

sum(is.na(birth_data_epa$DERIVED_lat)) 

sum(is.na(birth_data_epa$DERIVED_long)) 

``` 

 

## Select required columns only from EPA data 

 

- State Code, County Code, Site Num 

- Parameter Code, POC 

- Latitude, Longitude 

- Parameter name 

- Date Local 

- Unit of Measure (ppm) 

- Arithmetic Mean 

- AQI 

- Local Site Name 

- Address 

- State Name 
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- County name 

- City Name 

- CBSA name 

- Date of Last Change 

 

Excluded for now: 

 

- Datum 

- Sample Duration (8-HR RUN AVG BEGIN HOUR) 

- Pollutant Standard 

- EVENT TYPE 

- Obs Count, Obs Percent 

- Other columns 

 

## Part 1: Ozone 

 

```{r} 

ozone_data <- read_rds('ozone.rds') 

 

ozone_data <- ozone_data %>% filter(`County Name` %in% c("Allegheny", 

"Armstrong","Beaver","Butler","Fayette","Greene","Washington","Westmoreland")) 

 

ozone_data <- ozone_data %>% select(1,2,3,4,5,6,7,9,12,13,17,20,23,24,25,26,27,28,29) 

 

# Year of data collection and year last updated 

 

ozone_data$YearCollect <- substr(ozone_data$`Date Local`, 1,4) 

ozone_data$YearLast <- substr(ozone_data$`Date of Last Change`, 1,4) 

 

ozone_data <- ozone_data %>% select(c(2,3,6,7,8,9,11,12)) 

``` 

 

```{r} 

# Approach - I (for-loop) 

# For O3 

 

# start.time <- Sys.time() 

stat_ozone <- vector(mode = 'list', length = nrow(birth_data_epa)) 

 

for(i in 1:nrow(birth_data_epa)){ 

  a <- ozone_data %>% filter(`Date Local` >= birth_data_epa[i,]$wombStart & `Date Local` <= 

birth_data_epa[i,]$Child_DOB) 

  

  a_site <- a %>% distinct(`Site Num`, Latitude, Longitude) 

 

  for (j in 1:nrow(a_site)){ 
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    a_site$childID <- birth_data_epa[i,]$Birth_ID 

    a_site$dist[j] <- distm(c(birth_data_epa[i,]$DERIVED_long, 

birth_data_epa[i,]$DERIVED_lat), c(a_site[j,]$Longitude, a_site[j,]$Latitude), 

fun=distHaversine) 

  } 

  a_site <- a_site[which.min(a_site$dist),] 

  

  stat_ozone[[i]] <- a %>% filter(`Site Num` == a_site$`Site Num` & Latitude == a_site$Latitude 

& Longitude == a_site$Longitude) %>% summarise(n= n(),mean = mean(`Arithmetic Mean`), 

md_o3 = median(`Arithmetic Mean`), var_o3=var(`Arithmetic Mean`)) 

  

  stat_ozone[[i]]$site_dist <- a_site$dist 

  stat_ozone[[i]]$Birth_ID <- a_site$childID 

} 

 

df_ozone <- do.call(rbind.data.frame, stat_ozone) 

write_rds(df_ozone, 'df_ozone_SP_1.rds') 

 

# end.time <- Sys.time() 

# time.taken.o3 <- round(end.time - start.time,2) 

# time.taken.o3 

``` 

 

## Part 2: SO2 

 

```{r} 

so2_data <- read_rds('so2.rds') 

 

so2_data <- so2_data %>% filter(`County Name` %in% c("Allegheny", 

"Armstrong","Beaver","Butler","Fayette","Greene","Washington","Westmoreland")) 

 

so2_data <- so2_data %>% select(1,2,3,4,5,6,7,9,12,13,17,20,23,24,25,26,27,28,29) 

 

# Year of data collection and year last updated 

 

so2_data$YearCollect <- substr(so2_data$`Date Local`, 1,4) 

so2_data$YearLast <- substr(so2_data$`Date of Last Change`, 1,4) 

 

so2_data <- so2_data %>% select(c(2,3,6,7,8,9,11,12)) 

``` 

 

 

```{r} 

# Approach - I (for-loop) 

# For so2 
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#start.time <- Sys.time() 

stat_so2 <- vector(mode = 'list', length = nrow(birth_data_epa)) 

 

for(i in 1:nrow(birth_data_epa)){ 

  a <- so2_data %>% filter(`Date Local` >= birth_data_epa[i,]$wombStart & `Date Local` <= 

birth_data_epa[i,]$Child_DOB) 

  

  a_site <- a %>% distinct(`Site Num`, Latitude, Longitude) 

 

  for (j in 1:nrow(a_site)){ 

    a_site$childID <- birth_data_epa[i,]$Birth_ID 

    a_site$dist[j] <- distm(c(birth_data_epa[i,]$DERIVED_long, 

birth_data_epa[i,]$DERIVED_lat), c(a_site[j,]$Longitude, a_site[j,]$Latitude), 

fun=distHaversine) 

  } 

  a_site <- a_site[which.min(a_site$dist),] 

  

  stat_so2[[i]] <- a %>% filter(`Site Num` == a_site$`Site Num` & Latitude == a_site$Latitude & 

Longitude == a_site$Longitude) %>% summarise(n= n(),mean = mean(`Arithmetic Mean`), 

md_o3 = median(`Arithmetic Mean`), var_o3=var(`Arithmetic Mean`)) 

  

  stat_so2[[i]]$site_dist <- a_site$dist 

  stat_so2[[i]]$Birth_ID <- a_site$childID 

} 

 

df_so2 <- do.call(rbind.data.frame, stat_so2) 

write_rds(df_so2, 'df_so2_SP_1.rds') 

 

# end.time <- Sys.time() 

# time.taken.so2 <- round(end.time - start.time,2) 

# time.taken.so2 

``` 

 

## Part 3: NO2 

 

```{r} 

no2_data <- read_rds('no2.rds') 

 

no2_data <- no2_data %>% filter(`County Name` %in% c("Allegheny", 

"Armstrong","Beaver","Butler","Fayette","Greene","Washington","Westmoreland")) 

 

no2_data <- no2_data %>% select(1,2,3,4,5,6,7,9,12,13,17,20,23,24,25,26,27,28,29) 

 

# Year of data collection and year last updated 

 

no2_data$YearCollect <- substr(no2_data$`Date Local`, 1,4) 
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no2_data$YearLast <- substr(no2_data$`Date of Last Change`, 1,4) 

 

#table(no2_data$YearCollect, no2_data$YearLast) 

no2_data <- no2_data %>% select(c(2,3,6,7,8,9,11,12)) 

``` 

 

```{r} 

# Approach - I (for-loop) 

# For no2 

 

# start.time <- Sys.time() 

stat_no2 <- vector(mode = 'list', length = nrow(birth_data_epa)) 

 

for(i in 1:nrow(birth_data_epa)){ 

  a <- no2_data %>% filter(`Date Local` >= birth_data_epa[i,]$wombStart & `Date Local` <= 

birth_data_epa[i,]$Child_DOB) 

  

  a_site <- a %>% distinct(`Site Num`, Latitude, Longitude) 

 

  for (j in 1:nrow(a_site)){ 

    a_site$childID <- birth_data_epa[i,]$Birth_ID 

    a_site$dist[j] <- distm(c(birth_data_epa[i,]$DERIVED_long, 

birth_data_epa[i,]$DERIVED_lat), c(a_site[j,]$Longitude, a_site[j,]$Latitude), 

fun=distHaversine) 

  } 

  a_site <- a_site[which.min(a_site$dist),] 

  

  stat_no2[[i]] <- a %>% filter(`Site Num` == a_site$`Site Num` & Latitude == a_site$Latitude & 

Longitude == a_site$Longitude) %>% summarise(n= n(),mean_no2 = mean(`Arithmetic Mean`), 

md_no2 = median(`Arithmetic Mean`), var_no2=var(`Arithmetic Mean`)) 

  

  stat_no2[[i]]$site_dist <- a_site$dist 

  stat_no2[[i]]$Birth_ID <- a_site$childID 

  

  # median_no2[[i]] 

  # var_no2[[i]] 

} 

 

df_no2 <- do.call(rbind.data.frame, stat_no2) 

write_rds(df_no2, 'df_no2_SP.rds') 

 

# end.time <- Sys.time() 

# time.taken.no2 <- round(end.time - start.time,2) 

# time.taken.no2 

``` 
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## Part 4: CO 

 

```{r} 

co_data <- read_rds('co.rds') 

 

co_data <- co_data %>% filter(`County Name` %in% c("Allegheny", 

"Armstrong","Beaver","Butler","Fayette","Greene","Washington","Westmoreland")) 

 

co_data <- co_data %>% select(1,2,3,4,5,6,7,9,12,13,17,20,23,24,25,26,27,28,29) 

 

# Year of data collection and year last updated 

 

co_data$YearCollect <- substr(co_data$`Date Local`, 1,4) 

co_data$YearLast <- substr(co_data$`Date of Last Change`, 1,4) 

 

#table(co_data$YearCollect, co_data$YearLast) 

co_data <- co_data %>% select(c(2,3,6,7,8,9,11,12)) 

``` 

 

 

```{r} 

# Approach - I (for-loop) 

# For co 

 

# start.time <- Sys.time() 

stat_co <- vector(mode = 'list', length = nrow(birth_data_epa)) 

 

for(i in 1:nrow(birth_data_epa)){ 

  a <- co_data %>% filter(`Date Local` >= birth_data_epa[i,]$wombStart & `Date Local` <= 

birth_data_epa[i,]$Child_DOB) 

  

  a_site <- a %>% distinct(`Site Num`, Latitude, Longitude) 

 

  for (j in 1:nrow(a_site)){ 

    a_site$childID <- birth_data_epa[i,]$Birth_ID 

    a_site$dist[j] <- distm(c(birth_data_epa[i,]$DERIVED_long, 

birth_data_epa[i,]$DERIVED_lat), c(a_site[j,]$Longitude, a_site[j,]$Latitude), 

fun=distHaversine) 

  } 

  a_site <- a_site[which.min(a_site$dist),] 

  

  stat_co[[i]] <- a %>% filter(`Site Num` == a_site$`Site Num` & Latitude == a_site$Latitude & 

Longitude == a_site$Longitude) %>% summarise(n= n(),mean_co = mean(`Arithmetic Mean`), 

md_co = median(`Arithmetic Mean`), var_co=var(`Arithmetic Mean`)) 

  

  stat_co[[i]]$site_dist <- a_site$dist 
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  stat_co[[i]]$Birth_ID <- a_site$childID 

  

 

} 

 

df_co <- do.call(rbind.data.frame, stat_co) 

write_rds(df_co, 'df_co_SP.rds') 

 

# end.time <- Sys.time() 

# time.taken.co <- round(end.time - start.time,2) 

# time.taken.co 

``` 

 

## Part 5: PM2.5 

 

```{r} 

pm2.5_data <- read_rds('pm2.5.rds') 

 

pm2.5_data <- pm2.5_data %>% filter(`County Name` %in% c("Allegheny", 

"Armstrong","Beaver","Butler","Fayette","Greene","Washington","Westmoreland")) 

 

pm2.5_data <- pm2.5_data %>% select(1,2,3,4,5,6,7,9,12,13,17,20,23,24,25,26,27,28,29) 

 

# Year of data collection and year last updated 

 

pm2.5_data$YearCollect <- substr(pm2.5_data$`Date Local`, 1,4) 

pm2.5_data$YearLast <- substr(pm2.5_data$`Date of Last Change`, 1,4) 

 

#table(pm2.5_data$YearCollect, pm2.5_data$YearLast) 

pm2.5_data <- pm2.5_data %>% select(c(2,3,6,7,8,9,11,12)) 

``` 

 

```{r} 

# Approach - I (for-loop) 

# For pm2.5 

 

# start.time <- Sys.time() 

stat_pm2.5 <- vector(mode = 'list', length = nrow(birth_data_epa)) 

 

for(i in 1:nrow(birth_data_epa)){ 

  a <- pm2.5_data %>% filter(`Date Local` >= birth_data_epa[i,]$wombStart & `Date Local` <= 

birth_data_epa[i,]$Child_DOB) 

  

  a_site <- a %>% distinct(`Site Num`, Latitude, Longitude) 

 

  for (j in 1:nrow(a_site)){ 
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    a_site$childID <- birth_data_epa[i,]$Birth_ID 

    a_site$dist[j] <- distm(c(birth_data_epa[i,]$DERIVED_long, 

birth_data_epa[i,]$DERIVED_lat), c(a_site[j,]$Longitude, a_site[j,]$Latitude), 

fun=distHaversine) 

  } 

  a_site <- a_site[which.min(a_site$dist),] 

  

  stat_pm2.5[[i]] <- a %>% filter(`Site Num` == a_site$`Site Num` & Latitude == a_site$Latitude 

& Longitude == a_site$Longitude) %>% summarise(n= n(),mean_pm2.5 = mean(`Arithmetic 

Mean`), md_pm2.5 = median(`Arithmetic Mean`), var_pm2.5=var(`Arithmetic Mean`)) 

  

  stat_pm2.5[[i]]$site_dist <- a_site$dist 

  stat_pm2.5[[i]]$Birth_ID <- a_site$childID 

  

 

} 

 

df_pm2.5 <- do.call(rbind.data.frame, stat_pm2.5) 

write_rds(df_pm2.5, 'df_pm2.5_SP.rds') 

 

# end.time <- Sys.time() 

# time.taken.co <- round(end.time - start.time,2) 

# time.taken.co 

``` 

 

# Plot maps 

 

```{r} 

o3_map <- ozone_data %>% select(Latitude, Longitude, `Parameter Name`) 

so2_map <- so2_data %>% select(Latitude, Longitude, `Parameter Name`) 

no2_map <- no2_data %>% select(Latitude, Longitude, `Parameter Name`) 

co_map <- co_data %>% select(Latitude, Longitude, `Parameter Name`) 

pm2.5_map <- pm2.5_data %>% select(Latitude, Longitude, `Parameter Name`) 

 

map <- rbind(o3_map, so2_map, no2_map, co_map, pm2.5_map) 

``` 

 

```{r} 

table(map$`Parameter Name`) 

``` 

 

```{r} 

facet_labels <- c( 

  `Carbon monoxide` = "Carbon monoxide", 

  `Nitrogen dioxide (NO2)` = "Nitrogen dioxide", 

  `Ozone` = "Ozone", 
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  `PM2.5 - Local Conditions` = "Particulate Matter 2.5", 

  `Sulfur dioxide` = "Sulfur dioxide" 

) 

 

map_plot <- qmplot(Longitude, Latitude, data = map, colour = `Parameter Name`, size = I(1), 

darken = .05)+facet_wrap(~`Parameter Name`, labeller = as_labeller(facet_labels))+  

theme(panel.border = element_blank(), 

       panel.background = element_blank(), 

       panel.grid = element_blank(), 

       panel.spacing.x = unit(1,"line"), 

       panel.spacing.y = unit(1,"line")) 

``` 

 

```{r} 

map_plot 

``` 

 

```{r} 

ggsave("map_plot.png")  ## save plot 

``` 

--- 

title: "Merge and EDA for Thesis" 

output: html_document 

--- 

 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 

``` 

 

```{r} 

library(tidyverse) 

``` 

 

# Merging birth data to pollutants data 

 

```{r} 

birth_data <- read_rds("birth_data_1.rds") 

``` 

 

```{r} 

birth_data <- birth_data %>% drop_na(DERIVED_lat, DERIVED_long) 

 

ozone_conc <- read_rds('df_ozone_SP_1.rds') 

so2_conc <- read_rds('df_so2_SP_1.rds') 

no2_conc <- read_rds('df_no2_SP.rds') 

co_conc <- read_rds('df_co_SP.rds') 
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pm2.5_conc <- read_rds('df_pm2.5_SP.rds') 

 

ozone_conc <- rename(ozone_conc, mean_o3 = mean, n_o3 = n, site_dist_o3 = site_dist) 

so2_conc <- rename(so2_conc, c(mean_so2 = mean, md_so2 = md_o3, var_so2 = var_o3, n_so2 

= n, site_dist_so2 = site_dist)) 

no2_conc <- rename(no2_conc, n_no2 = n, site_dist_no2 = site_dist) 

co_conc <- rename(co_conc, n_co = n, site_dist_co = site_dist) 

pm2.5_conc <- rename(pm2.5_conc, n_pm2.5 = n, site_dist_pm2.5 = site_dist) 

 

 

birth_data_w_o3 <- merge(birth_data, ozone_conc, by="Birth_ID") 

birth_data_w_so2 <- merge(birth_data, so2_conc, by="Birth_ID") 

birth_data_w_no2 <- merge(birth_data, no2_conc, by="Birth_ID") 

birth_data_w_co <- merge(birth_data, co_conc, by="Birth_ID") 

birth_data_w_pm2.5 <- merge(birth_data, pm2.5_conc, by="Birth_ID") 

 

# one big dataset 

 

birth_data_final <- merge(birth_data, ozone_conc, by="Birth_ID") 

birth_data_final <- merge(birth_data_final, so2_conc, by="Birth_ID") 

birth_data_final <- merge(birth_data_final, no2_conc, by="Birth_ID") 

birth_data_final <- merge(birth_data_final, co_conc, by="Birth_ID") 

birth_data_final <- merge(birth_data_final, pm2.5_conc, by="Birth_ID") 

 

write_rds(birth_data_final, 'birth_data_final.rds') 

``` 

 

# lumping together variables with low frequency 

 

```{r} 

df <- read_rds('birth_data_final.rds') 

``` 

 

```{r} 

table(df$momRace) 

``` 

 

```{r} 

### lump together all levels with less than 5% frequency 

df <- df %>% 

  mutate(SMK_comb = forcats::fct_lump_prop(SMK_comb, 0.05)) 

 

df <- df %>% 

  mutate(momRace = forcats::fct_lump_prop(momRace, 0.05)) 

 

### another categorical with levels with very low proportions 
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df <- df %>% 

  mutate(LBIRTH = forcats::fct_lump_prop(LBIRTH, 0.05)) 

 

### a few low proportion levels 

df <- df %>% 

  mutate(momrescounty = forcats::fct_lump_prop(momrescounty, 0.05)) 

 

``` 

 

```{r} 

### for SMK_comb 

df %>% 

  ggplot(mapping = aes(x = SMK_comb)) + 

  geom_bar(mapping = aes(y = stat(prop), 

                         group = 1)) + 

  geom_text(stat = 'count', 

            mapping = aes(y = after_stat(count / sum(count)), 

                          label = after_stat( signif(count / sum(count), 2))), 

            nudge_y = 0.03, color = 'red') + 

  coord_flip() + 

  theme_bw() 

``` 

 

```{r} 

### other smoker variable 

df %>% 

  ggplot(mapping = aes(y = SMKPR_YN)) + 

  geom_bar() + 

  theme_bw() 

``` 

 

So, SMK_comb is effectively redundant with SMKPR_YN due to the very low frequency for some 

of the levels. 

 

```{r} 

# dropping unwanted columns 

 

df <- df %>% dplyr::select(-Birth_ID, -DERIVED_lat, -DERIVED_long, -SMK_comb, -

wombStart, -n_o3, -var_o3, -site_dist_o3, 

                    -n_so2, -var_so2, -site_dist_so2, 

                    -n_no2, -var_no2, -site_dist_no2, 

                    -n_co, -var_co, -site_dist_co, 

                    -n_pm2.5, -var_pm2.5, -site_dist_pm2.5) 

df 

``` 
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```{r} 

# explore correlation between mean and median exposures 

df %>% 

  select(c(14:23)) %>% 

  cor() %>% 

  corrplot::corrplot(method = 'square', type = 'upper', 

                     order = 'hclust', hclust.method = 'ward.D2') 

``` 

 

```{r} 

 # droping median 

 

df <- df %>% select(-md_o3, -md_so2, -md_no2, -md_co, -md_pm2.5) 

``` 

 

```{r fig.height=8, fig.width=12} 

# missing data visualization 

# using naniar 

 

library(visdat) 

vis_dat(df, warn_large_data = FALSE) + theme(axis.text.x = element_text(size = 8, angle = 90)) 

``` 

```{r} 

df <- df %>% rename("NOPV" = "NOPV_c", 

                    "smkPrior" ="SMKPR_YN", 

                    "momEdu" = "mom_edu_collapsed", 

                    "neonateSex" = "SEX", 

                    "momResCounty" = "momrescounty", 

                    "momWIC" = "MWIC", 

                    "momGestDiabetes" = "R2", 

                    "momPreviousLiveBirths" = "LBIRTH", 

                    "BMI" = "BMI_class", 

                    "seasonBirth" = "season" 

                    ) 

``` 

 

```{r fig.height=8, fig.width=12} 

vis_miss(df %>% select(-c(14:18)), sort_miss=TRUE, warn_large_data = FALSE)+ 

theme(axis.text.x = element_text(size = 12, angle = 90)) 

``` 

 

```{r} 

# distribution for BMI missing vs non-missing 

 

df %>% filter(is.na(BMI)) %>%   
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  ggplot(aes(x=preterm_2)) + geom_bar() + geom_text(stat='count', aes(label=paste0(c(..count..), 

"(", scales::percent(..count../sum(..count..)), ")")), color = "black", size = 3.5) + 

  theme(axis.text.x = element_text(angle = 0)) 

 

df %>% filter(!is.na(BMI)) %>%   

  ggplot(aes(x=preterm_2)) + geom_bar() + geom_text(stat='count', aes(label=paste0(c(..count..), 

"(", scales::percent(..count../sum(..count..)), ")")), color = "black", size = 3.5) + 

  theme(axis.text.x = element_text(angle = 0)) 

``` 

 

```{r} 

df <- df %>%  mutate_if(is.character, as.factor) 

 

glimpse(df) 

 

df$preterm_2 <- relevel(df$preterm_2, "yes") 

``` 

 

```{r} 

df <- df %>% select(-BMI_class) 

df <- df %>% drop_na() 

``` 

 

```{r} 

write_rds(df, 'df.rds') 

``` 

 

```{r} 

table(df$momResCounty) 

``` 

 

# Descriptive statistics table for variables 

 

## Categorical 

```{r} 

library(reshape2) 

library(dplyr) 

 

df_desc <- 

melt(df,measure.vars=c("neonateSex","momResCounty","momWIC","momGestDiabetes","mo

mPreviousLiveBirths","seasonBirth","momAge","momEdu","smkPrior","NOPV","momRace")) 

 

res <- df_desc %>% 

  group_by(variable, value, preterm_2) %>% summarize(n = n()) %>% 

  mutate(freq =n / sum(n)) 

res 
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``` 

 

 

```{r} 

#make an 'export' variable 

res$export <- with(res, sprintf("%i (%.1f%%)", n, freq*100)) 

 

#reshape again 

output <- dcast(variable+value~preterm_2, value.var="export", data=res, fill="missing") #use 

drop=F to prevent silent missings 

#'silent missings' 

output$variable <- as.character(output$variable) 

#make 'empty lines' 

empties <- data.frame(variable=unique(output$variable), stringsAsFactors=F) 

empties[,colnames(output)[-1]] <- "" 

 

#bind them together 

output2 <- rbind(empties,output) 

output2 <- output2[order(output2$variable,output2$value),] 

 

#optional: 'remove' variable if value present 

 

output2$variable[output2$value!=""] <- "" 

``` 

 

```{r} 

output2 

``` 

 

```{r} 

# Write this table to a comma separated .txt file:     

write.table(output2, file = "desc_stat.txt", sep = ",", quote = FALSE, row.names = F) 

``` 

 

## Continuous variables 

 

```{r} 

 

df_desc_cont <- 

melt(df,measure.vars=c("mean_co","mean_no2","mean_o3","mean_pm2.5","mean_so2")) 

 

res_cont <- df_desc_cont %>% 

  group_by(variable, preterm_2) %>% 

  summarize(mean=mean(value), 

            sd = sd(value)) 
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res_cont 

res_cont$export <- with(res_cont, sprintf("%.2f (%.2f)", mean, sd)) 

 

res_cont 

``` 

 

```{r} 

res_cont <- res_cont %>% select(-mean,-sd) 

res_cont <- res_cont %>% pivot_wider(names_from = preterm_2, values_from = export) 

``` 

 

```{r} 

# Write this table to a comma separated .txt file:     

write.table(res_cont, file = "desc_stat_cont.txt", sep = ",", quote = FALSE, row.names = F) 

``` 

 

# EDA for categorical variables 

 

```{r} 

p1 <- df %>% 

  ggplot(mapping = aes(x = neonateSex)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Neonate Sex") +ylab("")+ 

  theme(legend.position = "None") 

 

 

p2 <- df %>% 

  ggplot(mapping = aes(x = seasonBirth)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Season of birth")+ylab("") 

 

p3 <- df %>% 

  ggplot(mapping = aes(x = momResCounty)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Mother's residential county")+ 

  scale_x_discrete(labels=c("Allegheny", 

                   "Beaver", 

                   "Butler", 

                   "Washing-\nton", 

                   "Westmore-\nland", 
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                   "Other"))+ylab("")+ 

  theme(legend.position = "None") 

 

p4 <- df %>% 

  ggplot(mapping = aes(x = momEdu)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Mother's education") + 

  scale_x_discrete(labels=c("Associate\nDegree", 

                   "Bachelor's\nDegree", 

                   "Graduate/\nProfessional\nDegree", 

                   "HS/GED/\nSome college", 

                   "Less than HS"))+ylab("") 

 

p5 <- df %>% 

  ggplot(mapping = aes(x = momAge)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Mother's age")+ylab("")+ 

  theme(legend.position = "None") 

 

p6 <- df %>% 

  ggplot(mapping = aes(x = momRace)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Mother's race")+ 

  scale_x_discrete(labels=c("Black/\nAfrican American", 

                   "White", 

                   "Other"))+ylab("") 

 

p7 <- df %>% 

  ggplot(mapping = aes(x = momWIC)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Mother's receipt of WIC services")+ylab("")+ 

  theme(legend.position = "None") 

 

p8 <- df %>% 

  ggplot(mapping = aes(x = momGestDiabetes)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 
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  theme_bw() + xlab("Diagnosis of gestational diabetes")+ylab("") 

 

p9 <- df %>% 

  ggplot(mapping = aes(x = smkPrior)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Smoking prior to pregnancy")+ylab("")+ 

  theme(legend.position = "None") 

 

p10 <- df %>% 

  ggplot(mapping = aes(x = momPreviousLiveBirths)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Number of previous live births")+ylab("") 

 

p11 <- df %>% 

  ggplot(mapping = aes(x = NOPV)) + 

  geom_bar(mapping = aes(fill = preterm_2), 

           position = 'fill') + 

  scale_fill_brewer(palette = "Pastel1") + 

  theme_bw() + xlab("Number of prenatal visits")+ylab("") 

``` 

 

```{r} 

plist <- list(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11) 

``` 

 

```{r, fig.height=20} 

library(gridExtra) 

 

# display plot 

g <- grid.arrange(grobs = plist, ncol = 2) 

``` 

 

```{r} 

# save plot 

ggsave(file="birth_barplots.png", g, width = 275, height = 297, units = "mm") 

``` 

 

# EDA for continous variables 

 

```{r} 
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q1 <- birth_data_w_co %>% ggplot(aes(x=mean_co)) + geom_freqpoly(mapping = aes(color = 

preterm_2, y=stat(density)))+ scale_color_brewer(palette = "Pastel1", direction=-1) + theme_bw() 

+ 

  theme(legend.position = "None") 

 

q2 <- birth_data_w_no2 %>% ggplot(aes(x=mean_no2)) + geom_freqpoly(mapping = aes(color 

= preterm_2, y=stat(density)))+ scale_color_brewer(palette = "Pastel1", direction=-1)+ 

theme_bw() 

 

q3 <- birth_data_w_o3 %>% ggplot(aes(x=mean_o3)) + geom_freqpoly(mapping = aes(color = 

preterm_2, y=stat(density)))+ scale_color_brewer(palette = "Pastel1", direction=-1)+ theme_bw() 

+ 

  theme(legend.position = "None") 

 

q4 <- birth_data_w_pm2.5 %>% ggplot(aes(x=mean_pm2.5)) + geom_freqpoly(mapping = 

aes(color = preterm_2, y=stat(density)))+ scale_color_brewer(palette = "Pastel1", direction=-1)+ 

theme_bw() 

 

q5 <- birth_data_w_so2 %>% ggplot(aes(x=mean_so2)) + geom_freqpoly(mapping = aes(color = 

preterm_2, y=stat(density)))+ scale_color_brewer(palette = "Pastel1", direction=-1)+ theme_bw() 

 

``` 

 

```{r} 

qlist <- list(q1,q2,q3,q4,q5) 

``` 

 

```{r, fig.height=20} 

library(gridExtra) 

 

# display plot 

h <- grid.arrange(grobs = qlist, ncol = 2) 

``` 

 

```{r} 

# save plot 

ggsave(file="epa_freqpoly.png", h, width = 275, height = 297, units = "mm") 

``` 

Empirical Bayes exploration was assisted by Dr. Joseph Yurko. 

--- 

title: "Empirical Bayes exploration" 

output: html_document 

--- 

 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 
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``` 

 

```{r} 

library(tidyverse) 

``` 

 

```{r} 

df <- read_rds('df.rds') 

 

dim(df) 

 

glimpse(df) 

``` 

 

```{r} 

# all categorical variables are stored as cat_names 

cat_names <- df %>% 

  select(-preterm_2) %>% 

  purrr::keep(is.factor) %>% 

  names() 

 

cat_group_summary <- df %>% 

  group_by(across(all_of(cat_names))) %>% 

  summarise(N = n(), 

            m = sum(preterm_2 == 'yes'), 

            mle = mean(preterm_2 == 'yes'), 

            .groups = 'drop') 

 

cat_group_summary %>% dim() 

``` 

 

```{r} 

# distribution for the number of births per group 

cat_group_summary %>% 

  ggplot(mapping = aes(x = N)) + 

  geom_histogram(binwidth = 10) + 

  theme_bw() 

``` 

 

```{r} 

# distribution of the preterm birth frequency (MLE) 

cat_group_summary %>% 

  ggplot(mapping = aes(x = mle)) + 

  geom_histogram(binwidth = 0.02) + 

  theme_bw() 

``` 
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```{r} 

# how many groups have at least 50 births 

cat_group_summary %>% 

  filter(N > 49) %>% 

  nrow() 

 

# how many have only one 

cat_group_summary %>% 

  filter(N == 1) %>% 

  nrow() 

``` 

 

```{r} 

# distribution of the preterm MLE for all groups that have at least 50 births 

cat_group_summary %>% 

  ggplot(mapping = aes(x = mle)) + 

  geom_histogram(binwidth = 0.02) + 

  facet_wrap(~ N > 49, labeller = 'label_both', scales = 'free_y') + 

  theme_bw() 

``` 

 

```{r} 

# use empirical Bayes to craft a meaningful prior on the event probability 

 

# use groups with at least 50 births 

keep_groups <- cat_group_summary %>% 

  filter(N > 49) 

 

# need the more flexible beta-binomial distribution compared to the beta 

# in order to perform empirical bayes 

my_dbetabinomial_log <- function(m, N, a, b) 

{ 

  lchoose(N, m) + lbeta(m + a, N - m + b) - lbeta(a, b) 

} 

``` 

 

```{r} 

# define the log-likelihood function for the log-transformed a and b 

my_loglik_betabinom <- function(unknowns, my_info) 

{ 

  log_a <- unknowns[1] 

  log_b <- unknowns[2] 

  

  a <- exp(log_a) 

  b <- exp(log_b) 
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  log_lik <- sum(purrr::map2_dbl(my_info$m, my_info$N, 

                                 my_dbetabinomial_log, 

                                 a = a, 

                                 b = b)) 

  

  log_lik + log_a + log_b 

} 

``` 

 

 

```{r} 

# setup the list of required information 

info_use <- list( 

  m = keep_groups$m, 

  N = keep_groups$N 

) 

 

# run optim to estimate a and b 

res_optim <- optim(c(0, 0), 

                   my_loglik_betabinom, 

                   gr = NULL, 

                   info_use, 

                   hessian = TRUE, 

                   method = 'BFGS', 

                   control = list(fnscale = -1, maxit = 1001)) 

 

res_optim 

 

# check from another guess 

res_check1 <- optim(c(1, 1), 

                    my_loglik_betabinom, 

                    gr = NULL, 

                    info_use, 

                    hessian = TRUE, 

                    method = 'BFGS', 

                    control = list(fnscale = -1, maxit = 1001)) 

 

res_check2 <- optim(c(0.5, -0.5), 

                    my_loglik_betabinom, 

                    gr = NULL, 

                    info_use, 

                    hessian = TRUE, 

                    method = 'BFGS', 

                    control = list(fnscale = -1, maxit = 1001)) 

 



 70 

``` 

 

 

```{r} 

# compare 

res_optim$par 

 

res_check1$par 

 

res_check2$par 

 

## they are close enough 

``` 

 

```{r} 

empbayes_ab <- exp(res_optim$par) 

 

empbayes_ab 

``` 

```{r} 

# a priori number of trials 

sum(empbayes_ab) 

``` 

 

```{r} 

# plot the informative prior density 

keep_groups %>% 

  ggplot(mapping = aes(x = mle)) + 

  geom_histogram(binwidth = 0.02, 

                 mapping = aes(y = stat(density))) + 

  stat_function(fun = dbeta, 

                args = list(shape1 = empbayes_ab[1], shape2 = empbayes_ab[2]), 

                xlim = c(0, 1), 

                color = 'red', size = 1.2) + 

  coord_cartesian(xlim = c(0, 1)) + 

  theme_bw() 

 

# this prior might not truly be suitable...the actual distribution of 

# the mle's might be a mixture of betas!!!! 

# there almost seems to be a second mode near 0.25?!?!?! 

 

keep_groups %>% 

  filter(between(mle, 0.2, 0.3)) %>% 

  select(N, m, mle) 

``` 
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```{r} 

# keep with this prior for now and see what happens 

 

# the posterior shape parameters assuming a binomial likelihood and beta prior 

 

cat_groups_post_2 <- cat_group_summary %>% 

  mutate(a_new = m + empbayes_ab[1], 

         b_new = N - m + empbayes_ab[2]) %>% 

  mutate(post_avg = a_new / (a_new + b_new), 

         post_q05 = qbeta(0.05, a_new, b_new), 

         post_q95 = qbeta(0.95, a_new, b_new), 

         post_prob_grt_0.1 = 1 - pbeta(0.1, a_new, b_new)) 

 

# plot the distribution of the posterior mean across all groups 

cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = post_avg)) + 

  geom_histogram(binwidth = 0.01) + 

  theme_bw() 

 

# plot the posterior summaries across all groups 

cat_groups_post_2 %>% 

  tibble::rowid_to_column("j") %>% 

  mutate(j = as.factor(j)) %>% 

  mutate(j = forcats::fct_reorder(j, post_avg, 'min')) %>% 

  mutate(avg_group = cut(post_avg, 

                         breaks = unique(quantile(post_avg)), 

                         include.lowest = TRUE)) %>% 

  ggplot(mapping = aes(x = j)) + 

  geom_linerange(mapping = aes(group = j, 

                               ymin = post_q05, 

                               ymax = post_q95)) + 

  geom_point(mapping = aes(group = j, 

                           y = post_avg)) + 

  facet_wrap(~avg_group, scales = 'free') + 

  labs(x = '', y = 'event probability') + 

  theme_bw() + 

  theme(axis.text.x = element_blank(), 

        strip.text = element_blank(), 

        strip.background = element_blank(), 

        panel.grid.major.x = element_blank()) 

 

``` 
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This prior might be too strong due to that "upper" mode for the mle, so it's basically saying there 

could be two groups! A group with a very low event probability and another group with higher 

event probability. 

 

```{r} 

# but using this result, show the distribution of the posterior mean 

# based on the separate categorical variables within the group 

 

b1 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = neonateSex, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Neonate sex") 

 

b2 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = seasonBirth, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Season of birth") +ylab("") 

 

b3 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = momResCounty, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Mother's residential county") +   

  scale_x_discrete(labels=c("Allegheny", 

                   "Beaver", 

                   "Butler", 

                   "Washing-\nton", 

                   "Westmore-\nland", 

                   "Other")) 

 

b4 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = momEdu, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Mother's education") + 

  scale_x_discrete(labels=c("Associate\nDegree", 

                   "Bachelor's\nDegree", 

                   "Graduate/\nProfessional\nDegree", 

                   "HS/GED/\nSome\ncollege", 

                   "Less\nthan HS"))+ylab("") 

 

b5 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = momAge, y = post_avg)) + 

  geom_violin(fill = 'grey') + 
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  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Mother's age") 

 

b6 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = momRace, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Mother's race")+ 

  scale_x_discrete(labels=c("Black/\nAfrican American", 

                   "White", 

                   "Other"))+ylab("") 

 

b7 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = momWIC, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Receipt of WIC services") 

 

b8 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = momGestDiabetes, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Gestational diabetes")+ylab("") 

 

b9 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = smkPrior, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Smoking prior to pregnancy") 

 

b10 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = momPreviousLiveBirths, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Number of previous live births")+ylab("") 

 

b11 <- cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = NOPV, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Number of prenatal visits") 

``` 

 

```{r} 

blist <- list(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11) 

``` 
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```{r, fig.height=20} 

library(gridExtra) 

 

# display plot 

b <- grid.arrange(grobs = blist, ncol = 2) 

``` 

 

```{r} 

# save plot 

ggsave(file="bayes_results.png", b, width = 275, height = 297, units = "mm") 

``` 

 

```{r} 

cat_groups_post_2 <- cat_groups_post_2 %>% 

  mutate(lbirth_lumped = forcats::fct_lump_prop(LBIRTH, 0.05)) 

 

cat_groups_post_2 %>% count(mom_edu_collapsed) 

cat_groups_post_2 %>% 

  ggplot(mapping = aes(x = lbirth_lumped, y = post_avg)) + 

  geom_violin(fill = 'grey') + 

  geom_boxplot(fill = NA) + 

  theme_bw() + xlab("Number of previous live births") 

``` 

 

```{r} 

# what's NOPV_c? highest posterior average for the event probability 

# is observed when NOPV_c = 0-10 

cat_groups_post_2 %>% 

  select(NOPV_c, N, m, mle, post_avg, post_prob_grt_0.1) %>% 

  arrange(desc(post_avg)) 

 

cat_groups_post_2 %>% 

  count(NOPV_c) 

 

cat_groups_post_2 %>% 

  filter(post_avg > 0.12) %>% 

  count(NOPV_c) 

``` 

 

```{r} 

# the groups with the highest posterior average 

cat_groups_post_2 %>% 

  arrange(desc(post_avg)) 

``` 

--- 
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title: "Model Building: Downsampling" 

output: html_document 

--- 

 

```{r setup, include=FALSE, warning=FALSE} 

knitr::opts_chunk$set(echo = FALSE) 

``` 

 

```{r} 

# required libraries 

library(tidyverse) 

``` 

 

```{r} 

# read in dataset 

df <- read_rds('df.rds') 

``` 

 

221060 total observations 

 

```{r} 

b_data_caret <- df 

 

#convert output to numeric 

b_data_caret <- b_data_caret %>% mutate(preterm_2 = case_when(preterm_2 == 'yes'~ 1, 

                                                     preterm_2 == 'no'~ 0)) 

 

dmy <- dummyVars("~.", data=b_data_caret) 

b_data_caret <- data.frame(predict(dmy, newdata = b_data_caret)) 

 

b_data_caret <-  b_data_caret %>% mutate(preterm_2 = case_when(preterm_2 == 1~'yes', 

                                                     preterm_2 == 0~'no')) 

 

b_data_caret$preterm_2 <- as.factor(b_data_caret$preterm_2) 

b_data_caret$preterm_2 <- relevel(b_data_caret$preterm_2, "yes") 

``` 

 

```{r} 

b_data_caret %>% count(preterm_2) %>% mutate(prop=n/sum(n)) 

``` 

 

```{r} 

# install rsample 

library(rsample) 

 

set.seed(4321) 
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# choosing 70% of the data to be the training data 

data_split_caret <- initial_split(b_data_caret, prop = .70) 

 

# extracting training data and test data as two separate dataframes 

data_train_caret <- training(data_split_caret) 

data_test_caret  <- testing(data_split_caret) 

``` 

 

```{r} 

# training set proportions by preterm_2 

data_train_caret %>% count(preterm_2) %>% mutate(prop=n/sum(n)) 

 

# testing set proportions by preterm_2 

data_test_caret %>% count(preterm_2) %>% mutate(prop=n/sum(n)) 

``` 

 

```{r} 

# use ROSE package to downsample 

library(ROSE) 

data_train_caret_bal <- ovun.sample(preterm_2~., data=data_train_caret, method="under", N= 

22008)$data 

table(data_train_caret_bal$preterm_2) 

``` 

 

```{r} 

ctrl <- trainControl(method = "repeatedcv", number = 5, repeats=3, 

                     summaryFunction = twoClassSummary, 

                     classProbs = TRUE, 

                     savePredictions = TRUE) 

 

``` 

 

# ElaticNet 

 

```{r} 

enet_grid <- expand.grid(alpha = c(0.1, 0.2, 0.3, 0.4), 

                         lambda = exp(seq(-6, 1, length.out = 21))) 

 

set.seed(4321) 

fit_glmnet_down <- train(preterm_2 ~ ., data = data_train_caret_bal, 

                      method = "glmnet", 

                      metric = "ROC", 

                      preProcess = c('center','scale'), 

                      tuneGrid = enet_grid, 

                      trControl = ctrl) 

fit_glmnet_down %>% readr::write_rds("fit_glmnet_down.rds") 
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``` 

 

```{r} 

fit_glmnet_down 

``` 

 

```{r} 

plot(fit_glmnet_down, xTrans = log) 

``` 

 

```{r} 

fit_glmnet_down$bestTune 

``` 

 

```{r} 

confusionMatrix.train(fit_glmnet_down,positive = "yes") 

``` 

 

Assessing model performance on the test set 

 

```{r} 

data_test_y <- data_test_caret$preterm_2 

data_test_caret <- data_test_caret %>% select(-preterm_2) 

glmnet_test <- predict(fit_glmnet_down, data_test_caret, type="prob") 

glmnet_test_pred <- as.factor(ifelse(glmnet_test$yes > 0.5, "yes","no")) 

 

glmnet_test_perf <- confusionMatrix(glmnet_test_pred, data_test_y, positive = "yes") 

``` 

 

```{r} 

roc.curve(data_test_y, glmnet_test[,2]) 

``` 

 

# SVM Radial 

 

```{r} 

set.seed(4321) 

fit_svm_down <- train(preterm_2 ~ ., data = data_train_caret_bal, 

                 method = "svmRadial", 

                 metric = "ROC", 

                 preProcess = c('center','scale'), 

                 trControl = ctrl) 

 

 

fit_svm_down %>% readr::write_rds("fit_svm_down.rds") 

``` 
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```{r} 

fit_svm_down$bestTune 

``` 

 

```{r} 

plot(fit_svm_down) 

``` 

 

```{r} 

confusionMatrix.train(fit_svm_down) 

``` 

 

Assessing model performance on the test set 

 

```{r} 

svm_test <- predict(fit_svm_down, data_test_caret, type="prob") 

svm_test_pred <- as.factor(ifelse(svm_test$yes > 0.5, "yes","no")) 

 

svm_test_perf <- confusionMatrix(svm_test_pred, data_test_y, positive = "yes") 

``` 

 

```{r} 

roc.curve(data_test_y, svm_test[,2]) 

``` 

 

# Random Forest 

 

```{r} 

set.seed(4321) 

fit_rf_down <- train(preterm_2 ~ ., data = data_train_caret_bal, 

                method = "rf", 

                metric = "ROC", 

                preProcess = c('center','scale'), 

                trControl = ctrl, 

                importance = TRUE) 

 

 

fit_rf_down %>% readr::write_rds("fit_rf_down.rds") 

``` 

 

```{r} 

fit_rf_down 

``` 

 

```{r} 
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fit_rf_down$bestTune 

``` 

 

```{r} 

confusionMatrix.train(fit_rf_down) 

``` 

 

 

Assessing model performance on the test set 

 

```{r} 

rf_test <- predict(fit_rf_down, data_test_caret, type="prob") 

rf_test_pred <- as.factor(ifelse(rf_test$yes > 0.5, "yes","no")) 

 

rf_test_perf <- confusionMatrix(rf_test_pred, data_test_y, positive = "yes") 

``` 

 

```{r} 

roc.curve(data_test_y, rf_test[,2]) 

``` 

 

```{r} 

#read in models 

 

fit_glmnet_down <- read_rds("fit_glmnet_down.rds") 

fit_svm_down <- read_rds("fit_svm_down.rds") 

fit_rf_down <- read_rds("fit_rf_down.rds") 

``` 

 

On the training set, comparing models: 

 

```{r} 

model_cv_res <- resamples(list(GLMNET = fit_glmnet_down, 

                               SVM = fit_svm_down, 

                               RF = fit_rf_down)) 

``` 

 

```{r} 

cv_pred_results <- fit_glmnet_down$pred %>% tbl_df() %>% 

              filter(alpha %in% fit_glmnet_down$bestTune$alpha, 

                     lambda %in% fit_glmnet_down$bestTune$lambda) %>% 

              select(pred, obs, yes, no, rowIndex, Resample) %>% 

              mutate(model_name = "GLMNET") %>% 

  bind_rows(fit_svm_down$pred %>% tbl_df() %>% 

              filter(sigma %in% fit_svm_down$bestTune$sigma, 

                     C %in% fit_svm_down$bestTune$C) %>% 
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              select(pred, obs, yes, no, rowIndex, Resample) %>% 

              mutate(model_name = "SVM")) %>% 

  bind_rows(fit_rf_down$pred %>% tbl_df() %>% 

              filter(mtry == fit_rf_down$bestTune$mtry) %>% 

              select(pred, obs, yes, no, rowIndex, Resample) %>% 

              mutate(model_name = "RF")) 

``` 

 

```{r} 

library(plotROC) 

``` 

 

```{r} 

calC_auc(cv_pred_results) 

``` 

 

```{r} 

auc_train <- calc_auc(cv_pred_results %>% 

  ggplot(mapping = aes(m = yes, 

                       d = ifelse(obs == "yes", 

                                  1, 

                                  0), 

                       color = model_name)) + 

  geom_roc(cutoffs.at = 0.5) + 

  coord_equal() + 

  style_roc() + 

  ggthemes::scale_color_colorblind()) 

 

cv_pred_results %>% 

  ggplot(mapping = aes(m = yes, 

                       d = ifelse(obs == "yes", 

                                  1, 

                                  0), 

                       color = model_name)) + 

  geom_roc(cutoffs.at = 0.5) + 

  coord_equal() + 

  style_roc() + 

  ggthemes::scale_color_colorblind() 

 

ggsave('auc_train.png') 

``` 

 

```{r} 

resamples_lf <- as.data.frame(model_cv_res, metric = "Sens") %>% tbl_df() %>% 

  mutate(metric_name = "Sensitivity") %>% 

  bind_rows(as.data.frame(model_cv_res, metric = "Spec") %>% tbl_df() %>% 
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              mutate(metric_name = "Specificity")) %>% 

  tidyr::gather(key = "model_name", value = "metric_value", 

                -Resample, -metric_name) 

``` 

 

```{r} 

resamples_lf%>% 

group_by(metric_name,model_name)%>% 

summarize(mean=mean(metric_value)) 

``` 

 

```{r} 

resamples_lf %>% 

  ggplot(mapping = aes(x = fct_reorder(model_name,metric_value), y = metric_value)) + 

  stat_summary(fun.data = "mean_se", 

               color = "red", 

               fun.args = list(mult = 1)) + 

  coord_flip() + 

  facet_grid(. ~ metric_name, scales = "free_x") + 

  theme_bw() +xlab("") 

 

ggsave('sens_train.png') 

``` 

 

# Performance metrices for testing dataset 

 

```{r} 

roc_glmnet <- roc(data_test_y, glmnet_test[,2]) 

roc_svm <- roc(data_test_y, svm_test[,2]) 

roc_rf <- roc(data_test_y, rf_test[,2]) 

``` 

 

```{r} 

ggroc(list(roc_glmnet, roc_svm, roc_rf), size=.8)+ 

  scale_color_manual(labels = c(paste0('GLMNET: ', round(roc_glmnet$auc,3)), 

                                paste0('SVM: ', round(roc_svm$auc,3)), 

                                paste0('RF: ', round(roc_rf$auc,3))), 

                     values=c("#000000","#56B4E9","#E69F00")) + 

  labs(color='') + 

  theme_bw() +xlab("False Positive Fraction")+ylab("True Positive Fraction") 

 

ggsave('auc_test.png') 

``` 

 

```{r} 

glmnetImp <- varImp(fit_glmnet_down, scale = TRUE) 
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plot(glmnetImp, top = 10) 

``` 

 

```{r} 

svmImp <- varImp(fit_svm_down, scale = TRUE) 

plot(svmImp, top = 10) 

``` 

 

```{r} 

rfImp <- varImp(fit_rf_down, scale = TRUE) 

plot(rfImp, top = 10) 

``` 
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